WO2019240009A1 - Method for producing 1,3-butylene glycol - Google Patents

Method for producing 1,3-butylene glycol Download PDF

Info

Publication number
WO2019240009A1
WO2019240009A1 PCT/JP2019/022563 JP2019022563W WO2019240009A1 WO 2019240009 A1 WO2019240009 A1 WO 2019240009A1 JP 2019022563 W JP2019022563 W JP 2019022563W WO 2019240009 A1 WO2019240009 A1 WO 2019240009A1
Authority
WO
WIPO (PCT)
Prior art keywords
butylene glycol
reaction
butanone
hydroxy
producing
Prior art date
Application number
PCT/JP2019/022563
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 立花
大島 俊二
太一 島田
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to JP2020525503A priority Critical patent/JPWO2019240009A1/en
Publication of WO2019240009A1 publication Critical patent/WO2019240009A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/17Saturated compounds containing keto groups bound to acyclic carbon atoms containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing 1,3-butylene glycol (1,3-butanediol).
  • 1,3-butylene glycol is a viscous, colorless, transparent, odorless liquid having a boiling point of 208 ° C., has excellent solubility, and produces a derivative with excellent chemical stability. It is used as a raw material for various synthetic resins and surfactants, and as a raw material for cosmetics, hygroscopic agents, high-boiling solvents, and antifreeze liquids because of its excellent hygroscopic properties, low volatility, and low toxicity. Yes.
  • non-toxic and non-irritating 1,3-butylene glycol has excellent properties as a moisturizing agent in the cosmetic industry, and its demand has greatly increased. Odorless 1,3-butylene glycol is useful as a cosmetic grade. is there.
  • Examples of the industrial production method of 1,3-butylene glycol include the following four methods (I) to (IV).
  • (I) A method in which 1,3-butylene glycol is obtained by subjecting acetaldehyde to aldol condensation to obtain acetaldols and catalytic reduction thereof.
  • (II) A method for obtaining 1,3-butylene glycol by hydrolysis of 1,3-butylene oxide.
  • (III) A method for obtaining 1,3-butylene glycol from propylene and formaldehyde using the Prince reaction.
  • (IV) A method of obtaining 1,3-butylene glycol by hydrogenating 4-hydroxy-2-butanone.
  • the method (II) is not a practical method because an industrial method has not yet been established. Further, the method (III) has been found to have a low yield, and is not a practical method. Therefore, in general, 1,3-butylene glycol is produced by the method (I), but the intermediate acetoaldol is a structurally unstable substance, and is easily dehydrated and poisonous. There is a problem of producing crotonaldehyde. In the catalytic reduction step, for example, butanol or 2-butanone is by-produced. These impurities are difficult to separate in the purification process of 1,3-butylene glycol by distillation or the like, and adversely affect the quality and odor of products especially for cosmetics.
  • 1,3-butylene glycol obtained by this method is difficult to store for a long period of time because a slight odor is generated due to a change over time during long-term storage. Therefore, it is desired to supply 1,3-butylene glycol which has no odor component and does not have a slight odor even after long-term storage.
  • Patent Document 2 discloses a distillation by adding a compound such as caustic soda when performing distillation for removing high-boiling substances. The method of doing is disclosed.
  • Patent Document 3 discloses that after adding an alkali metal base to a crude 1,3-butylene glycol excluding high-boiling substances and heat-treating it, 1,3-butylene glycol is distilled off to obtain an alkali metal compound and a high-boiling compound.
  • Disclosed is a method in which the boilers are separated as a residue, and subsequently low boilers are distilled off from the 1,3-butylene glycol fraction.
  • Patent Document 4 discloses a method of bringing crude 1,3-butylene glycol into contact with a nonionic porous resin.
  • 1,3-butylene glycol obtained by any of the above methods is produced by aldol condensation of acetaldehyde, there is a concern that a slight odor is generated due to a change with time during long-term storage.
  • Patent Document 5 uses a microorganism
  • Patent Document 6 uses an optically active hydrogenation catalyst to obtain optically active 1,3-butylene glycol. Is disclosed.
  • Examples of the method for producing 1,3-butylene glycol from 4-hydroxy-2-butanone include the methods disclosed in Patent Documents 5 and 6 above.
  • the method disclosed in Patent Document 5 is an advantageous method for obtaining optically active 1,3-butylene glycol, focusing on a method for asymmetric reduction of microorganisms, and a method that requires the use of microorganisms. It is.
  • the method disclosed in Patent Document 6 is a method using an expensive catalyst advantageous for obtaining optically active 1,3-butylene glycol, specifically, a complex catalyst containing an optically active ligand. It is.
  • the methods disclosed in these documents are suitable for producing optically active 1,3-butylene glycol, and as a method for producing 1,3-butylene glycol that does not need to be optically active, It was not an economically advantageous method.
  • an object of the present invention is to provide a method for producing 1,3-butylene glycol industrially at low cost.
  • 1,3-butylene glycol is obtained by hydrogenating 4-hydroxy-2-butanone using a metal catalyst supported on a support, which is used industrially.
  • the present invention includes the following items. [1] comprising a step of hydrogenating 4-hydroxy-2-butanone, A method for producing 1,3-butylene glycol, which uses a metal catalyst supported on a support in the above step. [2] The method for producing 1,3-butylene glycol according to [1], wherein the metal catalyst includes at least one selected from the group consisting of platinum, palladium, cobalt, ruthenium, and rhodium. [3] The method for producing 1,3-butylene glycol according to [1] or [2], wherein the carrier comprises alumina. [4] The method according to any one of [1] to [3], including a step of purifying 4-hydroxy-2-butanone by distillation under reduced pressure at 3.0 kPa or less before the hydrogenation reaction step. Of 1,3-butylene glycol.
  • 1,3-butylene glycol can be obtained with a high yield, it is possible to provide a method for producing 1,3-butylene glycol at an industrially low cost.
  • the method for producing 1,3-butylene glycol according to an embodiment of the present invention includes a step of hydrogenating 4-hydroxy-2-butanone, and using the metal catalyst supported on the support in the above step, This is a method for producing 3-butylene glycol.
  • the hydrogenation reaction refers to a reaction for reducing a compound by reacting with hydrogen.
  • 1,3-butylene glycol obtained by hydrogenation of 4-hydroxy-2-butanone is a by-product that is more irritating and toxic than 1,3-butylene glycol synthesized from acetaldehyde. Therefore, the odor after long-term storage of 1,3-butylene glycol can be expected to be reduced.
  • 4-Hydroxy-2-butanone (hereinafter also referred to as “substrate”) used as a raw material is not particularly limited, and a commercially available product can be used. Although it may be unpurified, from the viewpoint of improving the yield of 1,3-butylene glycol, a step of performing purification treatment by dehydration, washing, distillation, adsorption, ion exchange, membrane separation, or a combination thereof It is also possible to use a material from which impurities have been removed through the process. In particular, it is preferable to use distillation as a purification treatment method from the viewpoint of reducing production costs and obtaining high-purity 1,3-butylene glycol.
  • the distillation method is not particularly limited as long as it is a distillation method that can separate low-boiling products, high-boiling products, salt content, and the like from 4-hydroxy-2-butanone obtained by utilizing the difference in boiling points.
  • Various methods such as decompression, normal pressure, pressurization, azeotropy, extraction, and reaction can be used.
  • distillation under reduced pressure (3.0 kPa or less) at a high vacuum is preferable.
  • the distillation temperature is usually 10 ° C.
  • the purity of 4-hydroxy-2-butanone is not particularly limited, but is preferably 80% or more, more preferably 90% or more, from the viewpoint of improving the yield of 1,3-butylene glycol, and 95 % Or more is more preferable, and 98% or more is particularly preferable.
  • Purity can be improved by applying the various purification methods described above to remove impurities.
  • the purity can be measured by gas chromatography. For example, a GC-2025 gas chromatograph manufactured by Shimadzu Corporation can be used.
  • the hydrogen used for the hydrogenation reaction is not particularly limited, and those usually used for the hydrogenation reaction of chemical synthesis can be used.
  • the purity of hydrogen is not particularly limited, but is preferably 99% or more, particularly preferably 99.999% or more, from the viewpoint of improving reaction efficiency.
  • the purity of hydrogen can be changed by selecting a commercial grade.
  • a metal catalyst supported on a support (hereinafter also simply referred to as “catalyst”) is used from the viewpoint of improving reaction efficiency.
  • the type of the metal catalyst is not particularly limited, and includes, for example, platinum, palladium, cobalt, ruthenium, rhodium and the like from the viewpoint of improving reaction efficiency, and includes at least one selected from the group consisting of these options. It is preferable. Of these options, platinum, palladium, cobalt, and rhodium are preferred.
