WO2019240026A1 - Freewheel hub - Google Patents

Freewheel hub Download PDF

Info

Publication number
WO2019240026A1
WO2019240026A1 PCT/JP2019/022694 JP2019022694W WO2019240026A1 WO 2019240026 A1 WO2019240026 A1 WO 2019240026A1 JP 2019022694 W JP2019022694 W JP 2019022694W WO 2019240026 A1 WO2019240026 A1 WO 2019240026A1
Authority
WO
WIPO (PCT)
Prior art keywords
yoke
permanent magnet
claw
fixed
movable yoke
Prior art date
Application number
PCT/JP2019/022694
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 光司
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019240026A1 publication Critical patent/WO2019240026A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D11/00Clutches in which the members have interengaging parts
    • F16D11/08Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially
    • F16D11/10Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially with clutching members movable only axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/04Fluid-actuated clutches in which the fluid actuates an elastic clutching, i.e. elastic actuating member, e.g. a diaphragm or a pneumatic tube

Definitions

  • This invention relates to a freewheel hub used in a part-time four-wheel drive vehicle.
  • Part-time four-wheel drive vehicle that can switch between two-wheel drive and four-wheel drive is known.
  • Part-time four-wheel drive vehicles are driven by two-wheel drive that drives only the rear wheels during normal driving, and four-wheel drive that drives both front and rear wheels when driving on rough roads such as snowy roads. It is a vehicle that can travel on.
  • a free wheel hub is often used as a hub to which a front wheel is attached.
  • the free wheel hub is a hub capable of switching between a locked state in which rotation is transmitted between the front axle and the front wheel and a free state in which transmission of rotation between the front axle and the front wheel is blocked.
  • this freewheel hub it is possible to prevent the transmission of rotation from the front wheels to the axle by reducing the energy loss due to rotation of the axle by setting the freewheel hub to the free state when driving two wheels. Is possible.
  • the thing of patent document 1 is known as a freewheel hub.
  • the free wheel hub disclosed in Patent Document 1 is a hub that is supported so as to be rotatable relative to an axle, a lock position that transmits rotation between the axle and the hub, and a free that blocks transmission of rotation between the axle and the hub.
  • a slide member supported so as to be movable in the axial direction between the position, a movable yoke coupled to the slide member so as to move integrally with the slide member in the axial direction, and opposed to the movable yoke in the axial direction.
  • a fixed yoke a spring that urges the movable yoke in a direction away from the fixed yoke, and an annular permanent magnet attached to an axially opposed surface of the fixed yoke with respect to the movable yoke.
  • This free wheel hub is held in the locked position by the biasing force of the spring when the sliding member is in the locked position.
  • the slide member is held in the free position by the force with which the permanent magnet attracts the movable yoke.
  • the conventional freewheel hub like patent document 1 used the adhesive agent as a method of fixing a permanent magnet to a fixed yoke. That is, the permanent magnet is fixed to the fixed yoke by adhering the axially facing surfaces of the fixed yoke and the annular permanent magnet with an adhesive.
  • the permanent magnet and the fixed yoke are attracted to each other, so that it is difficult to bond the permanent magnet to the fixed yoke. Therefore, there is a problem that the center position of the fixed yoke and the center position of the permanent magnet are likely to be shifted. If the center position of the fixed yoke is shifted from the center position of the permanent magnet, the force with which the permanent magnet attracts the movable yoke becomes unstable. Moreover, since it takes time until the adhesive is solidified, there is also a problem that the assembly cost is high.
  • the problem to be solved by the present invention is to provide a freewheel hub that is excellent in workability for attaching a permanent magnet to a fixed yoke and has a stable force for the permanent magnet to attract the movable yoke.
  • the present invention provides a freewheel hub having the following configuration.
  • a hub supported to be rotatable relative to the axle;
  • a slide member supported so as to be movable in the axial direction between a lock position for transmitting rotation between the axle and the hub and a free position for blocking transmission of rotation between the axle and the hub;
  • a movable yoke coupled to the slide member so as to move integrally with the slide member in the axial direction;
  • a fixed yoke disposed opposite to the movable yoke in the axial direction;
  • a freewheel hub comprising: an annular permanent magnet attached to an axially facing surface of the fixed yoke with respect to the movable yoke;
  • An annular magnet holder made of a non-magnetic material fixed integrally to the permanent magnet;
  • the magnet holder is formed with a snap-fit claw that restricts the relative movement of the
  • the permanent magnet is attached to the fixed yoke by engaging the snap fit claws formed on the magnet holder with the fixed yoke, so that the permanent magnet can be easily attached.
  • the permanent magnet since the permanent magnet is fixed to the magnet holder integrally in advance and the magnet holder is attached to the fixed yoke with a snap-fit claw, the permanent magnet can be fixed to the fixed yoke with stable positional accuracy. Therefore, the force with which the permanent magnet attracts the movable yoke is stabilized.
  • the magnet holder is made of a non-magnetic material, it is possible to prevent a magnetic field line from the permanent magnet from being short-circuited through the magnet holder. Therefore, the magnetic field lines can be efficiently concentrated on the fixed yoke and the movable yoke, and the force with which the permanent magnet attracts the movable yoke is large.
  • the fixed yoke has an annular plate portion to which the permanent magnet is attached, and an inner cylinder portion extending from the inner periphery of the annular plate portion to the movable yoke side through the inner diameter side of the permanent magnet, A configuration in which the movable yoke is received by the end surface of the inner cylinder portion on the movable yoke side can be employed.
  • the magnet holder has a fitting cylinder part that fits between the inner circumference of the permanent magnet and the outer circumference of the inner cylinder part.
  • the fitting cylinder part of the magnet holder restricts the relative movement in the radial direction between the permanent magnet and the inner cylinder part of the fixed yoke, so that the center position of the permanent magnet and the inner cylinder part of the fixed yoke are
  • the permanent magnet can be attached in a state where the center position matches. Therefore, the force with which the permanent magnet attracts the movable yoke becomes more stable.
  • the inner cylinder part employs a claw receiving groove formed in a radial direction through an end of the inner cylinder part on the movable yoke side
  • the snap-fit claw includes a claw base portion accommodated in the claw accommodation groove, a claw intermediate portion extending in the axial direction from the claw base portion along the inner circumference of the inner cylinder portion, and a radially outward direction from the claw intermediate portion. It is preferable to adopt a configuration having a claw tip portion that extends to the ring plate and engages with the annular plate portion.
  • the claw base portion of the snap fit claw is accommodated in the claw accommodating groove formed at the end of the inner cylinder portion of the fixed yoke on the movable yoke side.
  • the movable yoke can be prevented from coming into contact with the snap fit claws.
  • the magnet holder can be fixed to the permanent magnet by insert molding. That is, the magnet holder can be integrally fixed to the permanent magnet by molding the magnet holder in a state where the permanent magnet is arranged in the molding die of the magnet holder.
  • the permanent magnet has an axially facing surface with respect to the fixed yoke and an axially facing surface with respect to the movable yoke, and the axially facing surface with respect to the fixed yoke is disposed in contact with the fixed yoke.
  • Adopt The magnet holder includes an annular plate portion that is in surface contact with an axially opposed surface of the permanent magnet with respect to the movable yoke, and a fitting claw portion provided on an outer periphery of the plate portion, and the fitting claw portion. It is possible to adopt a configuration in which the magnet holder is fixed to the permanent magnet by being fitted to the outer peripheral surface of the permanent magnet.
  • Resin can be used as the non-magnetic material.
  • nonmagnetic metal may be employed as the nonmagnetic material.
  • the permanent magnet is attached to the fixed yoke by engaging the snap fit claws formed on the magnet holder with the fixed yoke, so that the permanent magnet can be easily attached. Further, since the permanent magnet is fixed to the magnet holder integrally in advance, and the magnet holder is attached to the fixed yoke with a snap-fit claw, the permanent magnet can be fixed to the fixed yoke with stable positional accuracy. Therefore, the force with which the permanent magnet attracts the movable yoke is stabilized. In addition, since the magnet holder is made of a non-magnetic material, it is possible to prevent a magnetic field line from the permanent magnet from being short-circuited through the magnet holder. Therefore, the magnetic field lines can be efficiently concentrated on the fixed yoke and the movable yoke, and the force with which the permanent magnet attracts the movable yoke is large.
  • FIG. 2 is an enlarged cross-sectional view of the vicinity of the slide member
  • FIG. 3 is an enlarged sectional view in the vicinity of the permanent magnet and the magnet holder in FIG.
  • the perspective view which shows the process in which the permanent magnet and magnet holder shown in FIG. 4 are attached to a fixed yoke.
  • FIG. 1 schematically shows a part-time four-wheel drive vehicle in which a freewheel hub 1 according to an embodiment of the present invention is used.
  • the engine 2 the transmission 3 that shifts and outputs the rotation input from the engine 2, and the rotation that is input from the transmission 3 are distributed to the front propeller shaft 4 and the rear propeller shaft 5.
  • a transfer 6 for output.
  • the transfer 6 is input from the transmission 3 in a two-wheel drive state in which the rotation input from the transmission 3 is not output to the front propeller shaft 4 but only to the rear propeller shaft 5 according to the operation of the transfer lever 7.
  • a switching mechanism 8 that switches between a four-wheel drive state in which the rotation is output to both the front propeller shaft 4 and the rear propeller shaft 5.
  • the rear propeller shaft 5 is connected to the rear differential 9.
  • the rear differential 9 is a differential device that distributes and transmits rotation input from the rear propeller shaft 5 to a pair of left and right axles 10.
  • the pair of left and right axles 10 are connected to the respective rear wheels 11 so as to rotate together with the pair of left and right rear wheels 11 respectively.
  • the front propeller shaft 4 is connected to the front differential 12.
  • the front differential 12 is a differential device that distributes and transmits rotation input from the front propeller shaft 4 to a pair of left and right axles 13.
  • the pair of left and right axles 13 are connected to the pair of left and right front wheels 14 via the freewheel hub 1, respectively.
  • the freewheel hub 1 When the transfer 6 is switched to the four-wheel drive state by operating the transfer lever 7, the freewheel hub 1 is switched to a locked state in which rotation is transmitted between the axle 13 and the front wheel 14 in conjunction with this.
  • the transfer 6 is switched to the two-wheel drive state by the operation of the lever 7, the operation is performed so as to switch to the free state in which the transmission of rotation between the axle 13 and the front wheel 14 is cut off in conjunction with this.
  • the operation of the freewheel hub 1 is performed by an external operation using electric or fluid pressure (air pressure in this embodiment).
  • the freewheel hub 1 includes a cylindrical spindle 20 arranged so as to surround the axle 13, a hub 22 rotatably supported by a rolling bearing 21 attached to the outer periphery of the spindle 20, A cover 24 fixed to the hub 22 with bolts 23 so as to rotate integrally with the hub 22 is provided.
  • the side close to the center in the vehicle width direction (right side in the figure) and the side far from the center in the vehicle width direction (left side in the figure) along the axial direction of the axle 13 are referred to as the axially inner side and the axially outer side, respectively.
  • the spindle 20 is formed in a cylindrical shape through which the axle 13 is inserted.
  • a bush 25 that rotatably supports the spindle 20 is incorporated between the inner periphery of the spindle 20 and the outer periphery of the axle 13.
  • An oil seal 26 is incorporated between the inner circumference of the axially inner end of the spindle 20 and the outer circumference of the axle 13.
