WO2019239782A1 - Method for producing vinyl ether-functional organopolysiloxane, and polymerizable composition and cured product therefrom - Google Patents

Method for producing vinyl ether-functional organopolysiloxane, and polymerizable composition and cured product therefrom Download PDF

Info

Publication number
WO2019239782A1
WO2019239782A1 PCT/JP2019/019454 JP2019019454W WO2019239782A1 WO 2019239782 A1 WO2019239782 A1 WO 2019239782A1 JP 2019019454 W JP2019019454 W JP 2019019454W WO 2019239782 A1 WO2019239782 A1 WO 2019239782A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl ether
group
component
functional organopolysiloxane
compound
Prior art date
Application number
PCT/JP2019/019454
Other languages
French (fr)
Japanese (ja)
Inventor
龍太 橋本
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2020525363A priority Critical patent/JPWO2019239782A1/en
Publication of WO2019239782A1 publication Critical patent/WO2019239782A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F30/08Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing a vinyl ether functional organopolysiloxane, a polymerizable composition containing the same, and a cured product thereof.
  • Energy beam curable resin is used for ink, paint, adhesive, coating agent, resist and the like.
  • As the main agent radically polymerizable acrylic monomers are often used.
  • acrylic monomers are strong in skin irritation and odor and have problems in workability
  • vinyl ether compounds having low odor and less skin irritation have been attracting attention.
  • a vinyl ether compound is a polymerizable monomer having an electron-donating substituent and is not expected to be cured by oxygen due to cationic polymerizability. Therefore, the vinyl ether compound is expected as a material for improving the defects of the acrylic compound.
  • Silicone has properties such as heat resistance, weather resistance, electrical insulation, water repellency, and antifouling properties. For example, it modifies acrylic resin by copolymerizing acrylic functional siloxane with other acrylic monomers. be able to. Since the production method of acrylic functional siloxane has been established and can be easily obtained commercially, there are many applications of silicone graft type acrylic polymers. On the other hand, vinyl ether functional siloxanes have difficulty in production method and cost, are not on the market, and have little knowledge about silicone graft type vinyl ether polymers.
  • Patent Document 1 describes a method of obtaining a vinyl ether functional silicone by a hydrosilylation reaction between an excess amount of divinyl ether or trivinyl ether and hydrogen siloxane.
  • this method since the polyfunctional vinyl compound and polyhydrogensiloxane are reacted, the reaction of crosslinking between the siloxane chains with the vinyl compound cannot be avoided, and an unexpected high molecular weight product is formed. End up. Moreover, there is a possibility that non-functional silicone having no vinyl ether group in the molecule is generated.
  • Patent Document 2 describes a method of obtaining a vinyl ether functional silicone by hydrosilylation reaction between a compound having both allyl and vinyl ether functional groups in one molecule and hydrogen siloxane.
  • a vinyl ether functional compound is preferentially obtained by utilizing a difference in reaction rate between an allyl group and a vinyl ether group with respect to a hydrosilyl group.
  • Patent Document 3 describes a method of obtaining a vinyl ether functional siloxane by a condensation reaction of acetoxysilane and a hydroxy group-containing vinyl ether compound.
  • the vinyl ether groups in the polymer are linked by SiOC bonds, there is a risk of being easily hydrolyzed by moisture or the like, and there is a limit to the method of use.
  • JP-A-6-345872 Japanese Patent Publication No. 2-336134 JP 2000-159895 A
  • the present invention has been made in view of the above circumstances, and is a method for producing a vinyl ether functional organopolysiloxane useful as an energy ray curable material capable of quantitatively introducing a vinyl ether group from a hydrosilyl group. It is an object of the present invention to provide a polymerizable composition containing a vinyl ether functional organopolysiloxane and a cured product obtained by curing the composition.
  • the present inventor has obtained (a) an organopolysiloxane having a hydrosilyl group and (b) a specific vinyl ether compound having an allyl group and a vinyl ether group in one molecule.
  • (B) Allyl group in component / hydrosilyl group in component (a)) is a molar ratio of 3.0 or more, and is reacted quantitatively with component (a) by reacting with a hydrosilylation catalyst. It has been found that a vinyl ether functional organopolysiloxane in which a group is added and a hydrosilyl group is converted into a vinyl ether group is obtained, and the present invention has been made.
  • the present invention provides the following inventions.
  • One or more vinyl ether compounds selected from The molar ratio of (allylic group in component (b) / hydrosilyl group in component (a)) is 3.0 or more
  • the method for producing a vinyl ether functional organopolysiloxane according to 1, comprising a step of removing an excess of the (b) vinyl ether compound from the reaction solution after the reaction step.
  • (A) component is the following average composition formula (1) (R 2 3 SiO 1/2 ) a (R 2 2 SiO 2/2 ) b (R 2 SiO 3/2 ) c (SiO 4/2 ) d (1) (Wherein R 2 is the same or different hydrogen atom or a monovalent hydrocarbon group having 1 to 4 carbon atoms, and the hydrocarbon group may contain an oxygen atom.
  • a polymerizable composition comprising a vinyl ether functional organopolysiloxane obtained by the method for producing a vinyl ether functional organopolysiloxane according to any one of items 1 to 5, and a polymerization initiator.
  • the manufacturing method of the vinyl ether functional organopolysiloxane which can introduce
  • the production method of the present invention comprises: (A) an organopolysiloxane having one or more hydrosilyl groups; (B) H 2 C ⁇ CHOCH 2 CH ⁇ CH 2 and H 2 C ⁇ CHOR 1 CH 2 CH ⁇ CH 2 (R 1 is a divalent hydrocarbon group having 1 to 20 carbon atoms and contains an oxygen atom.
  • One or more vinyl ether compounds selected from The molar ratio of (allylic group in component (b) / hydrosilyl group in component (a)) is 3.0 or more
  • the component (a) is an organopolysiloxane having a hydrosilyl group (a hydrogen atom directly bonded to a silicon atom) in the molecule, and the number of hydrosilyl groups may be one or more. 1 to 10 is preferable, and 1 to 3 is more preferable.
  • the main chain skeleton may be linear or branched. Specific examples include one-end-modified polyorganosiloxane having a hydrosilyl group at one end, both-end-modified organopolysiloxane having hydrosilyl groups at both ends, and side-chain-modified polyorganosiloxane having hydrosilyl groups in the side chain. However, any polyorganosiloxane can be used in the present invention.
  • a component can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • the following average composition formula (1) (R 2 3 SiO 1/2 ) a (R 2 2 SiO 2/2 ) b (R 2 SiO 3/2 ) c (SiO 4/2 ) d (1)
  • R 2 is the same or different hydrogen atom or a monovalent hydrocarbon group having 1 to 4 carbon atoms, and the hydrocarbon group may contain an oxygen atom.
  • R 2 is the same or different, a hydrogen atom or a monovalent hydrocarbon group having 1 to 4 carbon atoms which may contain an oxygen atom, and having 1 to 4 carbon atoms.
  • the monovalent hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a tert-butyl group.
  • the hydrocarbon group may contain an oxygen atom.
  • R 2 is one or more, preferably 1 to 10, more preferably 1 to 3 hydrogen atoms per molecule.
  • A, b, c and d are 0 or a positive number, preferably a is 0 or a positive number of 1 to 30, b is 0 or a positive number of 1 to 70, and c is a positive number of 0 or 1 to 30.
  • component (a) examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, 1,1,1,3,5, 5,5-heptamethyltrisiloxane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane / dimethylsiloxane cyclic copolymer, tris (dimethylhydrogensiloxy) methylsilane, tris (dimethylhydrogensiloxy) phenylsilane, both molecular chains Terminal dimethylhydrogensiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, molecular chain both ends dimethylhydrogensiloxy group-blocked methylhydrogenpolysiloxane, molecular chain both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane Dimethylsiloxane with dimethylhydrogensiloxy group blocked at both
  • the number average molecular weight of the component (a) is not particularly limited, but is preferably 100 to 50,000, more preferably 200 to 10,000. If the number average molecular weight is too low, the proportion of siloxane units in the resulting polymer is reduced, and the characteristics of siloxane may not be sufficient. On the other hand, if the number average molecular weight is too high, the modified vinyl ether functional organopolysiloxane has a high viscosity, which makes it difficult to mix the cationic polymerizable composition.
  • a number average molecular weight is a polystyrene conversion value by GPC (gel permeation chromatography) analysis.
  • the vinyl ether compound of the present invention includes H 2 C ⁇ CHOCH 2 CH ⁇ CH 2 and H 2 C ⁇ CHOR 1 CH 2 CH ⁇ CH 2 (R 1 is a divalent hydrocarbon group having 1 to 20 carbon atoms, It may contain oxygen atoms.) It is 1 or more types chosen from these, 1 type can be used individually or in combination of 2 or more types as appropriate.
  • R 1 is a divalent hydrocarbon group having 1 to 20 carbon atoms and may contain an oxygen atom.
  • R 1 is an alkylene group such as methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, pentylene group, hexylene group, octylene group, oxymethylene group, oxyethylene group, oxypropylene group, Examples thereof include oxyalkylene groups such as oxyisopropylene group, oxybutylene group, and oxyisobutylene group, and groups having a structure represented by the following formula.
  • H 2 C ⁇ CHOCH 2 CH ⁇ CH 2 H 2 C ⁇ CHOCH 2 CH 2 OCH 2 CH ⁇ CH 2 and H 2 C ⁇ CHOCH 2 CH 2 OC 6 H 4 CH 2 CH ⁇ CH
  • One or more selected from 2 are particularly preferred.
  • H 2 C ⁇ CHOCH 2 CH ⁇ CH 2 is commercially available.
  • H 2 C ⁇ CHOR 1 CH 2 CH ⁇ CH 2 can be obtained by reacting an appropriate hydroxy vinyl ether compound and an allyl halide compound, or a hydroxy allyl compound and a haloalkyl vinyl ether compound under basic conditions.
  • examples of the hydroxy vinyl ether compound include hydroxy vinyl vinyl ether, 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, alkoxy vinyl ether such as dipropylene glycol monovinyl ether, and the like.
  • examples of the allyl halide compound include allyl chloride, allyl bromide, and allyl iodide.
  • hydroxyallyl compound 2-propen-1-ol, 3-buten-1-ol, 4-penten-1-ol, 5-hexen-1-ol, ethylene glycol monoallyl ether, propylene glycol monoallyl
  • examples include ether, 2-allylphenol, 3-allylphenol, 4-allylphenol, 4-allyl-2-methoxyphenol, and the like.
  • haloalkyl vinyl ether compounds include chloromethyl vinyl ether, 2-chloroethyl vinyl ether, 3-chloropropyl vinyl ether, 4-chlorobutyl vinyl ether, bromomethyl vinyl ether, 2-bromoethyl vinyl ether, 3-bromopropyl vinyl ether, 4-bromobutyl vinyl ether, Examples include iodomethyl vinyl ether, 2-iodoethyl vinyl ether, 3-iodopropyl vinyl ether, 4-iodobutyl vinyl ether and the like.
  • the amount of both compounds to be reacted (hydroxyvinyl ether compound and allyl halide compound, or hydroxyallyl compound and haloalkyl vinyl ether compound) is used based on 1.0 mole equivalent of OH group of the hydroxyvinyl ether compound or hydroxyallyl compound.
  • the haloalkyl vinyl ether compound is usually 1.0 to 3.0 mol, preferably 1.0 to 1.5 mol.
  • Examples of the basic compound used for the basic conditions include potassium hydroxide, sodium hydroxide, sodium hydride and the like, and these can be used alone or in combination of two or more.
  • the amount used is usually 0.5 to 10 mol, preferably 1.0 to 3.0 mol, per 1.0 mol equivalent of OH groups of the hydroxyvinyl ether compound or hydroxyallyl compound.
  • phase transfer catalyst such as 400
  • the amount of the phase transfer catalyst used is usually 0.001 to 0.2 mol, preferably 0.005 to 0.1 mol, relative to 1.0 mol equivalent of OH groups in the hydroxyvinyl ether compound or hydroxyallyl compound.
  • the above reaction may be performed in a solvent as necessary.
  • the type of the solvent is not particularly limited, and specific examples include hydrocarbons such as toluene, xylene and cyclohexane, aprotic polar solvents such as dimethyl sulfoxide, dimethylformamide and N-methylpyrrolidone.
  • the reaction temperature is usually 30 to 150 ° C., preferably 60 to 100 ° C., and the reaction time is usually 3 to 48 hours, preferably 6 to 12 hours.
  • the reaction mixture is cooled to room temperature, the salt insoluble in the target product is removed by filtration, and then the target product can be obtained by distillation under reduced pressure.
  • the (c) hydrosilylation catalyst used in the present invention may be any catalyst that promotes the reaction between the hydrosilyl group in the component (a) and the allyl group in the component (b), and platinum containing a platinum group metal.
  • Group metal-based catalysts The platinum group metal means iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum. Among these, a platinum-containing catalyst is preferable.
  • the platinum-containing catalyst optionally includes platinum metal, platinum-containing compounds or complexes deposited on a support such as silica gel or powdered charcoal.
  • Preferred platinum-containing catalysts are preferably in the form of chloroplatinic acid in the generally available hexahydrate or anhydrous form, as disclosed in US Pat. No. 2,823,218.
  • chloroplatinic acid an organic compound having an aliphatic unsaturated group as disclosed in US Pat. No. 3,419,593 is disclosed because it has a property of being easily dispersed in an organosilicon system. The composition obtained by making it react with a silicon compound is mentioned.
  • the amount of the component (c) catalyst is not particularly limited as long as there is an amount sufficient to promote the reaction of the hydrosilyl group in the component (a) and the allyl group in the component (b) at room temperature.
  • the amount of the active component of the catalyst for example, platinum is as low as 1 to 10 parts by mass per 1 million parts by mass of the total of the components (a) and (b). .
  • an organopolysiloxane having a hydrosilyl group and (b) a vinyl ether compound have a molar ratio of (allyl group in component (b) / hydrosilyl group in component (a)) of 3.0.
  • the above includes (c) the step of reacting with the hydrosilylation catalyst.
  • the ratio is not particularly limited as long as it is 3.0 or more, but it is preferably 3.0 to 7.0, more preferably 4.0 to 5.0.
  • the allyl group in the component (b) is preferentially organolated.
  • the reaction temperature of (a) an organopolysiloxane having a hydrosilyl group and (b) a vinyl ether compound is not particularly limited, but is preferably 25 to 150 ° C, more preferably 70 to 100 ° C.
  • the time is not particularly limited, but is appropriately selected from 1 to 24 hours, for example.
  • a step of removing excess (b) vinyl ether compound from the reaction solution may be included.
  • Stripping is an example of a method for removing excess (b) vinyl ether compound.
  • a method of removing volatile components by stripping a method well known in the art can be employed.
  • the excess vinyl ether compound removed by stripping can be recovered and reused in the hydrosilylation reaction with the component (a), the cost is excellent.
  • vinyl ether functional organopolysiloxane means that only the allyl group portion of component (b) is added to the hydrosilyl group of (a) the organopolysiloxane component having a hydrosilyl group. And an organopolysiloxane having a vinyl ether group.
  • the vinyl ether functional organopolysiloxane may be polymerized with a vinyl ether functional organopolysiloxane alone, or another compound having a group capable of polymerizing with the above compound such as a vinyl group (hereinafter, polymerizable). Monomer).
  • the compound of the present invention can give a copolymer having further improved heat resistance, weather resistance, water repellency and the like.
  • the polymerizable composition of the present invention contains the vinyl ether functional organopolysiloxane of the present invention, and if necessary, other polymerizable monomers, and a polymerization initiator.
  • polymerizable monomers include, in particular, compounds having a vinyl group.
  • ethylene glycol divinyl ether diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, cyclohexanedimethanol divinyl ether, trimethylolpropane trivinyl ether, etc. Is mentioned.
  • the ratio of the vinyl ether functional organopolysiloxane of the present invention to other polymerizable monomers used as required is not particularly limited, but the total of 100 masses of the vinyl ether functional organopolysiloxane of the present invention and other polymerizable monomers.
  • the vinyl ether functional organopolysiloxane of the present invention is preferably 1 to 80 parts by weight, more preferably 5 to 50 parts by weight, based on parts.
  • the other polymerizable monomer is preferably 20 to 99 parts by mass, and more preferably 50 to 95 parts by mass.
  • the polymerization initiator is not particularly limited as long as it can cause cationic polymerization.
  • a photocleavable acid is used.
  • the photocleavable acid there is a photocationic polymerization initiator having an onium salt structure.
  • an onium salt represented by the following general formula (2) is preferable.
  • R 3 is independently of each other a substituted or unsubstituted monovalent group selected from an aromatic group in which an aromatic ring carbon atom is directly bonded to E and an aromatic heterocyclic group;
  • Y ⁇ is BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , ClO 4 ⁇ , HSO 4 ⁇ , B (C 6 F 5 ) 4 , which is a central element selected from I, S, Se and P.
  • a non-basic and non-nucleophilic anion selected from, X is, E is 2 when I, E is 3 when S or Se, a 4 when E is P.
  • R 3 is a monovalent group independently selected from a substituted or unsubstituted aromatic group and aromatic heterocyclic group in which an aromatic ring carbon atom is directly bonded to E.
  • the aromatic group include monovalent aromatic groups such as phenyl and naphthyl groups, and a part of hydrogen atoms bonded to carbon atoms of the monovalent aromatic group is methyl, ethyl, propyl, butyl, octyl, Groups selected from alkyl groups such as decyl and dodecyl groups, alkoxy groups such as methoxy, ethoxy and propoxy groups, halogen atoms such as chlorine and bromine atoms, sulfur-containing groups such as cyano groups, mercapto and thiophenyl groups And a group substituted by.
  • examples of the aromatic heterocyclic group include a pyrrole ring, a pyridine ring, and an imidazole ring, and a part of hydrogen atoms bonded to the carbon atom of the monovalent aromatic heterocyclic group is the same as the above aromatic group. May be substituted.
  • R 3 is preferably an aromatic group substituted with an alkyl group having 8 to 20 carbon atoms or an alkoxy group having 1 to 10 carbon atoms from the viewpoint of excellent solubility in silicone.
  • E is a central element selected from I, S, Se, and P, and is preferably I or S because of its high reactivity.
  • Y ⁇ is BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ .
  • the onium salt represented by the formula (2) is selected from a combination of the above R 3 , E, and Y ⁇ , and from the viewpoint of solubility and curability, bis [4-n-alkyl (C10 to C13) phenyl ] Iodonium hexafluorophosphate, bis [4-n-alkyl (C10-C13) phenyl] iodonium hexafluoroantimonate, bis [4-n-alkyl (C10-C13) phenyl] iodonium tetrakispentafluorophenylboric acid Salts are preferred.
  • the blending amount of the polymerization initiator is not particularly limited as long as an effective amount as a photocationic polymerization initiator is added.
  • 0.1 to 20 parts by mass is preferable with respect to 100 parts by mass in total of the vinyl ether functional organopolysiloxane of the present invention and other polymerizable monomers, and 0.3 to 5 parts by mass. Part is more preferred.
  • the polymerizable composition it can be prepared by mixing the vinyl ether functional organopolysiloxane obtained by the above production method, if necessary, another polymerizable monomer, and a polymerization initiator.
  • the polymerizable composition is cured, for example, after applying the composition of the present invention to various substrates by various coating methods, it is copolymerized by irradiation with energy rays or irradiation with energy rays and heating. By doing so, a cured product (coating film) can be obtained.
  • energy rays used for cationic polymerization include active energy rays such as light, electron beam, and X-ray.
  • the substrate include, for example, plastics such as paper, polycarbonate, acrylic, ABS, polyester, and polypropylene, metals such as iron, copper, aluminum, zinc, chromium, and tin, glass, wood, rubber, stone, Concrete etc. are mentioned.
  • Specific examples of the application method include spin coating, spraying, electrostatic coating, roll coating, curtain flow coating, brush coating, bar coating, gravure printing, screen printing, offset printing, and the like. Can be mentioned.
  • the exposure time to the energy rays depends on the strength of the energy rays, the thickness of the coating film and the cationic polymerizable substance, but usually about 0.1 to 10 seconds is sufficient.
  • most of the composition is dry to the touch by cationic polymerization.
  • heat energy such as heating or a thermal head may be used in combination.
  • the heating condition may be 50 to 150 ° C. and 0.1 to 600 seconds.
  • the cured product of the above composition is a vinyl ether (co) polymer having siloxane characteristics. That is, the polymer is excellent in heat resistance, weather resistance, antifouling property and the like in addition to low skin irritation and low odor.
  • the polymer is useful in various fields such as inks, paints, adhesives, coating agents and resists.
  • the polymerizable composition of the present invention has the advantage that the cationic polymerization curing rate is high and the polymerization inhibition by oxygen is small.
  • Example 1 In a four-necked flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 86 g (molecular weight 128, 0.67 mol) of the vinyl ether compound (b-1) of Synthesis Example 1 and platinum catalyst (0.5 mass of platinum) % -Containing toluene solution) 0.14 g was charged. The flask containing the mixture was purged with nitrogen, heated to 100 ° C., and (a-1) 1,1,1,3,5,5,5-hepta which was liquid at 25 ° C. using a dropping funnel.
  • Example 2 In a four-necked flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 144 g of vinyl ether compound (b-1) of Synthesis Example 1 (molecular weight 128, 1.11 mol), platinum catalyst (platinum 0.5 mass) % -Containing toluene solution) 0.19 g was charged. The inside of the flask containing this mixture was purged with nitrogen, then heated to 100 ° C., and (a-1) 1,1,1,3,5,5,5-hepta which was liquid at 25 ° C. using a dropping funnel.
  • Example 3 In a four-necked flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 89 g (molecular weight 128, 0.69 mol) of vinyl ether compound (b-1) of Synthesis Example 1 and platinum catalyst (0.5 mass of platinum) % -Containing toluene solution) 0.14 g was charged. The flask containing the mixture was purged with nitrogen, then heated to 100 ° C., and a liquid at 25 ° C.
  • silicone F was a colorless transparent liquid.
  • GPC the formation of a high molecular weight product due to crosslinking was not confirmed.
  • Example 4 To a four-necked flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 40 g (molecular weight 128, 0.31 mol) of vinyl ether compound (b-1) of Synthesis Example 1 and platinum catalyst (0.5 mass of platinum). % -Containing toluene solution) 0.09 g was charged. The flask containing the mixture was purged with nitrogen, heated to 100 ° C., and a liquid at 25 ° C.
  • each siloxane unit is not limited to the following: 50 g (SiH: 0.06 mol) was added dropwise over 10 minutes (allyl group in component (b) / hydrosilyl in component (a)) Group) molar ratio: 5.0). After completion of dropping, the mixture was stirred at 100 ° C. for 4 hours. Here, by 1 H-NMR, the hydrosilyl group peak (4.6 to 4.8 ppm) disappeared, and a new silethylene peak (0.5 to 0.7 ppm) was generated, which caused the reaction to proceed. confirmed.
  • Example 5 In a four-necked flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 142 g (molecular weight 204, 0.69 mol) of vinyl ether compound (b-2) of Synthesis Example 2 and platinum catalyst (0.5 mass of platinum) % -Containing toluene solution) 0.19 g was charged. The flask containing the mixture was purged with nitrogen, then heated to 100 ° C., and a liquid at 25 ° C.
  • a-2 50 g of organopolysiloxane represented by the following formula (4) (SiH : 0.14 mol) was added dropwise over 10 minutes (molar ratio of allyl group in component (b) / hydrosilyl group in component (a): 5.0). After completion of dropping, the mixture was stirred at 100 ° C. for 4 hours. Here, by 1 H-NMR, the hydrosilyl group peak (4.6 to 4.8 ppm) disappeared, and a new silethylene peak (0.5 to 0.7 ppm) was formed, which caused the reaction to proceed. confirmed. Thereafter, the reaction solution was cooled to room temperature, and excess vinyl ether compound (b-2) was distilled off and recovered by stripping.
  • a-2 50 g of organopolysiloxane represented by the following formula (4) (SiH : 0.14 mol) was added dropwise over 10 minutes (molar ratio of allyl group in component (b) / hydrosilyl group in component (a): 5.0
  • silicone H was a colorless transparent liquid.
  • GPC the formation of a high molecular weight product due to crosslinking was not confirmed.
  • Example 6 3 g of silicone D obtained in Example 1, 7 g of diethylene glycol divinyl ether, and 0.1 g of bis [4-n-alkyl (C10 to C13) phenyl] iodonium hexafluoroantimonate were mixed, and the resulting polymerizability was obtained. The composition was subjected to a curing test. The results are shown in Table 1.
  • Example 7 10 g of the silicone F obtained in Example 3 and 0.1 g of bis [4-n-alkyl (C10 to C13) phenyl] iodonium hexafluoroantimonate were mixed, and a curing test of the resulting polymerizable composition was conducted. went. The results are shown in Table 1.
  • Example 8 10 g of the silicone G obtained in Example 4 and 0.1 g of bis [4-n-alkyl (C10 to C13) phenyl] iodonium hexafluoroantimonate were mixed, and a curing test of the resulting polymerizable composition was conducted. went. The results are shown in Table 1.
  • Example 9 10 g of the silicone H obtained in Example 5 and 0.1 g of bis [4-n-alkyl (C10 to C13) phenyl] iodonium hexafluoroantimonate were mixed, and a curing test of the resulting polymerizable composition was conducted. went. The results are shown in Table 1.
  • silicone I ′ in which the vinyl ether group in the vinyl ether compound (b-1) was added to 1,1,1,3,5,5,5-heptamethyltrisiloxane.
  • 1,1,1,3,5,5,5-heptamethyltrisiloxane was found to produce silicone I ′′ in which both allyl group and vinyl ether group in vinyl ether compound (b-1) were added.
  • silicone I / I ′ / I ′′ 68/8/24 was formed, and the ratio of siloxane chains cross-linked with a vinyl compound was extremely high.
  • 1,1,1,3,5,5,5-heptamethyltrisiloxane was found to produce a silicone J ′′ in which both the allyl group and the vinyl ether group in the vinyl ether compound (b-1) were added.
  • silicone J ′ / J ′′ 86/4/10, and the ratio of those obtained by crosslinking between siloxane chains with a vinyl compound was increased.
  • silicone K was a colorless transparent liquid.
  • GPC GPC
  • silicone L was a colorless transparent liquid.

