WO2019239816A1 - Oxygen supply apparatus - Google Patents

Oxygen supply apparatus Download PDF

Info

Publication number
WO2019239816A1
WO2019239816A1 PCT/JP2019/020024 JP2019020024W WO2019239816A1 WO 2019239816 A1 WO2019239816 A1 WO 2019239816A1 JP 2019020024 W JP2019020024 W JP 2019020024W WO 2019239816 A1 WO2019239816 A1 WO 2019239816A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
supply device
concentrating
oxygen supply
control unit
Prior art date
Application number
PCT/JP2019/020024
Other languages
French (fr)
Japanese (ja)
Inventor
哲哉 右近
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201980039560.9A priority Critical patent/CN112334178B/en
Publication of WO2019239816A1 publication Critical patent/WO2019239816A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption

Definitions

  • This disclosure relates to an oxygen supply device. More specifically, the present invention relates to an oxygen supply device that generates and supplies oxygen having a higher concentration than the oxygen concentration in air.
  • oxygen supply devices that generate oxygen having a concentration higher than that in the air and supply the oxygen to the user are known. These devices are used, for example, for home oxygen therapy performed by patients who have a disease in the lung and the function of the lung is reduced, and to increase the oxygen concentration in the room to improve the living environment. It is used.
  • Patent Document 1 oxygen gases generated by a plurality of oxygen concentrators are combined at an oxygen introduction port and supplied from an oxygen outlet to supply means such as a cannula.
  • the present disclosure is intended to provide an oxygen supply device capable of increasing the capacity with a simple configuration.
  • the oxygen supply device includes: (1) An oxygen supply device that generates and supplies oxygen having a higher concentration than the oxygen concentration in air, A plurality of oxygen concentrators each producing high concentration of oxygen; One control unit for controlling the operation of the plurality of oxygen concentrating units, The controller is configured such that when the existing oxygen concentrator is removed and when a new oxygen concentrator is added, the oxygen concentrator of the oxygen supply device can be operated after being removed or added.
  • one control unit controls the operation of a plurality of oxygen concentrating units that generate oxygen, and this control unit is used when an existing oxygen concentrating unit is removed and when a new oxygen concentrating unit is added.
  • the oxygen concentrating unit included in the oxygen supply device after being removed or added can be operated. That is, in the oxygen supply device according to the present disclosure, an appropriate number (for example, 2 to 5) of oxygen concentrating units are provided in the storage unit included in the control unit that controls the opening / closing timing of the electromagnetic valve and the like and displays the operation state. Programs that can be operated are stored in advance, and by setting the number of oxygen concentrating units included in the oxygen supply device, the operation of the set number of oxygen concentrating units can be controlled by the control unit.
  • an oxygen concentrating unit can be added or removed according to the required oxygen flow rate.
  • an oxygen concentrating part for a required capacity can be added to the apparatus.
  • energy saving can be aimed at by removing an oxygen concentrating part and operating the required number of oxygen concentrating parts. If some of the oxygen concentrators fail, only the faulty oxygen concentrator can be replaced with a new one. In this case, even if a part is broken until the replacement is completed, only the remaining oxygen concentrating unit can be operated although the oxygen flow rate is reduced.
  • the control unit operates the operation cycles of the plurality of oxygen concentrating units while being shifted from each other.
  • the electric power value (current ⁇ voltage) of the pump required to make the inside of the adsorption cylinder maximum pressure by shifting the timing at which the inside of the adsorption cylinder of the plurality of oxygen concentrating parts becomes maximum pressure (minimum pressure).
  • the timing to become can be shifted.
  • the oxygen supply device further includes an exhaust part to which waste gas discharged from each of the plurality of oxygen concentrating parts joins. Since the operation cycles of the plurality of oxygen concentrating units are operated while being shifted from each other, the timing for discharging the waste gas from the adsorption cylinder to the outside of the apparatus can also be shortened, so the instantaneous maximum discharge amount of waste gas from the apparatus can be reduced. can do. As a result, for example, the pipe diameter in the exhaust part can be reduced as compared with the case where waste gas is simultaneously discharged from a plurality of oxygen concentrating parts. Further, an exhaust noise is generated when the gas is discharged, but this exhaust noise can be reduced as compared with the case where the exhaust noise is also discharged at the same time.
  • FIG. 1 It is a block diagram of one embodiment of an oxygen supply device of this indication. It is a block diagram of the control part C shown by FIG. It is a figure which shows the relationship between the pressure of the adsorption cylinder in one oxygen concentration part, and the power consumption of an apparatus. It is a figure which shows the power consumption of the oxygen supply apparatus which concerns on the reference example provided with the oxygen supply apparatus of this indication provided with two oxygen concentration parts, and the oxygen concentration part which has a capacity
  • FIG. 1 is a block diagram of an oxygen supply device 1 according to an embodiment (first embodiment) of the present disclosure.
  • the oxygen supply device 1 is a device that generates and supplies oxygen having a higher concentration than the oxygen concentration in air, and is used, for example, in home oxygen therapy that provides high concentration oxygen to patients with respiratory diseases.
  • the oxygen supply device 1 includes a plurality (two in this embodiment) of oxygen concentrating units A and B, each generating high concentration of oxygen, and one control unit C.
  • Each of the oxygen concentrating part A and the oxygen concentrating part B includes a compressor 2 that compresses air sucked from outside, and a first adsorbing cylinder in which an adsorbent that adsorbs nitrogen in the compressed air supplied from the compressor 2 is accommodated. 3a and a second adsorption cylinder 3b, and an oxygen tank 4 for storing high-concentration oxygen produced by the first adsorption cylinder 3a and the second adsorption cylinder 3b.
  • the oxygen concentrating section A and the oxygen concentrating section B are various valves for controlling the flow rate or flow of a fluid such as compressed air, that is, control valves 5a and 5b, purge valves 6, check valves 7a and 7b, and products.
  • a valve 8, a pressure reducing valve 9, and a flow rate adjusting valve 10 are provided.
  • the oxygen concentrators A and B of the present embodiment have a PSA (Pressure Swing) that is decompressed by releasing the other adsorption cylinder to the atmosphere while the air compressed by the compressor 2 is supplied to the one adsorption cylinder.
  • PSA Pressure Swing
  • Adsorption system (oxygen system) type oxygen concentrator but not the depressurization of the adsorption cylinder by opening to the atmosphere, but the VPSA (vacuum press swing system) type oxygen concentrator, which depressurizes the adsorption cylinder by suction with a vacuum pump. It can also be adopted.
  • the control valves 5a and 5b are three-port valves, and are in a pressurized state in which compressed air discharged from the compressor 2 is supplied to the first adsorption cylinder 3a (second adsorption cylinder 3b), and open to the atmosphere. Switching between the reduced pressure state in which the air in the adsorption cylinder 3a (second adsorption cylinder 3b) is discharged to the outside. When one suction cylinder is in a pressurized state, the other suction cylinder is in a reduced pressure state.
  • the check valve 7a is disposed in the gas flow path on the downstream side of the first adsorption cylinder 3a, and the check valve 7b is disposed in the gas flow path on the downstream side of the second adsorption cylinder 3b. Both check valves 7a and 7b are configured such that the oxygen-enriched gas discharged from the first adsorption cylinder 3a and the second adsorption cylinder 3b flows only toward the downstream side.
