WO2019239025A1 - Method for detecting an oxidation catalyst in the exhaust line of a diesel engine and a law for controlling the implementation thereof - Google Patents

Method for detecting an oxidation catalyst in the exhaust line of a diesel engine and a law for controlling the implementation thereof Download PDF

Info

Publication number
WO2019239025A1
WO2019239025A1 PCT/FR2019/051203 FR2019051203W WO2019239025A1 WO 2019239025 A1 WO2019239025 A1 WO 2019239025A1 FR 2019051203 W FR2019051203 W FR 2019051203W WO 2019239025 A1 WO2019239025 A1 WO 2019239025A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
catalyst
downstream
upstream
interval
Prior art date
Application number
PCT/FR2019/051203
Other languages
French (fr)
Inventor
Jean Francois LEGROS
Jean BARATTE
Original Assignee
Psa Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psa Automobiles Sa filed Critical Psa Automobiles Sa
Priority to EP19744754.3A priority Critical patent/EP3803073A1/en
Publication of WO2019239025A1 publication Critical patent/WO2019239025A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/24Determining the presence or absence of an exhaust treating device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for the detection of an oxidation catalyst in the exhaust line of a diesel engine.
  • the invention relates to a method for diagnosing the possible presence of an active oxidation catalyst in the exhaust line of a diesel-powered vehicle as well as a control law for the implementation of said process.
  • the invention also relates to the use of this detection method for integration into the control laws of diesel engines conforming to the Euro 6.3 standard.
  • the modes of detection of the presence of an active oxidation catalyst in an exhaust line of a combustion engine use the energy absorption properties of the catalyst.
  • the presence of a catalyst causes a temperature difference between the upstream and downstream of the catalytic zone which is higher than in the absence of the catalyst under identical diagnostic conditions.
  • the absorption capacity of the catalyst can therefore be evaluated by measuring the temperatures upstream and downstream of the catalytic zone of the exhaust line, after a first start of the engine following a preliminary rest period at the end of which the temperatures, upstream and downstream of this zone, are uniform and substantially equal to the outside temperature.
  • the known methods thus consist in measuring the difference between the temperature T4 upstream of the catalyst and the temperature T5 downstream, respectively, in the initial rest phase (T4i, T5i) and in steady engine operating conditions ( T4, T5).
  • T4i, T5i initial rest phase
  • T4, T5 steady engine operating conditions
  • enthalpy the calculation of a parameter called “enthalpy” is then launched using the following formula: absolute value of (((T4-T4i) - (T5 -T5i))) / (273.15 + T4- 0.5x (T4i-T5i)) which is integrated as a function of time.
  • this integral exceeds a calibrated and fixed threshold value, it is concluded that a catalyst is present in the catalytic zone. On the other hand, if this threshold is not exceeded after a certain time, under the conditions of activation of the diagnosis (these conditions being modifiable), it is concluded that the catalyst is not present.
  • the enthalpy is also strongly impacted, which results in significant dispersion of the diagnostic results .
  • the influence of the engine load results in a certain amount of heat entering the catalytic zone.
  • a test with a high engine load but without catalyst leads to the same result, as regards the calculation of the diagnostic criterion, as a test with a low engine load and a catalyst.
  • the invention consisted in not only taking into account the temperature differences between the upstream and downstream of the catalytic zone but to consider the time elapsed between a instant corresponding to reaching an upstream temperature threshold after starting the engine and an instant corresponding to reaching a downstream temperature threshold.
  • the threshold of the downstream temperature is lower than the threshold of the upstream temperature.
  • the interval between the charging time and the transfer time is greater than or equal to the reference duration, it is concluded that the catalyst is present the catalytic zone or otherwise its absence.
  • the integral is calculated of the enthalpy defined by the formula: absolute value of (((T4-T4i) - (T5-T5i))) / (273.15 + T4-0.5x (T4i-T5i)) where T4i and T5i are the values initials, respectively, of the upstream temperature (T4) and the downstream temperature (T5) at the end of the stabilization operation.