Abstract

A reaction, using a hydrosilylation catalyst, of (a) a hydrosilyl group-bearing organopolysiloxane and (b) a prescribed vinyl ether compound having the allyl group and vinyl ether group in each molecule, in amounts such that the (allyl group in component (b)/hydrosilyl group in component (a)) molar ratio should be at least 3.0, can provide a vinyl ether-functional organopolysiloxane in which the allyl group has quantitatively added to component (a) and the hydrosilyl group has been converted into a vinyl ether group.

Description

ビニルエーテル官能性オルガノポリシロキサンの製造方法、ならびに重合性組成物及びその硬化物Method for producing vinyl ether functional organopolysiloxane, polymerizable composition and cured product thereof
 本発明は、ビニルエーテル官能性オルガノポリシロキサンの製造方法、これを含む重合性組成物及びその硬化物に関する。 The present invention relates to a method for producing a vinyl ether functional organopolysiloxane, a polymerizable composition containing the same, and a cured product thereof.
 エネルギー線硬化型樹脂は、インキ、塗料、接着剤、コーティング剤、レジスト等に用いられる。その主剤としては、ラジカル重合性のアクリルモノマーが多く使用される。しかしながら、アクリルモノマーは皮膚刺激性や臭気性が強く、作業性に問題があるため、最近、低臭気性で皮膚刺激性が少ないビニルエーテル化合物が注目されるようになった。ビニルエーテル化合物は電子供与性の置換基を有する重合性モノマーであり、カチオン重合性のため酸素による硬化阻害を受けないことからも、アクリル化合物の欠点を改善する材料として期待される。 Energy beam curable resin is used for ink, paint, adhesive, coating agent, resist and the like. As the main agent, radically polymerizable acrylic monomers are often used. However, since acrylic monomers are strong in skin irritation and odor and have problems in workability, recently, vinyl ether compounds having low odor and less skin irritation have been attracting attention. A vinyl ether compound is a polymerizable monomer having an electron-donating substituent and is not expected to be cured by oxygen due to cationic polymerizability. Therefore, the vinyl ether compound is expected as a material for improving the defects of the acrylic compound.
 シリコーンは耐熱性、耐候性、電気絶縁性、撥水性、防汚性等の特性を有しており、例えば他のアクリルモノマーにアクリル官能性シロキサンを共重合させることで、アクリル樹脂を改質することができる。アクリル官能性シロキサンは製造方法が確立されており、市販で容易に入手できることから、シリコーングラフト型アクリルポリマーの応用例は多い。一方で、ビニルエーテル官能性シロキサンは製造法やコストに難点があり、市場に出回っていなく、シリコーングラフト型ビニルエーテルポリマーに関する知見は少ない。 Silicone has properties such as heat resistance, weather resistance, electrical insulation, water repellency, and antifouling properties. For example, it modifies acrylic resin by copolymerizing acrylic functional siloxane with other acrylic monomers. be able to. Since the production method of acrylic functional siloxane has been established and can be easily obtained commercially, there are many applications of silicone graft type acrylic polymers. On the other hand, vinyl ether functional siloxanes have difficulty in production method and cost, are not on the market, and have little knowledge about silicone graft type vinyl ether polymers.
 特許文献1には、過剰量のジビニルエーテル又はトリビニルエーテルとハイドロジェンシロキサンとのヒドロシリル化反応により、ビニルエーテル官能性シリコーンを得る方法が記載されている。この方法では、多官能ビニル化合物と多ハイドロジェンシロキサンとを反応させているため、シロキサン鎖間をビニル化合物で架橋してしまう反応を避けることはできず、予期せぬ高分子量体が生成してしまう。また、分子内にビニルエーテル基を1つも持たない無官能性のシリコーンが生成してしまう可能性がある。 Patent Document 1 describes a method of obtaining a vinyl ether functional silicone by a hydrosilylation reaction between an excess amount of divinyl ether or trivinyl ether and hydrogen siloxane. In this method, since the polyfunctional vinyl compound and polyhydrogensiloxane are reacted, the reaction of crosslinking between the siloxane chains with the vinyl compound cannot be avoided, and an unexpected high molecular weight product is formed. End up. Moreover, there is a possibility that non-functional silicone having no vinyl ether group in the molecule is generated.
 特許文献2には、1分子中にアリル及びビニルエーテル基の両官能基を持つ化合物とハイドロジェンシロキサンとのヒドロシリル化反応により、ビニルエーテル官能性シリコーンを得る方法が記載されている。この方法では、ヒドロシリル基に対するアリル基とビニルエーテル基の反応速度の違いを利用して、ビニルエーテル官能性化合物を優先的に得ている。該文献内で、アリル基とヒドロシリル基の当量に関する記載はないが、実施例ではおおよそ1対1の当量での反応が記載されている。しかし実際には、アリル基とヒドロシリル基を1対1の当量で反応を行った場合、30%程度ビニルエーテル基の反応も進行してしまい、架橋や無官能性シリコーンの生成を避けることはできなかった。 Patent Document 2 describes a method of obtaining a vinyl ether functional silicone by hydrosilylation reaction between a compound having both allyl and vinyl ether functional groups in one molecule and hydrogen siloxane. In this method, a vinyl ether functional compound is preferentially obtained by utilizing a difference in reaction rate between an allyl group and a vinyl ether group with respect to a hydrosilyl group. Although there is no description about the equivalent of an allyl group and a hydrosilyl group in the document, the reaction is described with an equivalent of about 1: 1 in the Examples. However, in reality, when the allyl group and the hydrosilyl group are reacted at an equivalent ratio of 1: 1, the reaction of the vinyl ether group also proceeds about 30%, and it is not possible to avoid the formation of crosslinking and non-functional silicone. It was.
 特許文献3には、アセトキシシランとヒドロキシ基含有ビニルエーテル化合物の縮合反応により、ビニルエーテル官能性シロキサンを得る方法が記載されている。しかし、該ポリマー中のビニルエーテル基はSiOC結合により連結しているため、湿気等で容易に加水分解を受けるおそれがあり、使用方法に制限がある。 Patent Document 3 describes a method of obtaining a vinyl ether functional siloxane by a condensation reaction of acetoxysilane and a hydroxy group-containing vinyl ether compound. However, since the vinyl ether groups in the polymer are linked by SiOC bonds, there is a risk of being easily hydrolyzed by moisture or the like, and there is a limit to the method of use.
特開平6-345872号公報JP-A-6-345872 特公平2-36134号公報Japanese Patent Publication No. 2-336134 特開2000-159895号公報JP 2000-159895 A
 本発明は上記事情に鑑みなされたもので、ヒドロシリル基から定量的にビニルエーテル基を導入することができる、エネルギー線硬化型材料として有用なビニルエーテル官能性オルガノポリシロキサンの製造方法、該方法により得られたビニルエーテル官能性オルガノポリシロキサンを含む重合性組成物、及び該組成物を硬化して得られる硬化物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a method for producing a vinyl ether functional organopolysiloxane useful as an energy ray curable material capable of quantitatively introducing a vinyl ether group from a hydrosilyl group. It is an object of the present invention to provide a polymerizable composition containing a vinyl ether functional organopolysiloxane and a cured product obtained by curing the composition.
 本発明者は、上記目的を達成するため鋭意検討した結果、(a)ヒドロシリル基を有するオルガノポリシロキサンと、(b)1分子中にアリル基及びビニルエーテル基を有する特定のビニルエーテル化合物とを、((b)成分中のアリル基/(a)成分中のヒドロシリル基)のモル比が3.0以上の量で、ヒドロシリル化触媒を用いて反応させることで、定量的に(a)成分にアリル基が付加し、ヒドロシリル基がビニルエーテル基に転化したビニルエーテル官能性オルガノポリシロキサンが得られることを見出し、本発明をなすに至ったものである。 As a result of intensive studies to achieve the above object, the present inventor has obtained (a) an organopolysiloxane having a hydrosilyl group and (b) a specific vinyl ether compound having an allyl group and a vinyl ether group in one molecule. (B) Allyl group in component / hydrosilyl group in component (a)) is a molar ratio of 3.0 or more, and is reacted quantitatively with component (a) by reacting with a hydrosilylation catalyst. It has been found that a vinyl ether functional organopolysiloxane in which a group is added and a hydrosilyl group is converted into a vinyl ether group is obtained, and the present invention has been made.
 従って、本発明は下記発明を提供する。
1.(a)ヒドロシリル基を有するオルガノポリシロキサンと、
(b)H2C=CHOCH2CH=CH2及びH2C=CHOR1CH2CH=CH2(R1は炭素原子数1~20の2価の炭化水素基であり、酸素原子を含んでいてもよい。)
から選ばれる1種以上のビニルエーテル化合物とを、
 ((b)成分中のアリル基/(a)成分中のヒドロシリル基)のモル比が3.0以上の量で、
(c)ヒドロシリル化触媒を用いて反応させる工程を含む、ビニルエーテル官能性オルガノポリシロキサンの製造方法。
2.上記反応させる工程後に、過剰の(b)ビニルエーテル化合物を反応液から除く工程を含む1記載のビニルエーテル官能性オルガノポリシロキサンの製造方法。
3.(a)成分が、下記平均組成式(1)
(R2 3SiO1/2a(R2 2SiO2/2b(R2SiO3/2c(SiO4/2d (1)
(式中、R2は同一又は異種の、水素原子又は炭素原子数1~4の1価の炭化水素基であり、炭化水素基は酸素原子を含んでいてもよい。a、b、c及びdは0又は正数であり、a+b+c+d=1~100を満たす。但し、1分子あたり1個以上のR2は水素原子である。)
で表され、25℃において液体である1又は2記載のビニルエーテル官能性オルガノポリシロキサンの製造方法。
4.(b)成分が、H2C=CHOCH2CH=CH2、H2C=CHOCH2CH2OCH2CH=CH2及びH2C=CHOCH2CH2OC64CH2CH=CH2から選ばれる1種以上のビニルエーテル化合物である1~3のいずれかに記載のビニルエーテル官能性オルガノポリシロキサンの製造方法。
5.(c)成分が、白金族金属系触媒である1~4のいずれかに記載のビニルエーテル官能性オルガノポリシロキサンの製造方法。
6.1~5のいずれかに記載のビニルエーテル官能性オルガノポリシロキサンの製造方法によって得られるビニルエーテル官能性オルガノポリシロキサンと、重合開始剤とを含む重合性組成物。
7.6記載の重合性組成物を硬化して得られる硬化物。
Accordingly, the present invention provides the following inventions.
1. (A) an organopolysiloxane having a hydrosilyl group;
(B) H 2 C═CHOCH 2 CH═CH 2 and H 2 C═CHOR 1 CH 2 CH═CH 2 (R 1 is a divalent hydrocarbon group having 1 to 20 carbon atoms and contains an oxygen atom. You may go out.)
One or more vinyl ether compounds selected from
The molar ratio of (allylic group in component (b) / hydrosilyl group in component (a)) is 3.0 or more,
(C) A method for producing a vinyl ether functional organopolysiloxane, comprising a step of reacting with a hydrosilylation catalyst.
2. 2. The method for producing a vinyl ether functional organopolysiloxane according to 1, comprising a step of removing an excess of the (b) vinyl ether compound from the reaction solution after the reaction step.
3. (A) component is the following average composition formula (1)
(R 2 3 SiO 1/2 ) a (R 2 2 SiO 2/2 ) b (R 2 SiO 3/2 ) c (SiO 4/2 ) d (1)
(Wherein R 2 is the same or different hydrogen atom or a monovalent hydrocarbon group having 1 to 4 carbon atoms, and the hydrocarbon group may contain an oxygen atom. A, b, c and d is 0 or a positive number and satisfies a + b + c + d = 1 to 100, provided that at least one R 2 per molecule is a hydrogen atom.
The method for producing a vinyl ether functional organopolysiloxane according to 1 or 2, wherein the vinyl ether functional organopolysiloxane is a liquid at 25 ° C.
4). (B) component, H 2 C = CHOCH 2 CH = CH 2, H 2 C = CHOCH 2 CH 2 OCH 2 CH = CH 2 and H 2 C = CHOCH 2 CH 2 OC 6 H 4 CH 2 CH = CH 2 4. The method for producing a vinyl ether functional organopolysiloxane according to any one of 1 to 3, which is one or more vinyl ether compounds selected from:
5. (C) The method for producing a vinyl ether functional organopolysiloxane according to any one of 1 to 4, wherein the component is a platinum group metal catalyst.
6. A polymerizable composition comprising a vinyl ether functional organopolysiloxane obtained by the method for producing a vinyl ether functional organopolysiloxane according to any one of items 1 to 5, and a polymerization initiator.
A cured product obtained by curing the polymerizable composition according to 7.6.
 本発明によれば、ヒドロシリル基から定量的にビニルエーテル基を導入することができる、ビニルエーテル官能性オルガノポリシロキサンの製造方法を提供することができ、得られたビニルエーテル官能性オルガノポリシロキサンは、エネルギー線硬化型材料として有用である。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the vinyl ether functional organopolysiloxane which can introduce | transduce a vinyl ether group quantitatively from a hydrosilyl group can be provided, and the obtained vinyl ether functional organopolysiloxane is energy rays. It is useful as a curable material.
 以下、本発明について(I)ビニルエーテル官能性オルガノポリシロキサンの製造方法、(II)ビニルエーテル官能性オルガノポリシロキサン、(III)重合性組成物、及び(IV)硬化物の順に詳細に説明する。 Hereinafter, the present invention will be described in detail in the order of (I) a method for producing a vinyl ether functional organopolysiloxane, (II) a vinyl ether functional organopolysiloxane, (III) a polymerizable composition, and (IV) a cured product.
(I)ビニルエーテル官能性オルガノポリシロキサンの製造方法
 本発明の製造方法は、
(a)1個以上のヒドロシリル基を有するオルガノポリシロキサンと、
(b)H2C=CHOCH2CH=CH2及びH2C=CHOR1CH2CH=CH2(R1は炭素原子数1~20の2価の炭化水素基であり、酸素原子を含んでいてもよい。)
から選ばれる1種以上のビニルエーテル化合物とを、
 ((b)成分中のアリル基/(a)成分中のヒドロシリル基)のモル比が3.0以上の量で、
(c)ヒドロシリル化触媒を用いて反応させる工程を含む、ビニルエーテル官能性オルガノポリシロキサンの製造方法である。
(I) Production method of vinyl ether functional organopolysiloxane The production method of the present invention comprises:
(A) an organopolysiloxane having one or more hydrosilyl groups;
(B) H 2 C═CHOCH 2 CH═CH 2 and H 2 C═CHOR 1 CH 2 CH═CH 2 (R 1 is a divalent hydrocarbon group having 1 to 20 carbon atoms and contains an oxygen atom. You may go out.)
One or more vinyl ether compounds selected from
The molar ratio of (allylic group in component (b) / hydrosilyl group in component (a)) is 3.0 or more,
(C) A method for producing a vinyl ether functional organopolysiloxane comprising a step of reacting with a hydrosilylation catalyst.
(a)ヒドロシリル基を有するオルガノポリシロキサン
 (a)成分は、分子内にヒドロシリル基(ケイ素原子に直接結合した水素原子)を有するオルガノポリシロキサンであり、ヒドロシリル基は1個以上であればよいが、1~10個が好ましく、1~3個がより好ましい。主鎖骨格は直鎖状であっても分岐状であってもよい。具体的には、ヒドロシリル基を片末端に有する片末端変性ポリオルガノシロキサン、ヒドロシリル基を両末端に有する両末端変性オルガノポリシロキサン、ヒドロシリル基を側鎖に有する側鎖変性ポリオルガノシロキサン等が挙げられるが、本発明においていずれのポリオルガノシロキサンを使用することも可能である。(a)成分は1種単独で又は2種以上を適宜組み合わせて用いることができる。
(A) Organopolysiloxane having a hydrosilyl group The component (a) is an organopolysiloxane having a hydrosilyl group (a hydrogen atom directly bonded to a silicon atom) in the molecule, and the number of hydrosilyl groups may be one or more. 1 to 10 is preferable, and 1 to 3 is more preferable. The main chain skeleton may be linear or branched. Specific examples include one-end-modified polyorganosiloxane having a hydrosilyl group at one end, both-end-modified organopolysiloxane having hydrosilyl groups at both ends, and side-chain-modified polyorganosiloxane having hydrosilyl groups in the side chain. However, any polyorganosiloxane can be used in the present invention. (A) A component can be used individually by 1 type or in combination of 2 or more types as appropriate.
 (a)成分としては、下記平均組成式(1)
(R2 3SiO1/2a(R2 2SiO2/2b(R2SiO3/2c(SiO4/2d (1)
(式中、R2は同一又は異種の、水素原子又は炭素原子数1~4の1価の炭化水素基であり、炭化水素基は酸素原子を含んでいてもよい。a、b、c及びdは0又は正数であり、a+b+c+d=1~100を満たす。但し、1分子あたり1個以上のR2は水素原子である。)
で表され、25℃において液体のものが好ましい。
As the component (a), the following average composition formula (1)
(R 2 3 SiO 1/2 ) a (R 2 2 SiO 2/2 ) b (R 2 SiO 3/2 ) c (SiO 4/2 ) d (1)
(Wherein R 2 is the same or different hydrogen atom or a monovalent hydrocarbon group having 1 to 4 carbon atoms, and the hydrocarbon group may contain an oxygen atom. A, b, c and d is 0 or a positive number and satisfies a + b + c + d = 1 to 100, provided that at least one R 2 per molecule is a hydrogen atom.
And is preferably liquid at 25 ° C.
 上記式(1)において、R2は同一又は異種の、水素原子、又は酸素原子を含んでいてもよい炭素原子数1~4の1価の炭化水素基であり、炭素原子数1~4の1価の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基等が挙げられる。炭化水素基は酸素原子を含んでいてもよい。但し、R2は1分子あたり1個以上、好ましくは1~10個、より好ましくは1~3個が水素原子である。