  • the spindle 20 is fixedly attached to a steering knuckle (not shown).
  • the hub 22 is a rolling bearing 21 incorporated between the inner periphery of the hub 22 and the outer periphery of the spindle 20 and is supported so as to be rotatable relative to the axle 13.
  • the front wheel 14 (see FIG. 1) is fixed to the hub 22.
  • An oil seal 27 is incorporated between the inner periphery of the end of the hub 22 in the axial direction and the outer periphery of the spindle 20.
  • the spindle 20 is formed between a first air passage 28 communicating with an annular space formed between the inner periphery of the hub 22 and the outer periphery of the spindle 20, and between the inner periphery of the spindle 20 and the outer periphery of the axle 13.
  • a second air passage 29 communicating with the annular space is provided.
  • the first air passage 28 and the second air passage 29 are connected to a first air pipe 31 and a second air pipe 32, respectively.
  • the first air pipe 31 and the second air pipe 32 are connected to a negative pressure tank via a solenoid valve (not shown).
  • the axle 13 has a portion protruding outward in the axial direction from the spindle 20, and a slide member 33 is fitted to the outer periphery of the portion.
  • the sliding member 33 and the axle 13 are fitted by spline fitting, whereby the sliding member 33 is supported so as to be movable relative to the axle 13 in the axial direction and not relatively rotatable.
  • a plurality of external teeth 34 arranged at equal pitches in the circumferential direction are formed on the outer periphery of the axially inner portion of the slide member 33.
  • the cover 24 includes a cover cylinder portion 35 formed so as to surround a portion of the axle 13 that protrudes axially outward from the spindle 20, and a cover lid portion 36 that closes an axial outer end of the cover cylinder portion 35.
  • An oil seal 37, an outer gear 38, and a sleeve 39 are fitted in the inner periphery of the cover cylinder portion 35 in the axial direction.
  • the oil seal 37 is in sliding contact with the outer periphery of the nut member 40 that is screw-engaged with the outer periphery of the axially outer end of the spindle 20.
  • the outer periphery of the outer gear 38 is spline-fitted with the inner periphery of the cover cylinder portion 35, whereby the outer gear 38 is prevented from rotating around the cover 24.
  • inner teeth 41 that mesh with the outer teeth 34 of the slide member 33 are formed on the inner periphery of the outer gear 38.
  • a protrusion 43 is formed on the outer periphery of the sleeve 39 to engage with a groove 42 formed on the inner periphery of the cover cylinder portion 35, and the sleeve 39 is prevented from rotating around the cover 24 by the engagement of the protrusion 43 and the groove 42. ing.
  • a space between the axially opposed surfaces of the sleeve 39 and the outer gear 38 is sealed with a seal member 44.
  • the connecting member 45 is fitted to the outer periphery of the end of the slide member 33 in the axial direction.
  • the connecting member 45 is in contact with the end surface of the slide member 33 on the outer side in the axial direction and is locked to a circlip 46 attached to the outer periphery of the slide member 33.
  • the connection member 45 and the slide member 33 are connected so as to be movable integrally in the axial direction.
  • the inner periphery of the connecting member 45 and the fitting surface of the slide member 33 are cylindrical surfaces that are fitted with a gap, and the connecting member 45 and the slide member 33 are relatively rotatable.
  • a fixed yoke 50 is fixed inside the cover lid portion 36.
  • a movable yoke 51 is disposed so as to oppose.
  • Both the fixed yoke 50 and the movable yoke 51 are made of a magnetic metal material.
  • the magnetic metal material is, for example, a metal having a relative permeability of 1000 or more, and iron, silicon steel, etc. can be employed.
  • the connecting member 45 is also made of a magnetic metal material.
  • An annular permanent magnet 52 is attached to the surface of the fixed yoke 50 facing the movable yoke 51 in the axial direction.
  • the permanent magnet 52 is magnetized in such a direction that one end face of the both end faces in the axial direction is an N pole and the other end face is an S pole.
  • a spring 53 that urges the movable yoke 51 in a direction away from the fixed yoke 50 is incorporated.
  • the spring 53 is a compression coil spring formed by winding a wire in a coil shape.
  • the movable yoke 51 includes an annular suction plate portion 54 facing the permanent magnet 52 in the axial direction, a spring seat portion 55 that receives a spring 53 on the outer diameter side of the suction plate portion 54, and an outer diameter side of the spring seat portion 55. And a tapered cylindrical portion 56 extending toward the fixed yoke 50. On the outer periphery of the tapered cylindrical portion 56, a rotation preventing projection 58 that is inserted into a through hole 57 formed in the fixed yoke 50 is formed.
  • the movable yoke 51 and the connecting member 45 are coupled by a rivet 59.
  • the movable yoke 51 and the slide member 33 are connected via a connecting member 45. That is, the movable yoke 51 is coupled to the slide member 33 so as to move integrally with the slide member 33 in the axial direction.
  • the inside of the cover 24 includes a first airtight chamber 61 communicating with the first air passage 28 (see FIG. 2) and a second air by a diaphragm 60 formed of a flexible material (rubber or the like). It is partitioned into a second hermetic chamber 62 communicating with the passage 29 (see FIG. 2).
  • the inner peripheral portion of the diaphragm 60 is sandwiched between the movable yoke 51 and the connecting member 45, and the outer peripheral portion of the diaphragm 60 is connected to the sleeve 39.
  • the diaphragm 60 functions as a member that drives the slide member 33 in the axial direction. That is, when a negative pressure is introduced from the first air passage 28 to the first hermetic chamber 61, the diaphragm 60 bends outward in the axial direction due to a pressure difference between the first hermetic chamber 61 and the second hermetic chamber 62, and the slide member 33 moves outward in the axial direction. On the other hand, when a negative pressure is introduced from the second air passage 29 to the second hermetic chamber 62, the diaphragm 60 bends inward in the axial direction due to the pressure difference between the first hermetic chamber 61 and the second hermetic chamber 62, and the slide member 33 moves inward in the axial direction.
  • the slide member 33 has a lock position (see FIG. 5) that transmits rotation between the axle 13 and the hub 22, and the external teeth 34 when the external teeth 34 on the outer periphery mesh with the internal teeth 41 of the outer gear 38. And the inner gear 41 of the outer gear 38 are disengaged from each other, so that it can move in the axial direction between a free position (see FIG. 3) that interrupts transmission of rotation between the axle 13 and the hub 22. .
  • the fixed yoke 50 includes an annular plate portion 63 having an axially opposed surface with respect to the movable yoke 51, and a movable yoke passing from the inner periphery of the annular plate portion 63 through the inner diameter side of the permanent magnet 52.
  • the inner cylinder portion 64 extends toward the 51 side, and is configured to receive the movable yoke 51 on the end surface of the inner cylinder portion 64 on the movable yoke 51 side.
  • the inner cylinder portion 64 is formed with a claw receiving groove 65 that penetrates the end portion of the inner cylinder portion 64 on the movable yoke 51 side in the radial direction.
  • the permanent magnet 52 is integrally fixed to the annular magnet holder 70.
  • the permanent magnet 52 has an axially facing surface 71 with respect to the fixed yoke 50 and an axially facing surface 72 with respect to the movable yoke 51, and the axially facing surface 71 with respect to the fixed yoke 50 is disposed in contact with the fixed yoke 50.
  • the magnet holder 70 is made of resin as a nonmagnetic material.
  • a nonmagnetic metal may be adopted as the nonmagnetic material.
  • the nonmagnetic metal is, for example, a metal having a relative permeability of 100 or less, and aluminum or the like can be adopted.
  • the magnet holder 70 is formed with a snap-fit claw 73 that engages with the fixed yoke 50 to restrict relative movement of the fixed yoke 50 in the axial direction with respect to the magnet holder 70.
  • a plurality of snap fit claws 73 are formed at intervals in the circumferential direction (see FIG. 7).
  • the snap fit claw 73 includes a claw base portion 74 accommodated in the claw accommodation groove 65, a claw intermediate portion 75 extending in the axial direction from the claw base portion 74 along the inner periphery of the inner cylinder portion 64, and the claw intermediate portion 75.
  • a claw tip 76 that extends outward in the radial direction and engages with the annular plate 63.
  • the magnet holder 70 has a fitting cylinder part 77 that fits between the inner circumference of the permanent magnet 52 and the outer circumference of the inner cylinder part 64.
  • the magnet holder 70 is fixed to the permanent magnet 52 by insert molding. That is, the magnet holder 70 is integrally fixed to the permanent magnet 52 by molding the magnet holder 70 in a state where the permanent magnet 52 is disposed in the molding die of the magnet holder 70.
  • the freewheel hub 1 introduces a negative pressure into the second airtight chamber 62 from the second air passage 29 shown in FIG.
  • the slide member 33 is driven inward in the axial direction and moved to a lock position where the external teeth 34 of the slide member 33 engage with the internal teeth 41 of the outer gear 38.
  • rotation is transmitted from the axle 13 shown in FIG. 1 to the front wheels 14, and it is possible to travel by four-wheel drive that drives both the front wheels 14 and the rear wheels 11.
  • the slide member 33 is held in the locked position by the urging force of the spring 53.
  • the permanent magnet 52 of the freewheel hub 1 can be attached to the fixed yoke 50 as follows. First, as shown in FIGS. 6 and 8, a permanent magnet 52 integrally fixed to a magnet holder 70 and a fixed yoke 50 are prepared and arranged to face each other in the axial direction. Next, the snap fit claw 73 of the magnet holder 70 is inserted into the inner cylindrical portion 64 of the fixed yoke 50 while being elastically deformed toward the inner diameter side. Then, when the claw tip portion 76 of the snap fit claw 73 passes through the inner cylinder portion 64, the snap fit claw 73 is elastically restored, and the claw tip portion 76 becomes the annular plate portion 63 of the fixed yoke 50 as shown in FIG. It is locked to the outer edge of the inner circumference in the axial direction.
  • the permanent magnet 52 is attached to the fixed yoke 50 by engaging the snap fit claws 73 formed on the magnet holder 70 with the fixed yoke 50. Compared to the case where the opposing surfaces of the magnet 52 in the axial direction are bonded with an adhesive, the attaching operation of the permanent magnet 52 is easier.
  • the permanent magnet 52 is fixed to the magnet holder 70 integrally in advance, and the magnet holder 70 is attached to the fixed yoke 50 with the snap-fitting claw 73. It can be fixed to the yoke 50. Therefore, the force with which the permanent magnet 52 attracts the movable yoke 51 becomes stable.
  • the magnet holder 70 is made of a nonmagnetic material, it is possible to prevent the magnetic lines of force from the permanent magnet 52 from being short-circuited through the magnet holder 70. Therefore, the magnetic lines of force can be efficiently concentrated on the fixed yoke 50 and the movable yoke 51, and the force with which the permanent magnet 52 attracts the movable yoke 51 is large.
  • the fitting cylinder portion 77 of the magnet holder 70 restricts the relative movement in the radial direction between the permanent magnet 52 and the inner cylinder portion 64 of the fixed yoke 50. Therefore, the permanent magnet 52 can be attached in a state where the center position of the permanent magnet 52 and the center position of the inner cylinder portion 64 of the fixed yoke 50 are matched, and the permanent magnet 52 and the inner cylinder portion 64 of the fixed yoke 50 can be attached. High coaxiality. Therefore, the force with which the permanent magnet 52 attracts the movable yoke 51 becomes more stable.
  • the free wheel hub 1 accommodates the claw base 74 of the snap fit claw 73 in a claw accommodation groove 65 formed at the end of the inner cylinder 64 of the fixed yoke 50 on the movable yoke 51 side.
  • the movable yoke 51 When the movable yoke 51 is received by the end surface of the inner cylinder portion 64 on the movable yoke 51 side, the movable yoke 51 can be prevented from coming into contact with the snap fit claws 73.
  • FIG. 9 and 10 show a modification of the magnet holder 70.
  • FIG. Portions corresponding to the above embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the magnet holder 70 has an annular plate portion 78 that comes into surface contact with the axially facing surface 72 of the permanent magnet 52 with respect to the movable yoke 51, and a fitting claw portion 79 provided on the outer periphery of the plate portion 78.
  • the magnet holder 70 is fixed to the permanent magnet 52 by fitting the fitting claw portion 79 to the outer peripheral surface of the permanent magnet 52.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

