WO2019239628A1 - Converter and motor control device - Google Patents

Converter and motor control device Download PDF

Info

Publication number
WO2019239628A1
WO2019239628A1 PCT/JP2019/003034 JP2019003034W WO2019239628A1 WO 2019239628 A1 WO2019239628 A1 WO 2019239628A1 JP 2019003034 W JP2019003034 W JP 2019003034W WO 2019239628 A1 WO2019239628 A1 WO 2019239628A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
motor
phase
converter
detection unit
Prior art date
Application number
PCT/JP2019/003034
Other languages
French (fr)
Japanese (ja)
Inventor
良知 林
聡 小塚
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019528930A priority Critical patent/JP6608096B1/en
Priority to CN201980037731.4A priority patent/CN112219348A/en
Priority to TW108119130A priority patent/TWI705647B/en
Publication of WO2019239628A1 publication Critical patent/WO2019239628A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • converters using a power regeneration system that returns regenerative power to an AC power source as an input power source are often used for energy saving.
  • the converter using the power regeneration system operates as a DC / AC converter that converts DC power supplied from the motor drive device to AC power during motor regeneration, thereby converting the regenerative power generated by the motor into AC. Return to power.
  • the operation of the converter that returns the regenerative power to the AC power supply is referred to as a regenerative operation.
  • the regenerative operation if the timing at which the switching elements constituting the converter are turned on deviates from the voltage phase of the AC power supply, the voltage difference increases, and an excessive current may flow to stop the motor drive device.
  • Patent Document 1 discloses a technique for detecting the voltage phase of the AC power supply by the zero crossing of the phase voltage.
  • a phase detection unit that detects the voltage phase of the AC power supply is connected to the AC terminal of the power regeneration converter, and the voltage phase of the AC power supply is detected by the phase detection unit.
  • the phase detector is mounted on a printed circuit board provided in the power regeneration converter. According to the technique disclosed in Patent Literature 1, since the voltage phase of the AC power supply is detected by the zero cross of the phase voltage, a phase detection signal that alternately changes between a high level and a low level between the zero cross points is generated. .
  • a harness is connected to the bus bar, for example, in order to detect the phase of the AC voltage in the phase detection unit provided on the printed circuit board.
  • the phase detector detects the AC voltage phase via the harness, there is a problem that the structure becomes complicated.
  • a converter according to the present invention is disposed between an AC power source that is an input power source and a motor driving device that performs variable speed control of the motor, and supplies DC power to the motor driving device.
  • a converter having a power regeneration function for supplying regenerative power when the motor decelerates to an AC power supply an AC terminal connected to the AC power supply, a first terminal connected to a high potential side DC wiring, and a low potential
  • a power module having a plurality of switching elements and a drive circuit for driving each of the plurality of switching elements.
  • the converter according to the present invention has an effect that the voltage phase of the AC power supply can be detected with a simple configuration.
  • FIG. 24 is a waveform diagram showing the behavior when the motor driving device shown in FIG. 24 operates the motor.
  • the figure which shows the structural example of the overload detection part shown in FIG. The figure which shows the structure of the converter and motor control apparatus which concern on Embodiment 6. Waveform diagram for explaining steady-state overload protection in the sixth embodiment The figure which shows the structural example of the overload detection part shown in FIG.
  • FIG. 10 shows a configuration example of a bus voltage determination circuit in the tenth embodiment.
  • FIG. 1 is a diagram illustrating a configuration of a converter and a motor control device according to the first embodiment.
  • converter 1-1 according to the first embodiment is provided between an AC power supply 3 that is a three-phase AC power supply that generates a three-phase AC voltage and a motor drive device 4.
  • the converter 1-1 converts the AC voltage from the AC power source 3 that generates a three-phase AC voltage during powering of the motor into a DC voltage and outputs the DC voltage to the motor driving device 4.
  • the motor driving device 4 receives the DC voltage supplied from the converter 1-1 and controls the motor 5 at a variable speed.
  • the motor control apparatus according to the first embodiment is an apparatus including a converter 1-1 and a motor driving device 4 that receives DC power from the converter 1-1 and controls the motor 5 at a variable speed.
  • the converter 1-1 includes a smoothing capacitor 21 that stores DC power, a power module 22, a bus voltage detector 23, a voltage phase detector 24, a bus current detector 25, and a base drive that is a drive signal generator.
  • the signal generation unit 26 includes a base drive circuit 27 that is a drive circuit, a regeneration control unit 28 that is a signal control unit, and a control power supply unit 29.
  • the power module 22 includes three AC terminals 11, 12, 13, a DC terminal 14 that is a first terminal to which a high potential side DC wiring is connected, and a second terminal to which a low potential side DC wiring is connected. A certain DC terminal 15 is provided.
  • the AC terminal 11 is connected to one end of the AC wiring 51.
  • the other end of the AC wiring 51 is connected to one end of the reactor 2-1.
  • the other end of the reactor 2-1 is connected to one end of an AC wiring 91.
  • the other end of the AC wiring 91 is connected to the terminal 3 ⁇ / b> R of the AC power supply 3.
  • the terminal 3R is a terminal to which an R-phase AC voltage that is a first phase is output. The R-phase AC voltage is applied to the AC terminal 11 via the reactor 2-1.
  • AC terminal 12 is connected to one end of AC wiring 52.
  • the other end of the AC wiring 52 is connected to one end of the reactor 2-2.
  • the other end of the reactor 2-2 is connected to one end of the AC wiring 92.
  • the other end of the AC wiring 92 is connected to the terminal 3 ⁇ / b> S of the AC power supply 3.
  • the terminal 3S is a terminal to which an S-phase AC voltage that is the second phase is output.
  • the S-phase AC voltage is applied to the AC terminal 12 via the reactor 2-2.
  • AC terminal 13 is connected to one end of AC wiring 53.
  • the other end of the AC wiring 53 is connected to one end of the reactor 2-3.
  • the other end of the reactor 2-3 is connected to one end of the AC wiring 93.
  • the other end of the AC wiring 93 is connected to the terminal 3T of the AC power source 3.
  • the terminal 3T is a terminal to which a T-phase AC voltage that is a third phase is output.
  • the T-phase AC voltage is applied to the AC terminal 13 via the reactor 2-3.
  • the reactors 2-1, 2-2, and 2-3 may be referred to as a reactor 2 when they are not distinguished.
  • the DC terminal 14 is connected to one end of a positive electrode bus 70P which is a DC wiring on the high potential side.
  • the other end of positive bus 70P is connected to output terminal 6-1 of converter 1-1.
  • the output terminal 6-1 is a high potential side DC terminal.
  • One end of the positive electrode bus 71P is connected to the output terminal 6-1.
  • the positive bus 71P is a high potential side DC wiring provided between the converter 1-1 and the motor driving device 4.
  • the other end of the positive electrode bus 71 ⁇ / b> P is connected to the DC terminal 17 of the motor driving device 4.
  • the DC terminal 17 is a high potential side DC terminal.
  • the DC terminal 14 of the power module 22 is electrically connected to the DC terminal 17 of the motor driving device 4 via the positive electrode bus 70P, the output terminal 6-1 and the positive electrode bus 71P.
  • the DC terminal 15 is connected to one end of a negative electrode bus 70N which is a DC wiring on the low potential side.
  • the other end of the negative electrode bus 70N is connected to the output terminal 6-2 of the converter 1-1.
  • the output terminal 6-2 is a DC terminal on the low potential side.
  • One end of the negative electrode bus 71N is connected to the output terminal 6-2.
  • the negative electrode bus 71N is a low potential side DC wiring provided between the converter 1-1 and the motor driving device 4.
  • the other end of the negative electrode bus 71N is connected to the DC terminal 18 of the motor driving device 4.
  • the DC terminal 18 is a DC terminal on the low potential side.
  • the DC terminal 15 of the power module 22 is electrically connected to the DC terminal 18 of the motor driving device 4 through the negative electrode bus 70N, the output terminal 6-2, and the negative electrode bus 71N.
  • the terminal 21a on the high potential side of the smoothing capacitor 21 is connected to the positive electrode bus 70P.
  • Reference numeral 80P represents a connection point between the high potential side terminal 21a of the smoothing capacitor 21 and the positive electrode bus 70P.
  • the low potential side terminal 21b of the smoothing capacitor 21 is connected to the negative electrode bus 70N.
  • reference numeral 80N represents a connection point between the low potential side terminal 21b of the smoothing capacitor 21 and the negative electrode bus 70N.
  • the power module 22 includes six rectifying elements D 1, D 2, D 3, D 4, D 5, D 6 and 6 switching elements S 1, S 2 for regeneration. , S3, S4, S5, and S6.
  • the six rectifying elements D1, D2, D3, D4, D5, and D6 may be referred to as rectifying elements D1 to D6, and the switching elements S1, S2, S3, S4, S5, and S6 may be referred to as switching elements S1 to S6. is there.
  • the rectifying element D1 is connected in antiparallel to the switching element S1. Specifically, the cathode that is the cathode of the rectifying element D1 is connected to the collector of the switching element S1, and the anode that is the anode of the rectifying element D1 is connected to the emitter of the switching element S1.
  • the rectifying element D1 and the switching element S1 constitute one power element.
  • the rectifier element D2 and the switching element S2 constitute a power element
  • the rectifier element D3 and the switching element S3 constitute a power element
  • the rectifier element D4 and the switching element S4 constitute a power element
  • the rectifier element D5 and the switching element The power element is configured by the element S5, and the power element is configured by the rectifying element D6 and the switching element S6.
  • each of the rectifier elements D1 to D6 for example, a diode, a Schottky barrier diode, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), or the like is used.
  • Each of the six rectifying elements D1, D2, D3, D4, D5, and D6 may be any element having a rectifying action, and is not limited to these elements.
  • Switching element S1 and switching element S2 are connected in series by wiring 8-1.
  • the switching element S1, the switching element S2, the rectifying element D1, the rectifying element D2, and the wiring 8-1 constitute a first arm.
  • One end of the wiring 8-1 is connected to the emitter of the switching element S1.
  • the other end of the wiring 8-1 is connected to the collector of the switching element S2.
  • One end of the wiring 9-1 is connected to the wiring 8-1.
  • Reference numeral 501 represents a connection point between the wiring 8-1 and the wiring 9-1.
  • the other end of the wiring 9-1 is connected to the AC terminal 11. Thereby, the emitter of the switching element S1 and the collector of the switching element S2 are electrically connected to the AC terminal 11.
  • the rectifying element D1 and the switching element S1 constitute a power element for an R-phase positive electrode
  • the rectifying element D2 and switching element S2 constitute a power element for an R-phase negative electrode.
  • the collector of the switching element S1 is connected to the DC terminal 14 via the wiring 9-4.
  • the emitter of the switching element S2 is connected to the DC terminal 15 via the wiring 9-5.
  • Switching element S3 and switching element S4 are connected in series by wiring 8-2.
  • Switching element S3, switching element S4, rectifying element D3, rectifying element D4, and wiring 8-2 constitute a second arm.
  • One end of the wiring 8-2 is connected to the emitter of the switching element S3.
  • the other end of the wiring 8-2 is connected to the collector of the switching element S4.
  • One end of the wiring 9-2 is connected to the wiring 8-2.
  • Reference numeral 502 represents a connection point between the wiring 8-2 and the wiring 9-2.
  • the other end of the wiring 9-2 is connected to the AC terminal 12.
  • the rectifying element D3 and the switching element S3 constitute a power element for the S-phase positive electrode, and the rectifying element D4 and switching element S4 constitute an S-phase negative power element.
  • the collector of the switching element S3 is connected to the DC terminal 14 via the wiring 9-4.
  • the emitter of the switching element S4 is connected to the DC terminal 15 through the wiring 9-5.
  • Switching element S5 and switching element S6 are connected in series by wiring 8-3.
  • Switching element S5, switching element S6, rectifying element D5, rectifying element D6 and wiring 8-3 constitute a third arm.
  • One end of the wiring 8-3 is connected to the emitter of the switching element S5.
  • the other end of the wiring 8-3 is connected to the collector of the switching element S6.
  • One end of the wiring 9-3 is connected to the wiring 8-3.
  • Reference numeral 503 represents a connection point between the wiring 8-3 and the wiring 9-2.
  • the other end of the wiring 9-3 is connected to the AC terminal 13. Thereby, the emitter of switching element S5 and the collector of switching element S6 are electrically connected to AC terminal 13.
  • the rectifying element D5 and the switching element S5 constitute a power element for a T-phase positive electrode, and the rectifying element D6 and switching element S6 constitute a T-phase negative power element.
  • the collector of the switching element S5 is connected to the DC terminal 14 via the wiring 9-4.
  • the emitter of the switching element S6 is connected to the DC terminal 15 via the wiring 9-5.
  • the DC terminal 14 is electrically connected to the collectors of the switching element S1, the switching element S3, and the switching element S5 that constitute the upper arm.
  • the DC terminal 15 is electrically connected to the emitters of the switching element S2, the switching element S4, and the switching element S6 constituting the lower arm.
  • the DC terminal 14 and the DC terminal 15 of the power module 22 are connected to a series circuit composed of a switching element S1 and a switching element S2, a series circuit composed of a switching element S3 and a switching element S4, a switching element S5 and a switching element.
  • the series circuit constituted by S6 is connected in parallel.
  • the converter 1-1 according to the first embodiment is connected to the three-phase AC power supply 3, but a single-phase AC power supply may be connected instead of the three-phase AC power supply 3. When a single-phase AC power supply is connected, the power module 22 has four power elements.
  • the bus voltage detector 23 detects the voltage applied to the terminals 21a and 21b of the smoothing capacitor 21, and outputs voltage information indicating the detected voltage as the bus voltage VPN.
  • the terminal 21a of the smoothing capacitor 21 is connected to the DC terminal 14 of the power module 22 via the positive electrode bus 70P, and the terminal 21b of the smoothing capacitor 21 is connected to the DC terminal 15 of the power module 22 via the negative electrode bus 70N. Therefore, the voltage applied to the terminals 21 a and 21 b of the smoothing capacitor 21 is equal to the voltage applied to the DC terminals 14 and 15 of the power module 22.
  • the bus current detection unit 25 is provided between the DC terminal 14 and the connection point 80P on the positive bus 70P, for example.
  • Bus current detector 25 detects a current flowing through positive electrode bus 70P, and outputs current information indicating the detected current as bus current IPN.
  • the bus current detection unit 25 may be a current sensor using an instrumental current transformer called CT (Current Transformer), or may be a current sensor using a shunt resistor.
  • CT Current Transformer
  • the bus current detector 25 may be a combination of these.
  • the bus current detection unit 25 may be provided between the DC terminal 15 and the connection point 80N on the negative electrode bus 70N to detect a current flowing through the negative electrode bus 70N.
  • the control power supply unit 29 generates power for driving the switching elements S1 to S6 of the power module 22 and power for driving the base drive circuit 27.
  • the emitter of the switching element S1 is connected to the R phase of the AC power supply 3 via the reactor 2-1
  • the emitter of the switching element S3 is connected to the S of the AC power supply 3 via the reactor 2-2
  • the emitter of the switching element S5 is connected to the T phase of the AC power supply 3 via the reactor 2-3. Therefore, in order to drive each of the switching elements S1, S3, and S5 arranged on the positive electrode side, the base drive circuit 27 sets the ground of the drive signal generation circuit that drives each of the switching elements S1, S3, and S5. It is necessary to divide.
  • the emitters of the switching elements S2, S4, S6 arranged on the negative electrode side are connected to the DC terminal 15 of the power module 22, they serve as reference potentials for the emitters of the switching elements S2, S4, S6.
  • the ground is the same. Therefore, in the base drive circuit 27, the ground of the drive signal generation circuit for driving the switching elements S2, S4, S6 arranged on the negative electrode side can be made the same. Therefore, in order to operate the base drive circuit 27, at least four insulated power supplies are required.
  • FIG. 2 is a diagram showing a configuration example of the control power supply unit shown in FIG.
  • the control power supply unit 29 includes a main power supply 31, a power supply control IC (Integrated Circuit) 32, a switching element 33, an insulating transformer 30, a plurality of rectifier elements D21, D22, D23, and D24. , Capacitors C21, C22, C23, C24, and a feedback unit 34.
  • IC Integrated Circuit
  • the insulating transformer 30 includes a primary winding N11 and a plurality of secondary windings N21, N22, N23, and N24. Each of the plurality of secondary windings N21, N22, N23, N24 is insulated between adjacent windings.
  • the power supply control IC 32 includes a power supply terminal VCC, a feedback terminal FB, a gate signal output terminal SW, and a ground terminal GND.
  • the positive terminal of the main power supply 31 is connected to the winding start side terminal of the primary winding N11 and the power supply terminal VCC of the power supply control IC 32.
  • the winding end side terminal of the primary winding N11 is connected to the drain terminal D of the switching element 33.
  • the source terminal S of the switching element 33 is connected to the negative terminal of the main power supply 31 and the GND terminal of the power supply control IC 32.
  • the gate G of the switching element 33 is connected to the SW terminal of the power supply control IC 32.
  • the anode of the rectifying element D21 is connected to the winding end side terminal of the secondary winding N21, and the cathode of the rectifying element D21 is connected to one end of the capacitor C21.
  • the other end of the capacitor C21 is connected to the winding start side terminal of the secondary winding N21 via the wiring 291.
  • One end of the wiring 291-1 is connected to a connection point between the cathode of the rectifying element D21 and one end of the capacitor C21.
  • One end of the wiring 291-2 is connected to a connection point between the other end of the capacitor C21 and the wiring 291.
  • a ground VRPGND serving as a reference potential of the voltage VRP generated in the wiring 291-1 is connected to the wiring 291-2.
  • the voltage VRP is equal to the voltage applied between one end and the other end of the capacitor C21.
  • the other ends of the wirings 291-1 and 291-2 are connected to the base drive circuit 27 shown in FIG.
  • the anode of the rectifying element D22 is connected to the winding end side terminal of the secondary winding N22, and the cathode of the rectifying element D22 is connected to one end of the capacitor C22.
  • the other end of the capacitor C22 is connected to the winding start side terminal of the secondary winding N22 via the wiring 292.
  • One end of the wiring 292-1 is connected to a connection point between the cathode of the rectifying element D22 and one end of the capacitor C22.
  • One end of the wiring 292-2 is connected to the connection point between the other end of the capacitor C22 and the wiring 292.
  • a ground VSPGND which is a reference potential of the voltage VSP generated in the wiring 292-1 is connected to the wiring 292-2.
  • the voltage VSP is equal to the voltage applied between one end and the other end of the capacitor C22.
  • the other ends of the wiring 292-1 and the wiring 292-2 are connected to the base drive circuit 27 shown in FIG.
  • the anode of the rectifying element D23 is connected to the winding end side terminal of the secondary winding N23, and the cathode of the rectifying element D23 is connected to one end of the capacitor C23.
  • the other end of the capacitor C23 is connected to the winding start side terminal of the secondary winding N23 via the wiring 293.
  • One end of the wiring 293-1 is connected to a connection point between the cathode of the rectifying element D23 and one end of the capacitor C23.
  • One end of the wiring 293-2 is connected to the connection point between the other end of the capacitor C23 and the wiring 293.
  • the wiring 293-2 is connected to a ground VTPGND that serves as a reference potential of the voltage VTP generated in the wiring 293-1.
  • the voltage VTP is equal to the voltage applied between one end and the other end of the capacitor C23.
  • the anode of the rectifying element D24 is connected to the winding end side terminal of the secondary winding N24, and the cathode of the rectifying element D24 is connected to one end of the capacitor C24.
  • the other end of the capacitor C24 is connected to the winding start side terminal of the secondary winding N24 via the wiring 294.
  • One end of the wiring 294-1 is connected to a connection point between the cathode of the rectifying element D24 and one end of the capacitor C24.
  • One end of the wiring 294-2 is connected to a connection point between the other end of the capacitor C24 and the wiring 294.
  • the wiring 294-2 is connected to the ground VNGGND that serves as a reference potential for the voltage VN generated in the wiring 294-1.
  • the voltage VN is equal to the voltage applied between one end and the other end of the capacitor C24.
  • the voltage VN is input to the feedback unit 34.
  • a photocoupler is used for the feedback unit 34.
  • the feedback unit 34 sets the voltage VN to a voltage value that can be handled by the power supply control IC 32 in a state where the FB terminal of the power supply control IC 32 and the secondary winding N24 are insulated.
  • the voltage value after conversion is input to the FB terminal of the power supply control IC 32.
  • the number of turns of each of the secondary windings N21, N22, and N23 is made equal to the number of turns of the secondary winding N24, so that the voltage generated in each of the capacitors C21, C22, and C23 is the capacitor C24. Is almost equal to the voltage generated in
  • the operation of the control power supply unit 29 will be described.
  • the power supply control IC 32 generates a control signal for controlling the on / off operation of the switching element 33 based on the voltage VN output from the feedback unit 34.
  • the power supply control IC 32 outputs the generated control signal from the SW terminal, and the output control signal is input to the gate G of the switching element 33.
  • the switching element 33 repeats the on / off operation, and the value of the voltage VN input to the feedback unit 34 is maintained at a specific value.
  • the voltage phase detector 24 shown in FIG. 1 detects the voltage phase of the AC power supply 3, and outputs phase information indicating the detected voltage phase to the base drive signal generator 26 as a phase detection signal.
  • the phase detection signal is a signal that takes a high level or low level potential. The voltage phase detection method by the voltage phase detector 24 and details of the phase detection signal will be described later.
  • the base drive signal generator 26 Based on the phase detection signal output from the voltage phase detector 24, the base drive signal generator 26 has six types of base drive signals SRP, SRN, SSP, SSN, STP, for driving the switching elements S1 to S6.
  • An STN is generated and output to the regeneration control unit 28.
  • Each of the six types of base drive signals SRP, SRN, SSP, SSN, STP, and STN is a signal that takes a High level or Low level potential.
  • the base drive signal SRP is a signal for driving the switching element S1 for the positive side of the R phase.
  • the base drive signal SRN is a signal for driving the switching element S2 for the negative side of the R phase.
  • the base drive signal SSP is a signal for driving the switching element S3 for the positive side of the S phase.
  • the base drive signal SSN is a signal for driving the switching element S4 for the negative side of the S phase.
  • the base drive signal STP is a signal for driving the switching element S5 for the positive side of the T phase.
  • the base drive signal STN is a signal for driving the switching element S6 for the negative side of the T phase.
  • the six types of base drive signals SRP, SRN, SSP, SSN, STP, and STN may be referred to as base drive signals SRP to STN.
  • the regeneration control unit 28 continues to transmit the base drive signal SRP output from the base drive signal generation unit 26 to the base drive circuit 27 of the STN, or the base drive signal. It is determined whether to stop transmission of the STN to the base drive circuit 27 from the base drive signal SRP output from the generation unit 26. If the regeneration control unit 28 determines that the transmission of the STN from the base drive signal SRP to the base drive circuit 27 is continued, the STN is continuously input to the base drive circuit 27 from the base drive signal SRP. When the regeneration control unit 28 determines that the transmission of the STN from the base drive signal SRP to the base drive circuit 27 is stopped, the input of the STN from the base drive signal SRP to the base drive circuit 27 is stopped.
  • FIG. 3 is a diagram illustrating a configuration example of the regeneration control unit illustrated in FIG. 1.
  • the regeneration control unit 28 includes a regeneration start determination unit 60, a regeneration stop determination unit 61, an OR circuit 62, and an NPN transistor 63.
  • the bus voltage VPN is input to the regeneration start determination unit 60 in the regeneration start determination unit 60.
  • the regeneration start determination unit 60 has a function of determining whether to start the regeneration operation by the power module 22 shown in FIG. 1 based on the bus voltage VPN.
  • the regeneration start determination unit 60 includes a subtracter 64 and a comparator 65.
  • the subtractor 64 receives the bus voltage VPN and the reference voltage Vref.
  • the reference voltage Vref is a voltage set in advance based on the voltage of the AC power supply 3.
  • the reference voltage Vref is generated by a method of generating the reference voltage Vref by detecting the voltage of the AC power supply 3, a method of generating the reference voltage Vref based on the bus voltage VPN output from the bus voltage detector 23, and the like. However, any method is publicly known, and a detailed description thereof is omitted here.
  • the subtractor 64 calculates a difference voltage ⁇ V that is a difference between the bus voltage VPN and the reference voltage Vref.
  • the difference voltage ⁇ V is input to the plus terminal of the comparator 65.
  • the threshold voltage Vo is input to the negative terminal of the comparator 65.
  • the comparator 65 compares the difference voltage ⁇ V and the threshold voltage Vo, and outputs a signal that takes a high level or low level potential. For example, when the difference voltage ⁇ V is larger than the threshold voltage Vo, a high level signal is output.
  • the high level signal is a signal indicating that the regenerative operation by the power module 22 is started when the bus voltage VPN becomes higher than a certain value.
  • the difference voltage ⁇ V is less than the threshold voltage Vo, a low level signal is output.
  • a signal output from the comparator 65 is input to the OR circuit 62 as an output signal of the regeneration start determination unit 60.
  • the difference voltage ⁇ V and the threshold voltage Vo are such that the difference voltage ⁇ V ⁇ the threshold voltage Vo. Therefore, for example, a hysteresis function is provided in the comparator 65, a one-shot trigger circuit is provided in the output of the comparator 65, or a regeneration start determination is made so that the regeneration operation continues until a certain period elapses after the regeneration operation starts. It is desirable to constitute part 60.
  • the regenerative stop determination unit 61 receives the bus current IPN.
  • the regeneration stop determination unit 61 has a function of determining whether to stop the regeneration operation in the power module 22 based on the bus current IPN.
  • the regeneration stop determination unit 61 includes a comparator 66.
  • the threshold current Iref is input to the plus terminal of the comparator 66.
  • the bus current IPN is input to the negative terminal of the comparator 66.
  • the comparator 66 compares the bus current IPN and the threshold current Iref, and outputs a signal that takes a High level or Low level potential. For example, when the bus current IPN is larger than the threshold current Iref, a low level signal is output. When the bus current IPN becomes less than the threshold current Iref, a high level signal is output.
  • a signal output from the comparator 66 is input to the OR circuit 62 as an output signal of the regeneration stop determination unit 61.
  • the output of the OR circuit 62 is connected to the base of the NPN transistor 63.
  • a regenerative on signal Ron that is an output signal of the OR circuit 62 is input to the base of the NPN transistor 63.
  • a base drive signal generator 26 shown in FIG. 1 is connected to the collector of the NPN transistor 63.
  • STN is input to the collector of the NPN transistor 63 from the base drive signal SRP that is the output of the base drive signal generator 26.
  • the emitter of the NPN transistor 63 is connected to the base drive circuit 27.
  • the output signals of the regeneration start determination unit 60 and the regeneration stop determination unit 61 are input to the OR circuit 62.
  • the OR circuit 62 When any output signal is at a high level, the OR circuit 62 outputs a high level signal.
  • the OR circuit 62 outputs a high level signal, the NPN transistor 63 is turned on, and the base drive signals SRP to STN are input to the base drive circuit 27 shown in FIG.
  • the base drive signal SRP is converted into a signal that can be handled by each power element of the power module 22, and the converted base drive signals SRP ′, SRN ′, SSP ′, SSN are converted signals. ', STP', STN 'are generated.
  • the generated base drive signals SRP ', SRN', SSP ', SSN', STP ', STN' are input to the bases of the switching elements S1 to S6. Thereby, the on / off operation of the switching elements S1 to S6, that is, the regenerative operation of the power module 22 is performed.
  • the base drive signals SRP ', SRN', SSP ', SSN', STP ', STN' may be referred to as base drive signals SRP 'to STN'. Details of the base drive circuit 27 will be described later.
  • the OR circuit 62 When the output signals of the regeneration start determination unit 60 and the regeneration stop determination unit 61 are at the Low level, the OR circuit 62 outputs a Low level signal.
  • the OR circuit 62 When the OR circuit 62 outputs a low level signal, the NPN transistor 63 is turned off, and the STN input from the base drive signal SRP to the base drive circuit 27 shown in FIG. 1 is cut off. As a result, all of the switching elements S1 to S6 are turned off, and the regenerative operation is stopped.
  • the base drive circuit 27 will be described. As described above, the base drive circuit 27 uses the base drive signals SRP ′, SRN ′, and SSP ′ that the power module 22 can handle the base drive signals SRP, SRN, SSP, SSN, STP, and SSN output from the regeneration control unit 28. , SSN ′, STP ′, STN ′, and has a function of inputting to the bases of the switching elements S1 to S6 of the power module 22.
  • FIG. 4 is a diagram showing a configuration example of the base drive circuit 27 shown in FIG. As shown in FIG. 4, the base drive circuit 27 includes a base control circuit 35 and a voltage application unit 36.
  • the base control circuit 35 electrically insulates the signal input to the base control circuit 35 and outputs an output signal having the same potential as that of the input signal, that is, when the input signal is at a high level, When the input signal is at a low level, a function of outputting an output signal at a low level to the voltage application unit 36 is provided.
  • a base drive signal SRP that takes a high-level potential
  • the base control circuit 35 is electrically insulated from the base drive signal SRP, and is at a high-level potential. Is output to the voltage application unit 36.
  • a photocoupler or an insulated pulse transformer is used for the base control circuit 35.
  • the components constituting the base control circuit 35 are not limited thereto, and the input signal and the output signal are electrically insulated. Therefore, any device that transmits an output signal having the same potential as the input signal may be used.
  • the base control circuit 35 electrically insulates the base drive signal SRP and converts it into a signal having the same potential as the base drive signal SRP, and electrically insulates the base drive signal SRN,
  • the control circuit 35B for converting to a signal having the same potential is electrically insulated from the base drive signal SSP, and the control circuit 35C for converting to a signal having the same potential as the base drive signal SSP is electrically insulated from the base drive signal SSN.
  • the output signal of the base control circuit 35 is input to the voltage application unit 36.
  • the plurality of outputs of the voltage application unit 36 are connected to the bases of the switching elements S1 to S6 of the power module 22.
  • the voltage application unit 36 generates a base drive signal SRP ′ based on the output signal of the control circuit 35A, and generates a base drive signal SRN ′ based on the output signal of the control circuit 35B.
  • a second voltage application unit 36B that generates and outputs a base drive signal SSP ′ based on the output signal of the control circuit 35C.
  • the voltage application unit 36 generates a base drive signal SSN ′ based on the output signal of the control circuit 35D, and generates a base drive signal STP ′ based on the output signal of the control circuit 35E. And a fifth voltage application unit 36F that generates and outputs a base drive signal STN ′ based on the output signal of the control circuit 35F.
  • FIG. 5 is a diagram illustrating a configuration example of the first voltage application unit illustrated in FIG.
  • the first voltage application unit 36 ⁇ / b> A includes an NPN transistor 37, a PNP transistor 38, and a base resistor 39.
  • the base of the NPN transistor 37 and the base of the PNP transistor 38 are connected to each other, and the output of the control circuit 35A is connected to each base.
  • the emitter of the NPN transistor 37 and the emitter of the PNP transistor 38 are connected to each other, and one end of the base resistor 39 is connected to each of them.
  • the other end of the base resistor 39 is connected to the base of the switching element S1.
  • the collector of the NPN transistor 37 is connected to the wiring 291-1 shown in FIG.
  • the voltage VRP generated by the control power supply unit 29 shown in FIG. 2 is applied to the collector of the NPN transistor 37.
  • the collector of the PNP transistor 38 and the emitter of the switching element S1 are connected to each other and further connected to the wiring 291-2 shown in FIG. Thereby, the collector of the PNP transistor 38 and the emitter of the switching element S1 are electrically connected to the ground VRPGND shown in FIG.
  • FIG. 6 is a diagram illustrating a configuration example of the second voltage application unit illustrated in FIG.
  • the second voltage application unit 36B includes an NPN transistor 37, a PNP transistor 38, and a base resistor 39, like the first voltage application unit 36A.
  • the output of the control circuit 35B is connected to the base of the NPN transistor 37 and the base of the PNP transistor 38.
  • the other end of the base resistor 39 is connected to the base of the switching element S2.
  • the collector of the NPN transistor 37 is connected to the wiring 294-1 shown in FIG. Thereby, the voltage VN generated by the control power supply unit 29 shown in FIG.
  • the collector of the PNP transistor 38 and the emitter of the switching element S2 are connected to the wiring 294-2 shown in FIG.
  • the collector of the PNP transistor 38 and the emitter of the switching element S2 are electrically connected to the ground VNGND shown in FIG.
  • FIG. 7 is a diagram illustrating a configuration example of the third voltage applying unit illustrated in FIG.
  • the third voltage applying unit 36C includes an NPN transistor 37, a PNP transistor 38, and a base resistor 39, like the first voltage applying unit 36A.
  • the output of the control circuit 35C is connected to the base of the NPN transistor 37 and the base of the PNP transistor 38.
  • the other end of the base resistor 39 is connected to the base of the switching element S3.
  • the collector of the NPN transistor 37 is connected to the wiring 292-1 shown in FIG. Thereby, the voltage VSP generated by the control power supply unit 29 shown in FIG.
  • the collector of the PNP transistor 38 and the emitter of the switching element S3 are connected to the wiring 292-2 shown in FIG. Thereby, the collector of the PNP transistor 38 and the emitter of the switching element S3 are electrically connected to the ground VSPGND shown in FIG.
  • FIG. 8 is a diagram illustrating a configuration example of the fourth voltage application unit illustrated in FIG. 4.
  • the fourth voltage application unit 36D includes an NPN transistor 37, a PNP transistor 38, and a base resistor 39, like the first voltage application unit 36A.
  • the output of the control circuit 35D is connected to the base of the NPN transistor 37 and the base of the PNP transistor 38.
  • the other end of the base resistor 39 is connected to the base of the switching element S4.
  • the collector of the NPN transistor 37 is connected to the wiring 294-1 shown in FIG. Thereby, the voltage VN generated by the control power supply unit 29 shown in FIG.
  • the collector of the PNP transistor 38 and the emitter of the switching element S4 are connected to the wiring 294-2 shown in FIG.
  • the collector of the PNP transistor 38 and the emitter of the switching element S4 are electrically connected to the ground VNGND shown in FIG.
  • FIG. 9 is a diagram illustrating a configuration example of the fifth voltage application unit illustrated in FIG.
  • the fifth voltage application unit 36E includes an NPN transistor 37, a PNP transistor 38, and a base resistor 39, like the first voltage application unit 36A.
  • the output of the control circuit 35E is connected to the base of the NPN transistor 37 and the base of the PNP transistor 38.
  • the other end of the base resistor 39 is connected to the base of the switching element S5.
  • the collector of the NPN transistor 37 is connected to the wiring 293-1 shown in FIG. Thereby, the voltage VTP generated by the control power supply unit 29 shown in FIG.
  • the collector of the PNP transistor 38 and the emitter of the switching element S5 are connected to the wiring 293-2 shown in FIG. Thereby, the collector of the PNP transistor 38 and the emitter of the switching element S5 are electrically connected to the ground VTPGND shown in FIG.
  • FIG. 10 is a diagram illustrating a configuration example of the sixth voltage application unit illustrated in FIG.
  • the sixth voltage application unit 36F includes an NPN transistor 37, a PNP transistor 38, and a base resistor 39, like the first voltage application unit 36A.
  • the output of the control circuit 35F is connected to the base of the NPN transistor 37 and the base of the PNP transistor 38.
  • the other end of the base resistor 39 is connected to the base of the switching element S6.
  • the collector of the NPN transistor 37 is connected to the wiring 294-1 shown in FIG. Thereby, the voltage VN generated by the control power supply unit 29 shown in FIG.
  • the collector of the PNP transistor 38 and the emitter of the switching element S6 are connected to the wiring 294-2 shown in FIG.
  • the collector of the PNP transistor 38 and the emitter of the switching element S6 are electrically connected to the ground VNGND shown in FIG.
  • the operation of the base drive circuit 27 will be described using the first voltage application unit 36A shown in FIG.
  • the control circuit 35A When the base drive signal SRP of the switching element S1 is output from the regeneration control unit 28, the control circuit 35A generates and outputs a signal insulated from the base drive signal SRP.
  • the PNP transistor 38 When a high level signal is input to the first voltage application unit 36A, the PNP transistor 38 is turned off and the NPN transistor 37 is turned on.
  • the wiring 291-1 and the base of the switching element S1 become conductive via the base resistor 39, and charges are charged between the base and emitter electrodes of the switching element S1.
  • a voltage applied between the base and emitter electrodes of the switching element S1 is referred to as a voltage VBE.
  • VBE a voltage applied between the base and emitter electrodes of the switching element S1
  • the NPN transistor 37 When a low level signal is input to the first voltage application unit 36A, the NPN transistor 37 is turned off and the PNP transistor 38 is turned on. As a result, the ground VRPGND and the base of the switching element S1 become conductive through the base resistor 39, and the charge charged between the base and emitter electrodes of the switching element S1 is discharged. When the electric charge is discharged and the voltage VBE applied between the base and emitter electrodes of the switching element S1 becomes less than a predetermined threshold voltage, the switching element S1 is turned off. When the voltage VBE decreases to the ground VRPGND, the discharge of the charge charged between the base and emitter electrodes of the switching element S1 is completed.
  • the base drive circuit 27 uses the power supplies generated by the control power supply unit 29 to generate the base drive signals SRP, SPN, SSP, SSN, STP, and STN output from the regeneration control unit 28. Are converted into base drive signals SRP ′, SRN ′, SSP ′, SSN ′, STP ′, and STN ′ that can be handled by the switching elements S1 to S6.
  • FIG. 11 is a diagram for explaining the operation of the voltage phase detector shown in FIG.
  • the emitters of the switching elements S1, S3, and S5 arranged on the positive electrode side of the power module 22 are connected to the R phase, S phase, and T phase of the AC power supply 3 via the reactor 2.
  • the emitters of the switching elements S1, S3, and S5 are connected to the ground VRPGND, VSPGND, and VTPGND of the control power supply unit 29.
  • the voltage phase detector 24 detects the input R-phase voltage VR1 based on a signal generated at the ground VRPGND connected to the wiring 291-2.
  • Input R-phase voltage VR1 is equivalent to a voltage applied between AC terminal 11 and AC terminal 12 shown in FIG.
  • the voltage phase detector 24 detects the input S-phase voltage VS1 based on a signal generated at the ground VSPGND connected to the wiring 292-2.
  • Input S-phase voltage VS1 is equivalent to a voltage applied between AC terminal 12 and AC terminal 13 shown in FIG.
  • the voltage phase detector 24 detects the input T-phase voltage VT1 based on a signal generated at the ground VTPGND connected to the wiring 293-2.
  • Input T-phase voltage VT1 is equivalent to a voltage applied between AC terminal 13 and AC terminal 11 shown in FIG. Since the emitters of the switching elements S1, S3, S5 are connected to the ground VRPGND, VSPGND, VTPGND of the control power supply unit 29, the voltage phase detection unit 24 has a signal flowing through the emitters of the switching elements S1, S3, S5, or The voltage phase of the AC voltage when the switching elements S1 to S6 are turned on / off so that AC power is regenerated from the power module 22 to the AC power source 3 based on a signal flowing to the ground serving as the reference potential of the control power supply unit 29. A phase detection signal indicating the detected voltage phase is generated and output.
  • FIG. 12 is a time chart for explaining the operation of the converter shown in FIG. FIG. 12 shows, in order from the top, the waveforms of line voltages VR-S, VS-T, VT-R, VS-R, VT-S, and VR-T output from the AC power supply 3, and the line voltages.
  • Waveforms of six types of phase detection signals generated based on the waveforms, waveforms of base drive signals SRP to STN, and waveforms of regenerative currents (Irr, Isr, Itr) flowing in the R phase, T phase, and S phase are shown.
  • the line voltage VR-S and the line voltage VS-R correspond to the aforementioned input R-phase voltage VR1 and change complementarily.
  • the line voltage VS-T and the line voltage VT-S correspond to the input S-phase voltage VS1 and change complementarily.
  • the line voltage VR-T and the line voltage VT-R correspond to the above-described input T-phase voltage VT1 and change complementarily.
  • the regenerative current is a current that flows from the motor driving device 4 shown in FIG. 1 toward the AC power supply 3 via the switching elements S1 to S6 during the regenerative operation.
  • the line voltage VR-S is obtained by detecting a voltage difference from the R phase with reference to the S phase, whereas the line voltage VS-R is a voltage difference from the S phase with respect to the R phase. Is detected. The voltage phase between the line voltage VR-S and the line voltage VS-R is shifted by 180 degrees.
  • the line voltage VS-T is obtained by detecting a voltage difference from the S phase with respect to the T phase, whereas the line voltage VT-S is a voltage with respect to the T phase with respect to the S phase. The difference is detected, and the voltage phase between the line voltage VS-T and the line voltage VT-S is shifted by 180 degrees.
  • the line voltage is a voltage difference with the T phase detected with the R phase as a reference
  • the line voltage VR-T is a voltage difference with the R phase detected with the T phase as a reference.
  • the voltage phase between the line voltage and the line voltage VR-T is shifted by 180 degrees.
  • the voltage phase detector 24 is configured to detect the line voltage VR-S, the line voltage VS-R, the line voltage VS-T, The voltage VT-S, the line voltage VR-T, and the line voltage VT-R are estimated, and based on the estimated results, a zero cross point of each line voltage is extracted, and the extracted zero cross point is handled as a phase detection signal.
  • This phase detection signal is output to the base drive signal generator 26.
  • Each phase detection signal output from the voltage phase detector 24 is illustrated in FIG. In FIG.
  • phase detection signal between the RS lines, the phase detection signal between the SR lines, the phase detection signal between the ST lines, the phase detection signal between the TS lines, and the phase between the TR lines A detection signal and an RT line phase detection signal are shown.
  • an RS line phase detection signal takes a high level value in a section (phase section) where the difference between the line voltage VR-S and the line voltage VS-R is positive (phase section), and a negative section (phase section). ) Takes a low level value.
  • the voltage phase detector 24 generates a phase detection signal whose level changes in this way in association with each line voltage.
  • the base drive signal generator 26 generates an STN from the base drive signal SRP by the following method based on each phase detection signal shown in FIG.
  • the base drive signal generation unit 26 sets the base drive signals SRP and SSN to a high level and controls the switching elements S1 and S4 to be on.
  • the base drive signal generator 26 sets the base drive signals SSP and STN to High level, and controls the switching elements S3 and S6 to be on.
  • the base drive signal generation unit 26 sets the base drive signals STP and SRN to a high level, and controls the switching elements S5 and S2 to be on.
  • the base drive signal generation unit 26 sets the base drive signals SSP and SRN to a high level and controls the switching elements S3 and S2 to be on.
  • the base drive signal generation unit 26 sets the base drive signals STP and SSN to a high level and controls the switching elements S5 and S4 to be on.
  • the base drive signal generator 26 sets the base drive signals SRP and STN to the high level, and controls the switching elements S1 and S6 to be on.
  • FIG. 1 shows the R-phase current Ir, the S-phase current Is, and the T-phase current It indicated by arrows in the direction from the AC power supply 3 to the converter 1-1. Treated as a positive current, the waveforms of the three regenerative currents shown in FIG. 12 are represented accordingly.
  • the inductor LR is an inductor of the reactor 2-1 shown in FIG.
  • the inductor LS is the inductor of the reactor 2-2 shown in FIG.
  • the inductor LT is an inductor of the reactor 2-3 shown in FIG.
  • the inductor LR1 is an inductance caused by a wiring provided between the AC terminal 11 and the emitter of the switching element S1.
  • the inductor LS1 is an inductance caused by a wiring provided between the AC terminal 12 and the emitter of the switching element S3.
  • the inductor LT1 is an inductance caused by a wiring provided between the AC terminal 13 and the emitter of the switching element S5.
  • the input R-phase voltage VR1 is a voltage applied to the emitter of the switching element S1.
  • the R-phase voltage VR ⁇ b> 2 is a voltage applied between the inductor LR and the AC terminal 11.
  • the input S-phase voltage VS1 is a voltage applied to the emitter of the switching element S3.
  • the S-phase voltage VS2 is a voltage applied between the inductor LS and the AC terminal 12.
  • Input T-phase voltage VT1 is a voltage applied to the emitter of switching element S5.
  • the T-phase voltage VT2 is a voltage applied between the inductor LT and the AC terminal 13.
  • the input R-phase voltage VR1 is detected based on the signal generated in the ground VRPGND connected to the wiring 291-2, and the wiring 292- 2, the input S-phase voltage VS1 is detected based on the signal generated at the ground VSPGND connected to the second terminal, and the input T-phase voltage VT1 is further detected based on the signal generated at the ground VTPGND connected to the wiring 293-2. Detected. Therefore, when the power module 22 is viewed from the AC power supply 3, the inductor LR exists in the wiring connecting the terminal 3R of the AC power supply 3 and the AC terminal 11, and the wiring connecting the AC terminal 11 and the switching element S1 is present.
  • the inductor LR1 includes an inductor LR1 and an inductance caused by the wiring 291-2.
  • the inductor LS exists in the wiring connecting the terminal 3S of the AC power supply 3 and the AC terminal 12, and the wiring connecting the AC terminal 12 and the switching element S3 is caused by the inductor LS1 and the wiring 292-2.
  • the inductor LT exists in the wiring connecting the terminal 3T and the AC terminal 13 of the AC power supply 3, and the wiring connecting the AC terminal 13 and the switching element S5 is caused by the inductor LT1 and the wiring 293-2.
  • the inductance component from the AC power supply 3 to the switching elements S1, S3, S5 is increased.
  • FIG. 15 is a diagram illustrating waveforms such as a line voltage, a base drive signal, and a phase detection signal that are generated during the regenerative operation of the converter according to the first embodiment.
  • FIG. 15 shows, in order from the top, the waveforms of the base drive signals SRP to STN, the waveforms of the line voltages VR-S, VS-T, and VT-R during the regenerative operation, and the R phase generated during the regenerative operation.
  • the waveform of the phase detection signal RSD is shown.
  • FIG. 15 when the STN is switched between the high level and the low level from the base drive signal SRP, when the on / off operation of the switching elements S1 to S6 shown in FIG.
  • the input R-phase voltage VR1 or the like is input to the voltage phase detection unit 24.
  • the wiring 291 is provided between the AC terminal 11 of the power module 22 and the switching element S1. Inductance due to -2 exists. Although this inductance can reduce the influence of voltage fluctuation caused by the regenerative operation of the external device connected to the AC power supply 3, the switching elements S1 to S6 are connected to the wiring 291-2 connected to the switching elements S1 to S6. Spike-like voltage fluctuations resulting from the on / off operation of the first and second signals are superimposed. The voltage fluctuation shown in FIG. 15 and FIG.
  • the voltage phase detection unit 24 transmits signals such as a wiring 291-2 connected to the switching element S1, a wiring 292-2 connected to the switching element S3, a wiring 293-2 connected to the switching element S5, That is, since the input R-phase voltage VR1, the input S-phase voltage VS1, and the input T-phase voltage VT1 are detected, it is also affected by voltage fluctuations caused by ringing that occurs during the on / off operation of the switching elements S1, S3, and S5. Therefore, compared with the case where the phase detection signal is generated by detecting the values of the phase voltages VR2, VS2, VT2 applied between the reactor 2 and the AC terminals 11, 12, 13 of the power module 22, the voltage There are many factors of fluctuation.
  • FIG. 18 is a diagram illustrating a waveform of an R-phase phase detection signal generated by the voltage phase detection unit according to the second embodiment and a waveform of an R-phase phase voltage generated based on the phase detection signal.
  • FIG. 18 shows the phase detection threshold voltage, the waveform of the neutral phase reference phase voltage VR3 generated during the regeneration operation of the converter 1-2, and the voltage phase detection unit 24A during the regeneration operation of the converter 1-2.
  • the waveform of the generated phase detection signal RD3 is shown.
  • the value of the phase detection threshold voltage is set to such a value that the potential of the phase detection signal RD3 becomes High level when the phase of the neutral point reference phase voltage VR3 is between 60 ° and 120 °.
  • the threshold voltage for phase detection is set in the voltage phase detector 24A.
  • phase of the neutral point reference phase voltage VR3 When the phase of the neutral point reference phase voltage VR3 reaches 60 °, the potential of the phase detection signal RD3 changes from Low level to High level. When the phase of the neutral point reference phase voltage VR3 reaches 90 °, the potential of the phase detection signal RD3 changes in the order of High level, Low level, and High level in a short period of time. When the phase of the neutral point reference phase voltage VR3 reaches 120 °, the potential of the phase detection signal RD3 changes from the High level to the Low level. In the interval from the phase of the neutral point reference phase voltage VR3 to 120 ° to the phase 60 ° after one cycle, the potential of the phase detection signal RD3 is maintained at the low level. The phase 60 ° after one cycle is equivalent to the phase 420 °.
  • the potential of the phase detection signal RD3 changes from the Low level to the High level.
  • the center of the section from the phase 120 ° to 420 ° of the neutral point reference phase voltage VR3 corresponds to the phase 270 ° of the neutral point reference phase voltage VR3, and the phase of the neutral point reference phase voltage VR3 is 270 °. In this case, the potential of the neutral point reference phase voltage VR3 is minimum.
  • the phase of the neutral point reference phase voltage VR3 is changed from 60 ° by setting the value of the phase detection threshold voltage near the value at which the potential of the neutral point reference phase voltage VR3 becomes maximum. Up to 120 °, the potential of the phase detection signal RD3 changes once. That is, the number of times affected by the on / off operation of the switching element can be set only when the phase of the neutral reference phase voltage VR3 is 90 °.
  • the potential of the phase detection signal RD3 changes from the High level to the Low level in the interval where the phase of the neutral point reference phase voltage VR3 is 120 ° to 420 °.
  • the minimum value of the neutral point reference phase voltage VR3 can be calculated by calculating the time from the time point to the time point when the level changes from the Low level to the High level. This time is assumed to be longer than the specific period used for the noise determination. By utilizing the minimum value of the neutral point reference phase voltage VR3, the voltage phase of the AC power supply 3 can be detected.
  • the phase detection signal is generated based on the signals generated at grounds VRPGND, VSPGND, and VTPGND provided in control power supply unit 29. Even in this case, the voltage phase of the AC power supply 3 can be detected without being affected by the on / off operation of the switching element.
  • the voltage phase is detected using the minimum value of the phase voltage.
  • the converter 1-2 according to the second embodiment has not only the minimum value of the phase voltage but also the maximum value.
  • voltage phase detection can be performed in a shorter time. For example, by adding a phase detection threshold voltage such that the phase detection signal RD3 is at a high level while the phase of the neutral point reference phase voltage VR3 is between 240 ° and 300 °, The maximum value of the phase voltage VR3 can be calculated.
  • the phase of the maximum value of the neutral point reference phase voltage VR3 corresponds to, for example, the phase 90 ° and the phase 270 ° of the neutral point reference phase voltage VR3 shown in FIG.
  • the voltage phase is detected by calculating the phase voltage, but the converter 1-2 of the second embodiment calculates the voltage phase by calculating the line voltage. It is also possible to perform detection. For example, when the phase of the line voltage is between 45 ° and 135 °, a phase detection threshold voltage may be set such that the potential of the phase detection signal is at a high level. In this case, when the phase of the line voltage is between 135 ° and 405 °, the potential of the phase detection signal is at a low level, and the center point of the phase of the line voltage from 135 ° to 405 ° is the phase 270 °. The line voltage corresponding to is the minimum value.
  • a line-to-line voltage that is a line-to-line voltage is obtained by using a signal transmitted to the pattern wiring on the printed board.
  • the voltage VR-S, the line voltage VS-T, the line voltage VT-R, and the input R phase voltage VR1, the input S phase voltage VS1, and the input T phase voltage VT1, which are phase voltages, can be calculated. For this reason, these voltages can be used for the detection of a power failure.
  • the detection of a power failure is to detect a state where power from the AC power source 3 is not supplied to the converter. The detection of a power failure will be further described in detail in a third embodiment to be described later.
  • FIG. 19 is a diagram illustrating a configuration of a converter and a motor control device according to the third embodiment.
  • Converter 1-3 according to Embodiment 3 has the same configuration as converter 1-1 shown in FIG. 1, and further includes an input voltage detection unit 43.
  • FIG. 20 is a diagram for explaining the operation of the input voltage detection unit 43 shown in FIG. FIG. 20 has the same configuration as FIG. 11, and an input voltage detection unit 43 is illustrated instead of the voltage phase detection unit 24.
  • the input voltage detection unit 43 includes a signal VR1 generated in the ground VRPGND connected to the wiring 291-2 and a signal generated in the ground VSPGND connected to the wiring 292-2 as described in the first embodiment.
  • VS1 and VT1 which is a signal generated in the ground VTPGND connected to the wiring 293-2 are input.
  • the input voltage detector 43 detects the line voltage or phase voltage of the AC power supply 3 based on these signals.
  • the configuration for detecting the phase voltage or the line voltage of the AC power supply 3 as in the first embodiment. can be prevented from becoming complicated. Further, according to the third embodiment, since a signal generated in the ground connected to the wiring 291-2 can be used, it is possible to design a pattern that can be easily arranged on a printed circuit board, and to save space. .
  • the power failure detection unit may be a display device or an audio device that simply notifies whether or not a power failure has occurred, or may be a control device or a controller having a control function.
  • control such as how to operate the motor 5 controlled by the motor driving device 4 using the DC power of the converter 1-3 when a power failure occurs in the AC power source 3 or It is possible to give instructions promptly.
  • FIG. 21 is a diagram illustrating a configuration of a converter and a motor control device according to the fourth embodiment.
  • Converter 1-4 according to the fourth embodiment is provided with an input current detection unit 25A that detects a three-phase input current flowing in AC wirings 51, 52, and 53, instead of bus current detection unit 25 shown in FIG. .
  • Converter 1-4 includes an RST-dq coordinate conversion unit 44, which is a current value conversion unit, and a regeneration control unit 28A.
  • the RST-dq coordinate conversion unit 44 performs coordinate conversion on the output signal of the input current detection unit 25A based on the phase detection signal that is the output signal of the voltage phase detection unit 24, so that d is a current corresponding to active power.
  • An axis current Id and a q-axis current Iq that is a current corresponding to reactive power are calculated.
  • the regeneration control unit 28A performs a regeneration start operation and a regeneration stop operation based on the d-axis current Id and the output signal of the bus voltage detection unit 23.
  • the voltage phase detection unit 24 shown in the first embodiment is used.
  • the voltage phase detection unit 24A may be replaced with the voltage phase detection unit 24A shown in the second embodiment.
  • the input voltage detection unit 43 described in the third embodiment may be added.
  • each voltage phase detection unit has been described as detecting the line voltage of the AC power supply 3 or the voltage phase of the phase voltage.
  • the present invention is not limited to this.
  • at least one of other information such as the power supply angular frequency ⁇ , the R phase voltage phase ⁇ r, the S phase voltage phase ⁇ s, and the T phase voltage phase ⁇ t of the AC power supply 3 is calculated.
  • the R phase voltage phase may be referred to as a first voltage phase
  • the S phase voltage phase may be referred to as a second voltage phase
  • the T phase voltage phase may be referred to as a third voltage phase.
  • the RST-dq coordinate conversion unit 44 has a function of converting an RST axis that is a fixed coordinate axis into a dq axis that is a rotation coordinate axis.
  • the voltage phase detector 24 calculates the power source angular frequency ⁇ and the R phase voltage phase ⁇ r of the AC power source 3, and converts the RST axis signal into a dq axis signal based on the power source angular frequency ⁇ and the R phase voltage phase ⁇ r.
  • FIG. 22 is a diagram for explaining the RST axis and the dq axis used in the control of the fourth embodiment.
  • the RST axis is a fixed coordinate axis indicating the R phase, S phase, and T phase of the AC power supply 3.
  • the dq axis is a rotational coordinate axis that rotates clockwise at the power source angular frequency ⁇ .
  • the phase of the d-axis with respect to the R-phase axis is ⁇
  • equation (2) is established between the two coordinate axes.
  • Equation (3) can be derived by calculating the voltages Vd and Vq of the dq axis which is the rotation coordinate axis using the above equations (1) and (2).
  • the equation (4) can be derived from any value of ⁇ in the equation (3). That is, the d-axis voltage is equivalent to the power supply voltage vector. Accordingly, the d-axis corresponds to the active power direction, and the q-axis corresponds to the reactive power direction.
  • the R-phase voltage VR can be expressed by the following equation (6).
  • the initial phase ⁇ can be set to ⁇ / 2.
  • the above equation (7) is an equation based on the R-phase voltage phase ⁇ r calculated by the voltage phase detector 24 and the power supply angular frequency ⁇ , and an RST-dq coordinate converter 44 that converts the RST axis to the dq axis. This is the formula used in Therefore, the input currents Ir, Is, It can be converted into the d-axis current Id and the q-axis current Iq using the following formula (8).
  • a converter when input currents Ir, Is, It are detected and control such as start and stop of a regenerative operation is performed, it is necessary to convert an RST axis that is a fixed coordinate axis into a dq axis that is a rotational coordinate axis.
  • information on the voltage phase of the AC power supply 3 is required.
  • the voltage phase of the AC power supply 3 is detected by using the signal generated in the ground connected to the wiring 291-2 that is the pattern wiring on the printed circuit board by using the method of the present embodiment. Therefore, the configuration for detecting the voltage phase of the AC power supply 3 can be simplified. Therefore, if the voltage phase detector 24 or the voltage phase detector 24A shown in the present embodiment is used, it can contribute to cost reduction of the converter.
  • the voltage phase of the AC power supply 3 can be detected even in the converter that detects the input current instead of the bus current. Thereby, it can contribute to the cost reduction of a converter.
  • FIG. FIG. 24 is a diagram illustrating a configuration of a converter and a motor control device according to the fifth embodiment.
  • Converter 1-5 according to the fifth embodiment has the same or equivalent configuration as converter 1-4 shown in FIG. 21, and an overload detection unit 45 is further added.
  • symbol is used for the same or equivalent component, and the overlapping description is abbreviate
  • This section is a section where the motor is accelerating and is a motor power running section.
  • Time t00 is the time when the motor starts to accelerate
  • time t01 is the time when the motor speed N reaches the target speed.
  • the motor speed N and the motor output Pout increase due to the motor torque Tout.
  • the motor output Pout increases, the d-axis current Id increases in the positive direction.
  • the motor output Pout becomes constant and the peak value of the d-axis current Id also becomes constant.
  • This section is a section in which the motor speed N is a constant speed. Unlike the period from time t00 to t01, since the motor output Pout is a low value, the d-axis current Id hardly flows.
  • This section is a section where the motor is decelerating and is a motor regeneration section.
  • Time t02 is the time when the motor starts to decelerate
  • time t03 is the time when the motor stops.
  • the motor starts to decelerate
  • the regenerative power of the motor flows into the smoothing capacitor 21 and the bus voltage VPN increases.
  • the bus voltage VPN exceeds a predetermined value based on the above-described regeneration control unit 28A
  • converter 1-5 starts a power regeneration operation. Due to the power regeneration operation of converter 1-5, d-axis current Id flows in the negative direction, and bus voltage VPN decreases.
  • the magnitude of the d-axis current Id is determined by the motor output Pout. That is, a proportional relationship is established between the motor output Pout and the d-axis current Id.
  • the d-axis current Id is obtained based on the input currents Ir, Is, It. Therefore, increasing the d-axis current Id is equivalent to increasing the absolute values of the input currents Ir, Is, It.
  • the converter 1-5 If an excessive current continues to flow through the power module 22 mounted on the converter 1-5, the converter 1-5 enters an overload state. At this time, since the same current as the input currents Ir, Is, It flows through the power module 22, the power is indirectly monitored by monitoring the d-axis current Id calculated based on the input currents Ir, Is, It. The current flowing through the module 22 can be detected. Since the input currents Ir, Is, and It are alternating currents, they flow in both positive and negative directions regardless of motor power running or motor regeneration. On the other hand, in the case of the d-axis current Id, a current flows in a positive direction during motor power running, and a current flows in a negative direction during motor regeneration.
  • FIG. 26 is a diagram illustrating a configuration example of the overload detection unit 45 illustrated in FIG.
  • the overload detection unit 45 includes a comparator 190, a comparator 191 and an OR circuit 192.
  • the d-axis current upper limit value Idmax is input to the minus input terminal of the comparator 190, and the d-axis current Id is input to the plus input terminal of the comparator 190.
  • the d-axis current lower limit value Idmin is input to the plus input terminal of the comparator 191, and the d-axis current Id is input to the minus input terminal of the comparator 191.
  • the output signals of the comparator 190 and the comparator 191 are input to the input terminal of the OR circuit 192, and the output signal of the OR circuit 192 is handled as the output signal of the overload detection unit 45.
  • the overload detection unit 45 outputs a high level signal
  • the converter 1-5 is determined to be in an overload state
  • the overload detection unit 45 outputs a low level signal
  • the converter 1-5 5 is determined not to be overloaded.
  • the d-axis current upper limit value Idmax and the d-axis current lower limit value Idmin are determined by the current capacity or electrical specifications of the power module 22 mounted on the converter 1-5.
  • the d-axis current upper limit value Idmax is a current limit value during powering operation
  • the d-axis current lower limit value Idmin is a current limit value during regenerative operation.
  • the comparator 190 when the d-axis current Id becomes equal to or higher than the d-axis current upper limit value Idmax, the comparator 190 outputs a high level signal, and the logical sum circuit 192 receives a high level signal. As a result, the OR circuit 192 outputs a high level signal, and the overload detection unit 45 outputs a high level signal.
  • the comparator 191 When the d-axis current Id becomes equal to or lower than the d-axis current lower limit value Idmin, the comparator 191 outputs a High level signal, and the OR circuit 192 receives a High level signal. As a result, the OR circuit 192 outputs a high level signal, and the overload detector 45 outputs a high level signal.
  • the signal output from the overload detection unit 45 is notified to the motor drive device 4 or the host control device 100 via a communication line (not shown).
  • converter 1-5 As described above, in converter 1-5 according to the fifth embodiment, the load state of converter 1-5 during motor power running and motor regeneration is monitored based on d-axis current Id, and based on the monitoring result. Thus, it is determined whether converter 1-5 is in an instantaneous overload state.
  • the cost of the power supply phase detector can be reduced, and a simple configuration of monitoring the converter overload state with the d-axis current Id can be realized. It can contribute to the conversion.
  • whether or not the instantaneous overload state is determined only by the d-axis current Id that is proportional to the motor output Pout, but whether or not the instantaneous overload state is also determined using the q-axis current Iq. It may be determined.
  • both the d-axis current Id and the q-axis current Iq both the effective current and the reactive current can be monitored.
  • the energization state of converter 1-5 can be more accurately determined, and therefore it is possible to more accurately determine whether or not it is an instantaneous overload state.
  • FIG. FIG. 27 is a diagram illustrating a configuration of a converter and a motor control device according to the sixth embodiment.
  • Converter 1-6 according to the sixth embodiment has the same or equivalent configuration as converter 1-5 shown in FIG. 24, and overload detector 45 in FIG. 24 is replaced with overload detector 45A in FIG. ing.
  • symbol is used for the same or equivalent component, and the overlapping description is abbreviate
  • the overload detection unit 45A has a function of detecting a steady-state overload of the converter 1-6 based on the d-axis current Id. Information on whether or not converter 1-6 is in an overload state is notified to motor drive device 4 or host controller 100 (not shown in FIG. 27) (see FIG. 34).
  • the host control device 100 is a device that transmits a motor operation command to the motor drive device 4.
  • steady-state overload protection for power converters such as converters and inverters estimates the temperature of components mounted on the power converter, and when the estimated temperature exceeds the temperature to be protected, The power converter is protected by determining that it is in an overload state and stopping the operation of the power converter.
  • components mounted on the power converter include a power element group and a capacitor related to power supply to the motor.
  • FIG. 28 is a waveform diagram for explaining steady-state overload protection in the sixth embodiment.
  • the horizontal axis is the energization current I of the power converter
  • the vertical axis is the allowable energization time Ta
  • This overload protection characteristic is used when obtaining the time until the temperature rise due to the energization reaches the temperature to be protected when the power conversion device is energized continuously with a certain energization current I.
  • the value on the vertical axis at the intersection of the straight line drawn in parallel to the vertical axis from the point on the horizontal axis representing the value of a certain energization current I and the overload protection curve shown is set as the temperature to be protected. .
  • the calculated temperature rise estimated value Kc is input to the minus input terminal of the comparator 195.
  • the threshold temperature Kref is input to the plus input terminal of the comparator 195, and a signal indicating the magnitude relationship between the temperature rise estimated value Kc and the threshold temperature Kref becomes the output signal of the comparator 195, and the output of the comparator 195 The signal becomes an output signal of the overload detection unit 45A.
  • FIG. 30 is a first waveform diagram for explaining the operation of the temperature rise estimation unit 194 in the sixth embodiment
  • FIG. 31 is a second waveform for explaining the operation of the temperature rise estimation unit 194 in the sixth embodiment.
  • FIG. 30 shows the temperature rise Ka of the power module 22 when the d-axis current Id of the converter 1-6 continues to flow at a constant value.
  • FIG. 31 shows the temperature rise Kb of the smoothing capacitor 21 when the d-axis current Id of the converter 1-6 continues to flow at a constant value.
  • the horizontal axis represents time.
  • the temperature rise estimation unit 194 calculates the temperature rise estimated value Kc of the power module 22 and the smoothing capacitor 21 by using the d-axis current absolute value
  • Id the d-axis current absolute value
  • several-order delay filters are IIR filters and moving average filters.
  • the overload detection unit 45A estimates the temperature rise of the components mounted on the converter 1-6 based on the d-axis current Id, and the temperature rise estimated value Kc provided in advance is equal to or higher than the threshold temperature Kref. In this case, it is determined that the steady state overload state is established, and when the estimated temperature rise Kc is smaller than the threshold temperature Kref, it is determined that the steady state overload state is not established.
  • the overload detection unit 45A outputs a High level signal and notifies the motor drive device 4 or the host control device 100 via the communication path.
  • the overload detection unit 45A outputs a Low level signal. The high level signal and the low level signal are notified to the motor driving device 4 or the host control device 100 via the communication path.
  • converter 1-6 As described above, in converter 1-6 according to the sixth embodiment, the load state of converter 1-6 is monitored based on d-axis current Id, and based on the monitoring result, converter 1-6 performs overload during normal operation. It is determined whether or not it is in a state.
  • the cost of the power supply phase detector can be reduced, and a simple configuration in which the overload state of the converter is monitored with the d-axis current Id can be realized. It can contribute to the conversion.
  • Embodiment 6 it is determined whether or not the steady-state overload state is based only on the d-axis current Id that is proportional to the motor output Pout, but the steady-state overload state is also determined using the q-axis current Iq. It may be determined whether or not.
  • the steady-state overload state is also determined using the q-axis current Iq. It may be determined whether or not.
  • both the d-axis current Id and the q-axis current Iq both the effective current and the reactive current can be monitored.
  • the energization state of converter 1-6 can be determined more accurately, and therefore it can be determined more accurately whether or not the steady-state overload state is present.
  • FIG. 32 is a diagram illustrating a configuration of a converter and a motor control device according to the seventh embodiment.
  • Converter 1-7 according to the seventh embodiment shown in FIG. 32 is identical to converter 1-5 according to the fifth embodiment shown in FIG. 24 in the configuration of bus voltage detector 23, base drive signal generator 26, and regeneration controller. While the illustration of 28A is omitted, a motor control unit 4A is added inside the motor driving device 4.
  • Other configurations are the same as or equivalent to those in FIG. 24, and the same or equivalent components are denoted by the same reference numerals.
  • the motor control unit 4A has a function of supplying arbitrary AC power to the motor 5 and controlling the motor 5 at a variable speed.
  • the output of the overload detection unit 45 in the converter 1-7 is configured to be input to the motor control unit 4A via the communication path 46.
  • the overload detection unit 45 described in the fifth embodiment that is, the overload detection unit 45 having a function of determining the instantaneous overload state is used.
  • the overload detection unit 45 described in the sixth embodiment is used. It may be replaced with a load detection unit 45A, that is, an overload detection unit 45A having a function of determining a steady-state overload state, or it has both an instantaneous overload state determination function and a steady-state overload state determination function.
  • An overload detection unit may be used.
  • the input current detection unit 25A detects the currents Ir, Is, It input to the power module 22 and inputs the detected input currents Ir, Is, It to the RST-dq coordinate conversion unit 44.
  • the RST-dq coordinate conversion unit 44 calculates the d-axis current Id and the q-axis current Iq based on the R-phase phase ⁇ r and the power supply angular frequency ⁇ of the AC power supply 3 detected by the voltage phase detection unit 24, and d
  • the shaft current Id is input to the overload detection unit 45.
  • Overload detection unit 45 determines whether converter 1-7 is in an overload state based on d-axis current Id. When it is determined that converter 1-7 is in an overload state and overload detection unit 45 outputs a high level signal, motor control unit 4A controls AC power so as to reduce the output of motor 5.
  • the following method is illustrated as a method for reducing the output of the motor 5.
  • Control is performed so that the motor 5 is operated with a torque command that is more limited than the torque command previously determined by the motor operation command.
  • Control the motor 5 so that it operates with a rotation command that is more limited than the rotation command previously determined by the motor operation command.
  • Control the motor 5 to free run Specifically, the switching operation for on / off control of a switching element (not shown) provided in the motor driving device 4 is stopped, and the motor 5 is brought into a free state.
  • FIG. 33 is a flowchart showing operations of the converter and the motor control unit according to the seventh embodiment.
  • the notation of the reference numerals is omitted.
  • the RST-dq coordinate conversion unit 44 generates a d-axis current based on the input currents Ir, Is, It detected by the input current detection unit 25A, the R phase phase ⁇ r calculated by the voltage phase detection unit 24, and the power source angular frequency ⁇ . Id is calculated (step S101).
  • Overload detection unit 45 determines whether converter 1-7 is in an overload state based on d-axis current Id (step S102). The overload detection unit 45 notifies the determination result to the motor control unit 4A in the motor drive device 4 through the communication path 46 (step S103).
  • the processing in steps S101 to S103 described above is the processing of converter 1-7, and converter 1-7 repeatedly executes the processing in steps S101 to S103.
  • the motor control unit 4A receives the determination result of the overload detection unit 45 (step S104). Based on the received determination result, motor control unit 4A determines whether converter 1-7 is in an overload state (step S105). In the case of a signal indicating that the received determination result is an overload state (High level signal in the example of Embodiment 5) (Yes in Step S105), the motor driving device is configured so that the output of the motor 5 is limited. The motor output from 4 is limited (step S106), and the AC power with the output of the motor 5 limited is output to the motor 5 (step S107).
  • step S105 the process proceeds to step S107 without performing the process in step S106. Transition. That is, when the received determination result is not an overload state, the AC power in the normal control operation is output to the motor 5 without limiting the output of the motor 5 (step S107).
  • steps S104 to S107 described above are the processes of the motor control unit 4A, and the motor control unit 4A repeatedly executes the processes of steps S104 to S107.
  • the seventh embodiment even if the operation of the motor 5 exceeds the expected value and the converter 1-7 is in an overload state, the AC power is applied so that the motor driving device 4 reduces the output of the motor 5. Therefore, the overload state of the converter 1-7 can be eliminated, and adverse effects such as deterioration and damage of the converter 1-7 can be eliminated without stopping the system. Therefore, a converter having a small capacity can be selected, which can contribute to cost reduction of the industrial machine.
  • FIG. 34 is a diagram illustrating a configuration of a converter and a motor control device according to the eighth embodiment. 34, in the configuration of converter 1-7 according to the seventh embodiment shown in FIG. 32, a host controller 100, a motor drive device 400, and a motor 500 instead of the motor 5 are added.
  • the host controller 100 has a function of outputting a motor operation command to each of the motor drive devices 4 and 400 via the communication paths 47a and 47b, and outputs a motor operation command to each of the motor drive devices 4 and 400.
  • the output of the overload detection unit 45 in the converter 1-8 is input to the host controller 100 via the communication path 46.
  • the motor drive device 400 includes DC terminals 19 and 20 and a motor control unit 400A.
  • the DC terminals 19 and 20 are connected to the DC terminals 17 and 18 of the motor drive device 4 and are connected to the smoothing capacitor 21 in the converter 1-8. Connected.
  • the motor control unit 400A supplies variable AC power to the motor 500 to perform variable speed control.
  • the overload detection unit 45 suitable for instantaneous overload detection is shown. However, the overload detection unit 45 may be replaced with an overload detection unit 45A suitable for steady-state overload detection. You may comprise using the overload detection part provided with the function of both load detection and a steady-time overload detection.
  • the input current detection unit 25A detects the currents Ir, Is, It input to the power module 22 and inputs the detected input currents Ir, Is, It to the RST-dq coordinate conversion unit 44.
  • the RST-dq coordinate conversion unit 44 calculates the d-axis current Id and the q-axis current Iq based on the R-phase phase ⁇ r and the power supply angular frequency ⁇ of the AC power supply 3 detected by the voltage phase detection unit 24, and d
  • the shaft current Id is input to the overload detection unit 45.
  • Overload detection unit 45 determines whether converter 1-8 is in an overload state based on d-axis current Id.
  • a signal indicating that the converter is in an overload state (high level signal) is notified to host control device 100 via communication path 46.
  • the host controller 100 uses at least one of the communication paths 47a and 47b corresponding to at least one of the motor controller 4A of the motor driver 4 and the motor controller 400A of the motor driver 400, An instruction is given to generate a motor operation command that limits the output of the motor to be controlled.
  • At least one of the motor control unit 4A and the motor control unit 400A controls the AC power so as to decrease the output of the motor 5 or the motor 500 based on the received motor operation command.
  • a machine tool including a spindle motor and a servo motor is taken as an example, and it is assumed that the motor 5 is a spindle motor and the motor 500 is a servo motor.
  • the host control device 100 may be provided on the machine tool or may not be provided on the machine tool.
  • the host control device 100 outputs a motor operation command for reducing the output of the motor 5 that is a spindle motor to the motor control unit 4A.
  • the host controller 100 limits the output of the motor 500 that is a servo motor having a shorter acceleration time and deceleration time than the motor 5 that is a spindle motor. decide.
  • the host controller 100 maintains the output of the motor 5 that is a spindle motor, and outputs a motor operation command for limiting the output of the motor 500 that is a servo motor to the motor control unit 4A and the motor control unit 400A.
  • FIG. 35 is a flowchart showing operations of the converter and the motor drive device according to the eighth embodiment.
  • the notation of symbols is omitted.
  • the RST-dq coordinate conversion unit 44 generates a d-axis current based on the input currents Ir, Is, It detected by the input current detection unit 25A, the R phase phase ⁇ r calculated by the voltage phase detection unit 24, and the power source angular frequency ⁇ . Id is calculated (step S201).
  • Overload detection unit 45 determines whether converter 1-8 is in an overload state based on d-axis current Id (step S202).
  • the overload detection unit 45 notifies the host controller 100 of the determination result through the communication path 46 (step S203).
  • the processes in steps S201 to S203 described above are the processes of converter 1-8, and converter 1-8 repeatedly executes the processes in steps S201 to S203.
  • the host control device 100 receives the determination result of the overload detection unit 45 (step S204). Based on the received determination result, host controller 100 determines whether converter 1-8 is in an overload state (step S205). In the case of a signal indicating that the received determination result is an overload state (High level signal in the example of Embodiment 5) (Yes in Step S205), the output of at least one of the motor 5 and the motor 500 is limited. (Step S206), and outputs a motor operation command that restricts the output of the motor to the motor drive device that drives the motor to be controlled (step S207).
  • step S205 the process proceeds to step S207 without performing the process in step S206. Transition. That is, when the received determination result is not an overload state, the output restriction on the motor 5 and the motor 500 is not performed, and a normal motor operation command is output (step S207).
  • the above steps S204 to S207 are the processes of the host control apparatus 100, and the host control apparatus 100 repeatedly executes the processes of steps S204 to S207.
  • the motor control unit 4A of the motor drive device 4 and the motor control unit 400A of the motor drive device 400 receive the motor operation command from the host control device 100 (step S208), and AC power is supplied to the motor according to the received motor operation command. 5 and the motor 500 so as to be output (step S209).
  • the processes of steps S208 and S209 described above are the processes of the motor control units 4A and 400A, and the motor control units 4A and 400A repeatedly execute the processes of steps S208 and S209.
  • the host control device 100 performs at least one of the motor 5 and the motor 500.
  • a motor operation command that restricts one output is output to the corresponding motor drive device, and the motor drive device controls the AC power so as to decrease the motor output to be controlled. It is possible to eliminate the adverse effects such as deterioration and damage of the converter 1-8 without stopping the system. Further, in an industrial machine using a plurality of motors such as machine tools, by outputting a motor operation command so as to prevent the cycle time from becoming long, the cycle time can be maintained while maintaining the cycle time. An overload condition can be eliminated. Therefore, a converter having a small capacity can be selected, which can contribute to cost reduction of the industrial machine.
  • FIG. 36 is a diagram illustrating a configuration of a converter and a motor control device according to the ninth embodiment.
  • the configuration is the same as or equivalent to the configuration of converter 1-8 according to the eighth embodiment shown in FIG. 34, but converter control unit 1A is added inside converter 1-9, and inside converter control unit 1A.
  • An overload detection unit 45B is provided.
  • the overload detection unit 45B is an overload detection unit having functions of both instantaneous overload detection and steady state overload detection.
  • the host control device 100, the motor driving device 400, the motor driving device 4, and the converter 1-9 are daisy chain connected via a communication path.
  • converter control unit 1A of converter 1-9 and motor control unit 4A of motor drive device 4 are connected via communication path 46, and motor control unit 4A of motor drive device 4 and motor control of motor drive device 400 are controlled.
  • the unit 400A is connected via a communication path 48a, and the motor control unit 400A of the motor driving device 400 and the host control apparatus 100 are connected via a communication path 48b.
  • a motor operation command output from the host control device 100 to the motor drive device 4 is input to the motor control unit 4A of the motor drive device 4 via the motor control unit 400A of the motor drive device 400. Will be.
  • a plurality of motors are generally operated at a high output.
  • a machine tool including a plurality of servo motors and spindle motors is taken as an example.
  • the spindle motor is the motor 5 and the servo motor is the motor 500.
  • the output of a spindle motor is generally larger than that of a servo motor. For this reason, the ratio of the electric power supplied from the converter to each motor driving device is increased by the spindle motor driving device. In the case of the simultaneous acceleration / deceleration operation as described above, the power supplied to the converter can be quickly reduced by reducing the output of the motor 5 that is a spindle motor without using the host controller 100.
  • the steady-state overload state is not a state in which the converter supplies excessive power, but the operating cycle of industrial machinery is severe, and the temperature rises in components such as power modules and smoothing capacitors mounted on the converter due to long-term operation. Is a case where the temperature exceeds the allowable temperature. In such a case, it is necessary to review the operation cycle.
  • the motor operation command for the motor 5 that is the spindle motor or the motor 500 that is the servo motor, or the motor operation command for both via the host controller 100 the operation cycle is reviewed. It is suitable to reduce the sum of the average output of the motor in operation.
  • FIG. FIG. 37 is a flowchart illustrating operations of the converter, the motor drive device, and the host control device according to the ninth embodiment.
  • the RST-dq coordinate conversion unit 44 generates a d-axis current based on the input currents Ir, Is, It detected by the input current detection unit 25A, the R phase phase ⁇ r calculated by the voltage phase detection unit 24, and the power source angular frequency ⁇ . Id is calculated (step S301). Based on the d-axis current Id, the overload detection unit 45B determines whether the converter 1-9 is in an instantaneous overload state, a steady state overload state, or no abnormality, that is, an overload of the converter 1-9. The load state is determined (step S302). The overload detection unit 45B notifies the determination result to the motor control unit 4A via the communication path 46 (step S303).
  • the processing in steps S301 to S303 described above is the processing of converter 1-9, and converter 1-9 repeatedly executes the processing in steps S301 to S303.
  • the motor control unit 4A receives the determination result of the overload detection unit 45B (step S304). Based on the received determination result, motor control unit 4A determines whether converter 1-9 is in an instantaneous overload state (step S305). When the received determination result is a signal indicating that the instantaneous overload state is present (step S305, Yes), the motor output from the motor driving device 4 is limited so that the output of the motor 5 is limited (step S306). The AC power whose motor output is limited is output to the motor 5 (step S307). In addition, when the received determination result is not an instantaneous overload state (step S305, No), it transfers to step S307, without performing the process of step S306.
  • step S307 when the received determination result is not in the instantaneous overload state, the AC power in the normal control operation is output to the motor 5 without limiting the output of the motor 5 (step S307). Further, the motor control unit 4A notifies the determination result of the overload detection unit 45B to the motor control unit 400A (step S308).
  • steps S304 to S308 described above are the processes of the motor control unit 4A, and the motor control unit 4A repeatedly executes the processes of steps S304 to S308.
  • the motor control unit 400A receives the determination result of the overload detection unit 45B from the motor control unit 4A via the communication path 48a (step S309), and notifies the determination result to the host controller 100 via the communication path 48b (step S309). S310).
  • the processes of steps S309 and S310 described above are the processes of the motor control unit 400A, and the motor control unit 400A repeatedly executes the processes of steps S309 and S310.
  • the host control device 100 receives the determination result of the overload detection unit 45B from the motor control unit 400A (step S311). Based on the received determination result, host controller 100 determines whether converter 1-9 is in an instantaneous overload state (step S312). When the received determination result is a signal indicating that the instantaneous overload state is present (step S312, Yes), it is determined to limit the output of the motor 500 (step S313), and the motor control unit 400A that controls the motor 500 is determined. On the other hand, a motor operation command that limits the motor output is output (step S316).
  • step S312 determines whether or not the converter 1-9 is in a steady state overload state. If the received determination result is a signal indicating that the steady-state overload state is present (step S314, Yes), the change of the operation cycle of each axis operated by the servo motor is determined (step S315), and the motor 500 is controlled. The motor operation command changed so as to suppress the average output of the motor 500 is output to the motor control unit 400A (step S316).
  • step S314, No When the received determination result is a signal indicating that the steady-state overload state is not present (step S314, No), the process proceeds to step S316 without performing the process of step S315.
  • the processes of steps S311 to S316 described above are the processes of the host controller 100, and the host controller 100 repeatedly executes the processes of steps S311 to S316.
  • the above control is summarized as follows. First, when it is determined as an instantaneous overload state, AC power is output to the motor 5 so that the motor control unit 4 ⁇ / b> A limits the motor output without going through the host controller 100. In parallel with this control, the motor control unit 400A and the host control device 100 are notified of the instantaneous overload state. Based on the determination result, the host controller 100 generates a motor operation command for the motor 500 so as to limit the output of the motor operation of the motor 500 and outputs the motor operation command to the motor drive device 400. In the motor drive device 4, the output of the motor 5 is once limited to avoid an instantaneous overload state, and thereafter, the host control device 100 reviews the motor operation command again.
  • the motor control unit 4A continues the operation command based on the motor operation command output from the host control device 100, and in parallel with this, the motor control unit 400A and the host control unit The control device 100 is notified that it is in a steady state overload state. Based on the determination result, host controller 100 generates a motor operation command so as to limit the average output in the motor operation of motor 500 and outputs the motor operation command to motor drive device 400.
  • the output limit for the motor 5 is limited when it is determined as an instantaneous overload state
  • the output limit for the motor 500 is limited when it is determined as a steady state overload state.
  • the output of both the motor 5 and the motor 500 may be limited.
  • output restriction may be performed on both the motor 5 and the motor 500.
  • the overload detection unit 45B can detect an instantaneous overload state and a steady-state overload state, respectively.
  • a dedicated communication line for overload detection is provided. It may be provided, or a method of notifying an overload state by serial communication or the like may be used.
  • the motor output can be quickly reduced.
  • the severe operation cycle is improved by reviewing the motor operation command output from host controller 100 to each motor drive device, and installed in converter 1-9.
  • the temperature rise of the power module 22 and the smoothing capacitor 21 can be reduced.
  • adverse effects such as deterioration and damage of the converter 1-9 can be solved without stopping the system.
  • an industrial machine using a plurality of motors such as machine tools, by outputting a motor operation command so as to prevent the cycle time from becoming long, the cycle time can be maintained while maintaining the cycle time. An overload condition can be eliminated. Therefore, a converter having a small capacity can be selected, which can contribute to cost reduction of the industrial machine.
  • FIG. FIG. 38 is a diagram illustrating a configuration of a converter and a motor control device according to the tenth embodiment.
  • the converter 1-10 according to the tenth embodiment has the same configuration as the converter 1-3 shown in FIG. 19 shown in the third embodiment, but the bus voltage detection unit 23, the voltage phase detection unit 24, the bus current detection While the illustration of the unit 25, the base drive signal generation unit 26, and the regeneration control unit 28 is omitted, a power failure detection unit 50 is added inside the converter 1-10.
  • a motor drive device 400, a motor 500, and a host control device 100 are added as in the eighth and ninth embodiments. Further, in the configuration of FIG.
  • a DC voltage detector 82 for detecting the voltage between the DC terminals 17-18 is arranged inside the motor driving device 4, and the DC terminal is provided inside the motor driving device 400.
  • a DC voltage detector 83 for detecting a voltage between terminals 19-20 is arranged.
  • the host control device 100, the motor drive device 400, the motor drive device 4, and the converter 1-10 are daisy chain connected via a communication path.
  • the power failure detection unit 50 of the converter 1-10 and the motor control unit 4A of the motor drive device 4 are connected via a communication path 85, and the motor control unit 4A of the motor drive device 4 and the motor control of the motor drive device 400 are controlled.
  • the unit 400A is connected by a communication path 86a, and the motor control unit 400A of the motor driving device 400 and the host control apparatus 100 are connected by a communication path 86b.
  • a motor operation command output from the host control device 100 to the motor drive device 4 is input to the motor control unit 4A of the motor drive device 4 via the motor control unit 400A of the motor drive device 400. Will be.
  • the power failure detection unit 50 detects a power failure of the AC power source 3 based on the output signal of the input voltage detection unit 43, and drives the motor via the communication paths 85, 86a, 86b. A function of notifying the power failure information to the device 4, the motor drive device 400, and the host control device 100 is provided.
  • the motor control unit 4A has a function of controlling the motor 5 at a variable speed by supplying arbitrary AC power to the motor 5, and a function of receiving a detection signal of the DC voltage detection unit 82.
  • the motor control unit 400A has a function of controlling the motor 500 at a variable speed by supplying arbitrary AC power to the motor 500, and a function of receiving a detection signal of the DC voltage detection unit 83. Note that the detection signal of the DC voltage detection unit 82 and the detection signal of the DC voltage detection unit 83 are the same as the voltage across the smoothing capacitor 21, that is, the detection value of the bus voltage detection unit 23.
  • the motor 5 or 500 is operating when a power failure occurs, it is necessary to stop the operating motor.
  • the motor is decelerated, the regenerative power of the motor is accumulated in the smoothing capacitor 21 of the converter 1-10, and the bus voltage VPN increases.
  • the power supply regeneration operation may be performed by operating the switching elements S1 to S6 of the power module 22, but the power regeneration operation cannot be performed for the above-described reason.
  • the bus voltage VPN further increases. Therefore, when the bus voltage VPN exceeds a certain value, it is determined that the voltage is an overvoltage, and the control of each motor must be stopped. In this case, it takes time until each motor stops, and for example, the feed shaft of the machine tool may collide with the shaft end.
  • the determination result of the power failure detection unit 50 of the converter 1-10 is transmitted to the motor control unit 4A, the motor control unit 400A, and the host control via the communication paths 85, 86a, 86b. Notify the device 100.
  • the motor control unit 4 ⁇ / b> A controls the AC power supplied to the motor 5 based on the detection value of the DC voltage detection unit 82. Further, the motor control unit 400A supplies AC power so as to decelerate and stop the motor 500.
  • the motor 5 is a spindle motor and the motor 500 is a servo motor
  • the operation of the motor 5 corresponding to the spindle motor is controlled to keep the bus voltage VPN at an appropriate value so that the motor 500 corresponding to the servo motor can be safely decelerated and stopped.
  • the DC voltage detector 82 is the same as the bus voltage VPN detected by the bus voltage detector 23. For this reason, the detection value of the DC voltage detection unit 82 is handled as the bus voltage VPN.
  • a bus voltage determination circuit that determines the bus voltage VPN is configured inside the motor control unit 4A. The motor control unit 4A determines the AC power supplied to the motor 5 based on the determination result of the bus voltage determination circuit.
  • FIG. 39 is a diagram illustrating a configuration example of the bus voltage determination circuit according to the tenth embodiment.
  • the bus voltage determination circuit includes comparators 196 and 197.
  • the bus voltage upper limit value VPNmax is input to the negative input terminal of the comparator 196
  • the detection value VPN of the DC voltage detection unit 82 is input to the positive input terminal of the comparator 196.
  • the detected value VPN of the DC voltage detector 82 is input to the minus input terminal of the comparator 197
  • the bus voltage lower limit value VPNmin is input to the plus input terminal of the comparator 197.
  • Comparator 196 determines whether or not bus voltage VPN is equal to or higher than a predetermined bus voltage upper limit value VPNmax.
  • the comparator 197 determines whether or not the bus voltage VPN is equal to or lower than a predetermined bus voltage lower limit value VPNmin.
  • the bus voltage VPN is larger than an appropriate value, and the bus voltage VPN needs to be lowered. .
  • the motor 5 corresponding to the spindle motor is accelerated, the motor 5 becomes a power running operation, and the bus voltage VPN can be lowered.
  • the comparator 196 outputs a low level signal and the comparator 197 outputs a high level signal, the bus voltage VPN is in a state of being lower than an appropriate value, and the bus voltage VPN needs to be raised. There is. In this case, if the motor 5 corresponding to the spindle motor is decelerated, the motor 5 performs a regenerative operation, and the bus voltage VPN can be increased.
  • FIG. 40 is a flowchart showing an operation of converter 1-10 in the tenth embodiment.
  • FIG. 41 is a flowchart showing the operation of the motor control unit 4A in the tenth embodiment.
  • FIG. 42 is a flowchart illustrating the operation of the motor control unit 400A according to the tenth embodiment. 40 to 42, the respective flowcharts are individually shown. However, it is also possible to show them in one figure as shown in FIG.
  • the input voltage detection unit 43 detects the input voltage of the AC power supply 3 as described above (step S401).
  • the power failure detection unit 50 determines whether or not a power failure has occurred in the AC power supply 3 based on the output signal of the input voltage detection unit 43 (step S402).
  • the power failure detection unit 50 notifies the determination result to the motor control unit 4A inside the motor drive device 4 via the communication path 85 (step S403).
  • the processes in steps S401 to S403 described above are the processes of converter 1-10, and converter 1-10 repeatedly executes the processes in steps S401 to S403.
  • the motor control unit 4A receives the determination result of the power failure detection unit 50 (step S501).
  • the motor control unit 4A notifies the received determination result to the motor control unit 400A (step S502), and determines whether or not a power failure has occurred in the AC power supply 3 based on the received determination result (step S503).
  • the motor control unit 4A determines whether the bus voltage VPN detected by the DC voltage detection unit 82 is equal to or higher than the bus voltage upper limit value VPNmax. It is determined whether or not (step S504).
  • the motor The control unit 4A controls the motor 5 to accelerate (step S508), and outputs AC power to the motor 5 (step S509).
  • the motor control unit 4A determines that the bus voltage VPN is the bus voltage. It is determined whether it is below the lower limit value VPNmin (step S505).
  • the bus voltage VPN is equal to or lower than the bus voltage lower limit value VPNmin (in the tenth embodiment, when the output signal of the comparator 196 is low level and the output signal of the comparator 197 is high level) (step S505, Yes)
  • the motor control unit 4A Controls the motor 5 to decelerate (step S507), and outputs AC power to the motor 5 (step S509).
  • the bus voltage VPN is larger than the bus voltage lower limit value VPNmin (in the tenth embodiment, the output signal of the comparator 197 is low level, but in step S505, the output signals of the comparator 196 and the comparator 197 are both In the case of low level) (step S505, No), the motor control unit 4A stops the power supply to the motor 5 and free-runs the motor 5 (step S506), and the motor 5 is generated based on step S506. AC power is output (step S509). In this control, since the motor 5 is free running, the power supply is stopped.
  • step S501 If it is determined in step S501 that the determination result is a signal indicating that a power failure has not occurred, the processing in steps S504 to S508 is skipped, and the processing in step S509 is performed. That is, the motor control unit 4A outputs alternating current power to operate the motor 5 in accordance with the motor operation command transmitted from the host control device 100.
  • the above steps S501 to S509 are the processes of the motor control unit 4A, and the motor control unit 4A repeatedly executes the processes of steps S501 to S509.
  • the motor control unit 4A stops the power supply to the motor 5 and free-runs the motor 5.
  • the motor 5 may be controlled to maintain a constant speed.
  • the motor control unit 400A receives a determination result regarding the presence or absence of a power failure from the motor control unit 4A via the communication path 86a (step S601).
  • the motor control unit 400A notifies the determination result regarding the presence or absence of a power failure to the host control device 100 via the communication path 86b (step S602).
  • the motor control unit 400A determines whether or not a power failure has occurred in the AC power supply 3 based on the determination result received in step S601 (step S603).
  • step S603 When the received determination result is a signal indicating that a power failure has occurred (step S603, Yes), the motor control unit 400A changes the motor operation command to decelerate the motor 500 (step S604), and AC power based on the changed motor operation command is output (step S605).
  • the motor control unit 400A skips the process in step S604 and performs the process in step S605. That is, the motor control unit 400A outputs AC power for operating the motor 500 in accordance with the motor operation command transmitted from the host control device 100 (step S605).
  • the above steps S601 to S605 are the processing of the motor control unit 400A, and the motor control unit 400A repeatedly executes the processing of steps S601 to S605.
  • the motor driving device 4 and the motor driving device 400 when a power failure occurs in the AC power source 3, the motor driving device 4 and the motor driving device 400, for example, drive the motor 500 that drives the feed shaft without passing through the host control device 100 that outputs a motor operation command. It can be stopped immediately.
  • the motor control unit 400A receives a power failure detection signal, the motor 500 is decelerated.
  • the bus voltage VPN increases.
  • the bus voltage VPN becomes an overvoltage or low voltage.
  • the motor 500 can be stopped. Since the input voltage detection unit 43 detects the signal shown in the third embodiment, it can be realized at low cost, and the power failure detection unit 50 can also be realized at low cost.
  • control functions in the converter and the motor driving device described in the first to tenth embodiments may be configured by hardware using a photocoupler, a logic IC, or the like.
  • a circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, a combination of these, or a software may be used.
  • the configuration shown in the above embodiment shows an example of the content of the present invention, and can be combined with another known technique, and can be combined without departing from the gist of the present invention. It is also possible to omit or change a part of.

