WO2019239565A1 - Component serving apparatus for kitting tray - Google Patents

Component serving apparatus for kitting tray Download PDF

Info

Publication number
WO2019239565A1
WO2019239565A1 PCT/JP2018/022811 JP2018022811W WO2019239565A1 WO 2019239565 A1 WO2019239565 A1 WO 2019239565A1 JP 2018022811 W JP2018022811 W JP 2018022811W WO 2019239565 A1 WO2019239565 A1 WO 2019239565A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
arrangement
layout
rule
kitting tray
Prior art date
Application number
PCT/JP2018/022811
Other languages
French (fr)
Japanese (ja)
Inventor
健次 石塚
亮介 中村
智仁 内海
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2018/022811 priority Critical patent/WO2019239565A1/en
Priority to JP2020525046A priority patent/JP7011063B2/en
Priority to CN201880094190.4A priority patent/CN112218746B/en
Publication of WO2019239565A1 publication Critical patent/WO2019239565A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators

Definitions

  • the present invention relates to a component arrangement apparatus that arranges a plurality of types of parts having different sizes on a kitting tray provided with a plurality of storage units.
  • the kitting tray is a tray that accommodates a set of component groups including fastening parts such as screws, bolts, and washers, and sealing parts such as O-rings and gaskets used when assembling one machine product.
  • Japanese Patent Application Laid-Open No. 2004-151561 discloses picking of a part from such a kitting tray by a robot hand, and application of machine learning for accurately performing the picking.
  • the kitting tray has a plurality of storage compartments separated by a frame. In these storage compartments, parts are arranged from storage trays for storing various parts. A large part that does not enter the housing compartment may be placed on the upper edge of the frame or leaned up. It is desirable to automate the arrangement of parts on the kitting tray using a robot hand.
  • Japanese Patent Application Laid-Open No. H10-228867 only discloses the technology for picking parts, and does not mention the arrangement of parts to the kitting tray.
  • An object of the present invention is to provide a component arrangement device capable of accurately arranging various components on a kitting tray using a robot hand.
  • a component arrangement device for a kitting tray is a component arrangement device that arranges a plurality of types of components of different sizes on a kitting tray having a plurality of storage units, and picking and releasing the components.
  • An arrangement having a possible head part, picking and transporting a target part from the plurality of types of parts at the storage position of the part by the head part, and releasing the target part from the head part to the kitting tray
  • a robot hand that performs an operation; and a control unit that controls the operation of the robot hand, wherein the control unit is configured to control the kitting tray of the component according to the types of the plurality of components and the plurality of storage units.
  • a rule setting unit for setting a distribution rule to the robot, and causing the robot hand to execute the distribution operation based on the distribution rule Comprising a drive control unit.
  • FIG. 1 is a block diagram illustrating a configuration of a component layout device for a kitting tray according to an embodiment of the present invention.
  • FIG. 2A is a top plan view showing an example of a kitting tray on which components are arranged
  • FIG. 2B is a cross-sectional view taken along the line IIB-IIB in FIG.
  • FIG. 3 is a flowchart showing the operation of the component layout apparatus.
  • 4A to 4D are diagrams for explaining an example of a layout rule.
  • FIGS. 5A and 5B are diagrams for explaining an example of a layout rule.
  • FIGS. 6A to 6D are diagrams for explaining an example of a layout rule.
  • FIGS. 7A to 7D are diagrams for explaining an example of the layout rule.
  • FIGS. 1 is a block diagram illustrating a configuration of a component layout device for a kitting tray according to an embodiment of the present invention.
  • FIG. 2A is a top plan view showing an example of a kitting tray
  • FIGS. 8A to 8C are diagrams for explaining an example of a layout rule.
  • FIG. 9 is a flowchart illustrating an example of the learning operation of the layout rule.
  • FIG. 10 is a flowchart illustrating an example of the learning operation of the layout rule.
  • FIGS. 11A and 11B are diagrams for explaining an example of a layout rule.
  • the component arrangement apparatus 1 is an apparatus that arranges a plurality of types of parts of different sizes on the kitting tray 40, and includes a robot hand 10 that performs an arrangement operation of the parts, and a three-dimensional measurement apparatus 20 that captures a three-dimensional image of the parts ( An imaging device) and a control unit 30 that comprehensively controls the operations of the robot hand 10 and the three-dimensional measuring device 20.
  • the robot hand 10 is a robot apparatus that picks a target part from a part storage tray Ta, Tb,... That stores a plurality of types of parts Wa, Wb,.
  • the component storage trays Ta, Tb,... Are trays that individually store the components Wa, Wb,..., And various components Wa, Wb,. .
  • the kitting tray 40 is a tray that can individually store a plurality of types of components Wa, Wb, Wc, Wd,... In a plurality of storage sections partitioned in advance.
  • the robot hand 10 picks and carries the target part, and performs a catering operation to release the target part picked in the housing portion.
  • the robot hand 10 is a multi-axis multi-joint robot including a base part 11, a body part 12, a first arm 13, a second arm 14, a head part 15, and a hand part 16.
  • the base unit 11 is a housing that is fixedly installed on a floor surface, a pedestal, or the like.
  • the body portion 12 is disposed on the upper surface of the base portion 11 so as to be rotatable in both forward and reverse directions around the first shaft 1A extending vertically.
  • the first arm 13 is an arm member having a predetermined length, and a base end portion of the first arm 13 is attached to the trunk portion 12 so as to be rotatable around an axis of the second shaft 1B extending in the horizontal direction.
  • the second arm 14 is an arm member that is connected to the first arm 13, and a base end portion of the second arm 14 is pivotable around the third axis 1 ⁇ / b> C extending in the horizontal direction. It is attached.
  • the head portion 15 is attached to the distal end side of the second arm 14 so as to be rotatable around the axis of the fourth axis 1D extending in the horizontal direction.
  • the hand unit 16 is attached to the head unit 15 via a fifth shaft 1E perpendicular to the fourth shaft 1D.
  • the hand unit 16 can pick the parts Wa, Wb... Individually from the part storage trays Ta, Tb... And release them to the kitting tray 40.
  • the hand portion 16 is composed of a pair of gripping pieces, is rotatable around the axis of the fifth shaft 1E, and an interval between the pair of gripping pieces is adjustable for the picking and releasing. Note that it is only necessary that the head unit 15 has a mechanism capable of picking and releasing components. For example, instead of the hand unit 16, an electromagnet that generates an attractive force for the component or a negative pressure generator is used as the head.
  • the unit 15 may be provided.
  • the three-dimensional measuring apparatus 20 includes a first camera 21, a second camera 22, and a camera control unit 23.
  • the first camera 21 is disposed above the component storage trays Ta, Tb,..., And captures an image including the components Wa, Wb,.
  • the second camera 22 is disposed above the kitting tray 40 and captures an image including the parts Wa, Wb, Wc, and Wd stored in the kitting tray 40. Note that the three-dimensional measuring device 20 or the first and second cameras 21 and 22 may be mounted on the robot hand 10.
  • the camera control unit 23 causes the first and second cameras 21 and 22 to perform an imaging operation, and performs three-dimensional measurement of parts based on the obtained image.
  • the imaging control unit 24 causes the first camera 21 to perform an operation of imaging the component storage trays Ta, Tb... When picking the components Wa, Wb. Further, the imaging control unit 24 performs an operation of imaging the kitting tray 40 on the second camera 22 when confirming the position of the storage unit of the kitting tray 40 or when acquiring information on the kitting tray 40 after the parts are arranged. Let it run.
  • the image processing unit 25 performs image processing on the images acquired by the first and second cameras 21 and 22 to generate image data including the three-dimensional position information of each component.
  • the three-dimensional position information of each part is represented by coordinate values (X, Y, Z) using an XYZ orthogonal coordinate system, for example.
  • the position information of the components Wa, Wb... Stored in the component storage trays Ta, Tb. This position information is used when the parts Wa, Wb... Are picked by the robot hand 10. Further, the position information of the parts Wa, Wb, Wc, Wd arranged on the kitting tray 40 is acquired from the image acquired by the second camera 22. Based on this position information, the component arrangement state can be evaluated.
  • the control unit 30 includes a drive control unit 31, a rule setting unit 32, an information acquisition unit 33, and a learning unit 34.
  • the drive control unit 31 causes the robot hand 10 to execute a component arranging operation based on the arrangement rule set by the rule setting unit 32.
  • the drive control unit 31 operates a drive motor (not shown) provided in the robot hand 10 so as to sequentially execute picking of parts, holding and transporting of the parts, and release of the parts in accordance with the layout rules.
  • the learning unit 34 when machine learning regarding the caulking operation is executed, information on how the drive control unit 31 operated the robot hand 10 in the picking and release is output to the learning unit 34.
  • the rule setting unit 32 determines the size of the parts Wa, Wb... According to the size and shape of the parts Wa, Wb.
  • a rule for the arrangement to the kitting tray 40 is set.
  • This arrangement rule is an agreement regarding the arrangement concept such as matters to be prioritized and items to be avoided when parts are arranged on the kitting tray 40.
  • the layout rule is a rule in which small-sized parts are preferentially arranged in a small accommodating portion, and when parts are arranged so as to overlap in the vertical direction, which parts are arranged first (FIGS. 4 to 5). 8 will be described later in detail).
  • This layout rule may be a layout rule taught by the operator via the input unit 26 or the like, or a layout rule in which the taught layout rule is evaluated and revised based on the layout result, or the learning unit 34. As a result of machine learning according to the above, it may be a rule created or revised.
  • the information acquisition unit 33 acquires information input by the operator from the input unit 26 and three-dimensional measurement information from the camera control unit 23. From the input unit 26, for example, attribute information such as the size and shape of parts, information on the shape of the kitting tray 40, and the like are given. From the camera control unit 23, the three-dimensional position information of the parts Wa, Wb,... In the part storage trays Ta, Tb, the three-dimensional position information of the storage part of the kitting tray 40, the parts in the kitting tray 40. The three-dimensional position information of Wa, Wb, Wc, and Wd is given. Based on various kinds of information given to the information acquisition unit 33, the rule setting unit 32 sets or revises the layout rule.
  • the learning unit 34 is a functional unit that executes a learning process for learning the operation of the robot hand 10.
  • the learning unit 34 controls the robot hand 10 by the drive control unit 31 and the three-dimensional measurement information indicating the layout result to the kitting tray 40 input from the camera control unit 23. Are acquired for each learning cycle. Then, the learning unit 34 learns the optimum behavior pattern of the robot hand 10 when each component is arranged from these pieces of information, and reflects this in the arrangement rule.
  • the behavior pattern includes, for example, at which position the part is gripped and picked with what gripping force, at which three-dimensional position of the kitting tray 40 the part is released, and in what order the plural kinds of parts are arranged.
  • the learning unit 34 includes a displacement amount observation unit 35, a reward setting unit 36, and a value function updating unit 37. These will be described in detail when an embodiment to which machine learning is applied is described later.
  • FIG. 2A is a top plan view showing an example of the kitting tray 40 on which parts are arranged
  • FIG. 2B is a cross-sectional view taken along the line IIB-IIB in FIG.
  • the kitting tray 40 is a tray that accommodates a set of parts such as a fastening part such as a screw, a bolt, and a washer used when assembling one machine product, and a sealing part such as an O-ring and a gasket.
  • the kitting tray 40 is a relatively shallow rectangular parallelepiped container having an open top surface, and includes an outer frame portion 41 that forms an outer shape portion, an inner frame portion 42 disposed inside the outer frame portion 41, And a bottom plate 43 that forms the bottom surface of the kitting tray 40.
  • the outer frame portion 41 has a rectangular shape as viewed from above in FIG. 2A, and its upper edge 41T is located at the kitting tray 40 as shown in the sectional view of FIG. The side plate at the highest position.
  • the inner frame portion 42 is a frame plate that extends vertically and horizontally in the outer frame portion 41 in a plan view and divides the plurality of accommodating portions A1, A2, and A3.
  • one large accommodating portion A1 having the largest accommodating space, four middle accommodating portions A2 having the next largest accommodating space, and eight small accommodating portions A3 having the smallest accommodating space are the inner frame portions.
  • the example divided by 42 is shown.
  • the height of the upper end edge 42T of the inner frame portion 42 is lower than the upper end edge 41T of the outer frame portion 41.
  • the upper stage accommodating part A0 which uses the upper end edge 42T as a bottom face and uses the outer frame part 41 as a partition wall is formed.
  • each accommodating part A1, A2, A3 a large-sized component W1 composed of a large-diameter seal ring is provided in the large accommodating portion A1, medium-sized components W21 and W22 such as a medium-diameter C ring in the middle accommodating portion A2, and small-sized components such as bolts and nuts in the small accommodating portion A3.
  • the example in which the components W31 and W32 are accommodated is shown. These components W1, W21, W22, W31, and W32 are accommodated in the accommodating portions A1, A2, and A3 so as to contact the bottom plate 43.
  • an ultra-large component W0 such as a gasket that does not enter any of the accommodating portions A1 to A3 is accommodated in the upper accommodating portion A0.
  • the ultra-large component W0 is in contact with the upper end edge 42T of the inner frame portion 42.
  • the kitting tray 40 on which the parts W0 to W32 are arranged is transported to a predetermined work place by an operator or a transport robot. Alternatively, the parts W0 to W32 may be taken out from the kitting tray 40 by another robot hand.
  • the machine part was illustrated as a part here, the part accommodated in the kitting tray 40 does not have a restriction
  • power / electronic parts, material chips, material rods, tools, and the like can be accommodated in the kitting tray 40 as parts.
  • FIG. 3 is a flowchart showing the basic operation of the component layout apparatus 1.
  • the information acquisition unit 33 of the control unit 30 acquires information regarding the kitting tray 40 and the parts W0 to W32 (step S1).
  • This information includes information on the shape of the kitting tray 40, the mode of the accommodating portions A1 to A3 (opening size, depth, arrangement position, etc.), the arrangement position with respect to the robot hand 10, the type, shape, size, etc.
  • the information acquisition unit 33 acquires the above information based on an input operation via the input unit 26 or a measurement result by the three-dimensional measurement apparatus 20.
  • the rule setting unit 32 sets a layout rule for the target parts W0 to W32 accommodated in the kitting tray 40 based on the information acquired by the information acquisition unit 33 (step S2). Later, some specific examples of the arrangement rule will be described.
  • the layout rule is formulated from information acquired by the information acquisition unit 33 or by machine learning in which the result of actual allocation is evaluated by measurement of the three-dimensional measuring device 20. Things can be used.
  • the drive control unit 31 drives the robot hand 10 according to the set layout rule, and executes a layout operation for distributing the target parts W0 to W32 to the storage units A1 to A3 of the kitting tray 40 (step S3). That is, the drive control unit 31 rotates the robot hand 10 about the axis of the first axis 1A and appropriately operates the second axis 1B to the fifth axis 1E, thereby moving the hand unit 16 to the component storage tray Ta, The components Wa, Wb... Are picked individually toward Tb..., Are transported to the specified accommodating portions A1 to A3 of the kitting tray 40, and are released.
  • the drive control unit 31 confirms whether or not all scheduled parts W0 to W32 have been arranged for one kitting tray 40 (step S4), and if the arrangement has not been completed (step S4). NO in S4) continues the catering operation in step S3.
  • step S5 the control unit 30 determines whether or not to perform the arrangement result evaluation (step S5).
  • the information acquisition unit 33 causes the second camera 22 of the three-dimensional measurement apparatus 20 to capture the image of the kitting tray 40 after the arrangement, and the arranged parts W0 to W32 are arranged. Acquire 3D measurement results.
  • the rule setting unit 32 evaluates the layout result from the state information of the parts W0 to W32 in the kitting tray 40 based on the three-dimensional measurement result (step S6).
  • the rule setting unit 32 determines whether or not the current layout rule needs to be corrected based on the evaluation result (step S7). When the evaluation result is a level exceeding a predetermined threshold, the rule setting unit 32 determines that the layout rule needs to be corrected (YES in step S7), and corrects the layout rule (step S8). Examples of the correction here include correction of the picking position, grip force, grip direction, release height position, and arrangement order of the parts W0 to W32 by the hand unit 16.
  • Step S7 determines that the layout rule is not required to be modified (NO in step S7), and ends the process.
  • the process is also finished.
  • Steps S5 to S8 may be executed manually by the operator or may be executed according to a predetermined correction rule. Further, the substantially same process as steps S5 to S8 can be replaced with machine learning by the learning unit 34. An example of this machine learning will be described later with reference to FIGS.
  • FIGS. 4A to 4D are diagrams for explaining an example of the layout rule, and are diagrams illustrating the layout rule when the layout in which the parts W11 and W12 overlap in the vertical direction is performed. is there.
  • 4A is a top view showing a desirable arrangement state of the parts W11 and W12 to the kitting tray 40
  • FIG. 4B is a side view in the direction of arrow a in FIG. 4A.
  • the part W11 is a ring-shaped part such as packing, and the part W12 is a long bar-shaped part such as a bolt.
  • the parts W11 are arranged on the bottom plate 43 of the housing part A11 defined by the inner frame part 42 of the kitting tray 40 in a manner of being arranged in a matrix of 2 ⁇ 3.
  • the component W12 is arranged in such a manner that it is supported by the upper end edge 42T of the inner frame portion 42 that defines the accommodating portion A11.
  • the rule setting unit 32 sets a layout rule that allows the component W11 with the layout position below to be distributed in advance. That is, as shown in FIG. 4C, the robot hand 10 first arranges each component W11 at a predetermined position in the housing portion A11. In this case, in the case of the ring-shaped component W11, it is desirable to arrange and arrange in a matrix as illustrated in FIG. 4A so that the compartment of the housing portion A11 can be fully utilized.
  • the robot hand 10 arranges the rod-like parts W12.
  • the component W12 is released from the hand portion 16 so that one end side and the other end side of the component W12 are respectively supported by the upper end edges 42T of the pair of inner frame portions 42 facing each other.
  • both components are arranged in the kitting tray 40 in such a manner that the component W12 overlaps the component W11.
  • the component W11 whose layout position should be lower is disposed on the component W12 whose layout position is higher, or the layout of the component W11. Can be prevented from being obstructed by the component W12.
  • FIGS. 5A, 5B, and 6A to 6D are diagrams for explaining an example of the layout rule, and minimize the overlap of components housed in the same housing portion. It is a figure which shows a layout rule.
  • the rule setting unit 32 arranges the parts in the horizontal direction rather than the arrangement in which the parts overlap in the vertical direction. Set a distribution rule to execute with priority.
  • FIG. 5A and 5B show an example in which six parts W21 having a hexagonal cross section are housed in the housing part A12 partitioned by the inner frame part 42.
  • FIG. 5 (A) the six parts W21 can be arranged in a line in the horizontal direction with respect to the housing part A12, or in the vertical direction as shown in FIG. 5 (B). It can also be arranged in a stacked manner in multiple stages (two stages). That is, it is possible to adopt both a planar arrangement and a three-dimensional arrangement from the size of the component W21 and the hexagonal shape of the cross section that can be easily stacked.
  • the rule setting unit 32 gives priority to the planar arrangement in FIG. In other words, it is not necessary to allow the parts W21 to be stacked in the vertical direction, but to effectively utilize the horizontal space of the housing portion A12 and perform a well-balanced arrangement. Even in a case where the number of parts W21 is large and it is necessary to arrange them in the vertical direction, as many parts W21 as possible can be arranged directly above the bottom plate 43 in the accommodating portion A12, and then two steps Have the eyes arranged. Thereby, the accommodation stability in accommodating part A12 of the some components W21 can be improved.
  • the planar arrangement of FIG. 5 (A) is more advantageous than the three-dimensional arrangement of FIG. 5 (B).
  • FIGS. 6A to 6D also show the same case as FIG. 6A is a top view showing a desirable arrangement state of the bolt-shaped parts W31 to W34 to the accommodating portion A13 of the kitting tray 40, and FIG. 6B is a view in the direction of arrow b in FIG. 6A. It is a side view.
  • the parts W31 to W34 are arranged in a line in the horizontal direction so that the bolt heads are alternately opposite to each other.
  • FIG. 6 (C) is a top view showing the arrangement state of the parts W31 to W34 according to the comparative example
  • FIG. 6 (D) is a side view in the direction of arrow c in FIG. 6 (C).
  • the parts W33 and W34 are arranged on the bottom plate 43, and the parts W31 and W32 are arranged so as to be placed on the upper side thereof, thereby being arranged in a lattice manner.
  • An example is shown.
  • the components W31 to W34 are arranged in the accommodating portion A13, it is possible to arrange them in a three-dimensional manner in a lattice shape instead of arranging them in a plane.
  • the rule setting unit 32 sets a layout rule giving priority to planar layout as shown in FIGS. 6 (A) and 6 (B). Thereby, the housing stability of the components W31 to W34 in the housing portion A13 can be improved, and the components W31 to W34 can be prevented from popping out.
  • FIGS. 7A to 7D are diagrams for explaining an example of the layout rule, and are diagrams showing the layout rule for setting the layout order according to the outer area.
  • the layout rule is similar to the layout rule shown in FIG. 4, the rule setting unit 32 precedes a component with a small occupation area in plan view when performing layout in which the components overlap each other in the kitting tray 40.
  • the occupied area here is an area determined by an outline outline in plan view, and when there is a space in the outline outline, it is an area including the space.
  • FIG. 7A is a plan view showing a state in which parts W41 and W42 having different occupation areas are arranged on the kitting tray 40.
  • the component W41 is a bolt-shaped component and is arranged in the storage portion A14 partitioned by the inner frame portion 42. That is, the component W41 has a small exclusive area that can be accommodated in one accommodating portion A14.
  • the component W42 is a large ring-shaped component such as a gasket and has a large exclusive area that cannot be accommodated in any of the accommodating portions defined by the inner frame portion 42. Accordingly, the component W42 is arranged so as to be supported by the upper end edge 42T of the inner frame portion 42.
