JP5131081B2 - Heat exchanger scale removal method and apparatus - Google Patents

Heat exchanger scale removal method and apparatus Download PDF

Info

Publication number
JP5131081B2
JP5131081B2 JP2008201469A JP2008201469A JP5131081B2 JP 5131081 B2 JP5131081 B2 JP 5131081B2 JP 2008201469 A JP2008201469 A JP 2008201469A JP 2008201469 A JP2008201469 A JP 2008201469A JP 5131081 B2 JP5131081 B2 JP 5131081B2
Authority
JP
Japan
Prior art keywords
heat exchanger
scale
hot water
flow
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008201469A
Other languages
Japanese (ja)
Other versions
JP2010038438A (en
Inventor
勇 大澤
市郎 明翫
浩晃 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2008201469A priority Critical patent/JP5131081B2/en
Publication of JP2010038438A publication Critical patent/JP2010038438A/en
Application granted granted Critical
Publication of JP5131081B2 publication Critical patent/JP5131081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

この発明は、例えば地熱バイナリー発電システムの予熱器として適用する熱交換器のスケール除去方法および装置に関する。   The present invention relates to a heat exchanger descaling method and apparatus applied as a preheater of a geothermal binary power generation system, for example.

頭記の地熱バイナリー発電システムは、地熱流体(蒸気または熱水)を熱交換器に通し、低沸点のバイナリー媒体を蒸発させて蒸気タービンを駆動し、発電を行わせるものである(例えば、非特許文献1参照)。   The geothermal binary power generation system described above is a system in which a geothermal fluid (steam or hot water) is passed through a heat exchanger, a binary medium having a low boiling point is evaporated, a steam turbine is driven, and power generation is performed (for example, non-power generation). Patent Document 1).

ところで、よく知られているように生産井から汲み上げた地熱流体には、坑井の地質によって異なるがシリカや炭酸カルシウムなどの各種溶解成分が含まれており、この地熱流体を地上において蒸気と熱水に気水分離すると圧力,PHの変化に伴って前記の溶解成分が析出するようになる。そのために、地熱熱水を熱源として熱交換器(予熱器)を運転すると、被加熱流体との熱交換に伴う熱水温度の低下とともに溶解成分の析出物(鉱物質)がスケールとなって熱交換器(多管式シェル・アンド・チューブ型熱交換器)の伝熱管に付着堆積するようになる。特に、地熱熱水を熱源として低沸点のバイナリー媒体を予熱するバイナリー発電システムの予熱器では、スケールの付着堆積により熱交換器の機能、耐久性が低下して地熱発電の円滑な操業が行えなくなる問題を引き起こす。   As is well known, the geothermal fluid pumped from the production well contains various dissolved components such as silica and calcium carbonate, depending on the geology of the well. When the air and water are separated into water, the dissolved components are deposited as the pressure and pH change. Therefore, when a heat exchanger (preheater) is operated using geothermal hot water as a heat source, the precipitate of the dissolved component (mineral substance) becomes a scale as the temperature of the hot water decreases with the heat exchange with the heated fluid. It becomes deposited on the heat transfer tubes of the exchanger (multi-tubular shell-and-tube heat exchanger). In particular, in the preheater of a binary power generation system that preheats a low boiling point binary medium using geothermal hot water as a heat source, the function and durability of the heat exchanger are reduced due to the deposition of scales, making it impossible to operate geothermal power smoothly. Cause problems.

そこで、従来では熱交換器のスケーリング対策として、比較的短い周期(例えば、月に1回)の割合で熱交換器に外部から薬品を注入してスケールを溶解除去するようにしており、その一例として地熱熱水を熱源とする熱交換器に関して、熱水が通流する伝熱管にPH調整した洗浄液を注入して循環させ、伝熱管の管壁に付着堆積しているスケールを溶解剥離させるようにしたスケール除去方法が知られている(例えば、特許文献1参照)。
山田 茂登、他1名、“小形地熱バイナリー発電システム”、富士時報、富士電機ホールディング株式会社、2005年、vol78、No2、p136−139、[0nline]、[平成20年7月30日検索]、インターネット<URL:http://www.fujielectric.co.jp/company/jihou_archives/pdf/78-02/FEJ-78-02-136-2005.pdf 特開昭64−75895号公報
Therefore, conventionally, as a measure for scaling of the heat exchanger, the scale is dissolved and removed by injecting the chemical into the heat exchanger from the outside at a relatively short cycle (for example, once a month). As for heat exchangers that use geothermal hot water as a heat source, the pH adjusted cleaning liquid is injected and circulated through the heat transfer tubes through which the hot water flows, so that the scales deposited and deposited on the tube walls of the heat transfer tubes are dissolved and separated. A scale removal method is known (see, for example, Patent Document 1).
Shigeto Yamada, 1 other, “Small Geothermal Binary Power Generation System”, Fuji Times, Fuji Electric Holding Co., Ltd., 2005, vol78, No2, p136-139, [0nline], [searched July 30, 2008], Internet <URL: http://www.fujielectric.co.jp/company/jihou_archives/pdf/78-02/FEJ-78-02-136-2005.pdf JP-A 64-75895

ところで、前記特許文献1に開示されているスケール除去方法では、熱交換器に洗浄液を注入する洗浄設備を備え、スケール除去時には熱交換器の運転モードを熱利用運転からスケール除去運転に切換えた上で、前記洗浄設備から熱交換器の伝熱管に洗浄液を注入,循環させて付着堆積したスケールを洗浄,除去するようにしている。   By the way, the scale removal method disclosed in Patent Document 1 includes a cleaning facility for injecting a cleaning liquid into the heat exchanger, and when the scale is removed, the operation mode of the heat exchanger is switched from the heat utilization operation to the scale removal operation. Therefore, the cleaning liquid is poured from the cleaning equipment into the heat transfer tube of the heat exchanger and circulated to clean and remove the scale that has adhered and accumulated.