Abstract

Provided is a converter (1-1) comprising: a power module (22) including AC terminals (11, 12, 13) connected to an AC power supply (3), a DC terminal (14) and a DC terminal (15), and a plurality of switching elements; a base driving circuit (27); and a control power supply unit (29). The converter (1-1) comprises a voltage phase detection unit (24) that detects a voltage phase of an AC voltage on the basis of a signal flowing to emitters of a plurality of switching elements connected to the DC terminal (14) or a signal flowing to a ground and serving as a reference potential for the control power supply unit (29), and generates and outputs a phase detection signal indicative of the detected voltage phase. The converter (1-1) comprises a base driving signal generation unit (26) that generates, on the basis of the phase detection signal, a driving signal for controlling on/off operations of a plurality of switching elements.

Description

コンバータ及びモータ制御装置Converter and motor control device
 本発明は、交流電力を直流電力に変換するコンバータ及びモータ制御装置に関する。 The present invention relates to a converter and a motor control device that convert AC power into DC power.
 工作機械、製造機械、ロボット等の産業機械には、省エネルギー化のため、入力電源である交流電源に回生電力を戻す電源回生方式を用いたコンバータが多く利用される。電源回生方式を用いたコンバータは、モータ回生時にモータ駆動装置から供給される直流電力を交流電力に変換する直流交流変換装置として動作することによって、モータで発生した誘導起電力である回生電力を交流電源に戻す。以下では、回生電力を交流電源に戻すコンバータの動作を回生動作と称する。回生動作においては、コンバータを構成するスイッチング素子がオンするタイミングが交流電源の電圧位相からずれると電圧差が大きくなり、過大な電流が流れてモータ駆動装置が停止するおそれがある。そのため、コンバータでは、交流電源の電圧位相が検出され、検出された位相情報に基づき、回生動作中のスイッチング素子のオンオフ動作を制御する駆動信号が生成される。以下では交流電源の電圧位相を単に電圧位相と称する場合がある。電圧位相の検出方法としては、交流電源の線間電圧のゼロクロス点を検出し、検出されたゼロクロス点に基づいて電圧位相を検出する方法が一般的である。ゼロクロス点は、交流電源の線間電圧が負から正又は正から負へ変化する際、電圧がゼロとなるタイミングをいう。しかしながら、この電圧位相の検出方法では、交流電源の線間電圧がゼロクロスするタイミングが回生動作中のスイッチング素子のオン又はオフするタイミングと重なるため、交流電源の線間電圧のゼロクロス点近くで、電源電圧にスパイク状の歪みが発生する。そのため、電圧変動によりゼロクロス点の検出誤りが生じて、電圧位相を誤検出する可能性がある。 In industrial machines such as machine tools, manufacturing machines, and robots, converters using a power regeneration system that returns regenerative power to an AC power source as an input power source are often used for energy saving. The converter using the power regeneration system operates as a DC / AC converter that converts DC power supplied from the motor drive device to AC power during motor regeneration, thereby converting the regenerative power generated by the motor into AC. Return to power. Hereinafter, the operation of the converter that returns the regenerative power to the AC power supply is referred to as a regenerative operation. In the regenerative operation, if the timing at which the switching elements constituting the converter are turned on deviates from the voltage phase of the AC power supply, the voltage difference increases, and an excessive current may flow to stop the motor drive device. Therefore, in the converter, the voltage phase of the AC power supply is detected, and a drive signal that controls the on / off operation of the switching element during the regenerative operation is generated based on the detected phase information. Hereinafter, the voltage phase of the AC power supply may be simply referred to as a voltage phase. As a voltage phase detection method, a method of detecting a zero cross point of a line voltage of an AC power supply and detecting a voltage phase based on the detected zero cross point is common. The zero cross point is a timing at which the voltage becomes zero when the line voltage of the AC power source changes from negative to positive or from positive to negative. However, in this voltage phase detection method, the timing at which the line voltage of the AC power supply zero-crosses overlaps with the timing at which the switching element during the regenerative operation is turned on or off. Spike-like distortion occurs in the voltage. For this reason, there is a possibility that a zero-cross point detection error occurs due to voltage fluctuation, and the voltage phase is erroneously detected.
 このような問題を解決するため、特許文献1には、相電圧のゼロクロスにより交流電源の電圧位相を検出する技術が開示されている。特許文献1に開示される技術では、電源回生コンバータの交流端子に、交流電源の電圧位相を検出する位相検出部が接続され、位相検出部によって交流電源の電圧位相が検出される。位相検出部は、電源回生コンバータ内に設けられるプリント基板に実装されている。特許文献1に開示される技術によれば、交流電源の電圧位相が相電圧のゼロクロスによって検出されるため、ゼロクロス点間でHighレベルとLowレベルとに交互に変化する位相検出信号が生成される。そして、位相検出信号のレベルが変化するタイミングと、スイッチング素子がオン又はオフするタイミングとを異ならせることができる。これにより、スイッチング素子のオンオフ動作に起因する電源電圧のスパイク状の歪みの影響を受けずに、電圧の位相検出を行うことができる。 In order to solve such a problem, Patent Document 1 discloses a technique for detecting the voltage phase of the AC power supply by the zero crossing of the phase voltage. In the technique disclosed in Patent Document 1, a phase detection unit that detects the voltage phase of the AC power supply is connected to the AC terminal of the power regeneration converter, and the voltage phase of the AC power supply is detected by the phase detection unit. The phase detector is mounted on a printed circuit board provided in the power regeneration converter. According to the technique disclosed in Patent Literature 1, since the voltage phase of the AC power supply is detected by the zero cross of the phase voltage, a phase detection signal that alternately changes between a high level and a low level between the zero cross points is generated. . The timing at which the level of the phase detection signal changes can be made different from the timing at which the switching element is turned on or off. As a result, voltage phase detection can be performed without being affected by spike-like distortion of the power supply voltage caused by the on / off operation of the switching element.
特開2004-180427号公報JP 2004-180427 A
 特許文献1に示された技術では、電源回生コンバータの交流電源端子と、複数のスイッチング素子によって構成されたパワーモジュールの交流電源端子との間に印加される交流電圧の位相が、位相検出部によって検出される。この交流電圧はプリント基板上のパターン(銅箔)に印加される電圧である。ところが、電源回生コンバータの交流電源端子と、パワーモジュールの交流電源端子との間に流れる電流の値は、コンバータの容量が大きくなるほど大きくなるため、コンバータの容量が大きくなると、プリント基板上のパターンによって電力供給を行うことが難しくなる。そのため、一般的に大容量のコンバータにおいては、バスバー等の導体を用いて電力供給が行われる。このようにバスバー等の導体が用いられる場合、特許文献1に示された技術では、プリント基板に設けられる位相検出部において交流電圧の位相を検出するために、例えばバスバーにハーネスが接続され、バスバー及びハーネスを介して、位相検出部が交流電圧の位相を検出する構造となるため、構造が複雑化するという問題がある。 In the technique disclosed in Patent Document 1, the phase of the AC voltage applied between the AC power supply terminal of the power regeneration converter and the AC power supply terminal of the power module configured by a plurality of switching elements is detected by the phase detection unit. Detected. This AC voltage is a voltage applied to the pattern (copper foil) on the printed circuit board. However, since the value of the current flowing between the AC power supply terminal of the power regeneration converter and the AC power supply terminal of the power module increases as the converter capacity increases, the converter capacity increases depending on the pattern on the printed circuit board. It becomes difficult to supply power. Therefore, generally, in a large-capacity converter, power is supplied using a conductor such as a bus bar. When a conductor such as a bus bar is used in this way, in the technique disclosed in Patent Document 1, a harness is connected to the bus bar, for example, in order to detect the phase of the AC voltage in the phase detection unit provided on the printed circuit board. In addition, since the phase detector detects the AC voltage phase via the harness, there is a problem that the structure becomes complicated.
 本発明は、上記に鑑みてなされたものであって、簡易な構成で交流電源の電圧位相を検出できるコンバータを得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a converter capable of detecting the voltage phase of an AC power supply with a simple configuration.
 上述した課題を解決し、目的を達成するために、本発明のコンバータは、入力電源である交流電源とモータを可変速制御するモータ駆動装置との間に配置され、モータ駆動装置に直流電力を供給すると共に、モータ減速時の回生電力を交流電源に戻す電源回生機能を備えるコンバータにおいて、交流電源に接続される交流端子と、高電位側の直流配線が接続される第1端子と、低電位側の直流配線が接続される第2端子とを有すると共に、複数のスイッチング素子を有するパワーモジュールと、複数のスイッチング素子のそれぞれを駆動する駆動回路とを備える。コンバータは、複数のスイッチング素子に供給される電力と駆動回路に供給される電力とを生成する制御電源部と、第1端子に接続される複数のスイッチング素子のエミッタに流れる信号、又は、制御電源部の基準電位となるグランドに流れる信号に基づいて、交流電圧の電圧位相を検出し、検出した電圧位相を示す位相検出信号を生成して出力する電圧位相検出部とを備える。コンバータは、位相検出信号に基づいて、複数のスイッチング素子のオンオフ動作を制御するための駆動信号を生成する駆動信号生成部を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a converter according to the present invention is disposed between an AC power source that is an input power source and a motor driving device that performs variable speed control of the motor, and supplies DC power to the motor driving device. In a converter having a power regeneration function for supplying regenerative power when the motor decelerates to an AC power supply, an AC terminal connected to the AC power supply, a first terminal connected to a high potential side DC wiring, and a low potential A power module having a plurality of switching elements and a drive circuit for driving each of the plurality of switching elements. The converter includes a control power supply unit that generates electric power supplied to the plurality of switching elements and electric power supplied to the drive circuit, a signal that flows to the emitters of the plurality of switching elements connected to the first terminal, or a control power supply A voltage phase detection unit that detects a voltage phase of the AC voltage based on a signal flowing in the ground serving as a reference potential of the unit, generates a phase detection signal indicating the detected voltage phase, and outputs the phase detection signal. The converter includes a drive signal generation unit that generates a drive signal for controlling the on / off operation of the plurality of switching elements based on the phase detection signal.
 本発明に係るコンバータは、簡易な構成で交流電源の電圧位相を検出できるという効果を奏する。 The converter according to the present invention has an effect that the voltage phase of the AC power supply can be detected with a simple configuration.
実施の形態1に係るコンバータ及びモータ制御装置の構成を示す図The figure which shows the structure of the converter which concerns on Embodiment 1, and a motor control apparatus. 図1に示す制御電源部の構成例を示す図The figure which shows the structural example of the control power supply part shown in FIG. 図1に示す回生制御部の構成例を示す図The figure which shows the structural example of the regeneration control part shown in FIG. 図1に示すベース駆動回路の構成例を示す図1 is a diagram illustrating a configuration example of a base drive circuit illustrated in FIG. 図4に示す第1電圧印加部の構成例を示す図The figure which shows the structural example of the 1st voltage application part shown in FIG. 図4に示す第2電圧印加部の構成例を示す図The figure which shows the structural example of the 2nd voltage application part shown in FIG. 図4に示す第3電圧印加部の構成例を示す図The figure which shows the structural example of the 3rd voltage application part shown in FIG. 図4に示す第4電圧印加部の構成例を示す図The figure which shows the structural example of the 4th voltage application part shown in FIG. 図4に示す第5電圧印加部の構成例を示す図The figure which shows the structural example of the 5th voltage application part shown in FIG. 図4に示す第6電圧印加部の構成例を示す図The figure which shows the structural example of the 6th voltage application part shown in FIG. 図1に示す電圧位相検出部の動作を説明するための図The figure for demonstrating operation | movement of the voltage phase detection part shown in FIG. 図1に示すコンバータの動作を説明するためのタイムチャートTime chart for explaining the operation of the converter shown in FIG. 交流電源とパワーモジュールの交流端子との間に存在するインダクタンスと、パワーモジュールの正極側に配置されるスイッチング素子のエミッタとパワーモジュールの交流端子との間に存在するインダクタンスとを示す図The figure which shows the inductance which exists between an alternating current power supply and the alternating current terminal of a power module, and the inductance which exists between the emitter of the switching element arrange | positioned at the positive electrode side of a power module, and the alternating current terminal of a power module 実施の形態2に係るコンバータ及びモータ制御装置の構成を示す図The figure which shows the structure of the converter and motor control apparatus which concern on Embodiment 2. 実施の形態1に係るコンバータの回生動作時に生じる線間電圧、ベース駆動信号、位相検出信号などの波形を示す図The figure which shows waveforms, such as a line voltage, a base drive signal, and a phase detection signal, which are generated during the regenerative operation of the converter according to the first embodiment. 実施の形態1に係るコンバータの回生動作時に生じる相電圧、ベース駆動信号、位相検出信号などの波形を示す図The figure which shows waveforms, such as a phase voltage, a base drive signal, and a phase detection signal which arise at the time of regeneration operation | movement of the converter which concerns on Embodiment 1. 図14に示す電圧位相検出部の構成例を示す図The figure which shows the structural example of the voltage phase detection part shown in FIG. 実施の形態2に係る電圧位相検出部により生成されるR相の位相検出信号の波形と、当該位相検出信号に基づき発生するR相の相電圧の波形とを示す図The figure which shows the waveform of the R phase phase detection signal produced | generated by the voltage phase detection part which concerns on Embodiment 2, and the waveform of the R phase phase voltage which generate | occur | produces based on the said phase detection signal 実施の形態3に係るコンバータ及びモータ制御装置の構成を示す図The figure which shows the structure of the converter and motor control apparatus which concern on Embodiment 3. 図19に示す入力電圧検出部の動作説明に供する図FIG. 19 is a diagram for explaining the operation of the input voltage detection unit shown in FIG. 実施の形態4に係るコンバータ及びモータ制御装置の構成を示す図The figure which shows the structure of the converter and motor control apparatus which concern on Embodiment 4. 実施の形態4の制御で使用するRST軸及びdq軸の説明に供する図The figure which uses for description of the RST axis | shaft and dq axis | shaft used by control of Embodiment 4. 図21に示す回生制御部の構成例を示す図The figure which shows the structural example of the regeneration control part shown in FIG. 実施の形態5に係るコンバータ及びモータ制御装置の構成を示す図The figure which shows the structure of the converter and motor control apparatus which concern on Embodiment 5. 図24に示すモータ駆動装置がモータを動作させたときの挙動を示す波形図FIG. 24 is a waveform diagram showing the behavior when the motor driving device shown in FIG. 24 operates the motor. 図24に示す過負荷検出部の構成例を示す図The figure which shows the structural example of the overload detection part shown in FIG. 実施の形態6に係るコンバータ及びモータ制御装置の構成を示す図The figure which shows the structure of the converter and motor control apparatus which concern on Embodiment 6. 実施の形態6における定常時過負荷保護の説明に供する波形図Waveform diagram for explaining steady-state overload protection in the sixth embodiment 図27に示す過負荷検出部の構成例を示す図The figure which shows the structural example of the overload detection part shown in FIG. 実施の形態6における温度上昇推定部の動作説明に供する第1の波形図First waveform diagram for explaining the operation of the temperature rise estimation unit in the sixth embodiment 実施の形態6における温度上昇推定部の動作説明に供する第2の波形図Second waveform diagram for explaining the operation of the temperature rise estimation unit in the sixth embodiment 実施の形態7に係るコンバータ及びモータ制御装置の構成を示す図The figure which shows the structure of the converter and motor control apparatus which concern on Embodiment 7. 実施の形態7に係るコンバータ及びモータ制御部の動作を示すフローチャートFlowchart showing operation of converter and motor control unit according to embodiment 7. 実施の形態8に係るコンバータ及びモータ制御装置の構成を示す図The figure which shows the structure of the converter and motor control apparatus which concern on Embodiment 8. 実施の形態8に係るコンバータ及びモータ駆動装置の動作を示すフローチャートFlowchart showing the operation of the converter and motor drive device according to the eighth embodiment. 実施の形態9に係るコンバータ及びモータ制御装置の構成を示す図The figure which shows the structure of the converter and motor control apparatus which concern on Embodiment 9. 実施の形態9に係るコンバータ、モータ駆動装置及び上位制御装置の動作を示すフローチャートFlowchart showing the operation of the converter, motor drive device and host control device according to Embodiment 9 実施の形態10に係るコンバータ及びモータ制御装置の構成を示す図The figure which shows the structure of the converter and motor control apparatus which concern on Embodiment 10. 実施の形態10における母線電圧判定回路の構成例を示す図FIG. 10 shows a configuration example of a bus voltage determination circuit in the tenth embodiment. 実施の形態10におけるコンバータの動作を示すフローチャートFlowchart showing the operation of the converter in the tenth embodiment. 実施の形態10におけるモータ制御部(モータ制御部4A)の動作を示すフローチャートFlowchart showing the operation of the motor control unit (motor control unit 4A) in the tenth embodiment. 実施の形態10におけるモータ制御部(モータ制御部400A)の動作を示すフローチャートFlowchart showing the operation of the motor control unit (motor control unit 400A) in the tenth embodiment.
 以下に、本発明の実施の形態に係るコンバータ及びモータ制御装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a converter and a motor control device according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、実施の形態1に係るコンバータ及びモータ制御装置の構成を示す図である。図1に示すように、実施の形態1に係るコンバータ1-1は、三相の交流電圧を発生する三相交流電源である交流電源3と、モータ駆動装置4との間に設けられる。コンバータ1-1は、モータの力行時には三相の交流電圧を発生する交流電源3からの交流電圧を直流電圧に変換してモータ駆動装置4に出力し、モータの減速時には回生動作によって回生電力を交流電源3に戻す。モータ駆動装置4は、コンバータ1-1から供給される直流電圧を受けてモータ5を可変速制御する。また、実施の形態1に係るモータ制御装置は、コンバータ1-1と、コンバータ1-1から直流電力の供給を受けてモータ5を可変速制御するモータ駆動装置4とを備えた装置である。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of a converter and a motor control device according to the first embodiment. As shown in FIG. 1, converter 1-1 according to the first embodiment is provided between an AC power supply 3 that is a three-phase AC power supply that generates a three-phase AC voltage and a motor drive device 4. The converter 1-1 converts the AC voltage from the AC power source 3 that generates a three-phase AC voltage during powering of the motor into a DC voltage and outputs the DC voltage to the motor driving device 4. When the motor decelerates, the converter 1-1 generates regenerative power by a regenerative operation. Return to AC power source 3. The motor driving device 4 receives the DC voltage supplied from the converter 1-1 and controls the motor 5 at a variable speed. The motor control apparatus according to the first embodiment is an apparatus including a converter 1-1 and a motor driving device 4 that receives DC power from the converter 1-1 and controls the motor 5 at a variable speed.
 コンバータ1-1は、直流電力を蓄積する平滑コンデンサ21と、パワーモジュール22と、母線電圧検出部23と、電圧位相検出部24と、母線電流検出部25と、駆動信号生成部であるベース駆動信号生成部26と、駆動回路であるベース駆動回路27と、信号制御部である回生制御部28と、制御電源部29とを備える。 The converter 1-1 includes a smoothing capacitor 21 that stores DC power, a power module 22, a bus voltage detector 23, a voltage phase detector 24, a bus current detector 25, and a base drive that is a drive signal generator. The signal generation unit 26 includes a base drive circuit 27 that is a drive circuit, a regeneration control unit 28 that is a signal control unit, and a control power supply unit 29.
 パワーモジュール22は、3つの交流端子11,12,13と、高電位側の直流配線が接続される第1端子である直流端子14と、低電位側の直流配線が接続される第2端子である直流端子15とを備える。交流端子11は、交流配線51の一端に接続される。交流配線51の他端はリアクトル2-1の一端に接続される。リアクトル2-1の他端は交流配線91の一端に接続される。交流配線91の他端は交流電源3の端子3Rに接続される。端子3Rは、第1の相であるR相の交流電圧が出力される端子である。R相の交流電圧はリアクトル2-1を介して交流端子11に印加される。 The power module 22 includes three AC terminals 11, 12, 13, a DC terminal 14 that is a first terminal to which a high potential side DC wiring is connected, and a second terminal to which a low potential side DC wiring is connected. A certain DC terminal 15 is provided. The AC terminal 11 is connected to one end of the AC wiring 51. The other end of the AC wiring 51 is connected to one end of the reactor 2-1. The other end of the reactor 2-1 is connected to one end of an AC wiring 91. The other end of the AC wiring 91 is connected to the terminal 3 </ b> R of the AC power supply 3. The terminal 3R is a terminal to which an R-phase AC voltage that is a first phase is output. The R-phase AC voltage is applied to the AC terminal 11 via the reactor 2-1.
 交流端子12は、交流配線52の一端に接続される。交流配線52の他端はリアクトル2-2の一端に接続される。リアクトル2-2の他端は交流配線92の一端に接続される。交流配線92の他端は交流電源3の端子3Sに接続される。端子3Sは、第2の相であるS相の交流電圧が出力される端子である。S相の交流電圧はリアクトル2-2を介して交流端子12に印加される。 AC terminal 12 is connected to one end of AC wiring 52. The other end of the AC wiring 52 is connected to one end of the reactor 2-2. The other end of the reactor 2-2 is connected to one end of the AC wiring 92. The other end of the AC wiring 92 is connected to the terminal 3 </ b> S of the AC power supply 3. The terminal 3S is a terminal to which an S-phase AC voltage that is the second phase is output. The S-phase AC voltage is applied to the AC terminal 12 via the reactor 2-2.
 交流端子13は、交流配線53の一端に接続される。交流配線53の他端はリアクトル2-3の一端に接続される。リアクトル2-3の他端は交流配線93の一端に接続される。交流配線93の他端は交流電源3の端子3Tに接続される。端子3Tは、第3の相であるT相の交流電圧が出力される端子である。T相の交流電圧はリアクトル2-3を介して交流端子13に印加される。以下ではリアクトル2-1,2-2,2-3を区別しない場合、リアクトル2と称する場合がある。 AC terminal 13 is connected to one end of AC wiring 53. The other end of the AC wiring 53 is connected to one end of the reactor 2-3. The other end of the reactor 2-3 is connected to one end of the AC wiring 93. The other end of the AC wiring 93 is connected to the terminal 3T of the AC power source 3. The terminal 3T is a terminal to which a T-phase AC voltage that is a third phase is output. The T-phase AC voltage is applied to the AC terminal 13 via the reactor 2-3. Hereinafter, the reactors 2-1, 2-2, and 2-3 may be referred to as a reactor 2 when they are not distinguished.
 直流端子14には、高電位側の直流配線である正極母線70Pの一端が接続される。正極母線70Pの他端は、コンバータ1-1の出力端子6-1に接続される。出力端子6-1は高電位側の直流端子である。出力端子6-1には、正極母線71Pの一端が接続される。正極母線71Pは、コンバータ1-1とモータ駆動装置4との間に設けられる高電位側の直流配線である。正極母線71Pの他端は、モータ駆動装置4の直流端子17に接続される。直流端子17は高電位側の直流端子である。パワーモジュール22の直流端子14は、正極母線70P、出力端子6-1、正極母線71Pを介して、モータ駆動装置4の直流端子17と電気的に接続される。 The DC terminal 14 is connected to one end of a positive electrode bus 70P which is a DC wiring on the high potential side. The other end of positive bus 70P is connected to output terminal 6-1 of converter 1-1. The output terminal 6-1 is a high potential side DC terminal. One end of the positive electrode bus 71P is connected to the output terminal 6-1. The positive bus 71P is a high potential side DC wiring provided between the converter 1-1 and the motor driving device 4. The other end of the positive electrode bus 71 </ b> P is connected to the DC terminal 17 of the motor driving device 4. The DC terminal 17 is a high potential side DC terminal. The DC terminal 14 of the power module 22 is electrically connected to the DC terminal 17 of the motor driving device 4 via the positive electrode bus 70P, the output terminal 6-1 and the positive electrode bus 71P.
 直流端子15には、低電位側の直流配線である負極母線70Nの一端が接続される。負極母線70Nの他端は、コンバータ1-1の出力端子6-2に接続される。出力端子6-2は低電位側の直流端子である。出力端子6-2には、負極母線71Nの一端が接続される。負極母線71Nは、コンバータ1-1とモータ駆動装置4との間に設けられる低電位側の直流配線である。負極母線71Nの他端は、モータ駆動装置4の直流端子18に接続される。直流端子18は低電位側の直流端子である。パワーモジュール22の直流端子15は、負極母線70N、出力端子6-2、負極母線71Nを介して、モータ駆動装置4の直流端子18と電気的に接続される。 The DC terminal 15 is connected to one end of a negative electrode bus 70N which is a DC wiring on the low potential side. The other end of the negative electrode bus 70N is connected to the output terminal 6-2 of the converter 1-1. The output terminal 6-2 is a DC terminal on the low potential side. One end of the negative electrode bus 71N is connected to the output terminal 6-2. The negative electrode bus 71N is a low potential side DC wiring provided between the converter 1-1 and the motor driving device 4. The other end of the negative electrode bus 71N is connected to the DC terminal 18 of the motor driving device 4. The DC terminal 18 is a DC terminal on the low potential side. The DC terminal 15 of the power module 22 is electrically connected to the DC terminal 18 of the motor driving device 4 through the negative electrode bus 70N, the output terminal 6-2, and the negative electrode bus 71N.
 平滑コンデンサ21の高電位側の端子21aは、正極母線70Pに接続される。符号80Pは平滑コンデンサ21の高電位側の端子21aと正極母線70Pとの接続点を表す。平滑コンデンサ21の高電位側の端子21aが正極母線70Pに接続されることにより、平滑コンデンサ21の高電位側の端子21aは、パワーモジュール22の直流端子14と電気的に接続され、さらにモータ駆動装置4の直流端子17と電気的に接続される。 The terminal 21a on the high potential side of the smoothing capacitor 21 is connected to the positive electrode bus 70P. Reference numeral 80P represents a connection point between the high potential side terminal 21a of the smoothing capacitor 21 and the positive electrode bus 70P. By connecting the high-potential side terminal 21a of the smoothing capacitor 21 to the positive electrode bus 70P, the high-potential side terminal 21a of the smoothing capacitor 21 is electrically connected to the DC terminal 14 of the power module 22 and further driven by a motor. It is electrically connected to the DC terminal 17 of the device 4.
 平滑コンデンサ21の低電位側の端子21bは、負極母線70Nに接続される。図1において符号80Nは平滑コンデンサ21の低電位側の端子21bと負極母線70Nとの接続点を表す。平滑コンデンサ21の低電位側の端子21bが負極母線70Nに接続されることにより、平滑コンデンサ21の低電位側の端子21bは、パワーモジュール22の直流端子15と電気的に接続され、さらにモータ駆動装置4の直流端子18と電気的に接続される。 The low potential side terminal 21b of the smoothing capacitor 21 is connected to the negative electrode bus 70N. In FIG. 1, reference numeral 80N represents a connection point between the low potential side terminal 21b of the smoothing capacitor 21 and the negative electrode bus 70N. By connecting the low-potential side terminal 21b of the smoothing capacitor 21 to the negative electrode bus 70N, the low-potential side terminal 21b of the smoothing capacitor 21 is electrically connected to the DC terminal 15 of the power module 22 and further driven by a motor. It is electrically connected to the DC terminal 18 of the device 4.
 パワーモジュール22は、交流端子11,12,13及び直流端子14,15の他にも、6つの整流素子D1,D2,D3,D4,D5,D6と、6つの回生用のスイッチング素子S1,S2,S3,S4,S5,S6とを備える。以下では、6つの整流素子D1,D2,D3,D4,D5,D6を整流素子D1からD6と称し、スイッチング素子S1,S2,S3,S4,S5,S6をスイッチング素子S1からS6と称する場合がある。 In addition to the AC terminals 11, 12, 13 and the DC terminals 14, 15, the power module 22 includes six rectifying elements D 1, D 2, D 3, D 4, D 5, D 6 and 6 switching elements S 1, S 2 for regeneration. , S3, S4, S5, and S6. Hereinafter, the six rectifying elements D1, D2, D3, D4, D5, and D6 may be referred to as rectifying elements D1 to D6, and the switching elements S1, S2, S3, S4, S5, and S6 may be referred to as switching elements S1 to S6. is there.
 整流素子D1は、スイッチング素子S1に逆並列に接続される。具体的には、整流素子D1の陰極であるカソードがスイッチング素子S1のコレクタに接続され、整流素子D1の陽極であるアノードがスイッチング素子S1のエミッタに接続される。整流素子D1及びスイッチング素子S1により1つのパワー素子が構成される。同様に、整流素子D2及びスイッチング素子S2によりパワー素子が構成され、整流素子D3及びスイッチング素子S3によりパワー素子が構成され、整流素子D4及びスイッチング素子S4によりパワー素子が構成され、整流素子D5及びスイッチング素子S5によりパワー素子が構成され、整流素子D6及びスイッチング素子S6によりパワー素子が構成される。 The rectifying element D1 is connected in antiparallel to the switching element S1. Specifically, the cathode that is the cathode of the rectifying element D1 is connected to the collector of the switching element S1, and the anode that is the anode of the rectifying element D1 is connected to the emitter of the switching element S1. The rectifying element D1 and the switching element S1 constitute one power element. Similarly, the rectifier element D2 and the switching element S2 constitute a power element, the rectifier element D3 and the switching element S3 constitute a power element, the rectifier element D4 and the switching element S4 constitute a power element, and the rectifier element D5 and the switching element. The power element is configured by the element S5, and the power element is configured by the rectifying element D6 and the switching element S6.
 整流素子D1からD6のそれぞれには、例えばダイオード、ショットキーバリアダイオード、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などが用いられる。なお、6つの整流素子D1,D2,D3,D4,D5,D6のそれぞれは、整流作用を有する素子であればよく、これらの素子に限定されない。 For each of the rectifier elements D1 to D6, for example, a diode, a Schottky barrier diode, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), or the like is used. Each of the six rectifying elements D1, D2, D3, D4, D5, and D6 may be any element having a rectifying action, and is not limited to these elements.
 スイッチング素子S1及びスイッチング素子S2は、配線8-1により直列に接続される。スイッチング素子S1、スイッチング素子S2、整流素子D1、整流素子D2及び配線8-1により第1アームが構成される。配線8-1の一端はスイッチング素子S1のエミッタに接続される。配線8-1の他端はスイッチング素子S2のコレクタに接続される。配線8-1には配線9-1の一端が接続される。符号501は配線8-1と配線9-1との接続点を表す。配線9-1の他端は交流端子11に接続される。これにより、スイッチング素子S1のエミッタとスイッチング素子S2のコレクタとは、交流端子11と電気的に接続される。交流端子11は、リアクトル2-1などを介して交流電源3の端子3Rと電気的に接続されるため、整流素子D1及びスイッチング素子S1はR相の正極用のパワー素子を構成し、整流素子D2及びスイッチング素子S2はR相の負極用のパワー素子を構成する。スイッチング素子S1のコレクタは、配線9-4を介して、直流端子14に接続される。スイッチング素子S2のエミッタは、配線9-5を介して、直流端子15に接続される。 Switching element S1 and switching element S2 are connected in series by wiring 8-1. The switching element S1, the switching element S2, the rectifying element D1, the rectifying element D2, and the wiring 8-1 constitute a first arm. One end of the wiring 8-1 is connected to the emitter of the switching element S1. The other end of the wiring 8-1 is connected to the collector of the switching element S2. One end of the wiring 9-1 is connected to the wiring 8-1. Reference numeral 501 represents a connection point between the wiring 8-1 and the wiring 9-1. The other end of the wiring 9-1 is connected to the AC terminal 11. Thereby, the emitter of the switching element S1 and the collector of the switching element S2 are electrically connected to the AC terminal 11. Since the AC terminal 11 is electrically connected to the terminal 3R of the AC power supply 3 through the reactor 2-1, etc., the rectifying element D1 and the switching element S1 constitute a power element for an R-phase positive electrode, and the rectifying element D2 and switching element S2 constitute a power element for an R-phase negative electrode. The collector of the switching element S1 is connected to the DC terminal 14 via the wiring 9-4. The emitter of the switching element S2 is connected to the DC terminal 15 via the wiring 9-5.
 スイッチング素子S3及びスイッチング素子S4は、配線8-2により直列に接続される。スイッチング素子S3、スイッチング素子S4、整流素子D3、整流素子D4及び配線8-2により第2アームが構成される。配線8-2の一端はスイッチング素子S3のエミッタに接続される。配線8-2の他端はスイッチング素子S4のコレクタに接続される。配線8-2には配線9-2の一端が接続される。符号502は配線8-2と配線9-2との接続点を表す。配線9-2の他端は交流端子12に接続される。これにより、スイッチング素子S3のエミッタとスイッチング素子S4のコレクタとは、交流端子12と電気的に接続される。交流端子12は、リアクトル2-2などを介して交流電源3の端子3Sと電気的に接続されるため、整流素子D3及びスイッチング素子S3はS相の正極用のパワー素子を構成し、整流素子D4及びスイッチング素子S4はS相の負極用のパワー素子を構成する。スイッチング素子S3のコレクタは、配線9-4を介して、直流端子14に接続される。スイッチング素子S4のエミッタは、配線9-5を介して、直流端子15に接続される。 Switching element S3 and switching element S4 are connected in series by wiring 8-2. Switching element S3, switching element S4, rectifying element D3, rectifying element D4, and wiring 8-2 constitute a second arm. One end of the wiring 8-2 is connected to the emitter of the switching element S3. The other end of the wiring 8-2 is connected to the collector of the switching element S4. One end of the wiring 9-2 is connected to the wiring 8-2. Reference numeral 502 represents a connection point between the wiring 8-2 and the wiring 9-2. The other end of the wiring 9-2 is connected to the AC terminal 12. Thus, the emitter of the switching element S3 and the collector of the switching element S4 are electrically connected to the AC terminal 12. Since the AC terminal 12 is electrically connected to the terminal 3S of the AC power supply 3 via the reactor 2-2 or the like, the rectifying element D3 and the switching element S3 constitute a power element for the S-phase positive electrode, and the rectifying element D4 and switching element S4 constitute an S-phase negative power element. The collector of the switching element S3 is connected to the DC terminal 14 via the wiring 9-4. The emitter of the switching element S4 is connected to the DC terminal 15 through the wiring 9-5.
 スイッチング素子S5及びスイッチング素子S6は、配線8-3により直列に接続される。スイッチング素子S5、スイッチング素子S6、整流素子D5、整流素子D6及び配線8-3により第3アームが構成される。配線8-3の一端はスイッチング素子S5のエミッタに接続される。配線8-3の他端はスイッチング素子S6のコレクタに接続される。配線8-3には配線9-3の一端が接続される。符号503は配線8-3と配線9-2との接続点を表す。配線9-3の他端は交流端子13に接続される。これにより、スイッチング素子S5のエミッタとスイッチング素子S6のコレクタとは、交流端子13と電気的に接続される。交流端子13は、リアクトル2-3などを介して交流電源3の端子3Tと電気的に接続されるため、整流素子D5及びスイッチング素子S5はT相の正極用のパワー素子を構成し、整流素子D6及びスイッチング素子S6はT相の負極用のパワー素子を構成する。スイッチング素子S5のコレクタは、配線9-4を介して、直流端子14に接続される。スイッチング素子S6のエミッタは、配線9-5を介して、直流端子15に接続される。 Switching element S5 and switching element S6 are connected in series by wiring 8-3. Switching element S5, switching element S6, rectifying element D5, rectifying element D6 and wiring 8-3 constitute a third arm. One end of the wiring 8-3 is connected to the emitter of the switching element S5. The other end of the wiring 8-3 is connected to the collector of the switching element S6. One end of the wiring 9-3 is connected to the wiring 8-3. Reference numeral 503 represents a connection point between the wiring 8-3 and the wiring 9-2. The other end of the wiring 9-3 is connected to the AC terminal 13. Thereby, the emitter of switching element S5 and the collector of switching element S6 are electrically connected to AC terminal 13. Since the AC terminal 13 is electrically connected to the terminal 3T of the AC power supply 3 via the reactor 2-3 or the like, the rectifying element D5 and the switching element S5 constitute a power element for a T-phase positive electrode, and the rectifying element D6 and switching element S6 constitute a T-phase negative power element. The collector of the switching element S5 is connected to the DC terminal 14 via the wiring 9-4. The emitter of the switching element S6 is connected to the DC terminal 15 via the wiring 9-5.
 直流端子14には、上アームを構成するスイッチング素子S1、スイッチング素子S3及びスイッチング素子S5のそれぞれのコレクタが電気的に接続される。直流端子15には、下アームを構成するスイッチング素子S2、スイッチング素子S4及びスイッチング素子S6のそれぞれのエミッタが電気的に接続される。パワーモジュール22の直流端子14及び直流端子15には、スイッチング素子S1及びスイッチング素子S2により構成される直列回路と、スイッチング素子S3及びスイッチング素子S4により構成される直列回路と、スイッチング素子S5及びスイッチング素子S6により構成される直列回路とが、並列に接続される。なお、実施の形態1に係るコンバータ1-1には、3相の交流電源3が接続されているが、3相の交流電源3の代わりに、単相の交流電源を接続してもよい。単相の交流電源が接続される場合、パワーモジュール22は4つのパワー素子を有する。 The DC terminal 14 is electrically connected to the collectors of the switching element S1, the switching element S3, and the switching element S5 that constitute the upper arm. The DC terminal 15 is electrically connected to the emitters of the switching element S2, the switching element S4, and the switching element S6 constituting the lower arm. The DC terminal 14 and the DC terminal 15 of the power module 22 are connected to a series circuit composed of a switching element S1 and a switching element S2, a series circuit composed of a switching element S3 and a switching element S4, a switching element S5 and a switching element. The series circuit constituted by S6 is connected in parallel. The converter 1-1 according to the first embodiment is connected to the three-phase AC power supply 3, but a single-phase AC power supply may be connected instead of the three-phase AC power supply 3. When a single-phase AC power supply is connected, the power module 22 has four power elements.
 母線電圧検出部23は、平滑コンデンサ21の端子21aと端子21bとに印加される電圧を検出し、検出された電圧を示す電圧情報を母線電圧VPNとして出力する。なお、平滑コンデンサ21の端子21aは、正極母線70Pを介してパワーモジュール22の直流端子14に接続され、平滑コンデンサ21の端子21bは、負極母線70Nを介してパワーモジュール22の直流端子15に接続されるため、平滑コンデンサ21の端子21aと端子21bとに印加される電圧は、パワーモジュール22の直流端子14と直流端子15とに印加される電圧に等しい。 The bus voltage detector 23 detects the voltage applied to the terminals 21a and 21b of the smoothing capacitor 21, and outputs voltage information indicating the detected voltage as the bus voltage VPN. The terminal 21a of the smoothing capacitor 21 is connected to the DC terminal 14 of the power module 22 via the positive electrode bus 70P, and the terminal 21b of the smoothing capacitor 21 is connected to the DC terminal 15 of the power module 22 via the negative electrode bus 70N. Therefore, the voltage applied to the terminals 21 a and 21 b of the smoothing capacitor 21 is equal to the voltage applied to the DC terminals 14 and 15 of the power module 22.
 母線電流検出部25は、例えば正極母線70P上において、直流端子14と接続点80Pとの間に設けられる。母線電流検出部25は、正極母線70Pに流れる電流を検出し、検出された電流を示す電流情報を母線電流IPNとして出力する。母線電流検出部25は、CT(Current Transformer)と呼ばれる計器用変流器を用いた電流センサであってもよいし、シャント抵抗を用いた電流センサであってもよい。母線電流検出部25は、これらを組み合わせたものでもよい。なお、母線電流検出部25は、例えば負極母線70N上において、直流端子15と接続点80Nとの間に設けて、負極母線70Nに流れる電流を検出してもよい。 The bus current detection unit 25 is provided between the DC terminal 14 and the connection point 80P on the positive bus 70P, for example. Bus current detector 25 detects a current flowing through positive electrode bus 70P, and outputs current information indicating the detected current as bus current IPN. The bus current detection unit 25 may be a current sensor using an instrumental current transformer called CT (Current Transformer), or may be a current sensor using a shunt resistor. The bus current detector 25 may be a combination of these. For example, the bus current detection unit 25 may be provided between the DC terminal 15 and the connection point 80N on the negative electrode bus 70N to detect a current flowing through the negative electrode bus 70N.
 制御電源部29は、パワーモジュール22のスイッチング素子S1からS6を駆動するための電力を生成すると共に、ベース駆動回路27を駆動するための電力を生成する。前述したように、スイッチング素子S1のエミッタは、リアクトル2-1を介して、交流電源3のR相に接続され、スイッチング素子S3のエミッタは、リアクトル2-2を介して、交流電源3のS相に接続され、スイッチング素子S5のエミッタは、リアクトル2-3を介して、交流電源3のT相に接続される。そのため、正極側に配置されるスイッチング素子S1,S3,S5のそれぞれを駆動するためには、ベース駆動回路27において、スイッチング素子S1,S3,S5のそれぞれを駆動する駆動信号の生成回路のグランドを分ける必要がある。すなわち、スイッチング素子S1,S3,S5のそれぞれに対応する駆動信号の生成回路を互いに絶縁する必要がある。これに対し、負極側に配置されるスイッチング素子S2,S4,S6のエミッタは、パワーモジュール22の直流端子15に接続されているため、スイッチング素子S2,S4,S6のエミッタの電位の基準となるグランドは同一である。そのため、ベース駆動回路27において、負極側に配置されるスイッチング素子S2,S4,S6を駆動する駆動信号の生成回路のグランドは同一にすることができる。従って、ベース駆動回路27を動作させるためには、最低でも4つの絶縁された電源が必要となる。 The control power supply unit 29 generates power for driving the switching elements S1 to S6 of the power module 22 and power for driving the base drive circuit 27. As described above, the emitter of the switching element S1 is connected to the R phase of the AC power supply 3 via the reactor 2-1, and the emitter of the switching element S3 is connected to the S of the AC power supply 3 via the reactor 2-2. The emitter of the switching element S5 is connected to the T phase of the AC power supply 3 via the reactor 2-3. Therefore, in order to drive each of the switching elements S1, S3, and S5 arranged on the positive electrode side, the base drive circuit 27 sets the ground of the drive signal generation circuit that drives each of the switching elements S1, S3, and S5. It is necessary to divide. That is, it is necessary to insulate drive signal generation circuits corresponding to the switching elements S1, S3, and S5 from each other. On the other hand, since the emitters of the switching elements S2, S4, S6 arranged on the negative electrode side are connected to the DC terminal 15 of the power module 22, they serve as reference potentials for the emitters of the switching elements S2, S4, S6. The ground is the same. Therefore, in the base drive circuit 27, the ground of the drive signal generation circuit for driving the switching elements S2, S4, S6 arranged on the negative electrode side can be made the same. Therefore, in order to operate the base drive circuit 27, at least four insulated power supplies are required.
 図2は、図1に示す制御電源部の構成例を示す図である。図2に示すように制御電源部29は、主電源31と、電源制御用IC(Integrated Circuit)32と、スイッチング素子33と、絶縁トランス30と、複数の整流素子D21,D22,D23,D24と、コンデンサC21,C22,C23,C24と、フィードバック部34とを備える。 FIG. 2 is a diagram showing a configuration example of the control power supply unit shown in FIG. As shown in FIG. 2, the control power supply unit 29 includes a main power supply 31, a power supply control IC (Integrated Circuit) 32, a switching element 33, an insulating transformer 30, a plurality of rectifier elements D21, D22, D23, and D24. , Capacitors C21, C22, C23, C24, and a feedback unit 34.
 絶縁トランス30は、1次巻線N11と、複数の2次巻線N21,N22,N23,N24とよって構成される。複数の2次巻線N21,N22,N23,N24のそれぞれは、隣接する巻線間が絶縁されている。電源制御用IC32は、電源端子VCC、フィードバック端子FB、ゲート信号出力端子SW、及びグランド端子GNDを備える。 The insulating transformer 30 includes a primary winding N11 and a plurality of secondary windings N21, N22, N23, and N24. Each of the plurality of secondary windings N21, N22, N23, N24 is insulated between adjacent windings. The power supply control IC 32 includes a power supply terminal VCC, a feedback terminal FB, a gate signal output terminal SW, and a ground terminal GND.
 主電源31のプラス端子は、1次巻線N11の巻き始め側端子と電源制御用IC32の電源端子VCCとに接続される。1次巻線N11の巻き終わり側端子は、スイッチング素子33のドレイン端子Dに接続される。スイッチング素子33のソース端子Sは、主電源31のマイナス端子と電源制御用IC32のGND端子と接続される。スイッチング素子33のゲートGは、電源制御用IC32のSW端子に接続される。 The positive terminal of the main power supply 31 is connected to the winding start side terminal of the primary winding N11 and the power supply terminal VCC of the power supply control IC 32. The winding end side terminal of the primary winding N11 is connected to the drain terminal D of the switching element 33. The source terminal S of the switching element 33 is connected to the negative terminal of the main power supply 31 and the GND terminal of the power supply control IC 32. The gate G of the switching element 33 is connected to the SW terminal of the power supply control IC 32.
 整流素子D21のアノードは2次巻線N21の巻き終わり側端子に接続され、整流素子D21のカソードは、コンデンサC21の一端に接続される。コンデンサC21の他端は、配線291を介して、2次巻線N21の巻き始め側端子に接続される。整流素子D21のカソードとコンデンサC21の一端との接続点には、配線291-1の一端が接続される。コンデンサC21の他端と配線291との接続点には、配線291-2の一端が接続される。配線291-2には、配線291-1に発生する電圧VRPの基準の電位となるグランドVRPGNDが接続される。電圧VRPは、コンデンサC21の一端と他端との間に印加される電圧に等しい。配線291-1及び配線291-2の他端は図1に示すベース駆動回路27に接続される。 The anode of the rectifying element D21 is connected to the winding end side terminal of the secondary winding N21, and the cathode of the rectifying element D21 is connected to one end of the capacitor C21. The other end of the capacitor C21 is connected to the winding start side terminal of the secondary winding N21 via the wiring 291. One end of the wiring 291-1 is connected to a connection point between the cathode of the rectifying element D21 and one end of the capacitor C21. One end of the wiring 291-2 is connected to a connection point between the other end of the capacitor C21 and the wiring 291. A ground VRPGND serving as a reference potential of the voltage VRP generated in the wiring 291-1 is connected to the wiring 291-2. The voltage VRP is equal to the voltage applied between one end and the other end of the capacitor C21. The other ends of the wirings 291-1 and 291-2 are connected to the base drive circuit 27 shown in FIG.
 整流素子D22のアノードは2次巻線N22の巻き終わり側端子に接続され、整流素子D22のカソードは、コンデンサC22の一端に接続される。コンデンサC22の他端は、配線292を介して、2次巻線N22の巻き始め側端子に接続される。整流素子D22のカソードとコンデンサC22の一端との接続点には、配線292-1の一端が接続される。コンデンサC22の他端と配線292との接続点には、配線292-2の一端が接続される。配線292-2には、配線292-1に発生する電圧VSPの基準の電位となるグランドVSPGNDが接続される。電圧VSPは、コンデンサC22の一端と他端との間に印加される電圧に等しい。配線292-1及び配線292-2の他端は図1に示すベース駆動回路27に接続される。 The anode of the rectifying element D22 is connected to the winding end side terminal of the secondary winding N22, and the cathode of the rectifying element D22 is connected to one end of the capacitor C22. The other end of the capacitor C22 is connected to the winding start side terminal of the secondary winding N22 via the wiring 292. One end of the wiring 292-1 is connected to a connection point between the cathode of the rectifying element D22 and one end of the capacitor C22. One end of the wiring 292-2 is connected to the connection point between the other end of the capacitor C22 and the wiring 292. A ground VSPGND which is a reference potential of the voltage VSP generated in the wiring 292-1 is connected to the wiring 292-2. The voltage VSP is equal to the voltage applied between one end and the other end of the capacitor C22. The other ends of the wiring 292-1 and the wiring 292-2 are connected to the base drive circuit 27 shown in FIG.
 整流素子D23のアノードは2次巻線N23の巻き終わり側端子に接続され、整流素子D23のカソードは、コンデンサC23の一端に接続される。コンデンサC23の他端は、配線293を介して、2次巻線N23の巻き始め側端子に接続される。整流素子D23のカソードとコンデンサC23の一端との接続点には、配線293-1の一端が接続される。コンデンサC23の他端と配線293との接続点には、配線293-2の一端が接続される。配線293-2には、配線293-1に発生する電圧VTPの基準の電位となるグランドVTPGNDが接続される。電圧VTPは、コンデンサC23の一端と他端との間に印加される電圧に等しい。 The anode of the rectifying element D23 is connected to the winding end side terminal of the secondary winding N23, and the cathode of the rectifying element D23 is connected to one end of the capacitor C23. The other end of the capacitor C23 is connected to the winding start side terminal of the secondary winding N23 via the wiring 293. One end of the wiring 293-1 is connected to a connection point between the cathode of the rectifying element D23 and one end of the capacitor C23. One end of the wiring 293-2 is connected to the connection point between the other end of the capacitor C23 and the wiring 293. The wiring 293-2 is connected to a ground VTPGND that serves as a reference potential of the voltage VTP generated in the wiring 293-1. The voltage VTP is equal to the voltage applied between one end and the other end of the capacitor C23.