  • the purge valve 6 is disposed in a flow path connecting the gas flow path between the first adsorption cylinder 3a and the check valve 7a and the flow path between the second adsorption cylinder 3b and the check valve 7b. .
  • the oxygen-enriched gas from the check valve 7 a and the oxygen-enriched gas from the check valve 7 b are alternately supplied to the oxygen tank 4 via the product valve 8 and stored in the oxygen tank 4.
  • a pressure reducing valve 9 for reducing the pressure of the oxygen-enriched gas from the oxygen tank 4 and a flow rate adjusting valve 10 for adjusting the flow rate of the oxygen-enriched gas are disposed.
  • the oxygen-enriched gas whose flow rate is adjusted by the flow rate adjusting valve 10 is supplied from the outlets (not shown) of the oxygen concentrating parts A and B.
  • the purge valve 6 is opened when the gas in one adsorption cylinder is discharged to the outside, and the air in the other adsorption cylinder is moved to the one adsorption cylinder via the purge valve 6 so as to be efficient. It is arranged for discharging the gas in the one adsorption cylinder.
  • the waste gas discharged from the oxygen concentrating part A and the waste gas discharged from the oxygen concentrating part B merge at the exhaust part 11 and are discharged to the outside.
  • the exhaust part 11 has a shape of a junction pipe where the waste gas pipe from the oxygen concentrating part A and the waste gas pipe from the oxygen concentrating part B merge.
  • the control unit C includes a control circuit 20 and a display circuit 30. As illustrated in FIG. 2, the control circuit 20 includes a drive control unit 21 and a storage unit 22. The drive control unit 21 controls the compressor 2, the control valves 5 a and 5 b, the purge valve 6, the product valve 8, the pressure reducing valve 9, and the flow rate adjustment valve 10. A program for operating the oxygen supply device 1 is stored in the storage unit 22 in advance.
  • the display circuit 30 displays information such as the operating state of the oxygen supply device 1 and the oxygen flow rate on a display unit (not shown) including a liquid crystal screen of the oxygen supply device 1.
  • the storage unit 22 of the control unit C stores in advance a program that can operate an appropriate number (for example, 2 to 5) of oxygen concentrating units. Therefore, by setting the number of oxygen concentrating units included in the oxygen supply device 1 (two in this embodiment), the operation of the set number of oxygen concentrating units is controlled by the drive control unit 21 of the control unit C. be able to.
  • the two oxygen concentrating parts A and B are provided, but the oxygen concentrating part may be added or removed according to the required oxygen flow rate. it can. For this reason, for example, when the apparatus was purchased, there was no problem with a small capacity. However, when it is desired to increase the capacity later, an oxygen concentrating unit for a necessary capacity can be added to the apparatus. Moreover, when it becomes unnecessary, energy saving can be aimed at by removing an oxygen concentrating part and operating the required number of oxygen concentrating parts. If some of the oxygen concentrators fail, only the faulty oxygen concentrator can be replaced with a new one. In this case, even if a part is broken until the replacement is completed, only the remaining oxygen concentrating unit can be operated although the oxygen flow rate is reduced.
  • the two oxygen concentrators are not operated in the same operation cycle, but are operated while being shifted from each other. Specifically, the timing at which the insides of the adsorption cylinders of the two oxygen concentrating parts A and B reach the maximum pressure (minimum pressure) is shifted, so that the compressor 2 necessary to bring the inside of the adsorption cylinders to the maximum pressure is shifted. The timing at which the power value (current x voltage) is maximized is shifted.
  • FIG. 3 is a diagram showing the relationship between the pressure of the adsorption cylinder and the power consumption of the apparatus in one oxygen concentrating unit.
  • the lower part of the figure shows the pressure (kPa) in one adsorption cylinder of the pair of adsorption cylinders, and the upper part of the figure shows the power consumption (W) of the oxygen supply device including the pair of adsorption cylinders. Is shown.
  • a portion indicated by “a” indicates an increase in power consumption due to an increase in the load on the compressor 2 due to a pressure increase in one of the adsorption cylinders in which the pressure change is illustrated.
  • the portion indicated by “b” indicates an increase in power consumption due to an increase in the load on the compressor 2 due to an increase in pressure in the other adsorption cylinder whose pressure change is not shown.
  • the power consumption of the oxygen supply apparatus 1 continuously fluctuates in a sawtooth shape.
  • FIG. 4 relates to a reference example including an oxygen supply device 1 according to this embodiment including two oxygen concentrating units A and B, and an oxygen concentrating unit having a capacity twice that of the oxygen concentrating unit A or B.
  • the lower part of the figure shows the pressure in one of the adsorption cylinders of the pair of adsorption cylinders in one oxygen concentrating part, as in the lower part of FIG.
  • the center part in the vertical direction in the figure shows the power consumption of the oxygen concentrating parts A and B.
  • the upper side of the figure shows the total power consumption of the two oxygen concentrators A and B in this embodiment plus the consumption of the oxygen concentrator having a capacity twice that of the oxygen concentrator A or B. Indicates power.
  • the power consumption by the oxygen concentrator A is between the peak Pa (peak due to the pressure increase in one adsorption cylinder) and the next peak Pa (peak due to the pressure increase in the other adsorption cylinder).
  • the operation cycles of both oxygen concentrators A and B are shifted from each other so that the peak Pb of power consumption by the oxygen concentrator B comes.
  • the oxygen concentrator has a capacity twice as large as that of the oxygen concentrator A or B, that is, the two oxygen concentrators A and B are operated in the same operation cycle. Compared with the case where it was made, the peak value and fluctuation
  • the timing of exhausting the waste gas from the adsorption cylinder to the outside of the apparatus can also be increased, and the instantaneous maximum amount of waste gas from the apparatus The amount of discharge can be reduced.
  • the pipe diameter of the joining pipe constituting the exhaust part 11 that joins the waste gases discharged from the two oxygen concentrating parts A and B is determined. It can be made smaller. Further, an exhaust noise is generated when the gas is discharged, but this exhaust noise can be reduced as compared with the case where the exhaust noise is also discharged at the same time.
  • FIG. 5 shows a block of the oxygen supply device 1 according to the second embodiment of the present disclosure.
  • This embodiment is shown in FIG. 1 in that the oxygen tank 4, the pressure reducing valve 9 and the flow rate adjusting valve 10 arranged on the downstream side of the product valve 8 are shared by the two oxygen concentrating parts A1 and B1. It is different from the embodiment. Therefore, elements or configurations common to both embodiments are denoted by the same reference numerals, and description thereof is omitted for simplicity.
  • the oxygen tank 4 and the like are shared in addition to the control unit C, the overall configuration of the apparatus is further simplified and the cost is reduced as compared with the first embodiment shown in FIG. be able to. Also in this embodiment, similarly to the first embodiment, the operation cycle of the two oxygen concentrating units can be shifted from each other to reduce the peak value and fluctuation of the power consumption of the oxygen supply device 1.
  • Oxygen supply apparatus 2 Compressor 3a: 1st adsorption cylinder 3b: 2nd adsorption cylinder 4: Oxygen tank 5a: Control valve 5b: Control valve 6: Purge valve 7a: Check valve 7b: Check valve 8: Product valve 9: Pressure reducing valve 10: Flow control valve 11: Exhaust unit 20: Control circuit 21: Drive control unit 22: Storage unit 30: Display circuit A: Oxygen concentrating unit B: Oxygen concentrating unit C: Control unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