このために、熱交換器と別個に洗浄液を注入するための洗浄液貯留設備,および洗浄液の補充管理が必要となる。また、スケール除去運転中は熱源となる熱水の通流を止めて熱交換器の熱利用運転を停止する必要があり、このスケール除去作業期間中は先記したバイナリー発電プラントの操業を停止しなければならない。   For this reason, a cleaning liquid storage facility for injecting the cleaning liquid separately from the heat exchanger, and replenishment management of the cleaning liquid are required. Also, during the scale removal operation, it is necessary to stop the heat utilization operation of the heat exchanger by stopping the flow of hot water as the heat source. During this scale removal operation, the operation of the binary power plant is stopped. There must be.

この発明は上記の点に鑑みなされたものであり、その目的は、洗浄液などの薬品を一切使用することなく、かつ熱交換器も運転停止せずに熱利用運転を継続したままの状態で熱交換器の伝熱管に付着堆積したスケールを剥離させて捕集できるようにした新規な熱交換器のスケール除去方法,および装置を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to use the heat in a state where the heat utilization operation is continued without using any chemicals such as a cleaning liquid and without stopping the operation of the heat exchanger. It is an object of the present invention to provide a novel heat exchanger scale removal method and apparatus capable of separating and collecting scales deposited and deposited on a heat transfer tube of an exchanger.

この発明は、地熱熱水を熱源として常時は熱水と被加熱流体を対向流させて被加熱流体を加熱する対向流型の熱交換器を対象としたスケーリング対策であり、
この発明による熱交換器の伝熱管に付着堆積したスケールの除去方法は、被加熱流体の流れに対して、スケール除去時には熱交換器の伝熱管に通す熱水の流れを一時的に「対向流」から「並行流」に反転して伝熱管に急激な温度変化(熱ショック)を加え、この温度変化に伴う伝熱管とスケールとの熱膨張差により伝熱管の管壁から剥離したスケールの砕片を熱交換器より下流側の熱水ライン途上で捕集するようにする(請求項1)。
This invention is a scaling measure for a counter-flow heat exchanger that heats the heated fluid by causing the hot water and the heated fluid to flow countercurrently using geothermal hot water as a heat source,
According to the method of removing scale deposited and deposited on the heat exchanger tube of the heat exchanger according to the present invention, the flow of hot water passing through the heat exchanger tube of the heat exchanger is temporarily "opposite flow" when removing scale from the flow of the heated fluid. ”To“ Parallel flow ”, a sudden temperature change (heat shock) is applied to the heat transfer tube, and the scale fragments separated from the tube wall of the heat transfer tube due to the difference in thermal expansion between the heat transfer tube and the scale due to this temperature change Is collected along the hot water line downstream of the heat exchanger (claim 1).

また、前記スケール除去方法を実施するこの発明のスケール除去装置は、熱交換器に通流する被加熱流体の流れに対して、スケール除去時には熱水ラインから熱交換器に導入する熱水の流れ方向を「対向流」から「並行流」に反転させる流路切換手段と、熱交換器の伝熱管から剥離して熱交換器より排出したスケールの砕片を下流側の熱水ライン途上で捕捉,回収するスケール捕集手段と、熱交換器の運転中に熱水の流れを周期的に「対向流」から「並行流」に切換えた上で、再び「対向流」に戻す運転制御手段とで構成する(請求項2)。   In addition, the scale removing device of the present invention that implements the scale removing method has a flow of hot water introduced from the hot water line to the heat exchanger at the time of scale removal with respect to the flow of the heated fluid flowing through the heat exchanger. Channel switching means that reverses the direction from “opposite flow” to “parallel flow”, and the scale debris separated from the heat exchanger tube and discharged from the heat exchanger, is captured in the downstream hot water line. The scale collection means to be recovered and the operation control means to periodically switch the flow of hot water from “counterflow” to “parallel flow” and then return to “counterflow” again during operation of the heat exchanger. (Claim 2).

さらに、前記スケール捕集手段として、スケール捕捉用のストレーナを内蔵した洗浄回路付きの容器を、ゲート弁を介して熱水ラインの配管にバイパス接続する(請求項3)。   Further, as the scale collecting means, a container with a cleaning circuit containing a strainer for capturing the scale is bypass-connected to the piping of the hot water line via a gate valve (Claim 3).