  • the rule setting unit 32 arranges the component W41 having a small occupied area in advance in the storage unit A14 and then arranges the component W42 having a large occupied area. That is, as shown in FIG. 7B, first, the robot hand 10 arranges the component W41 into the storage portion A14 and contacts the bottom plate 43. If there are other parts to be accommodated in the compartments for the other accommodating parts, the other parts are also arranged. After that, as shown in FIG. 7C, the part W42 having a large occupation area is arranged at a predetermined position in contact with the upper end edge 42T of the inner frame part 42.
  • the component W42 having a large occupation area When the component W42 having a large occupation area is arranged in advance, the component W42 closes the upper opening of the storage portion A14. As a result, there arises a problem that it is impossible to arrange the component W41 having a small occupied area, and a problem that the component W41 is arranged on the component W42 as shown in FIG. 7D. By setting a layout rule as shown in FIGS. 7B and 7C, these problems can be prevented.
  • FIGS. 8A to 8C are diagrams for explaining an example of the layout rule, and are diagrams illustrating the layout rule stored in the kitting tray 40 so that the center of gravity of the component is as low as possible.
  • the rule setting unit 32 includes a first arrangement state in which the height position of the center of gravity of the part is the first position, and the height position of the center of gravity of the part is the first position.
  • the layout rule is set so that the component takes the first layout state when the second layout state, which is a higher second position, can be taken.
  • FIG. 8A is a plan view in a top view showing a state in which the parts W51 and W52 are arranged in the housing part A15 partitioned by the inner frame part 42.
  • the parts W51 and W52 are the same bolt parts having the bolt head B1 and the bolt main body B2, and have a length that does not allow the whole part to enter the compartment of the housing portion A15.
  • the component W51 is arranged in such a manner that the bolt head B1 side is accommodated in the accommodating portion A15 (contacting the bottom plate 43) and the bolt main body B2 side rides on the upper end edge 42T of the inner frame portion 42.
  • the component W52 is arranged in such a manner that the bolt body B2 side is accommodated in the accommodating portion A15 and the bolt head B1 side protrudes upward from the upper end edge 42T of the inner frame portion 42.
  • Reference numerals G1 and G2 in the figure indicate the positions of the center of gravity of the parts W51 and W52. Since the bolt head B1 is a heavy part in the parts W51 and W52, the centers of gravity G1 and G2 are close to the bolt head B1 of the bolt body B2.
  • FIG. 8B is a side view showing a housing state of the component W51 in the housing portion A15.
  • the component W51 is arranged in the accommodating portion A15 in a state where the bolt head B1 side is inclined downward and the vicinity of the tip end side of the bolt main body B2 is lifted by the upper end edge 42T (first arrangement state).
  • the center of gravity G1 of the component W51 is located at a height h1 (first position) determined by the size of the bolt head B1 with respect to the bottom plate 43.
  • FIG. 8C is a side view showing a housing state of the component W52 in the housing portion A15.
  • the component W52 is arranged in the housing portion A15 in a state where the bolt body B2 is inclined so that the tip of the bolt body B2 is downward and the vicinity of the root portion of the bolt body B2 near the bolt head B1 is lifted by the upper end edge 42T (second). Serving state).
  • the center of gravity G2 of the component W52 is positioned at a height h2 (second position) that is higher than the center of gravity G1 of the component W51 by ⁇ h.
  • the rule setting unit 32 sets the layout rule so that the layout state adopted for the component W51 in FIG. That is, the arrangement rule is set so that the arrangement in which the height position of the center of gravity G1 is lowest can be performed in the state of being accommodated in the accommodation portion A15.
  • the arrangement rule is set so that the arrangement in which the height position of the center of gravity G1 is lowest can be performed in the state of being accommodated in the accommodation portion A15.
  • the component W52 easily falls from the storage portion A15.
  • FIG. 8 (B) by adopting a storage mode such as the component W51 in which the center of gravity G1 is lower, the component W51 can be made difficult to fall from the storage portion A15.
  • the rule setting unit 32 sets a layout rule by machine learning by the learning unit 34 (evaluation unit).
  • the three-dimensional measuring device 20 imaging device
  • the learning unit 34 evaluates based on the three-dimensional image. Indicates.
  • the learning unit 34 determines each component from the control information of the robot hand 10 when a certain arrangement operation is executed and the position information of the component in the kitting tray 40 where the arrangement operation is executed. Learns the optimal behavior pattern of the robot hand 10 when serving.
  • the learning result acquired by the learning unit 34 is reflected in the layout rule set by the rule setting unit 32.
  • the learning unit 34 includes a displacement amount observation unit 35, a reward setting unit 36, and a value function updating unit 37 (FIG. 1).
  • the displacement amount observing unit 35 includes three-dimensional image data (hereinafter referred to as basic image data) of a comparison-source kitting tray 40 on which parts are arranged, and a three-dimensional image of a comparison-target kitting tray 40 on which parts are newly arranged. Data (hereinafter referred to as comparative image data) is compared. Then, the displacement amount observation unit 35 derives a displacement amount of the three-dimensional position of the comparison target component with respect to the three-dimensional position of the comparison source component.
  • the basic image data is derived by the image processing unit 25 by causing the three-dimensional measuring device 20 to capture an image of a state in which the target component is ideally arranged on the kitting tray 40, for example, serving as a layout sample.
  • the comparison image data is also image data including the same three-dimensional position information acquired by causing the three-dimensional measuring device 20 to image the kitting tray 40 on which the target part is arranged in the learning process.
  • the reward setting unit 36 associates the arrangement operation (behavior pattern) executed by the robot hand 10 with the arrangement state of the target component arranged according to the action pattern, and performs a process of giving a reward R to the action pattern. . Specifically, the reward setting unit 36 acquires, from the drive control unit 31, action pattern control data executed by the robot hand 10 when picking and releasing a certain target part. In addition, the reward setting unit 36 acquires the displacement amount data derived by the displacement amount observation unit 35 for the target part arranged according to the behavior pattern. A reward R is given to the behavior pattern based on the behavior pattern control data and the displacement amount data.
  • the value function updating unit 37 updates the value function that defines the value Q (s, a) of the action pattern of the robot hand 10 according to the reward R set by the reward setting unit 36.
  • the value function updating unit 37 updates the value function using an update formula of the value Q (s, a) represented by the following formula (1).
  • “s” represents the state of the robot hand 10 and “a” represents the action of the robot hand 10 according to the action pattern.
  • the state of the robot 2 changes from the state “s” to the state “s ′” by the action “a”.
  • R (s, a) represents the reward R obtained by the transition of the state.
  • the term with “max” is obtained by multiplying the value Q (s ′, a ′) by “ ⁇ ” when the action “a ′” having the highest value in the state “s ′” is selected.
  • “ ⁇ ” is a parameter called an attenuation factor, and is in a range of 0 ⁇ ⁇ 1 (for example, 0.9).
  • “ ⁇ ” is a parameter called a learning rate, and is in a range of 0 ⁇ ⁇ 1 (for example, 0.1).
  • the above equation (1) is based on the reward R (s, a) set by the reward setting unit 36 for the action “a”, and the value Q (s, a) of the action “a” in the state “s”.
  • the above equation (1) is such that the value Q (s ′, a ′) of the action “a ′” in the state “s ′” is greater than the value Q (s, a) of the action “a” in the state “s”.
  • the reward R (s, a) is larger, the value Q (s, a) is increased, and on the contrary, the value Q (s, a) is decreased.
  • the value function updating unit 37 updates the value function using the update formula represented by the above formula (1), thereby the value Q (s, a of the certain action “a” in the certain state “s”. ) To the reward R set for the action “a” and the value Q (s ′, a ′) of the best action “a ′” in the next state “s ′” by the action “a”. I try to get closer.
  • ⁇ Machine learning processing by the learning unit> 9 and 10 are flowcharts showing an example of the learning operation of the layout rule.
  • the information acquisition unit 33 of the control unit 30 acquires basic image data of the kitting tray 40 on which parts are arranged and shape data of the kitting tray 40 itself (step S11).
  • the basic image data is captured by the second camera 22 of the three-dimensional measuring device 20 in the kitting tray 40 in which a plurality of types of parts W0 to W32 are ideally arranged as shown in FIG. Acquired based on the three-dimensional image data (ideal information) obtained in this way.
  • the shape data is data relating to the size of the outer frame portion 41 of the kitting tray 40, the size and depth of each inner frame portion 42, and the like.
  • the information acquisition unit 33 acquires the three-dimensional image data obtained by imaging the empty kitting tray 40 with the second camera 22 or the data provided from the input unit 26 as the shape data.
  • the rule setting unit 32 initially sets a layout rule based on the ideal layout information and the shape data of the kitting tray 40 described above. In other words, it is determined which parts W0 to W32 are arranged in which accommodating parts A1 to A3 of the kitting tray 40.
  • basic rules regarding the layout order and layout mode as described above with reference to FIGS. 4 to 8 are stored in the control unit 30 in advance, and are used for initial setting of the layout rules.
  • the This initially set layout rule is corrected according to the learning result (evaluation by the evaluation unit) by the learning unit 34.
  • the information acquisition unit 33 acquires the shape and storage position information of the target part arranged on the kitting tray 40 (step S12). That is, information regarding the shapes of the components W0 to W32 and position information of the component storage trays for storing the components W0 to W32, respectively, with respect to the robot hand 10 are acquired. These pieces of information can be acquired from the three-dimensional image data based on the imaging result of the first camera 21 of the three-dimensional measurement apparatus 20 or the input data given from the input unit 26.
  • the above steps S11 and S12 are preparations for the learning process.
  • the information acquisition unit 33 Upon entering the learning process, the information acquisition unit 33 acquires the position information of the kitting tray 40 from which parts will be arranged from the imaging result of the second camera 22 (step S13). That is, the position information of the kitting tray 40 with respect to the robot hand 10 is acquired. Subsequently, the information acquisition unit 33 causes the first camera 21 to image the component storage tray that stores the layout target component, and obtains the three-dimensional position information of the layout target component based on the result of the object recognition process of the image processing unit 25. Obtain (step S14). Thereby, the coordinate value in the said component storage tray of the target component arranged from now on is acquired. The position information acquired by the information acquisition unit 33 is given to the drive control unit 31 through the rule setting unit 32.
  • the drive control unit 31 operates the robot hand 10 based on the layout rule set by the rule setting unit 32 and the position information acquired by the information acquisition unit 33, and sequentially picks the target parts (step S15). Then, based on the imaging result of a component recognition camera (not shown) that captures the part gripped by the hand unit 16 of the robot hand 10 from the lower surface side, the control unit 30 determines whether or not the target component is gripped by the hand unit 16. Determination is made (step S16). If the target part is not gripped, that is, if the hand unit 16 has failed to grip the part (NO in step S16), the process returns to step S14 to retry the picking of the target part.
  • the drive control unit 31 drives the robot hand 10 to transport the picked target part to the kitting tray 40, and also uses the layout rule and the position information. Based on this, the target part is released at a predetermined XYZ position (step S17). Thereby, the arrangement of one target part is completed.
  • step S18 it is confirmed whether or not all the scheduled part arrangements have been completed. If all arrangements have not been completed (NO in step S18), it is subsequently confirmed whether or not the success rate of gripping the parts by the hand unit 16 is good (step S19). If the gripping success rate is good (YES in step S19), it can be said that good picking is being performed based on the object recognition processing result acquired in step S14. In this case, the process proceeds to step S15, and the drive control unit 31 executes the picking of the next target part. On the other hand, if the gripping success rate is not good (NO in step S19), it can be said that there is a difference between the object recognition processing result and the actual picking. In this case, the process returns to step S14, and the first camera 21 is again imaged of the component storage tray, and the object recognition process is performed.
  • step S21 information on the kitting tray 40 after the arrangement is completed is acquired.
  • the imaging control unit 24 of the three-dimensional measuring device 20 causes the second camera 22 to image the kitting tray 40 after the arrangement, and the image processing unit 25 indicates a three-dimensional position indicating the arrangement position of the components on the kitting tray 40.
  • the displacement amount observation unit 35 of the learning unit 34 acquires image data including the three-dimensional position information of such a component from the camera control unit 23 as the above-described comparison image data. It is unclear how the parts behave in the kitting tray 40 after releasing the parts gripped by the hand unit 16.
  • the execution result of one action pattern of the robot hand 10 that grasps and picks one part at a specific position and releases it at a specific height position is grasped in this step S21.
  • the displacement amount observation unit 35 compares the comparison image data acquired in step S21 with the basic image data acquired in step S11, and the three-dimensional position of the component in the basic image data of the three-dimensional position of the component in the comparison image data.
  • the amount of displacement with respect to is derived (step S22).
  • the image data of the kitting tray 40 after the arrangement obtained in the learning process so far can be used as the basic image data of the comparison source. In this case, the positional stability of the components in the kitting tray 40 after the arrangement can be evaluated. Further, it is desirable that the displacement amount is mainly a displacement amount of the center of gravity position of the component.
  • the reward setting unit 36 determines whether or not the displacement amount is larger than a preset threshold value Th (step S23).
  • the large amount of displacement means that in the action pattern of the robot hand 10 this time, the component is not arranged at the intended position, or the component cannot be arranged stably.
  • the reward setting unit 36 gives a reward R of “0; zero” to the action pattern of the robot hand 10 (step S24).
  • the reward setting unit 36 gives a reward R greater than “0; zero” to the action pattern of the robot hand 10. (Step S25).
  • the value function updating unit 37 updates the value function that defines the value Q (s, a) of the action pattern of the robot hand 10 by using the update formula of the above formula (1) (step S26).
  • Each process shown in steps S13 to S26 is a process executed in one cycle of the learning process by the learning unit 34.
  • the learning unit 34 determines whether or not the number of learning has reached the predetermined number N (step S27). If the predetermined number N has not been reached (NO in step S27), the learning unit 34 returns to step S13, causes the parts to be arranged on the next kitting tray 40, and repeats the learning process. On the other hand, if the predetermined number N has been reached (YES in step S27), the learning unit 34 ends the learning process.
  • ⁇ Modification of machine learning process> In the example of the machine learning process described above, an example is shown in which the information acquisition unit 33 acquires basic image data (ideal layout information) of the kitting tray 40 on which the components are arranged in step S11 of FIG. Instead of this, the ideal layout information may not be given to the information acquisition unit 33, and only the information related to the kitting tray 40 on which no component is arranged and its storage unit, and the information related to the size of the component may be acquired.
  • step S11 of FIG. 9 the information acquisition unit 33 acquires only the shape data of the kitting tray 40 itself. Then, the rule setting unit 32 initially sets a provisional layout rule based on the shape data of the target part acquired in step S12. This layout rule is modified according to the learning result of the learning unit 34 (evaluation by the evaluation unit).
  • the catering rules tend to be set according to a fixed premise.
  • a layout rule tends to be set based on the premise that a small-sized component is distributed in a small-sized storage section prepared in the kitting tray 40.
  • FIGS. 11A and 11B are diagrams showing examples of arrangement of the large-sized component W61 having a relatively large size and the small-sized component W62 having a relatively small size on the kitting tray 40.
  • the kitting tray 40 includes a wide accommodating portion A16 having a relatively large accommodating space and a narrow accommodating portion A17 having a relatively narrow accommodating space.
  • FIG. 11A shows a state in which a large size part W61 is arranged in the wide accommodation part A16 and a small size part W62 is arranged in the narrow accommodation part A17.
  • the arrangement example shown in FIG. 11A is in line with a general arrangement concept in which a small-sized component is arranged in a small-sized container.
  • the small size parts W62 are piled up in the narrow housing portion A17. That is, the position of the center of gravity of many small-sized components W62 is located higher than the bottom plate 43 in the narrow housing portion A17. In this case, it is not preferable because the small-sized component W62 is likely to overflow from the kitting tray 40 (narrow accommodating portion A17).
  • a large size part W61 is arranged in the narrow accommodating part A17, and a small size part W62 having a large number of parts is arranged in the wide accommodating part A16.
  • the positions of the center of gravity of the small-sized component W62 and the large-sized component W61 are located lower than the bottom plate 43 in the respective accommodating portions A16 and A17.
  • positioning in which components W61 and W62 cannot fall easily from the kitting tray 40 is realizable. It is possible to detect the layout mode as shown in FIG. 11B by not giving the ideal layout information and learning the layout mode that lowers the center of gravity as much as possible by the learning process by the learning unit 34.
  • a component arrangement device for a kitting tray is a component arrangement device that arranges a plurality of types of components of different sizes on a kitting tray having a plurality of storage units, and picking and releasing the components.
  • An arrangement that has a possible head part, picks and conveys the target part from the plurality of types of parts at the storage position of the part, and releases the target part from the head part to the kitting tray.
  • a robot hand that performs an operation; and a control unit that controls the operation of the robot hand, wherein the control unit is configured to control the kitting tray of the component according to the types of the plurality of components and the plurality of storage units.
  • a rule setting unit for setting a distribution rule to the robot, and causing the robot hand to execute the distribution operation based on the distribution rule Comprising a drive control unit.
  • the arrangement rule is set according to the aspect of the plurality of accommodating parts of the kitting tray and the aspect of the parts arranged on the kitting tray. That is, instead of strictly determining the arrangement procedure by the robot hand by programming or the like, the rule setting unit can flexibly determine the arrangement rule according to the aspect of the part or the accommodation unit. Therefore, it is possible to properly distribute the components to the kitting tray without performing programming or the like that requires time and skill.
  • the rule setting unit sets an arrangement rule that arranges components in which the arrangement position is lower when the arrangement in which the components overlap vertically in the kitting tray is performed. It is desirable.
  • this component arrangement apparatus it is possible to prevent a problem that a component whose arrangement position should be lower is arranged on a component whose arrangement position is upper.
  • the rule setting unit is more effective than the arrangement in which the components overlap in the vertical direction when both the arrangement in which the components are arranged in the horizontal direction and the arrangement in the vertical direction are executable in the kitting tray. It is desirable to set a layout rule that gives priority to the layout in which the parts are arranged in the horizontal direction.
  • this component arrangement apparatus it is possible to perform an arrangement that effectively uses the horizontal space of the kitting tray without causing an arrangement in which components are stacked in the vertical direction.
  • the rule setting unit sets an arrangement rule for arranging components with a small occupation area in plan view in advance when performing arrangements in which the components overlap in the vertical direction in the kitting tray. It is desirable to do.
  • a large component having a large occupied area blocks the housing portion of the kitting tray, and a small component having a small occupied area cannot be arranged, or a small component is arranged on the large component. Can be prevented.
  • the rule setting unit includes a first arrangement state in which the height position of the center of gravity of the component is the first position, and a height of the center of gravity of the component as the arrangement state of the component on the kitting tray. It is desirable to set the layout rule so that the component is in the first layout state when the position can be in the second layout state in which the position is a second position higher than the first position.
  • each component can be arranged in the kitting tray with a lower center of gravity. Therefore, when moving a kitting tray after arrangement
  • the rule setting unit further sets the layout rule according to the evaluation of the evaluation unit.
  • this component layout apparatus it is possible to cause the rule setting section to perform machine learning on a technique for performing better layout, for example, a picking mode and a release position by the head section through the evaluation of the evaluation section. And since the said rule setting part can set a layout rule based on the said machine learning, the layout rule excellent in the layout property without programming can be set.
  • the rule setting unit acquires ideal arrangement information in a state where the plurality of types of components are ideally arranged with respect to the kitting tray, and the arrangement is based on the ideal arrangement information. It is desirable to initialize a rule and modify the serving rule according to the evaluation of the evaluation unit.
  • the layout rule that is initially set based on the virtual layout information can be modified according to the machine learning of the layout method by the rule setting unit, and the optimal layout rule can be set ultimately. .
  • the rule setting unit acquires information about the kitting tray and its storage unit and information about the size of the component, and initializes the layout rule based on the information, and the evaluation unit It is desirable to modify the serving rule in accordance with the evaluation.
  • an arrangement rule is initially set based on information relating to the kitting tray and the size of the component, and the arrangement rule is corrected according to the machine learning of the arrangement method by the rule setting unit. Therefore, even if the ideal layout information as described above is not given, it is possible to detect a layout rule close to the ideal layout by machine learning.
  • a component arrangement device for a kitting tray that can accurately arrange various components on the kitting tray using a robot hand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Automatic Assembly (AREA)