 整流素子D24のアノードは2次巻線N24の巻き終わり側端子に接続され、整流素子D24のカソードは、コンデンサC24の一端に接続される。コンデンサC24の他端は、配線294を介して、2次巻線N24の巻き始め側端子に接続される。整流素子D24のカソードとコンデンサC24の一端との接続点には、配線294-1の一端が接続される。コンデンサC24の他端と配線294との接続点には、配線294-2の一端が接続される。配線294-2には、配線294-1に発生する電圧VNの基準の電位となるグランドVNGNDが接続される。電圧VNは、コンデンサC24の一端と他端との間に印加される電圧に等しい。電圧VNはフィードバック部34に入力される。フィードバック部34には例えばフォトカプラが用いられ、フィードバック部34は、電源制御用IC32のFB端子と2次巻線N24とを絶縁した状態で、電圧VNを、電源制御用IC32が扱える電圧値に変換して、変換後の電圧値を電源制御用IC32のFB端子に入力する。フィードバック部34を用いることにより、1次巻線N11側の回路と、2次巻線N21からN24側の回路との絶縁を保つことができる。 The anode of the rectifying element D24 is connected to the winding end side terminal of the secondary winding N24, and the cathode of the rectifying element D24 is connected to one end of the capacitor C24. The other end of the capacitor C24 is connected to the winding start side terminal of the secondary winding N24 via the wiring 294. One end of the wiring 294-1 is connected to a connection point between the cathode of the rectifying element D24 and one end of the capacitor C24. One end of the wiring 294-2 is connected to a connection point between the other end of the capacitor C24 and the wiring 294. The wiring 294-2 is connected to the ground VNGGND that serves as a reference potential for the voltage VN generated in the wiring 294-1. The voltage VN is equal to the voltage applied between one end and the other end of the capacitor C24. The voltage VN is input to the feedback unit 34. For example, a photocoupler is used for the feedback unit 34. The feedback unit 34 sets the voltage VN to a voltage value that can be handled by the power supply control IC 32 in a state where the FB terminal of the power supply control IC 32 and the secondary winding N24 are insulated. The voltage value after conversion is input to the FB terminal of the power supply control IC 32. By using the feedback unit 34, it is possible to maintain insulation between the circuit on the primary winding N11 side and the circuit on the secondary winding N21 to N24 side.
 制御電源部29において、2次巻線N21,N22,N23のそれぞれの巻き数を2次巻線N24の巻き数と等しくすることによって、コンデンサC21,C22,C23のそれぞれに発生する電圧はコンデンサC24に発生する電圧とほぼ等しくなる。 In the control power supply unit 29, the number of turns of each of the secondary windings N21, N22, and N23 is made equal to the number of turns of the secondary winding N24, so that the voltage generated in each of the capacitors C21, C22, and C23 is the capacitor C24. Is almost equal to the voltage generated in
 制御電源部29の動作について説明する。電源制御用IC32は、フィードバック部34から出力される電圧VNに基づいて、スイッチング素子33のオンオフ動作を制御する制御信号を生成する。電源制御用IC32は、生成した制御信号をSW端子から出力し、出力された制御信号はスイッチング素子33のゲートGに入力される。これにより、スイッチング素子33がオンオフ動作を繰り返し、フィードバック部34に入力される電圧VNの値が特定の値に保たれる。 The operation of the control power supply unit 29 will be described. The power supply control IC 32 generates a control signal for controlling the on / off operation of the switching element 33 based on the voltage VN output from the feedback unit 34. The power supply control IC 32 outputs the generated control signal from the SW terminal, and the output control signal is input to the gate G of the switching element 33. As a result, the switching element 33 repeats the on / off operation, and the value of the voltage VN input to the feedback unit 34 is maintained at a specific value.
 図1に示す電圧位相検出部24は、交流電源3の電圧位相を検出し、検出された電圧位相を示す位相情報を位相検出信号として、ベース駆動信号生成部26へ出力する。位相検出信号は、Highレベル又はLowレベルの電位を取る信号である。電圧位相検出部24による電圧位相の検出方法と、位相検出信号の詳細については後述する。 The voltage phase detector 24 shown in FIG. 1 detects the voltage phase of the AC power supply 3, and outputs phase information indicating the detected voltage phase to the base drive signal generator 26 as a phase detection signal. The phase detection signal is a signal that takes a high level or low level potential. The voltage phase detection method by the voltage phase detector 24 and details of the phase detection signal will be described later.
 ベース駆動信号生成部26は、電圧位相検出部24から出力される位相検出信号に基づいて、スイッチング素子S1からS6を駆動するための6種類のベース駆動信号SRP,SRN,SSP,SSN,STP,STNを生成して、回生制御部28に出力する。6種類のベース駆動信号SRP,SRN,SSP,SSN,STP,STNのそれぞれは、Highレベル又はLowレベルの電位を取る信号である。ベース駆動信号SRPは、R相の正極側用のスイッチング素子S1を駆動する信号である。ベース駆動信号SRNは、R相の負極側用のスイッチング素子S2を駆動する信号である。ベース駆動信号SSPは、S相の正極側用のスイッチング素子S3を駆動する信号である。ベース駆動信号SSNは、S相の負極側用のスイッチング素子S4を駆動する信号である。ベース駆動信号STPは、T相の正極側用のスイッチング素子S5を駆動する信号である。ベース駆動信号STNは、T相の負極側用のスイッチング素子S6を駆動する信号である。以下では、6種類のベース駆動信号SRP,SRN,SSP,SSN,STP,STNをベース駆動信号SRPからSTNと称する場合がある。 Based on the phase detection signal output from the voltage phase detector 24, the base drive signal generator 26 has six types of base drive signals SRP, SRN, SSP, SSN, STP, for driving the switching elements S1 to S6. An STN is generated and output to the regeneration control unit 28. Each of the six types of base drive signals SRP, SRN, SSP, SSN, STP, and STN is a signal that takes a High level or Low level potential. The base drive signal SRP is a signal for driving the switching element S1 for the positive side of the R phase. The base drive signal SRN is a signal for driving the switching element S2 for the negative side of the R phase. The base drive signal SSP is a signal for driving the switching element S3 for the positive side of the S phase. The base drive signal SSN is a signal for driving the switching element S4 for the negative side of the S phase. The base drive signal STP is a signal for driving the switching element S5 for the positive side of the T phase. The base drive signal STN is a signal for driving the switching element S6 for the negative side of the T phase. Hereinafter, the six types of base drive signals SRP, SRN, SSP, SSN, STP, and STN may be referred to as base drive signals SRP to STN.
 回生制御部28は、母線電流IPNと母線電圧VPNとに基づいて、ベース駆動信号生成部26から出力されたベース駆動信号SRPからSTNのベース駆動回路27への伝達を継続するか、ベース駆動信号生成部26から出力されたベース駆動信号SRPからSTNのベース駆動回路27への伝達を停止するかを判断する。回生制御部28がベース駆動信号SRPからSTNのベース駆動回路27への伝達を継続すると判断した場合、ベース駆動回路27にベース駆動信号SRPからSTNが入力され続ける。回生制御部28がベース駆動信号SRPからSTNのベース駆動回路27への伝達を停止すると判断した場合、ベース駆動回路27へのベース駆動信号SRPからSTNの入力が停止される。 Based on the bus current IPN and the bus voltage VPN, the regeneration control unit 28 continues to transmit the base drive signal SRP output from the base drive signal generation unit 26 to the base drive circuit 27 of the STN, or the base drive signal. It is determined whether to stop transmission of the STN to the base drive circuit 27 from the base drive signal SRP output from the generation unit 26. If the regeneration control unit 28 determines that the transmission of the STN from the base drive signal SRP to the base drive circuit 27 is continued, the STN is continuously input to the base drive circuit 27 from the base drive signal SRP. When the regeneration control unit 28 determines that the transmission of the STN from the base drive signal SRP to the base drive circuit 27 is stopped, the input of the STN from the base drive signal SRP to the base drive circuit 27 is stopped.
 図3は、図1に示す回生制御部の構成例を示す図である。図3に示すように回生制御部28は、回生開始判定部60、回生停止判定部61、論理和回路62及びNPNトランジスタ63を備える。回生開始判定部60には、母線電圧VPNが回生開始判定部60に入力される。回生開始判定部60は、母線電圧VPNに基づいて、図1に示すパワーモジュール22による回生動作を開始するか否かを判定する機能を備える。回生開始判定部60は、減算器64及び比較器65を備える。減算器64には母線電圧VPNと基準電圧Vrefとが入力される。基準電圧Vrefは、交流電源3の電圧に基づいて予め設定される電圧である。また基準電圧Vrefの生成方法には、交流電源3の電圧を検出して基準電圧Vrefを生成する方法、母線電圧検出部23から出力される母線電圧VPNに基づいて基準電圧Vrefを生成する方法等があるが、何れの方法も公知であり、ここでの詳細な説明は省略する。減算器64は、母線電圧VPNと基準電圧Vrefの差分である差電圧ΔVを算出する。 FIG. 3 is a diagram illustrating a configuration example of the regeneration control unit illustrated in FIG. 1. As shown in FIG. 3, the regeneration control unit 28 includes a regeneration start determination unit 60, a regeneration stop determination unit 61, an OR circuit 62, and an NPN transistor 63. The bus voltage VPN is input to the regeneration start determination unit 60 in the regeneration start determination unit 60. The regeneration start determination unit 60 has a function of determining whether to start the regeneration operation by the power module 22 shown in FIG. 1 based on the bus voltage VPN. The regeneration start determination unit 60 includes a subtracter 64 and a comparator 65. The subtractor 64 receives the bus voltage VPN and the reference voltage Vref. The reference voltage Vref is a voltage set in advance based on the voltage of the AC power supply 3. The reference voltage Vref is generated by a method of generating the reference voltage Vref by detecting the voltage of the AC power supply 3, a method of generating the reference voltage Vref based on the bus voltage VPN output from the bus voltage detector 23, and the like. However, any method is publicly known, and a detailed description thereof is omitted here. The subtractor 64 calculates a difference voltage ΔV that is a difference between the bus voltage VPN and the reference voltage Vref.
 差電圧ΔVは、比較器65のプラス端子に入力される。比較器65のマイナス端子には、閾電圧Voが入力される。比較器65は、差電圧ΔVと閾電圧Voとを比較して、Highレベル又はLowレベルの電位を取る信号を出力する。例えば、差電圧ΔVが閾電圧Voよりも大きいときには、Highレベルの信号が出力される。Highレベルの信号は、母線電圧VPNが一定値よりも高くなったときに、パワーモジュール22による回生動作を開始することを示す信号である。差電圧ΔVが閾電圧Vo未満のときには、Lowレベルの信号が出力される。比較器65から出力される信号は、回生開始判定部60の出力信号として、論理和回路62に入力される。 The difference voltage ΔV is input to the plus terminal of the comparator 65. The threshold voltage Vo is input to the negative terminal of the comparator 65. The comparator 65 compares the difference voltage ΔV and the threshold voltage Vo, and outputs a signal that takes a high level or low level potential. For example, when the difference voltage ΔV is larger than the threshold voltage Vo, a high level signal is output. The high level signal is a signal indicating that the regenerative operation by the power module 22 is started when the bus voltage VPN becomes higher than a certain value. When the difference voltage ΔV is less than the threshold voltage Vo, a low level signal is output. A signal output from the comparator 65 is input to the OR circuit 62 as an output signal of the regeneration start determination unit 60.
 なお、実施の形態1に係る回生制御部28の回生開始判定部60では、パワーモジュール22における回生動作の開始直後に、差電圧ΔV及び閾電圧Voが、差電圧ΔV<閾電圧Voの関係となるため、例えば、比較器65にヒステリシス機能を設け、比較器65の出力にワンショットトリガ回路を設け、又は、回生動作開始後から一定期間が経過するまでは回生動作が続くように回生開始判定部60を構成することが望ましい。 In the regeneration start determination unit 60 of the regeneration control unit 28 according to the first embodiment, immediately after the start of the regeneration operation in the power module 22, the difference voltage ΔV and the threshold voltage Vo are such that the difference voltage ΔV <the threshold voltage Vo. Therefore, for example, a hysteresis function is provided in the comparator 65, a one-shot trigger circuit is provided in the output of the comparator 65, or a regeneration start determination is made so that the regeneration operation continues until a certain period elapses after the regeneration operation starts. It is desirable to constitute part 60.
 回生停止判定部61には、母線電流IPNが入力される。回生停止判定部61は、母線電流IPNに基づいて、パワーモジュール22における回生動作を停止するか否かを判定する機能を備える。回生停止判定部61は、比較器66を備える。比較器66のプラス端子には閾電流Irefが入力される。比較器66のマイナス端子には母線電流IPNが入力される。比較器66は、母線電流IPNと閾電流Irefとを比較して、Highレベル又はLowレベルの電位を取る信号を出力する。例えば、母線電流IPNが閾電流Irefよりも大きいときには、Lowレベルの信号が出力される。母線電流IPNが閾電流Iref未満となったときには、Highレベルの信号が出力される。比較器66から出力される信号は、回生停止判定部61の出力信号として、論理和回路62に入力される。 The regenerative stop determination unit 61 receives the bus current IPN. The regeneration stop determination unit 61 has a function of determining whether to stop the regeneration operation in the power module 22 based on the bus current IPN. The regeneration stop determination unit 61 includes a comparator 66. The threshold current Iref is input to the plus terminal of the comparator 66. The bus current IPN is input to the negative terminal of the comparator 66. The comparator 66 compares the bus current IPN and the threshold current Iref, and outputs a signal that takes a High level or Low level potential. For example, when the bus current IPN is larger than the threshold current Iref, a low level signal is output. When the bus current IPN becomes less than the threshold current Iref, a high level signal is output. A signal output from the comparator 66 is input to the OR circuit 62 as an output signal of the regeneration stop determination unit 61.
 論理和回路62の出力はNPNトランジスタ63のベースに接続される。論理和回路62の出力信号である回生オン信号Ronは、NPNトランジスタ63のベースに入力される。NPNトランジスタ63のコレクタには、図1に示すベース駆動信号生成部26が接続される。NPNトランジスタ63のコレクタには、ベース駆動信号生成部26の出力であるベース駆動信号SRPからSTNが入力される。NPNトランジスタ63のエミッタは、ベース駆動回路27に接続される。 The output of the OR circuit 62 is connected to the base of the NPN transistor 63. A regenerative on signal Ron that is an output signal of the OR circuit 62 is input to the base of the NPN transistor 63. A base drive signal generator 26 shown in FIG. 1 is connected to the collector of the NPN transistor 63. STN is input to the collector of the NPN transistor 63 from the base drive signal SRP that is the output of the base drive signal generator 26. The emitter of the NPN transistor 63 is connected to the base drive circuit 27.
 次に、回生制御部28の動作について説明する。前述のように論理和回路62には、回生開始判定部60及び回生停止判定部61のそれぞれの出力信号が入力される。何れかの出力信号がHighレベルの場合、論理和回路62はHighレベルの信号を出力する。論理和回路62がHighレベルの信号を出力すると、NPNトランジスタ63がオンとなり、ベース駆動信号SRPからSTNが、図1に示すベース駆動回路27に入力される。ベース駆動回路27では、ベース駆動信号SRPからSTNが、パワーモジュール22の各パワー素子が扱うことができる信号に変換され、変換された信号であるベース駆動信号SRP’,SRN’,SSP’,SSN’,STP’,STN’が生成される。生成されたベース駆動信号SRP’,SRN’,SSP’,SSN’,STP’,STN’は、スイッチング素子S1からS6のベースに入力される。これにより、スイッチング素子S1からS6のオンオフ動作、すなわちパワーモジュール22の回生動作が行われる。以下では、ベース駆動信号SRP’,SRN’,SSP’,SSN’,STP’,STN’をベース駆動信号SRP’からSTN’と称する場合がある。ベース駆動回路27の詳細は後述する。 Next, the operation of the regeneration control unit 28 will be described. As described above, the output signals of the regeneration start determination unit 60 and the regeneration stop determination unit 61 are input to the OR circuit 62. When any output signal is at a high level, the OR circuit 62 outputs a high level signal. When the OR circuit 62 outputs a high level signal, the NPN transistor 63 is turned on, and the base drive signals SRP to STN are input to the base drive circuit 27 shown in FIG. In the base drive circuit 27, the base drive signal SRP is converted into a signal that can be handled by each power element of the power module 22, and the converted base drive signals SRP ′, SRN ′, SSP ′, SSN are converted signals. ', STP', STN 'are generated. The generated base drive signals SRP ', SRN', SSP ', SSN', STP ', STN' are input to the bases of the switching elements S1 to S6. Thereby, the on / off operation of the switching elements S1 to S6, that is, the regenerative operation of the power module 22 is performed. Hereinafter, the base drive signals SRP ', SRN', SSP ', SSN', STP ', STN' may be referred to as base drive signals SRP 'to STN'. Details of the base drive circuit 27 will be described later.
 一方、回生開始判定部60及び回生停止判定部61のそれぞれの出力信号がLowレベルの場合、論理和回路62はLowレベルの信号を出力する。論理和回路62がLowレベルの信号を出力すると、NPNトランジスタ63がオフとなり、図1に示すベース駆動回路27への、ベース駆動信号SRPからSTNの入力が遮断される。これにより、スイッチング素子S1からS6の全てがオフとなり、回生動作が停止される。 On the other hand, when the output signals of the regeneration start determination unit 60 and the regeneration stop determination unit 61 are at the Low level, the OR circuit 62 outputs a Low level signal. When the OR circuit 62 outputs a low level signal, the NPN transistor 63 is turned off, and the STN input from the base drive signal SRP to the base drive circuit 27 shown in FIG. 1 is cut off. As a result, all of the switching elements S1 to S6 are turned off, and the regenerative operation is stopped.
 このように、回生開始判定部60及び回生停止判定部61の少なくとも一方がHighレベルの信号を出力している場合、回生動作が継続され、回生開始判定部60及び回生停止判定部61の双方がLowレベルの信号を出力している場合、回生動作が停止される。 Thus, when at least one of the regeneration start determination unit 60 and the regeneration stop determination unit 61 outputs a high level signal, the regeneration operation is continued, and both the regeneration start determination unit 60 and the regeneration stop determination unit 61 When a low level signal is output, the regenerative operation is stopped.
 ベース駆動回路27について説明する。前述のようにベース駆動回路27は、回生制御部28から出力されるベース駆動信号SRP,SRN,SSP,SSN,STP,SSNを、パワーモジュール22が扱えるベース駆動信号SRP’,SRN’,SSP’,SSN’,STP’,STN’に変換し、パワーモジュール22のスイッチング素子S1からS6のベースに入力する機能を有する。図4は、図1に示すベース駆動回路27の構成例を示す図である。図4に示すようにベース駆動回路27は、ベース制御回路35及び電圧印加部36を備える。 The base drive circuit 27 will be described. As described above, the base drive circuit 27 uses the base drive signals SRP ′, SRN ′, and SSP ′ that the power module 22 can handle the base drive signals SRP, SRN, SSP, SSN, STP, and SSN output from the regeneration control unit 28. , SSN ′, STP ′, STN ′, and has a function of inputting to the bases of the switching elements S1 to S6 of the power module 22. FIG. 4 is a diagram showing a configuration example of the base drive circuit 27 shown in FIG. As shown in FIG. 4, the base drive circuit 27 includes a base control circuit 35 and a voltage application unit 36.
 ベース制御回路35は、ベース制御回路35に入力される信号を電気的に絶縁し、入力される信号と同電位の出力信号、すなわち入力信号がHighレベルの場合には、Highレベルの出力信号、入力信号がLowレベルの場合にはLowレベルの出力信号を、電圧印加部36に出力する機能を備える。例えば、ベース制御回路35に、Highレベルの電位を取るベース駆動信号SRPが入力された場合、ベース制御回路35は、このベース駆動信号SRPとは電気的に絶縁された状態で、Highレベルの電位を取る信号を、電圧印加部36に対して出力する。ベース制御回路35には、例えばフォトカプラ、絶縁されたパルストランス等が用いられるが、ベース制御回路35を構成する部品は、これらに限定されず、入力信号と出力信号を電気的に絶縁した状態で、入力信号と同電位を取る出力信号を伝送するものであればよい。 The base control circuit 35 electrically insulates the signal input to the base control circuit 35 and outputs an output signal having the same potential as that of the input signal, that is, when the input signal is at a high level, When the input signal is at a low level, a function of outputting an output signal at a low level to the voltage application unit 36 is provided. For example, when a base drive signal SRP that takes a high-level potential is input to the base control circuit 35, the base control circuit 35 is electrically insulated from the base drive signal SRP, and is at a high-level potential. Is output to the voltage application unit 36. For example, a photocoupler or an insulated pulse transformer is used for the base control circuit 35. However, the components constituting the base control circuit 35 are not limited thereto, and the input signal and the output signal are electrically insulated. Therefore, any device that transmits an output signal having the same potential as the input signal may be used.
 ベース制御回路35は、ベース駆動信号SRPを電気的に絶縁し、ベース駆動信号SRPと同電位の信号に変換する制御回路35Aと、ベース駆動信号SRNを電気的に絶縁し、ベース駆動信号SRNと同電位の信号に変換する制御回路35Bと、ベース駆動信号SSPを電気的に絶縁し、ベース駆動信号SSPと同電位の信号に変換する制御回路35Cと、ベース駆動信号SSNを電気的に絶縁し、ベース駆動信号SRNと同電位の信号に変換する制御回路35Dと、ベース駆動信号STPを電気的に絶縁し、ベース駆動信号STPと同電位の信号に変換する制御回路35Eと、ベース駆動信号STNを電気的に絶縁し、ベース駆動信号STNと同電位の信号に変換する制御回路35Fとを備える。 The base control circuit 35 electrically insulates the base drive signal SRP and converts it into a signal having the same potential as the base drive signal SRP, and electrically insulates the base drive signal SRN, The control circuit 35B for converting to a signal having the same potential is electrically insulated from the base drive signal SSP, and the control circuit 35C for converting to a signal having the same potential as the base drive signal SSP is electrically insulated from the base drive signal SSN. A control circuit 35D for converting the base drive signal SRN into a signal having the same potential, a control circuit 35E for electrically insulating the base drive signal STP and converting it into a signal having the same potential as the base drive signal STP, and a base drive signal STN Is electrically insulated, and a control circuit 35F that converts the signal to the same potential as the base drive signal STN is provided.
 電圧印加部36には、ベース制御回路35の出力信号が入力される。電圧印加部36の複数の出力は、パワーモジュール22のスイッチング素子S1からS6のベースに接続される。電圧印加部36は、制御回路35Aの出力信号に基づいてベース駆動信号SRP’を生成して出力する第1電圧印加部36Aと、制御回路35Bの出力信号に基づいてベース駆動信号SRN’を生成して出力する第2電圧印加部36Bと、制御回路35Cの出力信号に基づいてベース駆動信号SSP’を生成して出力する第3電圧印加部36Cとを備える。電圧印加部36は、制御回路35Dの出力信号に基づいてベース駆動信号SSN’を生成して出力する第4電圧印加部36Dと、制御回路35Eの出力信号に基づいてベース駆動信号STP’を生成して出力する第5電圧印加部36Eと、制御回路35Fの出力信号に基づいてベース駆動信号STN’を生成して出力する第6電圧印加部36Fとを備える。 The output signal of the base control circuit 35 is input to the voltage application unit 36. The plurality of outputs of the voltage application unit 36 are connected to the bases of the switching elements S1 to S6 of the power module 22. The voltage application unit 36 generates a base drive signal SRP ′ based on the output signal of the control circuit 35A, and generates a base drive signal SRN ′ based on the output signal of the control circuit 35B. And a second voltage application unit 36B that generates and outputs a base drive signal SSP ′ based on the output signal of the control circuit 35C. The voltage application unit 36 generates a base drive signal SSN ′ based on the output signal of the control circuit 35D, and generates a base drive signal STP ′ based on the output signal of the control circuit 35E. And a fifth voltage application unit 36F that generates and outputs a base drive signal STN ′ based on the output signal of the control circuit 35F.
 図5は、図4に示す第1電圧印加部の構成例を示す図である。図5に示すように第1電圧印加部36Aは、NPNトランジスタ37、PNPトランジスタ38及びベース抵抗39を備える。NPNトランジスタ37のベースとPNPトランジスタ38のベースは互いに接続され、それぞれのベースには制御回路35Aの出力が接続される。NPNトランジスタ37のエミッタとPNPトランジスタ38のエミッタは、互いに接続され、それぞれにベース抵抗39の一端が接続される。ベース抵抗39の他端は、スイッチング素子S1のベースに接続される。NPNトランジスタ37のコレクタは、図2に示す配線291-1に接続される。これにより、NPNトランジスタ37のコレクタには、図2に示す制御電源部29で生成された電圧VRPが印加される。PNPトランジスタ38のコレクタとスイッチング素子S1のエミッタとは、互いに接続され、さらに図2に示す配線291-2に接続される。これにより、PNPトランジスタ38のコレクタとスイッチング素子S1のエミッタとは、図2に示すグランドVRPGNDと電気的に接続される。 FIG. 5 is a diagram illustrating a configuration example of the first voltage application unit illustrated in FIG. As shown in FIG. 5, the first voltage application unit 36 </ b> A includes an NPN transistor 37, a PNP transistor 38, and a base resistor 39. The base of the NPN transistor 37 and the base of the PNP transistor 38 are connected to each other, and the output of the control circuit 35A is connected to each base. The emitter of the NPN transistor 37 and the emitter of the PNP transistor 38 are connected to each other, and one end of the base resistor 39 is connected to each of them. The other end of the base resistor 39 is connected to the base of the switching element S1. The collector of the NPN transistor 37 is connected to the wiring 291-1 shown in FIG. Thereby, the voltage VRP generated by the control power supply unit 29 shown in FIG. 2 is applied to the collector of the NPN transistor 37. The collector of the PNP transistor 38 and the emitter of the switching element S1 are connected to each other and further connected to the wiring 291-2 shown in FIG. Thereby, the collector of the PNP transistor 38 and the emitter of the switching element S1 are electrically connected to the ground VRPGND shown in FIG.
 図6は、図4に示す第2電圧印加部の構成例を示す図である。図6に示すように、第2電圧印加部36Bは、第1電圧印加部36Aと同様に、NPNトランジスタ37、PNPトランジスタ38及びベース抵抗39を備える。第2電圧印加部36Bでは、NPNトランジスタ37のベースとPNPトランジスタ38のベースに、制御回路35Bの出力が接続される。また第2電圧印加部36Bでは、ベース抵抗39の他端が、スイッチング素子S2のベースに接続される。また第2電圧印加部36Bでは、NPNトランジスタ37のコレクタが、図2に示す配線294-1に接続される。これにより、NPNトランジスタ37のコレクタには、図2に示す制御電源部29で生成された電圧VNが印加される。また第2電圧印加部36Bでは、PNPトランジスタ38のコレクタとスイッチング素子S2のエミッタとが、図2に示す配線294-2に接続される。これにより、PNPトランジスタ38のコレクタとスイッチング素子S2のエミッタとが、図2に示すグランドVNGNDと電気的に接続される。 FIG. 6 is a diagram illustrating a configuration example of the second voltage application unit illustrated in FIG. As shown in FIG. 6, the second voltage application unit 36B includes an NPN transistor 37, a PNP transistor 38, and a base resistor 39, like the first voltage application unit 36A. In the second voltage application unit 36B, the output of the control circuit 35B is connected to the base of the NPN transistor 37 and the base of the PNP transistor 38. In the second voltage application unit 36B, the other end of the base resistor 39 is connected to the base of the switching element S2. In the second voltage application unit 36B, the collector of the NPN transistor 37 is connected to the wiring 294-1 shown in FIG. Thereby, the voltage VN generated by the control power supply unit 29 shown in FIG. 2 is applied to the collector of the NPN transistor 37. In the second voltage application unit 36B, the collector of the PNP transistor 38 and the emitter of the switching element S2 are connected to the wiring 294-2 shown in FIG. As a result, the collector of the PNP transistor 38 and the emitter of the switching element S2 are electrically connected to the ground VNGND shown in FIG.
 図7は、図4に示す第3電圧印加部の構成例を示す図である。図7に示すように、第3電圧印加部36Cは、第1電圧印加部36Aと同様に、NPNトランジスタ37、PNPトランジスタ38及びベース抵抗39を備える。第3電圧印加部36Cでは、NPNトランジスタ37のベースとPNPトランジスタ38のベースに、制御回路35Cの出力が接続される。また第3電圧印加部36Cでは、ベース抵抗39の他端が、スイッチング素子S3のベースに接続される。また第3電圧印加部36Cでは、NPNトランジスタ37のコレクタが、図2に示す配線292-1に接続される。これにより、NPNトランジスタ37のコレクタには、図2に示す制御電源部29で生成された電圧VSPが印加される。また第3電圧印加部36Cでは、PNPトランジスタ38のコレクタとスイッチング素子S3のエミッタとが、図2に示す配線292-2に接続される。これにより、PNPトランジスタ38のコレクタとスイッチング素子S3のエミッタとが、図2に示すグランドVSPGNDと電気的に接続される。 FIG. 7 is a diagram illustrating a configuration example of the third voltage applying unit illustrated in FIG. As shown in FIG. 7, the third voltage applying unit 36C includes an NPN transistor 37, a PNP transistor 38, and a base resistor 39, like the first voltage applying unit 36A. In the third voltage applying unit 36C, the output of the control circuit 35C is connected to the base of the NPN transistor 37 and the base of the PNP transistor 38. In the third voltage application unit 36C, the other end of the base resistor 39 is connected to the base of the switching element S3. In the third voltage application unit 36C, the collector of the NPN transistor 37 is connected to the wiring 292-1 shown in FIG. Thereby, the voltage VSP generated by the control power supply unit 29 shown in FIG. 2 is applied to the collector of the NPN transistor 37. In the third voltage application unit 36C, the collector of the PNP transistor 38 and the emitter of the switching element S3 are connected to the wiring 292-2 shown in FIG. Thereby, the collector of the PNP transistor 38 and the emitter of the switching element S3 are electrically connected to the ground VSPGND shown in FIG.
 図8は、図4に示す第4電圧印加部の構成例を示す図である。図8に示すように、第4電圧印加部36Dは、第1電圧印加部36Aと同様に、NPNトランジスタ37、PNPトランジスタ38及びベース抵抗39を備える。第4電圧印加部36Dでは、NPNトランジスタ37のベースとPNPトランジスタ38のベースに、制御回路35Dの出力が接続される。また第4電圧印加部36Dでは、ベース抵抗39の他端が、スイッチング素子S4のベースに接続される。また第4電圧印加部36Dでは、NPNトランジスタ37のコレクタが、図2に示す配線294-1に接続される。これにより、NPNトランジスタ37のコレクタには、図2に示す制御電源部29で生成された電圧VNが印加される。また第4電圧印加部36Dでは、PNPトランジスタ38のコレクタとスイッチング素子S4のエミッタとが、図2に示す配線294-2に接続される。これにより、PNPトランジスタ38のコレクタとスイッチング素子S4のエミッタとが、図2に示すグランドVNGNDと電気的に接続される。 FIG. 8 is a diagram illustrating a configuration example of the fourth voltage application unit illustrated in FIG. 4. As shown in FIG. 8, the fourth voltage application unit 36D includes an NPN transistor 37, a PNP transistor 38, and a base resistor 39, like the first voltage application unit 36A. In the fourth voltage application unit 36D, the output of the control circuit 35D is connected to the base of the NPN transistor 37 and the base of the PNP transistor 38. In the fourth voltage application unit 36D, the other end of the base resistor 39 is connected to the base of the switching element S4. In the fourth voltage application unit 36D, the collector of the NPN transistor 37 is connected to the wiring 294-1 shown in FIG. Thereby, the voltage VN generated by the control power supply unit 29 shown in FIG. 2 is applied to the collector of the NPN transistor 37. In the fourth voltage application unit 36D, the collector of the PNP transistor 38 and the emitter of the switching element S4 are connected to the wiring 294-2 shown in FIG. As a result, the collector of the PNP transistor 38 and the emitter of the switching element S4 are electrically connected to the ground VNGND shown in FIG.
 図9は、図4に示す第5電圧印加部の構成例を示す図である。図9に示すように、第5電圧印加部36Eは、第1電圧印加部36Aと同様に、NPNトランジスタ37、PNPトランジスタ38及びベース抵抗39を備える。第5電圧印加部36Eでは、NPNトランジスタ37のベースとPNPトランジスタ38のベースに、制御回路35Eの出力が接続される。また第5電圧印加部36Eでは、ベース抵抗39の他端が、スイッチング素子S5のベースに接続される。また第5電圧印加部36Eでは、NPNトランジスタ37のコレクタが、図2に示す配線293-1に接続される。これにより、NPNトランジスタ37のコレクタには、図2に示す制御電源部29で生成された電圧VTPが印加される。また第5電圧印加部36Eでは、PNPトランジスタ38のコレクタとスイッチング素子S5のエミッタとが、図2に示す配線293-2に接続される。これにより、PNPトランジスタ38のコレクタとスイッチング素子S5のエミッタとが、図2に示すグランドVTPGNDと電気的に接続される。 FIG. 9 is a diagram illustrating a configuration example of the fifth voltage application unit illustrated in FIG. As shown in FIG. 9, the fifth voltage application unit 36E includes an NPN transistor 37, a PNP transistor 38, and a base resistor 39, like the first voltage application unit 36A. In the fifth voltage application unit 36E, the output of the control circuit 35E is connected to the base of the NPN transistor 37 and the base of the PNP transistor 38. In the fifth voltage application unit 36E, the other end of the base resistor 39 is connected to the base of the switching element S5. In the fifth voltage applying unit 36E, the collector of the NPN transistor 37 is connected to the wiring 293-1 shown in FIG. Thereby, the voltage VTP generated by the control power supply unit 29 shown in FIG. 2 is applied to the collector of the NPN transistor 37. In the fifth voltage application unit 36E, the collector of the PNP transistor 38 and the emitter of the switching element S5 are connected to the wiring 293-2 shown in FIG. Thereby, the collector of the PNP transistor 38 and the emitter of the switching element S5 are electrically connected to the ground VTPGND shown in FIG.
 図10は、図4に示す第6電圧印加部の構成例を示す図である。図10に示すように、第6電圧印加部36Fは、第1電圧印加部36Aと同様に、NPNトランジスタ37、PNPトランジスタ38及びベース抵抗39を備える。第6電圧印加部36Fでは、NPNトランジスタ37のベースとPNPトランジスタ38のベースに、制御回路35Fの出力が接続される。また第6電圧印加部36Fでは、ベース抵抗39の他端が、スイッチング素子S6のベースに接続される。また第6電圧印加部36Fでは、NPNトランジスタ37のコレクタが、図2に示す配線294-1に接続される。これにより、NPNトランジスタ37のコレクタには、図2に示す制御電源部29で生成された電圧VNが印加される。また第6電圧印加部36Fでは、PNPトランジスタ38のコレクタとスイッチング素子S6のエミッタとが、図2に示す配線294-2に接続される。これにより、PNPトランジスタ38のコレクタとスイッチング素子S6のエミッタとが、図2に示すグランドVNGNDと電気的に接続される。 FIG. 10 is a diagram illustrating a configuration example of the sixth voltage application unit illustrated in FIG. As shown in FIG. 10, the sixth voltage application unit 36F includes an NPN transistor 37, a PNP transistor 38, and a base resistor 39, like the first voltage application unit 36A. In the sixth voltage application unit 36F, the output of the control circuit 35F is connected to the base of the NPN transistor 37 and the base of the PNP transistor 38. In the sixth voltage application unit 36F, the other end of the base resistor 39 is connected to the base of the switching element S6. In the sixth voltage application unit 36F, the collector of the NPN transistor 37 is connected to the wiring 294-1 shown in FIG. Thereby, the voltage VN generated by the control power supply unit 29 shown in FIG. 2 is applied to the collector of the NPN transistor 37. In the sixth voltage application unit 36F, the collector of the PNP transistor 38 and the emitter of the switching element S6 are connected to the wiring 294-2 shown in FIG. As a result, the collector of the PNP transistor 38 and the emitter of the switching element S6 are electrically connected to the ground VNGND shown in FIG.
 次にベース駆動回路27の動作について説明する。ここでは図5に示す第1電圧印加部36Aを用いて、ベース駆動回路27の動作を説明する。回生制御部28からスイッチング素子S1のベース駆動信号SRPが出力されると、制御回路35Aは、ベース駆動信号SRPと絶縁された信号を生成して出力する。第1電圧印加部36AにHighレベルの信号が入力されると、PNPトランジスタ38がオフし、NPNトランジスタ37がオンする。これにより、配線291-1とスイッチング素子S1のベースとが、ベース抵抗39を介して導通状態になり、スイッチング素子S1のベースとエミッタとの電極間に電荷が充電される。電荷が充電されることによって、スイッチング素子S1のベースとエミッタとの電極間に印加される電圧VBEが、予め決められた閾電圧を超えると、スイッチング素子S1はオンする。以下では、スイッチング素子S1のベースとエミッタとの電極間に印加される電圧を電圧VBEと称する。電圧VBEが電圧VRPまで上昇すると、ベース抵抗39を介しての、スイッチング素子S1のベースとエミッタとの電極間への充電が終了する。 Next, the operation of the base drive circuit 27 will be described. Here, the operation of the base drive circuit 27 will be described using the first voltage application unit 36A shown in FIG. When the base drive signal SRP of the switching element S1 is output from the regeneration control unit 28, the control circuit 35A generates and outputs a signal insulated from the base drive signal SRP. When a high level signal is input to the first voltage application unit 36A, the PNP transistor 38 is turned off and the NPN transistor 37 is turned on. As a result, the wiring 291-1 and the base of the switching element S1 become conductive via the base resistor 39, and charges are charged between the base and emitter electrodes of the switching element S1. When the voltage VBE applied between the base and emitter electrodes of the switching element S1 exceeds a predetermined threshold voltage due to the charge being charged, the switching element S1 is turned on. Hereinafter, a voltage applied between the base and emitter electrodes of the switching element S1 is referred to as a voltage VBE. When the voltage VBE rises to the voltage VRP, the charging between the base and emitter electrodes of the switching element S1 through the base resistor 39 is completed.
 第1電圧印加部36AにLowレベルの信号が入力されると、NPNトランジスタ37がオフし、PNPトランジスタ38がオンする。これにより、グランドVRPGNDとスイッチング素子S1のベースとが、ベース抵抗39を介して導通状態になり、スイッチング素子S1のベースとエミッタとの電極間に充電された電荷が放電される。電荷が放電されることによって、スイッチング素子S1のベースとエミッタとの電極間に印加される電圧VBEが、予め決められた閾電圧未満になると、スイッチング素子S1はオフする。電圧VBEがグランドVRPGNDまで低下すると、スイッチング素子S1のベースとエミッタとの電極間に充電された電荷の放電が終了する。 When a low level signal is input to the first voltage application unit 36A, the NPN transistor 37 is turned off and the PNP transistor 38 is turned on. As a result, the ground VRPGND and the base of the switching element S1 become conductive through the base resistor 39, and the charge charged between the base and emitter electrodes of the switching element S1 is discharged. When the electric charge is discharged and the voltage VBE applied between the base and emitter electrodes of the switching element S1 becomes less than a predetermined threshold voltage, the switching element S1 is turned off. When the voltage VBE decreases to the ground VRPGND, the discharge of the charge charged between the base and emitter electrodes of the switching element S1 is completed.
 他のスイッチング素子も同様の原理で動作を行うため説明は省略する。また、回生制御部28からベース駆動信号SRPが出力されない場合、即ち回生動作が行われない場合には、ベース駆動回路27は動作をせず、またスイッチング素子S1からS6は、オンオフ動作を行わずオフ状態に保たれる。 Since other switching elements operate on the same principle, the description is omitted. Further, when the base drive signal SRP is not output from the regenerative control unit 28, that is, when the regenerative operation is not performed, the base drive circuit 27 does not operate, and the switching elements S1 to S6 do not perform the on / off operation. Kept off.
 以上のようにベース駆動回路27は、回生制御部28から出力されるベース駆動信号SRP,SPN,SSP,SSN,STP,STNを、制御電源部29で生成された各電源を用いてパワーモジュール22が扱えるベース駆動信号SRP’,SRN’,SSP’,SSN’,STP’,STN’に変換し、スイッチング素子S1からS6のオンオフ動作を行っている。 As described above, the base drive circuit 27 uses the power supplies generated by the control power supply unit 29 to generate the base drive signals SRP, SPN, SSP, SSN, STP, and STN output from the regeneration control unit 28. Are converted into base drive signals SRP ′, SRN ′, SSP ′, SSN ′, STP ′, and STN ′ that can be handled by the switching elements S1 to S6.
 次に、図11及び図12を用いてコンバータ1-1における回生動作について説明する。図11は、図1に示す電圧位相検出部の動作を説明するための図である。前述したように、パワーモジュール22の正極側に配置されるスイッチング素子S1,S3,S5のエミッタはリアクトル2を介して交流電源3のR相,S相,T相に接続されている。そして、スイッチング素子S1,S3,S5のエミッタは、制御電源部29のグランドVRPGND,VSPGND,VTPGNDに接続されている。 Next, the regenerative operation in the converter 1-1 will be described with reference to FIGS. FIG. 11 is a diagram for explaining the operation of the voltage phase detector shown in FIG. As described above, the emitters of the switching elements S1, S3, and S5 arranged on the positive electrode side of the power module 22 are connected to the R phase, S phase, and T phase of the AC power supply 3 via the reactor 2. The emitters of the switching elements S1, S3, and S5 are connected to the ground VRPGND, VSPGND, and VTPGND of the control power supply unit 29.
 図11に示すように電圧位相検出部24では、配線291-2に接続されるグランドVRPGNDに発生する信号に基づいて、入力R相電圧VR1が検出される。入力R相電圧VR1は、図1に示す交流端子11と交流端子12との間に印加される電圧と等価である。また、電圧位相検出部24は、配線292-2に接続されるグランドVSPGNDに発生する信号に基づいて、入力S相電圧VS1を検出する。入力S相電圧VS1は、図1に示す交流端子12と交流端子13との間に印加される電圧と等価である。また、電圧位相検出部24は、配線293-2に接続されるグランドVTPGNDに発生する信号に基づいて、入力T相電圧VT1を検出する。入力T相電圧VT1は、図1に示す交流端子13と交流端子11との間に印加される電圧と等価である。スイッチング素子S1,S3,S5のエミッタは、制御電源部29のグランドVRPGND,VSPGND,VTPGNDに接続されているため、電圧位相検出部24では、スイッチング素子S1,S3,S5のエミッタに流れる信号、又は制御電源部29の基準電位となるグランドに流れる信号に基づいて、パワーモジュール22から交流電源3に交流電力が回生されるようにスイッチング素子S1からS6がオンオフ動作するときの交流電圧の電圧位相を検出し、検出した電圧位相を示す位相検出信号を生成して出力する。 As shown in FIG. 11, the voltage phase detector 24 detects the input R-phase voltage VR1 based on a signal generated at the ground VRPGND connected to the wiring 291-2. Input R-phase voltage VR1 is equivalent to a voltage applied between AC terminal 11 and AC terminal 12 shown in FIG. The voltage phase detector 24 detects the input S-phase voltage VS1 based on a signal generated at the ground VSPGND connected to the wiring 292-2. Input S-phase voltage VS1 is equivalent to a voltage applied between AC terminal 12 and AC terminal 13 shown in FIG. The voltage phase detector 24 detects the input T-phase voltage VT1 based on a signal generated at the ground VTPGND connected to the wiring 293-2. Input T-phase voltage VT1 is equivalent to a voltage applied between AC terminal 13 and AC terminal 11 shown in FIG. Since the emitters of the switching elements S1, S3, S5 are connected to the ground VRPGND, VSPGND, VTPGND of the control power supply unit 29, the voltage phase detection unit 24 has a signal flowing through the emitters of the switching elements S1, S3, S5, or The voltage phase of the AC voltage when the switching elements S1 to S6 are turned on / off so that AC power is regenerated from the power module 22 to the AC power source 3 based on a signal flowing to the ground serving as the reference potential of the control power supply unit 29. A phase detection signal indicating the detected voltage phase is generated and output.
 図12は、図1に示すコンバータの動作を説明するためのタイムチャートである。図12には、上から順に、交流電源3から出力される線間電圧VR-S,VS―T,VT-R,VS-R,VT-S,VR-Tの波形と、線間電圧に基づき生成される6種類の位相検出信号の波形と、ベース駆動信号SRPからSTNの波形と、R相、T相及びS相に流れる回生電流(Irr,Isr,Itr)の波形とが示される。線間電圧VR-Sと線間電圧VS-Rとは、前述した入力R相電圧VR1に相当し、相補的に変化している。線間電圧VS―Tと線間電圧VT-Sとは、前述した入力S相電圧VS1に相当し、相補的に変化している。線間電圧VR-Tと線間電圧VT-Rとは、前述した入力T相電圧VT1に相当し、相補的に変化している。回生電流とは、回生動作時に、図1に示すモータ駆動装置4からスイッチング素子S1からS6を介して、交流電源3に向かって流れる電流である。 FIG. 12 is a time chart for explaining the operation of the converter shown in FIG. FIG. 12 shows, in order from the top, the waveforms of line voltages VR-S, VS-T, VT-R, VS-R, VT-S, and VR-T output from the AC power supply 3, and the line voltages. Waveforms of six types of phase detection signals generated based on the waveforms, waveforms of base drive signals SRP to STN, and waveforms of regenerative currents (Irr, Isr, Itr) flowing in the R phase, T phase, and S phase are shown. The line voltage VR-S and the line voltage VS-R correspond to the aforementioned input R-phase voltage VR1 and change complementarily. The line voltage VS-T and the line voltage VT-S correspond to the input S-phase voltage VS1 and change complementarily. The line voltage VR-T and the line voltage VT-R correspond to the above-described input T-phase voltage VT1 and change complementarily. The regenerative current is a current that flows from the motor driving device 4 shown in FIG. 1 toward the AC power supply 3 via the switching elements S1 to S6 during the regenerative operation.
 なお、線間電圧VR-Sは、S相を基準としてR相との電圧差を検出したものであるのに対し、線間電圧VS-Rは、R相を基準としてS相との電圧差を検出したものである。線間電圧VR-Sと線間電圧VS-Rとは、電圧位相が180度ずれている。同様に、線間電圧VS-Tは、T相を基準としてS相との電圧差を検出したものであるのに対し、線間電圧VT-Sは、S相を基準としてT相との電圧差を検出したものであり、線間電圧VS-Tと線間電圧VT-Sとは、電圧位相が180度ずれている。線間電圧は、R相を基準としてT相との電圧差を検出したものであるのに対し、線間電圧VR-Tは、T相を基準としてR相との電圧差を検出したものであり、線間電圧と線間電圧VR-Tとは、電圧位相が180度ずれている。 The line voltage VR-S is obtained by detecting a voltage difference from the R phase with reference to the S phase, whereas the line voltage VS-R is a voltage difference from the S phase with respect to the R phase. Is detected. The voltage phase between the line voltage VR-S and the line voltage VS-R is shifted by 180 degrees. Similarly, the line voltage VS-T is obtained by detecting a voltage difference from the S phase with respect to the T phase, whereas the line voltage VT-S is a voltage with respect to the T phase with respect to the S phase. The difference is detected, and the voltage phase between the line voltage VS-T and the line voltage VT-S is shifted by 180 degrees. The line voltage is a voltage difference with the T phase detected with the R phase as a reference, whereas the line voltage VR-T is a voltage difference with the R phase detected with the T phase as a reference. In other words, the voltage phase between the line voltage and the line voltage VR-T is shifted by 180 degrees.
 電圧位相検出部24は、入力R相電圧VR1、入力S相電圧VS1及び入力T相電圧VT1に基づき、線間電圧VR-S、線間電圧VS-R、線間電圧VS-T、線間電圧VT-S、線間電圧VR-T及び線間電圧VT-Rを推定し、推定した結果に基づき、各線間電圧のゼロクロス点を抽出し、抽出したゼロクロス点を位相検出信号として扱う。この位相検出信号は、ベース駆動信号生成部26へ出力される。電圧位相検出部24から出力される各位相検出信号が図12に例示される。図12では、上から順に、R-S線間位相検出信号、S-R線間位相検出信号、S-T線間位相検出信号、T-S線間位相検出信号、T-R線間位相検出信号及びR-T線間位相検出信号が示される。例えば、R-S線間位相検出信号は、線間電圧VR-Sと線間電圧VS-Rとの差が正の区間(位相区間)ではHighレベルの値をとり、負の区間(位相区間)ではLowレベルの値を取る。電圧位相検出部24は、このようにレベルが変化する位相検出信号を、各線間電圧に対応付けて生成する。 Based on the input R-phase voltage VR1, the input S-phase voltage VS1, and the input T-phase voltage VT1, the voltage phase detector 24 is configured to detect the line voltage VR-S, the line voltage VS-R, the line voltage VS-T, The voltage VT-S, the line voltage VR-T, and the line voltage VT-R are estimated, and based on the estimated results, a zero cross point of each line voltage is extracted, and the extracted zero cross point is handled as a phase detection signal. This phase detection signal is output to the base drive signal generator 26. Each phase detection signal output from the voltage phase detector 24 is illustrated in FIG. In FIG. 12, in order from the top, the phase detection signal between the RS lines, the phase detection signal between the SR lines, the phase detection signal between the ST lines, the phase detection signal between the TS lines, and the phase between the TR lines A detection signal and an RT line phase detection signal are shown. For example, an RS line phase detection signal takes a high level value in a section (phase section) where the difference between the line voltage VR-S and the line voltage VS-R is positive (phase section), and a negative section (phase section). ) Takes a low level value. The voltage phase detector 24 generates a phase detection signal whose level changes in this way in association with each line voltage.
 次に、ベース駆動信号生成部26は、図12に示される各位相検出信号に基づいて、以下に示す方法により、ベース駆動信号SRPからSTNを生成する。 Next, the base drive signal generator 26 generates an STN from the base drive signal SRP by the following method based on each phase detection signal shown in FIG.
 線間電圧VR-Sの電位が最大の場合、ベース駆動信号生成部26は、ベース駆動信号SRP,SSNをHighレベルとし、スイッチング素子S1とスイッチング素子S4とをオン制御する。 When the potential of the line voltage VR-S is maximum, the base drive signal generation unit 26 sets the base drive signals SRP and SSN to a high level and controls the switching elements S1 and S4 to be on.
 線間電圧VS-Tの電位が最大の場合、ベース駆動信号生成部26は、ベース駆動信号SSP,STNをHighレベルとし、スイッチング素子S3とスイッチング素子S6とをオン制御する。 When the potential of the line voltage VS-T is the maximum, the base drive signal generator 26 sets the base drive signals SSP and STN to High level, and controls the switching elements S3 and S6 to be on.
 線間電圧VT-Rの電位が最大の場合、ベース駆動信号生成部26は、ベース駆動信号STP,SRNをHighレベルとし、スイッチング素子S5とスイッチング素子S2とをオン制御する。 When the potential of the line voltage VT-R is maximum, the base drive signal generation unit 26 sets the base drive signals STP and SRN to a high level, and controls the switching elements S5 and S2 to be on.
 線間電圧VS-Rの電位が最大の場合、ベース駆動信号生成部26は、ベース駆動信号SSP,SRNをHighレベルとし、スイッチング素子S3とスイッチング素子S2とをオン制御する。 When the potential of the line voltage VS-R is the maximum, the base drive signal generation unit 26 sets the base drive signals SSP and SRN to a high level and controls the switching elements S3 and S2 to be on.
 線間電圧VT-Sの電位が最大の場合、ベース駆動信号生成部26は、ベース駆動信号STP,SSNをHighレベルとし、スイッチング素子S5とスイッチング素子S4とをオン制御する。 When the potential of the line voltage VT-S is maximum, the base drive signal generation unit 26 sets the base drive signals STP and SSN to a high level and controls the switching elements S5 and S4 to be on.
 線間電圧VR-Tの電位が最大の場合、ベース駆動信号生成部26は、ベース駆動信号SRP,STNをHighレベルとし、スイッチング素子S1とスイッチング素子S6とをオン制御する。 When the potential of the line voltage VR-T is the maximum, the base drive signal generator 26 sets the base drive signals SRP and STN to the high level, and controls the switching elements S1 and S6 to be on.
 次に、スイッチング素子S1からS6がベース駆動信号に基づいて、オン動作又はオフ動作するときに流れる電流について説明する。以下では、スイッチング素子S1からS6のオン動作又はオフ動作を、スイッチング動作と称する場合がある。なお、図1には、交流電源3からコンバータ1-1に向かう方向の矢印で示されるR相電流Ir、S相電流Is、T相電流Itを示しているが、矢印の向きに流れる電流をプラス方向の電流として扱い、図12に示される3つの回生電流の波形はそれに従って表記される。 Next, the current that flows when the switching elements S1 to S6 are turned on or off based on the base drive signal will be described. Hereinafter, the on operation or the off operation of the switching elements S1 to S6 may be referred to as a switching operation. FIG. 1 shows the R-phase current Ir, the S-phase current Is, and the T-phase current It indicated by arrows in the direction from the AC power supply 3 to the converter 1-1. Treated as a positive current, the waveforms of the three regenerative currents shown in FIG. 12 are represented accordingly.