 また、a、b、c及びdは0又は正数であり、好ましくはaは0又は1~30の正数、bは0又は1~70の正数、cは0又は1~30の正数、dは0又は1~30の正数であり、より好ましくはaは2、bは1~50の正数、c、dは0である。a+b+c+d=1~100、好ましくは3~52を満たす。
In the above formula (1), R 2 is the same or different, a hydrogen atom or a monovalent hydrocarbon group having 1 to 4 carbon atoms which may contain an oxygen atom, and having 1 to 4 carbon atoms. Examples of the monovalent hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a tert-butyl group. The hydrocarbon group may contain an oxygen atom. However, R 2 is one or more, preferably 1 to 10, more preferably 1 to 3 hydrogen atoms per molecule.
A, b, c and d are 0 or a positive number, preferably a is 0 or a positive number of 1 to 30, b is 0 or a positive number of 1 to 70, and c is a positive number of 0 or 1 to 30. The number d is 0 or a positive number from 1 to 30, more preferably a is 2, b is a positive number from 1 to 50, and c and d are 0. a + b + c + d = 1 to 100, preferably 3 to 52 is satisfied.
 (a)成分としては、具体的には、例えば1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、1,1,1,3,5,5,5-ヘプタメチルトリシロキサン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、H(CH32SiO1/2単位とSiO2単位との共重合体、H(CH32SiO1/2単位と(CH33SiO1/2単位とSiO2単位との共重合体等が例示できる。 Specific examples of the component (a) include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, 1,1,1,3,5, 5,5-heptamethyltrisiloxane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane / dimethylsiloxane cyclic copolymer, tris (dimethylhydrogensiloxy) methylsilane, tris (dimethylhydrogensiloxy) phenylsilane, both molecular chains Terminal dimethylhydrogensiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, molecular chain both ends dimethylhydrogensiloxy group-blocked methylhydrogenpolysiloxane, molecular chain both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane Dimethylsiloxane with dimethylhydrogensiloxy group blocked at both ends of molecular chain, dimethylsiloxane / diphenylsiloxane copolymer with dimethylhydrogensiloxy group blocked at both ends of molecular chain, dimethylsiloxane / methylhydrogensiloxane copolymer with trimethylsiloxy group blocked at both ends of molecular chain Copolymer, Trimethylsiloxy group-capped dimethylsiloxane / diphenylsiloxane / methylhydrogensiloxane copolymer, molecular chain both-ends dimethylhydrogensiloxy group-capped dimethylsiloxane / methylhydrogensiloxane copolymer, H (CH 3 ) Examples include copolymers of 2 SiO 1/2 units and SiO 2 units, copolymers of H (CH 3 ) 2 SiO 1/2 units, (CH 3 ) 3 SiO 1/2 units, and SiO 2 units. it can.
 (a)成分の数平均分子量は特に限定されないが、100~50,000が好ましく、200~10,000がより好ましい。数平均分子量が低すぎると、得られる重合物に占めるシロキサン単位の割合が低くなり、シロキサンによる特性が十分でなくなるおそれがある。一方、数平均分子量が高すぎると、変性後のビニルエーテル官能性オルガノポリシロキサンが高粘度になってしまい、カチオン重合性組成物の配合が困難になる。なお、数平均分子量は、GPC(ゲルパーミュエーションクロマトグラフィー)分析によるポリスチレン換算値である。 The number average molecular weight of the component (a) is not particularly limited, but is preferably 100 to 50,000, more preferably 200 to 10,000. If the number average molecular weight is too low, the proportion of siloxane units in the resulting polymer is reduced, and the characteristics of siloxane may not be sufficient. On the other hand, if the number average molecular weight is too high, the modified vinyl ether functional organopolysiloxane has a high viscosity, which makes it difficult to mix the cationic polymerizable composition. In addition, a number average molecular weight is a polystyrene conversion value by GPC (gel permeation chromatography) analysis.
[(b)成分]
 本発明のビニルエーテル化合物は、H2C=CHOCH2CH=CH2及びH2C=CHOR1CH2CH=CH2(R1は炭素原子数1~20の2価の炭化水素基であり、酸素原子を含んでいてもよい。)
から選ばれる1種以上であり、1種単独で又は2種以上を適宜組み合わせて用いることができる。
[Component (b)]
The vinyl ether compound of the present invention includes H 2 C═CHOCH 2 CH═CH 2 and H 2 C═CHOR 1 CH 2 CH═CH 2 (R 1 is a divalent hydrocarbon group having 1 to 20 carbon atoms, It may contain oxygen atoms.)
It is 1 or more types chosen from these, 1 type can be used individually or in combination of 2 or more types as appropriate.
 R1は炭素原子数1~20の2価の炭化水素基であり、酸素原子を含んでいてもよい。R1としては、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、ペンチレン基、へキシレン基、オクチレン基等のアルキレン基、オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシイソプロピレン基、オキシブチレン基、オキシイソブチレン基等のオキシアルキレン基や、下記式で表される構造を有する基が挙げられる。
-C64OCH2-、-C64OC24-、-C64OC36-、-C64OC48-、-C63OCH3OCH2-、-C63OCH3OC2H-4、-C63OCH3OC36-、-C63OCH3OC48
R 1 is a divalent hydrocarbon group having 1 to 20 carbon atoms and may contain an oxygen atom. R 1 is an alkylene group such as methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, pentylene group, hexylene group, octylene group, oxymethylene group, oxyethylene group, oxypropylene group, Examples thereof include oxyalkylene groups such as oxyisopropylene group, oxybutylene group, and oxyisobutylene group, and groups having a structure represented by the following formula.
-C 6 H 4 OCH 2 -, - C 6 H 4 OC 2 H 4 -, - C 6 H 4 OC 3 H 6 -, - C 6 H 4 OC 4 H 8 -, - C 6 H 3 OCH 3 OCH 2 -, - C 6 H 3 OCH 3 OC 2 H- 4, -C 6 H 3 OCH 3 OC 3 H 6 -, - C 6 H 3 OCH 3 OC 4 H 8 -
 (b)成分としては、H2C=CHOCH2CH=CH2、H2C=CHOCH2CH2OCH2CH=CH2及びH2C=CHOCH2CH2OC64CH2CH=CH2から選ばれる1種以上が特に好ましい。 As the component (b), H 2 C═CHOCH 2 CH═CH 2 , H 2 C═CHOCH 2 CH 2 OCH 2 CH═CH 2 and H 2 C═CHOCH 2 CH 2 OC 6 H 4 CH 2 CH═CH One or more selected from 2 are particularly preferred.
 H2C=CHOCH2CH=CH2は市販で入手できる。H2C=CHOR1CH2CH=CH2は、適当なヒドロキシビニルエーテル化合物とアリルハライド化合物とを、又はヒドロキシアリル化合物とハロアルキルビニルエーテル化合物とを、塩基性条件下で反応させることで得られる。 H 2 C═CHOCH 2 CH═CH 2 is commercially available. H 2 C═CHOR 1 CH 2 CH═CH 2 can be obtained by reacting an appropriate hydroxy vinyl ether compound and an allyl halide compound, or a hydroxy allyl compound and a haloalkyl vinyl ether compound under basic conditions.
 ここで、ヒドロキシビニルエーテル化合物としては、ヒドロキシメチルビニルエーテル、2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテル、ジプロピレングリコールモノビニルエーテル等のアルコキシビニルエーテル等が例示できる。
 アリルハライド化合物としては、アリルクロライド、アリルブロミド、アリルヨージド等が例示できる。
 また、ヒドロキシアリル化合物としては、2-プロペン-1-オール、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、エチレングリコールモノアリルエーテル、プロピレングリコールモノアリルエーテル、2-アリルフェノール、3-アリルフェノール、4-アリルフェノール、4-アリル-2-メトキシフェノール等が例示できる。
 ハロアルキルビニルエーテル化合物としては、クロロメチルビニルエーテル、2-クロロエチルビニルエーテル、3-クロロプロピルビニルエーテル、4-クロロブチルビニルエーテル、ブロモメチルビニルエーテル、2-ブロモエチルビニルエーテル、3-ブロモプロピルビニルエーテル、4-ブロモブチルビニルエーテル、ヨードメチルビニルエーテル、2-ヨードエチルビニルエーテル、3-ヨードプロピルビニルエーテル、4-ヨードブチルビニルエーテル等が例示できる。
 反応させる両化合物(ヒドロキシビニルエーテル化合物とアリルハライド化合物、又はヒドロキシアリル化合物とハロアルキルビニルエーテル化合物)の使用量は、ヒドロキシビニルエーテル化合物又はヒドロキシアリル化合物のOH基1.0モル当量に対して、アリルハライド化合物又はハロアルキルビニルエーテル化合物が、通常1.0~3.0モルであり、1.0~1.5モルが好ましい。
Here, examples of the hydroxy vinyl ether compound include hydroxy vinyl vinyl ether, 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, alkoxy vinyl ether such as dipropylene glycol monovinyl ether, and the like.
Examples of the allyl halide compound include allyl chloride, allyl bromide, and allyl iodide.
Further, as the hydroxyallyl compound, 2-propen-1-ol, 3-buten-1-ol, 4-penten-1-ol, 5-hexen-1-ol, ethylene glycol monoallyl ether, propylene glycol monoallyl Examples include ether, 2-allylphenol, 3-allylphenol, 4-allylphenol, 4-allyl-2-methoxyphenol, and the like.
Examples of haloalkyl vinyl ether compounds include chloromethyl vinyl ether, 2-chloroethyl vinyl ether, 3-chloropropyl vinyl ether, 4-chlorobutyl vinyl ether, bromomethyl vinyl ether, 2-bromoethyl vinyl ether, 3-bromopropyl vinyl ether, 4-bromobutyl vinyl ether, Examples include iodomethyl vinyl ether, 2-iodoethyl vinyl ether, 3-iodopropyl vinyl ether, 4-iodobutyl vinyl ether and the like.
The amount of both compounds to be reacted (hydroxyvinyl ether compound and allyl halide compound, or hydroxyallyl compound and haloalkyl vinyl ether compound) is used based on 1.0 mole equivalent of OH group of the hydroxyvinyl ether compound or hydroxyallyl compound. The haloalkyl vinyl ether compound is usually 1.0 to 3.0 mol, preferably 1.0 to 1.5 mol.
 塩基性条件に用いる塩基性化合物の例としては、水酸化カリウム、水酸化ナトリウム、水素化ナトリウム等が挙げられ、1種単独で又は2種以上を適宜組み合わせて用いることができる。その使用量は、ヒドロキシビニルエーテル化合物又はヒドロキシアリル化合物のOH基1.0モル当量に対して、通常0.5~10モル、好ましくは1.0~3.0モルである。
 この時、テトラブチルアンモニウムブロマイド、ベンジルトリエチルアンモニウムクロライド、トリオクチルメチルアンモニウムクロライド、テトラブチルアンモニウム硫酸水素塩、ジシクロヘキシル-18-クラウン-6、ジベンゾ-18-クラウン-6、18-クラウン-6、ポリエチレングリコール400等の相間移動触媒を併用すれば、反応がより促進される。相間移動触媒の使用量は、ヒドロキシビニルエーテル化合物又はヒドロキシアリル化合物のOH基1.0モル当量に対して、通常0.001~0.2モルであり、0.005~0.1モルが好ましい。
Examples of the basic compound used for the basic conditions include potassium hydroxide, sodium hydroxide, sodium hydride and the like, and these can be used alone or in combination of two or more. The amount used is usually 0.5 to 10 mol, preferably 1.0 to 3.0 mol, per 1.0 mol equivalent of OH groups of the hydroxyvinyl ether compound or hydroxyallyl compound.
At this time, tetrabutylammonium bromide, benzyltriethylammonium chloride, trioctylmethylammonium chloride, tetrabutylammonium hydrogen sulfate, dicyclohexyl-18-crown-6, dibenzo-18-crown-6, 18-crown-6, polyethylene glycol When a phase transfer catalyst such as 400 is used in combination, the reaction is further accelerated. The amount of the phase transfer catalyst used is usually 0.001 to 0.2 mol, preferably 0.005 to 0.1 mol, relative to 1.0 mol equivalent of OH groups in the hydroxyvinyl ether compound or hydroxyallyl compound.
 上記反応は必要に応じて溶媒中で行ってもよい。溶媒の種類は特に限定されないが、具体例としては、トルエン、キシレン、シクロヘキサンのような炭化水素、ジメチルスルホキシド、ジメチルホルムアミド、N-メチルピロリドンのような非プロトン性極性溶媒等が挙げられる。 The above reaction may be performed in a solvent as necessary. The type of the solvent is not particularly limited, and specific examples include hydrocarbons such as toluene, xylene and cyclohexane, aprotic polar solvents such as dimethyl sulfoxide, dimethylformamide and N-methylpyrrolidone.
 反応温度は通常30~150℃、好ましくは60~100℃、反応時間は通常3~48時間、好ましくは6~12時間である。反応終了後、反応混合液を室温まで冷却し、濾過で目的物に不溶な塩を取り除いた後、減圧下で蒸留することにより目的物を得ることができる。 The reaction temperature is usually 30 to 150 ° C., preferably 60 to 100 ° C., and the reaction time is usually 3 to 48 hours, preferably 6 to 12 hours. After completion of the reaction, the reaction mixture is cooled to room temperature, the salt insoluble in the target product is removed by filtration, and then the target product can be obtained by distillation under reduced pressure.
[(c)ヒドロシリル化触媒]
 本発明で用いられる(c)ヒドロシリル化触媒は、(a)成分中のヒドロシリル基と、(b)成分中のアリル基との反応を促進するものであればよく、白金族金属を含有する白金族金属系触媒が挙げられる。白金族金属とは、鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金を意味する。中でも、白金含有触媒が好ましい。白金含有触媒は、任意に担体、例えばシリカゲル又は粉末炭上に堆積させた白金金属、白金含有化合物もしくは錯体が挙げられる。好ましい白金含有触媒としては、米国特許第2823218号明細書に開示されているように、一般的に入手可能な6水和物の形又は無水の形をした塩化白金酸の形のものが好ましい。特に有用な形の塩化白金酸としては、有機ケイ素系に容易に分散する性質を持っている点から、米国特許第3419593号明細書に開示されているような、脂肪族不飽和基を有する有機ケイ素化合物と反応させて得られる組成物が挙げられる。
[(C) Hydrosilylation catalyst]
The (c) hydrosilylation catalyst used in the present invention may be any catalyst that promotes the reaction between the hydrosilyl group in the component (a) and the allyl group in the component (b), and platinum containing a platinum group metal. Group metal-based catalysts. The platinum group metal means iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum. Among these, a platinum-containing catalyst is preferable. The platinum-containing catalyst optionally includes platinum metal, platinum-containing compounds or complexes deposited on a support such as silica gel or powdered charcoal. Preferred platinum-containing catalysts are preferably in the form of chloroplatinic acid in the generally available hexahydrate or anhydrous form, as disclosed in US Pat. No. 2,823,218. As a particularly useful form of chloroplatinic acid, an organic compound having an aliphatic unsaturated group as disclosed in US Pat. No. 3,419,593 is disclosed because it has a property of being easily dispersed in an organosilicon system. The composition obtained by making it react with a silicon compound is mentioned.
 (c)成分の触媒の量は、(a)成分中のヒドロシリル基と、(b)成分中のアリル基との室温での反応を促進するに十分な量がある限り、特に限定されない。具体的には、本触媒種によって適宜選定されるが、(a)、(b)成分の合計100万質量部当たり、触媒の有効成分(例えば白金)が1~10質量部という低い量である。 The amount of the component (c) catalyst is not particularly limited as long as there is an amount sufficient to promote the reaction of the hydrosilyl group in the component (a) and the allyl group in the component (b) at room temperature. Specifically, although it is appropriately selected depending on the type of the catalyst, the amount of the active component of the catalyst (for example, platinum) is as low as 1 to 10 parts by mass per 1 million parts by mass of the total of the components (a) and (b). .
 本発明は、(a)ヒドロシリル基を有するオルガノポリシロキサンと、(b)ビニルエーテル化合物とを、((b)成分中のアリル基/(a)成分中のヒドロシリル基)のモル比が3.0以上で、(c)ヒドロシリル化触媒を用いて反応させる工程を含むものである。上記比は3.0以上であれば特に限定はされないが、好ましくは3.0~7.0、より好ましくは4.0~5.0である。このように、仕込み時の(a)成分中のヒドロシリル基に対する(b)成分中のアリル基のモル比を3.0以上とすることで、(b)成分中のアリル基を優先的にオルガノポリシロキサン(a)と反応させている。また、不本意な架橋や無官能性シリコーンの生成をほとんど抑制することができる。架橋や無官能性シリコーンの生成は、ビニルエーテル官能性オルガノポリシロキサンを使用したカチオン重合において、硬化不良や硬化物の物性不良を引き起こすおそれがある。 In the present invention, (a) an organopolysiloxane having a hydrosilyl group and (b) a vinyl ether compound have a molar ratio of (allyl group in component (b) / hydrosilyl group in component (a)) of 3.0. The above includes (c) the step of reacting with the hydrosilylation catalyst. The ratio is not particularly limited as long as it is 3.0 or more, but it is preferably 3.0 to 7.0, more preferably 4.0 to 5.0. Thus, by making the molar ratio of the allyl group in the component (b) with respect to the hydrosilyl group in the component (a) at the time of preparation 3.0 or more, the allyl group in the component (b) is preferentially organolated. Reaction with polysiloxane (a). Moreover, unintentional crosslinking and generation of non-functional silicone can be almost suppressed. Crosslinking and generation of non-functional silicone may cause poor curing and poor physical properties of the cured product in cationic polymerization using vinyl ether functional organopolysiloxane.