Abstract

A component serving apparatus (1) for serving a plurality of types of components having different sizes to a kitting tray (40) provided with a plurality of storage sections, is provided with a robot hand (10) and a control unit (30) that controls operation of the robot hand (10). The robot hand (10) has a head part (15) capable of picking and releasing components, performs picking of a target component at a preservation location of the components with use of the head part (15) and conveys the target component, and performs serving operation for releasing the target component from the head part (15) to the kitting tray (40). The control unit (30) is provided with: a rule setting unit that, in accordance with modes of the plurality of storage sections and the plurality of types of components, sets serving rules of serving the components to the kitting tray (40); and a drive control unit (31) that, on the basis of the serving rules, causes the robot hand (10) to execute the serving operation.

Description

キッティングトレイへの部品配膳装置Parts distribution device for kitting tray
 本発明は、サイズの異なる複数種の部品を、複数の収容部を備えたキッティングトレイに配膳する部品配膳装置に関する。 The present invention relates to a component arrangement apparatus that arranges a plurality of types of parts having different sizes on a kitting tray provided with a plurality of storage units.
 キッティングトレイは、例えば一つの機械製品の組立に際して用いられるネジ、ボルト、ワッシャー等の締結部品、Oリングやガスケット等のシール部品などからなる部品群のセットを収容するトレイである。特許文献1には、このようなキッティングトレイからのロボットハンドによる部品のピッキング、及び前記ピッキングを的確に行わせるための機械学習の適用について開示されている。 The kitting tray is a tray that accommodates a set of component groups including fastening parts such as screws, bolts, and washers, and sealing parts such as O-rings and gaskets used when assembling one machine product. Japanese Patent Application Laid-Open No. 2004-151561 discloses picking of a part from such a kitting tray by a robot hand, and application of machine learning for accurately performing the picking.
 キッティングトレイは、枠体で区分された複数の収容区画を備える。これら収容区画には、各種部品を各々収容する保管トレイから、それぞれ部品が配膳される。前記収容区画に入らない大型部品については、前記枠体の上縁に載置されたり、立て掛けられたりする場合もある。このキッティングトレイへの部品の配膳についても、ロボットハンドを用いて自動化すること望ましい。特許文献1は、部品のピッキングについての技術の開示に止まり、キッティングトレイへの部品配膳については触れられていない。 The kitting tray has a plurality of storage compartments separated by a frame. In these storage compartments, parts are arranged from storage trays for storing various parts. A large part that does not enter the housing compartment may be placed on the upper edge of the frame or leaned up. It is desirable to automate the arrangement of parts on the kitting tray using a robot hand. Japanese Patent Application Laid-Open No. H10-228867 only discloses the technology for picking parts, and does not mention the arrangement of parts to the kitting tray.
特開2017-30135号公報JP 2017-30135 A
 本発明の目的は、ロボットハンドを用いてキッティングトレイへ各種部品を的確に配膳させることができる部品配膳装置を提供することにある。 An object of the present invention is to provide a component arrangement device capable of accurately arranging various components on a kitting tray using a robot hand.
 本発明の一局面に係るキッティングトレイへの部品配膳装置は、サイズの異なる複数種の部品を、複数の収容部を備えたキッティングトレイに配膳する部品配膳装置であって、部品のピッキング及びリリースが可能なヘッド部を有し、前記部品の保管位置において前記複数種の部品の中から対象部品を前記ヘッド部でピッキングすると共に運搬し、当該対象部品を前記ヘッド部から前記キッティングトレイにリリースする配膳動作を行うロボットハンドと、前記ロボットハンドの動作を制御する制御部と、を備え、前記制御部は、前記複数種の部品及び前記複数の収容部の態様に応じて、前記部品の前記キッティングトレイへの配膳ルールを設定するルール設定部と、前記配膳ルールに基づき前記ロボットハンドに前記配膳動作を実行させる駆動制御部と、を備える。 A component arrangement device for a kitting tray according to one aspect of the present invention is a component arrangement device that arranges a plurality of types of components of different sizes on a kitting tray having a plurality of storage units, and picking and releasing the components. An arrangement having a possible head part, picking and transporting a target part from the plurality of types of parts at the storage position of the part by the head part, and releasing the target part from the head part to the kitting tray A robot hand that performs an operation; and a control unit that controls the operation of the robot hand, wherein the control unit is configured to control the kitting tray of the component according to the types of the plurality of components and the plurality of storage units. A rule setting unit for setting a distribution rule to the robot, and causing the robot hand to execute the distribution operation based on the distribution rule Comprising a drive control unit.
図1は、本発明の実施形態に係るキッティングトレイへの部品配膳装置の構成を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration of a component layout device for a kitting tray according to an embodiment of the present invention. 図2(A)は、部品が配膳されたキッティングトレイの一例を示す上面視の平面図、図2(B)は、図2(A)のIIB-IIB線断面図である。FIG. 2A is a top plan view showing an example of a kitting tray on which components are arranged, and FIG. 2B is a cross-sectional view taken along the line IIB-IIB in FIG. 図3は、部品配膳装置の動作を示すフローチャートである。FIG. 3 is a flowchart showing the operation of the component layout apparatus. 図4(A)~(D)は、配膳ルールの一例を説明するための図である。4A to 4D are diagrams for explaining an example of a layout rule. 図5(A)、(B)は、配膳ルールの一例を説明するための図である。FIGS. 5A and 5B are diagrams for explaining an example of a layout rule. 図6(A)~(D)は、配膳ルールの一例を説明するための図である。FIGS. 6A to 6D are diagrams for explaining an example of a layout rule. 図7(A)~(D)は、配膳ルールの一例を説明するための図である。FIGS. 7A to 7D are diagrams for explaining an example of the layout rule. 図8(A)~(C)は、配膳ルールの一例を説明するための図である。FIGS. 8A to 8C are diagrams for explaining an example of a layout rule. 図9は、配膳ルールの学習動作の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of the learning operation of the layout rule. 図10は、配膳ルールの学習動作の一例を示すフローチャートである。FIG. 10 is a flowchart illustrating an example of the learning operation of the layout rule. 図11(A)、(B)は、配膳ルールの一例を説明するための図である。FIGS. 11A and 11B are diagrams for explaining an example of a layout rule.
 [部品配膳装置の全体構成]
 以下、本発明の実施形態を、図面を参照しながら詳細に説明する。まず、図1のブロック図を参照して、本発明の実施形態に係るキッティングトレイへの部品配膳装置1の構成を説明する。部品配膳装置1は、サイズの異なる複数種の部品をキッティングトレイ40に配膳する装置であって、部品の配膳動作を行うロボットハンド10と、部品の三次元画像を撮像する三次元計測装置20(撮像装置)と、ロボットハンド10及び三次元計測装置20の動作を統括的に制御する制御部30とを備えている。
[Overall configuration of component arrangement equipment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, with reference to the block diagram of FIG. 1, the structure of the component arrangement | positioning apparatus 1 to the kitting tray which concerns on embodiment of this invention is demonstrated. The component arrangement apparatus 1 is an apparatus that arranges a plurality of types of parts of different sizes on the kitting tray 40, and includes a robot hand 10 that performs an arrangement operation of the parts, and a three-dimensional measurement apparatus 20 that captures a three-dimensional image of the parts ( An imaging device) and a control unit 30 that comprehensively controls the operations of the robot hand 10 and the three-dimensional measuring device 20.
 ロボットハンド10は、サイズの異なる複数種の部品Wa、Wb・・・を各々収納する部品収納トレイTa、Tb・・・から対象部品をピッキングし、キッティングトレイ40に移載させるロボット装置である。部品収納トレイTa、Tb・・・は、部品Wa、Wb・・・の各々個別の保管位置となるトレイであり、各種の部品Wa、Wb・・・がバラ積み又は整列状態で収容されている。キッティングトレイ40は、複数種の部品Wa、Wb、Wc、Wd・・・を、予め区画された複数の収容部に個別に収容することができるトレイである。ロボットハンド10は、対象部品をピッキングして運搬し、前記収容部にピッキングしている前記対象部品をリリースする配膳動作を行う。 The robot hand 10 is a robot apparatus that picks a target part from a part storage tray Ta, Tb,... That stores a plurality of types of parts Wa, Wb,. The component storage trays Ta, Tb,... Are trays that individually store the components Wa, Wb,..., And various components Wa, Wb,. . The kitting tray 40 is a tray that can individually store a plurality of types of components Wa, Wb, Wc, Wd,... In a plurality of storage sections partitioned in advance. The robot hand 10 picks and carries the target part, and performs a catering operation to release the target part picked in the housing portion.
 ロボットハンド10は、ベース部11、胴部12、第1アーム13、第2アーム14、ヘッド部15及びハンド部16を備えた多軸多関節ロボットである。ベース部11は、床面や台座等の上に固定設置される筐体である。胴部12は、ベース部11の上面において、鉛直に延びる第1軸1Aの軸回りに、正逆両方向に回転可能に配置されている。第1アーム13は、所定の長さを有するアーム部材であり、その基端部が水平方向に延びる第2軸1Bの軸周りに回動可能に胴部12に取り付けられている。第2アーム14は、第1アーム13に連設されるアーム部材であり、その基端部が水平方向に延びる第3軸1Cの軸周りに回動可能に、第1アーム13の先端部に取り付けられている。 The robot hand 10 is a multi-axis multi-joint robot including a base part 11, a body part 12, a first arm 13, a second arm 14, a head part 15, and a hand part 16. The base unit 11 is a housing that is fixedly installed on a floor surface, a pedestal, or the like. The body portion 12 is disposed on the upper surface of the base portion 11 so as to be rotatable in both forward and reverse directions around the first shaft 1A extending vertically. The first arm 13 is an arm member having a predetermined length, and a base end portion of the first arm 13 is attached to the trunk portion 12 so as to be rotatable around an axis of the second shaft 1B extending in the horizontal direction. The second arm 14 is an arm member that is connected to the first arm 13, and a base end portion of the second arm 14 is pivotable around the third axis 1 </ b> C extending in the horizontal direction. It is attached.
 ヘッド部15は、第2アーム14の先端側に、水平方向に延びる第4軸1Dの軸周りに回動可能に取り付けられている。ハンド部16は、第4軸1Dに対して垂直な第5軸1Eを介して、ヘッド部15に取り付けられている。ハンド部16は、部品収納トレイTa、Tb・・・から部品Wa、Wb・・・を個別にピッキングすると共に、これらをキッティングトレイ40にリリースすることが可能である。ハンド部16は、一対の把持片からなり、第5軸1Eの軸周りに回動自在であると共に、前記ピッキング及びリリースのために前記一対の把持片の間隔が調整自在とされている。なお、部品のピッキング及びリリースが可能な機構がヘッド部15に具備されていればよく、例えば、ハンド部16に代えて、部品に対して吸引力を発生する電磁石又は負圧発生装置等をヘッド部15に具備させても良い。 The head portion 15 is attached to the distal end side of the second arm 14 so as to be rotatable around the axis of the fourth axis 1D extending in the horizontal direction. The hand unit 16 is attached to the head unit 15 via a fifth shaft 1E perpendicular to the fourth shaft 1D. The hand unit 16 can pick the parts Wa, Wb... Individually from the part storage trays Ta, Tb... And release them to the kitting tray 40. The hand portion 16 is composed of a pair of gripping pieces, is rotatable around the axis of the fifth shaft 1E, and an interval between the pair of gripping pieces is adjustable for the picking and releasing. Note that it is only necessary that the head unit 15 has a mechanism capable of picking and releasing components. For example, instead of the hand unit 16, an electromagnet that generates an attractive force for the component or a negative pressure generator is used as the head. The unit 15 may be provided.
 三次元計測装置20は、第1カメラ21、第2カメラ22及びカメラ制御部23を含む。第1カメラ21は、部品収納トレイTa、Tb・・・の上空に配置され、これらトレイに収納された部品Wa、Wb・・・を含む画像を撮像する。第2カメラ22は、キッティングトレイ40の上空に配置され、当該キッティングトレイ40に収納された部品Wa、Wb、Wc、Wdを含む画像を撮像する。なお、三次元計測装置20、若しくは第1、第2カメラ21、22は、ロボットハンド10に搭載されていても良い。 The three-dimensional measuring apparatus 20 includes a first camera 21, a second camera 22, and a camera control unit 23. The first camera 21 is disposed above the component storage trays Ta, Tb,..., And captures an image including the components Wa, Wb,. The second camera 22 is disposed above the kitting tray 40 and captures an image including the parts Wa, Wb, Wc, and Wd stored in the kitting tray 40. Note that the three-dimensional measuring device 20 or the first and second cameras 21 and 22 may be mounted on the robot hand 10.
 カメラ制御部23は、第1、第2カメラ21、22に撮像動作を実行させ、得られた画像に基づき部品の三次元計測を実行するものであり、撮像制御部24と画像処理部25とを含む。撮像制御部24は、部品Wa、Wb・・・のピッキングの際に、第1カメラ21に部品収納トレイTa、Tb・・・を撮像する動作を実行させる。また、撮像制御部24は、キッティングトレイ40の収納部の位置確認の際、或いは部品配膳後のキッティングトレイ40の情報を取得する際などに、第2カメラ22にキッティングトレイ40を撮像する動作を実行させる。 The camera control unit 23 causes the first and second cameras 21 and 22 to perform an imaging operation, and performs three-dimensional measurement of parts based on the obtained image. The camera control unit 24, the image processing unit 25, including. The imaging control unit 24 causes the first camera 21 to perform an operation of imaging the component storage trays Ta, Tb... When picking the components Wa, Wb. Further, the imaging control unit 24 performs an operation of imaging the kitting tray 40 on the second camera 22 when confirming the position of the storage unit of the kitting tray 40 or when acquiring information on the kitting tray 40 after the parts are arranged. Let it run.
 画像処理部25は、第1、第2カメラ21、22が取得した画像を画像処理することによって、各部品の三次元位置情報を含む画像データを生成する。各部品の三次元位置情報は、例えば、XYZ直交座標系を用いた座標値(X,Y,Z)で表される。第1カメラ21により取得された画像より、部品収納トレイTa、Tb・・・に収納された部品Wa、Wb・・・の位置情報が取得される。この位置情報は、ロボットハンド10による部品Wa、Wb・・・のピッキングの際に利用される。また、第2カメラ22により取得された画像より、キッティングトレイ40に配膳された部品Wa、Wb、Wc、Wdの位置情報が取得される。この位置情報に基づき、部品配膳状態の評価を行うことが可能となる。 The image processing unit 25 performs image processing on the images acquired by the first and second cameras 21 and 22 to generate image data including the three-dimensional position information of each component. The three-dimensional position information of each part is represented by coordinate values (X, Y, Z) using an XYZ orthogonal coordinate system, for example. The position information of the components Wa, Wb... Stored in the component storage trays Ta, Tb. This position information is used when the parts Wa, Wb... Are picked by the robot hand 10. Further, the position information of the parts Wa, Wb, Wc, Wd arranged on the kitting tray 40 is acquired from the image acquired by the second camera 22. Based on this position information, the component arrangement state can be evaluated.
 制御部30は、駆動制御部31、ルール設定部32、情報取得部33及び学習部34を備えている。駆動制御部31は、ルール設定部32が設定する配膳ルールに基づいて、ロボットハンド10に部品の配膳動作を実行させる。駆動制御部31は、前記配膳ルールに従って部品のピッキングと、当該部品の保持及び運搬と、当該部品のリリースを順次実行するよう、ロボットハンド10に具備されている駆動モータ(図示せず)の動作を制御する。学習部34において、配膳動作に関する機械学習が実行される場合、前記ピッキング及びリリースにおいて駆動制御部31がどのようにロボットハンド10を動作させたかに関する情報が学習部34に出力される。 The control unit 30 includes a drive control unit 31, a rule setting unit 32, an information acquisition unit 33, and a learning unit 34. The drive control unit 31 causes the robot hand 10 to execute a component arranging operation based on the arrangement rule set by the rule setting unit 32. The drive control unit 31 operates a drive motor (not shown) provided in the robot hand 10 so as to sequentially execute picking of parts, holding and transporting of the parts, and release of the parts in accordance with the layout rules. To control. In the learning unit 34, when machine learning regarding the caulking operation is executed, information on how the drive control unit 31 operated the robot hand 10 in the picking and release is output to the learning unit 34.
 ルール設定部32は、複数種の部品Wa、Wb・・・のサイズ、形状などの態様及びキッティングトレイ40の収容部の広さや深さなどの態様に応じて、部品Wa、Wb・・・のキッティングトレイ40への配膳ルールを設定する。この配膳ルールは、部品をキッティングトレイ40に配膳するに際して優先すべき事項、忌避すべき事項などの配膳のコンセプトに関する取り決めである。例えば、配膳ルールは、小さいサイズの部品は小さい収容部に優先的に配膳する、部品を上下方向に重なるように配膳する場合にどの部品を先に配膳する、といったルールである(図4~図8に基づき後記で詳述する)。この配膳ルールは、操作者から入力部26等を介して教示された配膳ルール、或いは教示された配膳ルールを配膳結果に基づいて評価して改訂した配膳ルールであっても良いし、学習部34による機械学習の結果として作成乃至は改訂された配膳ルールであっても良い。 The rule setting unit 32 determines the size of the parts Wa, Wb... According to the size and shape of the parts Wa, Wb. A rule for the arrangement to the kitting tray 40 is set. This arrangement rule is an agreement regarding the arrangement concept such as matters to be prioritized and items to be avoided when parts are arranged on the kitting tray 40. For example, the layout rule is a rule in which small-sized parts are preferentially arranged in a small accommodating portion, and when parts are arranged so as to overlap in the vertical direction, which parts are arranged first (FIGS. 4 to 5). 8 will be described later in detail). This layout rule may be a layout rule taught by the operator via the input unit 26 or the like, or a layout rule in which the taught layout rule is evaluated and revised based on the layout result, or the learning unit 34. As a result of machine learning according to the above, it may be a rule created or revised.