  • This variant increases the numerical difference between the tests with and without catalyst because the calculation of the enthalpy integral is dependent on the presence of the catalyst and that its value increases faster when a catalyst is present.
  • Yet another variant implementation of the method as defined above is characterized in that when at time (t2) the downstream temperature has reached the threshold value, then the end Boolean indicator diagnostic (END) goes to 1 signifying that the diagnostic result is then reliable, and that simultaneously the time counter (t3), initiated when the upstream temperature has reached the threshold value, has not exceeded a threshold value corresponding to the reference duration (t3s), then the Boolean diagnostic result (RES) is 1 indicating the absence of a catalyst.
  • Yet another object of the invention is a use of the detection method having the characteristics defined above for diesel vehicles and, in particular, for integration into the control laws of diesel engines conforming to the Euro standard. 6.3.
  • the method of the invention takes into account the energy supplied to the catalyst to reliably distinguish the presence or absence of the catalyst
  • the method of the invention allows a single adjustment for all diesel engines and the different shapes of motor vehicles, unlike previous methods. This setting can thus be pre-calibrated with a high level of confidence.
  • the method of the invention is robust to variations in the engine load conditions which makes it possible to avoid doubtful results and detection errors as to the presence or absence of the catalyst which are sources of recourse warranty.
  • the method of the invention thus offers, at the same time, an economic gain from the fact that the frequency of testing and control operations and the risks of replacing parts are significantly reduced and an improvement in the quality and Branding.
  • FIG. 2 is a block diagram illustrating an embodiment of the control law of the method of the invention.
  • the detection method of the present invention is based on the phenomenon of energy absorption by the catalyst.
  • the absorption capacity of the catalyst can be evaluated by observing the temperatures, respectively, upstream T4 and downstream T5 of the catalytic zone of the exhaust line, that is to say, the zone in which the catalyst provided is normally arranged.
  • the next step is to start the engine and then observe the temperature changes upstream and downstream of the catalytic zone.
  • the increase in temperature T5 downstream of the catalytic zone is also gradual but delayed compared to the increase in temperature upstream T4. This delay is explained by the transfer of the heat input from upstream to downstream through the catalytic zone.
  • the transfer time t2 depends on the length of this zone and on the presence or absence of a catalyst capable of absorbing, at an intermediate level, at least part of the initial heat input.
  • downstream temperature T5 will generally be lower (or occasionally equal) than the upstream temperature T4, whatever the observation time.
  • the method of the invention provides for fixing a threshold of the downstream temperature T5s corresponding to the passage of the heat input through the catalytic zone and to its arrival at the point of observation of the temperature T5 in a transfer time t2.
  • the method of the invention consists in correlatively recording the charging time tl and the transfer time t2 under which the upstream temperature T4 and the downstream temperature T5 reach their predetermined thresholds T4s and T5s.
  • interval (t2-tl), referenced t3, between the charging time tl and the transfer time t2 represents the delay in the rise in temperature T5 to the threshold T5s, at the output of the catalytic zone.
  • the invention provides for fixing a threshold time value or reference duration t3s corresponding to the positive value interval t2-tl and calculated in considering the presence of a catalyst having a capacity for absorbing the given thermal energy which is the cause of the delay.
  • T4-T4i - (T5-T5i)) / (273.15 + T4-0.5x (T4i-T5i)) where T4i and T5i are the initial temperatures, respectively, upstream and downstream at the end of the phase stabilization or maceration.
  • the diagnosis concludes with the presence of the catalyst in the catalytic zone or otherwise with its absence.
  • the detection method of the invention is associated with the control law described below and illustrated in Figure 2.