上記したこの発明のスケール除去方法および装置によれば、熱交換器の伝熱管に通流する熱水の流れを被加熱流体の流れに対して「対向流」から「並行流」に反転して伝熱管に急激な温度変化(熱ショック)を与えることにより、伝熱管(ステンレス鋼)とこの伝熱管の管壁に付着堆積したスケール(二酸化ケイ素など)との接合界面には両者の熱膨張係数差に基づく剪断応力が作用してスケールが伝熱管から剥離するようなる。そして、伝熱管の管壁から剥離したスケールの砕片を熱交換器より下流側の熱水ライン配管路に配置したスケール捕集器で捕捉回収することにより、従来のスケール洗浄方法のように洗浄薬品を使用することなしにスケールを効果的に除去できる。   According to the scale removing method and apparatus of the present invention described above, the flow of hot water flowing through the heat transfer tube of the heat exchanger is reversed from the “countercurrent flow” to the “parallel flow” with respect to the flow of the heated fluid. By applying a sudden temperature change (heat shock) to the heat transfer tube, the thermal expansion coefficient of the heat transfer tube (stainless steel) and the scale (silicon dioxide, etc.) deposited on the tube wall of the heat transfer tube A shear stress based on the difference acts to cause the scale to peel from the heat transfer tube. Then, the debris of the scale peeled off from the heat transfer tube wall is captured and collected by a scale collector located in the hot water line piping downstream from the heat exchanger, so that the cleaning chemicals are used as in the conventional scale cleaning method. The scale can be effectively removed without using the.

これにより、従来方式のように洗浄液の注入設備,および洗浄液の補充が一切必要なくなる。しかも、熱交換器は運転を継続したまま、その伝熱管に通す熱水の流れを一時的に「対向流」から「並行流」に切換えるだけでスケールを除去できるので、この熱交換器を適用する地熱バイナリー発電システムの操業を停止せずに済む。   This eliminates the need for cleaning liquid injection equipment and cleaning liquid replenishment as in the conventional method. Moreover, the scale can be removed by simply switching the flow of hot water that passes through the heat transfer tube from the "counter flow" to the "parallel flow" while the heat exchanger continues to operate. It is not necessary to stop the operation of the geothermal binary power generation system.

以下、地熱バイナリー発電システムに適用するバイナリー媒体の予熱器を例に、この発明によるスケール除去装置の実施の形態を図1〜図4に示す実施例に基づいて説明する。なお、図1は熱交換器(予熱器),およびそのスケール除去に用いる附属機器を含む周辺の配管系統図、図2,図3はそれぞれ定常運転状態,スケール除去運転状態のフローシート、図4は図1におけるスケール捕集器の構成,配管系統図である。   Hereinafter, an embodiment of a scale removing apparatus according to the present invention will be described based on examples shown in FIGS. 1 to 4, taking a binary medium preheater applied to a geothermal binary power generation system as an example. 1 is a peripheral piping system including a heat exchanger (preheater) and ancillary equipment used for scale removal, FIGS. 2 and 3 are flow sheets in a steady operation state and a scale removal operation state, respectively. These are the structure of a scale collector in FIG. 1, and a piping system diagram.

まず、図1において、1は熱交換器、2は熱源側の熱水ライン、3は被加熱流体ライン、4はスケール捕集器、5は運転制御部であり、熱水ライン2には生産井から採取して気水分離した地熱熱水(熱交換器1の熱源)が通流し、被加熱流体ライン3には低沸点のバイナリー媒体(例えば、イソペンタン)が通流して両者の間で熱交換を行う。   First, in FIG. 1, 1 is a heat exchanger, 2 is a hot water line on the heat source side, 3 is a heated fluid line, 4 is a scale collector, and 5 is an operation control unit. The geothermal hot water (heat source of the heat exchanger 1) collected from the well and separated into steam flows, and the low-boiling binary medium (for example, isopentane) flows to the heated fluid line 3 to heat between the two. Exchange.

ここで、図示例の熱交換器1は多管式のシェル・アンド・チューブ型熱交換器であり、そのシェル内部には左右のヘッダー1aと1bとの間に多数本の伝熱管1cを敷設して熱水と被加熱流体の流路を画成している。また、熱交換器1の左右ヘッダー1a,1bは、それぞれ三方弁(電動弁)6A,6Bを介して熱水ライン2の上流側,下流側管路に接続されている。   Here, the illustrated heat exchanger 1 is a multi-tubular shell-and-tube heat exchanger, and a plurality of heat transfer tubes 1c are laid between the left and right headers 1a and 1b inside the shell. Thus, a flow path for hot water and a fluid to be heated is defined. The left and right headers 1a and 1b of the heat exchanger 1 are connected to the upstream and downstream pipelines of the hot water line 2 via three-way valves (motor valves) 6A and 6B, respectively.

また、熱水ライン2には、熱交換器1のヘッダー1a,1bに接続した三方弁6A,6Bの分岐ポート間に跨がって熱交換器1を迂回するように配管した第1の流路切換管路2a、および熱交換器1の左側ヘッダー1aと熱水ライン2の下流側管路との間に跨がって熱交換器1を迂回するように開閉弁(電動弁)7を介して配管した第2の流路切換管路2bを備えている。   The hot water line 2 has a first flow piped so as to bypass the heat exchanger 1 across the branch ports of the three-way valves 6A and 6B connected to the headers 1a and 1b of the heat exchanger 1. An on-off valve (motor-operated valve) 7 is provided to bypass the heat exchanger 1 across the path switching line 2a and the left header 1a of the heat exchanger 1 and the downstream line of the hot water line 2. A second flow path switching line 2b is provided.