 情報取得部33は、入力部26から操作者が入力する情報、及びカメラ制御部23から三次元計測情報を取得する。入力部26からは、例えば部品のサイズや形状などの属性情報、キッティングトレイ40の形状に関する情報などが与えられる。カメラ制御部23からは、部品収納トレイTa、Tb・・・内における部品Wa、Wb・・・の三次元位置情報や、キッティングトレイ40の収容部の三次元位置情報、キッティングトレイ40内における部品Wa、Wb、Wc、Wdの三次元位置情報などが与えられる。情報取得部33に与えられた各種情報に基づいて、ルール設定部32は前記配膳ルールを設定乃至は改訂する。 The information acquisition unit 33 acquires information input by the operator from the input unit 26 and three-dimensional measurement information from the camera control unit 23. From the input unit 26, for example, attribute information such as the size and shape of parts, information on the shape of the kitting tray 40, and the like are given. From the camera control unit 23, the three-dimensional position information of the parts Wa, Wb,... In the part storage trays Ta, Tb, the three-dimensional position information of the storage part of the kitting tray 40, the parts in the kitting tray 40. The three-dimensional position information of Wa, Wb, Wc, and Wd is given. Based on various kinds of information given to the information acquisition unit 33, the rule setting unit 32 sets or revises the layout rule.
 学習部34は、ロボットハンド10の動作を学習する学習処理を実行する機能部である。機械学習によって前記配膳ルールを設定する場合、学習部34は、駆動制御部31によるロボットハンド10の制御情報と、カメラ制御部23から入力されるキッティングトレイ40への配膳結果を示す三次元計測情報とを、学習サイクル毎に取得する。そして、学習部34は、これらの情報から、各々の部品を配膳する場合における最適なロボットハンド10の行動パターンを学習し、これを配膳ルールに反映させる。前記行動パターンは、例えば、どの位置で部品をどのようなグリップ力で把持してピッキングするか、キッティングトレイ40のどの三次元位置で当該部品をリリースするか、複数種の部品をどのような順番で配膳するか、などに関するロボットハンド10の行動である。学習部34は、変位量観測部35、報酬設定部36及び価値関数更新部37を含む。これらについては、機械学習が適用される実施形態を後記で説明する際に、詳細に説明する。 The learning unit 34 is a functional unit that executes a learning process for learning the operation of the robot hand 10. When setting the layout rule by machine learning, the learning unit 34 controls the robot hand 10 by the drive control unit 31 and the three-dimensional measurement information indicating the layout result to the kitting tray 40 input from the camera control unit 23. Are acquired for each learning cycle. Then, the learning unit 34 learns the optimum behavior pattern of the robot hand 10 when each component is arranged from these pieces of information, and reflects this in the arrangement rule. The behavior pattern includes, for example, at which position the part is gripped and picked with what gripping force, at which three-dimensional position of the kitting tray 40 the part is released, and in what order the plural kinds of parts are arranged. It is the action of the robot hand 10 regarding whether or not it is served. The learning unit 34 includes a displacement amount observation unit 35, a reward setting unit 36, and a value function updating unit 37. These will be described in detail when an embodiment to which machine learning is applied is described later.
 [キッティングトレイ]
 図2(A)は、部品が配膳されたキッティングトレイ40の一例を示す上面視の平面図、図2(B)は、図2(A)のIIB-IIB線断面図である。キッティングトレイ40は、例えば一つの機械製品の組立に際して用いられるネジ、ボルト、ワッシャー等の締結部品、Oリングやガスケット等のシール部品などからなる部品群のセットを収容するトレイである。キッティングトレイ40は、上面が開口した比較的底浅の直方体形状の容器であって、外形部を形成する外枠部41と、外枠部41の内側に配設された内枠部42と、キッティングトレイ40の底面を形成する底板43とを備えている。
[Kitting tray]
FIG. 2A is a top plan view showing an example of the kitting tray 40 on which parts are arranged, and FIG. 2B is a cross-sectional view taken along the line IIB-IIB in FIG. The kitting tray 40 is a tray that accommodates a set of parts such as a fastening part such as a screw, a bolt, and a washer used when assembling one machine product, and a sealing part such as an O-ring and a gasket. The kitting tray 40 is a relatively shallow rectangular parallelepiped container having an open top surface, and includes an outer frame portion 41 that forms an outer shape portion, an inner frame portion 42 disposed inside the outer frame portion 41, And a bottom plate 43 that forms the bottom surface of the kitting tray 40.
 外枠部41は、図2(A)の上面視の通り矩形の形状を有しており、また図2(B)の断面視に表れているように、その上端縁41Tはキッティングトレイ40において最も高い位置にある側板である。内枠部42は、平面視において外枠部41内で縦横に延び、複数の収容部A1、A2、A3を区画する枠板である。ここでは、最も大きな収容空間を有する1つの大収容部A1と、次に大きな収容空間を有する4つの中収容部A2と、最も小さな収容空間を有する8つの小収容部A3とが、内枠部42で区画されている例を示している。内枠部42の上端縁42Tの高さは、外枠部41の上端縁41Tよりも低い位置にある。これにより、上端縁42Tを底面とし、外枠部41を区画壁とする上段収容部A0が形成されている。 The outer frame portion 41 has a rectangular shape as viewed from above in FIG. 2A, and its upper edge 41T is located at the kitting tray 40 as shown in the sectional view of FIG. The side plate at the highest position. The inner frame portion 42 is a frame plate that extends vertically and horizontally in the outer frame portion 41 in a plan view and divides the plurality of accommodating portions A1, A2, and A3. Here, one large accommodating portion A1 having the largest accommodating space, four middle accommodating portions A2 having the next largest accommodating space, and eight small accommodating portions A3 having the smallest accommodating space are the inner frame portions. The example divided by 42 is shown. The height of the upper end edge 42T of the inner frame portion 42 is lower than the upper end edge 41T of the outer frame portion 41. Thereby, the upper stage accommodating part A0 which uses the upper end edge 42T as a bottom face and uses the outer frame part 41 as a partition wall is formed.
 各収容部A1、A2、A3には、それぞれ同一部品が配膳されている。ここでは、大収容部A1に大口径のシールリングからなる大型部品W1が、中収容部A2に中口径のCリングなどの中型部品W21、W22が、小収容部A3にボルトやナットなどの小型部品W31、W32が収容されている例を示している。これらの部品W1、W21、W22、W31、W32は、底板43に接面する態様で、各収容部A1、A2、A3に収容されている。また、いずれの収容部A1~A3に入らないガスケットなどの超大型部品W0が、上段収容部A0に収容されている例を示している。超大型部品W0は、内枠部42の上端縁42Tに接面している。 The same parts are arranged in each accommodating part A1, A2, A3. Here, a large-sized component W1 composed of a large-diameter seal ring is provided in the large accommodating portion A1, medium-sized components W21 and W22 such as a medium-diameter C ring in the middle accommodating portion A2, and small-sized components such as bolts and nuts in the small accommodating portion A3. The example in which the components W31 and W32 are accommodated is shown. These components W1, W21, W22, W31, and W32 are accommodated in the accommodating portions A1, A2, and A3 so as to contact the bottom plate 43. Further, an example is shown in which an ultra-large component W0 such as a gasket that does not enter any of the accommodating portions A1 to A3 is accommodated in the upper accommodating portion A0. The ultra-large component W0 is in contact with the upper end edge 42T of the inner frame portion 42.
 部品W0~W32が配膳されたキッティングトレイ40は、作業者により、若しくは運搬ロボット等により、所定の作業場まで運搬される。或いは、当該キッティングトレイ40から、他のロボットハンドにより部品W0~W32が取り出される場合もある。なお、ここでは部品として機械部品を例示したが、キッティングトレイ40に収容される部品は特に制限はない。例えば、電力・電子用部品、材料チップや材料ロッド、工具類などを、部品としてキッティングトレイ40に収容することができる。 The kitting tray 40 on which the parts W0 to W32 are arranged is transported to a predetermined work place by an operator or a transport robot. Alternatively, the parts W0 to W32 may be taken out from the kitting tray 40 by another robot hand. In addition, although the machine part was illustrated as a part here, the part accommodated in the kitting tray 40 does not have a restriction | limiting in particular. For example, power / electronic parts, material chips, material rods, tools, and the like can be accommodated in the kitting tray 40 as parts.
 [配膳動作の基本フロー]
 図3は、部品配膳装置1の基本動作を示すフローチャートである。先ず、制御部30の情報取得部33が、キッティングトレイ40及び部品W0~W32に関する情報を取得する(ステップS1)。この情報は、キッティングトレイ40の形状、収容部A1~A3の態様(開口サイズや深さ、配置位置等)、ロボットハンド10に対する配置位置などに関する情報、部品W0~W32の種別、形状、サイズ、ロボットハンド10に対する配置位置などである。情報取得部33は、入力部26を介した入力操作、若しくは、三次元計測装置20による計測結果に基づき、上述の情報を取得する。
[Basic flow of catering operation]
FIG. 3 is a flowchart showing the basic operation of the component layout apparatus 1. First, the information acquisition unit 33 of the control unit 30 acquires information regarding the kitting tray 40 and the parts W0 to W32 (step S1). This information includes information on the shape of the kitting tray 40, the mode of the accommodating portions A1 to A3 (opening size, depth, arrangement position, etc.), the arrangement position with respect to the robot hand 10, the type, shape, size, etc. For example, the arrangement position with respect to the robot hand 10. The information acquisition unit 33 acquires the above information based on an input operation via the input unit 26 or a measurement result by the three-dimensional measurement apparatus 20.
 次に、ルール設定部32が、情報取得部33が取得した上記情報に基づいて、キッティングトレイ40に収容される対象部品W0~W32の配膳ルールを設定する(ステップS2)。後に、前記配膳ルールのいくつかの具体例を説明する。既述の通り、配膳ルールとしては、情報取得部33が取得した情報から策定されたもの、或いは、実際の配膳が実行された結果を三次元計測装置20の計測によって評価した機械学習により策定したものを用いることができる。 Next, the rule setting unit 32 sets a layout rule for the target parts W0 to W32 accommodated in the kitting tray 40 based on the information acquired by the information acquisition unit 33 (step S2). Later, some specific examples of the arrangement rule will be described. As described above, the layout rule is formulated from information acquired by the information acquisition unit 33 or by machine learning in which the result of actual allocation is evaluated by measurement of the three-dimensional measuring device 20. Things can be used.
 続いて、駆動制御部31が、設定された配膳ルールに従ってロボットハンド10を駆動し、対象部品W0~W32をキッティングトレイ40の収容部A1~A3へ配膳する配膳動作を実行させる(ステップS3)。すなわち、駆動制御部31は、ロボットハンド10を第1軸1Aの軸回りに回動させる他、第2軸1B~第5軸1Eを適宜動作させることにより、ハンド部16を部品収納トレイTa、Tb・・・に向かわせ、収納された部品Wa、Wb・・・を個別にピッキングさせ、キッティングトレイ40の指定の収容部A1~A3まで運搬させ、リリースさせる動作を実行させる。駆動制御部31は、1つのキッティングトレイ40に対して、予定されている全ての部品W0~W32の配膳が終了したか否かを確認し(ステップS4)、配膳が未了である場合(ステップS4でNO)は、ステップS3の配膳動作を継続する。 Subsequently, the drive control unit 31 drives the robot hand 10 according to the set layout rule, and executes a layout operation for distributing the target parts W0 to W32 to the storage units A1 to A3 of the kitting tray 40 (step S3). That is, the drive control unit 31 rotates the robot hand 10 about the axis of the first axis 1A and appropriately operates the second axis 1B to the fifth axis 1E, thereby moving the hand unit 16 to the component storage tray Ta, The components Wa, Wb... Are picked individually toward Tb..., Are transported to the specified accommodating portions A1 to A3 of the kitting tray 40, and are released. The drive control unit 31 confirms whether or not all scheduled parts W0 to W32 have been arranged for one kitting tray 40 (step S4), and if the arrangement has not been completed (step S4). NO in S4) continues the catering operation in step S3.
 配膳が終了した場合(ステップS4でYES)は、制御部30は配膳の結果評価を実行するか否かを判定する(ステップS5)。結果評価を実行する場合(ステップS5でYES)、情報取得部33は、三次元計測装置20の第2カメラ22に配膳後のキッティングトレイ40の画像を撮像させ、配膳された部品W0~W32の三次元計測結果を取得する。そして、ルール設定部32が、前記三次元計測結果に基づくキッティングトレイ40内における部品W0~W32の状態情報から、配膳結果を評価する(ステップS6)。 When the arrangement is completed (YES in step S4), the control unit 30 determines whether or not to perform the arrangement result evaluation (step S5). When the result evaluation is executed (YES in step S5), the information acquisition unit 33 causes the second camera 22 of the three-dimensional measurement apparatus 20 to capture the image of the kitting tray 40 after the arrangement, and the arranged parts W0 to W32 are arranged. Acquire 3D measurement results. Then, the rule setting unit 32 evaluates the layout result from the state information of the parts W0 to W32 in the kitting tray 40 based on the three-dimensional measurement result (step S6).
 ルール設定部32は、前記評価結果に基づき、現状の配膳ルールの修正が必要であるか否かを判定する(ステップS7)。評価結果が、予め定めた閾値を超えるレベルである場合には、ルール設定部32は、配膳ルールの修正要と判定し(ステップS7でYES)、前記配膳ルールを修正する(ステップS8)。ここでの修正としては、部品W0~W32のハンド部16によるピッキング位置、グリップ力、グリップ方向、リリースの高さ位置、配膳順序の修正などを例示することができる。 The rule setting unit 32 determines whether or not the current layout rule needs to be corrected based on the evaluation result (step S7). When the evaluation result is a level exceeding a predetermined threshold, the rule setting unit 32 determines that the layout rule needs to be corrected (YES in step S7), and corrects the layout rule (step S8). Examples of the correction here include correction of the picking position, grip force, grip direction, release height position, and arrangement order of the parts W0 to W32 by the hand unit 16.
 一方、前記配膳不良が前記閾値以下である場合は、ルール設定部32は、配膳ルールの修正不要と判定し(ステップS7でNO)、処理を終える。また、ステップS5において、配膳の結果評価を実行しないと判定された場合(ステップS5でNO)も、処理を終える。なお、ステップS5~S8は、操作者がマニュアルで実行しても良いし、予め定めた修正ルールに従って実行させても良い。さらに、ステップS5~S8と実質的に同一のプロセスを、学習部34による機械学習に代替することができる。この機械学習の例については、図9、図10に基づいて後述する。 On the other hand, if the layout failure is equal to or less than the threshold value, the rule setting unit 32 determines that the layout rule is not required to be modified (NO in step S7), and ends the process. In addition, when it is determined in step S5 that the evaluation of the layout result is not executed (NO in step S5), the process is also finished. Steps S5 to S8 may be executed manually by the operator or may be executed according to a predetermined correction rule. Further, the substantially same process as steps S5 to S8 can be replaced with machine learning by the learning unit 34. An example of this machine learning will be described later with reference to FIGS.
 [配膳ルールの具体例]
 以下、図4~図8に基づいて、ルール設定部32が設定する配膳ルールの具体例を説明する。図4(A)~(D)は、配膳ルールの一例を説明するための図であって、部品W11、W12同士に、上下方向の重なりが生じる配膳が行われる場合の配膳ルールを示す図である。図4(A)は、部品W11、W12の、キッティングトレイ40への望ましい配膳状態を示す上面図、図4(B)は、図4(A)の矢印a方向の側面図である。
[Specific examples of serving rules]
A specific example of the layout rule set by the rule setting unit 32 will be described below with reference to FIGS. FIGS. 4A to 4D are diagrams for explaining an example of the layout rule, and are diagrams illustrating the layout rule when the layout in which the parts W11 and W12 overlap in the vertical direction is performed. is there. 4A is a top view showing a desirable arrangement state of the parts W11 and W12 to the kitting tray 40, and FIG. 4B is a side view in the direction of arrow a in FIG. 4A.
 部品W11はパッキンのようなリング状部品、部品W12は、ボルトのような長尺の棒状部品である。部品W11は、キッティングトレイ40の内枠部42で区画された収容部A11の底板43上に、2個×3個のマトリクス状に整列する態様で配膳されている。一方、部品W12は、収容部A11を区画する内枠部42の上端縁42Tで支持される態様で配膳されている。 The part W11 is a ring-shaped part such as packing, and the part W12 is a long bar-shaped part such as a bolt. The parts W11 are arranged on the bottom plate 43 of the housing part A11 defined by the inner frame part 42 of the kitting tray 40 in a manner of being arranged in a matrix of 2 × 3. On the other hand, the component W12 is arranged in such a manner that it is supported by the upper end edge 42T of the inner frame portion 42 that defines the accommodating portion A11.
 図4(A)及び(B)に示す配膳状態を形成する場合、ルール設定部32は、配膳位置が下方となる部品W11を先行して配膳させる配膳ルールを設定する。すなわち、図4(C)に示すように、まずロボットハンド10に、収容部A11内の所定位置に各部品W11を配膳させる。この場合、収容部A11の区画をフル活用できるよう、リング状の部品W11の場合には、図4(A)に例示するようにマトリクス状に整列配置することが望ましい。 4A and 4B, the rule setting unit 32 sets a layout rule that allows the component W11 with the layout position below to be distributed in advance. That is, as shown in FIG. 4C, the robot hand 10 first arranges each component W11 at a predetermined position in the housing portion A11. In this case, in the case of the ring-shaped component W11, it is desirable to arrange and arrange in a matrix as illustrated in FIG. 4A so that the compartment of the housing portion A11 can be fully utilized.
 収容部A11への配膳が予定されている全て部品W11の配膳が終了したら、続いて、図4(D)に示すように、ロボットハンド10に棒状の部品W12を配膳させる。この際、部品W12の一端側と他端側とが、互いに対向する一対の内枠部42の上端縁42Tで各々支持されるように、ハンド部16から部品W12をリリースさせる。これにより、部品W11の上に部品W12が重なる態様で、両部品がキッティングトレイ40内に配膳される。図4(C)及び(D)の配膳ルールを採用することで、配膳位置が下方となるべき部品W11が、配膳位置が上方となる部品W12の上に配膳されてしまう、或いは部品W11の配膳が部品W12に阻害されるといった不具合を防止することができる。 When the arrangement of all the parts W11 scheduled to be arranged in the accommodating part A11 is completed, subsequently, as shown in FIG. 4D, the robot hand 10 arranges the rod-like parts W12. At this time, the component W12 is released from the hand portion 16 so that one end side and the other end side of the component W12 are respectively supported by the upper end edges 42T of the pair of inner frame portions 42 facing each other. Thereby, both components are arranged in the kitting tray 40 in such a manner that the component W12 overlaps the component W11. By adopting the layout rules of FIGS. 4C and 4D, the component W11 whose layout position should be lower is disposed on the component W12 whose layout position is higher, or the layout of the component W11. Can be prevented from being obstructed by the component W12.
 図5(A)、(B)、図6(A)~(D)は、配膳ルールの一例を説明するための図であって、同じ収容部に収容される部品同士の重なり合いをなるべく少なくする配膳ルールを示す図である。ルール設定部32は、キッティングトレイ40において部品が水平方向に並ぶ配膳と上下方向に重なる配膳との双方が実行可能である場合に、部品が上下方向に重なる配膳よりも部品が水平方向に並ぶ配膳を優先して実行させる配膳ルールを設定する。 FIGS. 5A, 5B, and 6A to 6D are diagrams for explaining an example of the layout rule, and minimize the overlap of components housed in the same housing portion. It is a figure which shows a layout rule. When both the arrangement in which the parts are arranged in the horizontal direction in the kitting tray 40 and the arrangement in which the parts overlap in the vertical direction can be executed, the rule setting unit 32 arranges the parts in the horizontal direction rather than the arrangement in which the parts overlap in the vertical direction. Set a distribution rule to execute with priority.