Provided is a freewheel hub, comprising a slide member (33) that is supported so as to be movable in an axial direction between a lock position and a free position, a movable yoke (51) that moves integrally with the slide member (33) in the axial direction, a fixed yoke (50) disposed so as to face the movable yoke (51) in the axial direction, and an annular permanent magnet (52) attached to an axially facing surface of the fixed yoke (50) that faces the movable yoke (51), wherein an annular magnet holder (70) made of a non-magnetic material that is fixed integrally with the permanent magnet (52) is provided, and a snap-fit claw (73) is formed on the magnet holder (70).

Description

フリーホイールハブFreewheel hub
 この発明は、パートタイム4輪駆動車に用いられるフリーホイールハブに関する。 This invention relates to a freewheel hub used in a part-time four-wheel drive vehicle.
 2輪駆動と4輪駆動を切り換えることが可能なパートタイム4輪駆動車が知られている。パートタイム4輪駆動車は、通常走行時は、後輪のみを駆動する2輪駆動で走行し、雪道等の悪路を走行するときは、前輪と後輪の両方を駆動する4輪駆動で走行することができる車両である。 A part-time four-wheel drive vehicle that can switch between two-wheel drive and four-wheel drive is known. Part-time four-wheel drive vehicles are driven by two-wheel drive that drives only the rear wheels during normal driving, and four-wheel drive that drives both front and rear wheels when driving on rough roads such as snowy roads. It is a vehicle that can travel on.
 このパートタイム4輪駆動車は、前輪のホイールが取り付けられるハブとして、フリーホイールハブが用いられることが多い。フリーホイールハブは、前輪の車軸と前輪の間で回転を伝達するロック状態と、前輪の車軸と前輪の間の回転の伝達を遮断するフリー状態とを切り換えることが可能なハブである。このフリーホイールハブを用いると、2輪駆動時は、フリーホイールハブをフリー状態にすることで、前輪から車軸に回転が伝達するのを防止し、車軸が回転することによるエネルギー損失を減少させることが可能となる。 In this part-time four-wheel drive vehicle, a free wheel hub is often used as a hub to which a front wheel is attached. The free wheel hub is a hub capable of switching between a locked state in which rotation is transmitted between the front axle and the front wheel and a free state in which transmission of rotation between the front axle and the front wheel is blocked. When this freewheel hub is used, it is possible to prevent the transmission of rotation from the front wheels to the axle by reducing the energy loss due to rotation of the axle by setting the freewheel hub to the free state when driving two wheels. Is possible.
 フリーホイールハブとして、特許文献1に記載のものが知られている。この特許文献1のフリーホイールハブは、車軸に対して相対回転可能に支持されるハブと、車軸とハブの間で回転を伝達するロック位置と車軸とハブの間の回転の伝達を遮断するフリー位置との間で軸方向に移動可能に支持されたスライド部材と、そのスライド部材と軸方向に一体に移動するようにスライド部材に連結された可動ヨークと、その可動ヨークと軸方向に対向して配置された固定ヨークと、可動ヨークを固定ヨークから離反する方向に付勢するスプリングと、固定ヨークの可動ヨークに対する軸方向対向面に取り付けられた環状の永久磁石とを有する。 The thing of patent document 1 is known as a freewheel hub. The free wheel hub disclosed in Patent Document 1 is a hub that is supported so as to be rotatable relative to an axle, a lock position that transmits rotation between the axle and the hub, and a free that blocks transmission of rotation between the axle and the hub. A slide member supported so as to be movable in the axial direction between the position, a movable yoke coupled to the slide member so as to move integrally with the slide member in the axial direction, and opposed to the movable yoke in the axial direction. A fixed yoke, a spring that urges the movable yoke in a direction away from the fixed yoke, and an annular permanent magnet attached to an axially opposed surface of the fixed yoke with respect to the movable yoke.
 このフリーホイールハブは、スライド部材がロック位置にあるときは、スプリングの付勢力で、スライド部材がロック位置に保持される。一方、スライド部材がフリー位置にあるときは、永久磁石が可動ヨークを吸着する力で、スライド部材がフリー位置に保持される。 This free wheel hub is held in the locked position by the biasing force of the spring when the sliding member is in the locked position. On the other hand, when the slide member is in the free position, the slide member is held in the free position by the force with which the permanent magnet attracts the movable yoke.
特開2011-131693号公報JP 2011-131893 A
 ところで、特許文献1のような従来のフリーホイールハブは、固定ヨークに永久磁石を固定する方法として、接着剤を用いていた。すなわち、固定ヨークと環状の永久磁石の軸方向の対向面を接着剤で接着することで、永久磁石を固定ヨークに固定していた。 By the way, the conventional freewheel hub like patent document 1 used the adhesive agent as a method of fixing a permanent magnet to a fixed yoke. That is, the permanent magnet is fixed to the fixed yoke by adhering the axially facing surfaces of the fixed yoke and the annular permanent magnet with an adhesive.
 しかしながら、接着剤を用いて永久磁石を固定した場合、永久磁石と固定ヨークは互いに吸引しあうことから、永久磁石を固定ヨークに接着する作業がやりにくい。そのため、固定ヨークの中心位置と永久磁石の中心位置がずれやすいという問題があった。固定ヨークの中心位置と永久磁石の中心位置がずれると、永久磁石が可動ヨークを吸引する力が不安定となる。また、接着剤が固化するまでの時間を要するため、組立コストが高いという問題もある。 However, when the permanent magnet is fixed using an adhesive, the permanent magnet and the fixed yoke are attracted to each other, so that it is difficult to bond the permanent magnet to the fixed yoke. Therefore, there is a problem that the center position of the fixed yoke and the center position of the permanent magnet are likely to be shifted. If the center position of the fixed yoke is shifted from the center position of the permanent magnet, the force with which the permanent magnet attracts the movable yoke becomes unstable. Moreover, since it takes time until the adhesive is solidified, there is also a problem that the assembly cost is high.
 この発明が解決しようとする課題は、永久磁石を固定ヨークに取り付ける作業性に優れ、永久磁石が可動ヨークを吸引する力が安定したフリーホイールハブを提供することである。 The problem to be solved by the present invention is to provide a freewheel hub that is excellent in workability for attaching a permanent magnet to a fixed yoke and has a stable force for the permanent magnet to attract the movable yoke.
 上記課題を解決するため、この発明では、以下の構成のフリーホイールハブを提供する。
 車軸に対して相対回転可能に支持されるハブと、
 前記車軸と前記ハブの間で回転を伝達するロック位置と、前記車軸と前記ハブの間の回転の伝達を遮断するフリー位置との間で軸方向に移動可能に支持されたスライド部材と、
 前記スライド部材と軸方向に一体に移動するように前記スライド部材に連結された可動ヨークと、
 前記可動ヨークと軸方向に対向して配置された固定ヨークと、
 前記可動ヨークを前記固定ヨークから離反する方向に付勢するスプリングと、
 前記固定ヨークの可動ヨークに対する軸方向対向面に取り付けられた環状の永久磁石と、を備えるフリーホイールハブにおいて、
 前記永久磁石に一体に固定された非磁性材料からなる環状の磁石ホルダを更に有し、
 前記磁石ホルダには、前記固定ヨークに係合することで固定ヨークの磁石ホルダに対する軸方向の相対移動を規制するスナップフィット爪が形成されている、
 ことを特徴とするフリーホイールハブ。
In order to solve the above problems, the present invention provides a freewheel hub having the following configuration.
A hub supported to be rotatable relative to the axle;
A slide member supported so as to be movable in the axial direction between a lock position for transmitting rotation between the axle and the hub and a free position for blocking transmission of rotation between the axle and the hub;
A movable yoke coupled to the slide member so as to move integrally with the slide member in the axial direction;
A fixed yoke disposed opposite to the movable yoke in the axial direction;
A spring for urging the movable yoke in a direction away from the fixed yoke;
A freewheel hub comprising: an annular permanent magnet attached to an axially facing surface of the fixed yoke with respect to the movable yoke;
An annular magnet holder made of a non-magnetic material fixed integrally to the permanent magnet;
The magnet holder is formed with a snap-fit claw that restricts the relative movement of the fixed yoke relative to the magnet holder by engaging with the fixed yoke.
Freewheel hub characterized by that.
 このようにすると、磁石ホルダに形成されたスナップフィット爪を固定ヨークに係合させることで、永久磁石を固定ヨークに取り付けるので、永久磁石の取り付け作業が容易である。また、永久磁石が磁石ホルダに予め一体に固定され、その磁石ホルダをスナップフィット爪で固定ヨークに取り付けるので、安定した位置精度で永久磁石を固定ヨークに固定することができる。そのため、永久磁石が可動ヨークを吸引する力が安定したものとなる。しかも、磁石ホルダは、非磁性材料で形成されているので、永久磁石から出る磁力線が磁石ホルダを通って短絡するのを防止することができる。そのため、固定ヨークおよび可動ヨークに効率よく磁力線を集中することができ、永久磁石が可動ヨークを吸引する力が大きい。 In this case, the permanent magnet is attached to the fixed yoke by engaging the snap fit claws formed on the magnet holder with the fixed yoke, so that the permanent magnet can be easily attached. In addition, since the permanent magnet is fixed to the magnet holder integrally in advance and the magnet holder is attached to the fixed yoke with a snap-fit claw, the permanent magnet can be fixed to the fixed yoke with stable positional accuracy. Therefore, the force with which the permanent magnet attracts the movable yoke is stabilized. In addition, since the magnet holder is made of a non-magnetic material, it is possible to prevent a magnetic field line from the permanent magnet from being short-circuited through the magnet holder. Therefore, the magnetic field lines can be efficiently concentrated on the fixed yoke and the movable yoke, and the force with which the permanent magnet attracts the movable yoke is large.
 前記固定ヨークは、前記永久磁石が取り付けられる円環板部と、その円環板部の内周から前記永久磁石の内径側を通って前記可動ヨークの側に延びる内筒部とを有し、前記内筒部の前記可動ヨークの側の端面で前記可動ヨークを受け止めるように構成したものを採用することができる。 The fixed yoke has an annular plate portion to which the permanent magnet is attached, and an inner cylinder portion extending from the inner periphery of the annular plate portion to the movable yoke side through the inner diameter side of the permanent magnet, A configuration in which the movable yoke is received by the end surface of the inner cylinder portion on the movable yoke side can be employed.
 この場合、前記磁石ホルダは、前記永久磁石の内周と前記内筒部の外周との間に嵌合する嵌合筒部を有するものを採用すると好ましい。 In this case, it is preferable that the magnet holder has a fitting cylinder part that fits between the inner circumference of the permanent magnet and the outer circumference of the inner cylinder part.
 このようにすると、磁石ホルダの嵌合筒部が、永久磁石と固定ヨークの内筒部との間の径方向の相対移動を規制するので、永久磁石の中心位置と固定ヨークの内筒部の中心位置とが合致した状態で永久磁石を取り付けることができる。そのため、永久磁石が可動ヨークを吸引する力がより安定したものとなる。 In this way, the fitting cylinder part of the magnet holder restricts the relative movement in the radial direction between the permanent magnet and the inner cylinder part of the fixed yoke, so that the center position of the permanent magnet and the inner cylinder part of the fixed yoke are The permanent magnet can be attached in a state where the center position matches. Therefore, the force with which the permanent magnet attracts the movable yoke becomes more stable.
 前記内筒部は、前記内筒部の可動ヨークの側の端部を径方向に貫通する爪収容溝が形成されたものを採用し、
 前記スナップフィット爪は、前記爪収容溝に収容される爪基部と、その爪基部から前記内筒部の内周に沿って軸方向に延びる爪中間部と、その爪中間部から径方向外向きに延びて前記円環板部に係合する爪先端部とを有する構成のものを採用すると好ましい。
The inner cylinder part employs a claw receiving groove formed in a radial direction through an end of the inner cylinder part on the movable yoke side,