 (a)ヒドロシリル基を有するオルガノポリシロキサンと、(b)ビニルエーテル化合物との反応温度は、特に限定されるものではないが、25~150℃が好ましく、70~100℃がより好ましい。時間は特に限定されないが、例えば、1~24時間から適宜選定される。 The reaction temperature of (a) an organopolysiloxane having a hydrosilyl group and (b) a vinyl ether compound is not particularly limited, but is preferably 25 to 150 ° C, more preferably 70 to 100 ° C. The time is not particularly limited, but is appropriately selected from 1 to 24 hours, for example.
 上記反応させる工程後に、過剰の(b)ビニルエーテル化合物を反応液から除く工程を含んでもよい。過剰の(b)ビニルエーテル化合物を除く方法としてはストリッピングが挙げられる。ストリッピングにより揮発性成分を除く方法は、当技術分野で周知の方法を採用することができる。また、ストリッピングにより除いた過剰のビニルエーテル化合物を回収し、(a)成分とのヒドロシリル化反応に再利用することができるため、コスト面においても優れる。 After the step of reacting, a step of removing excess (b) vinyl ether compound from the reaction solution may be included. Stripping is an example of a method for removing excess (b) vinyl ether compound. As a method of removing volatile components by stripping, a method well known in the art can be employed. Moreover, since the excess vinyl ether compound removed by stripping can be recovered and reused in the hydrosilylation reaction with the component (a), the cost is excellent.
(II)ビニルエーテル官能性オルガノポリシロキサン
 本発明における「ビニルエーテル官能性オルガノポリシロキサン」とは、(a)ヒドロシリル基を有するオルガノポリシロキサン成分のヒドロシリル基に、(b)成分のアリル基部分のみが付加し、ビニルエーテル基を有するオルガノポリシロキサンをいう。
(II) Vinyl ether functional organopolysiloxane In the present invention, “vinyl ether functional organopolysiloxane” means that only the allyl group portion of component (b) is added to the hydrosilyl group of (a) the organopolysiloxane component having a hydrosilyl group. And an organopolysiloxane having a vinyl ether group.
(III)重合性組成物
 ビニルエーテル官能性オルガノポリシロキサンは、ビニルエーテル官能性オルガノポリシロキサン単体で重合してもよいし、ビニル基等の上記化合物と重合する基を有する他の化合物(以下、重合性モノマーという)と共重合することもできる。前述の通り、本発明の化合物は、耐熱性、耐候性、撥水性等をより向上した共重合体を与えることができる。
(III) Polymerizable composition The vinyl ether functional organopolysiloxane may be polymerized with a vinyl ether functional organopolysiloxane alone, or another compound having a group capable of polymerizing with the above compound such as a vinyl group (hereinafter, polymerizable). Monomer). As described above, the compound of the present invention can give a copolymer having further improved heat resistance, weather resistance, water repellency and the like.
 本発明の重合性組成物は、本発明のビニルエーテル官能性オルガノポリシロキサンと、必要により他の重合性モノマーと、重合開始剤とを含むものである。 The polymerizable composition of the present invention contains the vinyl ether functional organopolysiloxane of the present invention, and if necessary, other polymerizable monomers, and a polymerization initiator.
 他の重合性モノマーとしては、特にはビニル基を有する化合物が挙げられる。例えば、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、イソプロピルビニルエーテル、ブチルビニルエーテル、イソブチルビニルエーテル、ヘキシルビニルエーテル、シクロヘキシルビニルエーテル、メチルプロペニルエーテル、エチルプロペニルエーテル、ブチルプロペニルエーテル、メチルブテニルエーテル、エチルブテニルエーテル、エチレングリコールモノビニルエーテル、ブタンジオールモノビニルエーテル、エチレングリコールブチルビニルエーテル、トリエチレングリコールメチルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル等のビニルエーテル化合物、N-ビニルアセトアミド、N-ビニルホルムアミド、N-ビニルピペリドン、N-ビニルカルバゾール等のN-ビニル化合物、p-メチルスチレン、m-メチルスチレン、p-メトキシスチレン、m-メトキシスチレン、α-メチル-p-メトキシスチレン、α-メチル-m-メトキシスチレン等のスチレン化合物が挙げられる。 Other polymerizable monomers include, in particular, compounds having a vinyl group. For example, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, butyl vinyl ether, isobutyl vinyl ether, hexyl vinyl ether, cyclohexyl vinyl ether, methyl propenyl ether, ethyl propenyl ether, butyl propenyl ether, methyl butenyl ether, ethyl butenyl ether, ethylene glycol Vinyl ether compounds such as monovinyl ether, butanediol monovinyl ether, ethylene glycol butyl vinyl ether, triethylene glycol methyl vinyl ether, cyclohexanedimethanol monovinyl ether, N such as N-vinylacetamide, N-vinylformamide, N-vinylpiperidone, N-vinylcarbazole -Vinylation Things, p- methyl styrene, m- methyl styrene, p- methoxystyrene, m- methoxystyrene, alpha-methyl -p- methoxystyrene, styrene compounds such as alpha-methyl -m- methoxy styrene.
 また、多官能ビニルエーテル化合物と重合させることもできる。例えば、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、ブタンジオールジビニルエーテル、ヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリメチロールプロパントリビニルエーテル等が挙げられる。 Also, it can be polymerized with a polyfunctional vinyl ether compound. For example, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, cyclohexanedimethanol divinyl ether, trimethylolpropane trivinyl ether, etc. Is mentioned.
 本発明のビニルエーテル官能性オルガノポリシロキサンと、必要により用いられる他の重合性モノマーとの割合は特に限定されないが、本発明のビニルエーテル官能性オルガノポリシロキサンと、他の重合性モノマーとの合計100質量部に対して、本発明のビニルエーテル官能性オルガノポリシロキサン1~80質量部が好ましく、5~50質量部がより好ましい。他の重合性モノマーは20~99質量部が好ましく、50~95質量部がより好ましい。 The ratio of the vinyl ether functional organopolysiloxane of the present invention to other polymerizable monomers used as required is not particularly limited, but the total of 100 masses of the vinyl ether functional organopolysiloxane of the present invention and other polymerizable monomers. The vinyl ether functional organopolysiloxane of the present invention is preferably 1 to 80 parts by weight, more preferably 5 to 50 parts by weight, based on parts. The other polymerizable monomer is preferably 20 to 99 parts by mass, and more preferably 50 to 95 parts by mass.
 重合開始剤としては、カチオン重合を起こしうるものであれば特に制限はないが、通常、光開裂酸が使用される。光開裂酸としては、オニウム塩構造を有する光カチオン重合開始剤がある。例えば、下記一般式(2)で表されるオニウム塩が好ましい。
(R3X+・Y- (2)
(式中、R3は互いに独立に、置換又は非置換の、芳香環炭素原子がEに直接結合している芳香族基及び芳香族複素環基から選ばれる1価の基であり、EはI,S,Se,Pから選ばれる中心元素であり、Y-はBF4 -、PF6 -、AsF6 -、SbF6 -、ClO4 -、HSO4 -、B(C654 -から選ばれる非塩基性かつ非求核性の陰イオンであり、Xは、EがIのとき2であり、EがS又はSeのとき3であり、EがPのとき4である。)
The polymerization initiator is not particularly limited as long as it can cause cationic polymerization. Usually, a photocleavable acid is used. As the photocleavable acid, there is a photocationic polymerization initiator having an onium salt structure. For example, an onium salt represented by the following general formula (2) is preferable.
(R 3 ) X E + · Y (2)
(In the formula, R 3 is independently of each other a substituted or unsubstituted monovalent group selected from an aromatic group in which an aromatic ring carbon atom is directly bonded to E and an aromatic heterocyclic group; Y is BF 4 , PF 6 , AsF 6 , SbF 6 , ClO 4 , HSO 4 , B (C 6 F 5 ) 4 , which is a central element selected from I, S, Se and P. - a non-basic and non-nucleophilic anion selected from, X is, E is 2 when I, E is 3 when S or Se, a 4 when E is P. )
 上記式(2)において、R3は互いに独立に、置換又は非置換の、芳香環炭素原子がEに直接結合している芳香族基及び芳香族複素環基から選ばれる1価の基である。芳香族基としては、フェニル、ナフチル基のような1価の芳香族基、及び該1価の芳香族基の炭素原子に結合する水素原子の一部がメチル、エチル、プロピル、ブチル、オクチル、デシル、ドデシル基のようなアルキル基、メトキシ、エトキシ、プロポキシ基のようなアルコキシ基、塩素原子、臭素原子等のハロゲン原子、シアノ基、メルカプト、チオフェニル基のような硫黄含有基等から選ばれる基によって置換された基が挙げられる。また、芳香族複素環基としては、ピロール環、ピリジン環、イミダゾール環等が挙げられ、該1価の芳香族複素環基の炭素原子に結合する水素原子の一部が上記芳香族基と同様に置換されていても良い。R3は炭素数8~20のアルキル基あるいは炭素数1~10のアルコキシ基で置換された芳香族基であることが、シリコーンに対して溶解性が優れている点から好ましい。
 Eは、I,S,Se,Pから選ばれる中心元素であり、特に反応性の高さからI又はSが好ましく、Y-は、BF4 -、PF6 -、AsF6 -、SbF6 -、ClO4 -、HSO4 -、B(C654 -から選ばれる非塩基性かつ非求核性の陰イオンであり、PF6 -、SbF6 -、B(C654 -が好ましい。
In the above formula (2), R 3 is a monovalent group independently selected from a substituted or unsubstituted aromatic group and aromatic heterocyclic group in which an aromatic ring carbon atom is directly bonded to E. . Examples of the aromatic group include monovalent aromatic groups such as phenyl and naphthyl groups, and a part of hydrogen atoms bonded to carbon atoms of the monovalent aromatic group is methyl, ethyl, propyl, butyl, octyl, Groups selected from alkyl groups such as decyl and dodecyl groups, alkoxy groups such as methoxy, ethoxy and propoxy groups, halogen atoms such as chlorine and bromine atoms, sulfur-containing groups such as cyano groups, mercapto and thiophenyl groups And a group substituted by. In addition, examples of the aromatic heterocyclic group include a pyrrole ring, a pyridine ring, and an imidazole ring, and a part of hydrogen atoms bonded to the carbon atom of the monovalent aromatic heterocyclic group is the same as the above aromatic group. May be substituted. R 3 is preferably an aromatic group substituted with an alkyl group having 8 to 20 carbon atoms or an alkoxy group having 1 to 10 carbon atoms from the viewpoint of excellent solubility in silicone.
E is a central element selected from I, S, Se, and P, and is preferably I or S because of its high reactivity. Y is BF 4 , PF 6 , AsF 6 , SbF 6 −. , ClO 4 , HSO 4 , B (C 6 F 5 ) 4 , a non-basic and non-nucleophilic anion, PF 6 , SbF 6 , B (C 6 F 5 ) 4 - is preferable.
 式(2)で表されるオニウム塩は、上記R3、E、Y-の組み合わせから選択されるが、溶解性や硬化性の観点から、ビス[4-n-アルキル(C10~C13)フェニル]ヨードニウムヘキサフルオロリン酸塩、ビス[4-n-アルキル(C10~C13)フェニル]ヨードニウムヘキサフルオロアンチモン酸塩、ビス[4-n-アルキル(C10~C13)フェニル]ヨードニウムテトラキスペンタフルオロフェニルホウ酸塩が好ましい。 The onium salt represented by the formula (2) is selected from a combination of the above R 3 , E, and Y , and from the viewpoint of solubility and curability, bis [4-n-alkyl (C10 to C13) phenyl ] Iodonium hexafluorophosphate, bis [4-n-alkyl (C10-C13) phenyl] iodonium hexafluoroantimonate, bis [4-n-alkyl (C10-C13) phenyl] iodonium tetrakispentafluorophenylboric acid Salts are preferred.
 重合開始剤の配合量は、光カチオン重合開始剤としての有効量を添加すればよく、特に限定されるものではない。例えば、硬化速度と経済性の観点から、本発明のビニルエーテル官能性オルガノポリシロキサン及び他の重合性モノマーの合計100質量部に対して0.1~20質量部が好ましく、0.3~5質量部がより好ましい。 The blending amount of the polymerization initiator is not particularly limited as long as an effective amount as a photocationic polymerization initiator is added. For example, from the viewpoint of curing speed and economy, 0.1 to 20 parts by mass is preferable with respect to 100 parts by mass in total of the vinyl ether functional organopolysiloxane of the present invention and other polymerizable monomers, and 0.3 to 5 parts by mass. Part is more preferred.
 重合性組成物の製造方法としては、上記の製造方法により得られたビニルエーテル官能性オルガノポリシロキサンと、必要により他の重合性モノマーと、重合開始剤とを混合することにより調製することができる。 As a method for producing the polymerizable composition, it can be prepared by mixing the vinyl ether functional organopolysiloxane obtained by the above production method, if necessary, another polymerizable monomer, and a polymerization initiator.
(IV)硬化物
 重合性組成物を硬化させる場合、例えば、本発明の組成物を各種基材に各種塗布方法によって塗布した後、エネルギー線照射、又はエネルギー線照射及び加熱することによって、共重合させることにより、硬化物(コーティング膜)を得ることができる。カチオン重合に使用されるエネルギー線としては、例えば、光、電子線、X線等の活性エネルギー線が挙げられる。
(IV) Cured product When the polymerizable composition is cured, for example, after applying the composition of the present invention to various substrates by various coating methods, it is copolymerized by irradiation with energy rays or irradiation with energy rays and heating. By doing so, a cured product (coating film) can be obtained. Examples of energy rays used for cationic polymerization include active energy rays such as light, electron beam, and X-ray.
 基材の具体例としては、例えば、紙、ポリカーボネート、アクリル、ABS、ポリエステル、ポリプロピレン等のプラスチック類、鉄、銅、アルミニウム、亜鉛、クロム、スズ等の金属類、ガラス、木材、ゴム、石、コンクリート等が挙げられる。塗布方法の具体例としては、例えば、スピンコート法、スプレー法、静電塗装、ロールコート法、カーテンフローコート法、ハケ塗り、バーコート塗装、グラビア印刷法、スクリーン印刷法、オフセット印刷法等が挙げられる。 Specific examples of the substrate include, for example, plastics such as paper, polycarbonate, acrylic, ABS, polyester, and polypropylene, metals such as iron, copper, aluminum, zinc, chromium, and tin, glass, wood, rubber, stone, Concrete etc. are mentioned. Specific examples of the application method include spin coating, spraying, electrostatic coating, roll coating, curtain flow coating, brush coating, bar coating, gravure printing, screen printing, offset printing, and the like. Can be mentioned.
 エネルギー線への暴露時間は、エネルギー線の強度、塗膜厚やカチオン重合性物質によるが、通常は0.1~10秒程度で十分である。また、エネルギー線照射後、0.1~数分後には、ほとんどの組成物はカチオン重合により指触乾燥するが、カチオン重合を促進するため加熱やサーマルヘッド等による熱エネルギーを併用することも場合によっては好ましい。
 ここで、加熱条件としては、50~150℃にて0.1~600秒間とすることができる。
The exposure time to the energy rays depends on the strength of the energy rays, the thickness of the coating film and the cationic polymerizable substance, but usually about 0.1 to 10 seconds is sufficient. In addition, after 0.1 to several minutes after irradiation with energy rays, most of the composition is dry to the touch by cationic polymerization. However, in order to promote cationic polymerization, heat energy such as heating or a thermal head may be used in combination. Depending on the case, it is preferable.
Here, the heating condition may be 50 to 150 ° C. and 0.1 to 600 seconds.
 上記組成物の硬化物は、シロキサンの特性を有するビニルエーテル系(共)重合体である。すなわち、低皮膚刺激性、低臭気性に加えて耐熱性、耐候性、防汚性等に優れる重合体となる。該重合体は、インキ、塗料、接着剤、コーティング剤、レジスト等の種々の分野で有用である。特に本発明の重合性組成物は、カチオン重合硬化速度が速く、酸素による重合阻害が少ないという利点を有する。 The cured product of the above composition is a vinyl ether (co) polymer having siloxane characteristics. That is, the polymer is excellent in heat resistance, weather resistance, antifouling property and the like in addition to low skin irritation and low odor. The polymer is useful in various fields such as inks, paints, adhesives, coating agents and resists. In particular, the polymerizable composition of the present invention has the advantage that the cationic polymerization curing rate is high and the polymerization inhibition by oxygen is small.
 以下、合成例、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 Hereinafter, although a synthesis example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
  [合成例1]
 撹拌装置、温度計、還流冷却器及び滴下ロートを取り付けた4つ口フラスコに、エチレングリコールモノビニルエーテル200g(分子量88、2.27mol)、粉末状水酸化カリウム152g(分子量56、2.72mol)を仕込んだ。この混合物を含むフラスコ内を窒素置換した後、滴下ロートを用いてアリルブロミド302g(分子量121、2.50mol)を20分かけて滴下した。滴下終了後、60℃で8時間撹拌した。ここでGC(ガスクロマトグラフィー)にて反応液を分析したところ、原料のエチレングリコールモノビニルエーテルが消失し、反応が完結したことを示した。反応液を室温まで冷却し、濾過で目的物に不溶な塩を取り除いた後、減圧下で蒸留することにより、本発明のビニルエーテル化合物(b)に相当する(b-1)H2C=CHOCH2CH2OCH2CH=CH2を218g(分子量128、1.70mol)得た。これは無色透明液状のもので、GC純度は97%であった。
[Synthesis Example 1]