 前述のように、スイッチング素子S1からS6がスイッチング動作するとき、図12に示すようなR相回生電流Irr、S相回生電流Isr及びT相回生電流Itrが流れる。時刻t20~t40では、線間電圧VR-Sの電位が最大となるため、スイッチング素子S1,S4がオン状態となり、他のスイッチング素子がオフ状態となる。これにより、平滑コンデンサ21と交流電源3のR-S間とは、リアクトル2によるインピーダンスを介して、接続された状態となる。従って、オン状態のスイッチング素子S1,S4を介して、R相とS相とに回生電流が流れる。 As described above, when the switching elements S1 to S6 perform the switching operation, the R-phase regenerative current Irr, the S-phase regenerative current Isr, and the T-phase regenerative current Itr as shown in FIG. From time t20 to t40, since the potential of the line voltage VR-S becomes maximum, the switching elements S1 and S4 are turned on, and the other switching elements are turned off. As a result, the smoothing capacitor 21 and the RS of the AC power supply 3 are connected via the impedance of the reactor 2. Therefore, a regenerative current flows in the R phase and the S phase via the switching elements S1 and S4 in the on state.
 同様に時刻t40~t60では、線間電圧VR-Tの電位が最大となるため、スイッチング素子S1,S6がオン状態となり、他のスイッチング素子はオフ状態となる。これにより、平滑コンデンサ21と交流電源3のR-T間とは、リアクトル2によるインピーダンスを介して、接続された状態となる。従って、オン状態のスイッチング素子S1,S6を介して、R相とT相とに回生電流が流れる。 Similarly, from time t40 to t60, since the potential of the line voltage VR-T is maximized, the switching elements S1 and S6 are turned on, and the other switching elements are turned off. As a result, the smoothing capacitor 21 and the RT of the AC power supply 3 are connected via the impedance of the reactor 2. Therefore, a regenerative current flows in the R phase and the T phase via the switching elements S1 and S6 in the on state.
 なお、スイッチング動作が行われた場合でも、平滑コンデンサ21の端子間電圧と交流電源3の電圧との間に、平滑コンデンサ21の端子間電圧>交流電源3の電圧、という関係が成り立たないときには、回生電流が流れない。回生電流は、平滑コンデンサ21の端子間電圧と交流電源3の電圧との電圧差を利用しつつ、リアクトル2によるインピーダンスで流れが制限された状態で、流れている。 Even when the switching operation is performed, if the relationship between the voltage between the terminals of the smoothing capacitor 21 and the voltage of the AC power supply 3 does not hold between the voltage between the terminals of the smoothing capacitor 21 and the voltage of the AC power supply 3, Regenerative current does not flow. The regenerative current flows in a state where the flow is limited by the impedance of the reactor 2 while using the voltage difference between the voltage between the terminals of the smoothing capacitor 21 and the voltage of the AC power supply 3.
 ここで、交流端子11とスイッチング素子S1との間には各種配線に起因するインダクタンスが存在する。同様に、交流端子12とスイッチング素子S3との間、交流端子13とスイッチング素子S5との間にも各種配線に起因するインダクタンスが存在する。図13は、交流電源とパワーモジュールの交流端子との間に存在するインダクタンスと、パワーモジュールの正極側に配置されるスイッチング素子のエミッタとパワーモジュールの交流端子との間に存在するインダクタンスとを示す図である。 Here, an inductance caused by various wirings exists between the AC terminal 11 and the switching element S1. Similarly, inductances caused by various wirings also exist between the AC terminal 12 and the switching element S3 and between the AC terminal 13 and the switching element S5. FIG. 13 shows the inductance existing between the AC power supply and the AC terminal of the power module, and the inductance existing between the emitter of the switching element arranged on the positive side of the power module and the AC terminal of the power module. FIG.
 インダクタLRは、図1に示されるリアクトル2-1のインダクタである。インダクタLSは、図1に示されるリアクトル2-2のインダクタである。インダクタLTは、図1に示されるリアクトル2-3のインダクタである。インダクタLR1は、交流端子11とスイッチング素子S1のエミッタとの間に設けられる配線に起因するインダクタンスである。インダクタLS1は、交流端子12とスイッチング素子S3のエミッタとの間に設けられる配線に起因するインダクタンスである。インダクタLT1は、交流端子13とスイッチング素子S5のエミッタとの間に設けられる配線に起因するインダクタンスである。入力R相電圧VR1は、スイッチング素子S1のエミッタに印加される電圧である。R相電圧VR2は、インダクタLRと交流端子11との間に印加される電圧である。入力S相電圧VS1は、スイッチング素子S3のエミッタに印加される電圧である。S相電圧VS2は、インダクタLSと交流端子12との間に印加される電圧である。入力T相電圧VT1は、スイッチング素子S5のエミッタに印加される電圧である。T相電圧VT2は、インダクタLTと交流端子13との間に印加される電圧である。 The inductor LR is an inductor of the reactor 2-1 shown in FIG. The inductor LS is the inductor of the reactor 2-2 shown in FIG. The inductor LT is an inductor of the reactor 2-3 shown in FIG. The inductor LR1 is an inductance caused by a wiring provided between the AC terminal 11 and the emitter of the switching element S1. The inductor LS1 is an inductance caused by a wiring provided between the AC terminal 12 and the emitter of the switching element S3. The inductor LT1 is an inductance caused by a wiring provided between the AC terminal 13 and the emitter of the switching element S5. The input R-phase voltage VR1 is a voltage applied to the emitter of the switching element S1. The R-phase voltage VR <b> 2 is a voltage applied between the inductor LR and the AC terminal 11. The input S-phase voltage VS1 is a voltage applied to the emitter of the switching element S3. The S-phase voltage VS2 is a voltage applied between the inductor LS and the AC terminal 12. Input T-phase voltage VT1 is a voltage applied to the emitter of switching element S5. The T-phase voltage VT2 is a voltage applied between the inductor LT and the AC terminal 13.
 ここで、実施の形態1に係るコンバータ1-1では、前述したように、配線291-2に接続されるグランドVRPGNDに発生する信号に基づいて、入力R相電圧VR1を検出され、配線292-2に接続されるグランドVSPGNDに発生する信号に基づいて、入力S相電圧VS1を検出され、さらに、配線293-2に接続されるグランドVTPGNDに発生する信号に基づいて、入力T相電圧VT1を検出される。従って、交流電源3からパワーモジュール22を見たとき、交流電源3の端子3Rと交流端子11とを接続する配線にはインダクタLRが存在し、交流端子11とスイッチング素子S1とを接続する配線には、インダクタLR1と、配線291-2に起因するインダクタンスとが存在する。また、交流電源3の端子3Sと交流端子12とを接続する配線にはインダクタLSが存在し、交流端子12とスイッチング素子S3とを接続する配線には、インダクタLS1と、配線292-2に起因するインダクタンスとが存在する。また、交流電源3の端子3Tと交流端子13とを接続する配線にはインダクタLTが存在し、交流端子13とスイッチング素子S5とを接続する配線には、インダクタLT1と、配線293-2に起因するインダクタンスとが存在する。従って、特許文献1に示される技術と比較して、交流電源3からスイッチング素子S1,S3,S5までのインダクタンス成分が大きくなる。そのため、例えば、交流電源3にコンバータ1-1以外の外部機器が接続される場合、当該外部機器の回生動作に起因して交流端子11,12,13に印加される交流電源3からの電圧が変動したときでも、上記のインダクタンス成分によって、電圧変動が軽減される。 Here, in the converter 1-1 according to the first embodiment, as described above, the input R-phase voltage VR1 is detected based on the signal generated in the ground VRPGND connected to the wiring 291-2, and the wiring 292- 2, the input S-phase voltage VS1 is detected based on the signal generated at the ground VSPGND connected to the second terminal, and the input T-phase voltage VT1 is further detected based on the signal generated at the ground VTPGND connected to the wiring 293-2. Detected. Therefore, when the power module 22 is viewed from the AC power supply 3, the inductor LR exists in the wiring connecting the terminal 3R of the AC power supply 3 and the AC terminal 11, and the wiring connecting the AC terminal 11 and the switching element S1 is present. Includes an inductor LR1 and an inductance caused by the wiring 291-2. Further, the inductor LS exists in the wiring connecting the terminal 3S of the AC power supply 3 and the AC terminal 12, and the wiring connecting the AC terminal 12 and the switching element S3 is caused by the inductor LS1 and the wiring 292-2. There is an inductance to perform. Further, the inductor LT exists in the wiring connecting the terminal 3T and the AC terminal 13 of the AC power supply 3, and the wiring connecting the AC terminal 13 and the switching element S5 is caused by the inductor LT1 and the wiring 293-2. There is an inductance to perform. Therefore, compared to the technique disclosed in Patent Document 1, the inductance component from the AC power supply 3 to the switching elements S1, S3, S5 is increased. Therefore, for example, when an external device other than the converter 1-1 is connected to the AC power source 3, the voltage from the AC power source 3 applied to the AC terminals 11, 12, and 13 due to the regenerative operation of the external device is Even when the voltage fluctuates, the voltage fluctuation is reduced by the inductance component.
 なお、フィルタ用コンデンサ等を用いて、電圧変動を抑制するような措置を講じることも可能であるが、フィルタ用コンデンサを用いた場合、電圧位相の遅れが生じるため、望ましくない。実施の形態1に係るコンバータ1-1では、フィルタ用コンデンサを用いなくとも、電圧位相検出部24で検出される入力R相電圧VR1などの変動が抑制されるため、例えば、前述した外部機器が動作している状態で、コンバータ1-1の電源投入された場合でも、配線291-2に接続されるグランドVRPGNDに発生する信号の変動が抑制され、電圧位相検出部24における入力R相電圧VR1の検出精度が向上する。 Although it is possible to take measures to suppress voltage fluctuation using a filter capacitor or the like, using a filter capacitor is not desirable because a voltage phase delay occurs. In converter 1-1 according to the first embodiment, fluctuations in input R-phase voltage VR1 and the like detected by voltage phase detection unit 24 are suppressed without using a filter capacitor. Even when the power of the converter 1-1 is turned on in the operating state, the fluctuation of the signal generated in the ground VRPGND connected to the wiring 291-2 is suppressed, and the input R-phase voltage VR1 in the voltage phase detection unit 24 is suppressed. Detection accuracy is improved.
 また、図1に示すモータ駆動装置4に供給される電力が大きくなるほど、コンバータ1-1の交流端子11,12,13に流れる電流が大きくなるため、交流端子11,12,13が大型化して、電圧位相検出部24、ベース駆動信号生成部26、回生制御部28、ベース駆動回路27及び制御電源部29が搭載されるプリント基板に、交流端子11,12,13をねじ止め等で直接接続することが困難になる。従って、バスバー、ハーネス等などを利用して、交流端子11,12,13とプリント基板とを接続する必要があり、交流電源3の電圧位相を検出するための構成が複雑になる。実施の形態1に係るコンバータ1-1によれば、プリント基板上のパターン配線である配線291-2などに接続されるグランドに発生する信号を利用して入力R相電圧VR1などを検出し、交流電源3の電圧位相を検出できるため、交流端子11,12,13が大型化した場合でも、バスバー、ハーネス等などが不要であり、コンバータ1-1の製造コストが低減され、さらに交流電源3の電圧位相を検出するための構成が複雑になることを抑制できる。 Further, as the electric power supplied to the motor drive device 4 shown in FIG. 1 increases, the current flowing through the AC terminals 11, 12, 13 of the converter 1-1 increases, so that the AC terminals 11, 12, 13 increase in size. The AC terminals 11, 12 and 13 are directly connected to the printed circuit board on which the voltage phase detection unit 24, the base drive signal generation unit 26, the regeneration control unit 28, the base drive circuit 27 and the control power supply unit 29 are mounted by screwing or the like. It becomes difficult to do. Therefore, it is necessary to connect the AC terminals 11, 12, 13 and the printed circuit board using a bus bar, a harness, or the like, and the configuration for detecting the voltage phase of the AC power source 3 is complicated. According to the converter 1-1 according to the first embodiment, the input R-phase voltage VR1 and the like are detected using a signal generated in the ground connected to the wiring 291-2 that is the pattern wiring on the printed circuit board, Since the voltage phase of the AC power source 3 can be detected, even when the AC terminals 11, 12, 13 are enlarged, a bus bar, a harness, and the like are not required, the manufacturing cost of the converter 1-1 is reduced, and the AC power source 3 is further reduced. It is possible to prevent the configuration for detecting the voltage phase from becoming complicated.
 また、実施の形態1に係るコンバータ1-1によれば、配線291-2などに接続されるグランドに発生する信号を利用できるため、プリント基板上で配置しやすいパターン設計も可能となり、省スペース化を図ることができる。 Further, according to the converter 1-1 according to the first embodiment, since a signal generated at the ground connected to the wiring 291-2 or the like can be used, it is possible to design a pattern that can be easily arranged on a printed circuit board, thereby saving space. Can be achieved.
実施の形態2.
 図14は、実施の形態2に係るコンバータ及びモータ制御装置の構成を示す図である。実施の形態2に係るコンバータ1-2は、図1に示す電圧位相検出部24の代わりに、電圧位相検出部24Aを備える。以下では、まず実施の形態1の電圧位相検出部24において入力R相電圧VR1、入力S相電圧VS1、入力T相電圧VT1に基づく回生動作時に生じる線間電圧と相電圧に生じるスパイク状の電圧変動について説明し、その後、実施の形態2に係る電圧位相検出部24Aによる構成について説明する。
Embodiment 2.
FIG. 14 is a diagram illustrating a configuration of a converter and a motor control device according to the second embodiment. Converter 1-2 according to the second embodiment includes voltage phase detector 24A instead of voltage phase detector 24 shown in FIG. In the following, first, in the voltage phase detector 24 of the first embodiment, the spike voltage generated in the line voltage and the phase voltage generated during the regenerative operation based on the input R phase voltage VR1, the input S phase voltage VS1, and the input T phase voltage VT1. The variation will be described, and then the configuration of the voltage phase detection unit 24A according to the second embodiment will be described.
 図15は、実施の形態1に係るコンバータの回生動作時に生じる線間電圧、ベース駆動信号、位相検出信号などの波形を示す図である。図15には、上から順に、ベース駆動信号SRPからSTNの波形と、回生動作時の線間電圧VR-S,VS-T,VT-Rの波形と、回生動作時に生成されるR相の位相検出信号RSDの波形とが示される。図15に示すように、ベース駆動信号SRPからSTNがHighレベルとLowレベルとに切り替わることにより、図1に示すスイッチング素子S1からS6のオンオフ動作が行われると、オンオフ動作に起因して、線間電圧VR-S,VS-T,VT-Rにスパイク状の電圧変動が発生する。このような電圧変動が発生すると、例えば線間電圧VR-Sのゼロクロス点において、位相検出信号RSDの電位が、短期間に、Highレベル、Lowレベル、Highレベルの順で変化する。 FIG. 15 is a diagram illustrating waveforms such as a line voltage, a base drive signal, and a phase detection signal that are generated during the regenerative operation of the converter according to the first embodiment. FIG. 15 shows, in order from the top, the waveforms of the base drive signals SRP to STN, the waveforms of the line voltages VR-S, VS-T, and VT-R during the regenerative operation, and the R phase generated during the regenerative operation. The waveform of the phase detection signal RSD is shown. As shown in FIG. 15, when the STN is switched between the high level and the low level from the base drive signal SRP, when the on / off operation of the switching elements S1 to S6 shown in FIG. A spike-like voltage fluctuation occurs in the inter-voltages VR-S, VS-T, and VT-R. When such voltage fluctuation occurs, for example, at the zero cross point of the line voltage VR-S, the potential of the phase detection signal RSD changes in the order of High level, Low level, and High level in a short period of time.
 図16は、実施の形態1に係るコンバータの回生動作時に生じる相電圧、ベース駆動信号、位相検出信号などの波形を示す図である。図16には、上から順に、回生動作時のベース駆動信号SRPからSTNの波形と、回生動作時の相電圧VR2,VS2,VT2の波形と、回生動作時に生成される位相検出信号RD,SD,TDの波形とが示される。図16に示すように、ベース駆動信号SRPからSTNがHighレベルとLowレベルとに切り替わることにより、図1に示すスイッチング素子S1からS6のオンオフ動作が行われると、オンオフ動作に起因して、相電圧VR2,VS2,VT2にスパイク状の電圧変動が発生する。このような電圧変動が発生すると、例えば相電圧VR2のゼロクロス点において、位相検出信号RDの電位が、短期間に、Highレベル、Lowレベル、Highレベルの順で変化する。位相検出信号SD,TDの電位も同様に変化する。 FIG. 16 is a diagram illustrating waveforms of a phase voltage, a base drive signal, a phase detection signal, and the like generated during the regenerative operation of the converter according to the first embodiment. In FIG. 16, in order from the top, the waveforms of the base drive signals SRP to STN during the regenerative operation, the waveforms of the phase voltages VR2, VS2, and VT2 during the regenerative operation, and the phase detection signals RD and SD generated during the regenerative operation are shown. , TD waveforms. As shown in FIG. 16, when the STN is switched between the high level and the low level from the base drive signal SRP, the switching elements S1 to S6 shown in FIG. Spike-like voltage fluctuations occur in the voltages VR2, VS2, and VT2. When such voltage fluctuation occurs, for example, at the zero cross point of the phase voltage VR2, the potential of the phase detection signal RD changes in the order of High level, Low level, and High level in a short period of time. The potentials of the phase detection signals SD and TD change similarly.
 実施の形態1で説明したように、電圧位相検出部24には、例えば入力R相電圧VR1などが入力されるが、パワーモジュール22の交流端子11とスイッチング素子S1との間には、配線291-2などによるインダクタンスが存在する。このインダクタンスにより、交流電源3に接続される外部機器の回生動作に起因する電圧変動の影響を軽減できるが、スイッチング素子S1からS6などに接続される配線291-2などに、スイッチング素子S1からS6のオンオフ動作に起因するスパイク状の電圧変動が重畳することとなる。図15及び図16に示される電圧変動は、スイッチング素子S1からS6の状態が、オンからオフ又はオフからオンに切り替わる際、整流素子D1からD6を介して、相間が導通することによって、リアクトル2のインダクタンスと、交流端子11,12,13のインダクタンスとにより、電圧が分圧されるためである。即ち、パワーモジュール22の回生動作時に、入力R相電圧VR1、入力S相電圧VS1、及び入力T相電圧VT1に基づき発生する線間電圧、相電圧などは、当該回生動作により発生するスパイク状の電圧変動を受けやすくなる。 As described in the first embodiment, for example, the input R-phase voltage VR1 or the like is input to the voltage phase detection unit 24. However, the wiring 291 is provided between the AC terminal 11 of the power module 22 and the switching element S1. Inductance due to -2 exists. Although this inductance can reduce the influence of voltage fluctuation caused by the regenerative operation of the external device connected to the AC power supply 3, the switching elements S1 to S6 are connected to the wiring 291-2 connected to the switching elements S1 to S6. Spike-like voltage fluctuations resulting from the on / off operation of the first and second signals are superimposed. The voltage fluctuation shown in FIG. 15 and FIG. 16 is caused by the fact that the phases of the switching elements S1 to S6 are switched from on to off or from off to on, and the phase is conducted through the rectifier elements D1 to D6. This is because the voltage is divided by the inductance and the inductance of the AC terminals 11, 12, and 13. That is, during the regenerative operation of the power module 22, the line voltage and the phase voltage generated based on the input R-phase voltage VR1, the input S-phase voltage VS1, and the input T-phase voltage VT1 are spike-like generated by the regenerative operation. It becomes more susceptible to voltage fluctuations.
 また、電圧位相検出部24は、スイッチング素子S1に接続される配線291-2、スイッチング素子S3に接続される配線292-2、スイッチング素子S5に接続される配線293-2など伝達される信号、すなわち入力R相電圧VR1、入力S相電圧VS1及び入力T相電圧VT1を検出するため、スイッチング素子S1,S3,S5のオンオフ動作時に発生するリンギングに起因する電圧変動による影響も受ける。従って、リアクトル2とパワーモジュール22の交流端子11,12,13との間に印加される相電圧VR2,VS2,VT2の値を検出することで位相検出信号が生成される場合に比べて、電圧変動の要因が多くなる。即ち、実施の形態1に示す電圧位相検出部24は、交流電源3に接続される外部機器の回生動作に起因する電圧変動の影響を軽減できるが、電圧位相検出部24を搭載するコンバータ1-1の回生動作に起因する電圧変動の影響を受けやすいという課題がある。このような課題を解決するには、検出した線間電圧、又は相電圧波形にフィルタコンデンサ等によるフィルタリングを行うことで電圧変動を除去する方法、スイッチング素子のスイッチング速度を遅くしてリンギングを抑制する方法等が考えられる。しかしながら、フィルタリングを行った場合、本来の交流電源3の電圧位相から遅れが生じ、本来の電圧位相に合わせる補正が必要となる。またスイッチング速度を遅くした場合、パワーモジュール22のスイッチング損失が増加するという課題がある。 In addition, the voltage phase detection unit 24 transmits signals such as a wiring 291-2 connected to the switching element S1, a wiring 292-2 connected to the switching element S3, a wiring 293-2 connected to the switching element S5, That is, since the input R-phase voltage VR1, the input S-phase voltage VS1, and the input T-phase voltage VT1 are detected, it is also affected by voltage fluctuations caused by ringing that occurs during the on / off operation of the switching elements S1, S3, and S5. Therefore, compared with the case where the phase detection signal is generated by detecting the values of the phase voltages VR2, VS2, VT2 applied between the reactor 2 and the AC terminals 11, 12, 13 of the power module 22, the voltage There are many factors of fluctuation. That is, the voltage phase detection unit 24 shown in the first embodiment can reduce the influence of voltage fluctuation caused by the regenerative operation of the external device connected to the AC power supply 3, but the converter 1 in which the voltage phase detection unit 24 is mounted. There is a problem that it is easily affected by voltage fluctuations caused by the regenerative operation 1. In order to solve such problems, a method of removing voltage fluctuations by filtering the detected line voltage or phase voltage waveform with a filter capacitor or the like, and suppressing the ringing by slowing the switching speed of the switching element. A method etc. can be considered. However, when filtering is performed, a delay occurs from the original voltage phase of the AC power supply 3, and correction to match the original voltage phase is required. Further, when the switching speed is slowed, there is a problem that the switching loss of the power module 22 increases.
 実施の形態2に係る電圧位相検出部24Aでは、入力R相電圧VR1、入力S相電圧VS1、入力T相電圧VT1に基づき発生する相電圧の最大値又は最小値を検出し、或いは、入力R相電圧VR1、入力S相電圧VS1、入力T相電圧VT1に基づき発生する線間電圧の最大値又は最小値を検出することによって、交流電源3の電圧位相の検出が行われる。 In the voltage phase detection unit 24A according to the second embodiment, the maximum or minimum value of the phase voltage generated based on the input R phase voltage VR1, the input S phase voltage VS1, and the input T phase voltage VT1 is detected, or the input R The voltage phase of the AC power supply 3 is detected by detecting the maximum value or the minimum value of the line voltage generated based on the phase voltage VR1, the input S phase voltage VS1, and the input T phase voltage VT1.
 図17を用いて、電圧位相検出部24Aによる相電圧の最大値又は最小値の検出方法について説明する。図17は、図14に示す電圧位相検出部の構成例を示す図である。 A method for detecting the maximum value or the minimum value of the phase voltage by the voltage phase detector 24A will be described with reference to FIG. FIG. 17 is a diagram illustrating a configuration example of the voltage phase detection unit illustrated in FIG. 14.
 電圧位相検出部24Aは、中性点40、抵抗41A、抵抗41B、抵抗41C及び位相検出部42を備える。抵抗41A、抵抗41B及び抵抗41Cのそれぞれの一端は中性点40に接続される。中性点40は位相検出部42に接続される。 The voltage phase detector 24A includes a neutral point 40, a resistor 41A, a resistor 41B, a resistor 41C, and a phase detector 42. One end of each of the resistor 41A, the resistor 41B, and the resistor 41C is connected to the neutral point 40. The neutral point 40 is connected to the phase detector 42.
 抵抗41Aの他端には、スイッチング素子S1のエミッタの電位である入力R相電圧VR1が入力される。入力R相電圧VR1は抵抗41Aに入力されると共に位相検出部42に入力される。抵抗41Bの他端には、スイッチング素子S3のエミッタの電位である入力S相電圧VS1が入力される。入力S相電圧VS1は抵抗41Bに入力されると共に位相検出部42に入力される。抵抗41Cの他端には、スイッチング素子S5のエミッタの電位である入力T相電圧VT1が入力される。入力T相電圧VT1は抵抗41Cに入力されると共に位相検出部42に入力される。 The other end of the resistor 41A receives an input R-phase voltage VR1 that is the potential of the emitter of the switching element S1. The input R-phase voltage VR1 is input to the resistor 41A and to the phase detector 42. An input S-phase voltage VS1, which is the potential of the emitter of the switching element S3, is input to the other end of the resistor 41B. The input S-phase voltage VS1 is input to the resistor 41B and to the phase detector 42. An input T-phase voltage VT1, which is the potential of the emitter of the switching element S5, is input to the other end of the resistor 41C. The input T-phase voltage VT1 is input to the resistor 41C and to the phase detector 42.
 位相検出部42では、入力される信号に基づいて位相検出信号RD3,SD3,TD3が生成される。位相検出信号RD3の値は、中性点40の電位NGを基準とした入力R相電圧VR1の値に相当する。位相検出信号SD3の値は、中性点40の電位NGを基準とした入力S相電圧VS1の値に相当する。位相検出信号TD3の値は、中性点40の電位NGを基準とした入力T相電圧VT1の値に相当する。 The phase detection unit 42 generates phase detection signals RD3, SD3, and TD3 based on the input signal. The value of the phase detection signal RD3 corresponds to the value of the input R-phase voltage VR1 with reference to the potential NG at the neutral point 40. The value of the phase detection signal SD3 corresponds to the value of the input S-phase voltage VS1 with reference to the potential NG at the neutral point 40. The value of the phase detection signal TD3 corresponds to the value of the input T-phase voltage VT1 with reference to the potential NG at the neutral point 40.
 次に、図18を用いて、相電圧の最小値の検出方法について説明する。図18は、実施の形態2に係る電圧位相検出部により生成されるR相の位相検出信号の波形と、当該位相検出信号に基づき発生するR相の相電圧の波形とを示す図である。 Next, a method for detecting the minimum value of the phase voltage will be described with reference to FIG. FIG. 18 is a diagram illustrating a waveform of an R-phase phase detection signal generated by the voltage phase detection unit according to the second embodiment and a waveform of an R-phase phase voltage generated based on the phase detection signal.
 図18には、位相検出用閾電圧と、コンバータ1-2の回生動作時に発生するR相の中性点基準相電圧VR3の波形と、コンバータ1-2の回生動作時に電圧位相検出部24Aで生成される位相検出信号RD3の波形とが示される。位相検出用閾電圧の値は、中性点基準相電圧VR3の位相が60°から120°までの間で、位相検出信号RD3の電位がHighレベルとなるような値に設定される。位相検出用閾電圧は、電圧位相検出部24Aに設定されている。中性点基準相電圧VR3は、位相検出部42において、例えば、中性点40の電位NGを基準として、VR3=VR1-NGにより算出させる。 FIG. 18 shows the phase detection threshold voltage, the waveform of the neutral phase reference phase voltage VR3 generated during the regeneration operation of the converter 1-2, and the voltage phase detection unit 24A during the regeneration operation of the converter 1-2. The waveform of the generated phase detection signal RD3 is shown. The value of the phase detection threshold voltage is set to such a value that the potential of the phase detection signal RD3 becomes High level when the phase of the neutral point reference phase voltage VR3 is between 60 ° and 120 °. The threshold voltage for phase detection is set in the voltage phase detector 24A. The neutral point reference phase voltage VR3 is calculated by the phase detector 42, for example, with VR3 = VR1-NG using the potential NG of the neutral point 40 as a reference.
 中性点基準相電圧VR3の位相が60°に到達したとき、位相検出信号RD3の電位は、LowレベルからHighレベルに変化する。中性点基準相電圧VR3の位相が90°に到達したとき、位相検出信号RD3の電位は、短期間に、Highレベル、Lowレベル、Highレベルの順で変化する。中性点基準相電圧VR3の位相が120°に到達したとき、位相検出信号RD3の電位は、HighレベルからLowレベルに変化する。中性点基準相電圧VR3の位相が120°から、一周期後の位相60°までの区間では、位相検出信号RD3の電位は、Lowレベルに維持される。一周期後の位相60°は位相420°と等価である。中性点基準相電圧VR3の位相が420°に到達したとき、位相検出信号RD3の電位は、LowレベルからHighレベルに変化する。なお、中性点基準相電圧VR3の位相120°から420°までの区間の中心は、中性点基準相電圧VR3の位相270°に相当し、中性点基準相電圧VR3の位相が270°のとき、中性点基準相電圧VR3の電位は最小となる。 When the phase of the neutral point reference phase voltage VR3 reaches 60 °, the potential of the phase detection signal RD3 changes from Low level to High level. When the phase of the neutral point reference phase voltage VR3 reaches 90 °, the potential of the phase detection signal RD3 changes in the order of High level, Low level, and High level in a short period of time. When the phase of the neutral point reference phase voltage VR3 reaches 120 °, the potential of the phase detection signal RD3 changes from the High level to the Low level. In the interval from the phase of the neutral point reference phase voltage VR3 to 120 ° to the phase 60 ° after one cycle, the potential of the phase detection signal RD3 is maintained at the low level. The phase 60 ° after one cycle is equivalent to the phase 420 °. When the phase of the neutral point reference phase voltage VR3 reaches 420 °, the potential of the phase detection signal RD3 changes from the Low level to the High level. The center of the section from the phase 120 ° to 420 ° of the neutral point reference phase voltage VR3 corresponds to the phase 270 ° of the neutral point reference phase voltage VR3, and the phase of the neutral point reference phase voltage VR3 is 270 °. In this case, the potential of the neutral point reference phase voltage VR3 is minimum.
 なお、図18では、図示が省略されているが、コンバータ1-2の回生動作時に電圧位相検出部24Aにより生成されるS相の位相検出信号の波形と、S相の位相検出信号に基づき発生するS相の相電圧の波形は、図18に示される波形と同様の傾向で変化する。また、コンバータ1-2の回生動作時に電圧位相検出部24Aにより生成されるT相の位相検出信号の波形と、T相の位相検出信号に基づき発生するT相の相電圧の波形は、図18に示される波形と同様の傾向で変化する。 Although not shown in FIG. 18, it is generated based on the waveform of the S-phase detection signal generated by the voltage phase detector 24A during the regeneration operation of the converter 1-2 and the S-phase detection signal. The waveform of the phase voltage of the S phase changes with the same tendency as the waveform shown in FIG. The waveform of the T-phase detection signal generated by the voltage phase detector 24A during the regeneration operation of the converter 1-2 and the waveform of the T-phase voltage generated based on the T-phase detection signal are shown in FIG. It changes with the same tendency as the waveform shown.
 図18に示されるように位相検出用閾電圧の値を、中性点基準相電圧VR3の電位が最高となる値付近に設定することにより、中性点基準相電圧VR3の位相が60°から120°までの間で、位相検出信号RD3の電位が変動する回数が1回になる。すなわち、スイッチング素子のオンオフ動作の影響を受ける回数を、中性点基準相電圧VR3の位相90°のときのみにすることができる。 As shown in FIG. 18, the phase of the neutral point reference phase voltage VR3 is changed from 60 ° by setting the value of the phase detection threshold voltage near the value at which the potential of the neutral point reference phase voltage VR3 becomes maximum. Up to 120 °, the potential of the phase detection signal RD3 changes once. That is, the number of times affected by the on / off operation of the switching element can be set only when the phase of the neutral reference phase voltage VR3 is 90 °.
 中性点基準相電圧VR3の位相90°付近では、位相検出信号RD3の電位がHighレベル、Lowレベル、Highレベルの順で変化するが、このように位相検出信号RD3の電位が変動する区間の幅は、中性点基準相電圧VR3の位相が120°から420°までの区間の幅、すなわち位相検出信号RD3の電位がLowレベルに維持される区間の幅に比べて短い。そのため、Lowレベルの位相検出信号RD3が出力され続ける期間が、特定期間を越えない場合には、このようなLowレベルの位相検出信号RD3をノイズと判定させることで、電圧変動による影響を低減することができる。 In the vicinity of the phase of 90 ° of the neutral point reference phase voltage VR3, the potential of the phase detection signal RD3 changes in the order of High level, Low level, and High level. In this manner, the potential of the phase detection signal RD3 varies. The width is shorter than the width of the section where the phase of the neutral point reference phase voltage VR3 is 120 ° to 420 °, that is, the width of the section where the potential of the phase detection signal RD3 is maintained at the low level. Therefore, when the period during which the low-level phase detection signal RD3 continues to be output does not exceed the specific period, the low-level phase detection signal RD3 is determined to be noise, thereby reducing the influence of voltage fluctuation. be able to.
 また、実施の形態2に係る電圧位相検出部24Aでは、中性点基準相電圧VR3の位相が120°から420°までの区間においては、位相検出信号RD3の電位がHighレベルからLowレベルに変化した時点から、LowレベルからHighレベルに変化した時点までの時間を算出することにより、中性点基準相電圧VR3の最小値を算出することができる。この時間は、上記のノイズ判定に利用される特定期間よりも長いものとする。中性点基準相電圧VR3の最小値を利用することで交流電源3の電圧位相を検出することが可能となる。 In the voltage phase detection unit 24A according to the second embodiment, the potential of the phase detection signal RD3 changes from the High level to the Low level in the interval where the phase of the neutral point reference phase voltage VR3 is 120 ° to 420 °. The minimum value of the neutral point reference phase voltage VR3 can be calculated by calculating the time from the time point to the time point when the level changes from the Low level to the High level. This time is assumed to be longer than the specific period used for the noise determination. By utilizing the minimum value of the neutral point reference phase voltage VR3, the voltage phase of the AC power supply 3 can be detected.
 以上に説明したように、実施の形態2に係るコンバータ1-2によれば、制御電源部29に設けられるグランドVRPGND,VSPGND,VTPGNDに発生する信号に基づいて位相検出信号の生成が行われた場合でも、スイッチング素子のオンオフ動作の影響を受けることなく、交流電源3の電圧位相を検出できる。 As described above, according to converter 1-2 according to the second embodiment, the phase detection signal is generated based on the signals generated at grounds VRPGND, VSPGND, and VTPGND provided in control power supply unit 29. Even in this case, the voltage phase of the AC power supply 3 can be detected without being affected by the on / off operation of the switching element.
 また、実施の形態2では、相電圧の最小値を利用した電圧位相の検出が行われるが、実施の形態2に係るコンバータ1-2は、例えば相電圧の最小値だけでなく、最大値も検出することで、より短時間に電圧位相検出を行うことができる。例えば、中性点基準相電圧VR3の位相が240°から300°までの間で、位相検出信号RD3の電位がHighレベルとなるような位相検出用閾電圧を追加することにより、中性点基準相電圧VR3の最大値を算出することができる。中性点基準相電圧VR3の最大値の位相は、例えば、図18に示される中性点基準相電圧VR3の位相90°と位相270°に相当する。 In the second embodiment, the voltage phase is detected using the minimum value of the phase voltage. However, the converter 1-2 according to the second embodiment has not only the minimum value of the phase voltage but also the maximum value. By detecting, voltage phase detection can be performed in a shorter time. For example, by adding a phase detection threshold voltage such that the phase detection signal RD3 is at a high level while the phase of the neutral point reference phase voltage VR3 is between 240 ° and 300 °, The maximum value of the phase voltage VR3 can be calculated. The phase of the maximum value of the neutral point reference phase voltage VR3 corresponds to, for example, the phase 90 ° and the phase 270 ° of the neutral point reference phase voltage VR3 shown in FIG.
 また、実施の形態2では、中性点基準相電圧VR3の位相が60°から120°までの間と、中性点基準相電圧VR3の位相が240°から300°までの間とにおいて、位相検出信号RD3の電位がHighレベルとなるような位相検出用閾電圧が設定されているが、中性点基準相電圧VR3から見たスイッチング素子のオンオフ動作が行われる位相は、30°、90°、150°、210°、270°、330°などであるため、例えば、位相検出用閾電圧を、中性点基準相電圧VR3の位相が45°から105°までの間と、225°から315°までの間とにおいて、位相検出信号RD3の電位がHighレベルとなるような位相検出用閾電圧を設定してもよい。 In the second embodiment, the phase of the neutral point reference phase voltage VR3 is between 60 ° and 120 °, and the phase of the neutral point reference phase voltage VR3 is between 240 ° and 300 °. A phase detection threshold voltage is set such that the potential of the detection signal RD3 is at a high level. The phase where the switching element is turned on and off as viewed from the neutral reference phase voltage VR3 is 30 °, 90 °. 150.degree., 210.degree., 270.degree., 330.degree., Etc., for example, the threshold voltage for phase detection is set between the phase of the neutral reference phase voltage VR3 from 45.degree. A phase detection threshold voltage may be set so that the potential of the phase detection signal RD3 is at a high level until the angle.
 また、実施の形態2では、相電圧を算出することで、電圧位相の検出が行われているが、実施の形態2のコンバータ1-2は、線間電圧を算出することで、電圧位相の検出を行うことも可能である。例えば、線間電圧の位相が45°から135°までの間のとき、位相検出信号の電位がHighレベルとなるような位相検出用閾電圧を設定すればよい。この場合、線間電圧の位相が135°から405°までの間では、位相検出信号の電位がLowレベルとなり、線間電圧の位相が135°から405°までの中心点が、すなわち位相270°に相当する線間電圧が、最小値となる。 Further, in the second embodiment, the voltage phase is detected by calculating the phase voltage, but the converter 1-2 of the second embodiment calculates the voltage phase by calculating the line voltage. It is also possible to perform detection. For example, when the phase of the line voltage is between 45 ° and 135 °, a phase detection threshold voltage may be set such that the potential of the phase detection signal is at a high level. In this case, when the phase of the line voltage is between 135 ° and 405 °, the potential of the phase detection signal is at a low level, and the center point of the phase of the line voltage from 135 ° to 405 ° is the phase 270 °. The line voltage corresponding to is the minimum value.
 また、実施の形態1に係る電圧位相検出部24及び回生制御部28、並びに実施の形態2に係る電圧位相検出部24A及び回生制御部28は、フォトカプラ、ロジックIC等を用いたハードウェアで構成してもよいし、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものでもよいし、ソフトウェアで構成してもよい。 The voltage phase detection unit 24 and the regeneration control unit 28 according to the first embodiment, and the voltage phase detection unit 24A and the regeneration control unit 28 according to the second embodiment are hardware using a photocoupler, a logic IC, and the like. For example, a single circuit, a composite circuit, a programmed processor, a processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof It may be configured by software.
 また、実施の形態1に係るコンバータ1-1及び実施の形態2に係るコンバータ1-2によれば、プリント基板上のパターン配線に伝達される信号を利用して、線間電圧である線間電圧VR-S、線間電圧VS-T及び線間電圧VT-R、並びに、相電圧である入力R相電圧VR1、入力S相電圧VS1及び入力T相電圧VT1を算出できる。このため、これらの電圧を、停電の検出に用いることができる。停電の検出とは、交流電源3からの電力がコンバータに供給されていない状態を検出することである。なお、停電の検出については、後述の実施の形態3において、さらに詳述する。 Further, according to converter 1-1 according to the first embodiment and converter 1-2 according to the second embodiment, a line-to-line voltage that is a line-to-line voltage is obtained by using a signal transmitted to the pattern wiring on the printed board. The voltage VR-S, the line voltage VS-T, the line voltage VT-R, and the input R phase voltage VR1, the input S phase voltage VS1, and the input T phase voltage VT1, which are phase voltages, can be calculated. For this reason, these voltages can be used for the detection of a power failure. The detection of a power failure is to detect a state where power from the AC power source 3 is not supplied to the converter. The detection of a power failure will be further described in detail in a third embodiment to be described later.
 また、実施の形態1に係るコンバータ1-1及び実施の形態2に係るコンバータ1-2によれば、プリント基板上のパターン配線に伝達される信号に基づいて算出した線間電圧VR-S、線間電圧VS-T、線間電圧VT-R、入力R相電圧VR1、入力S相電圧VS1及び入力T相電圧VT1のうちの少なくとも1つの電圧を、前述した回生制御部28の基準電圧Vrefの設定に用いることができる。 Further, according to converter 1-1 according to the first embodiment and converter 1-2 according to the second embodiment, the line voltage VR-S calculated based on the signal transmitted to the pattern wiring on the printed circuit board, At least one of the line voltage VS-T, the line voltage VT-R, the input R phase voltage VR1, the input S phase voltage VS1, and the input T phase voltage VT1 is used as the reference voltage Vref of the regeneration control unit 28 described above. It can be used for setting.
実施の形態3.
 図19は、実施の形態3に係るコンバータ及びモータ制御装置の構成を示す図である。実施の形態3に係るコンバータ1-3は、図1に示すコンバータ1-1と同一の構成であり、さらに入力電圧検出部43が設けられている。
Embodiment 3 FIG.
FIG. 19 is a diagram illustrating a configuration of a converter and a motor control device according to the third embodiment. Converter 1-3 according to Embodiment 3 has the same configuration as converter 1-1 shown in FIG. 1, and further includes an input voltage detection unit 43.
 まず、実施の形態3における入力電圧検出部43の動作について説明する。図20は、図19に示す入力電圧検出部43の動作説明に供する図である。図20は、図11と同一の構成であり、電圧位相検出部24の代わりに入力電圧検出部43が図示されている。入力電圧検出部43には、実施の形態1でも示した配線291-2に接続されるグランドVRPGNDに発生する信号であるVR1と、配線292-2に接続されるグランドVSPGNDに発生する信号であるVS1と、配線293-2に接続されるグランドVTPGNDに発生する信号であるVT1とが入力される。入力電圧検出部43は、これらの信号に基づいて、交流電源3の線間電圧又は相電圧を検出する。 First, the operation of the input voltage detection unit 43 in the third embodiment will be described. FIG. 20 is a diagram for explaining the operation of the input voltage detection unit 43 shown in FIG. FIG. 20 has the same configuration as FIG. 11, and an input voltage detection unit 43 is illustrated instead of the voltage phase detection unit 24. The input voltage detection unit 43 includes a signal VR1 generated in the ground VRPGND connected to the wiring 291-2 and a signal generated in the ground VSPGND connected to the wiring 292-2 as described in the first embodiment. VS1 and VT1 which is a signal generated in the ground VTPGND connected to the wiring 293-2 are input. The input voltage detector 43 detects the line voltage or phase voltage of the AC power supply 3 based on these signals.
 実施の形態3によれば、配線291-2などに接続されるグランドに発生する信号を利用できるため、実施の形態1と同様に交流電源3の相電圧又は線間電圧を検出するための構成が複雑になることを抑制できる。また、実施の形態3によれば、配線291-2などに接続されるグランドに発生する信号を利用できるため、プリント基板上で配置しやすいパターン設計も可能となり、省スペース化を図ることができる。 According to the third embodiment, since a signal generated in the ground connected to the wiring 291-2 and the like can be used, the configuration for detecting the phase voltage or the line voltage of the AC power supply 3 as in the first embodiment. Can be prevented from becoming complicated. Further, according to the third embodiment, since a signal generated in the ground connected to the wiring 291-2 can be used, it is possible to design a pattern that can be easily arranged on a printed circuit board, and to save space. .
 また、実施の形態3によれば、入力電圧検出部43の出力信号に基づいて、交流電源3の停電が発生したか否かを判定する停電検出部を追加することも可能である。停電検出部は、単に停電が発生したか否かを報知する表示装置、又は音響装置であってもよいし、制御機能を備えた制御装置又は制御器であってもよい。停電検出部を備えている場合、交流電源3に停電が発生したときに、コンバータ1-3の直流電力を使用するモータ駆動装置4が制御するモータ5をどのように動作させるか等の制御又は指示を迅速に行うことが可能となる。 Further, according to the third embodiment, it is possible to add a power failure detection unit that determines whether or not a power failure of the AC power supply 3 has occurred based on the output signal of the input voltage detection unit 43. The power failure detection unit may be a display device or an audio device that simply notifies whether or not a power failure has occurred, or may be a control device or a controller having a control function. When a power failure detection unit is provided, control such as how to operate the motor 5 controlled by the motor driving device 4 using the DC power of the converter 1-3 when a power failure occurs in the AC power source 3 or It is possible to give instructions promptly.
実施の形態4.
 図21は、実施の形態4に係るコンバータ及びモータ制御装置の構成を示す図である。実施の形態4に係るコンバータ1-4は、図1に示す母線電流検出部25に代わり、交流配線51,52,53に流れる三相入力電流を検出する入力電流検出部25Aが設けられている。
Embodiment 4 FIG.
FIG. 21 is a diagram illustrating a configuration of a converter and a motor control device according to the fourth embodiment. Converter 1-4 according to the fourth embodiment is provided with an input current detection unit 25A that detects a three-phase input current flowing in AC wirings 51, 52, and 53, instead of bus current detection unit 25 shown in FIG. .
 実施の形態4に係るコンバータ1-4は、電流値変換部であるRST-dq座標変換部44と、回生制御部28Aと、を備える。RST-dq座標変換部44は、電圧位相検出部24の出力信号である位相検出信号に基づいて、入力電流検出部25Aの出力信号を座標変換することで、有効電力に相当する電流であるd軸電流Idと、無効電力に相当する電流であるq軸電流Iqとを算出する。回生制御部28Aは、d軸電流Idと母線電圧検出部23の出力信号とに基づいて回生開始動作及び回生停止動作を行う。なお、電圧位相検出部については、実施の形態1で示した電圧位相検出部24を用いているが、実施の形態2で示した電圧位相検出部24Aに置き換えてもよい。また、実施の形態3で説明した入力電圧検出部43が追加されてもよい。 Converter 1-4 according to Embodiment 4 includes an RST-dq coordinate conversion unit 44, which is a current value conversion unit, and a regeneration control unit 28A. The RST-dq coordinate conversion unit 44 performs coordinate conversion on the output signal of the input current detection unit 25A based on the phase detection signal that is the output signal of the voltage phase detection unit 24, so that d is a current corresponding to active power. An axis current Id and a q-axis current Iq that is a current corresponding to reactive power are calculated. The regeneration control unit 28A performs a regeneration start operation and a regeneration stop operation based on the d-axis current Id and the output signal of the bus voltage detection unit 23. As for the voltage phase detection unit, the voltage phase detection unit 24 shown in the first embodiment is used. However, the voltage phase detection unit 24A may be replaced with the voltage phase detection unit 24A shown in the second embodiment. In addition, the input voltage detection unit 43 described in the third embodiment may be added.
 また、実施の形態1及び実施の形態2では、それぞれの電圧位相検出部が交流電源3の線間電圧又は相電圧の電圧位相を検出することについて説明したが、これに限定されない。線間電圧又は相電圧の電圧位相以外にも、交流電源3の電源角周波数ω、R相電圧位相θr、S相電圧位相θs、T相電圧位相θtといった他の情報の少なくとも1つを算出することも可能である。なお、以下、R相電圧位相を第1電圧位相と称し、S相電圧位相を第2電圧位相と称し、T相電圧位相を第3電圧位相と称する場合がある。 In the first and second embodiments, each voltage phase detection unit has been described as detecting the line voltage of the AC power supply 3 or the voltage phase of the phase voltage. However, the present invention is not limited to this. In addition to the voltage phase of the line voltage or the phase voltage, at least one of other information such as the power supply angular frequency ω, the R phase voltage phase θr, the S phase voltage phase θs, and the T phase voltage phase θt of the AC power supply 3 is calculated. It is also possible. Hereinafter, the R phase voltage phase may be referred to as a first voltage phase, the S phase voltage phase may be referred to as a second voltage phase, and the T phase voltage phase may be referred to as a third voltage phase.
 次に、実施の形態4におけるRST-dq座標変換部44について説明する。RST-dq座標変換部44は、固定座標軸であるRST軸を回転座標軸であるdq軸に変換する機能を備える。電圧位相検出部24で交流電源3の電源角周波数ωとR相電圧位相θrを算出し、電源角周波数ωとR相電圧位相θrに基づいてRST軸の信号をdq軸の信号に変換する。 Next, the RST-dq coordinate conversion unit 44 in the fourth embodiment will be described. The RST-dq coordinate conversion unit 44 has a function of converting an RST axis that is a fixed coordinate axis into a dq axis that is a rotation coordinate axis. The voltage phase detector 24 calculates the power source angular frequency ω and the R phase voltage phase θr of the AC power source 3, and converts the RST axis signal into a dq axis signal based on the power source angular frequency ω and the R phase voltage phase θr.
 ここで、交流電源3の相電圧VR,VS,VTは、時刻t、実効値Ea、電源角周波数ω、初期位相αの平衡三相電圧で表されるものとする。すると、交流電源3の相電圧VR,VS,VTは、以下の式(1)で表される。なお、初期位相αは、t=0のときの相電圧VRの位相である。 Here, the phase voltages VR, VS, and VT of the AC power source 3 are represented by balanced three-phase voltages of time t, effective value Ea, power source angular frequency ω, and initial phase α. Then, the phase voltages VR, VS, and VT of the AC power supply 3 are expressed by the following formula (1). Note that the initial phase α is the phase of the phase voltage VR when t = 0.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図22は、実施の形態4の制御で使用するRST軸及びdq軸の説明に供する図である。図22において、RST軸は、交流電源3のR相、S相及びT相を示す固定座標軸である。また、dq軸は、電源角周波数ωで時計回りに回転する回転座標軸である。ここで、R相の軸を基準とするd軸の位相をθとすると、2つの座標軸の間には、以下の式(2)が成り立つ。 FIG. 22 is a diagram for explaining the RST axis and the dq axis used in the control of the fourth embodiment. In FIG. 22, the RST axis is a fixed coordinate axis indicating the R phase, S phase, and T phase of the AC power supply 3. The dq axis is a rotational coordinate axis that rotates clockwise at the power source angular frequency ω. Here, when the phase of the d-axis with respect to the R-phase axis is θ, the following equation (2) is established between the two coordinate axes.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 前述の式(1)及び式(2)を用いて回転座標軸であるdq軸の電圧Vd,Vqを算出すると、以下の式(3)を導き出すことができる。 The following equation (3) can be derived by calculating the voltages Vd and Vq of the dq axis which is the rotation coordinate axis using the above equations (1) and (2).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 まず、上記式(3)において、θ=0となる場合について考える。式(3)にθ=0を代入すると、以下の式(4)を導き出すことができる。 First, consider the case where θ = 0 in the above equation (3). Substituting θ = 0 into equation (3), the following equation (4) can be derived.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、上記式(3)において、θ=π/2となる場合について考える。式(3)にθ=π/2を代入すると、以下の式(5)を導き出すことができる。 Consider the case where θ = π / 2 in the above formula (3). Substituting θ = π / 2 into equation (3), the following equation (5) can be derived.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記、式(4)及び式(5)からも分かるように、上記式(3)におけるθがどのような値でも、上記式(4)を導き出すことができる。つまり、d軸電圧は電源電圧ベクトルと等価であることを意味する。従って、d軸は有効電力方向に相当し、q軸は無効電力方向に相当する。 As can be seen from the equations (4) and (5), the equation (4) can be derived from any value of θ in the equation (3). That is, the d-axis voltage is equivalent to the power supply voltage vector. Accordingly, the d-axis corresponds to the active power direction, and the q-axis corresponds to the reactive power direction.