The snap-fit claw includes a claw base portion accommodated in the claw accommodation groove, a claw intermediate portion extending in the axial direction from the claw base portion along the inner circumference of the inner cylinder portion, and a radially outward direction from the claw intermediate portion. It is preferable to adopt a configuration having a claw tip portion that extends to the ring plate and engages with the annular plate portion.
 このようにすると、スナップフィット爪の爪基部を、固定ヨークの内筒部の可動ヨークの側の端部に形成された爪収容溝に収容しているので、内筒部の可動ヨークの側の端面で可動ヨークを受け止めたときに、その可動ヨークがスナップフィット爪に接触するのを防止することができる。 In this way, the claw base portion of the snap fit claw is accommodated in the claw accommodating groove formed at the end of the inner cylinder portion of the fixed yoke on the movable yoke side. When the movable yoke is received at the end face, the movable yoke can be prevented from coming into contact with the snap fit claws.
 前記磁石ホルダは、インサート成形によって前記永久磁石に固定することができる。すなわち、磁石ホルダの成形金型内に永久磁石を配置した状態で磁石ホルダを成形することで、磁石ホルダを永久磁石に一体に固定することができる。 The magnet holder can be fixed to the permanent magnet by insert molding. That is, the magnet holder can be integrally fixed to the permanent magnet by molding the magnet holder in a state where the permanent magnet is arranged in the molding die of the magnet holder.
 また、前記永久磁石は、前記固定ヨークに対する軸方向対向面と前記可動ヨークに対する軸方向対向面とを有し、前記固定ヨークに対する軸方向対向面を前記固定ヨークに接触させて配置した構成のものを採用し、
 前記磁石ホルダは、前記永久磁石の前記可動ヨークに対する軸方向対向面に面接触する環状のプレート部と、そのプレート部の外周に設けられた嵌合爪部とを有し、その嵌合爪部が前記永久磁石の外周面に嵌合することによって前記磁石ホルダが前記永久磁石に固定されている構成のものを採用することができる。
The permanent magnet has an axially facing surface with respect to the fixed yoke and an axially facing surface with respect to the movable yoke, and the axially facing surface with respect to the fixed yoke is disposed in contact with the fixed yoke. Adopt
The magnet holder includes an annular plate portion that is in surface contact with an axially opposed surface of the permanent magnet with respect to the movable yoke, and a fitting claw portion provided on an outer periphery of the plate portion, and the fitting claw portion. It is possible to adopt a configuration in which the magnet holder is fixed to the permanent magnet by being fitted to the outer peripheral surface of the permanent magnet.
 前記非磁性材料として、樹脂を採用することができる。 Resin can be used as the non-magnetic material.
 また、前記非磁性材料として、非磁性金属を採用してもよい。 Further, a nonmagnetic metal may be employed as the nonmagnetic material.
 この発明のフリーホイールハブは、磁石ホルダに形成されたスナップフィット爪を固定ヨークに係合させることで、永久磁石を固定ヨークに取り付けるので、永久磁石の取り付け作業が容易である。また、永久磁石が磁石ホルダに予め一体に固定され、その磁石ホルダをスナップフィット爪で固定ヨークに取り付けるので、安定した位置精度で永久磁石を固定ヨークに固定することができる。そのため、永久磁石が可動ヨークを吸引する力が安定したものとなる。しかも、磁石ホルダは、非磁性材料で形成されているので、永久磁石から出る磁力線が磁石ホルダを通って短絡するのを防止することができる。そのため、固定ヨークおよび可動ヨークに効率よく磁力線を集中することができ、永久磁石が可動ヨークを吸引する力が大きい。 In the freewheel hub of the present invention, the permanent magnet is attached to the fixed yoke by engaging the snap fit claws formed on the magnet holder with the fixed yoke, so that the permanent magnet can be easily attached. Further, since the permanent magnet is fixed to the magnet holder integrally in advance, and the magnet holder is attached to the fixed yoke with a snap-fit claw, the permanent magnet can be fixed to the fixed yoke with stable positional accuracy. Therefore, the force with which the permanent magnet attracts the movable yoke is stabilized. In addition, since the magnet holder is made of a non-magnetic material, it is possible to prevent a magnetic field line from the permanent magnet from being short-circuited through the magnet holder. Therefore, the magnetic field lines can be efficiently concentrated on the fixed yoke and the movable yoke, and the force with which the permanent magnet attracts the movable yoke is large.
この発明の実施形態のフリーホイールハブが用いられるパートタイム4輪駆動車を模式的に示す図The figure which shows typically the part-time four-wheel drive vehicle in which the freewheel hub of embodiment of this invention is used. この発明の実施形態のフリーホイールハブの断面図Sectional drawing of the freewheel hub of embodiment of this invention 図2のスライド部材の近傍の拡大断面図FIG. 2 is an enlarged cross-sectional view of the vicinity of the slide member 図3の永久磁石と磁石ホルダの近傍の拡大断面図FIG. 3 is an enlarged sectional view in the vicinity of the permanent magnet and the magnet holder in FIG. 図3のスライド部材がフリー位置からロック位置に移動した状態を示す図The figure which shows the state which the slide member of FIG. 3 moved to the lock position from the free position. 図4に示す永久磁石と磁石ホルダを固定ヨークに取り付ける過程を示す断面図Sectional drawing which shows the process in which the permanent magnet and magnet holder shown in FIG. 4 are attached to a fixed yoke 図4に示す永久磁石と磁石ホルダの斜視図Perspective view of permanent magnet and magnet holder shown in FIG. 図4に示す永久磁石と磁石ホルダを固定ヨークに取り付ける過程を示す斜視図The perspective view which shows the process in which the permanent magnet and magnet holder shown in FIG. 4 are attached to a fixed yoke. 図4に示す磁石ホルダの変形例を示す断面図Sectional drawing which shows the modification of the magnet holder shown in FIG. 図9に示す永久磁石と磁石ホルダの斜視図Perspective view of permanent magnet and magnet holder shown in FIG.
 図1に、この発明の実施形態のフリーホイールハブ1が用いられるパートタイム4輪駆動車を模式的に示す。このパートタイム4輪駆動車は、エンジン2と、エンジン2から入力される回転を変速して出力するトランスミッション3と、トランスミッション3から入力される回転をフロントプロペラシャフト4とリアプロペラシャフト5とに分配して出力するトランスファ6とを有する。 FIG. 1 schematically shows a part-time four-wheel drive vehicle in which a freewheel hub 1 according to an embodiment of the present invention is used. In this part-time four-wheel drive vehicle, the engine 2, the transmission 3 that shifts and outputs the rotation input from the engine 2, and the rotation that is input from the transmission 3 are distributed to the front propeller shaft 4 and the rear propeller shaft 5. And a transfer 6 for output.
 トランスファ6は、トランスファレバー7の操作に応じて、トランスミッション3から入力される回転をフロントプロペラシャフト4には出力せずにリアプロペラシャフト5のみに出力する2輪駆動状態と、トランスミッション3から入力される回転をフロントプロペラシャフト4とリアプロペラシャフト5の両方に出力する4輪駆動状態とを切り換える切換機構8を有する。 The transfer 6 is input from the transmission 3 in a two-wheel drive state in which the rotation input from the transmission 3 is not output to the front propeller shaft 4 but only to the rear propeller shaft 5 according to the operation of the transfer lever 7. A switching mechanism 8 that switches between a four-wheel drive state in which the rotation is output to both the front propeller shaft 4 and the rear propeller shaft 5.
 リアプロペラシャフト5は、リアディファレンシャル9に接続されている。リアディファレンシャル9は、リアプロペラシャフト5から入力される回転を左右一対の車軸10に分配して伝達する差動装置である。左右一対の車軸10は、それぞれ左右一対の後輪11と一体に回転するように各後輪11に接続されている。フロントプロペラシャフト4は、フロントディファレンシャル12に接続されている。フロントディファレンシャル12は、フロントプロペラシャフト4から入力される回転を左右一対の車軸13に分配して伝達する差動装置である。左右一対の車軸13は、それぞれフリーホイールハブ1を介して左右一対の前輪14に接続されている。 The rear propeller shaft 5 is connected to the rear differential 9. The rear differential 9 is a differential device that distributes and transmits rotation input from the rear propeller shaft 5 to a pair of left and right axles 10. The pair of left and right axles 10 are connected to the respective rear wheels 11 so as to rotate together with the pair of left and right rear wheels 11 respectively. The front propeller shaft 4 is connected to the front differential 12. The front differential 12 is a differential device that distributes and transmits rotation input from the front propeller shaft 4 to a pair of left and right axles 13. The pair of left and right axles 13 are connected to the pair of left and right front wheels 14 via the freewheel hub 1, respectively.
 フリーホイールハブ1は、トランスファレバー7の操作によりトランスファ6が4輪駆動状態に切り換えられたときは、これに連動して、車軸13と前輪14の間で回転を伝達するロック状態に切り替わり、トランスファレバー7の操作によりトランスファ6が2輪駆動状態に切り換えられたときは、これに連動して、車軸13と前輪14の間の回転の伝達を遮断するフリー状態に切り替わるように操作される。フリーホイールハブ1の操作は、電気または流体圧(この実施形態ではエア圧)を用いた外部操作によって行なわれる。 When the transfer 6 is switched to the four-wheel drive state by operating the transfer lever 7, the freewheel hub 1 is switched to a locked state in which rotation is transmitted between the axle 13 and the front wheel 14 in conjunction with this. When the transfer 6 is switched to the two-wheel drive state by the operation of the lever 7, the operation is performed so as to switch to the free state in which the transmission of rotation between the axle 13 and the front wheel 14 is cut off in conjunction with this. The operation of the freewheel hub 1 is performed by an external operation using electric or fluid pressure (air pressure in this embodiment).
 図2に示すように、フリーホイールハブ1は、車軸13を囲むように配置される筒状のスピンドル20と、スピンドル20の外周に装着した転がり軸受21で回転可能に支持されるハブ22と、ハブ22と一体に回転するようにハブ22にボルト23で固定されたカバー24とを有する。以下、車軸13の軸線方向に沿って車幅方向の中心に近い側(図の右側)および車幅方向の中心から遠い側(図の左側)を、それぞれ軸方向内側および軸方向外側とする。 As shown in FIG. 2, the freewheel hub 1 includes a cylindrical spindle 20 arranged so as to surround the axle 13, a hub 22 rotatably supported by a rolling bearing 21 attached to the outer periphery of the spindle 20, A cover 24 fixed to the hub 22 with bolts 23 so as to rotate integrally with the hub 22 is provided. Hereinafter, the side close to the center in the vehicle width direction (right side in the figure) and the side far from the center in the vehicle width direction (left side in the figure) along the axial direction of the axle 13 are referred to as the axially inner side and the axially outer side, respectively.
 スピンドル20は、車軸13を挿通させる筒状に形成されている。スピンドル20の内周と車軸13の外周との間には、スピンドル20を回転可能に支持するブッシュ25が組み込まれている。スピンドル20の軸方向内側の端部内周と車軸13の外周との間には、オイルシール26が組み込まれている。スピンドル20は、図示しないステアリングナックルに固定して取り付けられる。 The spindle 20 is formed in a cylindrical shape through which the axle 13 is inserted. A bush 25 that rotatably supports the spindle 20 is incorporated between the inner periphery of the spindle 20 and the outer periphery of the axle 13. An oil seal 26 is incorporated between the inner circumference of the axially inner end of the spindle 20 and the outer circumference of the axle 13. The spindle 20 is fixedly attached to a steering knuckle (not shown).
 ハブ22は、ハブ22の内周とスピンドル20の外周との間に組み込まれた転がり軸受21で、車軸13に対して相対回転可能に支持されている。前輪14(図1参照)はハブ22に固定される。ハブ22の軸方向内側の端部内周とスピンドル20の外周との間には、オイルシール27が組み込まれている。 The hub 22 is a rolling bearing 21 incorporated between the inner periphery of the hub 22 and the outer periphery of the spindle 20 and is supported so as to be rotatable relative to the axle 13. The front wheel 14 (see FIG. 1) is fixed to the hub 22. An oil seal 27 is incorporated between the inner periphery of the end of the hub 22 in the axial direction and the outer periphery of the spindle 20.