一方、スケール捕集器4は、図2で示すように密閉容器4aの内部にスケールの砕片を捕捉する筒状の金網で作られたストレーナ4bを内蔵した構成で、図示のように熱交換器1より下流側の熱水ライン2にバイパス管路2cを介して接続されており、このスケール捕集器4を挟んでバイパス管路2cの入口,出口側、および熱水ライン2の中間にはゲート弁(電動弁)8A,8B,8Cが接続されている。また、スケール捕集器4の容器4aには洗浄水(清水)の給水コック9a,およびドレンコック9bを介して逆洗式洗浄回路9が配管されている。   On the other hand, the scale collector 4 has a structure in which a strainer 4b made of a cylindrical wire net that captures scale debris is built in an airtight container 4a as shown in FIG. 1 is connected to a hot water line 2 on the downstream side of 1 via a bypass pipe 2 c, and the scale collector 4 is sandwiched between the inlet and outlet sides of the bypass pipe 2 c and the middle of the hot water line 2. Gate valves (motor valves) 8A, 8B, and 8C are connected. The container 4a of the scale collector 4 is provided with a backwashing type cleaning circuit 9 through a water supply cock 9a for cleaning water (fresh water) and a drain cock 9b.

なお、前記した三方弁6A,6Bおよび開閉弁7,8A〜8Cは、運転制御部(例えば、ログラマブルコントローラ)5から与えられる指令に基づいて後記のように切換,オン/オフ操作される。   The three-way valves 6A and 6B and the on-off valves 7 and 8A to 8C are switched and turned on / off as described below based on a command given from the operation control unit (for example, a programmable controller) 5.

次に、前記熱交換器1の定常運転、およびスケール除去運転の状態をそれぞれ図3,および図4に基づいて説明する。なお、図3,図4の図中で、各種弁のポートに対して表した△は「開」状態を、▲は「閉」状態を表している。   Next, the states of the steady operation and the scale removal operation of the heat exchanger 1 will be described based on FIGS. 3 and 4, respectively. In FIGS. 3 and 4, Δ for the ports of various valves represents an “open” state, and ▲ represents a “closed” state.

まず、図3に示す定常運転状態では、熱水ライン2より供給される熱水(地熱熱水)は三方弁6Aを通じて熱交換器1の左側ヘッダー1aに流入し、ここから伝熱管1cを矢印A方向に流れて右側ヘッダー1bに入った後、三方弁6Bを通じて熱水ライン2の下流側に流出するように流れる。また、この定常運転時にはスケール捕集器4の入口,出口側に配したゲート閉弁8A,8Bは閉じており、熱交換器1より出た熱水は開放状態にあるゲート弁8Cを通過して下流側に通流する。   First, in the steady operation state shown in FIG. 3, hot water (geothermal hot water) supplied from the hot water line 2 flows into the left header 1a of the heat exchanger 1 through the three-way valve 6A, and from here the heat transfer pipe 1c passes through the arrow. After flowing in the A direction and entering the right header 1b, it flows so as to flow out downstream of the hot water line 2 through the three-way valve 6B. During this steady operation, the gate closing valves 8A and 8B arranged on the inlet and outlet sides of the scale collector 4 are closed, and the hot water discharged from the heat exchanger 1 passes through the gate valve 8C in an open state. To flow downstream.

この定常運転状態では、熱交換器1のシェル内部では熱水(熱水流A)と被加熱流体(被加熱流体流Bとが「対向流」式に流れて熱交換し、低温状態で熱交換器1に流入した被加熱流体が加熱昇温して流出する。ここで熱交換器1の仕様例を数値で表すと、熱水の入口温度150℃、被加熱流体の入口温度38℃として、「対向流」による熱水の出口温度は110℃、被加熱流体の出口温度は100℃である。そして、この定常運転を長時間継続すると地熱熱水に溶解している鉱物質成分(シリカ,炭酸カルシウムなど)が析出するとともに、これがスケールの核となって伝熱管(ステンレス鋼)1cの管壁に付着し、運転時間の継続とともにスケールが成長して強固な堆積物を生成するようになる。このような状態になると、熱交換器1の伝熱性能,耐久性が低下するほか、伝熱管1cの断面が細って熱交換器を通流する所定の熱水流量が維持できなくなる。   In this steady operation state, in the shell of the heat exchanger 1, hot water (hot water flow A) and heated fluid (heated fluid flow B) flow in a “counterflow” manner to exchange heat, and heat exchange at a low temperature state. The heated fluid flowing into the vessel 1 is heated to flow out and flows out.Here, the specification example of the heat exchanger 1 is expressed by numerical values, where the hot water inlet temperature is 150 ° C. and the heated fluid inlet temperature is 38 ° C. The outlet temperature of the hot water by the “counterflow” is 110 ° C., and the outlet temperature of the fluid to be heated is 100 ° C. Then, if this steady operation is continued for a long time, mineral components dissolved in the geothermal hot water (silica, Calcium carbonate, etc.) precipitates and becomes the core of the scale and adheres to the tube wall of the heat transfer tube (stainless steel) 1c, and the scale grows as the operation time continues to generate a strong deposit. In such a state, the heat exchanger 1 Thermal performance, in addition to the durability is lowered, predetermined hot water flow flowing through the heat exchanger can not maintain thinned cross section of the heat transfer tube 1c.