  • These metal catalysts may be used alone or in combination of two or more metals in any combination and ratio. These metal catalysts are particularly advantageous when a catalytic hydrogenation method is adopted as the hydrogenation reaction.
  • the amount of the metal catalyst is not particularly limited.
  • the amount of 4-hydroxy-2-butanone when the amount of 4-hydroxy-2-butanone is 100% by weight, usually 0.1 to 20% by weight. %, Preferably 1 to 10% by weight, more preferably 1 to 5% by weight.
  • the amount of 4-hydroxy-2-butanone and the catalyst is changed every time 10% of the total time of the reaction process elapses.
  • the amount of 4-hydroxy-2-butanone and the catalyst can be measured and calculated as the average value of the amounts measured several times.
  • the usage mode of a metal catalyst is not specifically limited, it can be used by suspending or filling, and it is preferable to use it by suspending from the viewpoint of improving reaction efficiency.
  • the packing method is, for example, a method using a continuous apparatus in which a catalyst is packed and fixed in a vertically long apparatus called “reaction tower” or “packed tower”, a substrate is flowed from the top to the bottom, and hydrogen is charged from the bottom. Is mentioned.
  • the type of the carrier that supports the metal catalyst is not particularly limited, and examples thereof include metal compounds, inorganic oxides, inorganic materials, and organic materials, but include metal compounds from the viewpoint of improving reaction efficiency. It is preferable.
  • the metal compound include alumina, diatomaceous earth, silica gel, silica alumina, activated carbon and the like from the viewpoint of versatility, and alumina is particularly preferable.
  • the shape of the carrier is not particularly limited, and examples thereof include powder, granule, and molding. From the viewpoint of reactivity, a powder is preferable. Moreover, a pore structure, a crystal structure, etc. may be sufficient.
  • the amount of the metal catalyst relative to the total of the metal catalyst and the carrier supporting the metal catalyst is usually 0.1% by weight or more, more preferably 1% by weight or more, from the viewpoint of improving reaction efficiency. From the viewpoint of catalyst cost, it is usually 10% by weight or less, and more preferably 5% by weight or less.
  • the method of hydrogenation reaction is not particularly limited, and a conventional method using a reduction reaction of a carbonyl compound with a reducing agent can be used.
  • a catalytic hydrogenation method using hydrogen as a reducing agent or a hydrogenation reducing agent is used.
  • the catalytic hydrogenation method is preferable from the economical viewpoint such as reduction in production cost.
  • the hydrogenation reaction may be performed in the presence of a solvent.
  • Solvents that can be used are not particularly limited as long as they are inert to the reduction reaction, and include, for example, hydrocarbons, carboxylic acids, ethers, esters, amides, etc. Since high hydrogen pressure is not required, it is not necessary to use it.
  • the atmosphere in the system before the hydrogenation reaction is preferably filled with an inert gas. Nitrogen, argon, etc. can be used as this inert gas, and it is preferable that it is nitrogen from a viewpoint of manufacturing cost reduction.
  • the inert gas is completely replaced with hydrogen.
  • the reaction atmosphere of the hydrogenation reaction is not particularly limited, but it is preferable to use an inert gas.
  • the inert gas for example, nitrogen or argon can be used, and nitrogen is preferable from the viewpoint of reducing the manufacturing cost.
  • the reaction temperature of the hydrogenation reaction is not particularly limited, but is usually ⁇ 20 ° C. to 200 ° C., preferably 20 ° C. to 80 ° C. from the viewpoint of aging and promoting stable reaction. The temperature is preferably 40 to 60 ° C.
  • the hydrogen pressure of the hydrogenation reaction is not particularly limited, but is usually 0.1 to 20 MPa, preferably 0.1 to 10 MPa, more preferably 0 from the viewpoint of promoting a stable reaction over time. .1 to 2.0 MPa.
  • the reaction is slower when a solvent is not used than when a solvent is used, and a hydrogenation reaction at a relatively low hydrogen pressure is possible.
  • the reaction time of the hydrogenation reaction is not particularly limited, but is usually 1 to 10 hours, preferably 2 to 8 hours, and more preferably 3 to 6 hours from the viewpoint of reducing production costs.
  • the method for hydrogenating 4-hydroxy-2-butanone is not particularly limited, and a generally known method can be used.
  • steps other than the above-mentioned step of hydrogenating 4-hydroxy-2-butanone and the step of purifying the raw material liquid containing 4-hydroxy-2-butanone examples include a step of preparing a raw material liquid by mixing 4-hydroxy-2-butanone and a metal catalyst, a step of supplying the raw material liquid to the reactor, and a step of discharging the reaction liquid from the reactor.
  • the reaction can be carried out by any of batch, semi-batch, and continuous methods, but from the viewpoint of reducing production costs, it is preferable to carry out the reaction in a continuous manner.
  • the reaction solution subjected to the hydrogenation reaction is preferably subjected to a filtration step using a pressure filter or the like.
  • the unfiltered reaction crude liquid and / or the reaction crude liquid obtained by filtration are free from 1,3-butylene glycol having a high purity except for unreacted raw materials and by-products in the reaction, and / or moisture.
  • a purification step As a purification method in the above purification step, a method using dehydration, washing, distillation, adsorption, ion exchange, membrane separation, a combination thereof, or the like may be used. In particular, from the viewpoint of economy, it is preferable to use distillation as a purification method.
  • the distillation method is not particularly limited as long as it is a distillation method that can separate low-boiling products, high-boiling products, salt, etc. from 1,3-butylene glycol obtained by utilizing the difference in boiling points.
  • Various methods such as normal pressure, pressurization, azeotropy, extraction, and reaction can be used.
  • the distillation temperature is usually 20 ° C. or higher, usually 200 ° C. or lower, preferably 150 ° C. or lower, and preferably 100 ° C. or lower from the viewpoint of suppressing side reactions. It is more preferable.
  • the conversion rate from 4-hydroxy-2-butanone and the selectivity of 1,3-butylene glycol are both higher in the hydrogenation reaction.
  • the conversion rate from 4-hydroxy-2-butanone is defined as “(raw material 4-hydroxy-2-butanone (mol))-(after reaction, unreacted 4-hydroxyl contained in the reaction liquid. -2-butanone (mol)) / (raw material 4-hydroxy-2-butanone (mol)) ⁇ 100 (mol%) ”.
  • the selectivity of 1,3-butylene glycol is “(1,3-butylene glycol (mol) contained in the reaction solution after the reaction) / ((4-hydroxy-2-y of raw material).
  • the method for measuring these molar amounts is not particularly limited, but can be measured using gas chromatography as described in the Examples below.
  • the present invention will be described in more detail with reference to examples.
  • the present invention is not limited to the following examples unless it exceeds the gist.
  • the various conditions in the following Examples and the values of the evaluation results show the preferable range of the present invention as well as the preferable range in the embodiment of the present invention.
  • the preferable range of the present invention is in the above-described embodiment. It can be determined in consideration of a preferable range and a range indicated by a combination of values of the following examples or values of the examples.
  • the filtrate was distilled and separated using a 30-stage Oldershaw to obtain 1,3-butylene glycol.
  • the conversion rate from 4-hydroxy-2-butanone was 98.2%, and the selectivity for 1,3-butylene glycol was 96.0%.
  • 1,3-butylene glycol obtained by distillation was analyzed by GC, crotonaldehyde and methyl vinyl ketone were not detected.
  • Example 2 In a 1500 mL autoclave reactor, 1000 g of 4-hydroxy-2-butanone (purity 98%) distilled under reduced pressure (3.0 kPa or less, distillation temperature 80 ° C. or less) at a high degree of vacuum was added, and 100 g of 5 wt% Ru / alumina was added. The system is replaced with nitrogen. Thereafter, hydrogen gas is charged, the temperature is raised to 50 ° C., and the reaction is performed for 4 hours while maintaining the hydrogen pressure at 0.8 MPa. After the reaction, the lid of the autoclave was opened, the entire reaction solution was filtered with a pressure filter, and the filtrate was subjected to GC analysis.
  • the filtrate was distilled and separated using a 30-stage Oldershaw to obtain 1,3-butylene glycol.
  • the conversion rate from 4-hydroxy-2-butanone was 56.3%, and the selectivity for 1,3-butylene glycol was 92.0%.
  • 1,3-butylene glycol obtained by distillation was analyzed by GC, crotonaldehyde and methyl vinyl ketone were not detected.
  • the 1,3-butylene glycol obtained by the present invention can be used as a cosmetic material by utilizing synthetic resin, surfactant, hygroscopic agent, high boiling point solvent, antifreeze, especially hygroscopic, low volatility, or low toxicity. Useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is a method for producing 1,3-butylene glycol, the method including a step for hydrogenating 4-hydroxy-2-butanone, and involving the use of a metal catalyst supported on a support in the aforementioned step. In the aforementioned step, the metal catalyst preferably includes at least one selected from the group consisting of platinum, palladium, cobalt, ruthenium, and rhodium, and the support preferably includes alumina.