In a four-necked flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 200 g of ethylene glycol monovinyl ether (molecular weight 88, 2.27 mol) and 152 g of powdered potassium hydroxide (molecular weight 56, 2.72 mol) were added. Prepared. After the inside of the flask containing the mixture was purged with nitrogen, 302 g (molecular weight 121, 2.50 mol) of allyl bromide was dropped over 20 minutes using a dropping funnel. After completion of dropping, the mixture was stirred at 60 ° C. for 8 hours. When the reaction solution was analyzed by GC (gas chromatography), the raw material ethylene glycol monovinyl ether disappeared, indicating that the reaction was complete. The reaction solution is cooled to room temperature, the salt insoluble in the target product is removed by filtration, and then distilled under reduced pressure to obtain (b-1) H 2 C═CHOCH corresponding to the vinyl ether compound (b) of the present invention. 218 g (molecular weight 128, 1.70 mol) of 2 CH 2 OCH 2 CH═CH 2 was obtained. This was a colorless and transparent liquid, and the GC purity was 97%.
  [合成例2]
 撹拌装置、温度計、還流冷却器及び滴下ロートを取り付けた4つ口フラスコに、2-アリルフェノール264g(分子量134、1.97mol)、粉末状水酸化カリウム126g(分子量56、2.25mol)を仕込んだ。この混合物を含むフラスコ内を窒素置換した後、滴下ロートを用いて2-クロロエチルビニルエーテル232g(分子量107、2.17mol)を20分かけて滴下した。滴下終了後、100℃で8時間撹拌した。ここでGCにて反応液を分析したところ、原料の2-アリルフェノールが消失し、反応が完結したことを示した。反応液を室温まで冷却し、濾過で目的物に不溶な塩を取り除いた後、減圧下で蒸留することにより、下記式(3)で表される、本発明のビニルエーテル化合物(b)に相当するビニルエーテル(b-2)を301g(分子量204、1.48mol)得た。これは無色透明液状のもので、GC純度は95%であった。
Figure JPOXMLDOC01-appb-C000001
[Synthesis Example 2]
In a four-necked flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 264 g of 2-allylphenol (molecular weight 134, 1.97 mol) and 126 g of powdered potassium hydroxide (molecular weight 56, 2.25 mol) were added. Prepared. After the inside of the flask containing this mixture was purged with nitrogen, 232 g (molecular weight 107, 2.17 mol) of 2-chloroethyl vinyl ether was added dropwise over 20 minutes using a dropping funnel. After completion of dropping, the mixture was stirred at 100 ° C. for 8 hours. Here, when the reaction solution was analyzed by GC, the raw material 2-allylphenol disappeared and it was shown that the reaction was completed. The reaction solution is cooled to room temperature, the salt insoluble in the target product is removed by filtration, and then distilled under reduced pressure, which corresponds to the vinyl ether compound (b) of the present invention represented by the following formula (3). 301 g (molecular weight 204, 1.48 mol) of vinyl ether (b-2) was obtained. This was a colorless and transparent liquid, and the GC purity was 95%.
Figure JPOXMLDOC01-appb-C000001
  [実施例1]
 撹拌装置、温度計、還流冷却器及び滴下ロートを取り付けた4つ口フラスコに、合成例1のビニルエーテル化合物(b-1)86g(分子量128、0.67mol)、白金触媒(白金0.5質量%含有トルエン溶液)0.14gを仕込んだ。この混合物を含むフラスコ内を窒素置換した後、100℃まで昇温し、滴下ロートを用いて25℃において液体である(a-1)1,1,1,3,5,5,5-ヘプタメチルトリシロキサン50g(分子量223、0.22mol)を10分かけて滴下した((b)成分中のアリル基/(a)成分中のヒドロシリル基)のモル比:3.0)。滴下終了後、100℃で4時間撹拌した。ここで、GCにて反応液を分析したところ、原料の1,1,1,3,5,5,5-ヘプタメチルトリシロキサンが消失し、過剰のビニルエーテル化合物(b-1)の他、新たに3つの生成物が確認された。反応液を室温まで冷却し、減圧下で蒸留することにより、目的とするビニルエーテル官能性オルガノポリシロキサンに相当するシリコーンDを63g得た。シリコーンDは無色透明液状であった。過剰に仕込んだビニルエーテル化合物(b-1)は回収した。また、蒸留により単離した他成分を分析した結果、1,1,1,3,5,5,5-ヘプタメチルトリシロキサンにビニルエーテル化合物(b-1)中のビニルエーテル基が付加したシリコーンD’、1,1,1,3,5,5,5-ヘプタメチルトリシロキサンにビニルエーテル化合物(b-1)中のアリル基とビニルエーテル基が両方付加したシリコーンD”が生成していることが分かった。GCによる分析の結果、シリコーンD/D’/D”=95/2/3の比率で生成していることが分かった。
[Example 1]
In a four-necked flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 86 g (molecular weight 128, 0.67 mol) of the vinyl ether compound (b-1) of Synthesis Example 1 and platinum catalyst (0.5 mass of platinum) % -Containing toluene solution) 0.14 g was charged. The flask containing the mixture was purged with nitrogen, heated to 100 ° C., and (a-1) 1,1,1,3,5,5,5-hepta which was liquid at 25 ° C. using a dropping funnel. 50 g of methyltrisiloxane (molecular weight 223, 0.22 mol) was added dropwise over 10 minutes (molar ratio of allyl group in component (b) / hydrosilyl group in component (a): 3.0). After completion of dropping, the mixture was stirred at 100 ° C. for 4 hours. Here, when the reaction solution was analyzed by GC, the raw material 1,1,1,3,5,5,5-heptamethyltrisiloxane disappeared, and in addition to the excess vinyl ether compound (b-1), Three products were identified. The reaction solution was cooled to room temperature and distilled under reduced pressure to obtain 63 g of silicone D corresponding to the desired vinyl ether functional organopolysiloxane. Silicone D was a colorless transparent liquid. The excess vinyl ether compound (b-1) was recovered. Further, as a result of analysis of other components isolated by distillation, silicone D ′ in which the vinyl ether group in the vinyl ether compound (b-1) was added to 1,1,1,3,5,5,5-heptamethyltrisiloxane. , 1,1,1,3,5,5,5-heptamethyltrisiloxane was found to produce a silicone D ″ in which both the allyl group and the vinyl ether group in the vinyl ether compound (b-1) were added. As a result of GC analysis, it was found that silicone D / D ′ / D ″ = 95/2/3.
  [実施例2]
 撹拌装置、温度計、還流冷却器及び滴下ロートを取り付けた4つ口フラスコに、合成例1のビニルエーテル化合物(b-1)144g(分子量128、1.11mol)、白金触媒(白金0.5質量%含有トルエン溶液)0.19gを仕込んだ。この混合物を含むフラスコ内を窒素置換した後、100℃まで昇温し、滴下ロートを用いて25℃において液体である(a-1)1,1,1,3,5,5,5-ヘプタメチルトリシロキサン50g(分子量223、0.22mol)を10分かけて滴下した((b)成分中のアリル基/(a)成分中のヒドロシリル基)のモル比:5.0)。滴下終了後、100℃で4時間撹拌した。ここで、GCにて反応液を分析したところ、原料の1,1,1,3,5,5,5-ヘプタメチルトリシロキサンが消失し、過剰のビニルエーテル化合物(b-1)の他、新たに3つの生成物が確認された。反応液を室温まで冷却し、減圧下で蒸留することにより、目的とするビニルエーテル官能性オルガノポリシロキサンに相当するシリコーンEを65g得た。シリコーンEは無色透明液状であった。過剰に仕込んだビニルエーテル化合物(b-1)は回収した。また、蒸留により単離した他成分を分析した結果、1,1,1,3,5,5,5-ヘプタメチルトリシロキサンにビニルエーテル化合物(b-1)中のビニルエーテル基が付加したシリコーンE’、1,1,1,3,5,5,5-ヘプタメチルトリシロキサンにビニルエーテル化合物(b-1)中のアリル基とビニルエーテル基が両方付加したシリコーンE”が生成していることが分かった。GCによる分析の結果、シリコーンE/E’/E”=96/2/2の比率で生成していることが分かった。
[Example 2]
In a four-necked flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 144 g of vinyl ether compound (b-1) of Synthesis Example 1 (molecular weight 128, 1.11 mol), platinum catalyst (platinum 0.5 mass) % -Containing toluene solution) 0.19 g was charged. The inside of the flask containing this mixture was purged with nitrogen, then heated to 100 ° C., and (a-1) 1,1,1,3,5,5,5-hepta which was liquid at 25 ° C. using a dropping funnel. 50 g of methyltrisiloxane (molecular weight 223, 0.22 mol) was added dropwise over 10 minutes (molar ratio of allyl group in component (b) / hydrosilyl group in component (a): 5.0). After completion of dropping, the mixture was stirred at 100 ° C. for 4 hours. Here, when the reaction solution was analyzed by GC, the raw material 1,1,1,3,5,5,5-heptamethyltrisiloxane disappeared, and in addition to the excess vinyl ether compound (b-1), Three products were identified. The reaction solution was cooled to room temperature and distilled under reduced pressure to obtain 65 g of silicone E corresponding to the desired vinyl ether functional organopolysiloxane. Silicone E was a colorless transparent liquid. The excess vinyl ether compound (b-1) was recovered. Further, as a result of analysis of other components isolated by distillation, as a result, silicone E ′ in which the vinyl ether group in the vinyl ether compound (b-1) was added to 1,1,1,3,5,5,5-heptamethyltrisiloxane. , 1,1,1,3,5,5,5-heptamethyltrisiloxane was found to produce a silicone E ″ in which both the allyl group and the vinyl ether group in the vinyl ether compound (b-1) were added. As a result of GC analysis, it was found that silicone E / E ′ / E ″ = 96/2/2.
  [実施例3]
 撹拌装置、温度計、還流冷却器及び滴下ロートを取り付けた4つ口フラスコに、合成例1のビニルエーテル化合物(b-1)89g(分子量128、0.69mol)、白金触媒(白金0.5質量%含有トルエン溶液)0.14gを仕込んだ。この混合物を含むフラスコ内を窒素置換した後、100℃まで昇温し、滴下ロートを用いて25℃において液体である(a-2)下記式(4)で表されるオルガノポリシロキサン50g(SiH:0.14mol)を10分かけて滴下した((b)成分中のアリル基/(a)成分中のヒドロシリル基)のモル比:5.0)。滴下終了後、100℃で4時間撹拌した。ここで1H-NMRにより、ヒドロシリル基のピーク(4.6~4.8ppm)が消失し、シルエチレンの新たなピーク(0.5~0.7ppm)が生成したことで、反応の進行を確認した。その後、反応液を室温まで冷却し、ストリッピングで過剰のビニルエーテル化合物(b-1)を留去・回収した。活性炭で処理した後、濾過を行うことにより、目的とするビニルエーテル官能性オルガノポリシロキサンに相当するシリコーンFを62g得た。シリコーンFは無色透明液状であった。GPCにて分析したところ、架橋による高分子量体の生成は確認されなかった。
[Example 3]
In a four-necked flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 89 g (molecular weight 128, 0.69 mol) of vinyl ether compound (b-1) of Synthesis Example 1 and platinum catalyst (0.5 mass of platinum) % -Containing toluene solution) 0.14 g was charged. The flask containing the mixture was purged with nitrogen, then heated to 100 ° C., and a liquid at 25 ° C. using a dropping funnel (a-2) 50 g of organopolysiloxane represented by the following formula (4) (SiH : 0.14 mol) was added dropwise over 10 minutes (molar ratio of allyl group in component (b) / hydrosilyl group in component (a): 5.0). After completion of dropping, the mixture was stirred at 100 ° C. for 4 hours. Here, by 1 H-NMR, the hydrosilyl group peak (4.6 to 4.8 ppm) disappeared, and a new silethylene peak (0.5 to 0.7 ppm) was formed, which caused the reaction to proceed. confirmed. Thereafter, the reaction solution was cooled to room temperature, and excess vinyl ether compound (b-1) was distilled off and recovered by stripping. After treatment with activated carbon, filtration was performed to obtain 62 g of silicone F corresponding to the target vinyl ether functional organopolysiloxane. Silicone F was a colorless transparent liquid. When analyzed by GPC, the formation of a high molecular weight product due to crosslinking was not confirmed.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
  [実施例4]
 撹拌装置、温度計、還流冷却器及び滴下ロートを取り付けた4つ口フラスコに、合成例1のビニルエーテル化合物(b-1)40g(分子量128、0.31mol)、白金触媒(白金0.5質量%含有トルエン溶液)0.09gを仕込んだ。この混合物を含むフラスコ内を窒素置換した後、100℃まで昇温し、滴下ロートを用いて25℃において液体である(a-3)下記式(5)で表されるオルガノポリシロキサン(但し、各シロキサン単位の結合順序は、下記に制限されるものではない。)50g(SiH:0.06mol)を10分かけて滴下した((b)成分中のアリル基/(a)成分中のヒドロシリル基)のモル比:5.0)。滴下終了後、100℃で4時間撹拌した。ここで1H-NMRにより、ヒドロシリル基のピーク(4.6~4.8ppm)が消失し、シルエチレンの新たなピーク(0.5~0.7ppm)が生成したことで、反応の進行を確認した。その後、反応液を室温まで冷却し、ストリッピングで過剰のビニルエーテル化合物(b-1)を留去・回収した。活性炭で処理した後、濾過を行うことにより、目的とするビニルエーテル官能性オルガノポリシロキサンに相当するシリコーンGを40g得た。シリコーンGは無色透明液状であった。GPCにて分析したところ、架橋による高分子量体の生成は確認されなかった。
[Example 4]
To a four-necked flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 40 g (molecular weight 128, 0.31 mol) of vinyl ether compound (b-1) of Synthesis Example 1 and platinum catalyst (0.5 mass of platinum). % -Containing toluene solution) 0.09 g was charged. The flask containing the mixture was purged with nitrogen, heated to 100 ° C., and a liquid at 25 ° C. using a dropping funnel (a-3) an organopolysiloxane represented by the following formula (5) (however, The bonding order of each siloxane unit is not limited to the following: 50 g (SiH: 0.06 mol) was added dropwise over 10 minutes (allyl group in component (b) / hydrosilyl in component (a)) Group) molar ratio: 5.0). After completion of dropping, the mixture was stirred at 100 ° C. for 4 hours. Here, by 1 H-NMR, the hydrosilyl group peak (4.6 to 4.8 ppm) disappeared, and a new silethylene peak (0.5 to 0.7 ppm) was generated, which caused the reaction to proceed. confirmed. Thereafter, the reaction solution was cooled to room temperature, and excess vinyl ether compound (b-1) was distilled off and recovered by stripping. After treatment with activated carbon, filtration was performed to obtain 40 g of silicone G corresponding to the target vinyl ether functional organopolysiloxane. Silicone G was a colorless transparent liquid. Analysis by GPC did not confirm the formation of a high molecular weight product due to crosslinking.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
  [実施例5]
 撹拌装置、温度計、還流冷却器及び滴下ロートを取り付けた4つ口フラスコに、合成例2のビニルエーテル化合物(b-2)142g(分子量204、0.69mol)、白金触媒(白金0.5質量%含有トルエン溶液)0.19gを仕込んだ。この混合物を含むフラスコ内を窒素置換した後、100℃まで昇温し、滴下ロートを用いて25℃において液体である(a-2)下記式(4)で表されるオルガノポリシロキサン50g(SiH:0.14mol)を10分かけて滴下した((b)成分中のアリル基/(a)成分中のヒドロシリル基)のモル比:5.0)。滴下終了後、100℃で4時間撹拌した。ここで1H-NMRにより、ヒドロシリル基のピーク(4.6~4.8ppm)が消失し、シルエチレンの新たなピーク(0.5~0.7ppm)が生成したことで、反応の進行を確認した。その後、反応液を室温まで冷却し、ストリッピングで過剰のビニルエーテル化合物(b-2)を留去・回収した。活性炭で処理した後、濾過を行うことにより、目的とするビニルエーテル官能性オルガノポリシロキサンに相当するシリコーンHを68g得た。シリコーンHは無色透明液状であった。GPCにて分析したところ、架橋による高分子量体の生成は確認されなかった。
[Example 5]
In a four-necked flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 142 g (molecular weight 204, 0.69 mol) of vinyl ether compound (b-2) of Synthesis Example 2 and platinum catalyst (0.5 mass of platinum) % -Containing toluene solution) 0.19 g was charged. The flask containing the mixture was purged with nitrogen, then heated to 100 ° C., and a liquid at 25 ° C. using a dropping funnel (a-2) 50 g of organopolysiloxane represented by the following formula (4) (SiH : 0.14 mol) was added dropwise over 10 minutes (molar ratio of allyl group in component (b) / hydrosilyl group in component (a): 5.0). After completion of dropping, the mixture was stirred at 100 ° C. for 4 hours. Here, by 1 H-NMR, the hydrosilyl group peak (4.6 to 4.8 ppm) disappeared, and a new silethylene peak (0.5 to 0.7 ppm) was formed, which caused the reaction to proceed. confirmed. Thereafter, the reaction solution was cooled to room temperature, and excess vinyl ether compound (b-2) was distilled off and recovered by stripping. After treating with activated carbon, filtration was performed to obtain 68 g of silicone H corresponding to the target vinyl ether functional organopolysiloxane. Silicone H was a colorless transparent liquid. When analyzed by GPC, the formation of a high molecular weight product due to crosslinking was not confirmed.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
  [実施例6]
 実施例1で得られたシリコーンDを3g、ジエチレングリコールジビニルエーテルを7g、ビス[4-n-アルキル(C10~C13)フェニル]ヨードニウムヘキサフルオロアンチモン酸塩を0.1g混合し、得られた重合性組成物の硬化試験を行った。結果を表1に示した。
[Example 6]
3 g of silicone D obtained in Example 1, 7 g of diethylene glycol divinyl ether, and 0.1 g of bis [4-n-alkyl (C10 to C13) phenyl] iodonium hexafluoroantimonate were mixed, and the resulting polymerizability was obtained. The composition was subjected to a curing test. The results are shown in Table 1.
  [実施例7]
 実施例3で得られたシリコーンFを10g、ビス[4-n-アルキル(C10~C13)フェニル]ヨードニウムヘキサフルオロアンチモン酸塩を0.1g混合し、得られた重合性組成物の硬化試験を行った。結果を表1に示した。
[Example 7]