 次に、R相電圧位相θrと、初期位相αとの関係について説明する。まず、上記式(1)より、R相電圧VRは、以下の式(6)で表すことができる。 Next, the relationship between the R phase voltage phase θr and the initial phase α will be described. First, from the above equation (1), the R-phase voltage VR can be expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 例えば、R相電圧VRが0のときθr=0とし、R相電圧VRが最大値である√2Eaのとき、θr=π/2とする。この場合、初期位相αは、-π/2に設定することができる。以上より、上記式(2)は、以下の式(7)で表すことができる。 For example, θr = 0 when the R-phase voltage VR is 0, and θr = π / 2 when the R-phase voltage VR is √2Ea which is the maximum value. In this case, the initial phase α can be set to −π / 2. From the above, the above formula (2) can be expressed by the following formula (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 上記式(7)は、電圧位相検出部24で算出されたR相電圧位相θrと、電源角周波数ωとに基づいた式であり、RST軸からdq軸に変換するRST-dq座標変換部44で使用する式となる。従って、入力電流Ir,Is,Itは、以下の式(8)を用いて、d軸電流Id、q軸電流Iqに変換することができる。 The above equation (7) is an equation based on the R-phase voltage phase θr calculated by the voltage phase detector 24 and the power supply angular frequency ω, and an RST-dq coordinate converter 44 that converts the RST axis to the dq axis. This is the formula used in Therefore, the input currents Ir, Is, It can be converted into the d-axis current Id and the q-axis current Iq using the following formula (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 前述したように、d軸は有効電力となり、q軸は無効電力となるため、d軸電流は有効電力に相当する電流を、q軸は無効電力に相当する電流を示している。従って、モータ加速時等の力行動作において、d軸電流Idは、正の値の信号となる。これに対し、モータ減速時等の回生動作において、d軸電流Idは、負の値の信号となる。 As described above, since the d-axis is active power and the q-axis is reactive power, the d-axis current indicates current corresponding to active power and the q-axis indicates current corresponding to reactive power. Accordingly, the d-axis current Id becomes a positive value signal in a power running operation such as during motor acceleration. On the other hand, the d-axis current Id becomes a negative value signal in a regenerative operation such as during motor deceleration.
 一般的に、コンバータにおいて、入力電流Ir,Is,Itを検出し、回生動作の開始及び停止といった制御を行う場合、固定座標軸であるRST軸を回転座標軸であるdq軸に変換する必要がある。座標変換には、交流電源3の電圧位相の情報が必要となる。前述の通り、本実施の形態の手法を用いれは、プリント基板上のパターン配線である配線291-2などに接続されるグランドに発生する信号を利用して、交流電源3の電圧位相を検出するので、交流電源3の電圧位相を検出するための構成が簡素化できる。従って、本実施の形態で示した電圧位相検出部24又は電圧位相検出部24Aを用いれば、コンバータの低コスト化に寄与することができる。 Generally, in a converter, when input currents Ir, Is, It are detected and control such as start and stop of a regenerative operation is performed, it is necessary to convert an RST axis that is a fixed coordinate axis into a dq axis that is a rotational coordinate axis. For the coordinate conversion, information on the voltage phase of the AC power supply 3 is required. As described above, the voltage phase of the AC power supply 3 is detected by using the signal generated in the ground connected to the wiring 291-2 that is the pattern wiring on the printed circuit board by using the method of the present embodiment. Therefore, the configuration for detecting the voltage phase of the AC power supply 3 can be simplified. Therefore, if the voltage phase detector 24 or the voltage phase detector 24A shown in the present embodiment is used, it can contribute to cost reduction of the converter.
 次に、実施の形態4における回生制御部28Aについて説明する。回生制御部28Aは、d軸電流Idと母線電圧VPNとに基づいて、ベース駆動信号生成部26から出力されたベース駆動信号SRPからSTNのベース駆動回路27への伝達を継続するか、ベース駆動信号生成部26から出力されたベース駆動信号SRPからSTNのベース駆動回路27への伝達を停止するかを判断する。回生制御部28Aがベース駆動信号SRPからSTNのベース駆動回路27への伝達を継続すると判断した場合、ベース駆動回路27にベース駆動信号SRPからSTNが入力され続ける。回生制御部28Aがベース駆動信号SRPからSTNのベース駆動回路27への伝達を停止すると判断した場合、ベース駆動回路27へのベース駆動信号SRPからSTNの入力が停止される。 Next, the regeneration control unit 28A according to the fourth embodiment will be described. Based on the d-axis current Id and the bus voltage VPN, the regeneration control unit 28A continues to transmit the STN to the base drive circuit 27 from the base drive signal SRP output from the base drive signal generation unit 26 or performs base drive. It is determined whether to stop transmission of the STN to the base drive circuit 27 from the base drive signal SRP output from the signal generation unit 26. When the regeneration control unit 28A determines that the transmission of the STN from the base drive signal SRP to the base drive circuit 27 is continued, the STN is continuously input to the base drive circuit 27 from the base drive signal SRP. When the regeneration control unit 28A determines to stop transmission of the STN from the base drive signal SRP to the base drive circuit 27, the input of the STN from the base drive signal SRP to the base drive circuit 27 is stopped.
 図23は、図21に示す回生制御部28Aの構成例を示す図である。図23に示す回生制御部28Aでは、図3に示す回生制御部28の構成において、回生停止判定部61に入力される信号が母線電流IPNからd軸電流Idに変更されている点のみが相違点であり、それ以外の動作は実施の形態1に示した回生制御部28と同一の動作を行う。なお、図3と同一又は同等の構成要素には、同一の符号を付している。回生停止判定部61において、比較器66のマイナス入力端子には、d軸電流Idが入力される。d軸電流Idが閾電流Irefよりも大きいときはLowレベルの信号が出力され、d軸電流Idが閾電流Iref未満となったときには、Highレベルの信号が出力される。 FIG. 23 is a diagram illustrating a configuration example of the regeneration control unit 28A illustrated in FIG. The regeneration control unit 28A shown in FIG. 23 is different from the configuration of the regeneration control unit 28 shown in FIG. 3 only in that the signal input to the regeneration stop determination unit 61 is changed from the bus current IPN to the d-axis current Id. Other operations are the same as those of the regeneration control unit 28 shown in the first embodiment. In addition, the same code | symbol is attached | subjected to the component which is the same as that of FIG. 3, or equivalent. In the regeneration stop determination unit 61, the d-axis current Id is input to the negative input terminal of the comparator 66. When the d-axis current Id is larger than the threshold current Iref, a Low level signal is output, and when the d-axis current Id becomes less than the threshold current Iref, a High level signal is output.
 以上より、母線電流に代わり、入力電流を検出するコンバータにおいても、交流電源3の電圧位相の検出を行うことができる。これにより、コンバータの低コスト化に寄与することができる。 As described above, the voltage phase of the AC power supply 3 can be detected even in the converter that detects the input current instead of the bus current. Thereby, it can contribute to the cost reduction of a converter.
実施の形態5.
 図24は、実施の形態5に係るコンバータ及びモータ制御装置の構成を示す図である。実施の形態5に係るコンバータ1-5は、図21に示すコンバータ1-4と同一又は同等の構成であり、さらに過負荷検出部45が追加されている。なお、同一又は同等の構成要素には同一の符号を使用し、重複する説明は適宜省略する。
Embodiment 5 FIG.
FIG. 24 is a diagram illustrating a configuration of a converter and a motor control device according to the fifth embodiment. Converter 1-5 according to the fifth embodiment has the same or equivalent configuration as converter 1-4 shown in FIG. 21, and an overload detection unit 45 is further added. In addition, the same code | symbol is used for the same or equivalent component, and the overlapping description is abbreviate | omitted suitably.
 過負荷検出部45は、d軸電流Idに基づいてコンバータ1-5の過負荷を検出する機能を備える。コンバータ1-5が過負荷状態であるか否かの情報は、モータ駆動装置4、又は図24では図示しない上位制御装置100(図34参照)に通知される。上位制御装置100は、モータ駆動装置4にモータ動作指令を送信する装置である。 The overload detection unit 45 has a function of detecting an overload of the converter 1-5 based on the d-axis current Id. Information on whether or not converter 1-5 is in an overload state is notified to motor drive device 4 or higher-level control device 100 (not shown in FIG. 24) (see FIG. 34). The host control device 100 is a device that transmits a motor operation command to the motor drive device 4.
 図25は、図24に示すモータ駆動装置4がモータ5を動作させたときの挙動を示す波形図である。横軸には時間をとり、上段から、モータ速度N、モータトルクTout、モータ出力Pout、母線電圧VPN、及びd軸電流Idが示されている。 FIG. 25 is a waveform diagram showing the behavior when the motor driving device 4 shown in FIG. 24 operates the motor 5. Time is taken on the horizontal axis, and the motor speed N, motor torque Tout, motor output Pout, bus voltage VPN, and d-axis current Id are shown from the top.
 まず、図25のt00~t01区間について説明する。この区間は、モータが加速している区間でありモータ力行区間である。時刻t00はモータが加速し始めた時刻であり、時刻t01はモータ速度Nが目標速度に到達した時刻である。モータトルクToutにより、モータ速度N及びモータ出力Poutが大きくなる。モータ出力Poutが大きくなるにつれて、d軸電流Idがプラスに方向大きくなっている。モータトルクToutが低減してくると、モータ出力Poutが一定になり、d軸電流Idのピーク値も一定となる。 First, the t00 to t01 interval in FIG. 25 will be described. This section is a section where the motor is accelerating and is a motor power running section. Time t00 is the time when the motor starts to accelerate, and time t01 is the time when the motor speed N reaches the target speed. The motor speed N and the motor output Pout increase due to the motor torque Tout. As the motor output Pout increases, the d-axis current Id increases in the positive direction. As the motor torque Tout decreases, the motor output Pout becomes constant and the peak value of the d-axis current Id also becomes constant.
 図25のt01~t02区間について説明する。この区間は、モータ速度Nが一定速度になっている区間である。時刻t00~t01区間と違いモータ出力Poutが低い値であるため、d軸電流Idは、ほとんど流れていない状態である。 The section t01 to t02 in FIG. 25 will be described. This section is a section in which the motor speed N is a constant speed. Unlike the period from time t00 to t01, since the motor output Pout is a low value, the d-axis current Id hardly flows.
 図25のt02~t03区間について説明する。この区間は、モータが減速している区間であり、モータ回生区間である。時刻t02はモータが減速し始めた時刻であり、時刻t03はモータが停止した時刻である。モータが減速し始めると、モータの回生電力が平滑コンデンサ21に流れ込み、母線電圧VPNが上昇する。前述の回生制御部28Aに基づいて、母線電圧VPNが予め定められた値を超えると、コンバータ1-5は、電源回生動作を開始する。コンバータ1-5の電源回生動作によって、d軸電流Idがマイナス方向に流れ、母線電圧VPNは低減する。時刻t02においては、モータ減速時のモータ出力Pout、すなわちモータの回生電力の絶対値が大きく、大きな電流が流れるが、モータ速度Nが低減するにつれてモータ出力Poutの絶対値も小さくなり、マイナス方向に流れるd軸電流Idの絶対値も小さくなる。 The section t02 to t03 in FIG. 25 will be described. This section is a section where the motor is decelerating and is a motor regeneration section. Time t02 is the time when the motor starts to decelerate, and time t03 is the time when the motor stops. When the motor starts to decelerate, the regenerative power of the motor flows into the smoothing capacitor 21 and the bus voltage VPN increases. When the bus voltage VPN exceeds a predetermined value based on the above-described regeneration control unit 28A, converter 1-5 starts a power regeneration operation. Due to the power regeneration operation of converter 1-5, d-axis current Id flows in the negative direction, and bus voltage VPN decreases. At time t02, the motor output Pout at the time of motor deceleration, that is, the absolute value of the regenerative electric power of the motor is large and a large current flows. However, as the motor speed N decreases, the absolute value of the motor output Pout also decreases. The absolute value of the flowing d-axis current Id is also reduced.
 図25より、モータ出力Poutによってd軸電流Idの大きさが決定されることが分かる。すなわち、モータ出力Poutとd軸電流Idとには、比例関係が成り立っている。また、d軸電流Idは、入力電流Ir,Is,Itに基づいて求められたものである。従って、d軸電流Idが大きくなるということは、入力電流Ir,Is,Itの絶対値も大きくなることと等価である。 25 that the magnitude of the d-axis current Id is determined by the motor output Pout. That is, a proportional relationship is established between the motor output Pout and the d-axis current Id. The d-axis current Id is obtained based on the input currents Ir, Is, It. Therefore, increasing the d-axis current Id is equivalent to increasing the absolute values of the input currents Ir, Is, It.
 コンバータ1-5に搭載されたパワーモジュール22に過大な電流が流れ続けると、コンバータ1-5は、過負荷状態となる。このとき、パワーモジュール22には、入力電流Ir,Is,Itと同じ電流が流れるので、入力電流Ir,Is,Itに基づいて算出されたd軸電流Idを監視することで、間接的にパワーモジュール22に流れる電流を検出することができる。入力電流Ir,Is,Itは交流電流であるため、モータ力行時又はモータ回生時に関わらず正負どちらにも流れる。これに対し、d軸電流Idの場合、モータ力行時は正の方向に電流が流れ、モータ回生時は負の方向に電流が流れる。 If an excessive current continues to flow through the power module 22 mounted on the converter 1-5, the converter 1-5 enters an overload state. At this time, since the same current as the input currents Ir, Is, It flows through the power module 22, the power is indirectly monitored by monitoring the d-axis current Id calculated based on the input currents Ir, Is, It. The current flowing through the module 22 can be detected. Since the input currents Ir, Is, and It are alternating currents, they flow in both positive and negative directions regardless of motor power running or motor regeneration. On the other hand, in the case of the d-axis current Id, a current flows in a positive direction during motor power running, and a current flows in a negative direction during motor regeneration.
 次に、実施の形態5における過負荷検出部45について説明する。図26は、図24に示す過負荷検出部45の構成例を示す図である。過負荷検出部45は、比較器190、比較器191及び論理和回路192を備えて構成される。比較器190のマイナス入力端子にはd軸電流上限値Idmaxが入力され、比較器190のプラス入力端子にはd軸電流Idが入力される。また、比較器191のプラス入力端子にはd軸電流下限値Idminが入力され、比較器191のマイナス入力端子にはd軸電流Idが入力される。比較器190及び比較器191の各出力信号は、論理和回路192の入力端子に入力され、論理和回路192の出力信号が過負荷検出部45の出力信号として扱われる。ここで、過負荷検出部45がHighレベルの信号を出力した場合、コンバータ1-5は過負荷状態であると判定され、過負荷検出部45がLowレベルの信号を出力した場合、コンバータ1-5は過負荷状態ではないと判定される。 Next, the overload detection unit 45 in the fifth embodiment will be described. FIG. 26 is a diagram illustrating a configuration example of the overload detection unit 45 illustrated in FIG. The overload detection unit 45 includes a comparator 190, a comparator 191 and an OR circuit 192. The d-axis current upper limit value Idmax is input to the minus input terminal of the comparator 190, and the d-axis current Id is input to the plus input terminal of the comparator 190. Further, the d-axis current lower limit value Idmin is input to the plus input terminal of the comparator 191, and the d-axis current Id is input to the minus input terminal of the comparator 191. The output signals of the comparator 190 and the comparator 191 are input to the input terminal of the OR circuit 192, and the output signal of the OR circuit 192 is handled as the output signal of the overload detection unit 45. Here, when the overload detection unit 45 outputs a high level signal, the converter 1-5 is determined to be in an overload state, and when the overload detection unit 45 outputs a low level signal, the converter 1-5 5 is determined not to be overloaded.
 d軸電流上限値Idmax及びd軸電流下限値Idminは、コンバータ1-5に搭載されたパワーモジュール22の電流容量又は電気的仕様等で決定される。d軸電流上限値Idmaxは力行動作時の電流制限値となり、d軸電流下限値Idminは回生動作時の電流制限値となる。 The d-axis current upper limit value Idmax and the d-axis current lower limit value Idmin are determined by the current capacity or electrical specifications of the power module 22 mounted on the converter 1-5. The d-axis current upper limit value Idmax is a current limit value during powering operation, and the d-axis current lower limit value Idmin is a current limit value during regenerative operation.
 前述の構成より、d軸電流Idがd軸電流上限値Idmax以上となった場合、比較器190はHighレベルの信号を出力し、論理和回路192にはHighレベルの信号が入力される。これにより、論理和回路192はHighレベルの信号を出力し、過負荷検出部45はHighレベルの信号を出力する。また、d軸電流Idがd軸電流下限値Idmin以下となった場合、比較器191はHighレベルの信号を出力し、論理和回路192にはHighレベルの信号が入力される。これにより論理和回路192はHighレベルの信号を出力し、過負荷検出部45はHighレベルの信号を出力する。過負荷検出部45が出力した信号は、図示を省略した通信ラインを介してモータ駆動装置4又は上位制御装置100に通知される。 According to the above configuration, when the d-axis current Id becomes equal to or higher than the d-axis current upper limit value Idmax, the comparator 190 outputs a high level signal, and the logical sum circuit 192 receives a high level signal. As a result, the OR circuit 192 outputs a high level signal, and the overload detection unit 45 outputs a high level signal. When the d-axis current Id becomes equal to or lower than the d-axis current lower limit value Idmin, the comparator 191 outputs a High level signal, and the OR circuit 192 receives a High level signal. As a result, the OR circuit 192 outputs a high level signal, and the overload detector 45 outputs a high level signal. The signal output from the overload detection unit 45 is notified to the motor drive device 4 or the host control device 100 via a communication line (not shown).
 以上のように、実施の形態5に係るコンバータ1-5では、d軸電流Idに基づいて、モータ力行時、及びモータ回生時のコンバータ1-5の負荷状態が監視され、その監視結果に基づいてコンバータ1-5が瞬時的過負荷状態であるか否かが判定される。 As described above, in converter 1-5 according to the fifth embodiment, the load state of converter 1-5 during motor power running and motor regeneration is monitored based on d-axis current Id, and based on the monitoring result. Thus, it is determined whether converter 1-5 is in an instantaneous overload state.
 実施の形態5の構成であれば、電源位相検出部を低コスト化することができるとともに、d軸電流Idでコンバータの過負荷状態を監視するという単純な構成を実現できるため、コンバータの低コスト化に寄与することができる。 With the configuration of the fifth embodiment, the cost of the power supply phase detector can be reduced, and a simple configuration of monitoring the converter overload state with the d-axis current Id can be realized. It can contribute to the conversion.
 なお、実施の形態5では、モータ出力Poutと比例関係にあるd軸電流Idのみで瞬時過負荷状態か否かを判定しているが、q軸電流Iqも使用して瞬時過負荷状態か否かを判定してもよい。d軸電流Id及びq軸電流Iqの双方を用いることで、有効電流及び無効電流の双方を監視することができる。これにより、コンバータ1-5の通電状態をより正確に判断することができるため、瞬時過負荷状態か否かをより正確に判断することができる。 In the fifth embodiment, whether or not the instantaneous overload state is determined only by the d-axis current Id that is proportional to the motor output Pout, but whether or not the instantaneous overload state is also determined using the q-axis current Iq. It may be determined. By using both the d-axis current Id and the q-axis current Iq, both the effective current and the reactive current can be monitored. As a result, the energization state of converter 1-5 can be more accurately determined, and therefore it is possible to more accurately determine whether or not it is an instantaneous overload state.
実施の形態6.
 図27は、実施の形態6に係るコンバータ及びモータ制御装置の構成を示す図である。実施の形態6に係るコンバータ1-6は、図24に示すコンバータ1-5と同一又は同等の構成であり、図24の過負荷検出部45が、図27では過負荷検出部45Aに置き換えられている。なお、同一又は同等の構成要素には同一の符号を使用し、重複する説明は適宜省略する。
Embodiment 6 FIG.
FIG. 27 is a diagram illustrating a configuration of a converter and a motor control device according to the sixth embodiment. Converter 1-6 according to the sixth embodiment has the same or equivalent configuration as converter 1-5 shown in FIG. 24, and overload detector 45 in FIG. 24 is replaced with overload detector 45A in FIG. ing. In addition, the same code | symbol is used for the same or equivalent component, and the overlapping description is abbreviate | omitted suitably.
 過負荷検出部45Aは、d軸電流Idに基づいてコンバータ1-6の定常時過負荷を検出する機能を備える。コンバータ1-6が過負荷状態であるか否かの情報は、モータ駆動装置4、又は図27では図示しない上位制御装置100(図34参照)に通知される。上位制御装置100は、モータ駆動装置4にモータ動作指令を送信する装置である。 The overload detection unit 45A has a function of detecting a steady-state overload of the converter 1-6 based on the d-axis current Id. Information on whether or not converter 1-6 is in an overload state is notified to motor drive device 4 or host controller 100 (not shown in FIG. 27) (see FIG. 34). The host control device 100 is a device that transmits a motor operation command to the motor drive device 4.
 一般的に、コンバータ及びインバータといった電力変換装置の定常時過負荷保護は、電力変換装置に搭載される部品の温度を推定し、推定した温度が保護すべき温度以上となった場合に、定常時過負荷状態であると判断し、電力変換装置の動作を止めることで電力変換装置を保護している。なお、電力変換装置に搭載される部品としては、モータへの電力供給に関わるパワー素子群及びコンデンサ等が挙げられる。 In general, steady-state overload protection for power converters such as converters and inverters estimates the temperature of components mounted on the power converter, and when the estimated temperature exceeds the temperature to be protected, The power converter is protected by determining that it is in an overload state and stopping the operation of the power converter. Examples of components mounted on the power converter include a power element group and a capacitor related to power supply to the motor.
 定常時過負荷保護の具体的な例としては、図28に示すような過負荷保護曲線が知られている。図28は、実施の形態6における定常時過負荷保護の説明に供する波形図である。図28では、横軸が電力変換装置の通電電流I、縦軸が許容通電時間Taとされ、これらの関係が過負荷保護特性として示されている。この過負荷保護特性は、ある通電電流Iで電力変換装置が連続して通電されたとき、その通電による温度上昇が保護すべき温度に到達するまでの時間を求める際に使用する。具体的に、ある通電電流Iの値を表す横軸の点から縦軸に平行に引いた直線と図示の過負荷保護曲線との交点の縦軸の値が、保護すべき温度として設定される。 As a specific example of steady state overload protection, an overload protection curve as shown in FIG. 28 is known. FIG. 28 is a waveform diagram for explaining steady-state overload protection in the sixth embodiment. In FIG. 28, the horizontal axis is the energization current I of the power converter, and the vertical axis is the allowable energization time Ta, and these relationships are shown as overload protection characteristics. This overload protection characteristic is used when obtaining the time until the temperature rise due to the energization reaches the temperature to be protected when the power conversion device is energized continuously with a certain energization current I. Specifically, the value on the vertical axis at the intersection of the straight line drawn in parallel to the vertical axis from the point on the horizontal axis representing the value of a certain energization current I and the overload protection curve shown is set as the temperature to be protected. .
 図29は、図27に示す過負荷検出部45Aの構成例を示す図である。過負荷検出部45Aは、図29に示すように、絶対値算出部193、フィルタ部である温度上昇推定部194、及び比較器195を備えて構成される。図29において、絶対値算出部193には、d軸電流Idが入力される。絶対値算出部193は、d軸電流絶対値|Id|を算出する。算出されたd軸電流絶対値|Id|は、温度上昇推定部194に入力される。温度上昇推定部194は、コンバータ1-6に搭載される、パワーモジュール22及び平滑コンデンサ21の特性で決定された過負荷保護曲線に基づいた温度上昇推定値Kcを算出する。算出された温度上昇推定値Kcは、比較器195のマイナス入力端子に入力される。比較器195のプラス入力端子には、閾温度Krefが入力されており、温度上昇推定値Kcと、閾温度Krefとの大小関係を表す信号が比較器195の出力信号となり、比較器195の出力信号が過負荷検出部45Aの出力信号となる。 FIG. 29 is a diagram illustrating a configuration example of the overload detection unit 45A illustrated in FIG. As shown in FIG. 29, the overload detection unit 45A includes an absolute value calculation unit 193, a temperature rise estimation unit 194 that is a filter unit, and a comparator 195. In FIG. 29, the absolute value calculation unit 193 receives the d-axis current Id. The absolute value calculator 193 calculates a d-axis current absolute value | Id |. The calculated d-axis current absolute value | Id | is input to the temperature rise estimation unit 194. Temperature rise estimation unit 194 calculates temperature rise estimated value Kc based on the overload protection curve determined by the characteristics of power module 22 and smoothing capacitor 21 mounted in converter 1-6. The calculated temperature rise estimated value Kc is input to the minus input terminal of the comparator 195. The threshold temperature Kref is input to the plus input terminal of the comparator 195, and a signal indicating the magnitude relationship between the temperature rise estimated value Kc and the threshold temperature Kref becomes the output signal of the comparator 195, and the output of the comparator 195 The signal becomes an output signal of the overload detection unit 45A.
 次に、温度上昇推定部194の動作について、図30及び図31を参照して説明する。図30は、実施の形態6における温度上昇推定部194の動作説明に供する第1の波形図であり、図31は、実施の形態6における温度上昇推定部194の動作説明に供する第2の波形図である。具体的に、図30には、コンバータ1-6のd軸電流Idを一定の値を流し続けた際のパワーモジュール22の温度上昇Kaが示されている。また、図31には、コンバータ1-6のd軸電流Idを一定の値を流し続けた際の平滑コンデンサ21の温度上昇Kbが示されている。何れの図も横軸は時間を表している。 Next, the operation of the temperature rise estimation unit 194 will be described with reference to FIGS. FIG. 30 is a first waveform diagram for explaining the operation of the temperature rise estimation unit 194 in the sixth embodiment, and FIG. 31 is a second waveform for explaining the operation of the temperature rise estimation unit 194 in the sixth embodiment. FIG. Specifically, FIG. 30 shows the temperature rise Ka of the power module 22 when the d-axis current Id of the converter 1-6 continues to flow at a constant value. FIG. 31 shows the temperature rise Kb of the smoothing capacitor 21 when the d-axis current Id of the converter 1-6 continues to flow at a constant value. In each figure, the horizontal axis represents time.
 図30及び図31の双方の図からも分かるように、温度上昇の変化特性は、数次の遅れフィルタの特性に近いものになっている。そのため、温度上昇推定部194では、入力信号としてd軸電流Idの絶対値にあたるd軸電流絶対値|Id|を使用することで、パワーモジュール22及び平滑コンデンサ21の温度上昇推定値Kcを算出することができる。なお、数次の遅れフィルタの例は、IIRフィルタ、移動平均フィルタなどである。 As can be seen from both of FIGS. 30 and 31, the change characteristic of the temperature rise is close to the characteristic of the delay filter of several orders. Therefore, the temperature rise estimation unit 194 calculates the temperature rise estimated value Kc of the power module 22 and the smoothing capacitor 21 by using the d-axis current absolute value | Id | corresponding to the absolute value of the d-axis current Id as an input signal. be able to. Examples of several-order delay filters are IIR filters and moving average filters.
 以上より、過負荷検出部45Aは、d軸電流Idに基づいてコンバータ1-6に搭載される部品の温度上昇を推定し、予め設けられた温度上昇推定値Kcが閾温度Kref以上となった場合には、定常時過負荷状態であると判断し、温度上昇推定値Kcが閾温度Krefよりも小さい場合には、定常時過負荷状態ではないと判断する。定常時過負荷状態であると判断した場合、過負荷検出部45Aは、Highレベルの信号を出力し、通信経路を介してモータ駆動装置4又は上位制御装置100に通知する。一方、定常時過負荷状態ではないと判断した場合、過負荷検出部45Aは、Lowレベルの信号を出力する。Highレベル及びLowレベルの信号は、通信経路を介してモータ駆動装置4又は上位制御装置100に通知される。 From the above, the overload detection unit 45A estimates the temperature rise of the components mounted on the converter 1-6 based on the d-axis current Id, and the temperature rise estimated value Kc provided in advance is equal to or higher than the threshold temperature Kref. In this case, it is determined that the steady state overload state is established, and when the estimated temperature rise Kc is smaller than the threshold temperature Kref, it is determined that the steady state overload state is not established. When it is determined that it is in a constant overload state, the overload detection unit 45A outputs a High level signal and notifies the motor drive device 4 or the host control device 100 via the communication path. On the other hand, if it is determined that the steady-state overload state is not established, the overload detection unit 45A outputs a Low level signal. The high level signal and the low level signal are notified to the motor driving device 4 or the host control device 100 via the communication path.
 以上のように、実施の形態6に係るコンバータ1-6では、d軸電流Idに基づいてコンバータ1-6の負荷状態が監視され、その監視結果に基づいてコンバータ1-6が定常時過負荷状態であるか否かが判定される。 As described above, in converter 1-6 according to the sixth embodiment, the load state of converter 1-6 is monitored based on d-axis current Id, and based on the monitoring result, converter 1-6 performs overload during normal operation. It is determined whether or not it is in a state.
 実施の形態6の構成であれば、電源位相検出部を低コスト化することができるとともに、d軸電流Idでコンバータの過負荷状態を監視するという単純な構成を実現できるため、コンバータの低コスト化に寄与することができる。 With the configuration of the sixth embodiment, the cost of the power supply phase detector can be reduced, and a simple configuration in which the overload state of the converter is monitored with the d-axis current Id can be realized. It can contribute to the conversion.
 なお、実施の形態6では、モータ出力Poutと比例関係にあるd軸電流Idのみで定常時過負荷状態か否かを判定しているが、q軸電流Iqも使用して定常時過負荷状態か否かを判定してもよい。d軸電流Id及びq軸電流Iqの双方を用いることで、有効電流及び無効電流の双方を監視することができる。これにより、コンバータ1-6の通電状態をより正確に判断することができるため、定常時過負荷状態か否かをより正確に判断することができる。 In Embodiment 6, it is determined whether or not the steady-state overload state is based only on the d-axis current Id that is proportional to the motor output Pout, but the steady-state overload state is also determined using the q-axis current Iq. It may be determined whether or not. By using both the d-axis current Id and the q-axis current Iq, both the effective current and the reactive current can be monitored. As a result, the energization state of converter 1-6 can be determined more accurately, and therefore it can be determined more accurately whether or not the steady-state overload state is present.
実施の形態7.
 図32は、実施の形態7に係るコンバータ及びモータ制御装置の構成を示す図である。図32に示す実施の形態7に係るコンバータ1-7は、図24に示す実施の形態5に係るコンバータ1-5の構成において、母線電圧検出部23、ベース駆動信号生成部26及び回生制御部28Aの図示は省略する一方で、モータ駆動装置4の内部にモータ制御部4Aを追加している。なお、その他の構成は、図24と同一又は同等であり、同一又は同等の構成要素には、同一の符号を付している。
Embodiment 7 FIG.
FIG. 32 is a diagram illustrating a configuration of a converter and a motor control device according to the seventh embodiment. Converter 1-7 according to the seventh embodiment shown in FIG. 32 is identical to converter 1-5 according to the fifth embodiment shown in FIG. 24 in the configuration of bus voltage detector 23, base drive signal generator 26, and regeneration controller. While the illustration of 28A is omitted, a motor control unit 4A is added inside the motor driving device 4. Other configurations are the same as or equivalent to those in FIG. 24, and the same or equivalent components are denoted by the same reference numerals.
 モータ制御部4Aは、モータ5に任意の交流電力を供給し、モータ5を可変速制御する機能を備える。コンバータ1-7内の過負荷検出部45の出力は、通信経路46を介してモータ制御部4Aに入力される構成である。なお、図32では、実施の形態5で説明した過負荷検出部45、すなわち瞬時過負荷状態を判定する機能を備えた過負荷検出部45を用いているが、実施の形態6で説明した過負荷検出部45A、すなわち定常時過負荷状態を判定する機能を備えた過負荷検出部45Aに置き換えてもよいし、瞬時過負荷状態の判定機能及び定常時過負荷状態の判定機能の双方を備えた過負荷検出部を用いて構成してもよい。 The motor control unit 4A has a function of supplying arbitrary AC power to the motor 5 and controlling the motor 5 at a variable speed. The output of the overload detection unit 45 in the converter 1-7 is configured to be input to the motor control unit 4A via the communication path 46. In FIG. 32, the overload detection unit 45 described in the fifth embodiment, that is, the overload detection unit 45 having a function of determining the instantaneous overload state is used. However, the overload detection unit 45 described in the sixth embodiment is used. It may be replaced with a load detection unit 45A, that is, an overload detection unit 45A having a function of determining a steady-state overload state, or it has both an instantaneous overload state determination function and a steady-state overload state determination function. An overload detection unit may be used.
 入力電流検出部25Aは、パワーモジュール22に入力される電流Ir,Is,Itを検出し、検出した入力電流Ir,Is,ItをRST-dq座標変換部44に入力する。RST-dq座標変換部44では、電圧位相検出部24で検出された交流電源3のR相位相θrと電源角周波数ωとに基づいて、d軸電流Id及びq軸電流Iqを算出し、d軸電流Idを過負荷検出部45に入力する。過負荷検出部45は、d軸電流Idに基づいてコンバータ1-7が過負荷状態であるか否かを判定する。コンバータ1-7が過負荷状態であると判定され、過負荷検出部45がHighレベルの信号を出力した場合、モータ制御部4Aは、モータ5の出力を低下させるように交流電力を制御する。 The input current detection unit 25A detects the currents Ir, Is, It input to the power module 22 and inputs the detected input currents Ir, Is, It to the RST-dq coordinate conversion unit 44. The RST-dq coordinate conversion unit 44 calculates the d-axis current Id and the q-axis current Iq based on the R-phase phase θr and the power supply angular frequency ω of the AC power supply 3 detected by the voltage phase detection unit 24, and d The shaft current Id is input to the overload detection unit 45. Overload detection unit 45 determines whether converter 1-7 is in an overload state based on d-axis current Id. When it is determined that converter 1-7 is in an overload state and overload detection unit 45 outputs a high level signal, motor control unit 4A controls AC power so as to reduce the output of motor 5.
 モータ5の出力を低下させるための手法として、以下の手法が例示される。
(i)予めモータ動作指令で定められたトルク指令よりも制限されたトルク指令でモータ5を動作するように制御する。
(ii)予めモータ動作指令で定められた回転指令よりも制限された回転指令でモータ5を動作するように制御する。
(iii)モータ5をフリーランさせるように制御する。具体的には、モータ駆動装置4の内部に設けられる図示しないスイッチング素子をオンオフ制御するスイッチング動作を停止させ、モータ5がフリーな状態にする。
The following method is illustrated as a method for reducing the output of the motor 5.
(I) Control is performed so that the motor 5 is operated with a torque command that is more limited than the torque command previously determined by the motor operation command.
(Ii) Control the motor 5 so that it operates with a rotation command that is more limited than the rotation command previously determined by the motor operation command.
(Iii) Control the motor 5 to free run. Specifically, the switching operation for on / off control of a switching element (not shown) provided in the motor driving device 4 is stopped, and the motor 5 is brought into a free state.
 次に、実施の形態7に係るコンバータ1-7及びモータ駆動装置4の動作について、図32及び図33を参照して説明する。図33は、実施の形態7に係るコンバータ及びモータ制御部の動作を示すフローチャートである。なお、図33では、符号の表記を省略している。 Next, operations of converter 1-7 and motor drive device 4 according to the seventh embodiment will be described with reference to FIGS. FIG. 33 is a flowchart showing operations of the converter and the motor control unit according to the seventh embodiment. In FIG. 33, the notation of the reference numerals is omitted.
 RST-dq座標変換部44は、入力電流検出部25Aによって検出された入力電流Ir,Is,It、電圧位相検出部24によって算出されたR相位相θr及び電源角周波数ωに基づいてd軸電流Idを算出する(ステップS101)。過負荷検出部45は、d軸電流Idに基づき、コンバータ1-7が過負荷状態であるか否かを判定する(ステップS102)。過負荷検出部45は、通信経路46により判定結果をモータ駆動装置4内部のモータ制御部4Aに通知する(ステップS103)。以上のステップS101~S103の処理がコンバータ1-7の処理であり、コンバータ1-7は、ステップS101~S103の処理を繰り返し実行する。 The RST-dq coordinate conversion unit 44 generates a d-axis current based on the input currents Ir, Is, It detected by the input current detection unit 25A, the R phase phase θr calculated by the voltage phase detection unit 24, and the power source angular frequency ω. Id is calculated (step S101). Overload detection unit 45 determines whether converter 1-7 is in an overload state based on d-axis current Id (step S102). The overload detection unit 45 notifies the determination result to the motor control unit 4A in the motor drive device 4 through the communication path 46 (step S103). The processing in steps S101 to S103 described above is the processing of converter 1-7, and converter 1-7 repeatedly executes the processing in steps S101 to S103.
 モータ制御部4Aは、過負荷検出部45の判定結果を受信する(ステップS104)。モータ制御部4Aは、受信した判定結果に基づき、コンバータ1-7が過負荷状態であるか否かを判定する(ステップS105)。受信した判定結果が過負荷状態である旨を表す信号(実施の形態5の例では、Highレベルの信号)の場合(ステップS105、Yes)、モータ5の出力が制限されるようにモータ駆動装置4からのモータ出力を制限し(ステップS106)、モータ5の出力を制限した交流電力をモータ5に対し出力する(ステップS107)。なお、受信した判定結果が過負荷状態ではない旨を表す信号(実施の形態5の例では、Lowレベルの信号)の場合(ステップS105、No)、ステップS106の処理を行わずにステップS107に移行する。すなわち、受信した判定結果が過負荷状態ではない場合、モータ5の出力を制限せずに、通常の制御動作における交流電力をモータ5に対し出力する(ステップS107)。以上のステップS104~S107の処理がモータ制御部4Aの処理であり、モータ制御部4Aは、ステップS104~S107の処理を繰り返し実行する。 The motor control unit 4A receives the determination result of the overload detection unit 45 (step S104). Based on the received determination result, motor control unit 4A determines whether converter 1-7 is in an overload state (step S105). In the case of a signal indicating that the received determination result is an overload state (High level signal in the example of Embodiment 5) (Yes in Step S105), the motor driving device is configured so that the output of the motor 5 is limited. The motor output from 4 is limited (step S106), and the AC power with the output of the motor 5 limited is output to the motor 5 (step S107). In the case where the received determination result is a signal indicating that it is not in an overload state (a low level signal in the example of Embodiment 5) (No in step S105), the process proceeds to step S107 without performing the process in step S106. Transition. That is, when the received determination result is not an overload state, the AC power in the normal control operation is output to the motor 5 without limiting the output of the motor 5 (step S107). The processes of steps S104 to S107 described above are the processes of the motor control unit 4A, and the motor control unit 4A repeatedly executes the processes of steps S104 to S107.
 実施の形態7によれば、モータ5の動作が想定を超える動作を行い、コンバータ1-7が過負荷状態であった場合でも、モータ駆動装置4がモータ5の出力を低下させるように交流電力を制御するため、コンバータ1-7の過負荷状態を解消することができ、コンバータ1-7の寿命劣化、破損といった悪影響をシステム停止させることなく解消することができる。そのため、容量の小さいコンバータを選定することができ、産業機械の低コスト化に寄与することができる。 According to the seventh embodiment, even if the operation of the motor 5 exceeds the expected value and the converter 1-7 is in an overload state, the AC power is applied so that the motor driving device 4 reduces the output of the motor 5. Therefore, the overload state of the converter 1-7 can be eliminated, and adverse effects such as deterioration and damage of the converter 1-7 can be eliminated without stopping the system. Therefore, a converter having a small capacity can be selected, which can contribute to cost reduction of the industrial machine.
実施の形態8.
 図34は、実施の形態8に係るコンバータ及びモータ制御装置の構成を示す図である。図34では、図32に示す実施の形態7に係るコンバータ1-7の構成において、上位制御装置100、モータ駆動装置400及びモータ5に代えたモータ500が追加されている。上位制御装置100は、通信経路47a,47bを介してモータ駆動装置4,400のそれぞれにモータ動作指令を出力する機能を備え、モータ駆動装置4,400のそれぞれにモータ動作指令を出力している。コンバータ1-8内の過負荷検出部45の出力は、通信経路46を介して上位制御装置100に入力される。モータ駆動装置400は、直流端子19,20と、モータ制御部400Aを備え、直流端子19,20はモータ駆動装置4の直流端子17,18と接続され、コンバータ1-8内の平滑コンデンサ21とも接続される。モータ制御部400Aは、モータ500に任意の交流電力を供給し可変速制御を行う。なお、図34では、瞬時過負荷検出に適した過負荷検出部45としているが、過負荷検出部45を定常時過負荷検出に適した過負荷検出部45Aに置き換えてもよいし、瞬時過負荷検出及び定常時過負荷検出の双方の機能を備えた過負荷検出部を用いて構成してもよい。
Embodiment 8 FIG.
FIG. 34 is a diagram illustrating a configuration of a converter and a motor control device according to the eighth embodiment. 34, in the configuration of converter 1-7 according to the seventh embodiment shown in FIG. 32, a host controller 100, a motor drive device 400, and a motor 500 instead of the motor 5 are added. The host controller 100 has a function of outputting a motor operation command to each of the motor drive devices 4 and 400 via the communication paths 47a and 47b, and outputs a motor operation command to each of the motor drive devices 4 and 400. . The output of the overload detection unit 45 in the converter 1-8 is input to the host controller 100 via the communication path 46. The motor drive device 400 includes DC terminals 19 and 20 and a motor control unit 400A. The DC terminals 19 and 20 are connected to the DC terminals 17 and 18 of the motor drive device 4 and are connected to the smoothing capacitor 21 in the converter 1-8. Connected. The motor control unit 400A supplies variable AC power to the motor 500 to perform variable speed control. In FIG. 34, the overload detection unit 45 suitable for instantaneous overload detection is shown. However, the overload detection unit 45 may be replaced with an overload detection unit 45A suitable for steady-state overload detection. You may comprise using the overload detection part provided with the function of both load detection and a steady-time overload detection.
 入力電流検出部25Aは、パワーモジュール22に入力される電流Ir,Is,Itを検出し、検出した入力電流Ir,Is,ItをRST-dq座標変換部44に入力する。RST-dq座標変換部44では、電圧位相検出部24で検出された交流電源3のR相位相θrと電源角周波数ωとに基づいて、d軸電流Id及びq軸電流Iqを算出し、d軸電流Idを過負荷検出部45に入力する。過負荷検出部45は、d軸電流Idに基づいてコンバータ1-8が過負荷状態であるか否かを判定する。コンバータ1-8が過負荷状態であると判定されると、過負荷状態である旨の信号(Highレベルの信号)が、通信経路46を介して上位制御装置100に通知される。上位制御装置100は、モータ駆動装置4のモータ制御部4A及びモータ駆動装置400のモータ制御部400Aの少なくとも1つに対し、対応する通信経路47a,47bの双方もしくは何れか一方を使用して、制御対象であるモータの出力を制限したモータ動作指令を生成するように指示する。モータ制御部4A及びモータ制御部400Aのうち少なくとも1つは、受信したモータ動作指令に基づいて、モータ5又はモータ500の出力を低下させるように交流電力を制御する。 The input current detection unit 25A detects the currents Ir, Is, It input to the power module 22 and inputs the detected input currents Ir, Is, It to the RST-dq coordinate conversion unit 44. The RST-dq coordinate conversion unit 44 calculates the d-axis current Id and the q-axis current Iq based on the R-phase phase θr and the power supply angular frequency ω of the AC power supply 3 detected by the voltage phase detection unit 24, and d The shaft current Id is input to the overload detection unit 45. Overload detection unit 45 determines whether converter 1-8 is in an overload state based on d-axis current Id. When it is determined that converter 1-8 is in an overload state, a signal indicating that the converter is in an overload state (high level signal) is notified to host control device 100 via communication path 46. The host controller 100 uses at least one of the communication paths 47a and 47b corresponding to at least one of the motor controller 4A of the motor driver 4 and the motor controller 400A of the motor driver 400, An instruction is given to generate a motor operation command that limits the output of the motor to be controlled. At least one of the motor control unit 4A and the motor control unit 400A controls the AC power so as to decrease the output of the motor 5 or the motor 500 based on the received motor operation command.
 以下、具体的な例を挙げて説明する。ここでは、スピンドルモータとサーボモータを備えた工作機械を例にとり、モータ5がスピンドルモータであり、モータ500がサーボモータであるとする。なお、上位制御装置100は、工作機械に設けられてもよいし、工作機械に設けられていなくてもよい。 Hereinafter, a specific example will be described. Here, a machine tool including a spindle motor and a servo motor is taken as an example, and it is assumed that the motor 5 is a spindle motor and the motor 500 is a servo motor. The host control device 100 may be provided on the machine tool or may not be provided on the machine tool.
(i)上位制御装置100は、スピンドルモータであるモータ5の出力を低下させるモータ動作指令をモータ制御部4Aに出力する。
(ii)上位制御装置100は、サイクルタイムを長くしないようにするため、スピンドルモータであるモータ5と比較して、加速時間や減速時間が短いサーボモータであるモータ500の出力を制限することを決定する。上位制御装置100は、スピンドルモータであるモータ5の出力は維持し、サーボモータであるモータ500の出力を制限するモータ動作指令をモータ制御部4A及びモータ制御部400Aに出力する。
(I) The host control device 100 outputs a motor operation command for reducing the output of the motor 5 that is a spindle motor to the motor control unit 4A.
(Ii) In order not to lengthen the cycle time, the host controller 100 limits the output of the motor 500 that is a servo motor having a shorter acceleration time and deceleration time than the motor 5 that is a spindle motor. decide. The host controller 100 maintains the output of the motor 5 that is a spindle motor, and outputs a motor operation command for limiting the output of the motor 500 that is a servo motor to the motor control unit 4A and the motor control unit 400A.
 次に、実施の形態8に係るコンバータ及びモータ駆動装置の動作について、図34及び図35を参照して説明する。図35は、実施の形態8に係るコンバータ及びモータ駆動装置の動作を示すフローチャートである。なお、図35では、符号の表記を省略している。 Next, operations of the converter and the motor drive device according to the eighth embodiment will be described with reference to FIGS. FIG. 35 is a flowchart showing operations of the converter and the motor drive device according to the eighth embodiment. In FIG. 35, the notation of symbols is omitted.
 RST-dq座標変換部44は、入力電流検出部25Aによって検出された入力電流Ir,Is,It、電圧位相検出部24によって算出されたR相位相θr及び電源角周波数ωに基づいてd軸電流Idを算出する(ステップS201)。過負荷検出部45は、d軸電流Idに基づき、コンバータ1-8が過負荷状態であるか否かを判定する(ステップS202)。過負荷検出部45は、通信経路46により判定結果を上位制御装置100に通知する(ステップS203)。以上のステップS201~S203の処理がコンバータ1-8の処理であり、コンバータ1-8は、ステップS201~S203の処理を繰り返し実行する。 The RST-dq coordinate conversion unit 44 generates a d-axis current based on the input currents Ir, Is, It detected by the input current detection unit 25A, the R phase phase θr calculated by the voltage phase detection unit 24, and the power source angular frequency ω. Id is calculated (step S201). Overload detection unit 45 determines whether converter 1-8 is in an overload state based on d-axis current Id (step S202). The overload detection unit 45 notifies the host controller 100 of the determination result through the communication path 46 (step S203). The processes in steps S201 to S203 described above are the processes of converter 1-8, and converter 1-8 repeatedly executes the processes in steps S201 to S203.
 上位制御装置100は、過負荷検出部45の判定結果を受信する(ステップS204)。上位制御装置100は、受信した判定結果に基づき、コンバータ1-8が過負荷状態であるか否かを判定する(ステップS205)。受信した判定結果が過負荷状態である旨を表す信号(実施の形態5の例では、Highレベルの信号)の場合(ステップS205、Yes)、モータ5及びモータ500のうち少なくとも1つの出力を制限することを決定し(ステップS206)、制御対象であるモータを駆動するモータ駆動装置に対してモータの出力を制限したモータ動作指令を出力する(ステップS207)。なお、受信した判定結果が過負荷状態ではない旨を表す信号(実施の形態5の例では、Lowレベルの信号)の場合(ステップS205、No)、ステップS206の処理を行わずにステップS207に移行する。すなわち、受信した判定結果が過負荷状態ではない場合、モータ5及びモータ500に対する出力制限は行わず、通常のモータ動作指令を出力する(ステップS207)。以上のステップS204~S207が上位制御装置100の処理であり、上位制御装置100は、ステップS204~S207の処理を繰り返し実行する。 The host control device 100 receives the determination result of the overload detection unit 45 (step S204). Based on the received determination result, host controller 100 determines whether converter 1-8 is in an overload state (step S205). In the case of a signal indicating that the received determination result is an overload state (High level signal in the example of Embodiment 5) (Yes in Step S205), the output of at least one of the motor 5 and the motor 500 is limited. (Step S206), and outputs a motor operation command that restricts the output of the motor to the motor drive device that drives the motor to be controlled (step S207). In the case where the received determination result is a signal indicating that it is not in an overload state (in the example of Embodiment 5, a low level signal) (No in step S205), the process proceeds to step S207 without performing the process in step S206. Transition. That is, when the received determination result is not an overload state, the output restriction on the motor 5 and the motor 500 is not performed, and a normal motor operation command is output (step S207). The above steps S204 to S207 are the processes of the host control apparatus 100, and the host control apparatus 100 repeatedly executes the processes of steps S204 to S207.