Description

1,3-ブチレングリコールの製造方法Method for producing 1,3-butylene glycol
 本発明は、1,3-ブチレングリコール(1,3-ブタンジオール)の製造方法に関する。 The present invention relates to a method for producing 1,3-butylene glycol (1,3-butanediol).
 1,3-ブチレングリコールは沸点208℃の粘調な無色透明、無臭の液体で、優れた溶解性を有し、化学的安定性に優れた誘導体を生成する。その用途は各種の合成樹脂、界面活性剤の原料として、また、その優れた吸湿特性、低揮発性、低毒性を利用して化粧品、吸湿剤、高沸点溶剤、不凍液の素材としても利用されている。特に近年、化粧品業界では無毒、無刺激の1,3-ブチレングリコールが保湿剤として優れた性質を有するため、その需要を大きく伸ばしており、無臭の1,3-ブチレングリコールは化粧品グレードとして有用である。 1,3-butylene glycol is a viscous, colorless, transparent, odorless liquid having a boiling point of 208 ° C., has excellent solubility, and produces a derivative with excellent chemical stability. It is used as a raw material for various synthetic resins and surfactants, and as a raw material for cosmetics, hygroscopic agents, high-boiling solvents, and antifreeze liquids because of its excellent hygroscopic properties, low volatility, and low toxicity. Yes. In particular, in recent years, non-toxic and non-irritating 1,3-butylene glycol has excellent properties as a moisturizing agent in the cosmetic industry, and its demand has greatly increased. Odorless 1,3-butylene glycol is useful as a cosmetic grade. is there.
 1,3-ブチレングリコールの工業的製造方法としては、次の(I)~(IV)の4つの方法が挙げられる。
(I)アセトアルデヒドをアルドール縮合させてアセトアルドール類を得て、それを接触還元することによって、1,3-ブチレングリコールを得る方法。
(II)1,3-ブチレンオキサイドの加水分解反応により1,3-ブチレングリコールを得る方法。
(III)プリンス反応を利用してプロピレンとホルムアルデヒドから1,3-ブチレングリコールを得る方法。
(IV)4-ヒドロキシ-2-ブタノンを水素添加することにより、1,3-ブチレングリコールを得る方法。
Examples of the industrial production method of 1,3-butylene glycol include the following four methods (I) to (IV).
(I) A method in which 1,3-butylene glycol is obtained by subjecting acetaldehyde to aldol condensation to obtain acetaldols and catalytic reduction thereof.
(II) A method for obtaining 1,3-butylene glycol by hydrolysis of 1,3-butylene oxide.
(III) A method for obtaining 1,3-butylene glycol from propylene and formaldehyde using the Prince reaction.
(IV) A method of obtaining 1,3-butylene glycol by hydrogenating 4-hydroxy-2-butanone.
 (II)の方法は、工業的方法が未だ確立していないので、実用的な方法ではない。また、(III)の方法は収率が低いことが判明しており、実用的な方法ではない。
 そのため、一般的には、(I)の方法で1,3-ブチレングリコールが製造されているが、中間体のアセトアルドールが構造的に不安定な物質であり、容易に脱水して毒物であるクロトンアルデヒドを生成するという問題がある。また、接触還元工程で、例えばブタノールや2-ブタノン等が副生する。これら不純物は、蒸留などによる1,3-ブチレングリコールの精製工程において分離が困難であり、特に化粧品向けなどの製品の品質、臭気に悪影響を及ぼす。また、この方法で得られた1,3-ブチレングリコールは長期間保存時に経時変化を起こして微臭が発生してくることから、長期間貯蔵することが困難であった。このため、臭気成分が無く、長期の貯蔵後でも微臭のない1,3-ブチレングリコールの供給が望まれている。
The method (II) is not a practical method because an industrial method has not yet been established. Further, the method (III) has been found to have a low yield, and is not a practical method.
Therefore, in general, 1,3-butylene glycol is produced by the method (I), but the intermediate acetoaldol is a structurally unstable substance, and is easily dehydrated and poisonous. There is a problem of producing crotonaldehyde. In the catalytic reduction step, for example, butanol or 2-butanone is by-produced. These impurities are difficult to separate in the purification process of 1,3-butylene glycol by distillation or the like, and adversely affect the quality and odor of products especially for cosmetics. In addition, 1,3-butylene glycol obtained by this method is difficult to store for a long period of time because a slight odor is generated due to a change over time during long-term storage. Therefore, it is desired to supply 1,3-butylene glycol which has no odor component and does not have a slight odor even after long-term storage.
 (I)の方法で臭気の少ない1,3-ブチレングリコールを得る手法として、例えば、特許文献2は、高沸点物を除去するための蒸留を行う際に、苛性ソーダ等の化合物を添加して蒸留する方法を開示している。また、特許文献3は、高沸点物を除いた粗1,3-ブチレングリコールに、アルカリ金属塩基を添加して加熱処理した後、1,3-ブチレングリコールを留出させてアルカリ金属化合物及び高沸点物を残渣として分離し、続いて1,3-ブチレングリコール留分から低沸点物を留去する方法を開示している。また、特許文献4は、粗1,3-ブチレングリコールを非イオン性多孔性樹脂に接触させる方法を開示している。
 しかしながら、前記のいずれの方法から得られる1,3-ブチレングリコールも、アセトアルデヒドをアルドール縮合させて製造されるため、長期間保存時に経時変化を起こして微臭が発生してくる懸念がある。
As a method for obtaining 1,3-butylene glycol having a low odor by the method (I), for example, Patent Document 2 discloses a distillation by adding a compound such as caustic soda when performing distillation for removing high-boiling substances. The method of doing is disclosed. Patent Document 3 discloses that after adding an alkali metal base to a crude 1,3-butylene glycol excluding high-boiling substances and heat-treating it, 1,3-butylene glycol is distilled off to obtain an alkali metal compound and a high-boiling compound. Disclosed is a method in which the boilers are separated as a residue, and subsequently low boilers are distilled off from the 1,3-butylene glycol fraction. Patent Document 4 discloses a method of bringing crude 1,3-butylene glycol into contact with a nonionic porous resin.
However, since 1,3-butylene glycol obtained by any of the above methods is produced by aldol condensation of acetaldehyde, there is a concern that a slight odor is generated due to a change with time during long-term storage.
 そこで、臭気の問題を改善するため、アセトアルデヒドではなく、4-ヒドロキシ-2-ブタノンを原料として用いた(IV)の方法が、1,3-ブチレングリコールの実用的な製造方法の一種として採用されている。(IV)の方法として、例えば、特許文献5には、微生物を用いることにより、また、特許文献6には、光学活性水素化触媒を用いることにより、光学活性1,3-ブチレングリコールを得る方法が開示されている。 Therefore, in order to improve the problem of odor, the method (IV) using 4-hydroxy-2-butanone as a raw material instead of acetaldehyde was adopted as a kind of practical production method of 1,3-butylene glycol. ing. As a method of (IV), for example, Patent Document 5 uses a microorganism, and Patent Document 6 uses an optically active hydrogenation catalyst to obtain optically active 1,3-butylene glycol. Is disclosed.
英国特許第853266号明細書British Patent No. 853266 特開平7-258129号公報JP 7-258129 A 国際公開第00/07969号International Publication No. 00/07969 特開2003-252811号公報JP 2003-252811 A 特開平2-031684号公報Japanese Patent Laid-Open No. 2-031684 特開2003-81895号公報JP 2003-81895 A
 4-ヒドロキシ-2-ブタノンから1,3-ブチレングリコールを製造する方法としては、上記特許文献5及び6に開示される方法が挙げられる。具体的には、特許文献5に開示された方法は、微生物の不斉還元方法に着目した、光学活性1,3-ブチレングリコールを得るために有利な方法であり、微生物の利用が必要な方法である。また、上記特許文献6に開示された方法は、光学活性1,3-ブチレングリコールを得るために有利である高価な触媒、具体的には光学活性な配位子を含む錯体触媒を用いた方法である。
 これらの文献に開示される方法は、光学活性1,3-ブチレングリコールを製造する場合に適した方法であり、光学活性であることを必要としない1,3-ブチレングリコールの製造方法としては、経済的に有利な方法であるとはいえなかった。
Examples of the method for producing 1,3-butylene glycol from 4-hydroxy-2-butanone include the methods disclosed in Patent Documents 5 and 6 above. Specifically, the method disclosed in Patent Document 5 is an advantageous method for obtaining optically active 1,3-butylene glycol, focusing on a method for asymmetric reduction of microorganisms, and a method that requires the use of microorganisms. It is. Further, the method disclosed in Patent Document 6 is a method using an expensive catalyst advantageous for obtaining optically active 1,3-butylene glycol, specifically, a complex catalyst containing an optically active ligand. It is.
The methods disclosed in these documents are suitable for producing optically active 1,3-butylene glycol, and as a method for producing 1,3-butylene glycol that does not need to be optically active, It was not an economically advantageous method.
 そこで、本発明は、工業的に安価に1,3-ブチレングリコールを製造する方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method for producing 1,3-butylene glycol industrially at low cost.
 工業的に用いられる、担持体に担持された金属触媒を用いて、4-ヒドロキシ-2-ブタノンを水素添加することにより、1,3-ブチレングリコールを得る。本発明は以下の項を含む。
[1]4-ヒドロキシ-2-ブタノンを水素添加反応させる工程を含み、
 上記工程において担持体に担持された金属触媒を用いる、1,3-ブチレングリコールの製造方法。
[2]上記金属触媒が、白金、パラジウム、コバルト、ルテニウム、およびロジウムからなる群から選択される少なくとも1つを含む、[1]に記載の1,3-ブチレングリコールの製造方法。
[3]上記担持体がアルミナを含む、[1]又は[2]に記載の1,3-ブチレングリコールの製造方法。
[4]水素添加反応させる工程の前に、3.0kPa以下で減圧蒸留することにより4-ヒドロキシ-2-ブタノンの精製処理を行う工程を含む、[1]~[3]のいずれかに記載の1,3-ブチレングリコールの製造方法。
1,3-butylene glycol is obtained by hydrogenating 4-hydroxy-2-butanone using a metal catalyst supported on a support, which is used industrially. The present invention includes the following items.
[1] comprising a step of hydrogenating 4-hydroxy-2-butanone,
A method for producing 1,3-butylene glycol, which uses a metal catalyst supported on a support in the above step.
[2] The method for producing 1,3-butylene glycol according to [1], wherein the metal catalyst includes at least one selected from the group consisting of platinum, palladium, cobalt, ruthenium, and rhodium.
[3] The method for producing 1,3-butylene glycol according to [1] or [2], wherein the carrier comprises alumina.