10 g of the silicone F obtained in Example 3 and 0.1 g of bis [4-n-alkyl (C10 to C13) phenyl] iodonium hexafluoroantimonate were mixed, and a curing test of the resulting polymerizable composition was conducted. went. The results are shown in Table 1.
  [実施例8]
 実施例4で得られたシリコーンGを10g、ビス[4-n-アルキル(C10~C13)フェニル]ヨードニウムヘキサフルオロアンチモン酸塩を0.1g混合し、得られた重合性組成物の硬化試験を行った。結果を表1に示した。
[Example 8]
10 g of the silicone G obtained in Example 4 and 0.1 g of bis [4-n-alkyl (C10 to C13) phenyl] iodonium hexafluoroantimonate were mixed, and a curing test of the resulting polymerizable composition was conducted. went. The results are shown in Table 1.
  [実施例9]
 実施例5で得られたシリコーンHを10g、ビス[4-n-アルキル(C10~C13)フェニル]ヨードニウムヘキサフルオロアンチモン酸塩を0.1g混合し、得られた重合性組成物の硬化試験を行った。結果を表1に示した。
[Example 9]
10 g of the silicone H obtained in Example 5 and 0.1 g of bis [4-n-alkyl (C10 to C13) phenyl] iodonium hexafluoroantimonate were mixed, and a curing test of the resulting polymerizable composition was conducted. went. The results are shown in Table 1.
  [比較例1]
 撹拌装置、温度計、還流冷却器及び滴下ロートを取り付けた4つ口フラスコに、合成例1のビニルエーテル化合物(b-1)29g(分子量128、0.22mol)、白金触媒(白金0.5質量%含有トルエン溶液)0.08gを仕込んだ。この混合物を含むフラスコ内を窒素置換した後、100℃まで昇温し、滴下ロートを用いて25℃において液体である(a-1)1,1,1,3,5,5,5-ヘプタメチルトリシロキサン50g(分子量223、0.22mol)を10分かけて滴下した((b)成分中のアリル基/(a)成分中のヒドロシリル基)のモル比:1.0)。滴下終了後、100℃で4時間撹拌した。ここでGCにて反応液を分析したところ、原料の1,1,1,3,5,5,5-ヘプタメチルトリシロキサンが消失し、過剰のビニルエーテル化合物(b-1)の他、新たに3つの生成物が確認された。反応液を室温まで冷却し、減圧下で蒸留することにより、ビニルエーテル官能性オルガノポリシロキサンに相当するシリコーンIを43g得た。シリコーンIは無色透明液状であった。また、蒸留により単離した他成分を分析した結果、1,1,1,3,5,5,5-ヘプタメチルトリシロキサンにビニルエーテル化合物(b-1)中のビニルエーテル基が付加したシリコーンI’、1,1,1,3,5,5,5-ヘプタメチルトリシロキサンにビニルエーテル化合物(b-1)中のアリル基とビニルエーテル基が両方付加したシリコーンI”が生成していることが分かった。GCによる分析の結果、シリコーンI/I’/I”=68/8/24の比率で生成しており、シロキサン鎖間をビニル化合物で架橋したものの割合が非常に多くなることが分かった。
[Comparative Example 1]
In a four-necked flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 29 g (molecular weight 128, 0.22 mol) of vinyl ether compound (b-1) of Synthesis Example 1 and platinum catalyst (0.5 mass of platinum) % Toluene solution) was charged at 0.08 g. The inside of the flask containing this mixture was purged with nitrogen, then heated to 100 ° C., and (a-1) 1,1,1,3,5,5,5-hepta which was liquid at 25 ° C. using a dropping funnel. 50 g of methyltrisiloxane (molecular weight 223, 0.22 mol) was added dropwise over 10 minutes (molar ratio of (allylic group in component (b) / hydrosilyl group in component (a)): 1.0). After completion of dropping, the mixture was stirred at 100 ° C. for 4 hours. When the reaction solution was analyzed by GC, the raw material 1,1,1,3,5,5,5-heptamethyltrisiloxane disappeared, and in addition to the excess vinyl ether compound (b-1), Three products were identified. The reaction solution was cooled to room temperature and distilled under reduced pressure to obtain 43 g of silicone I corresponding to vinyl ether functional organopolysiloxane. Silicone I was a colorless transparent liquid. Further, as a result of analysis of other components isolated by distillation, it was found that the silicone I ′ in which the vinyl ether group in the vinyl ether compound (b-1) was added to 1,1,1,3,5,5,5-heptamethyltrisiloxane. , 1,1,1,3,5,5,5-heptamethyltrisiloxane was found to produce silicone I ″ in which both allyl group and vinyl ether group in vinyl ether compound (b-1) were added. As a result of GC analysis, it was found that silicone I / I ′ / I ″ = 68/8/24 was formed, and the ratio of siloxane chains cross-linked with a vinyl compound was extremely high.
  [比較例2]
 撹拌装置、温度計、還流冷却器、滴下ロートを取り付けた4つ口フラスコに、合成例1のビニルエーテル化合物(b-1)58g(分子量128、0.44mol)、白金触媒(白金0.5質量%含有トルエン溶液)0.11gを仕込んだ。この混合物を含むフラスコ内を窒素置換した後、100℃まで昇温し、滴下ロートを用いて25℃において液体である(a-1)1,1,1,3,5,5,5-ヘプタメチルトリシロキサン50g(分子量223、0.22mol)を10分かけて滴下した((b)成分中のアリル基/(a)成分中のヒドロシリル基)のモル比:2.0)。滴下終了後、100℃で4時間撹拌した。ここでGCにて反応液を分析したところ、原料の1,1,1,3,5,5,5-ヘプタメチルトリシロキサンが消失し、過剰のビニルエーテル化合物(b-1)の他、新たに3つの生成物が確認された。反応液を室温まで冷却し、減圧下で蒸留することにより、ビニルエーテル官能性オルガノポリシロキサンに相当するシリコーンJを51g得た。シリコーンJは無色透明液状であった。また、蒸留により単離した他成分を分析した結果、1,1,1,3,5,5,5-ヘプタメチルトリシロキサンにビニルエーテル化合物(b-1)中のビニルエーテル基が付加したシリコーンJ’、1,1,1,3,5,5,5-ヘプタメチルトリシロキサンにビニルエーテル化合物(b-1)中のアリル基とビニルエーテル基が両方付加したシリコーンJ”が生成していることが分かった。GCによる分析の結果、シリコーンJ/J’/J”=86/4/10の比率で生成しており、シロキサン鎖間をビニル化合物で架橋したものの割合が多くなることが分かった。
[Comparative Example 2]
In a four-necked flask equipped with a stirrer, thermometer, reflux condenser, and dropping funnel, 58 g (molecular weight 128, 0.44 mol) of vinyl ether compound (b-1) of Synthesis Example 1 and platinum catalyst (0.5 mass of platinum). % -Containing toluene solution) 0.11 g was charged. The inside of the flask containing this mixture was purged with nitrogen, then heated to 100 ° C., and (a-1) 1,1,1,3,5,5,5-hepta which was liquid at 25 ° C. using a dropping funnel. 50 g of methyltrisiloxane (molecular weight 223, 0.22 mol) was added dropwise over 10 minutes (molar ratio of allyl group in component (b) / hydrosilyl group in component (a): 2.0). After completion of dropping, the mixture was stirred at 100 ° C. for 4 hours. When the reaction solution was analyzed by GC, the raw material 1,1,1,3,5,5,5-heptamethyltrisiloxane disappeared, and in addition to the excess vinyl ether compound (b-1), Three products were identified. The reaction solution was cooled to room temperature and distilled under reduced pressure to obtain 51 g of silicone J corresponding to vinyl ether functional organopolysiloxane. Silicone J was a colorless transparent liquid. Further, as a result of analysis of other components isolated by distillation, it was found that silicone J ′ in which the vinyl ether group in the vinyl ether compound (b-1) was added to 1,1,1,3,5,5,5-heptamethyltrisiloxane. , 1,1,1,3,5,5,5-heptamethyltrisiloxane was found to produce a silicone J ″ in which both the allyl group and the vinyl ether group in the vinyl ether compound (b-1) were added. As a result of GC analysis, it was found that silicone was produced at a ratio of J / J ′ / J ″ = 86/4/10, and the ratio of those obtained by crosslinking between siloxane chains with a vinyl compound was increased.
  [比較例3]
 撹拌装置、温度計、還流冷却器、滴下ロートを取り付けた4つ口フラスコに、合成例1のビニルエーテル化合物(b-1)18g(分子量128、0.14mol)、白金触媒(白金0.5質量%含有トルエン溶液)0.07gを仕込んだ。この混合物を含むフラスコ内を窒素置換した後、100℃まで昇温し、滴下ロートを用いて25℃において液体である(a-2)下記式(4)で表されるオルガノポリシロキサン50g(SiH:0.14mol)を10分かけて滴下した((b)成分中のアリル基/(a)成分中のヒドロシリル基)のモル比:1.0)。滴下終了後、100℃で4時間撹拌した。ここで1H-NMRにより、ヒドロシリル基のピーク(4.6~4.8ppm)が消失し、シルエチレンの新たなピーク(0.5~0.7ppm)が生成したことで、反応の進行を確認した。その後、反応液を室温まで冷却し、ストリッピングで過剰のビニルエーテル化合物(b-1)を留去した。活性炭で処理した後、濾過を行うことによりビニルエーテル官能性オルガノポリシロキサンに相当するシリコーンKを56g得た。シリコーンKは無色透明液状であった。GPCにて分析したところ、一部架橋が起こり高分子量化していることが分かった。
[Comparative Example 3]
In a four-necked flask equipped with a stirrer, thermometer, reflux condenser, and dropping funnel, 18 g (molecular weight 128, 0.14 mol) of vinyl ether compound (b-1) of Synthesis Example 1 and platinum catalyst (0.5 mass of platinum) 0.07 g of toluene solution containing%) was charged. The flask containing the mixture was purged with nitrogen, then heated to 100 ° C., and a liquid at 25 ° C. using a dropping funnel (a-2) 50 g of organopolysiloxane represented by the following formula (4) (SiH : 0.14 mol) was added dropwise over 10 minutes (molar ratio of allyl group in component (b) / hydrosilyl group in component (a): 1.0). After completion of dropping, the mixture was stirred at 100 ° C. for 4 hours. Here, by 1 H-NMR, the hydrosilyl group peak (4.6 to 4.8 ppm) disappeared, and a new silethylene peak (0.5 to 0.7 ppm) was formed, which caused the reaction to proceed. confirmed. Thereafter, the reaction solution was cooled to room temperature, and excess vinyl ether compound (b-1) was distilled off by stripping. After treatment with activated carbon, filtration was performed to obtain 56 g of silicone K corresponding to vinyl ether functional organopolysiloxane. Silicone K was a colorless transparent liquid. When analyzed by GPC, it was found that partial cross-linking occurred and the molecular weight was increased.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
  [比較例4]
 撹拌装置、温度計、還流冷却器、滴下ロートを取り付けた4つ口フラスコに、合成例1のビニルエーテル化合物(b-1)36g(分子量128、0.28mol)、白金触媒の0.5質量%トルエン溶液0.09gを仕込んだ。この混合物を含むフラスコ内を窒素置換した後、100℃まで昇温し、滴下ロートを用いて25℃において液体である(a-2)下記式(4)で表されるオルガノポリシロキサン50g(SiH:0.14mol)を10分かけて滴下した((b)成分中のアリル基/(a)成分中のヒドロシリル基)のモル比:2.0)。滴下終了後、100℃で4時間撹拌した。ここで1H-NMRにより、ヒドロシリル基のピーク(4.6~4.8ppm)が消失し、シルエチレンの新たなピーク(0.5~0.7ppm)が生成したことで、反応の進行を確認した。その後、反応液を室温まで冷却し、ストリッピングで過剰のビニルエーテル化合物(b-1)を留去した。活性炭で処理した後、濾過を行うことによりビニルエーテル官能性オルガノポリシロキサンに相当するシリコーンLを59g得た。シリコーンLは無色透明液状であった。GPCにて分析したところ、一部架橋が起こり高分子量化していることが分かった。
[Comparative Example 4]
In a four-necked flask equipped with a stirrer, thermometer, reflux condenser, and dropping funnel, 36 g (molecular weight 128, 0.28 mol) of the vinyl ether compound (b-1) of Synthesis Example 1 and 0.5% by mass of the platinum catalyst. 0.09 g of toluene solution was charged. The flask containing the mixture was purged with nitrogen, then heated to 100 ° C., and a liquid at 25 ° C. using a dropping funnel (a-2) 50 g of organopolysiloxane represented by the following formula (4) (SiH : 0.14 mol) was added dropwise over 10 minutes (molar ratio of allyl group in component (b) / hydrosilyl group in component (a): 2.0). After completion of dropping, the mixture was stirred at 100 ° C. for 4 hours. Here, by 1 H-NMR, the hydrosilyl group peak (4.6 to 4.8 ppm) disappeared, and a new silethylene peak (0.5 to 0.7 ppm) was formed, which caused the reaction to proceed. confirmed. Thereafter, the reaction solution was cooled to room temperature, and excess vinyl ether compound (b-1) was distilled off by stripping. After treatment with activated carbon, filtration was performed to obtain 59 g of silicone L corresponding to vinyl ether functional organopolysiloxane. Silicone L was a colorless transparent liquid. When analyzed by GPC, it was found that partial cross-linking occurred and the molecular weight was increased.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
  [比較例5]
 比較例3で得られたシリコーンKを10g、ビス[4-n-アルキル(C10~C13)フェニル]ヨードニウムヘキサフルオロアンチモン酸塩を0.1g混合し、得られた重合性組成物の硬化試験を行った。結果を表1に示した。
[Comparative Example 5]
10 g of the silicone K obtained in Comparative Example 3 and 0.1 g of bis [4-n-alkyl (C10 to C13) phenyl] iodonium hexafluoroantimonate were mixed, and a curing test of the resulting polymerizable composition was conducted. went. The results are shown in Table 1.
  [比較例6]
 比較例4で得られたシリコーンLを10g、ビス[4-n-アルキル(C10~C13)フェニル]ヨードニウムヘキサフルオロアンチモン酸塩を0.1g混合し、得られた重合性組成物の硬化試験を行った。結果を表1に示した。
[Comparative Example 6]
10 g of the silicone L obtained in Comparative Example 4 and 0.1 g of bis [4-n-alkyl (C10 to C13) phenyl] iodonium hexafluoroantimonate were mixed, and the curing test of the resulting polymerizable composition was conducted. went. The results are shown in Table 1.
  [比較例7]
 下記式(6)で表される両末端メタクリル官能性オルガノポリシロキサンを10g、IRGACURE 1173(BASF社製、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン)を0.5g混合し、得られた重合性組成物の硬化試験を行った。結果を表1に示した。
[Comparative Example 7]
10 g of methacryl-functional organopolysiloxane represented by the following formula (6) and 0.5 g of IRGACURE 1173 (manufactured by BASF, 2-hydroxy-2-methyl-1-phenyl-propan-1-one) And the hardening test of the obtained polymeric composition was done. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記合成例、実施例及び比較例の各種物性の測定及び評価は以下の方法で行った。
(1)化合物物性の測定方法
(1.1)GC分析
 GCは下記条件で測定した。
ガスクロマトグラフ:7890A GCシステム(Agilent社製)、
検出器:FID、温度300℃
キャピラリーカラム:DB-5MS 0.53mm×30m×1μm(J&W社製)
Measurement and evaluation of various physical properties of the above synthesis examples, examples and comparative examples were performed by the following methods.
(1) Measuring method of compound physical properties (1.1) GC analysis GC was measured under the following conditions.
Gas chromatograph: 7890A GC system (manufactured by Agilent),
Detector: FID, temperature 300 ° C
Capillary column: DB-5MS 0.53 mm × 30 m × 1 μm (manufactured by J & W)
(1.2)1H-NMR分析
 AVANCE-III 400MHz(BRUKER製)を用い、測定溶媒として重クロロホルムを用いて測定した。
(1.2) 1 H-NMR analysis The measurement was performed using AVANCE-III 400 MHz (manufactured by BRUKER) and deuterated chloroform as a measurement solvent.
(1.3)GPC分析
 所定質量の試料をTHFで0.3質量%濃度に希釈して、標準ポリスチレンにより分子量を更正した液体クロマトグラフィーHLLC-8220GPC(東ソー社製)を用いて測定した。
(1.3) GPC analysis A sample having a predetermined mass was diluted with THF to a concentration of 0.3% by mass, and the molecular weight was corrected with standard polystyrene, and the measurement was performed using liquid chromatography HLLC-8220GPC (manufactured by Tosoh Corporation).
(2)硬化皮膜物性の測定方法
(2.1)硬化皮膜外観と硬化性
 上記実施例、比較例にて作製した重合性組成物をガラス板上にバーコーターNo.9を用いて塗布後、メタルハライドランプで1,000mJ/cm2紫外線照射し、得られた硬化皮膜外観(皮膜透明性)を目視にて観察した。同様に窒素置換BOXを用いて、窒素雰囲気下での硬化皮膜評価も行った。硬化の状態は指で触診することで評価し、タックがないものを硬化性○、タックがあるものを硬化性×とした。
(2) Measurement Method of Cured Film Properties (2.1) Appearance and Curability of Cured Film The polymerizable compositions prepared in the above Examples and Comparative Examples were placed on a glass plate with a bar coater no. After application using No. 9, the film was irradiated with ultraviolet rays of 1,000 mJ / cm 2 with a metal halide lamp, and the resulting cured film appearance (film transparency) was visually observed. Similarly, a cured film was evaluated in a nitrogen atmosphere using a nitrogen-substituted BOX. The state of curing was evaluated by palpating with a finger, and those having no tack were designated as curability ○, and those having tack were designated as curability x.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1の結果より、本発明の重合性組成物(実施例6~9)は、硬化皮膜が透明で、空気雰囲気下及び窒素雰囲気下にて紫外線硬化性に優れることが分かった。 From the results shown in Table 1, it was found that the polymerizable compositions of the present invention (Examples 6 to 9) had a transparent cured film and were excellent in ultraviolet curability under an air atmosphere and a nitrogen atmosphere.