そこで、この実施例では図1に示した運転制御部5から所定の周期(熱水の性状によって異なるが、例えば月に1回程度の割合)で熱交換器1を定常運転からスケール除去運転に切換える制御指令を出す。これにより、熱水ライン2から熱交換器1に導入する熱水の流路が図4のフローシートで表すように切換えられる。すなわち、熱水は三方弁6Aの分岐ポートから流路切換管路2a,三方弁6Bの分岐ポートを経て熱交換器1の右側ヘッダー1bに流入し、図3とは逆向きの方向に伝熱管1cを通流した後に左側ヘッダー1aに入り、さらにここから流路切換管路2bおよび開閉弁7を経由して熱水ライン2の下流側管路に流出する。また、スケール除去運転の開始に伴い、スケール捕集器4に附属するゲート弁8A,8Bは「開」,ゲート弁8Cは「閉」となり、熱交換器1から流出した熱水はスケール捕集器4を経由して流れるようになる。   Therefore, in this embodiment, the heat exchanger 1 is changed from the steady operation to the scale removal operation at a predetermined cycle (depending on the properties of the hot water, for example, once a month) from the operation control unit 5 shown in FIG. Issue a control command to switch. Thereby, the flow path of the hot water introduced into the heat exchanger 1 from the hot water line 2 is switched as represented by the flow sheet of FIG. That is, hot water flows from the branch port of the three-way valve 6A into the right header 1b of the heat exchanger 1 through the channel switching pipe line 2a and the branch port of the three-way valve 6B, and in the direction opposite to that in FIG. After flowing through 1c, it enters the left header 1a, and further flows out from here through the flow path switching line 2b and the on-off valve 7 to the downstream line of the hot water line 2. As the scale removal operation is started, the gate valves 8A and 8B attached to the scale collector 4 are “open” and the gate valve 8C is “closed”, and the hot water flowing out of the heat exchanger 1 is collected by the scale. It flows through the vessel 4.

このように熱交換器1の運転モードを図3の定常運転からスケール除去運転に切り換えると、図示のフローシートから判るように熱交換器1の伝熱管1cを貫流する熱水の流れ方向が図3の定常運転状態とは逆になり、熱水流Aと被加熱流体流Bの流れは「対向流」(図3参照)から「並行流」に反転する。この場合に、熱交換器1の伝熱管1cについて、熱水流Aの反転に伴いどのように温度が変化するかを調べると、熱水入口側では図3に比べて伝熱管1cの温度が短時間で15℃程度急速に低下し、逆に熱水出口側では25℃上昇するようになる(検証済み)。   Thus, when the operation mode of the heat exchanger 1 is switched from the steady operation of FIG. 3 to the scale removal operation, the flow direction of the hot water flowing through the heat transfer tube 1c of the heat exchanger 1 is illustrated as can be seen from the illustrated flow sheet. 3, the flow of the hot water flow A and the heated fluid flow B is reversed from “opposite flow” (see FIG. 3) to “parallel flow”. In this case, when examining how the temperature of the heat transfer tube 1c of the heat exchanger 1 changes as the hot water flow A is reversed, the temperature of the heat transfer tube 1c is shorter at the hot water inlet side than in FIG. It decreases rapidly by about 15 ° C over time, and conversely increases by 25 ° C on the hot water outlet side (verified).

この伝熱管1cの急激な温度変化は熱水の流れを「対向流」から「並行流」への切り換えに伴って発生するもので、この急激な温度変化が伝熱管1cおよび伝熱管に付着堆積しているスケールに対して次記のように熱ショックとして作用する。   The rapid temperature change of the heat transfer tube 1c is generated when the flow of hot water is switched from "counterflow" to "parallel flow", and this rapid temperature change adheres to and accumulates on the heat transfer tube 1c and the heat transfer tube. It acts as a heat shock as described below on the scale.

すなわち、伝熱管1cの材質をステンレス鋼、伝熱管1cに付着堆積したスケールの成分をシリカ(酸化ケイ素)とすると、ステンレス鋼の熱膨張係数は16.7×10-6/℃、シリカの熱膨張係数は1.8×10-6/℃で両者の熱膨張係数差は非常に大である。また、熱交換器1の実機について、伝熱管1cの管長を6m、熱水流の「対向流」/「並行流」の反転に伴う伝熱管1cの温度がその全長域で平均25℃変化したとすると、伝熱管1cの長さ方向の熱膨張変化量は2.5mmであるのに対して、伝熱管1cの全長域に亙って付着堆積したシリカの熱膨張変化量は僅か0.3mmである。この熱膨張量の差により、熱水の流れの反転に伴って伝熱管とスケールとの接合界面には剪断応力が作用し、これによりスケールは伝熱管の管壁からメカニカル的に剥離されるようになる。なお、この場合に、スケールが強固な多層堆積物に成長する以前の早い段階(スケールが多孔質状に堆積している)で、熱交換器1の運転を定常運転からスケール除去運転に切り換えて熱ショックを与えることにより、スケールは伝熱管から容易に剥離し、かつ剥離したスケールも細かな砕片になる。 That is, if the material of the heat transfer tube 1c is stainless steel and the component of the scale adhered and deposited on the heat transfer tube 1c is silica (silicon oxide), the thermal expansion coefficient of the stainless steel is 16.7 × 10 −6 / ° C. The expansion coefficient is 1.8 × 10 −6 / ° C., and the difference in thermal expansion coefficient between the two is very large. Moreover, about the actual machine of the heat exchanger 1, the tube length of the heat transfer tube 1c is 6 m, and the temperature of the heat transfer tube 1c accompanying the reversal of the “opposite flow” / “parallel flow” of the hot water flow changes by an average of 25 ° C. in the entire length region. Then, the amount of change in thermal expansion in the length direction of the heat transfer tube 1c is 2.5 mm, whereas the amount of change in thermal expansion of silica deposited and deposited over the entire length of the heat transfer tube 1c is only 0.3 mm. is there. Due to the difference in the amount of thermal expansion, a shearing stress acts on the interface between the heat transfer tube and the scale as the hot water flow is reversed, so that the scale is mechanically separated from the tube wall of the heat transfer tube. become. In this case, the operation of the heat exchanger 1 is switched from the steady operation to the scale removal operation at an early stage (the scale is deposited in a porous state) before the scale grows into a strong multilayer deposit. By applying a heat shock, the scale easily peels off from the heat transfer tube, and the peeled scale also becomes fine debris.