  • the boolean end of diagnosis indicator changes to 1 signifying that the result of the diagnosis is then reliable, and that simultaneously the counter time t3, initiated when the upstream temperature T4a reaches the threshold value T4s, has not exceeded the threshold value corresponding to the reference duration t3s, then the boolean diagnostic result (RES) is 1 indicating the absence of a catalyst.
  • the method of the invention applies to the detection of the oxidation catalyst in the exhaust lines for integration into the control laws of diesel engines in accordance with the Euro 6.3 standard.

Abstract

The invention relates to a method for detecting a catalyst in an exhaust line, characterised in that it comprises the following operations: - shutting down the engine and thermally stabilising the exhaust line to achieve a balance between the temperature upstream (T4) and the temperature (T5) downstream of the catalytic region, - starting up the engine and recording the charging time (t1) at the end of which the upstream temperature reaches a predetermined threshold (T4s) corresponding to a minimum thermal input in the catalytic region, and recording the transfer time (t2) at the end of which the downstream temperature reaches a predetermined temperature threshold (T5s) corresponding to the passage of said input through said region, - calculating the interval (t3) between the charging time and the transfer time and - comparing said interval with a reference period (t3s) to determine if said interval is greater than or equal to said period.

Description

Procédé de détection d'un catalyseur d'oxydation dans la ligne d'échappement d'un moteur diesel et utilisation dudit procédé pour des véhicules automobiles équipés de moteurs diesel  Method of detecting an oxidation catalyst in the exhaust line of a diesel engine and use of said method for motor vehicles equipped with diesel engines
[0001] L' invention concerne un procédé pour la détection d’un catalyseur d’oxydation dans la ligne d’échappement d’un moteur diesel. The invention relates to a method for the detection of an oxidation catalyst in the exhaust line of a diesel engine.
[0002] Plus particulièrement, l’invention s’intéresse à un procédé permettant de diagnostiquer la présence éventuelle d’un catalyseur d’oxydation actif dans la ligne d’échappement d’un véhicule à motorisation diesel ainsi qu’une loi de commande pour la mise en œuvre dudit procédé. More particularly, the invention relates to a method for diagnosing the possible presence of an active oxidation catalyst in the exhaust line of a diesel-powered vehicle as well as a control law for the implementation of said process.
[0003] L’ invention concerne, en outre, une utilisation de ce procédé de détection pour une intégration dans les lois de commande des moteurs diesel conformes à la norme Euro 6.3. The invention also relates to the use of this detection method for integration into the control laws of diesel engines conforming to the Euro 6.3 standard.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE PRIOR STATE OF THE ART
[0004] De manière générale, les modes de détection de la présence d’un catalyseur d’oxydation actif dans une ligne d’échappement d’un moteur à combustion utilisent les propriétés d’absorption énergétique du catalyseur. In general, the modes of detection of the presence of an active oxidation catalyst in an exhaust line of a combustion engine use the energy absorption properties of the catalyst.
[0005] La présence d’un catalyseur entraîne un écart de température entre l’amont et l’aval de la zone catalytique qui est plus élevé qu’en l’absence du catalyseur dans des conditions identiques de diagnostic. The presence of a catalyst causes a temperature difference between the upstream and downstream of the catalytic zone which is higher than in the absence of the catalyst under identical diagnostic conditions.
[0006] La capacité d’absorption du catalyseur peut donc être évaluée en mesurant les températures en amont et en aval de la zone catalytique de la ligne d’échappement, après un premier démarrage du moteur suivant une période préliminaire de repos à l’issue de laquelle les températures, en amont et en aval de cette zone, sont uniformes et sensiblement égales à la température extérieure. The absorption capacity of the catalyst can therefore be evaluated by measuring the temperatures upstream and downstream of the catalytic zone of the exhaust line, after a first start of the engine following a preliminary rest period at the end of which the temperatures, upstream and downstream of this zone, are uniform and substantially equal to the outside temperature.