 図5(A)及び(B)は、内枠部42で区画される収容部A12に、断面六角形の部品W21が共に6個収容されている例を示している。収容部A12に対して6個の部品W21は、図5(A)に示すように、水平方向へ一列に並ぶ配膳とすることもできるし、図5(B)に示すように、上下方向に複数段(二段)に重ねて俵積み状に配膳することもできる。つまり、部品W21のサイズ、積み上げが容易な断面六角形の形状からして、平面的な配膳と立体的な配膳との双方を採用可能である。 5A and 5B show an example in which six parts W21 having a hexagonal cross section are housed in the housing part A12 partitioned by the inner frame part 42. FIG. As shown in FIG. 5 (A), the six parts W21 can be arranged in a line in the horizontal direction with respect to the housing part A12, or in the vertical direction as shown in FIG. 5 (B). It can also be arranged in a stacked manner in multiple stages (two stages). That is, it is possible to adopt both a planar arrangement and a three-dimensional arrangement from the size of the component W21 and the hexagonal shape of the cross section that can be easily stacked.
 このような場合、ルール設定部32は、図5(A)の平面的な配膳を優先する。すなわち、徒に上下方向に部品W21が積み重なるような配膳を行わせるのではなく、収容部A12の水平方向のスペースを有効活用し、バランスの良い配膳を行わせる。また、部品W21の個数が多く、上下方向に重ねて配膳することが必要なケースでも、収容部A12内の底板43の直上に可能な限りの数の部品W21を配膳させ、その上で二段目の配膳を行わせるようにする。これにより、複数の部品W21の収容部A12における収容安定性を向上させることができる。また、部品W21を俵積みした場合、底面43から比較的高い位置に配膳される部品W21が生じることになり、配膳後のキッティングトレイ40の運搬時等に部品W21が収容部A12から飛び出し易い状態となる。これらに鑑みると、図5(B)の立体的な配膳よりも、図5(A)の平面的な配膳が有利である。 In such a case, the rule setting unit 32 gives priority to the planar arrangement in FIG. In other words, it is not necessary to allow the parts W21 to be stacked in the vertical direction, but to effectively utilize the horizontal space of the housing portion A12 and perform a well-balanced arrangement. Even in a case where the number of parts W21 is large and it is necessary to arrange them in the vertical direction, as many parts W21 as possible can be arranged directly above the bottom plate 43 in the accommodating portion A12, and then two steps Have the eyes arranged. Thereby, the accommodation stability in accommodating part A12 of the some components W21 can be improved. In addition, when the components W21 are stacked, the components W21 arranged at a relatively high position from the bottom surface 43 are generated, and the components W21 are likely to jump out of the housing portion A12 when the kitting tray 40 is delivered after the arrangement. It becomes. In view of these, the planar arrangement of FIG. 5 (A) is more advantageous than the three-dimensional arrangement of FIG. 5 (B).
 図6(A)~(D)も図5と同様な事例を示している。図6(A)は、ボルト状の部品W31~W34の、キッティングトレイ40の収容部A13への望ましい配膳状態を示す上面図、図6(B)は、図6(A)の矢印b方向の側面図である。ここでは、ボルト頭が交互に反対向きとなるように、部品W31~W34が水平方向へ一列に並べて配膳されている。このように部品W31~W34を配膳することで、収容部A13の水平方向のスペースを有効活用できると共に、部品W31~W34の収容部A13内における配膳高さ(重心位置の高さ)を抑制することができる。 FIGS. 6A to 6D also show the same case as FIG. 6A is a top view showing a desirable arrangement state of the bolt-shaped parts W31 to W34 to the accommodating portion A13 of the kitting tray 40, and FIG. 6B is a view in the direction of arrow b in FIG. 6A. It is a side view. Here, the parts W31 to W34 are arranged in a line in the horizontal direction so that the bolt heads are alternately opposite to each other. By arranging the components W31 to W34 in this way, the horizontal space of the accommodating portion A13 can be effectively utilized, and the height of the arrangement of the components W31 to W34 in the accommodating portion A13 (the height of the center of gravity position) is suppressed. be able to.
 一方、図6(C)は、比較例に係る部品W31~W34の配膳状態を示す上面図、図6(D)は、図6(C)の矢印c方向の側面図である。ここでは、4つの部品W31~W34のうち、部品W33、W34が底板43上に配膳され、部品W31、W32がこれらの上側に載るように配膳され、これにより格子状に重ね合わせ配膳されている例を示している。このように、部品W31~W34を収容部A13へ配膳するに際し、平面的に配膳するのではなく、格子状に立体的に配膳することも可能である。しかし、ルール設定部32は、図6(A)及び(B)に示すような、平面的な配膳を優先する配膳ルールを設定する。これにより、部品W31~W34の収容部A13内における収容安定性を高め、部品W31~W34の飛び出しを抑止することができる。 On the other hand, FIG. 6 (C) is a top view showing the arrangement state of the parts W31 to W34 according to the comparative example, and FIG. 6 (D) is a side view in the direction of arrow c in FIG. 6 (C). Here, out of the four parts W31 to W34, the parts W33 and W34 are arranged on the bottom plate 43, and the parts W31 and W32 are arranged so as to be placed on the upper side thereof, thereby being arranged in a lattice manner. An example is shown. As described above, when the components W31 to W34 are arranged in the accommodating portion A13, it is possible to arrange them in a three-dimensional manner in a lattice shape instead of arranging them in a plane. However, the rule setting unit 32 sets a layout rule giving priority to planar layout as shown in FIGS. 6 (A) and 6 (B). Thereby, the housing stability of the components W31 to W34 in the housing portion A13 can be improved, and the components W31 to W34 can be prevented from popping out.
 図7(A)~(D)は、配膳ルールの一例を説明するための図であって、外形面積に応じて配膳順序を設定する配膳ルールを示す図である。図4に示した配膳ルールと類似しているが、ルール設定部32は、キッティングトレイ40において部品同士に上下方向の重なりが生じる配膳を行う場合に、平面視で占有面積の小さい部品を先行して配膳させる配膳ルールを設定する。ここでの占有面積とは、平面視の外形輪郭によって定まる面積であり、その外形輪郭内に空間が存在している場合には、その空間も含む面積である。 FIGS. 7A to 7D are diagrams for explaining an example of the layout rule, and are diagrams showing the layout rule for setting the layout order according to the outer area. Although the layout rule is similar to the layout rule shown in FIG. 4, the rule setting unit 32 precedes a component with a small occupation area in plan view when performing layout in which the components overlap each other in the kitting tray 40. Set the distribution rules to be distributed. The occupied area here is an area determined by an outline outline in plan view, and when there is a space in the outline outline, it is an area including the space.
 図7(A)は、占有面積の異なる部品W41、W42がキッティングトレイ40へ配膳されている状態を示す平面図である。部品W41は、ボルト状の部品であり、内枠部42で区画された収納部A14へ配膳されている。つまり、部品W41は、1つの収納部A14へ収容可能な程度の小さな専有面積を備える。一方、部品W42は、ガスケットのような大型のリング状部品であり、内枠部42で区画されるいずれの収容部へも収容できない大きな専有面積を備える。従って、部品W42は、内枠部42の上端縁42Tで支持されるように配膳されている。 FIG. 7A is a plan view showing a state in which parts W41 and W42 having different occupation areas are arranged on the kitting tray 40. FIG. The component W41 is a bolt-shaped component and is arranged in the storage portion A14 partitioned by the inner frame portion 42. That is, the component W41 has a small exclusive area that can be accommodated in one accommodating portion A14. On the other hand, the component W42 is a large ring-shaped component such as a gasket and has a large exclusive area that cannot be accommodated in any of the accommodating portions defined by the inner frame portion 42. Accordingly, the component W42 is arranged so as to be supported by the upper end edge 42T of the inner frame portion 42.
 このようなケースでは、ルール設定部32は、占有面積の小さい部品W41を先行して収納部A14内へ配膳させ、次いで占有面積の大きい部品W42を配膳させる。すなわち、図7(B)に示すように、先ずはロボットハンド10に部品W41を収納部A14内へ配膳させ、底板43に接面させる。他の収容部への区画へ収容すべき他の部品があれば、当該他の部品も配膳させる。その後、図7(C)に示すように、占有面積の大きい部品W42を、内枠部42の上端縁42Tに接面する所定の位置へ配膳させる。 In such a case, the rule setting unit 32 arranges the component W41 having a small occupied area in advance in the storage unit A14 and then arranges the component W42 having a large occupied area. That is, as shown in FIG. 7B, first, the robot hand 10 arranges the component W41 into the storage portion A14 and contacts the bottom plate 43. If there are other parts to be accommodated in the compartments for the other accommodating parts, the other parts are also arranged. After that, as shown in FIG. 7C, the part W42 having a large occupation area is arranged at a predetermined position in contact with the upper end edge 42T of the inner frame part 42.
 占有面積の大きい部品W42を先行して配膳させた場合、当該部品W42が収納部A14の上側開口部を塞いでしまう。これにより、占有面積の小さい部品W41の配膳を不可としてしまう不具合や、図7(D)に示すように、部品W42の上に部品W41が配膳されてしまう不具合が生じる。図7(B)、(C)に示すような配膳ルールを設定することで、これらの不具合を防止することができる。 When the component W42 having a large occupation area is arranged in advance, the component W42 closes the upper opening of the storage portion A14. As a result, there arises a problem that it is impossible to arrange the component W41 having a small occupied area, and a problem that the component W41 is arranged on the component W42 as shown in FIG. 7D. By setting a layout rule as shown in FIGS. 7B and 7C, these problems can be prevented.
 図8(A)~(C)は、配膳ルールの一例を説明するための図であって、部品の重心がなるべく低い状態となるようキッティングトレイ40に収容させる配膳ルールを示す図である。ルール設定部32は、キッティングトレイ40への部品の配膳状態として、当該部品の重心の高さ位置が第1位置となる第1配膳状態と、当該部品の重心の高さ位置が前記第1位置よりも高い第2位置となる第2配膳状態とを取り得る場合に、当該部品が前記第1配膳状態を取るように前記配膳ルールを設定する。 FIGS. 8A to 8C are diagrams for explaining an example of the layout rule, and are diagrams illustrating the layout rule stored in the kitting tray 40 so that the center of gravity of the component is as low as possible. The rule setting unit 32 includes a first arrangement state in which the height position of the center of gravity of the part is the first position, and the height position of the center of gravity of the part is the first position. The layout rule is set so that the component takes the first layout state when the second layout state, which is a higher second position, can be taken.
 図8(A)は、内枠部42で区画される収容部A15への、部品W51、W52の配膳状態を示す上面視の平面図である。部品W51、W52は、ボルト頭B1とボルト本体B2とを有する同一のボルト部品であって、収容部A15の区画には部品全体が入りきらない長さを有している。部品W51は、ボルト頭B1の側が収容部A15内に収容(底板43に接面)され、ボルト本体B2の側が内枠部42の上端縁42Tに乗り上げた状態で配膳されている。逆に、部品W52は、ボルト本体B2の側が収容部A15内に収容され、ボルト頭B1の側が内枠部42の上端縁42Tから上方に飛び出す状態で配膳されている。図中の符号G1、G2は、部品W51、W52の各々の重心位置を示している。部品W51、W52においてボルト頭B1は重量の大きい部分であるので、重心G1、G2はボルト本体B2のボルト頭B1に近い位置となる。 FIG. 8A is a plan view in a top view showing a state in which the parts W51 and W52 are arranged in the housing part A15 partitioned by the inner frame part 42. FIG. The parts W51 and W52 are the same bolt parts having the bolt head B1 and the bolt main body B2, and have a length that does not allow the whole part to enter the compartment of the housing portion A15. The component W51 is arranged in such a manner that the bolt head B1 side is accommodated in the accommodating portion A15 (contacting the bottom plate 43) and the bolt main body B2 side rides on the upper end edge 42T of the inner frame portion 42. Conversely, the component W52 is arranged in such a manner that the bolt body B2 side is accommodated in the accommodating portion A15 and the bolt head B1 side protrudes upward from the upper end edge 42T of the inner frame portion 42. Reference numerals G1 and G2 in the figure indicate the positions of the center of gravity of the parts W51 and W52. Since the bolt head B1 is a heavy part in the parts W51 and W52, the centers of gravity G1 and G2 are close to the bolt head B1 of the bolt body B2.
 図8(B)は、部品W51の収容部A15への収容状態を示す側面図である。部品W51は、ボルト頭B1側が下方となり、ボルト本体B2の先端側付近が上端縁42Tで持ち上げられるように傾斜した状態で、収容部A15へ配膳されている(第1配膳状態)。部品W51の重心G1は、底板43に対して、ボルト頭B1のサイズによって定まる高さh1(第1位置)に位置する。 FIG. 8B is a side view showing a housing state of the component W51 in the housing portion A15. The component W51 is arranged in the accommodating portion A15 in a state where the bolt head B1 side is inclined downward and the vicinity of the tip end side of the bolt main body B2 is lifted by the upper end edge 42T (first arrangement state). The center of gravity G1 of the component W51 is located at a height h1 (first position) determined by the size of the bolt head B1 with respect to the bottom plate 43.
 これに対し、図8(C)は、部品W52の収容部A15への収容状態を示す側面図である。部品W52は、ボルト本体B2の先端が下方となり、ボルト本体B2のボルト頭B1に近い根元部付近が上端縁42Tで持ち上げられるように傾斜した状態で、収容部A15へ配膳されている(第2配膳状態)。この場合、ボルト頭B1側が上方となることから、部品W52の重心G2は、部品W51の重心G1よりもΔhだけ高い高さh2(第2位置)に位置する。 On the other hand, FIG. 8C is a side view showing a housing state of the component W52 in the housing portion A15. The component W52 is arranged in the housing portion A15 in a state where the bolt body B2 is inclined so that the tip of the bolt body B2 is downward and the vicinity of the root portion of the bolt body B2 near the bolt head B1 is lifted by the upper end edge 42T (second). Serving state). In this case, since the bolt head B1 side is upward, the center of gravity G2 of the component W52 is positioned at a height h2 (second position) that is higher than the center of gravity G1 of the component W51 by Δh.
 このようなケースでは、ルール設定部32は、図8(B)の部品W51に対して採用した配膳状態を取るように、配膳ルールを設定する。すなわち、収容部A15へ収容した状態において、最も重心G1の高さ位置が低くなる配膳が行えるように、配膳ルールが設定される。図8(C)に示すように、重心G2が比較的高い位置に存在する部品W52の如き収納態様では、当該部品W52が収容部A15から落下し易くなる。これに対し、図8(B)に示すように、重心G1がより低い状態となる部品W51の如き収納態様を採用することで、部品W51が収容部A15から落下し難くすることができる。 In such a case, the rule setting unit 32 sets the layout rule so that the layout state adopted for the component W51 in FIG. That is, the arrangement rule is set so that the arrangement in which the height position of the center of gravity G1 is lowest can be performed in the state of being accommodated in the accommodation portion A15. As shown in FIG. 8C, in the storage mode such as the component W52 in which the center of gravity G2 exists at a relatively high position, the component W52 easily falls from the storage portion A15. On the other hand, as shown in FIG. 8 (B), by adopting a storage mode such as the component W51 in which the center of gravity G1 is lower, the component W51 can be made difficult to fall from the storage portion A15.
 [機械学習の具体例]
 続いて、ルール設定部32が、学習部34(評価部)による機械学習によって配膳ルールを設定する例を説明する。ここでは、ロボットハンド10による配膳動作が実行された後のキッティングトレイ40の三次元画像を三次元計測装置20(撮像装置)が取得し、その三次元画像に基づいて学習部34が評価する例を示す。
[Specific examples of machine learning]
Next, an example will be described in which the rule setting unit 32 sets a layout rule by machine learning by the learning unit 34 (evaluation unit). Here, an example in which the three-dimensional measuring device 20 (imaging device) acquires a three-dimensional image of the kitting tray 40 after the catering operation by the robot hand 10 is executed, and the learning unit 34 evaluates based on the three-dimensional image. Indicates.
 <学習部の構成>
 学習部34は、機械学習が実行される際、ある配膳動作を実行した際のロボットハンド10の制御情報と、その配膳動作が実行されたキッティングトレイ40における部品の位置情報とから、各々の部品を配膳する場合における最適なロボットハンド10の行動パターンを学習する。学習部34により取得された学習結果は、ルール設定部32が設定する配膳ルールに反映される。上述した通り、学習部34は、変位量観測部35、報酬設定部36及び価値関数更新部37を含む(図1)。
<Configuration of learning unit>
When machine learning is executed, the learning unit 34 determines each component from the control information of the robot hand 10 when a certain arrangement operation is executed and the position information of the component in the kitting tray 40 where the arrangement operation is executed. Learns the optimal behavior pattern of the robot hand 10 when serving. The learning result acquired by the learning unit 34 is reflected in the layout rule set by the rule setting unit 32. As described above, the learning unit 34 includes a displacement amount observation unit 35, a reward setting unit 36, and a value function updating unit 37 (FIG. 1).
 変位量観測部35は、部品が配膳された比較元のキッティングトレイ40の三次元画像データ(以下、基礎画像データという)と、新たに部品が配膳された比較対象のキッティングトレイ40の三次元画像データ(以下、比較画像データという)とを比較する。そして、変位量観測部35は、比較対象の部品の三次元位置の、比較元の部品の三次元位置に対する変位量を導出する。基礎画像データは、例えば、配膳見本となるような、キッティングトレイ40に対象部品が理想的に配膳された状態を、三次元計測装置20にて撮像させ、その撮像により画像処理部25が導出した前記対象部品についての三次元位置情報(X、Y、Z座標値)を含む画像データである。比較画像データも、学習工程において対象部品が配膳されたキッティングトレイ40を、三次元計測装置20にて撮像させることによって取得された、同様な三次元位置情報を含む画像データである。 The displacement amount observing unit 35 includes three-dimensional image data (hereinafter referred to as basic image data) of a comparison-source kitting tray 40 on which parts are arranged, and a three-dimensional image of a comparison-target kitting tray 40 on which parts are newly arranged. Data (hereinafter referred to as comparative image data) is compared. Then, the displacement amount observation unit 35 derives a displacement amount of the three-dimensional position of the comparison target component with respect to the three-dimensional position of the comparison source component. The basic image data is derived by the image processing unit 25 by causing the three-dimensional measuring device 20 to capture an image of a state in which the target component is ideally arranged on the kitting tray 40, for example, serving as a layout sample. This is image data including three-dimensional position information (X, Y, Z coordinate values) about the target part. The comparison image data is also image data including the same three-dimensional position information acquired by causing the three-dimensional measuring device 20 to image the kitting tray 40 on which the target part is arranged in the learning process.