一方、伝熱管1cの管壁(内面壁)から剥離したスケールの砕片は熱水の流れに随伴する形で熱交換器1から流出した後、熱水ライン2の下流側管路にバイパス接続したスケール捕集器4に流入し、ここで容器4aに内蔵したストレーナ4bで捕捉される。この場合に熱交換器1の伝熱管1cから剥離したスケールの砕片は、熱交換器から断続的に流出するようになる。   On the other hand, the scale fragments peeled off from the tube wall (inner wall) of the heat transfer tube 1c flowed out of the heat exchanger 1 in a form accompanying the flow of hot water, and then bypassed to the downstream pipe line of the hot water line 2. It flows into the scale collector 4 where it is captured by the strainer 4b built in the container 4a. In this case, the scale fragments peeled off from the heat transfer tube 1c of the heat exchanger 1 flow out intermittently from the heat exchanger.

そこで、実際に行うスケール除去の運転制御では、熱水の流れを「並行流」(図4参照)に反転する時間を例えば30分として、その時間が経過した後は再び定常運転モードに戻して熱水を「対向流」(図3参照)させる。一方、スケール捕集器4は熱水の流れの反転が終了した後も、さらに1時間程度は継続して熱交換器1から流出した熱水を流し、この間に熱水に混入しているスケール砕片を確実に捕集させるようにする。そして、所定の時間が経過すると、スケール捕集器4に附属するゲート弁8A,8B,8Cを図3の定常運転状態に戻す。   Therefore, in the actual scale removal operation control, the time for reversing the flow of hot water to “parallel flow” (see FIG. 4) is set to 30 minutes, for example. The hot water is “counterflowed” (see FIG. 3). On the other hand, after the reversal of the flow of the hot water is completed, the scale collector 4 continuously flows the hot water flowing out of the heat exchanger 1 for about one hour, and the scale mixed in the hot water during this period. Make sure that debris is collected. When a predetermined time elapses, the gate valves 8A, 8B, 8C attached to the scale collector 4 are returned to the steady operation state of FIG.

また、スケール捕集器4のストレーナ4bで捕集されたスケール砕片は、ゲート弁8A,8Bを閉じた状態でコック9a,9bを開き、逆洗洗浄回路9より洗浄水(清水)を流す。これにより、ストレーナ4bの内側に溜まっているスケール砕片がドレンコック9bを通じて外部に排出,回収される。   The scale fragments collected by the strainer 4b of the scale collector 4 open the cocks 9a and 9b with the gate valves 8A and 8B closed, and allow cleaning water (fresh water) to flow from the backwash circuit 9. Thereby, the scale fragments collected inside the strainer 4b are discharged and collected to the outside through the drain cock 9b.

なお、図示実施例では、熱交換器1の左右ヘッダー1a,1bに三方弁6A,6Bを接続し、その分岐ポートの間に跨がって流路切換管路2aを配管しているが、三方弁を用いる代わりに、熱交換器の入口,出口側にそれぞれ2組のゲート弁を組み合わせて使用することもできる。   In the illustrated embodiment, the three-way valves 6A and 6B are connected to the left and right headers 1a and 1b of the heat exchanger 1, and the flow path switching pipe line 2a is piped between the branch ports. Instead of using a three-way valve, two sets of gate valves can be used in combination on the inlet and outlet sides of the heat exchanger.

また、熱交換器1に流す熱水を「対向流」から「並行流」に切換えるスケール除去運転の制御について、先記では月に1回程度の割合で周期的にスケール除去運転を実行するように述べたが、地熱熱水の性状(スケール成分,析出量)が長期に亙り安定してなく時々刻々変動するような場合には、次記のような制御方式でスケール除去運転を実行させることも可能である。   In addition, regarding the control of the scale removal operation in which the hot water flowing through the heat exchanger 1 is switched from the “counter flow” to the “parallel flow”, the scale removal operation is executed periodically at a rate of about once a month. As described above, when the geothermal hot water properties (scale components, precipitation amount) are not stable over a long period of time and fluctuate from time to time, the scale removal operation should be performed using the following control method. Is also possible.