Claims (7)

  1.  (a)ヒドロシリル基を有するオルガノポリシロキサンと、
    (b)H2C=CHOCH2CH=CH2及びH2C=CHOR1CH2CH=CH2(R1は炭素原子数1~20の2価の炭化水素基であり、酸素原子を含んでいてもよい。)
    から選ばれる1種以上のビニルエーテル化合物とを、
     ((b)成分中のアリル基/(a)成分中のヒドロシリル基)のモル比が3.0以上の量で、
    (c)ヒドロシリル化触媒を用いて反応させる工程を含む、ビニルエーテル官能性オルガノポリシロキサンの製造方法。
    (A) an organopolysiloxane having a hydrosilyl group;
    (B) H 2 C═CHOCH 2 CH═CH 2 and H 2 C═CHOR 1 CH 2 CH═CH 2 (R 1 is a divalent hydrocarbon group having 1 to 20 carbon atoms and contains an oxygen atom. You may go out.)
    One or more vinyl ether compounds selected from
    The molar ratio of (allylic group in component (b) / hydrosilyl group in component (a)) is 3.0 or more,
    (C) A method for producing a vinyl ether functional organopolysiloxane, comprising a step of reacting with a hydrosilylation catalyst.
  2.  上記反応させる工程後に、過剰の(b)ビニルエーテル化合物を反応液から除く工程を含む請求項1記載のビニルエーテル官能性オルガノポリシロキサンの製造方法。 The method for producing a vinyl ether functional organopolysiloxane according to claim 1, further comprising a step of removing excess (b) vinyl ether compound from the reaction solution after the reaction step.
  3.  (a)成分が、下記平均組成式(1)
    (R2 3SiO1/2a(R2 2SiO2/2b(R2SiO3/2c(SiO4/2d
                                (1)
    (式中、R2は同一又は異種の、水素原子又は炭素原子数1~4の1価の炭化水素基であり、炭化水素基は酸素原子を含んでいてもよい。a、b、c及びdは0又は正数であり、a+b+c+d=1~100を満たす。但し、1分子あたり1個以上のR2は水素原子である。)
    で表され、25℃において液体である請求項1又は2記載のビニルエーテル官能性オルガノポリシロキサンの製造方法。
    (A) component is the following average composition formula (1)
    (R 2 3 SiO 1/2 ) a (R 2 2 SiO 2/2 ) b (R 2 SiO 3/2 ) c (SiO 4/2 ) d
    (1)
    (Wherein R 2 is the same or different hydrogen atom or a monovalent hydrocarbon group having 1 to 4 carbon atoms, and the hydrocarbon group may contain an oxygen atom. A, b, c and d is 0 or a positive number and satisfies a + b + c + d = 1 to 100, provided that at least one R 2 per molecule is a hydrogen atom.
    The process for producing a vinyl ether functional organopolysiloxane according to claim 1 or 2, wherein the process is liquid at 25 ° C.
  4.  (b)成分が、H2C=CHOCH2CH=CH2、H2C=CHOCH2CH2OCH2CH=CH2及びH2C=CHOCH2CH2OC64CH2CH=CH2から選ばれる1種以上のビニルエーテル化合物である請求項1~3のいずれか1項記載のビニルエーテル官能性オルガノポリシロキサンの製造方法。 (B) component, H 2 C = CHOCH 2 CH = CH 2, H 2 C = CHOCH 2 CH 2 OCH 2 CH = CH 2 and H 2 C = CHOCH 2 CH 2 OC 6 H 4 CH 2 CH = CH 2 The method for producing a vinyl ether functional organopolysiloxane according to any one of claims 1 to 3, wherein the vinyl ether functional organopolysiloxane is one or more vinyl ether compounds selected from the group consisting of:
  5.  (c)成分が、白金族金属系触媒である請求項1~4のいずれか1項記載のビニルエーテル官能性オルガノポリシロキサンの製造方法。 The method for producing a vinyl ether functional organopolysiloxane according to any one of claims 1 to 4, wherein the component (c) is a platinum group metal catalyst.
  6.  請求項1~5のいずれか1項記載のビニルエーテル官能性オルガノポリシロキサンの製造方法によって得られるビニルエーテル官能性オルガノポリシロキサンと、重合開始剤とを含む重合性組成物。 A polymerizable composition comprising a vinyl ether functional organopolysiloxane obtained by the method for producing a vinyl ether functional organopolysiloxane according to any one of claims 1 to 5, and a polymerization initiator.
  7.  請求項6記載の重合性組成物を硬化して得られる硬化物。 A cured product obtained by curing the polymerizable composition according to claim 6.
PCT/JP2019/019454 2018-06-14 2019-05-16 Method for producing vinyl ether-functional organopolysiloxane, and polymerizable composition and cured product therefrom WO2019239782A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020525363A JPWO2019239782A1 (en) 2018-06-14 2019-05-16 A method for producing a vinyl ether functional organopolysiloxane, a polymerizable composition and a cured product thereof.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018113359 2018-06-14
JP2018-113359 2018-06-14