[4] The method according to any one of [1] to [3], including a step of purifying 4-hydroxy-2-butanone by distillation under reduced pressure at 3.0 kPa or less before the hydrogenation reaction step. Of 1,3-butylene glycol.
 本発明によれば、高い収率で1,3-ブチレングリコールを得ることができるため、工業的に安価に1,3-ブチレングリコールを製造する方法を提供することができる。 According to the present invention, since 1,3-butylene glycol can be obtained with a high yield, it is possible to provide a method for producing 1,3-butylene glycol at an industrially low cost.
 以下、本発明を実施形態に即して詳細に説明する。ただし、本発明は本明細書に明示的又は黙示的に記載された実施形態に限定されるものではない。また、本明細書において、「~」を用いてその前後に数値又は特性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。 Hereinafter, the present invention will be described in detail according to embodiments. However, the present invention is not limited to the embodiments described explicitly or implicitly in the present specification. Further, in this specification, when “˜” is used to express a numerical value or a characteristic value before and after it, the value before and after that is used.
 本発明の実施形態である1,3-ブチレングリコールの製造方法は、4-ヒドロキシ-2-ブタノンを水素添加反応させる工程を含み、上記工程において担持体に担持された金属触媒を用いる、1,3-ブチレングリコールの製造方法である。本発明において、水素添加反応とは、水素と反応させることで、化合物を還元する反応のことを示す。
 さらに、4-ヒドロキシ-2-ブタノンを水素添加反応して得られた1,3-ブチレングリコールは、アセトアルデヒドより合成した1,3-ブチレングリコールと比較して、刺激性、毒性の高い副生成物のクロトンアルデヒドを生成しないことから、1,3-ブチレングリコールを長期保存した後の臭いが低減されると予想できる。
The method for producing 1,3-butylene glycol according to an embodiment of the present invention includes a step of hydrogenating 4-hydroxy-2-butanone, and using the metal catalyst supported on the support in the above step, This is a method for producing 3-butylene glycol. In the present invention, the hydrogenation reaction refers to a reaction for reducing a compound by reacting with hydrogen.
Further, 1,3-butylene glycol obtained by hydrogenation of 4-hydroxy-2-butanone is a by-product that is more irritating and toxic than 1,3-butylene glycol synthesized from acetaldehyde. Therefore, the odor after long-term storage of 1,3-butylene glycol can be expected to be reduced.
 原料として用いる4-ヒドロキシ-2-ブタノン(以下、「基質」とも称する)は、特段限定されず、市販品を用いることができる。また、未精製であってもよいが、1,3-ブチレングリコールの収率向上の観点から、脱水、洗浄、蒸留、吸着、イオン交換、膜分離、又はこれらの組み合わせ等により精製処理を行う工程を経て不純物を除去させたものを用いても構わない。特に、製造コストの低減や高純度の1,3-ブチレングリコールを得ることができる観点から、精製処理の方法として蒸留を用いることが好ましい。 4-Hydroxy-2-butanone (hereinafter also referred to as “substrate”) used as a raw material is not particularly limited, and a commercially available product can be used. Although it may be unpurified, from the viewpoint of improving the yield of 1,3-butylene glycol, a step of performing purification treatment by dehydration, washing, distillation, adsorption, ion exchange, membrane separation, or a combination thereof It is also possible to use a material from which impurities have been removed through the process. In particular, it is preferable to use distillation as a purification treatment method from the viewpoint of reducing production costs and obtaining high-purity 1,3-butylene glycol.
 蒸留の方法としては、沸点の差を利用して得られた4-ヒドロキシ-2-ブタノンから低沸点物、高沸点物、塩分等を分離できる蒸留方法であれば、特段限定されず、例えば、減圧、常圧、加圧、共沸、抽出、反応などの種々の方法を利用することができる。特に、4-ヒドロキシ-2-ブタノンの脱水反応によるメチルビニルケトンの生成を抑制できる観点から、高真空度で減圧蒸留(3.0kPa以下)することが好ましい。
 また、留出温度は、安定した蒸留を維持する観点から、通常10℃以上であり、また、4-ヒドロキシ-2-ブタノンの脱水反応により生成し、刺激臭を有するメチルビニルケトンを抑制する観点から、通常、170℃以下であり、100℃以下であることが好ましく、80℃以下であることがより好ましい。
The distillation method is not particularly limited as long as it is a distillation method that can separate low-boiling products, high-boiling products, salt content, and the like from 4-hydroxy-2-butanone obtained by utilizing the difference in boiling points. Various methods such as decompression, normal pressure, pressurization, azeotropy, extraction, and reaction can be used. In particular, from the viewpoint of suppressing the production of methyl vinyl ketone due to the dehydration reaction of 4-hydroxy-2-butanone, distillation under reduced pressure (3.0 kPa or less) at a high vacuum is preferable.
The distillation temperature is usually 10 ° C. or higher from the viewpoint of maintaining stable distillation, and also has a viewpoint of suppressing methyl vinyl ketone having an irritating odor produced by the dehydration reaction of 4-hydroxy-2-butanone. Therefore, it is usually 170 ° C. or lower, preferably 100 ° C. or lower, and more preferably 80 ° C. or lower.
 4-ヒドロキシ-2-ブタノンの純度は、特段限定されないが、1,3-ブチレングリコールの収率向上の観点から、80%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましく、98%以上であることが特に好ましい。純度は、上述した種々の精製処理方法を適用して不純物を除去させることにより向上させることができる。また、純度の測定は、ガスクロマトグラフィーにより行うことができ、例えば、島津製作所製のGC-2025型ガスクロマトグラフを用いることができる。 The purity of 4-hydroxy-2-butanone is not particularly limited, but is preferably 80% or more, more preferably 90% or more, from the viewpoint of improving the yield of 1,3-butylene glycol, and 95 % Or more is more preferable, and 98% or more is particularly preferable. Purity can be improved by applying the various purification methods described above to remove impurities. The purity can be measured by gas chromatography. For example, a GC-2025 gas chromatograph manufactured by Shimadzu Corporation can be used.
 水素添加反応に用いられる水素は、特段限定されず、通常、化学合成の水素添加反応に用いられるものを用いることができる。水素の純度は、特段限定されないが、反応効率向上の観点から、99%以上であることが好ましく、99.999%以上であることが特に好ましい。水素の純度は、市販品のグレードを選定すること等により変更することができる。 The hydrogen used for the hydrogenation reaction is not particularly limited, and those usually used for the hydrogenation reaction of chemical synthesis can be used. The purity of hydrogen is not particularly limited, but is preferably 99% or more, particularly preferably 99.999% or more, from the viewpoint of improving reaction efficiency. The purity of hydrogen can be changed by selecting a commercial grade.
 水素添加反応させる工程では、反応効率向上の観点から、担持体に担持された金属触媒(以下、単に「触媒」とも称する)を用いる。金属触媒の種類は、特段限定されず、例えば、反応効率向上の観点から、白金、パラジウム、コバルト、ルテニウム、およびロジウム等が挙げられ、これらの選択肢からなる群から選択される少なくとも1つを含むことが好ましい。これらの選択肢の中で、好ましくは、白金、パラジウム、コバルト、およびロジウムである。これらの金属触媒は、1種の金属を単独で用いてもよく、2種以上の金属を任意の組み合わせ及び比率で併用してもよい。これらの金属触媒は、特に、水素添加反応として接触水素添加法を採用した場合に有利な金属触媒である。
 金属触媒の量は、特段限定されないが、適度な反応速度の確保や製造コストの低減の観点から、4-ヒドロキシ-2-ブタノンの量を100重量%とした場合、通常0.1~20重量%であり、好ましくは1~10重量%であり、より好ましくは1~5重量%である。なお、1,3-ブチレングリコールの反応を連続式で行った場合には、上記の4-ヒドロキシ-2-ブタノン及び触媒の量を反応プロセスの全体の時間に対する10%の時間が経過する毎に4-ヒドロキシ-2-ブタノン及び触媒の量を測定し、複数回測定した量のそれぞれの平均値として算出することができる。
 金属触媒の使用態様は、特段限定されないが、懸濁させて、又は充填させて用いることができ、反応効率の向上の観点から、懸濁させて用いることが好ましい。充填させる方法は、例えば、「反応塔」または「充填塔」と呼ばれる縦長の装置に触媒を詰めて固定し、上から下に基質を流し、下から水素を入れて反応する連続装置を用いる方法が挙げられる。
In the hydrogenation reaction step, a metal catalyst supported on a support (hereinafter also simply referred to as “catalyst”) is used from the viewpoint of improving reaction efficiency. The type of the metal catalyst is not particularly limited, and includes, for example, platinum, palladium, cobalt, ruthenium, rhodium and the like from the viewpoint of improving reaction efficiency, and includes at least one selected from the group consisting of these options. It is preferable. Of these options, platinum, palladium, cobalt, and rhodium are preferred. These metal catalysts may be used alone or in combination of two or more metals in any combination and ratio. These metal catalysts are particularly advantageous when a catalytic hydrogenation method is adopted as the hydrogenation reaction.
The amount of the metal catalyst is not particularly limited. However, from the viewpoint of securing an appropriate reaction rate and reducing the production cost, when the amount of 4-hydroxy-2-butanone is 100% by weight, usually 0.1 to 20% by weight. %, Preferably 1 to 10% by weight, more preferably 1 to 5% by weight. When the reaction of 1,3-butylene glycol is carried out continuously, the amount of 4-hydroxy-2-butanone and the catalyst is changed every time 10% of the total time of the reaction process elapses. The amount of 4-hydroxy-2-butanone and the catalyst can be measured and calculated as the average value of the amounts measured several times.
Although the usage mode of a metal catalyst is not specifically limited, it can be used by suspending or filling, and it is preferable to use it by suspending from the viewpoint of improving reaction efficiency. The packing method is, for example, a method using a continuous apparatus in which a catalyst is packed and fixed in a vertically long apparatus called “reaction tower” or “packed tower”, a substrate is flowed from the top to the bottom, and hydrogen is charged from the bottom. Is mentioned.