An oxygen supply apparatus 1 produces and supplies oxygen at a higher concentration than the oxygen concentration in air. Each oxygen supply apparatus comprises a plurality of oxygen concentration units A and B, which generate oxygen at a high concentration, and one control unit C, which controls operation of the plurality of oxygen concentration units. The control unit C is configured so that when an existing oxygen concentration unit is removed and a new oxygen concentration unit is added, the oxygen concentration units A and B provided in the oxygen supply apparatus 1 can be operated following the removal or addition.

Description

酸素供給装置Oxygen supply equipment
 本開示は酸素供給装置に関する。さらに詳しくは、空気中の酸素濃度よりも高濃度の酸素を生成して供給する酸素供給装置に関する。 This disclosure relates to an oxygen supply device. More specifically, the present invention relates to an oxygen supply device that generates and supplies oxygen having a higher concentration than the oxygen concentration in air.
 空気中の酸素濃度よりも高濃度の酸素を生成して、これをユーザーに供給する種々の酸素供給装置が知られている。これらの装置は、例えば肺に疾患を有し当該肺の機能が低下している患者が行っている在宅酸素療法に使用されるほか、居住環境を向上させるべく居室の酸素濃度を上昇させるために使用されている。 Various oxygen supply devices that generate oxygen having a concentration higher than that in the air and supply the oxygen to the user are known. These devices are used, for example, for home oxygen therapy performed by patients who have a disease in the lung and the function of the lung is reduced, and to increase the oxygen concentration in the room to improve the living environment. It is used.
 近年、これらの酸素供給装置に対し、大型化ないし大容量化が求められるようになっている。大容量化の要求に対し、装置を構成するポンプや吸着筒等を大型化して装置全体をスケールアップすることが考えられるが、大型のポンプや吸着筒の開発には多大な工数が必要になるという問題や、大型ポンプ等の稼働により運転音や排気音が大きくなるという問題がある。  In recent years, these oxygen supply devices have been required to have a large size or a large capacity. In response to the demand for larger capacity, it is conceivable to increase the scale of the entire device by increasing the size of the pump and suction cylinder that make up the device. However, the development of a large pump and suction cylinder requires a great deal of man-hours. There is a problem that operation noise and exhaust noise increase due to the operation of a large pump or the like. *
 そこで、複数の酸素供給装置を同時に運転し、各酸素供給装置から得られる高濃度酸素を合わせてユーザーに供給することが提案されている(例えば、特許文献1参照)。特許文献1記載の酸素供給装置では、複数の酸素濃縮器で生成した酸素ガスを酸素導入ポートで合体させ、酸素出口よりカニューラ等の供給手段に供給している。 Therefore, it has been proposed to simultaneously operate a plurality of oxygen supply devices and supply high-concentration oxygen obtained from each oxygen supply device to the user (see, for example, Patent Document 1). In the oxygen supply device described in Patent Document 1, oxygen gases generated by a plurality of oxygen concentrators are combined at an oxygen introduction port and supplied from an oxygen outlet to supply means such as a cannula.
特開2005-46566号公報JP 2005-46566 A
 特許文献1記載の装置では、従来の酸素濃縮器を個別に運転し、各酸素濃縮器から得られる酸素を同時に合わせてユーザーに供給するため、前述した大型化のための開発費用は不要となるが、高濃度酸素生成のための部品又は要素が各酸素濃縮器に必要であり、共有化可能な部品等も各酸素濃縮器に独立して存在していることから、コスト高になるという問題がある。 In the apparatus described in Patent Document 1, since the conventional oxygen concentrator is operated individually and the oxygen obtained from each oxygen concentrator is supplied to the user at the same time, the development cost for the above-described enlargement becomes unnecessary. However, parts or elements for producing high-concentration oxygen are necessary for each oxygen concentrator, and parts that can be shared exist independently in each oxygen concentrator, which increases the cost. There is.
 本開示は、簡単な構成で大容量化を図ることができる酸素供給装置を提供することを目的としている。 The present disclosure is intended to provide an oxygen supply device capable of increasing the capacity with a simple configuration.
 本開示の酸素供給装置は、
(1)空気中の酸素濃度よりも高濃度の酸素を生成して供給する酸素供給装置であって、
 それぞれが高濃度の酸素を生成する複数の酸素濃縮部と、
 当該複数の酸素濃縮部の作動を制御する1つの制御部と
を備えており、
 前記制御部は、既設の酸素濃縮部の取り外し時及び新規の酸素濃縮部の追加時に、取り外し後又は追加後の、酸素供給装置の酸素濃縮部の作動が可能であるように構成されている。
The oxygen supply device according to the present disclosure includes:
(1) An oxygen supply device that generates and supplies oxygen having a higher concentration than the oxygen concentration in air,
A plurality of oxygen concentrators each producing high concentration of oxygen;
One control unit for controlling the operation of the plurality of oxygen concentrating units,
The controller is configured such that when the existing oxygen concentrator is removed and when a new oxygen concentrator is added, the oxygen concentrator of the oxygen supply device can be operated after being removed or added.
 本開示の酸素供給装置では、酸素を生成する複数の酸素濃縮部の作動を1つの制御部が制御し、この制御部は、既設の酸素濃縮部の取り外し時及び新規の酸素濃縮部の追加時において、取り外し後又は追加後の、酸素供給装置が備える酸素濃縮部の作動が可能であるように構成されている。すなわち、本開示の酸素供給装置では、電磁弁等の開閉タイミングの制御や運転状態の表示等を行う制御部に含まれる記憶部に適宜の数(例えば、2~5つ)の酸素濃縮部を作動させることができるプログラムが予め格納されており、酸素供給装置に含まれる酸素濃縮部の数を設定することで、設定した数の酸素濃縮部の作動を当該制御部で制御することができる。これにより、少なくとも制御部を共通化した簡単な構成で装置の大容量化を図ることができ、その結果、低コスト化を図ることができる。
 また、本開示の酸素供給装置では、必要とされる酸素流量に応じて、酸素濃縮部を追加したり取り外したりすることができるので、例えば、装置の購入時には小容量でも問題なかったが、後に容量を大きくしたくなった場合に、必要な容量分の酸素濃縮部を装置に追加することができる。また、不要になった場合は、酸素濃縮部を取り外して必要台数の酸素濃縮部を稼働させることで、省エネを図ることができる。一部の酸素濃縮部が故障した場合、当該故障した酸素濃縮部だけを新しいものと交換することができる。この場合、交換完了までの間、一部が故障していても、酸素流量は低下するものの残りの酸素濃縮部だけを運転させることができる。