 スピンドル20には、ハブ22の内周とスピンドル20の外周の間に形成された環状空間に連通する第1のエア通路28と、スピンドル20の内周と車軸13の外周の間に形成された環状空間に連通する第2のエア通路29とが設けられている。第1のエア通路28と第2のエア通路29は、それぞれ第1のエア配管31と第2のエア配管32に接続されている。第1のエア配管31と第2のエア配管32は、図示しない電磁弁を介して負圧タンクに接続されている。 The spindle 20 is formed between a first air passage 28 communicating with an annular space formed between the inner periphery of the hub 22 and the outer periphery of the spindle 20, and between the inner periphery of the spindle 20 and the outer periphery of the axle 13. A second air passage 29 communicating with the annular space is provided. The first air passage 28 and the second air passage 29 are connected to a first air pipe 31 and a second air pipe 32, respectively. The first air pipe 31 and the second air pipe 32 are connected to a negative pressure tank via a solenoid valve (not shown).
 車軸13は、スピンドル20から軸方向外側に突出する部分を有し、その部分の外周にスライド部材33が嵌合している。スライド部材33と車軸13の嵌合はスプライン嵌合とされ、これにより、スライド部材33は、車軸13に対して、軸方向に移動可能、かつ、相対回転不能に支持されている。スライド部材33の軸方向内側部分の外周には、周方向に等ピッチに並ぶ複数の外歯34が形成されている。 The axle 13 has a portion protruding outward in the axial direction from the spindle 20, and a slide member 33 is fitted to the outer periphery of the portion. The sliding member 33 and the axle 13 are fitted by spline fitting, whereby the sliding member 33 is supported so as to be movable relative to the axle 13 in the axial direction and not relatively rotatable. A plurality of external teeth 34 arranged at equal pitches in the circumferential direction are formed on the outer periphery of the axially inner portion of the slide member 33.
 カバー24は、車軸13のスピンドル20から軸方向外側に突出する部分を囲むように形成されたカバー筒部35と、カバー筒部35の軸方向外端を閉塞するカバー蓋部36とを有する。カバー筒部35の内周には、オイルシール37とアウターギヤ38とスリーブ39とが軸方向に並んで嵌め込まれている。オイルシール37は、スピンドル20の軸方向外側の端部外周にねじ係合するナット部材40の外周に摺接している。アウターギヤ38の外周はカバー筒部35の内周とスプライン嵌合し、これによりアウターギヤ38はカバー24に回り止めされている。 The cover 24 includes a cover cylinder portion 35 formed so as to surround a portion of the axle 13 that protrudes axially outward from the spindle 20, and a cover lid portion 36 that closes an axial outer end of the cover cylinder portion 35. An oil seal 37, an outer gear 38, and a sleeve 39 are fitted in the inner periphery of the cover cylinder portion 35 in the axial direction. The oil seal 37 is in sliding contact with the outer periphery of the nut member 40 that is screw-engaged with the outer periphery of the axially outer end of the spindle 20. The outer periphery of the outer gear 38 is spline-fitted with the inner periphery of the cover cylinder portion 35, whereby the outer gear 38 is prevented from rotating around the cover 24.
 図3に示すように、アウターギヤ38の内周には、スライド部材33の外歯34と噛み合う内歯41が形成されている。スリーブ39の外周には、カバー筒部35の内周に形成された溝42に係合する突起43が形成され、この突起43と溝42の係合により、スリーブ39はカバー24に回り止めされている。スリーブ39とアウターギヤ38の軸方向の対向面間は、シール部材44で密封されている。 As shown in FIG. 3, inner teeth 41 that mesh with the outer teeth 34 of the slide member 33 are formed on the inner periphery of the outer gear 38. A protrusion 43 is formed on the outer periphery of the sleeve 39 to engage with a groove 42 formed on the inner periphery of the cover cylinder portion 35, and the sleeve 39 is prevented from rotating around the cover 24 by the engagement of the protrusion 43 and the groove 42. ing. A space between the axially opposed surfaces of the sleeve 39 and the outer gear 38 is sealed with a seal member 44.
 スライド部材33の軸方向外側の端部外周には、連結部材45が嵌合している。連結部材45は、スライド部材33の軸方向外側の端面に接触するとともにスライド部材33の外周に装着したサークリップ46に係止している。これにより、連結部材45とスライド部材33は、軸方向に一体に移動可能に連結されている。また、連結部材45の内周とスライド部材33の嵌合面は、隙間をもって嵌合する円筒面であり、連結部材45とスライド部材33は相対回転可能である。 The connecting member 45 is fitted to the outer periphery of the end of the slide member 33 in the axial direction. The connecting member 45 is in contact with the end surface of the slide member 33 on the outer side in the axial direction and is locked to a circlip 46 attached to the outer periphery of the slide member 33. Thereby, the connection member 45 and the slide member 33 are connected so as to be movable integrally in the axial direction. Further, the inner periphery of the connecting member 45 and the fitting surface of the slide member 33 are cylindrical surfaces that are fitted with a gap, and the connecting member 45 and the slide member 33 are relatively rotatable.
 カバー蓋部36の内側には、固定ヨーク50が固定されている。固定ヨーク50の軸方向内側には、可動ヨーク51が対向して配置されている。固定ヨーク50と可動ヨーク51は、いずれも磁性金属材料で形成されている。磁性金属材料は、例えば、比透磁率が1000以上の金属であり、鉄、ケイ素鋼などを採用することができる。連結部材45も磁性金属材料で形成されている。 A fixed yoke 50 is fixed inside the cover lid portion 36. On the inner side in the axial direction of the fixed yoke 50, a movable yoke 51 is disposed so as to oppose. Both the fixed yoke 50 and the movable yoke 51 are made of a magnetic metal material. The magnetic metal material is, for example, a metal having a relative permeability of 1000 or more, and iron, silicon steel, etc. can be employed. The connecting member 45 is also made of a magnetic metal material.
 固定ヨーク50の可動ヨーク51に対する軸方向対向面には、環状の永久磁石52が取り付けられている。永久磁石52は、軸方向の両端面のうち一方の端面の全体がN極、他方の端面の全体がS極となる向きに磁化されている。固定ヨーク50と可動ヨーク51の間には、可動ヨーク51を固定ヨーク50から離反する方向に付勢するスプリング53が組み込まれている。スプリング53は、線材をコイル状に巻いて形成した圧縮コイルばねである。 An annular permanent magnet 52 is attached to the surface of the fixed yoke 50 facing the movable yoke 51 in the axial direction. The permanent magnet 52 is magnetized in such a direction that one end face of the both end faces in the axial direction is an N pole and the other end face is an S pole. Between the fixed yoke 50 and the movable yoke 51, a spring 53 that urges the movable yoke 51 in a direction away from the fixed yoke 50 is incorporated. The spring 53 is a compression coil spring formed by winding a wire in a coil shape.
 可動ヨーク51は、永久磁石52と軸方向に対向する環状の吸着板部54と、吸着板部54の外径側でスプリング53を受けるばね座部55と、ばね座部55の外径側で固定ヨーク50に向かって延びるテーパ筒部56とを有する。テーパ筒部56の外周には、固定ヨーク50に形成された貫通孔57に挿入される回り止め突起58が形成されている。 The movable yoke 51 includes an annular suction plate portion 54 facing the permanent magnet 52 in the axial direction, a spring seat portion 55 that receives a spring 53 on the outer diameter side of the suction plate portion 54, and an outer diameter side of the spring seat portion 55. And a tapered cylindrical portion 56 extending toward the fixed yoke 50. On the outer periphery of the tapered cylindrical portion 56, a rotation preventing projection 58 that is inserted into a through hole 57 formed in the fixed yoke 50 is formed.
 可動ヨーク51と連結部材45は、リベット59で結合されている。ここで、可動ヨーク51とスライド部材33は、連結部材45を介して連結された状態となっている。すなわち、可動ヨーク51は、スライド部材33と軸方向に一体に移動するようにスライド部材33に連結されている。 The movable yoke 51 and the connecting member 45 are coupled by a rivet 59. Here, the movable yoke 51 and the slide member 33 are connected via a connecting member 45. That is, the movable yoke 51 is coupled to the slide member 33 so as to move integrally with the slide member 33 in the axial direction.
 カバー24の内部は、可撓性をもつ材質(ゴム等)で形成されたダイヤフラム60によって、第1のエア通路28(図2参照)に連通する第1の気密室61と、第2のエア通路29(図2参照)に連通する第2の気密室62に仕切られている。ダイヤフラム60の内周部は、可動ヨーク51と連結部材45の間に挟み込まれ、ダイヤフラム60の外周部は、スリーブ39に接続されている。 The inside of the cover 24 includes a first airtight chamber 61 communicating with the first air passage 28 (see FIG. 2) and a second air by a diaphragm 60 formed of a flexible material (rubber or the like). It is partitioned into a second hermetic chamber 62 communicating with the passage 29 (see FIG. 2). The inner peripheral portion of the diaphragm 60 is sandwiched between the movable yoke 51 and the connecting member 45, and the outer peripheral portion of the diaphragm 60 is connected to the sleeve 39.
 このダイヤフラム60は、スライド部材33を軸方向に駆動する部材として機能する。すなわち、第1のエア通路28から第1の気密室61に負圧を導入すると、第1の気密室61と第2の気密室62の圧力差によってダイヤフラム60が軸方向外側に撓み、スライド部材33が軸方向外側に移動する。一方、第2のエア通路29から第2の気密室62に負圧を導入すると、第1の気密室61と第2の気密室62の圧力差によってダイヤフラム60が軸方向内側に撓み、スライド部材33が軸方向内側に移動する。 The diaphragm 60 functions as a member that drives the slide member 33 in the axial direction. That is, when a negative pressure is introduced from the first air passage 28 to the first hermetic chamber 61, the diaphragm 60 bends outward in the axial direction due to a pressure difference between the first hermetic chamber 61 and the second hermetic chamber 62, and the slide member 33 moves outward in the axial direction. On the other hand, when a negative pressure is introduced from the second air passage 29 to the second hermetic chamber 62, the diaphragm 60 bends inward in the axial direction due to the pressure difference between the first hermetic chamber 61 and the second hermetic chamber 62, and the slide member 33 moves inward in the axial direction.
 そして、スライド部材33は、その外周の外歯34がアウターギヤ38の内歯41に噛み合うことで、車軸13とハブ22の間で回転を伝達するロック位置(図5参照)と、外歯34とアウターギヤ38の内歯41との噛み合いが外れることで、車軸13とハブ22の間の回転の伝達を遮断するフリー位置(図3参照)との間で軸方向に移動可能とされている。 The slide member 33 has a lock position (see FIG. 5) that transmits rotation between the axle 13 and the hub 22, and the external teeth 34 when the external teeth 34 on the outer periphery mesh with the internal teeth 41 of the outer gear 38. And the inner gear 41 of the outer gear 38 are disengaged from each other, so that it can move in the axial direction between a free position (see FIG. 3) that interrupts transmission of rotation between the axle 13 and the hub 22. .
 図4に示すように、固定ヨーク50は、可動ヨーク51に対する軸方向対向面をもつ円環板部63と、その円環板部63の内周から永久磁石52の内径側を通って可動ヨーク51の側に延びる内筒部64とを有し、内筒部64の可動ヨーク51の側の端面で可動ヨーク51を受け止めるように構成されている。内筒部64には、内筒部64の可動ヨーク51の側の端部を径方向に貫通する爪収容溝65が形成されている。 As shown in FIG. 4, the fixed yoke 50 includes an annular plate portion 63 having an axially opposed surface with respect to the movable yoke 51, and a movable yoke passing from the inner periphery of the annular plate portion 63 through the inner diameter side of the permanent magnet 52. The inner cylinder portion 64 extends toward the 51 side, and is configured to receive the movable yoke 51 on the end surface of the inner cylinder portion 64 on the movable yoke 51 side. The inner cylinder portion 64 is formed with a claw receiving groove 65 that penetrates the end portion of the inner cylinder portion 64 on the movable yoke 51 side in the radial direction.