Publications (1)

Publication Number Publication Date
WO2019239782A1 true WO2019239782A1 (en) 2019-12-19

Family

ID=68841786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019454 WO2019239782A1 (en) 2018-06-14 2019-05-16 Method for producing vinyl ether-functional organopolysiloxane, and polymerizable composition and cured product therefrom

Country Status (2)

Country Link
JP (1) JPWO2019239782A1 (en)
WO (1) WO2019239782A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500522A (en) * 1982-04-01 1984-03-29 ゼネラル・エレクトリック・カンパニイ Vinyloxy functional organopolysiloxane composition
JPS6281391A (en) * 1985-10-04 1987-04-14 Asahi Glass Co Ltd Vinyloxypropyltrimethylsiloxysilane compound
JP2017014409A (en) * 2015-07-02 2017-01-19 信越化学工業株式会社 Polymerizable monomer and polymer thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500522A (en) * 1982-04-01 1984-03-29 ゼネラル・エレクトリック・カンパニイ Vinyloxy functional organopolysiloxane composition
JPS6281391A (en) * 1985-10-04 1987-04-14 Asahi Glass Co Ltd Vinyloxypropyltrimethylsiloxysilane compound
JP2017014409A (en) * 2015-07-02 2017-01-19 信越化学工業株式会社 Polymerizable monomer and polymer thereof

Also Published As

Publication number Publication date
JPWO2019239782A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
JPH05255508A (en) Uv-curable epoxysilicone-polyether block copolymer
JPH0832763B2 (en) UV Curable Epoxy Functional Silicone Containing Sylphenylene
JP2010116464A (en) Crosslinkable silicon compound, method for producing the same, crosslinkable composition, siloxane polymer, silicone membrane, silicon compound used as raw material of the crosslinkable silicon compound, and method for producing the same
JPH10501022A (en) Functionalized polyorganosiloxanes and one method of making them
EP0105341A1 (en) Vinyloxy-functional organopolysiloxanes compositions.
JPH04306222A (en) Uv-curing epoxysilicone
EP3594220A1 (en) Organosilicon compound and method for producing same
JP3598749B2 (en) Method for producing photocationically curable composition and photocationically curable hard coat agent composition
US6121342A (en) Photocationically curable compositions and process for producing the same
CN109983051B (en) Epoxy group-containing organopolysiloxane, ultraviolet-curable silicone composition, and cured coating film formation method
CN109735203B (en) Semi-closed cage-shaped trifunctional epoxy ether group POSS (polyhedral oligomeric silsesquioxane) composite material, paint and preparation method
EP0520608B1 (en) Silicones which contain lateral peripheral vinyl ether groups crosslinkable by cationic photoinitiators and their application for coatings and antiadhesive products for paper
KR100587724B1 (en) Radiation curable compositions containing alkenyl ether functional polyisobutylenes
Tanabe et al. A new resin system for super high solids coating
Soucek et al. A new class of silicone resins for coatings
WO2020116294A1 (en) ONE TERMINAL METHACRYLIC-MODIFIED ORGANO(POLY)SILOXANE HAVING POLY(ALKYLENE OXIDE) AT ω-TERMINAL, AND METHOD FOR PRODUCING SAME
EP0621316B1 (en) Organic silicon compounds and curable organopolysiloxane compositions
Zhan et al. Synthesis and properties of oxetane‐based polysiloxanes used for cationic UV curing coatings
WO2019239782A1 (en) Method for producing vinyl ether-functional organopolysiloxane, and polymerizable composition and cured product therefrom
EP2920228A2 (en) Photo-dimerization functional group-containing organopolysiloxane, activation energy radiation-curable organopolysiloxane composition, and cured product thereof
JP3796906B2 (en) Photocationically polymerizable organosilicon compound and method for producing the same, photocationically polymerizable coating composition, and film coating agent for peeling
KR101946071B1 (en) Fluorine-containing maleimide compound and method for making the same
Chakraborty et al. Mechanical and film properties of thermally curable polysiloxane
JP2000264970A (en) Reactive siloxane compound substituted with polyalkyleneoxy and its production
US20050261441A1 (en) Polyisobutylene composition and cured polyisobutylene product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525363

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19818791

Country of ref document: EP

Kind code of ref document: A1