In the oxygen supply device of the present disclosure, one control unit controls the operation of a plurality of oxygen concentrating units that generate oxygen, and this control unit is used when an existing oxygen concentrating unit is removed and when a new oxygen concentrating unit is added. In FIG. 3, the oxygen concentrating unit included in the oxygen supply device after being removed or added can be operated. That is, in the oxygen supply device according to the present disclosure, an appropriate number (for example, 2 to 5) of oxygen concentrating units are provided in the storage unit included in the control unit that controls the opening / closing timing of the electromagnetic valve and the like and displays the operation state. Programs that can be operated are stored in advance, and by setting the number of oxygen concentrating units included in the oxygen supply device, the operation of the set number of oxygen concentrating units can be controlled by the control unit. Thereby, the capacity of the apparatus can be increased with a simple configuration in which at least the control unit is shared, and as a result, the cost can be reduced.
In addition, in the oxygen supply device of the present disclosure, an oxygen concentrating unit can be added or removed according to the required oxygen flow rate. When it is desired to increase the capacity, an oxygen concentrating part for a required capacity can be added to the apparatus. Moreover, when it becomes unnecessary, energy saving can be aimed at by removing an oxygen concentrating part and operating the required number of oxygen concentrating parts. If some of the oxygen concentrators fail, only the faulty oxygen concentrator can be replaced with a new one. In this case, even if a part is broken until the replacement is completed, only the remaining oxygen concentrating unit can be operated although the oxygen flow rate is reduced.
 (2)前記(1)の酸素供給装置において、前記制御部は、前記複数の酸素濃縮部の運転サイクルを互いにずらして作動させるものとすることが望ましい。この場合、複数の酸素濃縮部の吸着筒内が最大圧(最低圧)となるタイミングを互いにずらすことで、当該吸着筒内を最大圧にするために必要なポンプの電力値(電流×電圧)になるタイミングをずらすことができる。これにより、装置の消費電力の変動を小さくすることができ、最大の消費電力に対応できるように選定する必要がある電気回路を小容量化することができる。また、酸素供給装置に電力を供給する電源に余裕がない場合、消費電力の大きな変動は当該電源に接続されている他の電気機器への電力供給に影響を与えることになるが、本開示の酸素供給装置では、消費電力の変動を小さくすることができるので、装置外部に与える電力変動の影響を小さくすることができる。 (2) In the oxygen supply device of (1), it is preferable that the control unit operates the operation cycles of the plurality of oxygen concentrating units while being shifted from each other. In this case, the electric power value (current × voltage) of the pump required to make the inside of the adsorption cylinder maximum pressure by shifting the timing at which the inside of the adsorption cylinder of the plurality of oxygen concentrating parts becomes maximum pressure (minimum pressure). The timing to become can be shifted. Thereby, the fluctuation of the power consumption of the apparatus can be reduced, and the electric circuit that needs to be selected so as to be able to cope with the maximum power consumption can be reduced in capacity. In addition, when there is no allowance for a power supply that supplies power to the oxygen supply device, a large fluctuation in power consumption affects power supply to other electrical devices connected to the power supply. In the oxygen supply device, fluctuations in power consumption can be reduced, so that the influence of power fluctuations on the outside of the device can be reduced.
(3)前記(2)の酸素供給装置において、前記複数の酸素濃縮部のそれぞれから排出される廃棄ガスが合流する排気部を有することが望ましい。複数の酸素濃縮部の運転サイクルを互いにずらして作動させることから、吸着筒からの廃棄ガスを装置外に排出するタイミングもすらすことができるので、装置からの廃棄ガスの瞬間最大排出量を小さくすることができる。その結果、例えば排気部における配管径を、複数台の酸素濃縮部から同時に廃棄ガスが排出される場合に比べて小さくすることができる。また、ガスの排出時には排気音が発生するが、この排気音も同時に排出される場合に比べて小さくすることができる。 (3) In the oxygen supply device according to (2), it is preferable that the oxygen supply device further includes an exhaust part to which waste gas discharged from each of the plurality of oxygen concentrating parts joins. Since the operation cycles of the plurality of oxygen concentrating units are operated while being shifted from each other, the timing for discharging the waste gas from the adsorption cylinder to the outside of the apparatus can also be shortened, so the instantaneous maximum discharge amount of waste gas from the apparatus can be reduced. can do. As a result, for example, the pipe diameter in the exhaust part can be reduced as compared with the case where waste gas is simultaneously discharged from a plurality of oxygen concentrating parts. Further, an exhaust noise is generated when the gas is discharged, but this exhaust noise can be reduced as compared with the case where the exhaust noise is also discharged at the same time.
本開示の酸素供給装置の一実施形態のブロック図である。It is a block diagram of one embodiment of an oxygen supply device of this indication. 図1に示される制御部Cのブロック図である。It is a block diagram of the control part C shown by FIG. 1つの酸素濃縮部における吸着筒の圧力と装置の消費電力との関係を示す図である。It is a figure which shows the relationship between the pressure of the adsorption cylinder in one oxygen concentration part, and the power consumption of an apparatus. 2つの酸素濃縮部を備えた本開示の酸素供給装置、及び、当該酸素濃縮部の2倍の容量を有する酸素濃縮部を備えた参照例に係る酸素供給装置の消費電力を示す図である。It is a figure which shows the power consumption of the oxygen supply apparatus which concerns on the reference example provided with the oxygen supply apparatus of this indication provided with two oxygen concentration parts, and the oxygen concentration part which has a capacity | capacitance 2 times the said oxygen concentration part. 本開示の酸素供給装置の他の実施形態のブロック図である。It is a block diagram of other embodiments of an oxygen supply device of this indication.
 以下、添付図面を参照しつつ、本開示の酸素供給装置を詳細に説明する。なお、本開示はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 Hereinafter, the oxygen supply device of the present disclosure will be described in detail with reference to the accompanying drawings. It should be noted that the present disclosure is not limited to these exemplifications, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 〔第1実施形態〕
 図1は、本開示の一実施形態(第1実施形態)に係る酸素供給装置1のブロック図である。酸素供給装置1は、空気中の酸素濃度よりも高濃度の酸素を生成して供給する装置であり、例えば呼吸器疾患患者等に対して高濃度酸素を提供する在宅酸素療法において用いられる。酸素供給装置1は、それぞれが高濃度の酸素を生成する複数(本実施形態では2つ)の酸素濃縮部A,Bと、1つの制御部Cとを備えている。