 永久磁石52は、環状の磁石ホルダ70に一体に固定されている。永久磁石52は、固定ヨーク50に対する軸方向対向面71と可動ヨーク51に対する軸方向対向面72とを有し、固定ヨーク50に対する軸方向対向面71を固定ヨーク50に接触させて配置されている。磁石ホルダ70は、非磁性材料としての樹脂で形成されている。非磁性材料として、非磁性金属を採用してもよい。非磁性金属は、例えば、比透磁率が100以下の金属であり、アルミニウムなどを採用することができる。 The permanent magnet 52 is integrally fixed to the annular magnet holder 70. The permanent magnet 52 has an axially facing surface 71 with respect to the fixed yoke 50 and an axially facing surface 72 with respect to the movable yoke 51, and the axially facing surface 71 with respect to the fixed yoke 50 is disposed in contact with the fixed yoke 50. . The magnet holder 70 is made of resin as a nonmagnetic material. A nonmagnetic metal may be adopted as the nonmagnetic material. The nonmagnetic metal is, for example, a metal having a relative permeability of 100 or less, and aluminum or the like can be adopted.
 磁石ホルダ70には、固定ヨーク50に係合することで固定ヨーク50の磁石ホルダ70に対する軸方向の相対移動を規制するスナップフィット爪73が形成されている。スナップフィット爪73は、周方向に間隔をおいて複数形成されている(図7参照)。スナップフィット爪73は、爪収容溝65に収容される爪基部74と、その爪基部74から内筒部64の内周に沿って軸方向に延びる爪中間部75と、その爪中間部75から径方向外向きに延びて円環板部63に係合する爪先端部76とを有する。また、磁石ホルダ70は、永久磁石52の内周と内筒部64の外周との間に嵌合する嵌合筒部77を有する。 The magnet holder 70 is formed with a snap-fit claw 73 that engages with the fixed yoke 50 to restrict relative movement of the fixed yoke 50 in the axial direction with respect to the magnet holder 70. A plurality of snap fit claws 73 are formed at intervals in the circumferential direction (see FIG. 7). The snap fit claw 73 includes a claw base portion 74 accommodated in the claw accommodation groove 65, a claw intermediate portion 75 extending in the axial direction from the claw base portion 74 along the inner periphery of the inner cylinder portion 64, and the claw intermediate portion 75. A claw tip 76 that extends outward in the radial direction and engages with the annular plate 63. In addition, the magnet holder 70 has a fitting cylinder part 77 that fits between the inner circumference of the permanent magnet 52 and the outer circumference of the inner cylinder part 64.
 磁石ホルダ70は、インサート成形によって永久磁石52に固定されている。すなわち、磁石ホルダ70の成形金型内に永久磁石52を配置した状態で磁石ホルダ70を成形することで、磁石ホルダ70が、永久磁石52に一体に固定されている。 The magnet holder 70 is fixed to the permanent magnet 52 by insert molding. That is, the magnet holder 70 is integrally fixed to the permanent magnet 52 by molding the magnet holder 70 in a state where the permanent magnet 52 is disposed in the molding die of the magnet holder 70.
 このフリーホイールハブ1は、図1に示す車両が4輪駆動状態で走行するときは、図2に示す第2のエア通路29から第2の気密室62に負圧を導入することで、図5に示すように、スライド部材33を軸方向内側に駆動し、スライド部材33の外歯34がアウターギヤ38の内歯41に係合するロック位置まで移動させる。これにより、図1に示す車軸13から前輪14に回転が伝達され、前輪14と後輪11の両方を駆動する4輪駆動で走行することが可能となる。ここで、図5に示すように、スライド部材33がロック位置にあるとき、スプリング53の付勢力で、スライド部材33はロック位置に保持される。 When the vehicle shown in FIG. 1 travels in a four-wheel drive state, the freewheel hub 1 introduces a negative pressure into the second airtight chamber 62 from the second air passage 29 shown in FIG. As shown in FIG. 5, the slide member 33 is driven inward in the axial direction and moved to a lock position where the external teeth 34 of the slide member 33 engage with the internal teeth 41 of the outer gear 38. As a result, rotation is transmitted from the axle 13 shown in FIG. 1 to the front wheels 14, and it is possible to travel by four-wheel drive that drives both the front wheels 14 and the rear wheels 11. Here, as shown in FIG. 5, when the slide member 33 is in the locked position, the slide member 33 is held in the locked position by the urging force of the spring 53.
 一方、図1に示す車両が2輪駆動状態で走行するときは、図2に示す第1のエア通路28から第1の気密室61に負圧を導入することで、図3に示すように、スライド部材33を軸方向外側に駆動し、スライド部材33の外歯34とアウターギヤ38の内歯41の係合が外れるフリー位置まで移動させる。これにより、図1に示す前輪14から車軸13に回転が伝達するのを防止し、車軸13およびフロントプロペラシャフト4が回転することによるエネルギー損失を減少させることが可能となる。ここで、図3に示すように、スライド部材33がフリー位置にあるとき、永久磁石52が可動ヨーク51を吸着する力で、スライド部材33がフリー位置に保持される。 On the other hand, when the vehicle shown in FIG. 1 travels in a two-wheel drive state, a negative pressure is introduced into the first airtight chamber 61 from the first air passage 28 shown in FIG. Then, the slide member 33 is driven outward in the axial direction and moved to a free position where the external teeth 34 of the slide member 33 and the internal teeth 41 of the outer gear 38 are disengaged. Thereby, it is possible to prevent the rotation from being transmitted from the front wheel 14 shown in FIG. 1 to the axle 13 and to reduce energy loss due to the axle 13 and the front propeller shaft 4 rotating. Here, as shown in FIG. 3, when the slide member 33 is in the free position, the slide member 33 is held in the free position by the force with which the permanent magnet 52 attracts the movable yoke 51.
 このフリーホイールハブ1の永久磁石52は、次のようにして固定ヨーク50に取り付けることができる。まず、図6、図8に示すように、永久磁石52を磁石ホルダ70に一体に固定したものと固定ヨーク50とを準備し、軸方向に対向配置する。次に、磁石ホルダ70のスナップフィット爪73を内径側に弾性変形させながら、固定ヨーク50の内筒部64に挿入する。そして、スナップフィット爪73の爪先端部76が内筒部64を通過すると、スナップフィット爪73が弾性復元し、図4に示すように、爪先端部76が固定ヨーク50の円環板部63の内周の軸方向外側の縁に係止する。 The permanent magnet 52 of the freewheel hub 1 can be attached to the fixed yoke 50 as follows. First, as shown in FIGS. 6 and 8, a permanent magnet 52 integrally fixed to a magnet holder 70 and a fixed yoke 50 are prepared and arranged to face each other in the axial direction. Next, the snap fit claw 73 of the magnet holder 70 is inserted into the inner cylindrical portion 64 of the fixed yoke 50 while being elastically deformed toward the inner diameter side. Then, when the claw tip portion 76 of the snap fit claw 73 passes through the inner cylinder portion 64, the snap fit claw 73 is elastically restored, and the claw tip portion 76 becomes the annular plate portion 63 of the fixed yoke 50 as shown in FIG. It is locked to the outer edge of the inner circumference in the axial direction.
 上記のフリーホイールハブ1は、磁石ホルダ70に形成されたスナップフィット爪73を固定ヨーク50に係合させることで、永久磁石52を固定ヨーク50に取り付けるので、従来のように固定ヨーク50と永久磁石52の軸方向の対向面を接着剤で接着する場合に比べて、永久磁石52の取り付け作業が容易である。 In the free wheel hub 1 described above, the permanent magnet 52 is attached to the fixed yoke 50 by engaging the snap fit claws 73 formed on the magnet holder 70 with the fixed yoke 50. Compared to the case where the opposing surfaces of the magnet 52 in the axial direction are bonded with an adhesive, the attaching operation of the permanent magnet 52 is easier.
 また、このフリーホイールハブ1は、永久磁石52が磁石ホルダ70に予め一体に固定され、その磁石ホルダ70をスナップフィット爪73で固定ヨーク50に取り付けるので、安定した位置精度で永久磁石52を固定ヨーク50に固定することができる。そのため、永久磁石52が可動ヨーク51を吸引する力が安定したものとなる。 In the freewheel hub 1, the permanent magnet 52 is fixed to the magnet holder 70 integrally in advance, and the magnet holder 70 is attached to the fixed yoke 50 with the snap-fitting claw 73. It can be fixed to the yoke 50. Therefore, the force with which the permanent magnet 52 attracts the movable yoke 51 becomes stable.
 しかも、磁石ホルダ70は、非磁性材料で形成されているので、永久磁石52から出る磁力線が磁石ホルダ70を通って短絡するのを防止することができる。そのため、固定ヨーク50および可動ヨーク51に効率よく磁力線を集中することができ、永久磁石52が可動ヨーク51を吸引する力が大きい。 Moreover, since the magnet holder 70 is made of a nonmagnetic material, it is possible to prevent the magnetic lines of force from the permanent magnet 52 from being short-circuited through the magnet holder 70. Therefore, the magnetic lines of force can be efficiently concentrated on the fixed yoke 50 and the movable yoke 51, and the force with which the permanent magnet 52 attracts the movable yoke 51 is large.
 また、このフリーホイールハブ1は、図4に示すように、磁石ホルダ70の嵌合筒部77が、永久磁石52と固定ヨーク50の内筒部64との間の径方向の相対移動を規制するので、永久磁石52の中心位置と固定ヨーク50の内筒部64の中心位置とが合致した状態で永久磁石52を取り付けることができ、永久磁石52と固定ヨーク50の内筒部64との同軸度が高い。そのため、永久磁石52が可動ヨーク51を吸引する力がより安定したものとなる。 As shown in FIG. 4, in the freewheel hub 1, the fitting cylinder portion 77 of the magnet holder 70 restricts the relative movement in the radial direction between the permanent magnet 52 and the inner cylinder portion 64 of the fixed yoke 50. Therefore, the permanent magnet 52 can be attached in a state where the center position of the permanent magnet 52 and the center position of the inner cylinder portion 64 of the fixed yoke 50 are matched, and the permanent magnet 52 and the inner cylinder portion 64 of the fixed yoke 50 can be attached. High coaxiality. Therefore, the force with which the permanent magnet 52 attracts the movable yoke 51 becomes more stable.
 また、このフリーホイールハブ1は、スナップフィット爪73の爪基部74を、固定ヨーク50の内筒部64の可動ヨーク51の側の端部に形成された爪収容溝65に収容しているので、内筒部64の可動ヨーク51の側の端面で可動ヨーク51を受け止めたときに、その可動ヨーク51がスナップフィット爪73に接触するのを防止することができる。 Further, the free wheel hub 1 accommodates the claw base 74 of the snap fit claw 73 in a claw accommodation groove 65 formed at the end of the inner cylinder 64 of the fixed yoke 50 on the movable yoke 51 side. When the movable yoke 51 is received by the end surface of the inner cylinder portion 64 on the movable yoke 51 side, the movable yoke 51 can be prevented from coming into contact with the snap fit claws 73.
 図9および図10に、磁石ホルダ70の変形例を示す。上記実施形態に対応する部分は同一の符号を付して説明を省略する。磁石ホルダ70は、永久磁石52の可動ヨーク51に対する軸方向対向面72に面接触する環状のプレート部78と、そのプレート部78の外周に設けられた嵌合爪部79とを有し、その嵌合爪部79が永久磁石52の外周面に嵌合することによって磁石ホルダ70が永久磁石52に固定されている。 9 and 10 show a modification of the magnet holder 70. FIG. Portions corresponding to the above embodiment are denoted by the same reference numerals and description thereof is omitted. The magnet holder 70 has an annular plate portion 78 that comes into surface contact with the axially facing surface 72 of the permanent magnet 52 with respect to the movable yoke 51, and a fitting claw portion 79 provided on the outer periphery of the plate portion 78. The magnet holder 70 is fixed to the permanent magnet 52 by fitting the fitting claw portion 79 to the outer peripheral surface of the permanent magnet 52.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1    フリーホイールハブ
13   車軸
22   ハブ
33   スライド部材
50   固定ヨーク
51   可動ヨーク
52   永久磁石
53   スプリング
63   円環板部
64   内筒部
65   爪収容溝
70   磁石ホルダ
71   軸方向対向面
72   軸方向対向面
73   スナップフィット爪
74   爪基部
75   爪中間部
76   爪先端部
77   嵌合筒部
78   プレート部
79   嵌合爪部
DESCRIPTION OF SYMBOLS 1 Freewheel hub 13 Axle 22 Hub 33 Slide member 50 Fixed yoke 51 Movable yoke 52 Permanent magnet 53 Spring 63 Ring plate part 64 Inner cylinder part 65 Claw accommodating groove 70 Magnet holder 71 Axial facing surface 72 Axial facing surface 73 Snap Fit claw 74 Claw base 75 Claw intermediate part 76 Claw tip part 77 Fitting cylinder part 78 Plate part 79 Fitting claw part