[0007] Les procédés connus consistent ainsi à mesurer l’écart entre la température T4 en amont du catalyseur et la température T5 en aval, respectivement, dans la phase initiale de repos (T4i, T5i) et en régime permanent de fonctionnement du moteur (T4, T5). [0008] Lorsque des conditions prédéfinies de diagnostic sont réunies (mentionnées ci-après), on lance alors le calcul d’un paramètre appelé « enthalpie » en utilisant la formule suivante : valeur absolue de (((T4-T4i)-(T5-T5i)))/(273,15+T4- 0.5x(T4i-T5i)) que l’on intègre en fonction du temps. The known methods thus consist in measuring the difference between the temperature T4 upstream of the catalyst and the temperature T5 downstream, respectively, in the initial rest phase (T4i, T5i) and in steady engine operating conditions ( T4, T5). When predefined diagnostic conditions are met (mentioned below), the calculation of a parameter called “enthalpy” is then launched using the following formula: absolute value of (((T4-T4i) - (T5 -T5i))) / (273.15 + T4- 0.5x (T4i-T5i)) which is integrated as a function of time.
[0009] Lorsque la valeur de cette intégrale dépasse une valeur de seuil calibrée et fixée, il est conclu qu’un catalyseur est présent dans la zone catalytique. En revanche, si ce seuil n’est pas dépassé au bout d’un certain temps, dans les conditions d’activation du diagnostic (ces conditions étant modifiables), il est conclu que le catalyseur n’est pas présent. When the value of this integral exceeds a calibrated and fixed threshold value, it is concluded that a catalyst is present in the catalytic zone. On the other hand, if this threshold is not exceeded after a certain time, under the conditions of activation of the diagnosis (these conditions being modifiable), it is concluded that the catalyst is not present.
[0010] Des conditions de température, de durée de la phase de repos avec arrêt du moteur et de quantité minimum et maximum de diesel injecté, permettent de décider quand le calcul de l’intégrale d’enthalpie doit être effectué. Ces conditions constituent en général les conditions préalables d’activation de la phase de diagnostic. Temperature conditions, the duration of the rest phase with engine shutdown and the minimum and maximum quantity of diesel injected, make it possible to decide when the calculation of the enthalpy integral must be carried out. These conditions generally constitute the prerequisites for activating the diagnostic phase.
[0011] Les procédés traditionnels, comme celui décrit dans le US 2011/0143449, consistent ainsi à fixer le temps après le démarrage du moteur auquel on effectue les mesures des températures. Ces températures sont ensuite comparées avec des valeurs de référence pour déterminer la présence éventuelle d’un catalyseur. Traditional methods, such as that described in US 2011/0143449, thus consist of setting the time after the engine starts at which the temperature measurements are made. These temperatures are then compared with reference values to determine the possible presence of a catalyst.
[0012] Les procédés décrits dans le US 2016/0363032 et dans le DE 10 2014 203327 prévoient des valeurs de seuil de températures permettant de statuer sur la présence d’un catalyseur mais sans imposer de délai d’attente avant d’effectuer les mesures. The methods described in US 2016/0363032 and in DE 10 2014 203327 provide temperature threshold values for ruling on the presence of a catalyst but without imposing a waiting period before performing the measurements .
[0013] Cependant, il a été mis en évidence que la valeur de l’enthalpie (et donc celle de son intégrale) dépend de plusieurs paramètres et principalement de la quantité de carburant injectée qui conditionne l’élévation de la température en amont. However, it has been demonstrated that the value of the enthalpy (and therefore that of its integral) depends on several parameters and mainly on the quantity of fuel injected which conditions the rise in temperature upstream.