[First Embodiment]
FIG. 1 is a block diagram of an oxygen supply device 1 according to an embodiment (first embodiment) of the present disclosure. The oxygen supply device 1 is a device that generates and supplies oxygen having a higher concentration than the oxygen concentration in air, and is used, for example, in home oxygen therapy that provides high concentration oxygen to patients with respiratory diseases. The oxygen supply device 1 includes a plurality (two in this embodiment) of oxygen concentrating units A and B, each generating high concentration of oxygen, and one control unit C.
 酸素濃縮部Aと酸素濃縮部Bは同じ構成である。したがって、同じ要素ないし構成には、同じ参照符号を付して説明する。
 酸素濃縮部A及び酸素濃縮部Bは、それぞれ、外部から吸い込んだ空気を圧縮するコンプレッサ2と、当該コンプレッサ2から供給される圧縮空気中の窒素を吸着する吸着剤が収容された第1吸着筒3a及び第2吸着筒3bと、当該第1吸着筒3a及び第2吸着筒3bで生成された高濃度の酸素を収容する酸素タンク4とを備えている。また、酸素濃縮部A及び酸素濃縮部Bは、それぞれ、圧縮空気等の流体の流量又は流れを制御するための種々弁、すなわち制御弁5a,5b,パージ弁6、チェック弁7a,7b、プロダクト弁8、減圧弁9,及び流量調節弁10を備えている。 
The oxygen enrichment part A and the oxygen enrichment part B have the same configuration. Accordingly, the same elements or configurations will be described with the same reference numerals.
Each of the oxygen concentrating part A and the oxygen concentrating part B includes a compressor 2 that compresses air sucked from outside, and a first adsorbing cylinder in which an adsorbent that adsorbs nitrogen in the compressed air supplied from the compressor 2 is accommodated. 3a and a second adsorption cylinder 3b, and an oxygen tank 4 for storing high-concentration oxygen produced by the first adsorption cylinder 3a and the second adsorption cylinder 3b. The oxygen concentrating section A and the oxygen concentrating section B are various valves for controlling the flow rate or flow of a fluid such as compressed air, that is, control valves 5a and 5b, purge valves 6, check valves 7a and 7b, and products. A valve 8, a pressure reducing valve 9, and a flow rate adjusting valve 10 are provided.
 本実施形態の酸素濃縮部A,Bは、一方の吸着筒にコンプレッサ2で圧縮された空気が供給されている間に、他方の吸着筒が大気開放されることで減圧されるPSA(Pressre Swing Adsorption System)タイプの酸素濃縮部であるが、大気開放により吸着筒を減圧するのではなく、吸着筒を真空ポンプによって吸引することで減圧するVPSA(Vacuum Pressre Swing Adsorption System)タイプの酸素濃縮部を採用することもできる。  The oxygen concentrators A and B of the present embodiment have a PSA (Pressure Swing) that is decompressed by releasing the other adsorption cylinder to the atmosphere while the air compressed by the compressor 2 is supplied to the one adsorption cylinder. Adsorption system (oxygen system) type oxygen concentrator, but not the depressurization of the adsorption cylinder by opening to the atmosphere, but the VPSA (vacuum press swing system) type oxygen concentrator, which depressurizes the adsorption cylinder by suction with a vacuum pump. It can also be adopted. *
 制御弁5a、5bは、3ポート弁であり、コンプレッサ2から吐出された圧縮空気を第1吸着筒3a(第2吸着筒3b)に供給する加圧状態と、大気に開放して当該第1吸着筒3a(第2吸着筒3b)内の空気を外部に排出する減圧状態とを切り換える。一方の吸着筒が加圧状態にあるときは、他方の吸着筒は減圧状態にある。 The control valves 5a and 5b are three-port valves, and are in a pressurized state in which compressed air discharged from the compressor 2 is supplied to the first adsorption cylinder 3a (second adsorption cylinder 3b), and open to the atmosphere. Switching between the reduced pressure state in which the air in the adsorption cylinder 3a (second adsorption cylinder 3b) is discharged to the outside. When one suction cylinder is in a pressurized state, the other suction cylinder is in a reduced pressure state.
 チェック弁7aは第1吸着筒3aの下流側のガス流路に配設され、チェック弁7bは第2吸着筒3bの下流側のガス流路に配設されている。両チェック弁7a、7bは、第1吸着筒3a及び第2吸着筒3bから排出される酸素濃縮ガスが下流側に向かってだけ流れるように構成されている。パージ弁6は、第1吸着筒3aとチェック弁7aとの間のガス流路と、第2吸着筒3bとチェック弁7bとの間の流路とを接続する流路に配設されている。 The check valve 7a is disposed in the gas flow path on the downstream side of the first adsorption cylinder 3a, and the check valve 7b is disposed in the gas flow path on the downstream side of the second adsorption cylinder 3b. Both check valves 7a and 7b are configured such that the oxygen-enriched gas discharged from the first adsorption cylinder 3a and the second adsorption cylinder 3b flows only toward the downstream side. The purge valve 6 is disposed in a flow path connecting the gas flow path between the first adsorption cylinder 3a and the check valve 7a and the flow path between the second adsorption cylinder 3b and the check valve 7b. .
 チェック弁7aからの酸素濃縮ガスと、チェック弁7bからの酸素濃縮ガスとが交互にプロダクト弁8を経由して酸素タンク4に供給され、当該酸素タンク4に貯留される。酸素タンク4の下流側には、当該酸素タンク4からの酸素濃縮ガスを減圧する減圧弁9と、酸素濃縮ガスの流量を調節する流量調節弁10とが配設されている。流量調節弁10で流量調節された酸素濃縮ガスは酸素濃縮部A,Bの取出口(図示せず)から供給される。  The oxygen-enriched gas from the check valve 7 a and the oxygen-enriched gas from the check valve 7 b are alternately supplied to the oxygen tank 4 via the product valve 8 and stored in the oxygen tank 4. On the downstream side of the oxygen tank 4, a pressure reducing valve 9 for reducing the pressure of the oxygen-enriched gas from the oxygen tank 4 and a flow rate adjusting valve 10 for adjusting the flow rate of the oxygen-enriched gas are disposed. The oxygen-enriched gas whose flow rate is adjusted by the flow rate adjusting valve 10 is supplied from the outlets (not shown) of the oxygen concentrating parts A and B. *
 パージ弁6は、一方の吸着筒内のガスを外部に排出する際に開状態にされ、他方の吸着筒の空気を当該パージ弁6を介して当該一方の吸着筒に移動させることで効率よく前記一方の吸着筒内のガスを排出するために配設されている。酸素濃縮部Aから排出される廃棄ガスと、酸素濃縮部Bから排出される廃棄ガスとは、排気部11で合流して外部に排出される。排気部11は、酸素濃縮部Aからの廃棄ガスの配管と酸素濃縮部Bからの廃棄ガスの配管とが合流する合流管の形状を呈している。 The purge valve 6 is opened when the gas in one adsorption cylinder is discharged to the outside, and the air in the other adsorption cylinder is moved to the one adsorption cylinder via the purge valve 6 so as to be efficient. It is arranged for discharging the gas in the one adsorption cylinder. The waste gas discharged from the oxygen concentrating part A and the waste gas discharged from the oxygen concentrating part B merge at the exhaust part 11 and are discharged to the outside. The exhaust part 11 has a shape of a junction pipe where the waste gas pipe from the oxygen concentrating part A and the waste gas pipe from the oxygen concentrating part B merge.