 金属触媒を担持する担持体の種類は、特段限定されず、例えば、金属化合物や、無機酸化物、無機物担持体、有機物担持体等が挙げられるが、反応効率向上の観点から、金属化合物を含むことが好ましい。金属化合物の種類としては、汎用性の観点から、アルミナ、珪藻土、シリカゲル、シリカアルミナ、活性炭等が挙げられ、特にアルミナが好ましい。
 担持体の形状は、特段限定されず、例えば、粉末状、粒状、成型等が挙げられるが、反応性の点から、粉末状であることが好ましい。また、細孔構造や結晶構造等であってもよい。
 金属触媒と金属触媒を担持する担持体との合計に対する金属触媒の量は、反応効率の向上の観点から、通常0.1重量%以上であり、1重量%以上であることがより好ましく、また、触媒コストの観点から、通常10重量%以下であり、5重量%以下であることがより好ましい。
The type of the carrier that supports the metal catalyst is not particularly limited, and examples thereof include metal compounds, inorganic oxides, inorganic materials, and organic materials, but include metal compounds from the viewpoint of improving reaction efficiency. It is preferable. Examples of the metal compound include alumina, diatomaceous earth, silica gel, silica alumina, activated carbon and the like from the viewpoint of versatility, and alumina is particularly preferable.
The shape of the carrier is not particularly limited, and examples thereof include powder, granule, and molding. From the viewpoint of reactivity, a powder is preferable. Moreover, a pore structure, a crystal structure, etc. may be sufficient.
The amount of the metal catalyst relative to the total of the metal catalyst and the carrier supporting the metal catalyst is usually 0.1% by weight or more, more preferably 1% by weight or more, from the viewpoint of improving reaction efficiency. From the viewpoint of catalyst cost, it is usually 10% by weight or less, and more preferably 5% by weight or less.
 水素添加反応させる方法は、特段限定されず、還元剤によるカルボニル化合物の還元反応を利用する慣用の方法が利用でき、例えば、還元剤として水素を用いる接触水素添加法や、水素化還元剤を用いる還元法等により行うことができ、製造コストの低減等の経済的な観点から接触水素添加法が好ましい。 The method of hydrogenation reaction is not particularly limited, and a conventional method using a reduction reaction of a carbonyl compound with a reducing agent can be used. For example, a catalytic hydrogenation method using hydrogen as a reducing agent or a hydrogenation reducing agent is used. The catalytic hydrogenation method is preferable from the economical viewpoint such as reduction in production cost.
 また、水素添加反応は、溶媒存在下で行ってもよい。使用可能な溶媒としては、還元反応に不活性であれば特段限定されず、例えば、炭化水素類、カルボン酸類、エーテル類、エステル類、アミド類等が挙げられるが、経済性の観点、また、高水素圧としなくてよいことから、使用しなくともよい。
 また、水素添加反応前の系内の雰囲気は、不活性気体で充填されていることが好ましい。該不活性気体としては、窒素やアルゴン等を用いることができ、製造コスト低減の観点から、窒素であることが好ましい。なお、水素添加反応中は、不活性気体が水素に完全に置換された状態となっていることが好ましい。
The hydrogenation reaction may be performed in the presence of a solvent. Solvents that can be used are not particularly limited as long as they are inert to the reduction reaction, and include, for example, hydrocarbons, carboxylic acids, ethers, esters, amides, etc. Since high hydrogen pressure is not required, it is not necessary to use it.
Further, the atmosphere in the system before the hydrogenation reaction is preferably filled with an inert gas. Nitrogen, argon, etc. can be used as this inert gas, and it is preferable that it is nitrogen from a viewpoint of manufacturing cost reduction. During the hydrogenation reaction, it is preferable that the inert gas is completely replaced with hydrogen.
 水素添加反応の反応雰囲気は、特段限定されないが、不活性気体を用いることが好ましい。不活性気体としては、例えば、窒素やアルゴン等を用いることができ、製造コスト低減の観点から、窒素であることが好ましい。
 また、水素添加反応の反応温度は、特段限定されないが、経時的な観点、及び安定した反応を促進する観点から、通常-20℃~200℃であり、好ましくは20~80℃であり、より好ましくは40~60℃である。
 また、水素添加反応の水素圧は、特段限定されないが、経時的に安定した反応を促進する観点から、通常0.1~20MPaであり、好ましくは0.1~10MPaであり、より好ましくは0.1~2.0MPaである。特に、本実施形態である1,3-ブチレングリコールの製造方法は、溶媒を用いない場合に、溶媒を用いた場合よりも反応が遅くなり、比較的低い水素圧での水素添加反応が可能となる。
 また、水素添加反応の反応時間は、特段限定されないが、製造コスト低減の観点から、通常1~10時間であり、好ましくは2~8時間であり、より好ましくは3~6時間である。
The reaction atmosphere of the hydrogenation reaction is not particularly limited, but it is preferable to use an inert gas. As the inert gas, for example, nitrogen or argon can be used, and nitrogen is preferable from the viewpoint of reducing the manufacturing cost.
The reaction temperature of the hydrogenation reaction is not particularly limited, but is usually −20 ° C. to 200 ° C., preferably 20 ° C. to 80 ° C. from the viewpoint of aging and promoting stable reaction. The temperature is preferably 40 to 60 ° C.
The hydrogen pressure of the hydrogenation reaction is not particularly limited, but is usually 0.1 to 20 MPa, preferably 0.1 to 10 MPa, more preferably 0 from the viewpoint of promoting a stable reaction over time. .1 to 2.0 MPa. In particular, in the method for producing 1,3-butylene glycol according to this embodiment, the reaction is slower when a solvent is not used than when a solvent is used, and a hydrogenation reaction at a relatively low hydrogen pressure is possible. Become.
The reaction time of the hydrogenation reaction is not particularly limited, but is usually 1 to 10 hours, preferably 2 to 8 hours, and more preferably 3 to 6 hours from the viewpoint of reducing production costs.
 4-ヒドロキシ-2-ブタノンを水素添加反応させる方法は、特段限定されず、一般的な公知の方法を利用することができる。接触水素添加法を利用する場合、上述した4-ヒドロキシ-2-ブタノンを水素添加反応させる工程や、4-ヒドロキシ-2-ブタノンを含む原料液の精製処理を行う工程以外のその他の工程として、4-ヒドロキシ-2-ブタノンや金属触媒等を混合させて原料液を準備する工程や、原料液を反応器に供給する工程、反応器から反応液を排出する工程等が挙げられる。
 また、反応の様式としては、回分式、半回分式、連続式のいずれでも行うことができるが、製造コスト低減の観点から、連続式で行うことが好ましい。
The method for hydrogenating 4-hydroxy-2-butanone is not particularly limited, and a generally known method can be used. When utilizing the catalytic hydrogenation method, as other steps other than the above-mentioned step of hydrogenating 4-hydroxy-2-butanone and the step of purifying the raw material liquid containing 4-hydroxy-2-butanone, Examples include a step of preparing a raw material liquid by mixing 4-hydroxy-2-butanone and a metal catalyst, a step of supplying the raw material liquid to the reactor, and a step of discharging the reaction liquid from the reactor.
In addition, the reaction can be carried out by any of batch, semi-batch, and continuous methods, but from the viewpoint of reducing production costs, it is preferable to carry out the reaction in a continuous manner.
 水素添加反応させた反応液は、触媒を取り除くため、加圧濾過機等で濾過工程に供することが好ましい。
 さらに、未濾過の反応粗液及び/又は濾過により得られた反応粗液は、未反応の原料及び反応での副生成物、及び/又は水分等を除き、純度の高い1,3-ブチレングリコールを得るために精製工程に供することが好ましい。
 上記の精製工程における精製方法としては、脱水、洗浄、蒸留、吸着、イオン交換、膜分離、これらの組み合わせ等による方法を利用しても構わない。特に、経済性の観点から、精製処理の方法として蒸留を用いることが好ましい。
 蒸留の方法としては、沸点の差を利用して得られた1,3-ブチレングリコールから低沸点物、高沸点物、塩分等を分離できる蒸留方法であれば、特段限定されず、例えば、減圧、常圧、加圧、共沸、抽出、反応などの種々の方法を利用することができる。
 また、蒸留を行う温度は、副反応抑制の観点から、留出温度は、通常20℃以上であり、また、通常200℃以下であり、150℃以下であることが好ましく、100℃以下であることがより好ましい。
In order to remove the catalyst, the reaction solution subjected to the hydrogenation reaction is preferably subjected to a filtration step using a pressure filter or the like.
Further, the unfiltered reaction crude liquid and / or the reaction crude liquid obtained by filtration are free from 1,3-butylene glycol having a high purity except for unreacted raw materials and by-products in the reaction, and / or moisture. To obtain a purification step.
As a purification method in the above purification step, a method using dehydration, washing, distillation, adsorption, ion exchange, membrane separation, a combination thereof, or the like may be used. In particular, from the viewpoint of economy, it is preferable to use distillation as a purification method.
The distillation method is not particularly limited as long as it is a distillation method that can separate low-boiling products, high-boiling products, salt, etc. from 1,3-butylene glycol obtained by utilizing the difference in boiling points. Various methods such as normal pressure, pressurization, azeotropy, extraction, and reaction can be used.
The distillation temperature is usually 20 ° C. or higher, usually 200 ° C. or lower, preferably 150 ° C. or lower, and preferably 100 ° C. or lower from the viewpoint of suppressing side reactions. It is more preferable.
 水素添加反応における4-ヒドロキシ-2-ブタノンからの転化率、及び1,3-ブチレングリコールの選択率は、ともに高い方が好ましい。
 本発明において、4-ヒドロキシ-2-ブタノンからの転化率とは、「(原料の4-ヒドロキシ-2-ブタノン(モル))-(反応後、反応液中に含まれる未反応の4-ヒドロキシ-2-ブタノン(モル))/(原料の4-ヒドロキシ-2-ブタノン(モル))×100(モル%)」で定義された値である。また、本発明において、1,3-ブチレングリコールの選択率とは、「(反応後、反応液中に含まれる1,3-ブチレングリコール(モル))/((原料の4-ヒドロキシ-2-ブタノン(モル))-(反応後、反応液中に含まれる未反応の4-ヒドロキシ-2-ブタノン(モル)))×100(モル%)」である。これらのモル量の測定方法は、特段限定されないが、後述の実施例で記載するように、ガスクロマトグラフィーを用いて測定することができる。
It is preferable that the conversion rate from 4-hydroxy-2-butanone and the selectivity of 1,3-butylene glycol are both higher in the hydrogenation reaction.