 報酬設定部36は、ロボットハンド10が実行した配膳動作(行動パターン)と、その行動パターンによって配膳された対象部品の配膳状態とを関連付けて、当該行動パターンに対して報酬Rを与える処理を行う。具体的には報酬設定部36は、駆動制御部31から、ある対象部品のピッキング及びリリースの際にロボットハンド10に実行させた行動パターンの制御データを取得する。また、報酬設定部36は、当該行動パターンによって配膳された対象部品について変位量観測部35が導出した変位量のデータを取得する。前記行動パターンの制御データと、前記変位量のデータとに基づいて、当該行動パターンに対して報酬Rが与えられる。 The reward setting unit 36 associates the arrangement operation (behavior pattern) executed by the robot hand 10 with the arrangement state of the target component arranged according to the action pattern, and performs a process of giving a reward R to the action pattern. . Specifically, the reward setting unit 36 acquires, from the drive control unit 31, action pattern control data executed by the robot hand 10 when picking and releasing a certain target part. In addition, the reward setting unit 36 acquires the displacement amount data derived by the displacement amount observation unit 35 for the target part arranged according to the behavior pattern. A reward R is given to the behavior pattern based on the behavior pattern control data and the displacement amount data.
 報酬Rは、前記変位量が小さいほど、大きい値が付与されるように設定することができる。例えば、前記変位量が予め設定された閾値Thよりも大きい場合には報酬R=0とするが、前記変位量が閾値Thよりも小さい場合には報酬R>0とする。そして、前記変位量が閾値Thよりも小さい場合において、より変位量が小さいほど、より大きな報酬Rが与えられるように設定することができる。また、報酬Rは、部品の重心がより低い配膳が行われない場合、部品同士の重なり合いがより少ない場合、或いは、1回の配膳サイクルのタクトタイムがより短い場合などに、より大きな値が与えられるように設定することができる。 The reward R can be set so that a larger value is given as the displacement amount is smaller. For example, when the displacement amount is larger than a preset threshold value Th, the reward R = 0 is set, but when the displacement amount is smaller than the threshold value Th, the reward R> 0 is set. And when the said displacement amount is smaller than threshold value Th, it can set so that the bigger reward R may be given, so that a displacement amount is smaller. In addition, the reward R is given a larger value when, for example, the arrangement where the center of gravity of the parts is lower is not performed, the overlapping of the parts is less, or the tact time of one arrangement cycle is shorter. Can be set to
 価値関数更新部37は、ロボットハンド10の行動パターンの価値Q(s,a)を規定する価値関数を、報酬設定部36により設定された報酬Rに応じて更新する。価値関数更新部37は、下記式(1)で示される価値Q(s,a)の更新式を用いて価値関数を更新する。 The value function updating unit 37 updates the value function that defines the value Q (s, a) of the action pattern of the robot hand 10 according to the reward R set by the reward setting unit 36. The value function updating unit 37 updates the value function using an update formula of the value Q (s, a) represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式(1)において、「s」は、ロボットハンド10の状態を表し、「a」は、行動パターンに従ったロボットハンド10の行動を表す。行動「a」によってロボット2の状態が、状態「s」から状態「s’」へ移行する。R(s,a)は、その状態の移行により得られた報酬Rを表している。「max」が付された項は、状態「s’」において最も価値の高い行動「a’」を選択した場合の価値Q(s’,a’)に「γ」を乗算したものになる。「γ」は、減衰率と呼ばれるパラメータであり、0<γ≦1の範囲(例えば0.9)とされる。また、「α」は、学習率と呼ばれるパラメータであり、0<α≦1の範囲(例えば0.1)とされる。 In the above formula (1), “s” represents the state of the robot hand 10 and “a” represents the action of the robot hand 10 according to the action pattern. The state of the robot 2 changes from the state “s” to the state “s ′” by the action “a”. R (s, a) represents the reward R obtained by the transition of the state. The term with “max” is obtained by multiplying the value Q (s ′, a ′) by “γ” when the action “a ′” having the highest value in the state “s ′” is selected. “Γ” is a parameter called an attenuation factor, and is in a range of 0 <γ ≦ 1 (for example, 0.9). “Α” is a parameter called a learning rate, and is in a range of 0 <α ≦ 1 (for example, 0.1).
 上記式(1)は、行動「a」に対して報酬設定部36により設定された報酬R(s,a)に基づいて、状態「s」における行動「a」の価値Q(s,a)を更新する更新式を表している。すなわち、上記式(1)は、状態「s」における行動「a」の価値Q(s,a)よりも、状態「s’」における行動「a’」の価値Q(s’,a’)と報酬R(s,a)との合計値の方が大きければ、価値Q(s,a)を大きくし、反対に小さければ、価値Q(s,a)を小さくすることを示している。つまり、価値関数更新部37は、上記式(1)で示される更新式を用いて価値関数を更新することによって、或る状態「s」における或る行動「a」の価値Q(s,a)を、その行動「a」に対して設定される報酬Rと、その行動「a」による次の状態「s’」における最良の行動「a’」の価値Q(s’,a’)に近付けるようにしている。 The above equation (1) is based on the reward R (s, a) set by the reward setting unit 36 for the action “a”, and the value Q (s, a) of the action “a” in the state “s”. Represents an update formula for updating. In other words, the above equation (1) is such that the value Q (s ′, a ′) of the action “a ′” in the state “s ′” is greater than the value Q (s, a) of the action “a” in the state “s”. And the reward R (s, a) is larger, the value Q (s, a) is increased, and on the contrary, the value Q (s, a) is decreased. In other words, the value function updating unit 37 updates the value function using the update formula represented by the above formula (1), thereby the value Q (s, a of the certain action “a” in the certain state “s”. ) To the reward R set for the action “a” and the value Q (s ′, a ′) of the best action “a ′” in the next state “s ′” by the action “a”. I try to get closer.
 <学習部による機械学習処理>
 図9及び図10は、配膳ルールの学習動作の一例を示すフローチャートである。先ず、制御部30の情報取得部33が、部品が配膳されたキッティングトレイ40の基礎画像データ、及びキッティングトレイ40自体の形状データを取得する(ステップS11)。前記基礎画像データは、例えば図2に示したような、複数種の部品W0~W32が理想的に配膳された状態のキッティングトレイ40を、三次元計測装置20の第2カメラ22にて撮像させて得た三次元画像データ(理想配膳情報)に基づき取得される。また、前記形状データは、キッティングトレイ40の外枠部41のサイズ、それぞれの内枠部42のサイズや深さ等に関するデータである。情報取得部33は、空のキッティングトレイ40を第2カメラ22にて撮像させて得た三次元画像データ、若しくは入力部26から与えられるデータを、前記形状データとして取得する。
<Machine learning processing by the learning unit>
9 and 10 are flowcharts showing an example of the learning operation of the layout rule. First, the information acquisition unit 33 of the control unit 30 acquires basic image data of the kitting tray 40 on which parts are arranged and shape data of the kitting tray 40 itself (step S11). The basic image data is captured by the second camera 22 of the three-dimensional measuring device 20 in the kitting tray 40 in which a plurality of types of parts W0 to W32 are ideally arranged as shown in FIG. Acquired based on the three-dimensional image data (ideal information) obtained in this way. The shape data is data relating to the size of the outer frame portion 41 of the kitting tray 40, the size and depth of each inner frame portion 42, and the like. The information acquisition unit 33 acquires the three-dimensional image data obtained by imaging the empty kitting tray 40 with the second camera 22 or the data provided from the input unit 26 as the shape data.
 ルール設定部32は、上記の理想配膳情報及びキッティングトレイ40の形状データに基づき、配膳ルールを初期設定する。つまり、どの部品W0~W32が、キッティングトレイ40のどの収容部A1~A3に配膳されるかが決定される。そして、配膳順序の設定に際して、先に図4~図8に基づいて説明したような、配膳順序や配膳態様に関する基礎ルールが予め制御部30に記憶されており、配膳ルールの初期設定に活用される。この初期設定された配膳ルールが、学習部34による学習結果(評価部の評価)に応じて修正されるものである。 The rule setting unit 32 initially sets a layout rule based on the ideal layout information and the shape data of the kitting tray 40 described above. In other words, it is determined which parts W0 to W32 are arranged in which accommodating parts A1 to A3 of the kitting tray 40. When setting the layout order, basic rules regarding the layout order and layout mode as described above with reference to FIGS. 4 to 8 are stored in the control unit 30 in advance, and are used for initial setting of the layout rules. The This initially set layout rule is corrected according to the learning result (evaluation by the evaluation unit) by the learning unit 34.
 次に、情報取得部33は、キッティングトレイ40に配膳される対象部品の形状及び収納位置情報を取得する(ステップS12)。すなわち、部品W0~W32の形状に関する情報と、これら部品W0~W32をそれぞれ収納する部品収納トレイの、ロボットハンド10に対する位置情報とが取得される。これらの情報は、三次元計測装置20の第1カメラ21の撮像結果に基づく三次元画像データ、或いは、入力部26から与えられた入力データから取得させることができる。以上のステップS11,S12が、学習処理に際しての事前準備である。 Next, the information acquisition unit 33 acquires the shape and storage position information of the target part arranged on the kitting tray 40 (step S12). That is, information regarding the shapes of the components W0 to W32 and position information of the component storage trays for storing the components W0 to W32, respectively, with respect to the robot hand 10 are acquired. These pieces of information can be acquired from the three-dimensional image data based on the imaging result of the first camera 21 of the three-dimensional measurement apparatus 20 or the input data given from the input unit 26. The above steps S11 and S12 are preparations for the learning process.
 学習処理に入ると、情報取得部33は、これから部品の配膳が行われるキッティングトレイ40の位置情報を、第2カメラ22の撮像結果より取得する(ステップS13)。つまり、キッティングトレイ40のロボットハンド10に対する位置情報を取得する。続いて、情報取得部33は、第1カメラ21に配膳対象部品を収容している部品収納トレイを撮像させ、画像処理部25の物体認識処理の結果に基づく配膳対象部品の三次元位置情報を取得する(ステップS14)。これにより、これから配膳される対象部品の、前記部品収納トレイ内における座標値が取得される。情報取得部33が取得した位置情報は、ルール設定部32を通して駆動制御部31に与えられる。 Upon entering the learning process, the information acquisition unit 33 acquires the position information of the kitting tray 40 from which parts will be arranged from the imaging result of the second camera 22 (step S13). That is, the position information of the kitting tray 40 with respect to the robot hand 10 is acquired. Subsequently, the information acquisition unit 33 causes the first camera 21 to image the component storage tray that stores the layout target component, and obtains the three-dimensional position information of the layout target component based on the result of the object recognition process of the image processing unit 25. Obtain (step S14). Thereby, the coordinate value in the said component storage tray of the target component arranged from now on is acquired. The position information acquired by the information acquisition unit 33 is given to the drive control unit 31 through the rule setting unit 32.
 駆動制御部31は、ルール設定部32が設定した配膳ルール及び情報取得部33が取得した前記位置情報に基づきロボットハンド10を動作させ、順次対象部品をピッキングさせる(ステップS15)。そして、ロボットハンド10のハンド部16に把持された部品を下面側から撮像する図略の部品認識カメラの撮像結果に基づき、制御部30がハンド部16に対象部品が把持されているか否かを判定する(ステップS16)。対象部品が把持されていない場合、つまりハンド部16が部品の把持に失敗している場合(ステップS16でNO)、ステップS14に戻って、対象部品のピッキングのリトライが実行される。 The drive control unit 31 operates the robot hand 10 based on the layout rule set by the rule setting unit 32 and the position information acquired by the information acquisition unit 33, and sequentially picks the target parts (step S15). Then, based on the imaging result of a component recognition camera (not shown) that captures the part gripped by the hand unit 16 of the robot hand 10 from the lower surface side, the control unit 30 determines whether or not the target component is gripped by the hand unit 16. Determination is made (step S16). If the target part is not gripped, that is, if the hand unit 16 has failed to grip the part (NO in step S16), the process returns to step S14 to retry the picking of the target part.
 対象部品が把持されている場合(ステップS16でYES)、駆動制御部31は、ロボットハンド10を駆動させて、キッティングトレイ40までピッキングした対象部品を運搬させると共に、前記配膳ルール及び前記位置情報に基づき、所定のXYZ位置で前記対象部品をリリースさせる(ステップS17)。これにより、一つの対象部品の配膳が終わる。 When the target part is gripped (YES in step S16), the drive control unit 31 drives the robot hand 10 to transport the picked target part to the kitting tray 40, and also uses the layout rule and the position information. Based on this, the target part is released at a predetermined XYZ position (step S17). Thereby, the arrangement of one target part is completed.
 その後、予定されている部品の配膳が全て完了したか否かが確認される(ステップS18)。全ての配膳が完了していない場合(ステップS18でNO)、続いてハンド部16による部品の把持成功率が良好であるか否か確認される(ステップS19)。把持成功率が良好である場合(ステップS19でYES)、ステップS14で取得した物体認識処理結果に基づき良好なピッキングが実行されていると言える。この場合、ステップS15に移行して、駆動制御部31が次の対象部品のピッキングを実行する。一方、把持成功率が良好ではない場合(ステップS19でNO)、前記物体認識処理結果と実際のピッキングとに乖離が生じていると言える。この場合、ステップS14に戻り、再度第1カメラ21に部品収納トレイを撮像させ、物体認識処理を行わせる。 Thereafter, it is confirmed whether or not all the scheduled part arrangements have been completed (step S18). If all arrangements have not been completed (NO in step S18), it is subsequently confirmed whether or not the success rate of gripping the parts by the hand unit 16 is good (step S19). If the gripping success rate is good (YES in step S19), it can be said that good picking is being performed based on the object recognition processing result acquired in step S14. In this case, the process proceeds to step S15, and the drive control unit 31 executes the picking of the next target part. On the other hand, if the gripping success rate is not good (NO in step S19), it can be said that there is a difference between the object recognition processing result and the actual picking. In this case, the process returns to step S14, and the first camera 21 is again imaged of the component storage tray, and the object recognition process is performed.
 全ての配膳が完了した場合(ステップS18でYES)、図10のフローに移行して、配膳を終えた後のキッティングトレイ40の情報が取得される(ステップS21)。具体的には、三次元計測装置20の撮像制御部24が、第2カメラ22に配膳後のキッティングトレイ40を撮像させ、画像処理部25がキッティングトレイ40における部品の配膳位置を示す三次元位置情報を導出する。学習部34の変位量観測部35は、このような部品の三次元位置情報を含む画像データを、カメラ制御部23から上述の比較画像データとして取得する。ハンド部16で把持した部品をリリースした後、当該部品がキッティングトレイ40においてどの様な挙動を示すかは不明である。一つの部品を特定の位置で把持してピッキングし、特定の高さ位置でリリースするというロボットハンド10の一つの行動パターンの実行結果が、このステップS21で把握される。 When all arrangements are completed (YES in step S18), the process proceeds to the flow of FIG. 10, and information on the kitting tray 40 after the arrangement is completed is acquired (step S21). Specifically, the imaging control unit 24 of the three-dimensional measuring device 20 causes the second camera 22 to image the kitting tray 40 after the arrangement, and the image processing unit 25 indicates a three-dimensional position indicating the arrangement position of the components on the kitting tray 40. Deriving information. The displacement amount observation unit 35 of the learning unit 34 acquires image data including the three-dimensional position information of such a component from the camera control unit 23 as the above-described comparison image data. It is unclear how the parts behave in the kitting tray 40 after releasing the parts gripped by the hand unit 16. The execution result of one action pattern of the robot hand 10 that grasps and picks one part at a specific position and releases it at a specific height position is grasped in this step S21.
 変位量観測部35は、ステップS21で取得した比較画像データと、ステップS11で取得した基礎画像データとを比較し、比較画像データにおける部品の三次元位置の、基礎画像データにおける部品の三次元位置に対する変位量を導出する(ステップS22)。なお、それまでの学習処理で取得された配膳後のキッティングトレイ40の画像データを、比較元の基礎画像データとして用いることができる。この場合、配膳後のキッティングトレイ40内における部品の位置安定性を評価することができる。また、前記変位量は、主に部品の重心位置の変位量を求めることが望ましい。 The displacement amount observation unit 35 compares the comparison image data acquired in step S21 with the basic image data acquired in step S11, and the three-dimensional position of the component in the basic image data of the three-dimensional position of the component in the comparison image data. The amount of displacement with respect to is derived (step S22). In addition, the image data of the kitting tray 40 after the arrangement obtained in the learning process so far can be used as the basic image data of the comparison source. In this case, the positional stability of the components in the kitting tray 40 after the arrangement can be evaluated. Further, it is desirable that the displacement amount is mainly a displacement amount of the center of gravity position of the component.
 続いて、報酬設定部36が、前記変位量が予め設定された閾値Thよりも大きいか否かを判定する(ステップS23)。前記変位量が大きいということは、今回のロボットハンド10の行動パターンでは、部品が所期の位置に配膳されていない、若しくは、部品を安定的に配膳できていないということを意味する。報酬設定部36は、前記変位量が閾値Th以上である場合(ステップS23でYES)、そのようなロボットハンド10の行動パターンに対して「0;ゼロ」の報酬Rを与える(ステップS24)。これに対し、報酬設定部36は、前記変位量が閾値Th未満である場合(ステップS23でNO)、そのようなロボットハンド10の行動パターンに対して「0;ゼロ」より大きい報酬Rを与える(ステップS25)。 Subsequently, the reward setting unit 36 determines whether or not the displacement amount is larger than a preset threshold value Th (step S23). The large amount of displacement means that in the action pattern of the robot hand 10 this time, the component is not arranged at the intended position, or the component cannot be arranged stably. When the displacement amount is equal to or greater than the threshold Th (YES in step S23), the reward setting unit 36 gives a reward R of “0; zero” to the action pattern of the robot hand 10 (step S24). On the other hand, when the amount of displacement is less than the threshold Th (NO in step S23), the reward setting unit 36 gives a reward R greater than “0; zero” to the action pattern of the robot hand 10. (Step S25).