 モータ駆動装置4のモータ制御部4A及びモータ駆動装置400のモータ制御部400Aは、上位制御装置100からのモータ動作指令を受信し(ステップS208)、受信したモータ動作指令に応じて交流電力がモータ5及びモータ500に出力されるように動作する(ステップS209)。以上のステップS208,S209の処理がモータ制御部4A,400Aの処理であり、モータ制御部4A,400Aは、ステップS208、S209の処理を繰り返し実行する。 The motor control unit 4A of the motor drive device 4 and the motor control unit 400A of the motor drive device 400 receive the motor operation command from the host control device 100 (step S208), and AC power is supplied to the motor according to the received motor operation command. 5 and the motor 500 so as to be output (step S209). The processes of steps S208 and S209 described above are the processes of the motor control units 4A and 400A, and the motor control units 4A and 400A repeatedly execute the processes of steps S208 and S209.
 実施の形態8によれば、モータ5及びモータ500の動作が想定を超える動作を行い、コンバータ1-8が過負荷状態であった場合でも、上位制御装置100がモータ5及びモータ500のうち少なくとも1つの出力を制限するモータ動作指令を該当するモータ駆動装置に出力し、当該モータ駆動装置が制御対象のモータ出力を低下させるように交流電力を制御するため、コンバータ1-8の過負荷状態を解消することができ、コンバータ1-8の寿命劣化、破損といった悪影響をシステム停止させることなく解消することができる。また、工作機械のような複数のモータを使用する産業機械においては、サイクルタイムが長くなるのを防ぐように、モータ動作指令を出力することで、サイクルタイムを維持しながら、コンバータ1-8の過負荷状態を解消することができる。そのため、容量の小さいコンバータを選定することができ、産業機械の低コスト化に寄与することができる。 According to the eighth embodiment, even when the operations of the motor 5 and the motor 500 perform an operation that exceeds the assumption, and the converter 1-8 is in an overload state, the host control device 100 performs at least one of the motor 5 and the motor 500. A motor operation command that restricts one output is output to the corresponding motor drive device, and the motor drive device controls the AC power so as to decrease the motor output to be controlled. It is possible to eliminate the adverse effects such as deterioration and damage of the converter 1-8 without stopping the system. Further, in an industrial machine using a plurality of motors such as machine tools, by outputting a motor operation command so as to prevent the cycle time from becoming long, the cycle time can be maintained while maintaining the cycle time. An overload condition can be eliminated. Therefore, a converter having a small capacity can be selected, which can contribute to cost reduction of the industrial machine.
実施の形態9.
 図36は、実施の形態9に係るコンバータ及びモータ制御装置の構成を示す図である。図36では、図34に示す実施の形態8に係るコンバータ1-8の構成と同一又は同等であるが、コンバータ1-9の内部にコンバータ制御部1Aが追加され、コンバータ制御部1Aの内部に過負荷検出部45Bが設けられている。過負荷検出部45Bは、前述したように瞬時過負荷検出及び定常時過負荷検出の双方の機能を備えた過負荷検出部である。また、上位制御装置100、モータ駆動装置400、モータ駆動装置4及びコンバータ1-9は、通信経路でデイジーチェーン接続されている。具体的には、コンバータ1-9のコンバータ制御部1Aとモータ駆動装置4のモータ制御部4Aとは通信経路46で接続され、モータ駆動装置4のモータ制御部4Aとモータ駆動装置400のモータ制御部400Aとは通信経路48aで接続され、モータ駆動装置400のモータ制御部400Aと上位制御装置100とは通信経路48bで接続されている。前述の構成では、例えば、上位制御装置100からモータ駆動装置4に対し出力されるモータ動作指令は、モータ駆動装置400のモータ制御部400Aを介してモータ駆動装置4のモータ制御部4Aに入力されることになる。
Embodiment 9 FIG.
FIG. 36 is a diagram illustrating a configuration of a converter and a motor control device according to the ninth embodiment. In FIG. 36, the configuration is the same as or equivalent to the configuration of converter 1-8 according to the eighth embodiment shown in FIG. 34, but converter control unit 1A is added inside converter 1-9, and inside converter control unit 1A. An overload detection unit 45B is provided. As described above, the overload detection unit 45B is an overload detection unit having functions of both instantaneous overload detection and steady state overload detection. The host control device 100, the motor driving device 400, the motor driving device 4, and the converter 1-9 are daisy chain connected via a communication path. Specifically, converter control unit 1A of converter 1-9 and motor control unit 4A of motor drive device 4 are connected via communication path 46, and motor control unit 4A of motor drive device 4 and motor control of motor drive device 400 are controlled. The unit 400A is connected via a communication path 48a, and the motor control unit 400A of the motor driving device 400 and the host control apparatus 100 are connected via a communication path 48b. In the above-described configuration, for example, a motor operation command output from the host control device 100 to the motor drive device 4 is input to the motor control unit 4A of the motor drive device 4 via the motor control unit 400A of the motor drive device 400. Will be.
 前述のような産業機械において、瞬時過負荷状態は、複数のモータが大出力で動作するケースが一般的である。ここで、複数のサーボモータとスピンドルモータとによって構成される工作機械を例にとる。ここでは、スピンドルモータをモータ5とし、サーボモータをモータ500として考える。工作機械においては、複数のサーボモータとスピンドルモータとが同時加速動作又は同時減速動作を行う運転がある。このため、サーボモータとスピンドルモータとがそれぞれの最大出力で動作すると、上記のような同時加減速動作において、各モータの最大出力が重なり、コンバータが供給する電力が大きくなる。 In an industrial machine such as that described above, in the instantaneous overload state, a plurality of motors are generally operated at a high output. Here, a machine tool including a plurality of servo motors and spindle motors is taken as an example. Here, it is assumed that the spindle motor is the motor 5 and the servo motor is the motor 500. In a machine tool, there are operations in which a plurality of servo motors and a spindle motor perform simultaneous acceleration operation or simultaneous deceleration operation. For this reason, when the servo motor and the spindle motor operate at their maximum outputs, the maximum outputs of the motors overlap in the simultaneous acceleration / deceleration operation as described above, and the power supplied by the converter increases.
 工作機械では、サーボモータと比較してスピンドルモータの出力が大きいのが一般的である。このため、コンバータが各モータ駆動装置に供給する電力は、スピンドルモータ駆動装置が占める割合が大きくなる。上記のような同時加減速動作の場合、上位制御装置100を介さずにスピンドルモータであるモータ5の出力を低減させることで、コンバータの供給電力を素早く低減させることができる。 In machine tools, the output of a spindle motor is generally larger than that of a servo motor. For this reason, the ratio of the electric power supplied from the converter to each motor driving device is increased by the spindle motor driving device. In the case of the simultaneous acceleration / deceleration operation as described above, the power supplied to the converter can be quickly reduced by reducing the output of the motor 5 that is a spindle motor without using the host controller 100.
 一方、定常時過負荷状態は、コンバータが過大な電力供給を行う状態ではなく、産業機械の運転サイクルが厳しく、長時間の動作によりコンバータに搭載されたパワーモジュール、平滑コンデンサ等の部品の温度上昇が許容温度を超えるケースである。このようなケースにおいては、運転サイクルの見直しが必要であり、上位制御装置100を介して、スピンドルモータであるモータ5又はサーボモータであるモータ500、あるいは両者に対するモータ動作指令の見直しにより、長時間動作におけるモータの平均出力の総和の低減を図るのが適している。 On the other hand, the steady-state overload state is not a state in which the converter supplies excessive power, but the operating cycle of industrial machinery is severe, and the temperature rises in components such as power modules and smoothing capacitors mounted on the converter due to long-term operation. Is a case where the temperature exceeds the allowable temperature. In such a case, it is necessary to review the operation cycle. By reviewing the motor operation command for the motor 5 that is the spindle motor or the motor 500 that is the servo motor, or the motor operation command for both via the host controller 100, the operation cycle is reviewed. It is suitable to reduce the sum of the average output of the motor in operation.
 次に、実施の形態9に係るコンバータとモータ駆動装置、上位制御装置の動作について、図36及び図37の図を参照して説明する。図37は、実施の形態9に係るコンバータ、モータ駆動装置及び上位制御装置の動作を示すフローチャートである。 Next, operations of the converter, the motor drive device, and the host control device according to the ninth embodiment will be described with reference to FIGS. 36 and 37. FIG. FIG. 37 is a flowchart illustrating operations of the converter, the motor drive device, and the host control device according to the ninth embodiment.
 RST-dq座標変換部44は、入力電流検出部25Aによって検出された入力電流Ir,Is,It、電圧位相検出部24によって算出されたR相位相θr及び電源角周波数ωに基づいてd軸電流Idを算出する(ステップS301)。過負荷検出部45Bは、d軸電流Idに基づき、コンバータ1-9が瞬時過負荷状態であるか、定常時過負荷状態であるか、あるいは異常なしであるか、すなわちコンバータ1-9の過負荷状態を判定する(ステップS302)。過負荷検出部45Bは、通信経路46を介して判定結果をモータ制御部4Aに通知する(ステップS303)。以上のステップS301~S303の処理がコンバータ1-9の処理であり、コンバータ1-9は、ステップS301~S303の処理を繰り返し実行する。 The RST-dq coordinate conversion unit 44 generates a d-axis current based on the input currents Ir, Is, It detected by the input current detection unit 25A, the R phase phase θr calculated by the voltage phase detection unit 24, and the power source angular frequency ω. Id is calculated (step S301). Based on the d-axis current Id, the overload detection unit 45B determines whether the converter 1-9 is in an instantaneous overload state, a steady state overload state, or no abnormality, that is, an overload of the converter 1-9. The load state is determined (step S302). The overload detection unit 45B notifies the determination result to the motor control unit 4A via the communication path 46 (step S303). The processing in steps S301 to S303 described above is the processing of converter 1-9, and converter 1-9 repeatedly executes the processing in steps S301 to S303.
 モータ制御部4Aは、過負荷検出部45Bの判定結果を受信する(ステップS304)。モータ制御部4Aは、受信した判定結果に基づき、コンバータ1-9が瞬時過負荷状態であるか否かを判定する(ステップS305)。受信した判定結果が瞬時過負荷状態である旨を表す信号の場合(ステップS305、Yes)、モータ5の出力が制限されるようにモータ駆動装置4からのモータ出力を制限し(ステップS306)、モータ出力を制限した交流電力をモータ5に対し出力する(ステップS307)。なお、受信した判定結果が瞬時過負荷状態ではない場合(ステップS305、No)、ステップS306の処理を行わずにステップS307に移行する。すなわち、受信した判定結果が瞬時過負荷状態ではない場合、モータ5の出力を制限せずに、通常の制御動作における交流電力をモータ5に対し出力する(ステップS307)。また、モータ制御部4Aは、過負荷検出部45Bの判定結果をモータ制御部400Aに通知する(ステップS308)。以上のステップS304~S308の処理がモータ制御部4Aの処理であり、モータ制御部4Aは、ステップS304~S308の処理を繰り返し実行する。 The motor control unit 4A receives the determination result of the overload detection unit 45B (step S304). Based on the received determination result, motor control unit 4A determines whether converter 1-9 is in an instantaneous overload state (step S305). When the received determination result is a signal indicating that the instantaneous overload state is present (step S305, Yes), the motor output from the motor driving device 4 is limited so that the output of the motor 5 is limited (step S306). The AC power whose motor output is limited is output to the motor 5 (step S307). In addition, when the received determination result is not an instantaneous overload state (step S305, No), it transfers to step S307, without performing the process of step S306. That is, when the received determination result is not in the instantaneous overload state, the AC power in the normal control operation is output to the motor 5 without limiting the output of the motor 5 (step S307). Further, the motor control unit 4A notifies the determination result of the overload detection unit 45B to the motor control unit 400A (step S308). The processes of steps S304 to S308 described above are the processes of the motor control unit 4A, and the motor control unit 4A repeatedly executes the processes of steps S304 to S308.
 モータ制御部400Aは、通信経路48aにより過負荷検出部45Bの判定結果をモータ制御部4Aから受信し(ステップS309)、通信経路48bを介して当該判定結果を上位制御装置100に通知する(ステップS310)。以上のステップS309,S310の処理がモータ制御部400Aの処理であり、モータ制御部400Aは、ステップS309,S310の処理を繰り返し実行する。 The motor control unit 400A receives the determination result of the overload detection unit 45B from the motor control unit 4A via the communication path 48a (step S309), and notifies the determination result to the host controller 100 via the communication path 48b (step S309). S310). The processes of steps S309 and S310 described above are the processes of the motor control unit 400A, and the motor control unit 400A repeatedly executes the processes of steps S309 and S310.
 上位制御装置100は、過負荷検出部45Bの判定結果をモータ制御部400Aから受信する(ステップS311)。上位制御装置100は、受信した判定結果に基づき、コンバータ1-9が瞬時過負荷状態であるか否かを判定する(ステップS312)。受信した判定結果が瞬時過負荷状態である旨を表す信号の場合(ステップS312、Yes)、モータ500の出力を制限することを決定し(ステップS313)、モータ500を制御するモータ制御部400Aに対してモータ出力を制限したモータ動作指令を出力する(ステップS316)。一方、受信した判定結果が瞬時過負荷状態ではない旨の信号の場合(ステップS312、No)、さらにコンバータ1-9が定常時過負荷状態であるか否かを判定する(ステップS314)。受信した判定結果が定常時過負荷状態である旨を表す信号の場合(ステップS314、Yes)、サーボモータが動作させる各軸の運転サイクルの変更を決定し(ステップS315)、モータ500を制御するモータ制御部400Aに対して、モータ500の平均出力を抑制するように変更されたモータ動作指令を出力する(ステップS316)。なお、受信した判定結果が定常時過負荷状態ではない旨の信号の場合(ステップS314、No)、ステップS315の処理を行わずにステップS316に移行する。以上のステップS311~S316の処理が上位制御装置100の処理であり、上位制御装置100は、ステップS311~S316の処理を繰り返し実行する。 The host control device 100 receives the determination result of the overload detection unit 45B from the motor control unit 400A (step S311). Based on the received determination result, host controller 100 determines whether converter 1-9 is in an instantaneous overload state (step S312). When the received determination result is a signal indicating that the instantaneous overload state is present (step S312, Yes), it is determined to limit the output of the motor 500 (step S313), and the motor control unit 400A that controls the motor 500 is determined. On the other hand, a motor operation command that limits the motor output is output (step S316). On the other hand, if the received determination result is a signal indicating that the instantaneous overload state is not present (step S312, No), it is further determined whether or not the converter 1-9 is in a steady state overload state (step S314). If the received determination result is a signal indicating that the steady-state overload state is present (step S314, Yes), the change of the operation cycle of each axis operated by the servo motor is determined (step S315), and the motor 500 is controlled. The motor operation command changed so as to suppress the average output of the motor 500 is output to the motor control unit 400A (step S316). When the received determination result is a signal indicating that the steady-state overload state is not present (step S314, No), the process proceeds to step S316 without performing the process of step S315. The processes of steps S311 to S316 described above are the processes of the host controller 100, and the host controller 100 repeatedly executes the processes of steps S311 to S316.
 以上の制御を要約すると以下の通りである。まず、瞬時過負荷状態と判定された場合、上位制御装置100を介さずにモータ制御部4Aにてモータ出力を制限するようにモータ5に対し交流電力を出力する。この制御と並行して、モータ制御部400A及び上位制御装置100に対し、瞬時過負荷状態であることを通知する。上位制御装置100は、判定結果に基づき、モータ500のモータ動作の出力を制限するように、モータ500に対するモータ動作指令を生成し、モータ駆動装置400に出力する。モータ駆動装置4では、一旦、モータ5の出力を制限して瞬時過負荷状態を回避し、その後、上位制御装置100にて改めてモータ動作指令の見直しを図る。 The above control is summarized as follows. First, when it is determined as an instantaneous overload state, AC power is output to the motor 5 so that the motor control unit 4 </ b> A limits the motor output without going through the host controller 100. In parallel with this control, the motor control unit 400A and the host control device 100 are notified of the instantaneous overload state. Based on the determination result, the host controller 100 generates a motor operation command for the motor 500 so as to limit the output of the motor operation of the motor 500 and outputs the motor operation command to the motor drive device 400. In the motor drive device 4, the output of the motor 5 is once limited to avoid an instantaneous overload state, and thereafter, the host control device 100 reviews the motor operation command again.
 一方、定常時過負荷状態と判定された場合、モータ制御部4Aは、上位制御装置100から出力されたモータ動作指令に基づいた動作指令を続け、これと並行して、モータ制御部400A及び上位制御装置100に対し、定常時過負荷状態であることを通知する。上位制御装置100は、判定結果に基づき、モータ500のモータ動作における平均出力を制限するようにモータ動作指令を生成し、モータ駆動装置400に出力する。 On the other hand, when it is determined that the steady state overload state, the motor control unit 4A continues the operation command based on the motor operation command output from the host control device 100, and in parallel with this, the motor control unit 400A and the host control unit The control device 100 is notified that it is in a steady state overload state. Based on the determination result, host controller 100 generates a motor operation command so as to limit the average output in the motor operation of motor 500 and outputs the motor operation command to motor drive device 400.
 なお、上記の説明では、瞬時過負荷状態と判定された場合にモータ5に対する出力制限を行い、定常時過負荷状態と判定された場合にモータ500に対する出力制限を行うように説明したが、瞬時過負荷状態と判定された場合にモータ5及びモータ500の双方に対する出力制限を行ってもよい。また、定常時過負荷状態と判定された場合にモータ5及びモータ500の双方に対する出力制限を行ってもよい。 In the above description, the output limit for the motor 5 is limited when it is determined as an instantaneous overload state, and the output limit for the motor 500 is limited when it is determined as a steady state overload state. When it is determined that the state is an overload state, the output of both the motor 5 and the motor 500 may be limited. Further, when it is determined that the state is an overload state at the steady state, output restriction may be performed on both the motor 5 and the motor 500.
 また、過負荷検出部45Bにより、瞬時過負荷状態の検出と、定常時過負荷状態の検出をそれぞれ行うことができるが、過負荷状態の通知方法については、それぞれ過負荷検出専用の通信ラインを設けてもよいし、シリアル通信等で過負荷状態を通知する方式でもよい。 The overload detection unit 45B can detect an instantaneous overload state and a steady-state overload state, respectively. For the overload state notification method, a dedicated communication line for overload detection is provided. It may be provided, or a method of notifying an overload state by serial communication or the like may be used.
 実施の形態9によれば、コンバータ1-9が瞬時過負荷状態である場合には、すばやくモータ出力を低減させることができる。また、コンバータ1-9が定常時過負荷状態である場合には、上位制御装置100から各モータ駆動装置に出力されるモータ動作指令の見直しにより厳しい運転サイクルを改善し、コンバータ1-9に搭載されるパワーモジュール22及び平滑コンデンサ21の温度上昇を低減させることができる。これらの制御により、コンバータ1-9の寿命劣化、破損といった悪影響をシステム停止させることなく解消することができる。また、工作機械のような複数のモータを使用する産業機械においては、サイクルタイムが長くなるのを防ぐように、モータ動作指令を出力することで、サイクルタイムを維持しながら、コンバータ1-9の過負荷状態を解消することができる。そのため、容量の小さいコンバータを選定することができ、産業機械の低コスト化に寄与することができる。 According to the ninth embodiment, when the converter 1-9 is in an instantaneous overload state, the motor output can be quickly reduced. In addition, when converter 1-9 is in an overload state during normal operation, the severe operation cycle is improved by reviewing the motor operation command output from host controller 100 to each motor drive device, and installed in converter 1-9. The temperature rise of the power module 22 and the smoothing capacitor 21 can be reduced. With these controls, adverse effects such as deterioration and damage of the converter 1-9 can be solved without stopping the system. Further, in an industrial machine using a plurality of motors such as machine tools, by outputting a motor operation command so as to prevent the cycle time from becoming long, the cycle time can be maintained while maintaining the cycle time. An overload condition can be eliminated. Therefore, a converter having a small capacity can be selected, which can contribute to cost reduction of the industrial machine.
実施の形態10.
 図38は、実施の形態10に係るコンバータ及びモータ制御装置の構成を示す図である。実施の形態10に係るコンバータ1-10は、実施の形態3で示した図19に示すコンバータ1-3と同一の構成であるが、母線電圧検出部23、電圧位相検出部24、母線電流検出部25、ベース駆動信号生成部26及び回生制御部28の図示は省略する一方で、コンバータ1-10の内部に停電検出部50が追加されている。また、図38の構成では、実施の形態8及び実施の形態9と同様に、モータ駆動装置400、モータ500及び上位制御装置100が追加されている。さらに、図38の構成では、モータ駆動装置4の内部には、直流端子17-18間の端子間電圧を検出する直流電圧検出部82が配置され、モータ駆動装置400の内部には、直流端子19-20間の端子間電圧を検出する直流電圧検出部83が配置されている。また、上位制御装置100、モータ駆動装置400、モータ駆動装置4、コンバータ1-10は、通信経路でデイジーチェーン接続されている。具体的には、コンバータ1-10の停電検出部50とモータ駆動装置4のモータ制御部4Aとは通信経路85で接続され、モータ駆動装置4のモータ制御部4Aとモータ駆動装置400のモータ制御部400Aとは通信経路86aで接続され、モータ駆動装置400のモータ制御部400Aと上位制御装置100とは通信経路86bで接続されている。前述の構成では、例えば、上位制御装置100からモータ駆動装置4に対し出力されるモータ動作指令は、モータ駆動装置400のモータ制御部400Aを介してモータ駆動装置4のモータ制御部4Aに入力されることになる。
Embodiment 10 FIG.
FIG. 38 is a diagram illustrating a configuration of a converter and a motor control device according to the tenth embodiment. The converter 1-10 according to the tenth embodiment has the same configuration as the converter 1-3 shown in FIG. 19 shown in the third embodiment, but the bus voltage detection unit 23, the voltage phase detection unit 24, the bus current detection While the illustration of the unit 25, the base drive signal generation unit 26, and the regeneration control unit 28 is omitted, a power failure detection unit 50 is added inside the converter 1-10. In the configuration of FIG. 38, a motor drive device 400, a motor 500, and a host control device 100 are added as in the eighth and ninth embodiments. Further, in the configuration of FIG. 38, a DC voltage detector 82 for detecting the voltage between the DC terminals 17-18 is arranged inside the motor driving device 4, and the DC terminal is provided inside the motor driving device 400. A DC voltage detector 83 for detecting a voltage between terminals 19-20 is arranged. Further, the host control device 100, the motor drive device 400, the motor drive device 4, and the converter 1-10 are daisy chain connected via a communication path. Specifically, the power failure detection unit 50 of the converter 1-10 and the motor control unit 4A of the motor drive device 4 are connected via a communication path 85, and the motor control unit 4A of the motor drive device 4 and the motor control of the motor drive device 400 are controlled. The unit 400A is connected by a communication path 86a, and the motor control unit 400A of the motor driving device 400 and the host control apparatus 100 are connected by a communication path 86b. In the above-described configuration, for example, a motor operation command output from the host control device 100 to the motor drive device 4 is input to the motor control unit 4A of the motor drive device 4 via the motor control unit 400A of the motor drive device 400. Will be.
 実施の形態3でも説明したように、停電検出部50は、入力電圧検出部43の出力信号に基づいて交流電源3の停電を検出し、前述の通信経路85,86a,86bを介してモータ駆動装置4、モータ駆動装置400及び上位制御装置100に停電情報を通知する機能を備える。 As described in the third embodiment, the power failure detection unit 50 detects a power failure of the AC power source 3 based on the output signal of the input voltage detection unit 43, and drives the motor via the communication paths 85, 86a, 86b. A function of notifying the power failure information to the device 4, the motor drive device 400, and the host control device 100 is provided.
 モータ制御部4Aは、モータ5に任意の交流電力を供給することでモータ5を可変速制御する機能と、直流電圧検出部82の検出信号を受信する機能とを備える。モータ制御部400Aは、モータ500に任意の交流電力を供給することでモータ500を可変速制御する機能と、直流電圧検出部83の検出信号を受信する機能とを備える。なお、直流電圧検出部82の検出信号と、直流電圧検出部83の検出信号とは、平滑コンデンサ21の端子間電圧、すなわち母線電圧検出部23の検出値と同一となる。 The motor control unit 4A has a function of controlling the motor 5 at a variable speed by supplying arbitrary AC power to the motor 5, and a function of receiving a detection signal of the DC voltage detection unit 82. The motor control unit 400A has a function of controlling the motor 500 at a variable speed by supplying arbitrary AC power to the motor 500, and a function of receiving a detection signal of the DC voltage detection unit 83. Note that the detection signal of the DC voltage detection unit 82 and the detection signal of the DC voltage detection unit 83 are the same as the voltage across the smoothing capacitor 21, that is, the detection value of the bus voltage detection unit 23.
 交流電源3で停電が発生すると、モータ駆動装置4及びモータ駆動装置400は、それぞれのモータの正常な運転を継続できなくなる。また、この際にコンバータ1-10が電源回生動作を行うと、母線電圧VPNと交流電源3との間の電圧差が大きくなっているため、過大な電流が流れ、パワーモジュール22の破損に繋がるおそれがある。そのため、停電発生時は、電源回生動作を行うことができない。 When a power failure occurs in the AC power supply 3, the motor driving device 4 and the motor driving device 400 cannot continue normal operation of each motor. At this time, if the converter 1-10 performs the power regeneration operation, the voltage difference between the bus voltage VPN and the AC power supply 3 is large, so that an excessive current flows and the power module 22 is damaged. There is a fear. Therefore, the power regeneration operation cannot be performed when a power failure occurs.
 停電発生時に、モータ5又はモータ500が動作していた場合、動作しているモータを停止させる必要がある。一方、モータを減速させるとモータの回生電力がコンバータ1-10の平滑コンデンサ21に蓄積され、母線電圧VPNが上昇する。本来であれば、母線電圧VPNが上昇した場合、パワーモジュール22のスイッチング素子S1~S6を動作させて電源回生動作を行えばよいが、前述の理由で電源回生動作を行うことができない。その結果、母線電圧VPNがさらに上昇することになる。そのため、母線電圧VPNがある値を超えると過電圧と判断して各モータの制御を停止しなければならない。この場合、各モータが停止するまでには時間がかかり、例えば工作機械の送り軸などは、軸端に衝突する可能性がある。 If the motor 5 or 500 is operating when a power failure occurs, it is necessary to stop the operating motor. On the other hand, when the motor is decelerated, the regenerative power of the motor is accumulated in the smoothing capacitor 21 of the converter 1-10, and the bus voltage VPN increases. Originally, when the bus voltage VPN rises, the power supply regeneration operation may be performed by operating the switching elements S1 to S6 of the power module 22, but the power regeneration operation cannot be performed for the above-described reason. As a result, the bus voltage VPN further increases. Therefore, when the bus voltage VPN exceeds a certain value, it is determined that the voltage is an overvoltage, and the control of each motor must be stopped. In this case, it takes time until each motor stops, and for example, the feed shaft of the machine tool may collide with the shaft end.
 また、モータの特性、又は、モータによって駆動される、例えば重力軸が受ける摩擦の状況によっては、モータを減速させる場合であってもモータ駆動装置からモータへ交流電力を供給し続ける必要がある。すなわち、この場合には、モータ減速時であっても、モータに回生電力が発生しないので平滑コンデンサ21に蓄積された直流電力を使用することになる。このような状況で交流電源3に停電が発生し、モータを停止させようとすると、母線電圧VPNは急速に低下する。通常、モータ駆動装置は、母線電圧VPNが低下し過ぎると、モータを駆動するための交流電力を供給できなくなるため、低電圧と判断してモータの制御を停止する。この場合もモータが停止するまでに時間がかかり、同様に軸端等に衝突する可能性がある。 Also, depending on the characteristics of the motor or the state of friction driven by the motor, for example, the gravitational axis, it is necessary to continue supplying AC power from the motor driving device to the motor even when the motor is decelerated. That is, in this case, since the regenerative power is not generated in the motor even when the motor is decelerated, the DC power stored in the smoothing capacitor 21 is used. In such a situation, when a power failure occurs in the AC power supply 3 and the motor is stopped, the bus voltage VPN rapidly decreases. Normally, when the bus voltage VPN is too low, the motor drive device cannot supply AC power for driving the motor, and therefore determines that the voltage is low and stops control of the motor. Also in this case, it takes time until the motor stops, and there is a possibility that the motor collides with the shaft end or the like.
 前述の問題を解決するため、実施の形態10では、コンバータ1-10の停電検出部50の判定結果を、通信経路85,86a,86bを介してモータ制御部4A、モータ制御部400A及び上位制御装置100に通知する。通知された判定結果が交流電源3に停電が発生した旨の信号であった場合、モータ制御部4Aは、直流電圧検出部82の検出値に基づいてモータ5に供給する交流電力を制御する。また、モータ制御部400Aは、モータ500を減速停止させるように交流電力を供給する。例えば、工作機械において、前述のモータ5をスピンドルモータ、モータ500をサーボモータとすると、交流電源3に停電が発生した場合、送り軸を動作させるサーボモータを速やかに停止させることを優先させる必要がある。そのため、スピンドルモータにあたるモータ5の動作により母線電圧VPNを適正な値に保つように制御し、サーボモータにあたるモータ500が安全に減速停止できるようにする。 In order to solve the above-described problem, in the tenth embodiment, the determination result of the power failure detection unit 50 of the converter 1-10 is transmitted to the motor control unit 4A, the motor control unit 400A, and the host control via the communication paths 85, 86a, 86b. Notify the device 100. When the notified determination result is a signal indicating that a power failure has occurred in the AC power supply 3, the motor control unit 4 </ b> A controls the AC power supplied to the motor 5 based on the detection value of the DC voltage detection unit 82. Further, the motor control unit 400A supplies AC power so as to decelerate and stop the motor 500. For example, in a machine tool, when the motor 5 is a spindle motor and the motor 500 is a servo motor, it is necessary to give priority to quickly stopping the servo motor that operates the feed shaft when a power failure occurs in the AC power supply 3. is there. Therefore, the operation of the motor 5 corresponding to the spindle motor is controlled to keep the bus voltage VPN at an appropriate value so that the motor 500 corresponding to the servo motor can be safely decelerated and stopped.
 なお、前述のように直流電圧検出部82は、母線電圧検出部23が検出する母線電圧VPNと同一となる。このため、直流電圧検出部82の検出値は、母線電圧VPNとして扱う。モータ制御部4Aの内部には、母線電圧VPNを判定する母線電圧判定回路を構成する。モータ制御部4Aは、母線電圧判定回路の判定結果に基づいてモータ5に供給する交流電力を決定する。 As described above, the DC voltage detector 82 is the same as the bus voltage VPN detected by the bus voltage detector 23. For this reason, the detection value of the DC voltage detection unit 82 is handled as the bus voltage VPN. A bus voltage determination circuit that determines the bus voltage VPN is configured inside the motor control unit 4A. The motor control unit 4A determines the AC power supplied to the motor 5 based on the determination result of the bus voltage determination circuit.
 図39は、実施の形態10における母線電圧判定回路の構成例を示す図である。図39において、母線電圧判定回路は、比較器196,197で構成される。比較器196のマイナス入力端子には母線電圧上限値VPNmaxが入力され、比較器196のプラス入力端子には直流電圧検出部82の検出値VPNが入力される。比較器197のマイナス入力端子には直流電圧検出部82の検出値VPNが入力され、比較器197のプラス入力端子には母線電圧下限値VPNminが入力される。比較器196は、母線電圧VPNが予め決められた母線電圧上限値VPNmax以上か否かを判定する。比較器197は、母線電圧VPNが予め決められた母線電圧下限値VPNmin以下か否かを判定する。 FIG. 39 is a diagram illustrating a configuration example of the bus voltage determination circuit according to the tenth embodiment. In FIG. 39, the bus voltage determination circuit includes comparators 196 and 197. The bus voltage upper limit value VPNmax is input to the negative input terminal of the comparator 196, and the detection value VPN of the DC voltage detection unit 82 is input to the positive input terminal of the comparator 196. The detected value VPN of the DC voltage detector 82 is input to the minus input terminal of the comparator 197, and the bus voltage lower limit value VPNmin is input to the plus input terminal of the comparator 197. Comparator 196 determines whether or not bus voltage VPN is equal to or higher than a predetermined bus voltage upper limit value VPNmax. The comparator 197 determines whether or not the bus voltage VPN is equal to or lower than a predetermined bus voltage lower limit value VPNmin.
 比較器196がHighレベルの信号を出力し、比較器197がLowレベルの信号を出力した場合、母線電圧VPNが適正値よりも大きくなっている状態であり、母線電圧VPNを低下させる必要がある。この場合、スピンドルモータにあたるモータ5を加速させれば、モータ5は力行動作となり、母線電圧VPNを低下させることができる。また、比較器196がLowレベルの信号を出力し、比較器197がHighレベルの信号を出力した場合、母線電圧VPNは適正値よりも小さくなっている状態であり、母線電圧VPNを上昇させる必要がある。この場合、スピンドルモータにあたるモータ5を減速させれば、モータ5は回生動作となり、母線電圧VPNを上昇させることができる。 When the comparator 196 outputs a high level signal and the comparator 197 outputs a low level signal, the bus voltage VPN is larger than an appropriate value, and the bus voltage VPN needs to be lowered. . In this case, if the motor 5 corresponding to the spindle motor is accelerated, the motor 5 becomes a power running operation, and the bus voltage VPN can be lowered. When the comparator 196 outputs a low level signal and the comparator 197 outputs a high level signal, the bus voltage VPN is in a state of being lower than an appropriate value, and the bus voltage VPN needs to be raised. There is. In this case, if the motor 5 corresponding to the spindle motor is decelerated, the motor 5 performs a regenerative operation, and the bus voltage VPN can be increased.
 次に、実施の形態10に係るコンバータ、モータ駆動装置及び上位制御装置の動作について、図38に加え、図40,図41及び図42の各図面を参照して説明する。図40は、実施の形態10におけるコンバータ1-10の動作を示すフローチャートである。図41は、実施の形態10におけるモータ制御部4Aの動作を示すフローチャートである。図42は、実施の形態10におけるモータ制御部400Aの動作を示すフローチャートである。なお、図40から図42では、それぞれのフローチャートを個々に示しているが、図37のように1つの図で示すことも可能である。 Next, operations of the converter, the motor drive device, and the host control device according to Embodiment 10 will be described with reference to FIGS. 40, 41, and 42 in addition to FIG. FIG. 40 is a flowchart showing an operation of converter 1-10 in the tenth embodiment. FIG. 41 is a flowchart showing the operation of the motor control unit 4A in the tenth embodiment. FIG. 42 is a flowchart illustrating the operation of the motor control unit 400A according to the tenth embodiment. 40 to 42, the respective flowcharts are individually shown. However, it is also possible to show them in one figure as shown in FIG.
 まず、図40を用いて、実施の形態10におけるコンバータ1-10の動作を説明する。入力電圧検出部43は、前述のように交流電源3の入力電圧を検出する(ステップS401)。停電検出部50は、入力電圧検出部43の出力信号に基づき交流電源3に停電が発生したか否かを判定する(ステップS402)。停電検出部50は、通信経路85を介して判定結果をモータ駆動装置4内部のモータ制御部4Aに通知する(ステップS403)。以上のステップS401~S403の処理がコンバータ1-10の処理であり、コンバータ1-10は、ステップS401~S403の処理を繰り返し実行する。 First, the operation of converter 1-10 in the tenth embodiment will be described with reference to FIG. The input voltage detection unit 43 detects the input voltage of the AC power supply 3 as described above (step S401). The power failure detection unit 50 determines whether or not a power failure has occurred in the AC power supply 3 based on the output signal of the input voltage detection unit 43 (step S402). The power failure detection unit 50 notifies the determination result to the motor control unit 4A inside the motor drive device 4 via the communication path 85 (step S403). The processes in steps S401 to S403 described above are the processes of converter 1-10, and converter 1-10 repeatedly executes the processes in steps S401 to S403.
 次に、図41を用いて、実施の形態10におけるモータ制御部4Aの動作を説明する。モータ制御部4Aは、停電検出部50の判定結果を受信する(ステップS501)。モータ制御部4Aは、受信した判定結果をモータ制御部400Aに通知し(ステップS502)、受信した判定結果に基づき交流電源3に停電が発生したか否かを判定する(ステップS503)。モータ制御部4Aは、受信した判定結果が停電発生である旨を表す信号の場合(ステップS503、Yes)、直流電圧検出部82によって検出された母線電圧VPNが母線電圧上限値VPNmax以上であるか否かを判定する(ステップS504)。 Next, the operation of the motor control unit 4A in the tenth embodiment will be described with reference to FIG. The motor control unit 4A receives the determination result of the power failure detection unit 50 (step S501). The motor control unit 4A notifies the received determination result to the motor control unit 400A (step S502), and determines whether or not a power failure has occurred in the AC power supply 3 based on the received determination result (step S503). When the received determination result is a signal indicating that a power failure has occurred (step S503, Yes), the motor control unit 4A determines whether the bus voltage VPN detected by the DC voltage detection unit 82 is equal to or higher than the bus voltage upper limit value VPNmax. It is determined whether or not (step S504).
 母線電圧VPNが母線電圧上限値VPNmax以上である場合(実施の形態10では、比較器196の出力信号がHighレベル、比較器197の出力信号がLowレベルの場合)(ステップS504、Yes)、モータ制御部4Aは、モータ5を加速するように制御し(ステップS508)、モータ5に交流電力を出力する(ステップS509)。 When the bus voltage VPN is equal to or higher than the bus voltage upper limit value VPNmax (in the tenth embodiment, when the output signal of the comparator 196 is high level and the output signal of the comparator 197 is low level) (step S504, Yes), the motor The control unit 4A controls the motor 5 to accelerate (step S508), and outputs AC power to the motor 5 (step S509).
 母線電圧VPNが母線電圧上限値VPNmax未満の場合(実施の形態10では、比較器196の出力信号がLowレベルの場合)(ステップS504、No)、モータ制御部4Aは、母線電圧VPNが母線電圧下限値VPNmin以下であるか否かを判定する(ステップS505)。母線電圧VPNが母線電圧下限値VPNmin以下(実施の形態10では、比較器196の出力信号がLowレベル、比較器197の出力信号がHighレベルの場合)(ステップS505、Yes)、モータ制御部4Aは、モータ5を減速するように制御し(ステップS507)、モータ5に交流電力を出力する(ステップS509)。 When the bus voltage VPN is less than the bus voltage upper limit value VPNmax (in the tenth embodiment, when the output signal of the comparator 196 is at the low level) (step S504, No), the motor control unit 4A determines that the bus voltage VPN is the bus voltage. It is determined whether it is below the lower limit value VPNmin (step S505). The bus voltage VPN is equal to or lower than the bus voltage lower limit value VPNmin (in the tenth embodiment, when the output signal of the comparator 196 is low level and the output signal of the comparator 197 is high level) (step S505, Yes), the motor control unit 4A Controls the motor 5 to decelerate (step S507), and outputs AC power to the motor 5 (step S509).
 母線電圧VPNが母線電圧下限値VPNminより大きい(実施の形態10では、比較器197の出力信号がLowレベルの場合であるが、ステップS505においては、比較器196及び比較器197の出力信号がともにLowレベルの場合)場合(ステップS505、No)、モータ制御部4Aは、モータ5への電力供給を停止してモータ5をフリーランさせ(ステップS506)、モータ5にステップS506に基づいて生成された交流電力を出力する(ステップS509)。なお、この制御の場合は、モータ5はフリーランなので電力供給は停止状態である。 The bus voltage VPN is larger than the bus voltage lower limit value VPNmin (in the tenth embodiment, the output signal of the comparator 197 is low level, but in step S505, the output signals of the comparator 196 and the comparator 197 are both In the case of low level) (step S505, No), the motor control unit 4A stops the power supply to the motor 5 and free-runs the motor 5 (step S506), and the motor 5 is generated based on step S506. AC power is output (step S509). In this control, since the motor 5 is free running, the power supply is stopped.
 また、ステップS501の判定において、その判定結果が、停電が発生していない旨の信号であった場合、ステップS504~S508の処理をスキップし、ステップS509の処理を行う。すなわち、モータ制御部4Aは、上位制御装置100から送信されたモータ動作指令通りにモータ5を動作させるために交流電力を出力する。以上のステップS501~S509がモータ制御部4Aの処理であり、モータ制御部4Aは、ステップS501~S509の処理を繰り返し実行する。なお、ステップS506の制御では、モータ制御部4Aは、モータ5への電力供給を停止してモータ5をフリーランさせているが、モータ5が一定速度を維持するように制御してもよい。 If it is determined in step S501 that the determination result is a signal indicating that a power failure has not occurred, the processing in steps S504 to S508 is skipped, and the processing in step S509 is performed. That is, the motor control unit 4A outputs alternating current power to operate the motor 5 in accordance with the motor operation command transmitted from the host control device 100. The above steps S501 to S509 are the processes of the motor control unit 4A, and the motor control unit 4A repeatedly executes the processes of steps S501 to S509. In the control in step S506, the motor control unit 4A stops the power supply to the motor 5 and free-runs the motor 5. However, the motor 5 may be controlled to maintain a constant speed.
 次に、図42を用いて、実施の形態10におけるモータ制御部400Aの動作を説明する。モータ制御部400Aは、通信経路86aを介してモータ制御部4Aから停電の有無に関する判定結果を受信する(ステップS601)。モータ制御部400Aは、通信経路86bを介して上位制御装置100に対し停電の有無に関する判定結果を通知する(ステップS602)。モータ制御部400Aは、ステップS601で受信した判定結果に基づき交流電源3に停電が発生したか否かを判定する(ステップS603)。受信した判定結果が停電発生である旨を表す信号の場合(ステップS603、Yes)、モータ制御部400Aは、モータ500を減速させるようにモータ動作指令を変更し(ステップS604)、モータ500に対し変更したモータ動作指令に基づいた交流電力を出力する(ステップS605)。一方、受信した判定結果が、停電が発生していない旨の信号であった場合(ステップS603、No)、モータ制御部400Aは、ステップS604の処理をスキップして、ステップS605の処理を行う。すなわち、モータ制御部400Aは、上位制御装置100から送信されたモータ動作指令通りにモータ500を動作させるための交流電力を出力する(ステップS605)。以上のステップS601~S605がモータ制御部400Aの処理であり、モータ制御部400Aは、ステップS601~S605の処理を繰り返し実行する。 Next, the operation of the motor control unit 400A according to the tenth embodiment will be described with reference to FIG. The motor control unit 400A receives a determination result regarding the presence or absence of a power failure from the motor control unit 4A via the communication path 86a (step S601). The motor control unit 400A notifies the determination result regarding the presence or absence of a power failure to the host control device 100 via the communication path 86b (step S602). The motor control unit 400A determines whether or not a power failure has occurred in the AC power supply 3 based on the determination result received in step S601 (step S603). When the received determination result is a signal indicating that a power failure has occurred (step S603, Yes), the motor control unit 400A changes the motor operation command to decelerate the motor 500 (step S604), and AC power based on the changed motor operation command is output (step S605). On the other hand, when the received determination result is a signal indicating that a power failure has not occurred (No in step S603), the motor control unit 400A skips the process in step S604 and performs the process in step S605. That is, the motor control unit 400A outputs AC power for operating the motor 500 in accordance with the motor operation command transmitted from the host control device 100 (step S605). The above steps S601 to S605 are the processing of the motor control unit 400A, and the motor control unit 400A repeatedly executes the processing of steps S601 to S605.
 実施の形態10では、交流電源3に停電が発生した場合、モータ動作指令を出力する上位制御装置100を介さずにモータ駆動装置4及びモータ駆動装置400において、例えば送り軸を駆動するモータ500を速やかに停止させることができる。例えば、モータ制御部400Aが停電検出信号を受信すると、モータ500を減速させる。このとき、この減速の際の減速エネルギーが平滑コンデンサ21に蓄積されると母線電圧VPNが上昇するが、この母線電圧VPNの増減をモータ5で行うことで、母線電圧VPNが過電圧や低電圧にならずにモータ500を停止させることができる。入力電圧検出部43は、実施の形態3に示した信号を検出しているため、低コストで実現することができ、停電検出部50も低コストで実現することができる。 In the tenth embodiment, when a power failure occurs in the AC power source 3, the motor driving device 4 and the motor driving device 400, for example, drive the motor 500 that drives the feed shaft without passing through the host control device 100 that outputs a motor operation command. It can be stopped immediately. For example, when the motor control unit 400A receives a power failure detection signal, the motor 500 is decelerated. At this time, when the deceleration energy during this deceleration is accumulated in the smoothing capacitor 21, the bus voltage VPN increases. By increasing or decreasing the bus voltage VPN by the motor 5, the bus voltage VPN becomes an overvoltage or low voltage. In addition, the motor 500 can be stopped. Since the input voltage detection unit 43 detects the signal shown in the third embodiment, it can be realized at low cost, and the power failure detection unit 50 can also be realized at low cost.
 なお、実施の形態1から実施の形態10で説明したコンバータ及びモータ駆動装置における制御機能の一部は、フォトカプラ、ロジックIC等を用いたハードウェアで構成してもよいし、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらを組み合わせたものでもよいし、ソフトウェアで構成してもよい。 Note that some of the control functions in the converter and the motor driving device described in the first to tenth embodiments may be configured by hardware using a photocoupler, a logic IC, or the like. A circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, a combination of these, or a software may be used.
 また、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 Further, the configuration shown in the above embodiment shows an example of the content of the present invention, and can be combined with another known technique, and can be combined without departing from the gist of the present invention. It is also possible to omit or change a part of.
 1-1,1-2,1-3,1-4,1-5,1-6,1-7,1-8,1-9,1-10 コンバータ、1A コンバータ制御部、2,2-1,2-2,2-3 リアクトル、3 交流電源、3R,3S,3T,21a,21b 端子、4,400 モータ駆動装置、4A,400A モータ制御部、5,500 モータ、6-1,6-2 出力端子、8-1,8-2,8-3,9-1,9-2,9-3,9-4,9-5,291,291-1,291-2,292,292-1,292-2,293,293-1,293-2,294,294-1,294-2 配線、11,12,13 交流端子、14,15,17,18,19,20 直流端子、21 平滑コンデンサ、22 パワーモジュール、23 母線電圧検出部、24,24A 電圧位相検出部、25 母線電流検出部、25A 入力電流検出部、26 ベース駆動信号生成部、27 ベース駆動回路、28,28A 回生制御部、29 制御電源部、30 絶縁トランス、31 主電源、32 電源制御用IC、33 スイッチング素子、34 フィードバック部、35 ベース制御回路、35A,35B,35C,35D,35E,35F 制御回路、36 電圧印加部、36A 第1電圧印加部、36B 第2電圧印加部、36C 第3電圧印加部、36D 第4電圧印加部、36E 第5電圧印加部、36F 第6電圧印加部、37,63 NPNトランジスタ、38 PNPトランジスタ、39 ベース抵抗、40 中性点、41A,41B,41C 抵抗、42 位相検出部、43 入力電圧検出部、44 RST-dq座標変換部、45,45A,45B 過負荷検出部、46,47a,47b,48a,48b,85,86a,86b 通信経路、50 停電検出部、51,52,53,91,92,93 交流配線、60 回生開始判定部、61 回生停止判定部、62 論理和回路、64 減算器、65,66,190,191,195,196,197 比較器、70N,71N 負極母線、70P,71P 正極母線、80N,80P,501,502,503 接続点、82,83 直流電圧検出部、192 論理和回路、193 絶対値算出部、194 温度上昇推定部、100 上位制御装置、C21,C22,C23,C24 コンデンサ、D1,D2,D3,D4,D5,D6,D21,D22,D23,D24 整流素子、S1,S2,S3,S4,S5,S6 スイッチング素子。 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10 converter, 1A converter control unit, 2,2- 1, 2-2, 2-3 reactor, 3 AC power supply, 3R, 3S, 3T, 21a, 21b terminal, 4,400 motor drive unit, 4A, 400A motor control unit, 5,500 motor, 6-1, 6 -2 output terminal, 8-1, 8-2, 8-3, 9-1, 9-2, 9-3, 9-4, 9-5, 291, 291-1, 291-2, 292, 292 -1,292-2,293,293-1,293-2,294,294-1,294-2 wiring, 11, 12, 13 AC terminal, 14, 15, 17, 18, 19, 20 DC terminal, 21 smoothing capacitor, 22 power module, 23 bus voltage detector, 24, 2 A voltage phase detector, 25 bus current detector, 25A input current detector, 26 base drive signal generator, 27 base drive circuit, 28, 28A regeneration controller, 29 control power supply, 30 insulation transformer, 31 main power, 32 IC for power supply control, 33 switching element, 34 feedback unit, 35 base control circuit, 35A, 35B, 35C, 35D, 35E, 35F control circuit, 36 voltage application unit, 36A first voltage application unit, 36B second voltage application Part, 36C third voltage applying part, 36D fourth voltage applying part, 36E fifth voltage applying part, 36F sixth voltage applying part, 37, 63 NPN transistor, 38 PNP transistor, 39 base resistance, 40 neutral point, 41A , 41B, 41C resistance, 42 phase detector, 43 input voltage detector 44 RST-dq coordinate conversion unit, 45, 45A, 45B overload detection unit, 46, 47a, 47b, 48a, 48b, 85, 86a, 86b communication path, 50 power failure detection unit, 51, 52, 53, 91, 92 , 93 AC wiring, 60 regeneration start determination unit, 61 regeneration stop determination unit, 62 OR circuit, 64 subtractor, 65, 66, 190, 191, 195, 196, 197 comparator, 70N, 71N negative bus, 70P, 71P positive bus, 80N, 80P, 501, 502, 503 connection point, 82, 83 DC voltage detection unit, 192 OR circuit, 193 absolute value calculation unit, 194 temperature rise estimation unit, 100 host controller, C21, C22, C23, C24 capacitors, D1, D2, D3, D4, D5, D6, D21, D22, D23, D24 Flow element, S1, S2, S3, S4, S5, S6 switching element.