In the present invention, the conversion rate from 4-hydroxy-2-butanone is defined as “(raw material 4-hydroxy-2-butanone (mol))-(after reaction, unreacted 4-hydroxyl contained in the reaction liquid. -2-butanone (mol)) / (raw material 4-hydroxy-2-butanone (mol)) × 100 (mol%) ”. In the present invention, the selectivity of 1,3-butylene glycol is “(1,3-butylene glycol (mol) contained in the reaction solution after the reaction) / ((4-hydroxy-2-y of raw material). Butanone (mol))-(unreacted 4-hydroxy-2-butanone (mol) contained in the reaction solution after the reaction)) × 100 (mol%) ”. The method for measuring these molar amounts is not particularly limited, but can be measured using gas chromatography as described in the Examples below.
 以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、下記の実施例における各種の条件や評価結果の値は、本発明の実施態様における好ましい範囲同様に、本発明の好ましい範囲を示すものであり、本発明の好ましい範囲は前記した実施態様における好ましい範囲と下記実施例の値または実施例同士の値の組合せにより示される範囲を勘案して決めることができる。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In addition, the various conditions in the following Examples and the values of the evaluation results show the preferable range of the present invention as well as the preferable range in the embodiment of the present invention. The preferable range of the present invention is in the above-described embodiment. It can be determined in consideration of a preferable range and a range indicated by a combination of values of the following examples or values of the examples.
[転化率、選択率の測定]
 以下の実施例において、水素添加反応を行う前の原料液中の4-ヒドロキシ-2-ブタノン、並びに水素添加反応を行った後の反応液中の4-ヒドロキシ-2-ブタノン及び1,3-ブチレングリコールの定量測定は、ガスクロマトグラフィー(カラム:アジレント・テクノロジー株式会社製 DB-WAX)により行った。
[Measurement of conversion rate and selectivity]
In the following examples, 4-hydroxy-2-butanone in the raw material solution before the hydrogenation reaction, and 4-hydroxy-2-butanone and 1,3-hydroxy in the reaction solution after the hydrogenation reaction are performed. Butylene glycol was quantitatively measured by gas chromatography (column: DB-WAX, manufactured by Agilent Technologies).
[水素添加反応]
[実施例1]
 1500mLオートクレーブ反応器に、高真空度で減圧蒸留(3.0kPa以下、留出温度80℃以下)した4-ヒドロキシ-2-ブタノン(純度98%)1000g、5重量% Pt/アルミナ(「金属触媒であるPtと担持体であるアルミナの合計に対するPtの重量%が5重量%」を意味する)100gを入れ、系内を窒素置換する。その後、水素ガスを充填し、50℃に昇温、水素圧1.6MPaを維持しながら5.5時間反応させる。
 反応後、オートクレーブのふたを開け、反応液を全量、加圧濾過機にて濾過をし、濾液をガスクロマトグラフィー(GC)分析した。濾液を30段オルダーショウにて蒸留分離し、1,3-ブチレングリコールを得た。4-ヒドロキシ-2-ブタノンからの転化率は98.2%、1,3-ブチレングリコールの選択率は96.0%であった。蒸留により得られた1,3-ブチレングリコールをGC分析したところ、クロトンアルデヒド、メチルビニルケトンは検出されなかった。
[Hydrogenation reaction]
[Example 1]
In a 1500 mL autoclave reactor, 1000 g of 4-hydroxy-2-butanone (purity 98%) distilled under reduced pressure (3.0 kPa or less, distillation temperature 80 ° C. or less) at high vacuum, 5 wt% Pt / alumina (“metal catalyst” Is 100%), and the inside of the system is purged with nitrogen. Thereafter, hydrogen gas is charged, the temperature is raised to 50 ° C., and the reaction is performed for 5.5 hours while maintaining a hydrogen pressure of 1.6 MPa.
After the reaction, the lid of the autoclave was opened, the entire reaction solution was filtered with a pressure filter, and the filtrate was analyzed by gas chromatography (GC). The filtrate was distilled and separated using a 30-stage Oldershaw to obtain 1,3-butylene glycol. The conversion rate from 4-hydroxy-2-butanone was 98.2%, and the selectivity for 1,3-butylene glycol was 96.0%. When 1,3-butylene glycol obtained by distillation was analyzed by GC, crotonaldehyde and methyl vinyl ketone were not detected.
[実施例2]
 1500mLオートクレーブ反応器に、高真空度で減圧蒸留(3.0kPa以下、留出温度80℃以下)した4-ヒドロキシ-2-ブタノン(純度98%)1000g、5重量% Ru/アルミナ100gを入れ、系内を窒素置換する。その後、水素ガスを充填し、50℃に昇温、水素圧0.8MPaを維持しながら4時間反応させる。
 反応後、オートクレーブのふたを開け、反応液を全量、加圧濾過機にて濾過をし、濾液をGC分析した。濾液を30段オルダーショウにて蒸留分離し、1,3-ブチレングリコールを得た。4-ヒドロキシ-2-ブタノンからの転化率は56.3%、1,3-ブチレングリコールの選択率は92.0%であった。蒸留により得られた1,3-ブチレングリコールをGC分析したところ、クロトンアルデヒド、メチルビニルケトンは検出されなかった。
[Example 2]
In a 1500 mL autoclave reactor, 1000 g of 4-hydroxy-2-butanone (purity 98%) distilled under reduced pressure (3.0 kPa or less, distillation temperature 80 ° C. or less) at a high degree of vacuum was added, and 100 g of 5 wt% Ru / alumina was added. The system is replaced with nitrogen. Thereafter, hydrogen gas is charged, the temperature is raised to 50 ° C., and the reaction is performed for 4 hours while maintaining the hydrogen pressure at 0.8 MPa.
After the reaction, the lid of the autoclave was opened, the entire reaction solution was filtered with a pressure filter, and the filtrate was subjected to GC analysis. The filtrate was distilled and separated using a 30-stage Oldershaw to obtain 1,3-butylene glycol. The conversion rate from 4-hydroxy-2-butanone was 56.3%, and the selectivity for 1,3-butylene glycol was 92.0%. When 1,3-butylene glycol obtained by distillation was analyzed by GC, crotonaldehyde and methyl vinyl ketone were not detected.
[比較例1]
 1500mLオートクレーブ反応器に、高真空度で減圧蒸留(3.0kPa以下、留出温度80℃以下)した4-ヒドロキシ-2-ブタノン(純度98%)1000g、ラネーニッケル1.0gを入れ、系内を窒素置換する。その後、水素ガスを充填し、50℃に昇温、水素圧1.6MPaを維持しながら5.5時間反応させる。
 反応後、オートクレーブのふたを開け、反応液を全量、加圧濾過機にて濾過をし、濾液をGC分析した。濾液を30段オルダーショウにて蒸留分離し、1,3-ブチレングリコールを得た。4-ヒドロキシ-2-ブタノンからの転化率は7.1%、1,3-ブチレングリコールの選択率は4.5%であった。
[Comparative Example 1]
In a 1500 mL autoclave reactor, 1000 g of 4-hydroxy-2-butanone (purity 98%) distilled under reduced pressure distillation (3.0 kPa or less, distillation temperature 80 ° C. or less) at a high degree of vacuum and 1.0 g of Raney nickel were placed. Replace with nitrogen. Thereafter, hydrogen gas is charged, the temperature is raised to 50 ° C., and the reaction is performed for 5.5 hours while maintaining a hydrogen pressure of 1.6 MPa.
After the reaction, the lid of the autoclave was opened, the entire reaction solution was filtered with a pressure filter, and the filtrate was subjected to GC analysis. The filtrate was distilled and separated using a 30-stage Oldershaw to obtain 1,3-butylene glycol. The conversion rate from 4-hydroxy-2-butanone was 7.1%, and the selectivity for 1,3-butylene glycol was 4.5%.
[比較例2]
 150mLオートクレーブ反応器に、高真空度で減圧蒸留(3.0kPa以下、留出温度80℃以下)した4-ヒドロキシ-2-ブタノン(純度98%)10g、金属ルテニウム0.05gを入れ、系内を窒素置換する。その後、水素ガスを充填し、50℃に昇温、水素圧0.8MPaを維持しながら4時間反応させる。
 反応後、オートクレーブのふたを開け、反応液を全量、加圧濾過機にて濾過をし、濾液をGC分析したが、反応は全く進行していなかった。
[Comparative Example 2]
Into a 150 mL autoclave reactor, 10 g of 4-hydroxy-2-butanone (purity 98%) distilled under reduced pressure (3.0 kPa or less, distillation temperature 80 ° C. or less) at a high degree of vacuum and 0.05 g of metal ruthenium were placed. Is replaced with nitrogen. Thereafter, hydrogen gas is charged, the temperature is raised to 50 ° C., and the reaction is performed for 4 hours while maintaining the hydrogen pressure at 0.8 MPa.
After the reaction, the lid of the autoclave was opened, the entire reaction solution was filtered with a pressure filter, and the filtrate was analyzed by GC, but the reaction did not proceed at all.
 上記の実施例1及び2と比較例1及び2との比較から、本発明の実施形態である1,3-ブチレングリコールの製造方法を用いた場合、それ以外の製造方法を用いた場合と比較して、4-ヒドロキシ-2-ブタノンからの転化率及び1,3-ブチレングリコールの選択率が高い、つまり収率に優れることが分かる。
 これは、ラネーニッケルはニッケルを溶出し、下記式(1)に示すように4-ヒドロキシ-2-ブタノンと錯体を形成して安定化し、反応を阻害する可能性が考えられる。一方、担持触媒はそのような錯体形成を起こしにくいことから、水素添加反応が促進されたと考えられる。また、金属ルテニウムはRu/アルミナのように、金属触媒を担体に担持することで生じる異種金属間の電荷の偏りが無いため、触媒活性が非常に低かったと考えられる。
Figure JPOXMLDOC01-appb-C000001
From the comparison between Examples 1 and 2 and Comparative Examples 1 and 2 above, when the production method of 1,3-butylene glycol according to the embodiment of the present invention is used, it is compared with the case of using other production methods. It can be seen that the conversion from 4-hydroxy-2-butanone and the selectivity of 1,3-butylene glycol are high, that is, the yield is excellent.
It is considered that Raney nickel elutes nickel and forms a complex with 4-hydroxy-2-butanone as shown in the following formula (1) to stabilize and inhibit the reaction. On the other hand, it is considered that the hydrogenation reaction was promoted because the supported catalyst hardly caused such complex formation. Further, it is considered that the catalytic activity of the metal ruthenium is very low because there is no unevenness of charge between different kinds of metals caused by loading the metal catalyst on the carrier like Ru / alumina.
Figure JPOXMLDOC01-appb-C000001
 本発明により得られた1,3-ブチレングリコールは、合成樹脂、界面活性剤、吸湿剤、高沸点溶剤、不凍液、特に吸湿性、低揮発性、または低毒性を利用して化粧品の素材としても有用である。 The 1,3-butylene glycol obtained by the present invention can be used as a cosmetic material by utilizing synthetic resin, surfactant, hygroscopic agent, high boiling point solvent, antifreeze, especially hygroscopic, low volatility, or low toxicity. Useful.