 制御部Cは、制御回路20と、表示回路30とを備えている。制御回路20は、図2に示されるように、駆動制御部21及び記憶部22を有している。駆動制御部21は、コンプレッサ2、制御弁5a、5b、パージ弁6、プロダクト弁8、減圧弁9、及び流量調節弁10を制御する。記憶部22には、酸素供給装置1を作動させるためのプログラムが予め格納されている。 The control unit C includes a control circuit 20 and a display circuit 30. As illustrated in FIG. 2, the control circuit 20 includes a drive control unit 21 and a storage unit 22. The drive control unit 21 controls the compressor 2, the control valves 5 a and 5 b, the purge valve 6, the product valve 8, the pressure reducing valve 9, and the flow rate adjustment valve 10. A program for operating the oxygen supply device 1 is stored in the storage unit 22 in advance.
 表示回路30は、酸素供給装置1の作動状態や酸素流量などの情報を、当該酸素供給装置1の液晶画面等で構成される表示部(図示せず)に表示する。 The display circuit 30 displays information such as the operating state of the oxygen supply device 1 and the oxygen flow rate on a display unit (not shown) including a liquid crystal screen of the oxygen supply device 1.
 制御部Cの記憶部22には、適宜の台数(例えば、2~5台)の酸素濃縮部を作動させることができるプログラムが予め格納されている。したがって、酸素供給装置1に含まれる酸素濃縮部の数(本実施形態では2つ)を設定することで、設定した数の酸素濃縮部の作動を当該制御部Cの駆動制御部21で制御することができる。 The storage unit 22 of the control unit C stores in advance a program that can operate an appropriate number (for example, 2 to 5) of oxygen concentrating units. Therefore, by setting the number of oxygen concentrating units included in the oxygen supply device 1 (two in this embodiment), the operation of the set number of oxygen concentrating units is controlled by the drive control unit 21 of the control unit C. be able to.
 また、本実施形態の酸素供給装置1では、2つの酸素濃縮部A,Bが配設されているが、必要とされる酸素流量に応じて、酸素濃縮部を追加したり取り外したりすることができる。このため、例えば、装置の購入時には小容量でも問題なかったが、後に容量を大きくしたくなった場合に、必要な容量分の酸素濃縮部を装置に追加することができる。また、不要になった場合は、酸素濃縮部を取り外して必要台数の酸素濃縮部を稼働させることで、省エネを図ることができる。一部の酸素濃縮部が故障した場合、当該故障した酸素濃縮部だけを新しいものと交換することができる。この場合、交換完了までの間、一部が故障していても、酸素流量は低下するものの残りの酸素濃縮部だけを運転させることができる。 Further, in the oxygen supply device 1 of the present embodiment, the two oxygen concentrating parts A and B are provided, but the oxygen concentrating part may be added or removed according to the required oxygen flow rate. it can. For this reason, for example, when the apparatus was purchased, there was no problem with a small capacity. However, when it is desired to increase the capacity later, an oxygen concentrating unit for a necessary capacity can be added to the apparatus. Moreover, when it becomes unnecessary, energy saving can be aimed at by removing an oxygen concentrating part and operating the required number of oxygen concentrating parts. If some of the oxygen concentrators fail, only the faulty oxygen concentrator can be replaced with a new one. In this case, even if a part is broken until the replacement is completed, only the remaining oxygen concentrating unit can be operated although the oxygen flow rate is reduced.
 本実施形態では、2つの酸素濃縮部を同じ運転サイクルで作動させるのではなく、当該運転サイクルを互いにずらして作動させている。具体的には、2つの酸素濃縮部A,Bの吸着筒内が最大圧(最低圧)になるタイミングをずらしており、これにより当該吸着筒内を最大圧にするために必要なコンプレッサ2の電力値(電流×電圧)が最大になるタイミングをずらしている。 In this embodiment, the two oxygen concentrators are not operated in the same operation cycle, but are operated while being shifted from each other. Specifically, the timing at which the insides of the adsorption cylinders of the two oxygen concentrating parts A and B reach the maximum pressure (minimum pressure) is shifted, so that the compressor 2 necessary to bring the inside of the adsorption cylinders to the maximum pressure is shifted. The timing at which the power value (current x voltage) is maximized is shifted.
 図3は、1つの酸素濃縮部における吸着筒の圧力と装置の消費電力との関係を示す図である。図の下側の部分は、一対の吸着筒の一方の吸着筒内の圧力(kPa)を示しており、図の上側の部分は当該一対の吸着筒を含む酸素供給装置の消費電力(W)を示している。
 図3において、「a」で示される部分は、圧力変化が図示されている一方の吸着筒内の圧力上昇によってコンプレッサ2の負荷が大きくなることに起因する消費電力の上昇を示している。また、「b」で示される部分は、圧力変化が図示されていない他方の吸着筒内の圧力上昇によってコンプレッサ2の負荷が大きくなることに起因する消費電力の上昇を示している。このように、酸素供給装置1の消費電力は、のこ歯状に連続して変動する。
FIG. 3 is a diagram showing the relationship between the pressure of the adsorption cylinder and the power consumption of the apparatus in one oxygen concentrating unit. The lower part of the figure shows the pressure (kPa) in one adsorption cylinder of the pair of adsorption cylinders, and the upper part of the figure shows the power consumption (W) of the oxygen supply device including the pair of adsorption cylinders. Is shown.
In FIG. 3, a portion indicated by “a” indicates an increase in power consumption due to an increase in the load on the compressor 2 due to a pressure increase in one of the adsorption cylinders in which the pressure change is illustrated. The portion indicated by “b” indicates an increase in power consumption due to an increase in the load on the compressor 2 due to an increase in pressure in the other adsorption cylinder whose pressure change is not shown. Thus, the power consumption of the oxygen supply apparatus 1 continuously fluctuates in a sawtooth shape.