 その後、価値関数更新部37が、ロボットハンド10の行動パターンの価値Q(s,a)を規定する価値関数を、上記式(1)の更新式を用いて更新する(ステップS26)。上記のステップS13~S26で示される各処理が、学習部34による学習処理の1サイクルにおいて実行される処理である。学習部34は、学習回数が所定回数Nに達したか否かを判定する(ステップS27)。所定回数Nに達していない場合は(ステップS27でNO)、学習部34は、ステップS13に戻り、次のキッティングトレイ40への部品配膳を実行させ、学習処理を繰り返す。一方、所定回数Nに達した場合は(ステップS27でYES)、学習部34は、学習処理を終える。 Thereafter, the value function updating unit 37 updates the value function that defines the value Q (s, a) of the action pattern of the robot hand 10 by using the update formula of the above formula (1) (step S26). Each process shown in steps S13 to S26 is a process executed in one cycle of the learning process by the learning unit 34. The learning unit 34 determines whether or not the number of learning has reached the predetermined number N (step S27). If the predetermined number N has not been reached (NO in step S27), the learning unit 34 returns to step S13, causes the parts to be arranged on the next kitting tray 40, and repeats the learning process. On the other hand, if the predetermined number N has been reached (YES in step S27), the learning unit 34 ends the learning process.
 <機械学習処理の変形例>
 上記の機械学習処理例では、図9のステップS11において、部品が配膳されたキッティングトレイ40の基礎画像データ(理想配膳情報)を、情報取得部33に取得させる例を示した。これに代えて、理想配膳情報を情報取得部33に与えず、部品が配膳されていないキッティングトレイ40及びその収容部に関する情報と、部品のサイズに関する情報だけを取得させるようにしても良い。
<Modification of machine learning process>
In the example of the machine learning process described above, an example is shown in which the information acquisition unit 33 acquires basic image data (ideal layout information) of the kitting tray 40 on which the components are arranged in step S11 of FIG. Instead of this, the ideal layout information may not be given to the information acquisition unit 33, and only the information related to the kitting tray 40 on which no component is arranged and its storage unit, and the information related to the size of the component may be acquired.
 すなわち、この変形例では、図9のステップS11において、情報取得部33はキッティングトレイ40自体の形状データだけを取得する。そして、ルール設定部32は、ステップS12で取得される対象部品の形状データに基づき、暫定的な配膳ルールを初期設定する。この配膳ルールが、学習部34の学習結果(評価部の評価)に応じて修正される。 That is, in this modification, in step S11 of FIG. 9, the information acquisition unit 33 acquires only the shape data of the kitting tray 40 itself. Then, the rule setting unit 32 initially sets a provisional layout rule based on the shape data of the target part acquired in step S12. This layout rule is modified according to the learning result of the learning unit 34 (evaluation by the evaluation unit).
 この変形例によれば、理想配膳情報が与えられずとも、機械学習によって理想的な配膳に近い配膳ルールを探知させることが可能となる。理想配膳情報では、配膳ルールが固定的な前提に従って設定される傾向がある。例えば、サイズの小さい部品は、キッティングトレイ40に用意されているサイズの小さい収容部に配膳する、という前提に基づいて配膳ルールが設定される傾向がある。しかし、このような前提に基づくと、良好な部品の配膳が行えない場合が生じることがある。この点を図11に基づいて説明する。 According to this modification, it is possible to detect a layout rule close to the ideal layout by machine learning even if the ideal layout information is not given. In the ideal catering information, the catering rules tend to be set according to a fixed premise. For example, a layout rule tends to be set based on the premise that a small-sized component is distributed in a small-sized storage section prepared in the kitting tray 40. However, based on such premise, there are cases where good parts cannot be arranged. This point will be described with reference to FIG.
 図11(A)、(B)は、比較的サイズの大きい大サイズ部品W61と、比較的サイズの小さい小サイズ部品W62との、キッティングトレイ40への配膳例を示す図である。キッティングトレイ40には、比較的広い収容空間を有する広収容部A16と、比較的狭い収容空間を有する狭収容部A17とが備えられている。 FIGS. 11A and 11B are diagrams showing examples of arrangement of the large-sized component W61 having a relatively large size and the small-sized component W62 having a relatively small size on the kitting tray 40. FIG. The kitting tray 40 includes a wide accommodating portion A16 having a relatively large accommodating space and a narrow accommodating portion A17 having a relatively narrow accommodating space.
 図11(A)は、広収容部A16には大サイズ部品W61を、狭収容部A17には小サイズ部品W62を、それぞれ配膳させた状態を示している。図11(A)に示す配膳例は、サイズの小さい部品はサイズの小さい収容部へ配膳するという、一般的な配膳の考え方に沿ったものではある。しかし、実際の配膳結果では、小サイズ部品W62の配膳数が多いことから、狭収容部A17に小サイズ部品W62が山積みされた状態となっている。つまり、多くの小サイズ部品W62の重心位置が、狭収容部A17内において底板43に対して高い位置に存在している。この場合、小サイズ部品W62がキッティングトレイ40(狭収容部A17)から溢れ易い状態となるので好ましくない。 FIG. 11A shows a state in which a large size part W61 is arranged in the wide accommodation part A16 and a small size part W62 is arranged in the narrow accommodation part A17. The arrangement example shown in FIG. 11A is in line with a general arrangement concept in which a small-sized component is arranged in a small-sized container. However, in the actual layout result, since the number of small size parts W62 is large, the small size parts W62 are piled up in the narrow housing portion A17. That is, the position of the center of gravity of many small-sized components W62 is located higher than the bottom plate 43 in the narrow housing portion A17. In this case, it is not preferable because the small-sized component W62 is likely to overflow from the kitting tray 40 (narrow accommodating portion A17).
 これに対し、図11(B)に示す配膳例では、狭収容部A17に大サイズ部品W61が、広収容部A16に部品数の多い小サイズ部品W62が配膳されている。この配膳例では、小サイズ部品W62及び大サイズ部品W61の重心位置が、それぞれの収容部A16、A17において底板43に対して低い位置に存在している。これにより、部品W61、W62がキッティングトレイ40から落下し難い配膳が実現できる。理想配膳情報をあえて与えないと共に、学習部34による学習処理により、なるべく重心を低くする配膳態様を学習させることで、図11(B)の如き配膳態様を探知させることが可能となる。 On the other hand, in the arrangement example shown in FIG. 11 (B), a large size part W61 is arranged in the narrow accommodating part A17, and a small size part W62 having a large number of parts is arranged in the wide accommodating part A16. In this arrangement example, the positions of the center of gravity of the small-sized component W62 and the large-sized component W61 are located lower than the bottom plate 43 in the respective accommodating portions A16 and A17. Thereby, the arrangement | positioning in which components W61 and W62 cannot fall easily from the kitting tray 40 is realizable. It is possible to detect the layout mode as shown in FIG. 11B by not giving the ideal layout information and learning the layout mode that lowers the center of gravity as much as possible by the learning process by the learning unit 34.
 [上記実施形態に包含される発明]
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
[Inventions Included in the Embodiments]
The specific embodiments described above mainly include inventions having the following configurations.
 本発明の一局面に係るキッティングトレイへの部品配膳装置は、サイズの異なる複数種の部品を、複数の収容部を備えたキッティングトレイに配膳する部品配膳装置であって、部品のピッキング及びリリースが可能なヘッド部を有し、前記部品の保管位置において前記複数種の部品の中から対象部品を前記ヘッド部でピッキングすると共に運搬し、当該対象部品を前記ヘッド部から前記キッティングトレイにリリースする配膳動作を行うロボットハンドと、前記ロボットハンドの動作を制御する制御部と、を備え、前記制御部は、前記複数種の部品及び前記複数の収容部の態様に応じて、前記部品の前記キッティングトレイへの配膳ルールを設定するルール設定部と、前記配膳ルールに基づき前記ロボットハンドに前記配膳動作を実行させる駆動制御部と、を備える。 A component arrangement device for a kitting tray according to one aspect of the present invention is a component arrangement device that arranges a plurality of types of components of different sizes on a kitting tray having a plurality of storage units, and picking and releasing the components. An arrangement that has a possible head part, picks and conveys the target part from the plurality of types of parts at the storage position of the part, and releases the target part from the head part to the kitting tray. A robot hand that performs an operation; and a control unit that controls the operation of the robot hand, wherein the control unit is configured to control the kitting tray of the component according to the types of the plurality of components and the plurality of storage units. A rule setting unit for setting a distribution rule to the robot, and causing the robot hand to execute the distribution operation based on the distribution rule Comprising a drive control unit.
 この部品配膳装置によれば、キッティングトレイの複数の収容部の態様と、当該キッティングトレイに配膳される部品の態様に応じて、配膳ルールが設定される。すなわち、プログラミング等によってロボットハンドによる配膳手順を厳格に決定するのではなく、部品や収容部の態様に応じて、ルール設定部がフレキシブルに配膳ルールを決定することが可能とされている。従って、手間やスキルを要するプログラミング等を行うことなく、キッティングトレイへ部品を適正に配膳させることが可能となる。 According to this component arrangement apparatus, the arrangement rule is set according to the aspect of the plurality of accommodating parts of the kitting tray and the aspect of the parts arranged on the kitting tray. That is, instead of strictly determining the arrangement procedure by the robot hand by programming or the like, the rule setting unit can flexibly determine the arrangement rule according to the aspect of the part or the accommodation unit. Therefore, it is possible to properly distribute the components to the kitting tray without performing programming or the like that requires time and skill.
 上記の部品配膳装置において、前記ルール設定部は、前記キッティングトレイにおいて部品同士に上下方向の重なりが生じる配膳を行う場合に、配膳位置が下方となる部品を先行して配膳させる配膳ルールを設定することが望ましい。 In the above-described component arrangement apparatus, the rule setting unit sets an arrangement rule that arranges components in which the arrangement position is lower when the arrangement in which the components overlap vertically in the kitting tray is performed. It is desirable.
 この部品配膳装置によれば、配膳位置が下方となるべき部品が、配膳位置が上方となる部品の上に配膳されてしまう不具合を防止することができる。 According to this component arrangement apparatus, it is possible to prevent a problem that a component whose arrangement position should be lower is arranged on a component whose arrangement position is upper.
 上記の部品配膳装置において、前記ルール設定部は、前記キッティングトレイにおいて部品が水平方向に並ぶ配膳と上下方向に重なる配膳との双方が実行可能である場合に、部品が上下方向に重なる配膳よりも部品が水平方向に並ぶ配膳を優先して実行させる配膳ルールを設定することが望ましい。 In the above-described component arrangement device, the rule setting unit is more effective than the arrangement in which the components overlap in the vertical direction when both the arrangement in which the components are arranged in the horizontal direction and the arrangement in the vertical direction are executable in the kitting tray. It is desirable to set a layout rule that gives priority to the layout in which the parts are arranged in the horizontal direction.
 この部品配膳装置によれば、徒に上下方向に部品が積み重なるような配膳が行われることなく、キッティングトレイの水平方向のスペースを有効活用した配膳を行わせることが可能となる。 According to this component arrangement apparatus, it is possible to perform an arrangement that effectively uses the horizontal space of the kitting tray without causing an arrangement in which components are stacked in the vertical direction.
 上記の部品配膳装置において、前記ルール設定部は、前記キッティングトレイにおいて部品同士に上下方向の重なりが生じる配膳を行う場合に、平面視で占有面積の小さい部品を先行して配膳させる配膳ルールを設定することが望ましい。 In the above-described component arrangement device, the rule setting unit sets an arrangement rule for arranging components with a small occupation area in plan view in advance when performing arrangements in which the components overlap in the vertical direction in the kitting tray. It is desirable to do.
 この部品配膳装置によれば、占有面積の大きい大型部品がキッティングトレイの収容部を塞いでしまい、占有面積の小さい小型部品の配膳を不可としてしまう不具合や、大型部品の上に小型部品が配膳されてしまう不具合を防止することができる。 According to this component arrangement apparatus, a large component having a large occupied area blocks the housing portion of the kitting tray, and a small component having a small occupied area cannot be arranged, or a small component is arranged on the large component. Can be prevented.
 上記の部品配膳装置において、前記ルール設定部は、前記キッティングトレイへの部品の配膳状態として、当該部品の重心の高さ位置が第1位置となる第1配膳状態と、当該部品の重心の高さ位置が前記第1位置よりも高い第2位置となる第2配膳状態とを取り得る場合に、当該部品が前記第1配膳状態を取るように前記配膳ルールを設定することが望ましい。 In the above-described component arrangement apparatus, the rule setting unit includes a first arrangement state in which the height position of the center of gravity of the component is the first position, and a height of the center of gravity of the component as the arrangement state of the component on the kitting tray. It is desirable to set the layout rule so that the component is in the first layout state when the position can be in the second layout state in which the position is a second position higher than the first position.
 この部品配膳装置によれば、キッティングトレイにおいて各部品が、より重心が低い状態で配膳されるようにすることができる。これにより、配膳後にキッティングトレイを移動させる際に、部品がキッティングトレイから落下し難くすることができる。 According to this component arrangement apparatus, each component can be arranged in the kitting tray with a lower center of gravity. Thereby, when moving a kitting tray after arrangement | positioning, components can be made hard to fall from a kitting tray.
 上記の部品配膳装置において、前記ロボットハンドによる前記配膳動作が実行された後の前記キッティングトレイの三次元画像を取得する撮像装置と、前記三次元画像に基づいて、前記キッティングトレイにおける部品の配膳状態を評価する評価部と、をさらに備え、前記ルール設定部は、前記評価部の評価に応じて前記配膳ルールを設定することが望ましい。 In the above-described component arrangement apparatus, an imaging device that acquires a three-dimensional image of the kitting tray after the arrangement operation by the robot hand is performed, and a component arrangement state in the kitting tray based on the three-dimensional image It is preferable that the rule setting unit further sets the layout rule according to the evaluation of the evaluation unit.
 この部品配膳装置によれば、記評価部の評価を通して、より良好な配膳を行わせる手法、例えばヘッド部によるピッキングの態様やリリースの位置についてルール設定部に機械学習を行わせることができる。そして、前記機械学習に基づき、前記ルール設定部が配膳ルールを設定することが可能となるので、プログラミングレスで配膳性に優れた配膳ルールを設定することができる。 According to this component layout apparatus, it is possible to cause the rule setting section to perform machine learning on a technique for performing better layout, for example, a picking mode and a release position by the head section through the evaluation of the evaluation section. And since the said rule setting part can set a layout rule based on the said machine learning, the layout rule excellent in the layout property without programming can be set.
 上記の部品配膳装置において、前記ルール設定部は、前記キッティングトレイに対して前記複数種の部品が理想的に配膳された状態の理想配膳情報を取得すると共に、当該理想配膳情報に基づいて前記配膳ルールを初期設定し、前記評価部の評価に応じて前記配膳ルールを修正することが望ましい。 In the component arrangement apparatus, the rule setting unit acquires ideal arrangement information in a state where the plurality of types of components are ideally arranged with respect to the kitting tray, and the arrangement is based on the ideal arrangement information. It is desirable to initialize a rule and modify the serving rule according to the evaluation of the evaluation unit.
 この部品配膳装置によれば、想配膳情報に基づいて初期設定された配膳ルールを、ルール設定部による配膳手法の機械学習に応じて修正し、究極的に最適な配膳ルールを設定することができる。 According to this component layout apparatus, the layout rule that is initially set based on the virtual layout information can be modified according to the machine learning of the layout method by the rule setting unit, and the optimal layout rule can be set ultimately. .
 上記の部品配膳装置において、前記ルール設定部は、前記キッティングトレイ及びその収容部に関する情報と、部品のサイズに関する情報を取得すると共に、これら情報に基づいて前記配膳ルールを初期設定し、前記評価部の評価に応じて前記配膳ルールを修正することが望ましい。 In the component arrangement apparatus, the rule setting unit acquires information about the kitting tray and its storage unit and information about the size of the component, and initializes the layout rule based on the information, and the evaluation unit It is desirable to modify the serving rule in accordance with the evaluation.
 この部品配膳装置によれば、キッティングトレイ及び部品のサイズに関する情報に基づいて配膳ルールが初期設定され、当該配膳ルールがルール設定部による配膳手法の機械学習に応じて修正される。従って、上記のような理想配膳情報が与えられずとも、機械学習によって理想的な配膳に近い配膳ルールを探知させることが可能となる。 According to this component arrangement apparatus, an arrangement rule is initially set based on information relating to the kitting tray and the size of the component, and the arrangement rule is corrected according to the machine learning of the arrangement method by the rule setting unit. Therefore, even if the ideal layout information as described above is not given, it is possible to detect a layout rule close to the ideal layout by machine learning.
 以上説明した通りの本発明によれば、ロボットハンドを用いてキッティングトレイへ各種部品を的確に配膳させることができるキッティングトレイへの部品配膳装置を提供することができる。 As described above, according to the present invention, it is possible to provide a component arrangement device for a kitting tray that can accurately arrange various components on the kitting tray using a robot hand.
 [符号の説明]
 Wa、Wb、Wc、Wd、W1~W62 部品(対象部品)
 Ta、Tb 部品収納トレイ(保管位置)
 A1~A3、A11~A17 収容部
 G1、G2 重心
 h1、h2 第1位置、第2位置
 1 部品配膳装置
 10 ロボットハンド
 15 ヘッド部
 16 ハンド部
 20 三次元計測装置(撮像装置)
 21 第1カメラ
 22 第2カメラ
 23 カメラ制御部
 24 撮像制御部
 25 画像処理部
 30 制御部
 31 駆動制御部
 32 ルール設定部
 33 情報取得部
 34 学習部(評価部)
 35 変位量観測部
 36 報酬設定部
 37 価値関数更新部
 40 キッティングトレイ
 41 外枠部41
 42 内枠部42
 42T 上端縁42T
 43 底板43
 