[0014] En outre, selon les conditions du fonctionnement du moteur après son démarrage : ralenti avec ou sans climatisation, déplacement du véhicule, etc..., l’enthalpie se trouve aussi fortement impactée ce qui entraîne une dispersion importante des résultats du diagnostic. [0015] En effet, l’influence de la charge du moteur se traduit par une certaine quantité de chaleur en entrée de la zone catalytique. 11 en résulte qu’un essai avec une forte charge moteur mais sans catalyseur aboutisse au même résultat, quant au calcul du critère du diagnostic, qu’un essai avec une faible charge moteur et un catalyseur. In addition, depending on the operating conditions of the engine after starting: idling with or without air conditioning, vehicle movement, etc., the enthalpy is also strongly impacted, which results in significant dispersion of the diagnostic results . Indeed, the influence of the engine load results in a certain amount of heat entering the catalytic zone. As a result, a test with a high engine load but without catalyst leads to the same result, as regards the calculation of the diagnostic criterion, as a test with a low engine load and a catalyst.
[0016] Par conséquent, il s’avère très difficile voire impossible avec les procédés de détection actuels, de diagnostiquer de façon fiable la présence ou l’absence du catalyseur. Consequently, it is very difficult, if not impossible, with current detection methods, to reliably diagnose the presence or absence of the catalyst.
[0017] Dans ce contexte, il est apparu nécessaire de perfectionner les procédés connus en simplifiant leur mise en œuvre tout en cherchant à obtenir un niveau de confiance plus élevé dans les résultats du diagnostic. In this context, it appeared necessary to improve the known methods by simplifying their implementation while seeking to obtain a higher level of confidence in the results of the diagnosis.
EXPOSÉ DE L'INVENTION STATEMENT OF THE INVENTION
[0018] Pour résoudre les problèmes techniques posés par l’art antérieur, l’invention a consisté à ne plus seulement tenir compte des écarts de températures entre l’amont et l’aval de la zone catalytique mais de considérer le temps écoulé entre un instant correspondant à l’atteinte d’un seuil de température en amont après le démarrage du moteur et un instant correspondant à l’atteinte d’un seuil de température en aval. To solve the technical problems posed by the prior art, the invention consisted in not only taking into account the temperature differences between the upstream and downstream of the catalytic zone but to consider the time elapsed between a instant corresponding to reaching an upstream temperature threshold after starting the engine and an instant corresponding to reaching a downstream temperature threshold.
[0019] Ce but est atteint, selon l’invention, au moyen d’un procédé de détection du catalyseur d’oxydation dans la ligne d’échappement d’un moteur diesel par mesure des températures en amont et en aval de la zone catalytique, caractérisé en ce qu’il comprend les opérations suivantes : This object is achieved, according to the invention, by means of a method of detecting the oxidation catalyst in the exhaust line of a diesel engine by measuring the temperatures upstream and downstream of the catalytic zone. , characterized in that it comprises the following operations:
- arrêt du moteur et stabilisation thermique de la ligne d’échappement pour atteindre un équilibre entre la température amont et la température aval de la zone catalytique, - engine shutdown and thermal stabilization of the exhaust line to achieve a balance between the upstream temperature and the downstream temperature of the catalytic zone,
- démarrage du moteur et enregistrement conjoint, d’une part, du temps de charge au terme duquel la température amont atteint un seuil prédéterminé correspondant à un apport thermique minimum dans la zone catalytique et, d’autre part, du temps de transfert au terme duquel la température aval atteint un seuil prédéterminé de température correspondant au passage dudit apport thermique au travers de la zone catalytique, - engine start-up and joint recording, on the one hand, of the charging time at the end of which the upstream temperature reaches a predetermined threshold corresponding to a minimum heat input into the catalytic zone and, on the other hand, of the transfer time at the end from which the downstream temperature reaches a predetermined temperature threshold corresponding to the passage of said heat input through the catalytic zone,
- calcul de l’intervalle entre le temps de charge et le temps de transfert et, - calculation of the interval between the charging time and the transfer time and,
- comparaison dudit intervalle avec une durée de référence pour déterminer si ledit intervalle est supérieur ou égal à ladite durée. - Comparing said interval with a reference duration to determine whether said interval is greater than or equal to said duration.