 図4は、2つの酸素濃縮部A,Bを備えた本実施形態に係る酸素供給装置1、及び、酸素濃縮部A又はBの2倍の容量を有する酸素濃縮部を備えた参照例に係る酸素供給装置の消費電力を示す図である。図の下側の部分は、図3の下側部分と同じく、1つの酸素濃縮部における1対の吸着筒の一方の吸着筒内の圧力を示している。図の上下方向中央の部分は酸素濃縮部A,Bの消費電力を示している。また、図の上側は、本実施形態における2つの酸素濃縮部A,Bの各消費電力を加えた全体の消費電力と、酸素濃縮部A又はBの2倍の容量を有する酸素濃縮部の消費電力を示している。 FIG. 4 relates to a reference example including an oxygen supply device 1 according to this embodiment including two oxygen concentrating units A and B, and an oxygen concentrating unit having a capacity twice that of the oxygen concentrating unit A or B. It is a figure which shows the power consumption of an oxygen supply apparatus. The lower part of the figure shows the pressure in one of the adsorption cylinders of the pair of adsorption cylinders in one oxygen concentrating part, as in the lower part of FIG. The center part in the vertical direction in the figure shows the power consumption of the oxygen concentrating parts A and B. The upper side of the figure shows the total power consumption of the two oxygen concentrators A and B in this embodiment plus the consumption of the oxygen concentrator having a capacity twice that of the oxygen concentrator A or B. Indicates power.
 本実施形態では、酸素濃縮部Aによる消費電力のピークPa(一方の吸着筒の圧力上昇に起因するピーク)と、次のピークPa(他方の吸着筒の圧力上昇に起因するピーク)の中間に酸素濃縮部Bによる消費電力のピークPbが来るように、両酸素濃縮部A,Bの運転サイクルを互いにずらしている。これにより、図4の上側に示されるように、単純に酸素濃縮部A又はBの2倍の容量を有する酸素濃縮部とした場合、すなわち2つの酸素濃縮部A,Bを同じ運転サイクルで作動させた場合に比べて、装置全体の消費電力のピーク値、及び変動を小さくすることができる。その結果、最大の消費電力に対応できるように選定する必要がある電気回路を小容量化することができる。また、酸素供給装置1に電力を供給する電源に余裕がない場合、消費電力の大きな変動は当該電源に接続されている他の電気機器への電力供給に影響を与えることになるが、本実施形態に係る酸素供給装置1では、消費電力の変動を小さくすることができるので、装置外部に与える電力変動の影響を小さくすることができる。 In the present embodiment, the power consumption by the oxygen concentrator A is between the peak Pa (peak due to the pressure increase in one adsorption cylinder) and the next peak Pa (peak due to the pressure increase in the other adsorption cylinder). The operation cycles of both oxygen concentrators A and B are shifted from each other so that the peak Pb of power consumption by the oxygen concentrator B comes. As a result, as shown in the upper side of FIG. 4, when the oxygen concentrator has a capacity twice as large as that of the oxygen concentrator A or B, that is, the two oxygen concentrators A and B are operated in the same operation cycle. Compared with the case where it was made, the peak value and fluctuation | variation of the power consumption of the whole apparatus can be made small. As a result, it is possible to reduce the capacity of an electric circuit that needs to be selected so as to be able to cope with the maximum power consumption. In addition, when there is no allowance for the power supply that supplies power to the oxygen supply device 1, large fluctuations in power consumption will affect the power supply to other electrical devices connected to the power supply. In the oxygen supply device 1 according to the embodiment, power consumption fluctuation can be reduced, so that the influence of power fluctuation given to the outside of the apparatus can be reduced.
 また、2つの酸素濃縮部A,Bの運転サイクルを互いにずらして作動させることから、吸着筒からの廃棄ガスを装置外に排出するタイミングもすらすことができ、装置からの廃棄ガスの瞬間最大排出量を小さくすることができる。本実施形態では、2つの酸素濃縮部A,Bから排出される廃棄ガスを合流する排気部11を構成する合流管の配管径を、2つの酸素濃縮部から同時に廃棄ガスが排出される場合に比べて小さくすることができる。また、ガスの排出時には排気音が発生するが、この排気音も同時に排出される場合に比べて小さくすることができる。 In addition, since the operation cycles of the two oxygen concentrators A and B are operated while being shifted from each other, the timing of exhausting the waste gas from the adsorption cylinder to the outside of the apparatus can also be increased, and the instantaneous maximum amount of waste gas from the apparatus The amount of discharge can be reduced. In the present embodiment, when the waste gas is discharged from the two oxygen concentrating parts at the same time, the pipe diameter of the joining pipe constituting the exhaust part 11 that joins the waste gases discharged from the two oxygen concentrating parts A and B is determined. It can be made smaller. Further, an exhaust noise is generated when the gas is discharged, but this exhaust noise can be reduced as compared with the case where the exhaust noise is also discharged at the same time.
 〔第2実施形態〕
 図5は、本開示の第2実施形態に係る酸素供給装置1のブロックを示している。この実施形態は、プロダクト弁8の下流側に配設される酸素タンク4、減圧弁9及び流量調節弁10が2つの酸素濃縮部A1、B1で共有されている点において、図1に示される実施形態と異なっている。したがって、両実施形態において共通する要素ないし構成には、同じ参照符号を付し、簡単のため、それらについての説明は省略する。
[Second Embodiment]
FIG. 5 shows a block of the oxygen supply device 1 according to the second embodiment of the present disclosure. This embodiment is shown in FIG. 1 in that the oxygen tank 4, the pressure reducing valve 9 and the flow rate adjusting valve 10 arranged on the downstream side of the product valve 8 are shared by the two oxygen concentrating parts A1 and B1. It is different from the embodiment. Therefore, elements or configurations common to both embodiments are denoted by the same reference numerals, and description thereof is omitted for simplicity.
 本実施形態では、制御部Cに加えて、前記酸素タンク4等を共有させているので、図1に示される第1実施形態に比べ、装置全体の構成をさらに簡略化して、コストダウンを図ることができる。本実施形態においても、第1実施形態と同様にして、2つの酸素濃縮部の運転サイクルを互いにずらして酸素供給装置1の消費電力のピーク値、及び変動を小さくすることができる。 In the present embodiment, since the oxygen tank 4 and the like are shared in addition to the control unit C, the overall configuration of the apparatus is further simplified and the cost is reduced as compared with the first embodiment shown in FIG. be able to. Also in this embodiment, similarly to the first embodiment, the operation cycle of the two oxygen concentrating units can be shifted from each other to reduce the peak value and fluctuation of the power consumption of the oxygen supply device 1.
〔その他の変形例〕
 本開示は前述した実施形態に限定されるものではなく、特許請求の範囲内において種々の変更が可能である。
 例えば、前述した実施形態では、2つの酸素濃縮部を設けているが、3つ以上の酸素濃縮部を1台の酸素供給装置に設けることもできる。
[Other variations]
The present disclosure is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims.
For example, in the embodiment described above, two oxygen concentrating units are provided, but three or more oxygen concentrating units may be provided in one oxygen supply device.
 1 : 酸素供給装置
 2 : コンプレッサ
 3a: 第1吸着筒
 3b: 第2吸着筒
 4 : 酸素タンク
 5a: 制御弁
 5b: 制御弁
 6 : パージ弁
 7a: チェック弁
 7b: チェック弁
 8 : プロダクト弁
 9 : 減圧弁
10 : 流量調節弁
11 : 排気部
20 : 制御回路
21 : 駆動制御部
22 : 記憶部
30 : 表示回路
 A : 酸素濃縮部
 B : 酸素濃縮部
 C : 制御部
 