すなわち、熱交換器1の伝熱管1cの管壁に付着堆積したスケールの成長が進むと、伝熱管1cの流路断面が次第に細ってここを貫流する熱水の流量が減少するようになる。そこで、熱交換器1から流出する熱水の流量を常時監視し、その流量が所定レベル以下に低下した際にアラーム信号を運転制御部5に与えて運転モードを定常運転からスケール除去運転に切り換える。これにより、地熱熱水の性状により変化する熱交換器のスケール付着状態に対応して適切にスケール除去を行うことができる。   That is, as the growth of the scale deposited and deposited on the tube wall of the heat transfer tube 1c of the heat exchanger 1 proceeds, the flow passage cross section of the heat transfer tube 1c gradually narrows and the flow rate of hot water flowing through the heat transfer tube 1c decreases. Therefore, the flow rate of the hot water flowing out from the heat exchanger 1 is constantly monitored, and when the flow rate drops below a predetermined level, an alarm signal is given to the operation control unit 5 to switch the operation mode from the steady operation to the scale removal operation. . Thereby, scale removal can be appropriately performed according to the scale adhesion state of the heat exchanger that changes depending on the properties of the geothermal hot water.

この発明の実施例による熱交換器のスケール除去装置を示す周辺の配管系統図The surrounding piping system figure which shows the scale removal apparatus of the heat exchanger by the Example of this invention 図1におけるスケール捕集器の詳細構造,およびその周辺配管系統図Detailed structure of scale collector in Fig. 1 and its surrounding piping system diagram 図1の定常運転状態を表すフローシートFlow sheet showing the steady operation state of FIG. 図1のスケール除去運転状態を表すフローシートFlow sheet showing the scale removal operation state of FIG.

符号の説明Explanation of symbols

1 熱交換器
1a,1b ヘッダー
1c 伝熱管
2 熱水ライン
2a,2b 流路切換管路
2c スケール捕集器のバイパス管路
3 被加熱流体ライン
4 スケール捕集器
4a 容器
4b ストレーナ
5 運転制御部
6A,6B 三方弁
7,8A〜8C ゲート弁
9 スケール捕集器の洗浄回路
DESCRIPTION OF SYMBOLS 1 Heat exchanger 1a, 1b Header 1c Heat transfer pipe 2 Hot water line 2a, 2b Flow path switching line 2c Bypass line of scale collector 3 Heated fluid line 4 Scale collector 4a Container 4b Strainer 5 Operation control part 6A, 6B Three-way valve 7, 8A-8C Gate valve 9 Cleaning circuit for scale collector

Claims (3)

地熱熱水を熱源として常時は熱水と被加熱流体を対向流させて被加熱流体を加熱する対向流型の熱交換器を対象に、熱水を流す熱交換器の伝熱管の管壁に付着堆積したスケールを除去する方法であって、
被加熱流体の流れに対して、スケール除去時には熱交換器の伝熱管に通す熱水の流れを「対向流」から「並行流」に反転して伝熱管に温度変化を加え、この温度変化に伴う伝熱管とスケールとの熱膨張差により伝熱管の管壁から剥離したスケールの砕片を熱交換器より下流側の熱水ライン途上で捕集するようにしたことを特徴とする熱交換器のスケール除去方法。
For counter flow heat exchangers that use geothermal hot water as a heat source to constantly flow hot water and the fluid to be heated against each other and heat the heated fluid, on the wall of the heat exchanger tube of the heat exchanger that flows hot water A method for removing the deposited and accumulated scale,
When the scale is removed, the flow of hot water that passes through the heat transfer tubes of the heat exchanger is reversed from “opposite flow” to “parallel flow”, and a temperature change is applied to the heat transfer tubes. The heat exchanger is characterized in that the scale debris separated from the heat transfer tube wall due to the difference in thermal expansion between the heat transfer tube and the scale is collected along the hot water line downstream of the heat exchanger. Scale removal method.
請求項1に記載のスケール除去方法を実施する熱交換器のスケール除去装置であって、熱交換器に通流する被加熱流体の流れに対して、スケール除去時には熱水ラインから熱交換器に導入する熱水の流れ方向を「対向流」から「並行流」に反転させる流路切換手段と、熱交換器の伝熱管から剥離して熱交換器より排出したスケールの砕片を下流側の熱水ライン途上で捕捉,回収するスケール捕集手段と、熱交換器の運転中に熱水の流れを周期的に「対向流」から「並行流」に切換えた上で、再び「対向流」に戻す運転制御手段とからなることを特徴とする熱交換器のスケール除去装置。   It is a scale removal apparatus of the heat exchanger which implements the scale removal method of Claim 1, Comprising: With respect to the flow of the to-be-heated fluid which flows into a heat exchanger, it is from a hot water line to a heat exchanger at the time of scale removal. Flow path switching means that reverses the flow direction of the hot water to be introduced from “opposite flow” to “parallel flow”, and the scale fragments peeled off from the heat transfer tubes of the heat exchanger and discharged from the heat exchanger on the downstream side The scale collection means that captures and collects in the middle of the water line and the flow of hot water during the operation of the heat exchanger are periodically switched from "counterflow" to "parallel flow" and then changed to "counterflow" again. A scale removal device for a heat exchanger, characterized by comprising a return operation control means. 請求項2に記載のスケール除去装置において、スケール捕集手段が、スケール捕捉用ストレーナを内蔵した洗浄回路付きの容器であり、ゲート弁を介して熱水ラインの配管にバイパス接続したことを特徴とする熱交換器のスケール除去装置。   3. The scale removing apparatus according to claim 2, wherein the scale collecting means is a container with a cleaning circuit incorporating a scale capturing strainer, and is bypass-connected to the piping of the hot water line via a gate valve. Heat exchanger scale remover.
JP2008201469A 2008-08-05 2008-08-05 Heat exchanger scale removal method and apparatus Active JP5131081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008201469A JP5131081B2 (en) 2008-08-05 2008-08-05 Heat exchanger scale removal method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008201469A JP5131081B2 (en) 2008-08-05 2008-08-05 Heat exchanger scale removal method and apparatus