Claims (4)

  1.  4-ヒドロキシ-2-ブタノンを水素添加反応させる工程を含み、
     上記工程において担持体に担持された金属触媒を用いる、1,3-ブチレングリコールの製造方法。
    Comprising a step of hydrogenating 4-hydroxy-2-butanone,
    A method for producing 1,3-butylene glycol, which uses a metal catalyst supported on a support in the above step.
  2.  上記金属触媒が、白金、パラジウム、コバルト、ルテニウム、およびロジウムからなる群から選択される少なくとも1つを含む、請求項1に記載の1,3-ブチレングリコールの製造方法。 The method for producing 1,3-butylene glycol according to claim 1, wherein the metal catalyst contains at least one selected from the group consisting of platinum, palladium, cobalt, ruthenium, and rhodium.
  3.  上記担持体がアルミナを含む、請求項1又は2に記載の1,3-ブチレングリコールの製造方法。 The method for producing 1,3-butylene glycol according to claim 1 or 2, wherein the carrier comprises alumina.
  4.  水素添加反応させる工程の前に、3.0kPa以下で減圧蒸留することにより4-ヒドロキシ-2-ブタノンの精製処理を行う工程を含む、請求項1~3のいずれか1項に記載の1,3-ブチレングリコールの製造方法。 The process according to any one of claims 1 to 3, comprising a step of purifying 4-hydroxy-2-butanone by performing distillation under reduced pressure at 3.0 kPa or less before the hydrogenation reaction step. A process for producing 3-butylene glycol.
PCT/JP2019/022563 2018-06-12 2019-06-06 Method for producing 1,3-butylene glycol WO2019240009A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020525503A JPWO2019240009A1 (en) 2018-06-12 2019-06-06 Method for producing 1,3-butylene glycol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018111647 2018-06-12
JP2018-111647 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019240009A1 true WO2019240009A1 (en) 2019-12-19