Claims (8)

  1.  車軸(13)に対して相対回転可能に支持されるハブ(22)と、
     前記車軸(13)と前記ハブ(22)の間で回転を伝達するロック位置と、前記車軸(13)と前記ハブ(22)の間の回転の伝達を遮断するフリー位置との間で軸方向に移動可能に支持されたスライド部材(33)と、
     前記スライド部材(33)と軸方向に一体に移動するように前記スライド部材(33)に連結された可動ヨーク(51)と、
     前記可動ヨーク(51)と軸方向に対向して配置された固定ヨーク(50)と、
     前記可動ヨーク(51)を前記固定ヨーク(50)から離反する方向に付勢するスプリング(53)と、
     前記固定ヨーク(50)の可動ヨーク(51)に対する軸方向対向面に取り付けられた環状の永久磁石(52)と、を備えるフリーホイールハブにおいて、
     前記永久磁石(52)に一体に固定された非磁性材料からなる環状の磁石ホルダ(70)を更に有し、
     前記磁石ホルダ(70)には、前記固定ヨーク(50)に係合することで固定ヨーク(50)の磁石ホルダ(70)に対する軸方向の相対移動を規制するスナップフィット爪(73)が形成されている、
     ことを特徴とするフリーホイールハブ。
    A hub (22) supported to be rotatable relative to the axle (13);
    Axial direction between a lock position for transmitting rotation between the axle (13) and the hub (22) and a free position for blocking transmission of rotation between the axle (13) and the hub (22) A slide member (33) movably supported by
    A movable yoke (51) coupled to the slide member (33) so as to move integrally with the slide member (33) in the axial direction;
    A fixed yoke (50) disposed axially opposite the movable yoke (51);
    A spring (53) for biasing the movable yoke (51) in a direction away from the fixed yoke (50);
    A freewheel hub comprising: an annular permanent magnet (52) attached to an axially facing surface of the fixed yoke (50) with respect to the movable yoke (51);
    An annular magnet holder (70) made of a non-magnetic material fixed integrally to the permanent magnet (52);
    The magnet holder (70) is formed with a snap-fit claw (73) that engages with the fixed yoke (50) to restrict the relative movement of the fixed yoke (50) in the axial direction with respect to the magnet holder (70). ing,
    Freewheel hub characterized by that.
  2.  前記固定ヨーク(50)は、前記永久磁石(52)が取り付けられる円環板部(63)と、その円環板部(63)の内周から前記永久磁石(52)の内径側を通って前記可動ヨーク(51)の側に延びる内筒部(64)とを有し、前記内筒部(64)の前記可動ヨーク(51)の側の端面で前記可動ヨーク(51)を受け止めるように構成されている請求項1に記載のフリーホイールハブ。 The fixed yoke (50) passes through an annular plate portion (63) to which the permanent magnet (52) is attached, and from the inner periphery of the annular plate portion (63) to the inner diameter side of the permanent magnet (52). An inner cylinder portion (64) extending toward the movable yoke (51), and receiving the movable yoke (51) at an end surface of the inner cylinder portion (64) on the movable yoke (51) side. The freewheel hub according to claim 1, wherein the freewheel hub is configured.
  3.  前記磁石ホルダ(70)は、前記永久磁石(52)の内周と前記内筒部(64)の外周との間に嵌合する嵌合筒部(77)を有する請求項2に記載のフリーホイールハブ。 The said magnet holder (70) has the fitting cylinder part (77) fitted between the inner periphery of the said permanent magnet (52), and the outer periphery of the said inner cylinder part (64), The free of Claim 2 Wheel hub.
  4.  前記内筒部(64)には、前記内筒部(64)の可動ヨーク(51)の側の端部を径方向に貫通する爪収容溝(65)が形成され、
     前記スナップフィット爪(73)は、前記爪収容溝(65)に収容される爪基部(74)と、その爪基部(74)から前記内筒部(64)の内周に沿って軸方向に延びる爪中間部(75)と、その爪中間部(75)から径方向外向きに延びて前記円環板部(63)に係合する爪先端部(76)とを有する、
     請求項2または3に記載のフリーホイールハブ。
    The inner cylinder part (64) is formed with a claw receiving groove (65) that penetrates the end of the inner cylinder part (64) on the movable yoke (51) side in the radial direction,
    The snap-fit claw (73) includes a claw base (74) accommodated in the claw accommodation groove (65), and an axial direction from the claw base (74) along the inner periphery of the inner cylinder part (64). A claw intermediate portion (75) that extends, and a claw tip portion (76) that extends radially outward from the claw intermediate portion (75) and engages with the annular plate portion (63),
    The freewheel hub according to claim 2 or 3.
  5.  前記磁石ホルダ(70)は、インサート成形によって前記永久磁石(52)に固定されている請求項1から4のいずれかに記載のフリーホイールハブ。 The free wheel hub according to any one of claims 1 to 4, wherein the magnet holder (70) is fixed to the permanent magnet (52) by insert molding.
  6.  前記永久磁石(52)は、前記固定ヨーク(50)に対する軸方向対向面(71)と前記可動ヨーク(51)に対する軸方向対向面(72)とを有し、前記固定ヨーク(50)に対する軸方向対向面(71)を前記固定ヨーク(50)に接触させて配置され、
     前記磁石ホルダ(70)は、前記永久磁石(52)の前記可動ヨーク(51)に対する軸方向対向面(72)に面接触する環状のプレート部(78)と、そのプレート部(78)の外周に設けられた嵌合爪部(79)とを有し、その嵌合爪部(79)が前記永久磁石(52)の外周面に嵌合することによって前記磁石ホルダ(70)が前記永久磁石(52)に固定されている、
     請求項1から4のいずれかに記載のフリーホイールハブ。
    The permanent magnet (52) has an axial facing surface (71) with respect to the fixed yoke (50) and an axial facing surface (72) with respect to the movable yoke (51), and the shaft with respect to the fixed yoke (50). The direction facing surface (71) is disposed in contact with the fixed yoke (50),
    The magnet holder (70) includes an annular plate portion (78) in surface contact with an axially facing surface (72) of the permanent magnet (52) with respect to the movable yoke (51), and an outer periphery of the plate portion (78). A fitting claw portion (79) provided on the outer periphery of the permanent magnet (52) so that the magnet holder (70) is fitted to the permanent magnet. (52),
    The freewheel hub according to any one of claims 1 to 4.
  7.  前記非磁性材料は、樹脂である請求項1から6のいずれかに記載のフリーホイールハブ。 The free wheel hub according to any one of claims 1 to 6, wherein the nonmagnetic material is a resin.
  8.  前記非磁性材料は、非磁性金属である請求項1から6のいずれかに記載のフリーホイールハブ。 The freewheel hub according to any one of claims 1 to 6, wherein the nonmagnetic material is a nonmagnetic metal.
PCT/JP2019/022694 2018-06-14 2019-06-07 Freewheel hub WO2019240026A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018113617A JP2019214337A (en) 2018-06-14 2018-06-14 Free wheel hub
JP2018-113617 2018-06-14