Claims (23)

  1.  入力電源である交流電源とモータを可変速制御するモータ駆動装置との間に配置され、前記モータ駆動装置に直流電力を供給すると共に、モータ減速時の回生電力を前記交流電源に戻す電源回生機能を備えるコンバータにおいて、
     前記交流電源に接続される交流端子と、高電位側の直流配線が接続される第1端子と、低電位側の直流配線が接続される第2端子とを有すると共に、複数のスイッチング素子を有するパワーモジュールと、
     複数の前記スイッチング素子のそれぞれを駆動する駆動回路と、
     複数の前記スイッチング素子に供給される電力と前記駆動回路に供給される電力とを生成する制御電源部と、
     前記第1端子に接続される複数の前記スイッチング素子のエミッタに流れる信号、又は、前記制御電源部の基準電位となるグランドに流れる信号に基づいて、交流電圧の電圧位相を検出し、検出した前記電圧位相を示す位相検出信号を生成して出力する電圧位相検出部と、
     前記位相検出信号に基づいて、複数の前記スイッチング素子のオンオフ動作を制御するための駆動信号を生成する駆動信号生成部と、
     を備えることを特徴とするコンバータ。
    A power regeneration function that is arranged between an AC power source that is an input power source and a motor driving device that controls the motor at a variable speed, supplies DC power to the motor driving device, and returns regenerative power when the motor decelerates to the AC power source In a converter comprising:
    An AC terminal connected to the AC power source, a first terminal to which a high potential side DC wiring is connected, a second terminal to which a low potential side DC wiring is connected, and a plurality of switching elements A power module;
    A drive circuit for driving each of the plurality of switching elements;
    A control power supply unit that generates power supplied to the plurality of switching elements and power supplied to the drive circuit;
    Based on a signal flowing through the emitters of the plurality of switching elements connected to the first terminal or a signal flowing through the ground serving as a reference potential of the control power supply unit, the voltage phase of the AC voltage is detected, and the detected A voltage phase detector that generates and outputs a phase detection signal indicating the voltage phase; and
    A drive signal generator that generates a drive signal for controlling on / off operations of the plurality of switching elements based on the phase detection signal;
    A converter comprising:
  2.  前記電圧位相検出部は、前記交流電圧の相電圧を算出し、前記相電圧の最大値及び最小値のうち少なくとも1つを用いて前記位相検出信号を生成することを特徴とする請求項1に記載のコンバータ。 The voltage phase detection unit calculates a phase voltage of the AC voltage, and generates the phase detection signal using at least one of a maximum value and a minimum value of the phase voltage. The listed converter.
  3.  前記相電圧を前記交流電源の停電の検出に用いることを特徴とする請求項2に記載のコンバータ。 The converter according to claim 2, wherein the phase voltage is used for detection of a power failure of the AC power supply.
  4.  前記駆動信号生成部から出力された前記駆動信号の前記駆動回路への伝達を継続し、又は前記駆動信号生成部から出力された前記駆動信号の前記駆動回路への伝達を停止する信号制御部を備え、
     前記相電圧を前記信号制御部の基準電圧に用いることを特徴とする請求項2に記載のコンバータ。
    A signal control unit that continues transmission of the drive signal output from the drive signal generation unit to the drive circuit or stops transmission of the drive signal output from the drive signal generation unit to the drive circuit; Prepared,
    The converter according to claim 2, wherein the phase voltage is used as a reference voltage of the signal control unit.
  5.  前記電圧位相検出部は、前記交流電圧の線間電圧を算出し、前記線間電圧の最大値及び最小値のうち少なくとも1つを用いて前記位相検出信号を生成することを特徴とする請求項1に記載のコンバータ。 The voltage phase detection unit calculates a line voltage of the AC voltage, and generates the phase detection signal using at least one of a maximum value and a minimum value of the line voltage. The converter according to 1.
  6.  前記線間電圧を前記交流電源の停電の検出に用いることを特徴とする請求項5に記載のコンバータ。 The converter according to claim 5, wherein the line voltage is used for detection of a power failure of the AC power supply.
  7.  前記駆動信号生成部から出力された前記駆動信号の前記駆動回路への伝達を継続し、又は前記駆動信号生成部から出力された前記駆動信号の前記駆動回路への伝達を停止する信号制御部を備え、
     前記線間電圧を前記信号制御部の基準電圧に用いることを特徴とする請求項5に記載のコンバータ。
    A signal control unit that continues transmission of the drive signal output from the drive signal generation unit to the drive circuit or stops transmission of the drive signal output from the drive signal generation unit to the drive circuit; Prepared,
    The converter according to claim 5, wherein the line voltage is used as a reference voltage of the signal control unit.
  8.  前記第1端子に接続される複数の前記スイッチング素子のエミッタに流れる信号、又は、前記制御電源部の基準電位となるグランドに流れる信号に基づいて、前記交流電源の相電圧又は線間電圧を検出する入力電圧検出部を備えることを特徴とする請求項1に記載のコンバータ。 A phase voltage or a line voltage of the AC power supply is detected based on a signal flowing through the emitters of the plurality of switching elements connected to the first terminal or a signal flowing through a ground serving as a reference potential of the control power supply unit. The converter according to claim 1, further comprising an input voltage detection unit that performs the operation.
  9.  前記入力電圧検出部によって検出された線間電圧を前記交流電源の停電の検出に用いる停電検出部を備えることを特徴とする請求項8に記載のコンバータ。 The converter according to claim 8, further comprising a power failure detection unit that uses the line voltage detected by the input voltage detection unit to detect a power failure of the AC power supply.
  10.  前記入力電圧検出部によって検出された相電圧を前記交流電源の停電の検出に用いる停電検出部を備えることを特徴とする請求項8に記載のコンバータ。 The converter according to claim 8, further comprising a power failure detection unit that uses the phase voltage detected by the input voltage detection unit to detect a power failure of the AC power supply.
  11.  前記交流電源は三相交流電源であり、前記電圧位相検出部は、前記三相交流電源の第1の相の電圧位相である第1電圧位相、第2の相の電圧位相である第2電圧位相、第3の相の電圧位相である第3電圧位相及び電源角周波数のうちの少なくとも1つを算出することを特徴とする請求項1から7の何れか1項に記載のコンバータ。 The AC power supply is a three-phase AC power supply, and the voltage phase detector is a first voltage phase that is a voltage phase of a first phase of the three-phase AC power supply, and a second voltage that is a voltage phase of a second phase. The converter according to claim 1, wherein at least one of a phase, a third voltage phase that is a voltage phase of a third phase, and a power supply angular frequency is calculated.
  12.  前記パワーモジュールの交流端子に入力される電流を検出する入力電流検出部と、
     前記入力電流検出部によって検出された三相入力電流を、前記位相検出信号に基づいて座標変換することで有効電力に相当する電流であるd軸電流及び無効電力に相当する電流であるq軸電流を算出する電流値変換部と、
     を備えることを特徴とする請求項11に記載のコンバータ。
    An input current detection unit for detecting a current input to the AC terminal of the power module;
    The three-phase input current detected by the input current detection unit is coordinate-transformed based on the phase detection signal, so that the d-axis current is a current corresponding to active power and the q-axis current is a current corresponding to reactive power. A current value conversion unit for calculating
    The converter according to claim 11, comprising:
  13.  前記d軸電流及び前記q軸電流のうちの少なくとも1つの電流に基づいて前記コンバータが瞬時過負荷状態であるか否かを検出する過負荷検出部を備えたことを特徴とする請求項12に記載のコンバータ。 The overload detection unit for detecting whether or not the converter is in an instantaneous overload state based on at least one of the d-axis current and the q-axis current. The listed converter.
  14.  前記過負荷検出部は、前記コンバータが前記瞬時過負荷状態であるか否かの判定に加え、前記d軸電流及び前記q軸電流のうちの少なくとも1つの電流に基づいて、前記コンバータが定常時過負荷状態であるか否かを判定し、前記過負荷検出部の判定結果を、前記モータ駆動装置又は前記モータ駆動装置にモータ動作指令を出力する上位制御装置に出力することを特徴とする請求項13に記載のコンバータ。 In addition to determining whether or not the converter is in the instantaneous overload state, the overload detection unit is based on at least one of the d-axis current and the q-axis current when the converter is in a steady state. It is determined whether or not an overload state occurs, and the determination result of the overload detection unit is output to the motor drive device or a host control device that outputs a motor operation command to the motor drive device. Item 14. The converter according to Item 13.
  15.  前記過負荷検出部は、前記d軸電流が、予め定められた許容d軸電流下限値より大きく、且つ許容d軸電流上限値より小さい場合、前記コンバータは瞬時過負荷状態で動作していないと判定し、前記d軸電流が、前記許容d軸電流下限値以下、又は前記許容d軸電流上限値以上となった場合、前記コンバータは瞬時過負荷状態で動作していると判定することを特徴とする請求項13又は14に記載のコンバータ。 When the d-axis current is greater than a predetermined allowable d-axis current lower limit value and smaller than an allowable d-axis current upper limit value, the overload detection unit determines that the converter is not operating in an instantaneous overload state. And when the d-axis current is equal to or lower than the allowable d-axis current lower limit value or higher than the allowable d-axis current upper limit value, it is determined that the converter is operating in an instantaneous overload state. The converter according to claim 13 or 14.
  16.  前記過負荷検出部は、前記d軸電流及び前記q軸電流のうちの少なくとも1つの電流に基づいて、絶対値を算出する絶対値算出部と、
     前記絶対値算出部の算出結果を入力し平均化するフィルタ部を有して構成され、
     前記フィルタ部の出力結果が、予め定められた許容絶対値以上となった場合は、前記コンバータは定常時過負荷状態で動作していると判定することを特徴とする請求項13から15の何れか1項に記載のコンバータ。
    The overload detection unit calculates an absolute value based on at least one of the d-axis current and the q-axis current; and
    A filter unit for inputting and averaging the calculation result of the absolute value calculation unit;
    16. The method according to claim 13, wherein when the output result of the filter unit is equal to or greater than a predetermined allowable absolute value, it is determined that the converter is operating in a steady-state overload state. A converter according to claim 1.
  17.  請求項13から16の何れか1項に記載のコンバータと、前記コンバータから直流電流の供給を受けて前記モータを可変速制御するモータ駆動装置と、を備えたことを特徴とするモータ制御装置。 A motor control device comprising: the converter according to any one of claims 13 to 16; and a motor driving device that receives a direct current from the converter and controls the motor at a variable speed.
  18.  前記モータ駆動装置は、前記過負荷検出部の判定結果が過負荷であると判定された場合は、上位制御装置から出力されたモータ動作指令よりも前記モータの出力を制限するモータ動作となるように前記モータの可変速制御を行うことを特徴とする請求項17に記載のモータ制御装置。 When the determination result of the overload detection unit is determined to be an overload, the motor drive device performs a motor operation that restricts the output of the motor from a motor operation command output from a host control device. The motor control device according to claim 17, wherein variable speed control of the motor is performed.
  19.  前記過負荷検出部の判定結果が過負荷であると判定された場合は、前記モータの出力を制限するモータ動作となるようにモータ動作指令を変更し、上位制御装置を介して前記モータ駆動装置に出力するように制御することを特徴とする請求項17に記載のモータ制御装置。 When it is determined that the determination result of the overload detection unit is an overload, a motor operation command is changed so that a motor operation that restricts the output of the motor is performed, and the motor drive device is connected via a host controller. The motor control device according to claim 17, wherein the motor control device is controlled to output to the motor.
  20.  前記上位制御装置、前記モータ駆動装置及び前記コンバータの順で通信経路がデイジーチェーン接続され、前記過負荷検出部が瞬時過負荷状態を検出し、前記過負荷検出部から前記モータ駆動装置に判定結果が通知されると、前記モータ駆動装置は、前記上位制御装置から出力されたモータ動作指令よりも前記モータの出力を制限するモータ動作となるように、前記モータの可変速制御を行うと共に、前記上位制御装置に前記過負荷検出部の判定結果を通知し、前記上位制御装置は当該判定結果を受信し、瞬時過負荷状態であった場合には前記モータの出力を制限するモータ動作となるようにモータ動作指令を変更し、前記モータ駆動装置に出力するように制御することを特徴とする請求項18又は19に記載のモータ制御装置。 The communication path is daisy chained in the order of the host controller, the motor drive device, and the converter, the overload detection unit detects an instantaneous overload state, and the determination result from the overload detection unit to the motor drive device Is notified, the motor drive device performs variable speed control of the motor so that the motor operation restricts the output of the motor from the motor operation command output from the host control device, and The host controller is notified of the determination result of the overload detection unit, and the host controller receives the determination result, and when it is in an instantaneous overload state, the motor operation is performed to limit the output of the motor. The motor control device according to claim 18 or 19, wherein a motor operation command is changed to be output to the motor drive device.
  21.  前記上位制御装置、前記モータ駆動装置及び前記コンバータの順で通信経路がデイジーチェーン接続され、前記過負荷検出部が定常時過負荷状態を検出し、前記過負荷検出部から前記モータ駆動装置に判定結果が通知されると、前記モータ駆動装置は、前記上位制御装置から出力されたモータ動作指令に基づいてモータの可変速制御を行うと共に、前記上位制御装置に前記過負荷検出部の判定結果を通知し、前記上位制御装置は当該判定結果を受信し、定常時過負荷状態であった場合、前記モータの平均出力を抑制するように運転サイクルを変更し、前記モータ駆動装置に出力するように制御することを特徴とする請求項18又は19に記載のモータ制御装置。 The communication path is daisy chained in the order of the host controller, the motor drive device, and the converter, and the overload detection unit detects a steady state overload state, and the overload detection unit determines the motor drive device. When the result is notified, the motor drive device performs variable speed control of the motor based on the motor operation command output from the host controller, and sends the determination result of the overload detector to the host controller. The higher-level control device receives the determination result, and changes the operation cycle so as to suppress the average output of the motor and outputs it to the motor drive device when it is in a steady-state overload state. The motor control device according to claim 18, wherein the motor control device is controlled.
  22.  前記交流電源の停電が検出されたとき、複数のモータ駆動装置が駆動するモータをのうちの少なくとも1つを減速するように可変速制御を行うことを特徴とする請求項18から21の何れか1項に記載のモータ制御装置。 The variable speed control is performed so as to decelerate at least one of the motors driven by the plurality of motor driving devices when a power failure of the AC power supply is detected. The motor control device according to item 1.
  23.  前記モータ駆動装置は、前記第1端子と前記第2端子との間に接続され、直流電力を蓄積する平滑コンデンサの電圧を検出する直流電圧検出部を備え、
     前記モータ駆動装置は、
     前記直流電圧検出部の検出値が直流電圧上限値以上であった場合、前記減速を行うモータとは別のモータを加速させるように可変速制御を行い、
     前記直流電圧検出部の検出値が直流電圧下限値以下であった場合、前記減速を行うモータとは別のモータを減速させるように可変速制御を行い、
     前記直流電圧検出部の検出値が前記直流電圧下限値より大きく、且つ前記直流電圧上限値より小さい場合、前記減速を行うモータとは別のモータをフリーラン又は一定速度を維持するように可変速制御を行う
     ことを特徴とする請求項22に記載のモータ制御装置。
    The motor driving device includes a DC voltage detection unit that is connected between the first terminal and the second terminal and detects a voltage of a smoothing capacitor that stores DC power,
    The motor driving device is
    When the detected value of the DC voltage detection unit is equal to or higher than the DC voltage upper limit value, variable speed control is performed so as to accelerate a motor different from the motor that performs the deceleration,
    When the detection value of the DC voltage detection unit is less than or equal to the DC voltage lower limit value, variable speed control is performed so as to decelerate a motor different from the motor that performs the deceleration,
    When the detection value of the DC voltage detection unit is larger than the DC voltage lower limit value and smaller than the DC voltage upper limit value, a motor other than the motor that performs the deceleration is free-run or variable speed so as to maintain a constant speed. The motor control device according to claim 22, wherein control is performed.
PCT/JP2019/003034 2018-06-11 2019-01-29 Converter and motor control device WO2019239628A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019528930A JP6608096B1 (en) 2018-06-11 2019-01-29 Converter and motor control device
CN201980037731.4A CN112219348A (en) 2018-06-11 2019-01-29 Converter and motor control device
TW108119130A TWI705647B (en) 2018-06-11 2019-06-03 Convertor and motor control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/022280 2018-06-11
PCT/JP2018/022280 WO2019239469A1 (en) 2018-06-11 2018-06-11 Converter