Family

ID=68843343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022563 WO2019240009A1 (en) 2018-06-12 2019-06-06 Method for producing 1,3-butylene glycol

Country Status (2)

Country Link
JP (1) JPWO2019240009A1 (en)
WO (1) WO2019240009A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890867A (en) * 2022-05-30 2022-08-12 万华化学集团股份有限公司 Method for preparing 1, 3-butanediol
JPWO2023033099A1 (en) * 2021-09-02 2023-03-09
JPWO2023058687A1 (en) * 2021-10-06 2023-04-13
WO2023228448A1 (en) * 2022-05-23 2023-11-30 Khネオケム株式会社 1,3-butylene glycol product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB853266A (en) * 1956-02-24 1960-11-02 Celanese Corp 1,3-butylene glycol
JP2008504260A (en) * 2004-06-25 2008-02-14 イーストマン ケミカル カンパニー Ruthenium complexes of phosphine-aminophosphine ligands
WO2014077130A1 (en) * 2012-11-13 2014-05-22 株式会社ダイセル Method for producing 3-hydroxytetrahydrofuran and method for producing 1,3-butane diol
JP2017523238A (en) * 2014-07-23 2017-08-17 フンダシオン テクナリア リサーチ アンド イノベーション Process for producing 2,3-butanediol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB853266A (en) * 1956-02-24 1960-11-02 Celanese Corp 1,3-butylene glycol
JP2008504260A (en) * 2004-06-25 2008-02-14 イーストマン ケミカル カンパニー Ruthenium complexes of phosphine-aminophosphine ligands
WO2014077130A1 (en) * 2012-11-13 2014-05-22 株式会社ダイセル Method for producing 3-hydroxytetrahydrofuran and method for producing 1,3-butane diol
JP2017523238A (en) * 2014-07-23 2017-08-17 フンダシオン テクナリア リサーチ アンド イノベーション Process for producing 2,3-butanediol

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023033099A1 (en) * 2021-09-02 2023-03-09
JP7335461B2 (en) 2021-09-02 2023-08-29 Khネオケム株式会社 Manufacturing method of product 1,3-butylene glycol
JPWO2023058687A1 (en) * 2021-10-06 2023-04-13
WO2023058687A1 (en) * 2021-10-06 2023-04-13 Khネオケム株式会社 Method for producing high-purity 1,3-butylene glycol
JP7366295B2 (en) 2021-10-06 2023-10-20 Khネオケム株式会社 Production method of high purity 1,3-butylene glycol
JP7408005B1 (en) 2021-10-06 2024-01-04 Khネオケム株式会社 Production method of high purity 1,3-butylene glycol
WO2023228448A1 (en) * 2022-05-23 2023-11-30 Khネオケム株式会社 1,3-butylene glycol product
CN114890867A (en) * 2022-05-30 2022-08-12 万华化学集团股份有限公司 Method for preparing 1, 3-butanediol
CN114890867B (en) * 2022-05-30 2023-03-28 万华化学集团股份有限公司 Method for preparing 1, 3-butanediol

Also Published As

Publication number Publication date
JPWO2019240009A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2019240009A1 (en) Method for producing 1,3-butylene glycol
US6297408B1 (en) Two-stage process for the production of 1,3-propanediol by catalytic hydrogenation of 3-hydroxypropanal
US6342646B1 (en) Catalytic hydrogenation of 3-hydroxypropanal to 1,3-propanediol
JP5973566B2 (en) Integrated preparation of 1,4-cyclohexanedimethanol from terephthalic acid
JP5964961B2 (en) Process for preparing 1,4-cyclohexanedimethanol from terephthalic acid
IL260730A (en) Process for preparing terpinene-4-ol
JP5973565B2 (en) Method for preparing 1,4-cyclohexanedimethanol
CA2654737A1 (en) Process for the conversion of glycerol to propylene glycol and amino alcohols
JP2013536184A (en) Process for the production of ditrimethylolpropane and trimethylolpropane-enriched product stream from the side stream of trimethylolpropane production
EP2017248B1 (en) Method for production of 3-methyl-1,5-pentanediol
US8664444B2 (en) Method for producing primary aliphatic amines from aldehydes
US6355848B1 (en) Method for producing optically active alcohols
JPH11236341A (en) Production of alcohol
JP5969047B2 (en) A process for obtaining a product stream enriched in trimethylolpropane from a side stream of trimethylolpropane production.
JP4979230B2 (en) Tetrahydropyran compound production method and tetrahydropyran compound produced by the production method
JP3961938B2 (en) Production of tetrahydrogeraniol
JP3862883B2 (en) Nuclear hydrogenation process for aromatic epoxy compounds
JP5478097B2 (en) Process for producing 2-alkyl-2-cycloalkene-1-one
JP4200704B2 (en) Method for producing fluorinated benzonitrile
JP2553146B2 (en) Purification method of glycol ether
JP7389658B2 (en) Method for producing m-xylylenediamine
TWI481586B (en) Continuous process for preparing primary aliphatic amines from aldehydes
US20020103403A1 (en) Process for preparing 3-alkoxypropanol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820277

Country of ref document: EP

Kind code of ref document: A1