[Explanation of symbols]
Wa, Wb, Wc, Wd, W1 to W62 Parts (target parts)
Ta, Tb Component storage tray (storage position)
A1 to A3, A11 to A17 Accommodating portion G1, G2 Center of gravity h1, h2 First position, second position 1 Component arrangement device 10 Robot hand 15 Head unit 16 Hand unit 20 Three-dimensional measuring device (imaging device)
DESCRIPTION OF SYMBOLS 21 1st camera 22 2nd camera 23 Camera control part 24 Imaging control part 25 Image processing part 30 Control part 31 Drive control part 32 Rule setting part 33 Information acquisition part 34 Learning part (evaluation part)
35 Displacement observation unit 36 Reward setting unit 37 Value function update unit 40 Kitting tray 41 Outer frame unit 41
42 Inner frame part 42
42T Upper edge 42T
43 Bottom plate 43

Claims (8)

  1.  サイズの異なる複数種の部品を、複数の収容部を備えたキッティングトレイに配膳する部品配膳装置であって、
     部品のピッキング及びリリースが可能なヘッド部を有し、前記部品の保管位置において前記複数種の部品の中から対象部品を前記ヘッド部でピッキングすると共に運搬し、当該対象部品を前記ヘッド部から前記キッティングトレイにリリースする配膳動作を行うロボットハンドと、
     前記ロボットハンドの動作を制御する制御部と、を備え、
     前記制御部は、
      前記複数種の部品及び前記複数の収容部の態様に応じて、前記部品の前記キッティングトレイへの配膳ルールを設定するルール設定部と、
      前記配膳ルールに基づき前記ロボットハンドに前記配膳動作を実行させる駆動制御部と、を備えるキッティングトレイへの部品配膳装置。
    A component arrangement device that arranges a plurality of types of parts having different sizes on a kitting tray having a plurality of storage units,
    A head portion capable of picking and releasing a component, picking and transporting the target component from the plurality of types of components at the storage position of the component, and transporting the target component from the head portion; A robot hand that performs a catering action to be released to the kitting tray;
    A control unit for controlling the operation of the robot hand,
    The controller is
    A rule setting unit that sets a layout rule of the parts to the kitting tray according to the types of the parts and the housing parts,
    A component arrangement device for a kitting tray, comprising: a drive control unit that causes the robot hand to execute the arrangement operation based on the arrangement rule.
  2.  請求項1に記載のキッティングトレイへの部品配膳装置において、
     前記ルール設定部は、前記キッティングトレイにおいて部品同士に上下方向の重なりが生じる配膳を行う場合に、配膳位置が下方となる部品を先行して配膳させる配膳ルールを設定する、キッティングトレイへの部品配膳装置。
    In the component arrangement apparatus to the kitting tray of Claim 1,
    The rule setting unit sets a layout rule for first arranging components whose layout position is lower when performing layout that causes vertical overlap between components in the kitting tray. apparatus.
  3.  請求項1に記載のキッティングトレイへの部品配膳装置において、
     前記ルール設定部は、前記キッティングトレイにおいて部品が水平方向に並ぶ配膳と上下方向に重なる配膳との双方が実行可能である場合に、部品が上下方向に重なる配膳よりも部品が水平方向に並ぶ配膳を優先して実行させる配膳ルールを設定する、キッティングトレイへの部品配膳装置。
    In the component arrangement apparatus to the kitting tray of Claim 1,
    In the kit setting tray, when both the arrangement in which the parts are arranged in the horizontal direction and the arrangement in which the parts overlap in the vertical direction can be executed, the arrangement in which the parts are arranged in the horizontal direction rather than the arrangement in which the parts overlap in the vertical direction is possible. A parts distribution device for kitting trays that sets the distribution rules to be executed with priority.
  4.  請求項2に記載のキッティングトレイへの部品配膳装置において、
     前記ルール設定部は、前記キッティングトレイにおいて部品同士に上下方向の重なりが生じる配膳を行う場合に、平面視で占有面積の小さい部品を先行して配膳させる配膳ルールを設定する、キッティングトレイへの部品配膳装置。
    In the component arrangement apparatus to the kitting tray of Claim 2,
    The rule setting unit sets a layout rule that sets a layout rule that allows a component with a small occupation area to be arranged in plan view when performing layout in which the components overlap in the vertical direction between the components in the kitting tray. Catering equipment.
  5.  請求項1~4のいずれか1項に記載のキッティングトレイへの部品配膳装置において、
     前記ルール設定部は、前記キッティングトレイへの部品の配膳状態として、当該部品の重心の高さ位置が第1位置となる第1配膳状態と、当該部品の重心の高さ位置が前記第1位置よりも高い第2位置となる第2配膳状態とを取り得る場合に、当該部品が前記第1配膳状態を取るように前記配膳ルールを設定する、キッティングトレイへの部品配膳装置。
    The component arrangement device for the kitting tray according to any one of claims 1 to 4,
    The rule setting unit includes a first arrangement state in which a height position of the center of gravity of the part is the first position, and a height position of the center of gravity of the part is the first position. A component arrangement device for a kitting tray, wherein the arrangement rule is set so that the component takes the first arrangement state when the second arrangement state, which is a higher second position, can be taken.
  6.  請求項1~5のいずれか1項に記載のキッティングトレイへの部品配膳装置において、
     前記ロボットハンドによる前記配膳動作が実行された後の前記キッティングトレイの三次元画像を取得する撮像装置と、
     前記三次元画像に基づいて、前記キッティングトレイにおける部品の配膳状態を評価する評価部と、をさらに備え、
     前記ルール設定部は、前記評価部の評価に応じて前記配膳ルールを設定する、キッティングトレイへの部品配膳装置。
    In the component arrangement device for the kitting tray according to any one of claims 1 to 5,
    An imaging device that acquires a three-dimensional image of the kitting tray after the catering operation by the robot hand is executed;
    An evaluation unit that evaluates the arrangement state of components in the kitting tray based on the three-dimensional image, and
    The rule setting unit is a component layout device for a kitting tray that sets the layout rule according to the evaluation of the evaluation unit.
  7.  請求項6に記載のキッティングトレイへの部品配膳装置において、
     前記ルール設定部は、前記キッティングトレイに対して前記複数種の部品が理想的に配膳された状態の理想配膳情報を取得すると共に、当該理想配膳情報に基づいて前記配膳ルールを初期設定し、前記評価部の評価に応じて前記配膳ルールを修正する、キッティングトレイへの部品配膳装置。
    In the component arrangement apparatus to the kitting tray of Claim 6,
    The rule setting unit acquires ideal layout information in a state where the plurality of types of components are ideally arranged with respect to the kitting tray, and initially sets the layout rule based on the ideal layout information. A parts layout device for a kitting tray that corrects the layout rules according to evaluation by an evaluation unit.
  8.  請求項6に記載のキッティングトレイへの部品配膳装置において、
     前記ルール設定部は、前記キッティングトレイ及びその収容部に関する情報と、部品のサイズに関する情報を取得すると共に、これら情報に基づいて前記配膳ルールを初期設定し、前記評価部の評価に応じて前記配膳ルールを修正する、キッティングトレイへの部品配膳装置。
    In the component arrangement apparatus to the kitting tray of Claim 6,
    The rule setting unit acquires information related to the kitting tray and its storage unit and information related to the size of a part, initializes the layout rule based on the information, and determines the layout according to the evaluation of the evaluation unit. Parts arrangement device for kitting tray to correct rules.
PCT/JP2018/022811 2018-06-14 2018-06-14 Component serving apparatus for kitting tray WO2019239565A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/022811 WO2019239565A1 (en) 2018-06-14 2018-06-14 Component serving apparatus for kitting tray
JP2020525046A JP7011063B2 (en) 2018-06-14 2018-06-14 Parts serving device for kitting tray
CN201880094190.4A CN112218746B (en) 2018-06-14 2018-06-14 Component arrangement device for arranging components on loading disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022811 WO2019239565A1 (en) 2018-06-14 2018-06-14 Component serving apparatus for kitting tray

Publications (1)

Publication Number Publication Date
WO2019239565A1 true WO2019239565A1 (en) 2019-12-19

Family

ID=68843111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022811 WO2019239565A1 (en) 2018-06-14 2018-06-14 Component serving apparatus for kitting tray

Country Status (3)

Country Link
JP (1) JP7011063B2 (en)
CN (1) CN112218746B (en)
WO (1) WO2019239565A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021220394A1 (en) * 2020-04-28 2021-11-04
JP2022007499A (en) * 2020-06-26 2022-01-13 株式会社なんつね Meat dishing unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI832052B (en) * 2021-05-05 2024-02-11 達明機器人股份有限公司 Method of teaching and correcting for robotic arm

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138466A (en) * 1991-11-19 1993-06-01 Nec Corp Service device
JPH06216573A (en) * 1993-01-14 1994-08-05 Hitachi Ltd Parts feeder
JPH08113315A (en) * 1994-10-14 1996-05-07 Ishikawajima Harima Heavy Ind Co Ltd Automatic picking device and automatic warehouse system
JP2010128646A (en) * 2008-11-26 2010-06-10 Mitsubishi Heavy Ind Ltd Marshaling support system
JP2010188459A (en) * 2009-02-17 2010-09-02 Fanuc Ltd Production system using part kit
JP2012185757A (en) * 2011-03-08 2012-09-27 Hitachi Ltd Marshaling mat computerization system and marshaling rack
JP2012238170A (en) * 2011-05-11 2012-12-06 Hitachi Ltd Component layout support device and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004028743A1 (en) * 2003-06-20 2005-03-03 Omron Corp. Work support device
JP2012030320A (en) * 2010-07-30 2012-02-16 Dainippon Screen Mfg Co Ltd Work system, working robot controller, and work program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138466A (en) * 1991-11-19 1993-06-01 Nec Corp Service device
JPH06216573A (en) * 1993-01-14 1994-08-05 Hitachi Ltd Parts feeder
JPH08113315A (en) * 1994-10-14 1996-05-07 Ishikawajima Harima Heavy Ind Co Ltd Automatic picking device and automatic warehouse system
JP2010128646A (en) * 2008-11-26 2010-06-10 Mitsubishi Heavy Ind Ltd Marshaling support system
JP2010188459A (en) * 2009-02-17 2010-09-02 Fanuc Ltd Production system using part kit
JP2012185757A (en) * 2011-03-08 2012-09-27 Hitachi Ltd Marshaling mat computerization system and marshaling rack
JP2012238170A (en) * 2011-05-11 2012-12-06 Hitachi Ltd Component layout support device and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OOHASHI, KAZUMASA: "Evaluation/Learning Method for Component Positioning on Palettes and Operation Sequence", JOURNAL OF JAPAN INDUSTRIAL MANAGEMENT ASSOCIATION, vol. 46, no. 4, 15 December 1995 (1995-12-15), pages 332 - 338 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021220394A1 (en) * 2020-04-28 2021-11-04
WO2021220394A1 (en) * 2020-04-28 2021-11-04 ヤマハ発動機株式会社 Machine-learning method and robot system
JP7245959B2 (en) 2020-04-28 2023-03-24 ヤマハ発動機株式会社 Machine learning method and robot system
JP2022007499A (en) * 2020-06-26 2022-01-13 株式会社なんつね Meat dishing unit
JP7376927B2 (en) 2020-06-26 2023-11-09 株式会社なんつね Meat serving unit

Also Published As

Publication number Publication date
CN112218746A (en) 2021-01-12
CN112218746B (en) 2023-08-22
JPWO2019239565A1 (en) 2021-06-10
JP7011063B2 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
WO2019239565A1 (en) Component serving apparatus for kitting tray
US10124489B2 (en) Locating, separating, and picking boxes with a sensor-guided robot
Vahrenkamp et al. Manipulability analysis
US20190375110A1 (en) Work machine and pick-up position selection method
US9205563B2 (en) Workpiece takeout system, robot apparatus, and method for producing a to-be-processed material
JP2014054715A (en) Article retrieving apparatus that determines retaining position/posture of robot based on selecting conditions
JP2002331480A (en) Interference avoiding device
JP5458274B2 (en) Gripping position calculation device and gripping position calculation method
EP2921266B1 (en) Robot, robot system,robot control apparatus, and method of controlling the operation of a robot
US11203121B2 (en) Robot, control device of robot, and method of teaching position of robot
JP2012030320A (en) Work system, working robot controller, and work program
JP6741538B2 (en) Robot, robot control device, and robot position teaching method
US20150019003A1 (en) Robot system
CN112218748B (en) robot system
US20210129319A1 (en) Controller, control method, and computer program product
JP7233858B2 (en) ROBOT CONTROL DEVICE, ROBOT CONTROL METHOD, AND ROBOT CONTROL PROGRAM
CN112135719A (en) Machine learning device and robot system provided with same
JP2015085493A (en) Robot, processor, and inspection method
US20060283773A1 (en) Retention latch for packaging apparatus
JP7102241B2 (en) Machine learning device and robot system equipped with it
WO2022030414A1 (en) Robot device for detecting interference of constituent member of robot
JP7245959B2 (en) Machine learning method and robot system
JP2005111619A (en) Method and apparatus for arranging article
WO2019102575A1 (en) Work machine and gripping position search method
WO2024105783A1 (en) Robot control device, robot system and robot control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525046

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922337

Country of ref document: EP

Kind code of ref document: A1