[0020] Selon une caractéristique avantageuse, le seuil de la température aval est inférieur au seuil de la température amont. According to an advantageous characteristic, the threshold of the downstream temperature is lower than the threshold of the upstream temperature.
[0021] Selon une première variante de mise en œuvre du procédé de l’invention, si l’intervalle entre le temps de charge et le temps de transfert est supérieur ou égal à la durée de référence, on conclut à la présence du catalyseur dans la zone catalytique ou sinon à son absence. According to a first variant implementation of the method of the invention, if the interval between the charging time and the transfer time is greater than or equal to the reference duration, it is concluded that the catalyst is present the catalytic zone or otherwise its absence.
[0022] Selon une seconde variante de mise en œuvre du procédé de l’invention, si l’intervalle entre le temps de charge et le temps de transfert est supérieur ou égal à la durée de référence, on effectue le calcul de l’intégrale de l’enthalpie définie par la formule : valeur absolue de (((T4-T4i)-(T5-T5i)))/(273,15+T4-0.5x(T4i-T5i)) où T4i et T5i sont les valeurs initiales, respectivement, de la température amont (T4) et de la température aval (T5) à l’issue de l’opération de stabilisation. According to a second variant implementation of the method of the invention, if the interval between the charging time and the transfer time is greater than or equal to the reference duration, the integral is calculated of the enthalpy defined by the formula: absolute value of (((T4-T4i) - (T5-T5i))) / (273.15 + T4-0.5x (T4i-T5i)) where T4i and T5i are the values initials, respectively, of the upstream temperature (T4) and the downstream temperature (T5) at the end of the stabilization operation.
[0023] Selon une caractéristique de cette seconde variante, si la valeur de l’enthalpie est supérieure ou égale à un seuil prédéterminé, on conclut à la présence du catalyseur dans la zone catalytique ou sinon à son absence. According to a characteristic of this second variant, if the value of the enthalpy is greater than or equal to a predetermined threshold, it is concluded that the catalyst is present in the catalytic zone or otherwise is absent.
[0024] Cette variante permet d’augmenter l’écart numérique entre les essais avec et sans catalyseur du fait que le calcul de l’intégrale d’enthalpie est dépendant de la présence du catalyseur et que sa valeur augmente plus vite lorsqu’un catalyseur est présent. This variant increases the numerical difference between the tests with and without catalyst because the calculation of the enthalpy integral is dependent on the presence of the catalyst and that its value increases faster when a catalyst is present.
[0025] Encore une autre variante de mise en œuvre du procédé tel que défini ci- dessus est caractérisée en ce que lorsqu’au temps (t2) la température d’aval a atteint la valeur de seuil, alors l’indicateur booléen de fin de diagnostic (END) passe à 1 signifiant que le résultat du diagnostic est alors fiable, et que simultanément le compteur de temps (t3), initié lorsque la température amont a atteint la valeur de seuil, n’a pas dépassé une valeur de seuil correspondant à la durée de référence (t3s), alors le résultat booléen du diagnostic (RES) est à 1 indiquant l’absence d’un catalyseur. Yet another variant implementation of the method as defined above is characterized in that when at time (t2) the downstream temperature has reached the threshold value, then the end Boolean indicator diagnostic (END) goes to 1 signifying that the diagnostic result is then reliable, and that simultaneously the time counter (t3), initiated when the upstream temperature has reached the threshold value, has not exceeded a threshold value corresponding to the reference duration (t3s), then the Boolean diagnostic result (RES) is 1 indicating the absence of a catalyst.
[0026] Encore un autre objet de l’invention est une utilisation du procédé de détection présentant les caractéristiques définies ci-dessus pour des véhicules diesel et, en particulier, pour une intégration dans les lois de commande des moteurs diesel conformes à la norme Euro 6.3. Yet another object of the invention is a use of the detection method having the characteristics defined above for diesel vehicles and, in particular, for integration into the control laws of diesel engines conforming to the Euro standard. 6.3.