Publications (1)

Publication Number Publication Date
WO2019239628A1 true WO2019239628A1 (en) 2019-12-19

Family

ID=68842466

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/022280 WO2019239469A1 (en) 2018-06-11 2018-06-11 Converter
PCT/JP2019/003034 WO2019239628A1 (en) 2018-06-11 2019-01-29 Converter and motor control device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022280 WO2019239469A1 (en) 2018-06-11 2018-06-11 Converter

Country Status (3)

Country Link
CN (1) CN112219348A (en)
TW (1) TWI705647B (en)
WO (2) WO2019239469A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113732A1 (en) * 2020-11-27 2022-06-02 オリエンタルモーター株式会社 Motor control device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230139257A1 (en) * 2020-04-20 2023-05-04 Hitachi Industrial Equipment Systems Co., Ltd. Power Conversion Device
US11721973B2 (en) 2020-08-12 2023-08-08 Global Mixed-Mode Technology Inc. Overvoltage protection circuit
TWI764235B (en) * 2020-08-13 2022-05-11 致新科技股份有限公司 Overvoltage protection circuit
TWI787845B (en) * 2021-05-27 2022-12-21 應能科技股份有限公司 Inverter
TWI776564B (en) * 2021-06-25 2022-09-01 台達電子工業股份有限公司 Single-phase and three-phase compatible ac-dc conversion circuit and method of controlling discharge thereof
TWI784862B (en) * 2022-01-10 2022-11-21 茂達電子股份有限公司 Motor current protection circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061322A (en) * 2006-08-30 2008-03-13 Hitachi Appliances Inc Three-phase converter, inverter and module
JP2008301579A (en) * 2007-05-29 2008-12-11 Hitachi Appliances Inc Power converter for drive of freezing cycle compressor, and freezer using the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4094412B2 (en) * 2002-11-27 2008-06-04 三菱電機株式会社 Power regeneration converter
JP5166389B2 (en) * 2009-11-04 2013-03-21 山洋電気株式会社 Motor drive power supply and regeneration method using the power supply
CN102783007B (en) * 2010-03-31 2015-08-05 日立空调·家用电器株式会社 Converter apparatus, motor driving module and refrigerator
JP5664588B2 (en) * 2012-04-20 2015-02-04 株式会社安川電機 Power regeneration device and power conversion device
JP5480351B2 (en) * 2012-09-25 2014-04-23 山洋電気株式会社 Motor control device
WO2014192084A1 (en) * 2013-05-28 2014-12-04 三菱電機株式会社 Power convertor, motor drive control device equipped with power convertor, compressor and blower equipped with motor drive control device, and air conditioner equipped with compressor or blower
JP6364205B2 (en) * 2014-02-28 2018-07-25 日立ジョンソンコントロールズ空調株式会社 Active filter, motor drive device, compressor, and refrigeration system using these
US20180145602A1 (en) * 2014-05-05 2018-05-24 Rockwell Automation Technologies, Inc. Motor drive with silicon carbide mosfet switches
CN104065324B (en) * 2014-07-01 2016-09-21 北京航空航天大学 Three phase alternating current motor power driving controller based on preposing conversion device cascade three-level inverter
JP6193831B2 (en) * 2014-09-19 2017-09-06 ファナック株式会社 Motor control device having function for determining start of protective operation of machine
WO2017033320A1 (en) * 2015-08-26 2017-03-02 三菱電機株式会社 Power supply regenerative converter and motor control device
CN205622493U (en) * 2016-01-22 2016-10-05 珠海格力节能环保制冷技术研究中心有限公司 A system and compressor for controlling compressor
JP6277246B1 (en) * 2016-10-03 2018-02-07 本田技研工業株式会社 CONVERSION DEVICE, DEVICE, AND CONTROL METHOD
KR102253205B1 (en) * 2016-10-05 2021-05-18 존슨 컨트롤스 테크놀러지 컴퍼니 Variable speed drive with secondary winding
CN108123593B (en) * 2018-01-29 2023-11-28 广东美的制冷设备有限公司 PFC circuit, motor control system and variable frequency air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061322A (en) * 2006-08-30 2008-03-13 Hitachi Appliances Inc Three-phase converter, inverter and module
JP2008301579A (en) * 2007-05-29 2008-12-11 Hitachi Appliances Inc Power converter for drive of freezing cycle compressor, and freezer using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113732A1 (en) * 2020-11-27 2022-06-02 オリエンタルモーター株式会社 Motor control device

Also Published As

Publication number Publication date
CN112219348A (en) 2021-01-12
TW202002479A (en) 2020-01-01
WO2019239469A1 (en) 2019-12-19
TWI705647B (en) 2020-09-21

Similar Documents

Publication Publication Date Title
WO2019239628A1 (en) Converter and motor control device
JP6169203B1 (en) Electric motor control apparatus and electric motor control method
TWI383575B (en) Winding switch of AC motor and its winding switching system
JP6161851B1 (en) Power regeneration converter and motor control device
JP5013283B2 (en) Control device for matrix converter
KR102066364B1 (en) Power converter and electric power steering
JP2016005317A (en) Motor controller with protection means for charging resistor
JP2006109583A (en) Protection method for power circuit, and its device
CN109391175B (en) Motor control device and machine tool system
US20120275202A1 (en) Series multiplex power conversion apparatus
JP2013055866A (en) Electric power conversion apparatus
JP2007244104A (en) Ground fault detecting method
EP3090841A1 (en) Robot control system
JP6608096B1 (en) Converter and motor control device
JP2014180068A (en) Motor drive device
JP2016174444A (en) Controller, control method and program
JP5673114B2 (en) Inverter device and electric motor drive system
JP2012016280A (en) Motor drive system
JP2010142066A (en) Robot
JP2023013955A (en) Control device, motor drive device, and motor drive system
WO2021049230A1 (en) Power conversion device and method for controlling power conversion device
CN108141145B (en) Inverter device and control method for inverter device
JP3999226B2 (en) Electric motor control device
JP2016019439A (en) Fault detection device for semiconductor power converter
JP6376049B2 (en) Rotating machine control device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019528930

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819415

Country of ref document: EP

Kind code of ref document: A1