DESCRIPTION OF SYMBOLS 1: Oxygen supply apparatus 2: Compressor 3a: 1st adsorption cylinder 3b: 2nd adsorption cylinder 4: Oxygen tank 5a: Control valve 5b: Control valve 6: Purge valve 7a: Check valve 7b: Check valve 8: Product valve 9: Pressure reducing valve 10: Flow control valve 11: Exhaust unit 20: Control circuit 21: Drive control unit 22: Storage unit 30: Display circuit A: Oxygen concentrating unit B: Oxygen concentrating unit C: Control unit

Claims (3)

  1.  空気中の酸素濃度よりも高濃度の酸素を生成して供給する酸素供給装置(1)であって、
     それぞれが高濃度の酸素を生成する複数の酸素濃縮部(A,B)と、
     当該複数の酸素濃縮部の作動を制御する1つの制御部(C)と
    を備えており、
     前記制御部(C)は、既設の酸素濃縮部の取り外し時及び新規の酸素濃縮部の追加時に、取り外し後又は追加後の、酸素供給装置(1)が備える酸素濃縮部(A,B)の作動が可能であるように構成されている、酸素供給装置(1)。
    An oxygen supply device (1) that generates and supplies oxygen having a higher concentration than the oxygen concentration in air,
    A plurality of oxygen concentrators (A, B) each producing high concentrations of oxygen;
    One control unit (C) for controlling the operation of the plurality of oxygen concentrating units,
    When the existing oxygen concentrating unit is removed and when a new oxygen concentrating unit is added, the control unit (C) is the oxygen concentrating unit (A, B) of the oxygen supplying device (1) after being removed or added. An oxygen supply device (1) configured to be operable.
  2.  前記制御部(C)は、前記複数の酸素濃縮部(A,B)の運転サイクルを互いにずらして作動させる、請求項1に記載の酸素供給装置(1)。 The oxygen supply device (1) according to claim 1, wherein the control unit (C) operates the operation cycles of the plurality of oxygen concentrating units (A, B) while being shifted from each other.
  3.  前記複数の酸素濃縮部(A,B)のそれぞれから排出される廃棄ガスが合流する排気部(11)を有する、請求項1又は請求項2に記載の酸素供給装置(1)。
     
    The oxygen supply device (1) according to claim 1 or 2, further comprising an exhaust part (11) into which waste gas discharged from each of the plurality of oxygen concentrating parts (A, B) joins.
PCT/JP2019/020024 2018-06-12 2019-05-21 Oxygen supply apparatus WO2019239816A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980039560.9A CN112334178B (en) 2018-06-12 2019-05-21 Oxygen supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-111981 2018-06-12
JP2018111981A JP6927927B2 (en) 2018-06-12 2018-06-12 Oxygen supply device

Publications (1)

Publication Number Publication Date
WO2019239816A1 true WO2019239816A1 (en) 2019-12-19

Family

ID=68842875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020024 WO2019239816A1 (en) 2018-06-12 2019-05-21 Oxygen supply apparatus

Country Status (3)

Country Link
JP (1) JP6927927B2 (en)
CN (1) CN112334178B (en)
WO (1) WO2019239816A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108527A (en) * 1995-10-16 1997-04-28 Masayuki Imai Concentrated oxygen supply method and apparatus
US20060174873A1 (en) * 2005-02-09 2006-08-10 Vbox, Incorporated Product pump for an oxygen concentrator
WO2014045796A1 (en) * 2012-09-18 2014-03-27 ビィーゴ株式会社 Cartridge for oxygen concentrator
JP2015531309A (en) * 2012-10-12 2015-11-02 イノヴァ ラボ,インコーポレイテッド Oxygen concentrator duplex system and method
JP2016509535A (en) * 2013-01-30 2016-03-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Oxygen separation system and method for generating a flow of oxygen-enriched gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5080483B2 (en) * 2006-09-22 2012-11-21 帝人ファーマ株式会社 Oxygen concentrator
KR101528328B1 (en) * 2014-03-07 2015-06-12 윤태현 Nitrogen Producer Apparatus For Possible Oxygen Content Control
JP6593925B2 (en) * 2016-04-26 2019-10-23 Vigo Medical株式会社 Oxygen concentrator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108527A (en) * 1995-10-16 1997-04-28 Masayuki Imai Concentrated oxygen supply method and apparatus
US20060174873A1 (en) * 2005-02-09 2006-08-10 Vbox, Incorporated Product pump for an oxygen concentrator
WO2014045796A1 (en) * 2012-09-18 2014-03-27 ビィーゴ株式会社 Cartridge for oxygen concentrator
JP2015531309A (en) * 2012-10-12 2015-11-02 イノヴァ ラボ,インコーポレイテッド Oxygen concentrator duplex system and method
JP2016509535A (en) * 2013-01-30 2016-03-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Oxygen separation system and method for generating a flow of oxygen-enriched gas

Also Published As

Publication number Publication date
CN112334178B (en) 2024-03-01
JP2019213664A (en) 2019-12-19
JP6927927B2 (en) 2021-09-01
CN112334178A (en) 2021-02-05

Similar Documents

Publication Publication Date Title
US7105038B2 (en) Gas concentration method and its apparatus
JP5357264B2 (en) Oxygen concentrator
CN101522246B (en) Oxygen concentrator
JP4365403B2 (en) Pressure swing adsorption gas generator
WO2019239816A1 (en) Oxygen supply apparatus
JP4739662B2 (en) Oxygen concentrator
JP2008195556A (en) Oxygen condenser
JP2009011844A (en) Oxygen concentrator
JP6641774B2 (en) Oxygen supply unit
KR100360836B1 (en) An oxygen concentrator which arranges the single towers parellelly
JP2006062932A (en) Oxygen concentrator
US20040211414A1 (en) Oxygen concentration system having selectable beds
JP7454100B2 (en) Oxygen concentrator, control method and control program
JP4685662B2 (en) Gas separation method and apparatus used therefor
JP7557043B2 (en) Oxygen concentrator, control method and control program
KR100507405B1 (en) gas concentration device
JP2002079030A (en) Oxygen concentrator
JP6747479B2 (en) Oxygen concentrator
KR100500403B1 (en) gas concentration method
KR200217385Y1 (en) An oxygen concentrator which arranges the single towers parellelly
KR100614849B1 (en) Gas concentrator and its valve connection method
KR101012686B1 (en) gas concentration method
JPH04156912A (en) Gas separator
JPH11309328A (en) Oxygen concentrator
JP2002204918A (en) Gas concentrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819174

Country of ref document: EP

Kind code of ref document: A1