[0027] Le procédé de l’invention prend en compte l’énergie fournie au catalyseur pour distinguer de façon fiable la présence ou l’absence du catalyseur The method of the invention takes into account the energy supplied to the catalyst to reliably distinguish the presence or absence of the catalyst
[0028] Tout en simplifiant les opérations de calibration, le procédé de l’invention permet un réglage unique pour tous les moteurs diesel et les différentes silhouettes de véhicules automobiles, à la différence des procédés antérieurs. Ce réglage peut ainsi être pré-calibré avec un niveau de confiance élevé. While simplifying the calibration operations, the method of the invention allows a single adjustment for all diesel engines and the different shapes of motor vehicles, unlike previous methods. This setting can thus be pre-calibrated with a high level of confidence.
[0029] En outre, le procédé de l’invention est robuste aux variations des conditions de charge moteur ce qui permet d’éviter les résultats douteux et les erreurs de détection quant à la présence ou l’absence du catalyseur qui sont sources de recours en garantie. In addition, the method of the invention is robust to variations in the engine load conditions which makes it possible to avoid doubtful results and detection errors as to the presence or absence of the catalyst which are sources of recourse warranty.
[0030] Le procédé de l’invention offre ainsi, à la fois, un gain économique du fait que la fréquence des opérations d’essais et de contrôle et les risques de remplacement de pièces sont notablement réduits et une amélioration de la qualité et de l’image de marque. The method of the invention thus offers, at the same time, an economic gain from the fact that the frequency of testing and control operations and the risks of replacing parts are significantly reduced and an improvement in the quality and Branding.
BRÈVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF THE FIGURES
[0031] D’autres caractéristiques et avantages de l’invention ressortiront à la lecture de la description qui va suivre, en référence aux figures annexées et détaillées ci-après. Other features and advantages of the invention will emerge on reading the description which follows, with reference to the appended and detailed figures below.
Les figures IA et IB sont des graphes illustrant un mode de mise en œuvre du procédé de l’invention, respectivement, en présence d’un catalyseur dans la ligne d’échappement et en l’absence d’un tel catalyseur. La figure 2 est un schéma synoptique illustrant un mode de mise en œuvre de la loi de commande du procédé de l’invention. Figures IA and IB are graphs illustrating an embodiment of the method of the invention, respectively, in the presence of a catalyst in the exhaust line and in the absence of such a catalyst. FIG. 2 is a block diagram illustrating an embodiment of the control law of the method of the invention.
DESCRIPTION DÉTAILLÉE DE MODES DE REALISATION DETAILED DESCRIPTION OF EMBODIMENTS
[0032] Naturellement, les modes de réalisation décrits ci-après ne sont donnés qu'à titre d’exemples non limitatif. 11 est explicitement prévu que l'on puisse combiner entre eux ces différents modes pour en proposer d'autres.  Naturally, the embodiments described below are given only by way of nonlimiting examples. It is explicitly provided that one can combine these different modes to propose others.
[0033] Le procédé de détection de la présente invention se fonde sur le phénomène d’absorption d’énergie par le catalyseur. The detection method of the present invention is based on the phenomenon of energy absorption by the catalyst.
[0034] La capacité d’absorption du catalyseur peut être évaluée en observant les températures, respectivement, en amont T4 et en aval T5 de la zone catalytique de la ligne d’échappement, c’est-à-dire, la zone dans laquelle est normalement disposé le catalyseur prévu. The absorption capacity of the catalyst can be evaluated by observing the temperatures, respectively, upstream T4 and downstream T5 of the catalytic zone of the exhaust line, that is to say, the zone in which the catalyst provided is normally arranged.