Publications (2)

Publication Number Publication Date
JP2010038438A JP2010038438A (en) 2010-02-18
JP5131081B2 true JP5131081B2 (en) 2013-01-30

Family

ID=42011191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008201469A Active JP5131081B2 (en) 2008-08-05 2008-08-05 Heat exchanger scale removal method and apparatus

Country Status (1)

Country Link
JP (1) JP5131081B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110375150A (en) * 2018-09-20 2019-10-25 重庆共启科技有限公司 A kind of automatically cleaning pipeline
EP4328519A1 (en) * 2022-08-25 2024-02-28 ERK Eckrohrkessel GmbH Method and device for producing geothermal heat and method for producing electrical energy
EP4328520A1 (en) * 2022-08-25 2024-02-28 ERK Eckrohrkessel GmbH Method and device for using geothermal heat

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101421531B1 (en) 2013-07-02 2014-07-23 한국에너지기술연구원 Condenser for Dust and Steam Containing Fluid
JP6432546B2 (en) * 2016-02-26 2018-12-05 Jfeスチール株式会社 Heat source water piping, underground heat-utilizing heat pump system, cleaning method and heat exchanging method inside the primary side heat exchanger
CN107889293B (en) * 2016-09-29 2024-02-09 青岛海尔新能源电器有限公司 Novel scale-inhibiting electric heating pipe and water heater
KR102055582B1 (en) * 2018-06-14 2019-12-13 (주)에코에너지 기술연구소 Method of controlling operation of Automatic cleaning type heat exchanger
JP6631670B2 (en) * 2018-09-20 2020-01-15 Jfeスチール株式会社 Heat source water piping, underground heat utilization heat pump system and heat exchange method
CN110953715B (en) * 2019-12-25 2022-04-22 青岛海尔新能源电器有限公司 Dynamic descaling control method for heat pump hot water unit
CN112797839A (en) * 2020-12-30 2021-05-14 卢龙县双益磷化有限责任公司 Cleaning-free system of sulfuric acid purification plate type heat exchanger and use method
JP7052126B1 (en) 2021-06-29 2022-04-11 Dmg森精機株式会社 Machine tool coolant preheating device and machine tool coolant preheating method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112848A (en) * 1976-03-19 1977-09-21 Hitachi Plant Eng & Constr Co Ltd Hard scale removing
JPS60240998A (en) * 1984-05-14 1985-11-29 Kubota Ltd Method of cleaning outer surface of heat transfer tube
JPS61200887A (en) * 1985-03-05 1986-09-05 三菱重工業株式会社 Method of washing inside of duct
JPS62169276U (en) * 1986-04-18 1987-10-27
JPS6475895A (en) * 1987-09-16 1989-03-22 Hisaka Works Ltd Method of removing scales
JP2726684B2 (en) * 1988-11-15 1998-03-11 日本重化学工業株式会社 Geothermal power plant scale processing equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110375150A (en) * 2018-09-20 2019-10-25 重庆共启科技有限公司 A kind of automatically cleaning pipeline
CN110375150B (en) * 2018-09-20 2021-07-30 重庆共启科技有限公司 Self-cleaning pipeline
EP4328519A1 (en) * 2022-08-25 2024-02-28 ERK Eckrohrkessel GmbH Method and device for producing geothermal heat and method for producing electrical energy
EP4328520A1 (en) * 2022-08-25 2024-02-28 ERK Eckrohrkessel GmbH Method and device for using geothermal heat

Also Published As

Publication number Publication date
JP2010038438A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5131081B2 (en) Heat exchanger scale removal method and apparatus
CN202315716U (en) Cleaning device for membrane system
JP2012207813A (en) Heat exchanger
US4143702A (en) Reverse flow heat exchangers
KR20180036577A (en) System and method of cleaning condenser for binary power generation
CN109099758A (en) A kind of heat exchanger online backwashing system and purging method
JP5125970B2 (en) Scale adhesion monitoring device for geothermal fluid utilization system
JP2005144301A (en) Desalting apparatus and desalting method
CN210833227U (en) Descaling device of heat exchanger
JP5885551B2 (en) Seawater desalination equipment
JP2011052942A (en) Exhaust heat-using system
JP2002081890A (en) Cooling water cooler and its cleaning method
JP7059664B2 (en) Heat pump system
JP2007021403A (en) Freezing and thawing treatment method, and apparatus
JP5654393B2 (en) Maintenance method for plate heat exchanger
CN114111437B (en) Heat exchanger scaling treatment system and control method thereof
CN216049423U (en) Heat exchanger scavenging pump device
CN206450114U (en) Plate-type heat exchange system with not shutdown maintenance function
JP2008002875A (en) Blockage detecting method for hydrothermal treatment device
JP2012192321A (en) Energy-saving membrane filtration system
JPH0979795A (en) Washing system for heat recovery device
JP3499937B2 (en) Slime stripping method for heat exchanger and slime stripping structure
CN211346506U (en) Plate heat exchanger belt cleaning device
CN103063066A (en) Plate heat exchanger equipped with on-line backwashing device
JP2013169530A (en) Water treatment system for power plant and water treatment method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5131081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250