Publications (1)

Publication Number Publication Date
WO2019240026A1 true WO2019240026A1 (en) 2019-12-19

Family

ID=68842873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022694 WO2019240026A1 (en) 2018-06-14 2019-06-07 Freewheel hub

Country Status (2)

Country Link
JP (1) JP2019214337A (en)
WO (1) WO2019240026A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1191392A (en) * 1997-09-26 1999-04-06 Ntn Corp Hub clutch device
US6460671B1 (en) * 2000-11-30 2002-10-08 Warn Industries, Inc. Vehicle drive clutch control
JP2016215777A (en) * 2015-05-19 2016-12-22 Ntn株式会社 Free wheel hub mechanism
JP2018039320A (en) * 2016-09-06 2018-03-15 Ntn株式会社 Power transmission device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1191392A (en) * 1997-09-26 1999-04-06 Ntn Corp Hub clutch device
US6460671B1 (en) * 2000-11-30 2002-10-08 Warn Industries, Inc. Vehicle drive clutch control
JP2016215777A (en) * 2015-05-19 2016-12-22 Ntn株式会社 Free wheel hub mechanism
JP2018039320A (en) * 2016-09-06 2018-03-15 Ntn株式会社 Power transmission device

Also Published As

Publication number Publication date
JP2019214337A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
KR19990036607A (en) Vehicle drive
JP5922335B2 (en) Power transmission device
US20120067689A1 (en) Wheel disconnect system
WO2017203831A1 (en) Drive power connection/disconnection device
WO2019240026A1 (en) Freewheel hub
US10941816B2 (en) Driving force connecting/disconnecting device
US9091307B2 (en) Compact pulse vacuum live spindle hub lock
JP2007064465A (en) Rotation transmission device
JP7236871B2 (en) freewheel hub
JP2002106604A (en) Lubrication structure for electromagnetic clutch
US9010511B2 (en) Wheel disconnect system
KR102213778B1 (en) Disconnect apparatus and vehicle including the same
US10808771B2 (en) Power transmission device
CN113692508B (en) Final stage gear device capable of time-limited differential motion
JP6539496B2 (en) Free wheel hub mechanism
JP4541178B2 (en) Rotation transmission device
JP7366617B2 (en) Hub clutch device and its manufacturing method
JP2019116910A (en) Connecting device and drive force transmission device using the same
JP4673811B2 (en) Electromagnetic clutch
JP3815964B2 (en) Coupling device
JP2018043633A (en) Power transmission device
JP2012072823A (en) Free wheel hub
JPH10272954A (en) Hub clutch device
JP2023138450A (en) Rotary power transmission device comprising actuator holding feature
JP2002340038A (en) Electromagnetic clutch mechanism and coupling using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820605

Country of ref document: EP

Kind code of ref document: A1