[0035] Ces températures sont observées lors du premier démarrage du moteur après une période de stabilisation thermique, dite de « macération », de la ligne d’échappement, correspondant à l’établissement d’un équilibre entre la température amont T4 et la température aval T5 de la zone catalytique. Cette phase de stabilisation garantit la convergence des températures de tous les composants du moteur et de sa ligne d’échappement. A l’issue de cette phase, les températures amont T4, aval T5 et celle de l’air extérieur sont identiques et stables. These temperatures are observed during the first start of the engine after a thermal stabilization period, called "maceration", of the exhaust line, corresponding to the establishment of a balance between the upstream temperature T4 and the temperature downstream T5 from the catalytic zone. This stabilization phase guarantees the convergence of the temperatures of all the engine components and its exhaust line. At the end of this phase, the temperatures upstream T4, downstream T5 and that of the outside air are identical and stable.
[0036] L’ étape suivante consiste à démarrer le moteur puis à observer l’évolution des températures en amont et en aval de la zone catalytique. The next step is to start the engine and then observe the temperature changes upstream and downstream of the catalytic zone.
[0037] 11 s’agit, dans une première phase, d’observer les augmentations progressives de la température amont T4 et de la température aval T5, à la suite du démarrage et après macération. Ces augmentations correspondent à l’apport d’énergie thermique résultant de la combustion et de l’échappement des gaz, à l’entrée puis à la sortie de la zone catalytique. 11 is, in a first phase, to observe the gradual increases in the upstream temperature T4 and the downstream temperature T5, following start-up and after maceration. These increases correspond to the thermal energy input resulting from the combustion and exhaust of gases, at the entry then at the exit of the catalytic zone.
[0038] Toutefois, l’observation de l’augmentation de la température aval T5 sera pertinente, pour déterminer la présence éventuelle du catalyseur, seulement s’il y a eu un apport d’énergie thermique suffisant en amont de la zone catalytique. On considère que cet apport d’énergie est suffisant lorsque la température amont T4 atteint ou dépasse, au terme d’un temps de charge tl, un seuil T4s correspondant à un apport thermique minimum et prédéterminé, comme illustré par les figures IA et IB. However, the observation of the increase in the downstream temperature T5 will be relevant, to determine the possible presence of the catalyst, only if there has been a sufficient supply of thermal energy upstream of the catalytic zone. It is considered that this energy supply is sufficient when the upstream temperature T4 reaches or exceeds, at the end of a charging time t1, a threshold T4s corresponding to a minimum and predetermined thermal contribution, as illustrated by FIGS. IA and IB.
[0039] L’ augmentation de la température T5 en aval de la zone catalytique est aussi progressive mais différée par rapport à l’augmentation de la température amont T4. Ce retard s’explique par le transfert de l’apport thermique de l’amont vers l’aval au travers de la zone catalytique. Le temps de transfert t2 dépend de la longueur de cette zone et de la présence ou non d’un catalyseur susceptible d’absorber, de façon intermédiaire, au moins une partie de l’apport thermique initial. The increase in temperature T5 downstream of the catalytic zone is also gradual but delayed compared to the increase in temperature upstream T4. This delay is explained by the transfer of the heat input from upstream to downstream through the catalytic zone. The transfer time t2 depends on the length of this zone and on the presence or absence of a catalyst capable of absorbing, at an intermediate level, at least part of the initial heat input.
[0040] Pour ces mêmes raisons, la température aval T5 sera généralement inférieure, (ou occasionnellement égale) à la température amont T4, quelque que soit le temps d’observation. For these same reasons, the downstream temperature T5 will generally be lower (or occasionally equal) than the upstream temperature T4, whatever the observation time.
[0041] Parallèlement, le procédé de l’invention prévoit de fixer un seuil de la température aval T5s correspondant au passage de l’apport thermique au travers de la zone catalytique et à son arrivée au point d’observation de la température T5 dans un temps de transfert t2. At the same time, the method of the invention provides for fixing a threshold of the downstream temperature T5s corresponding to the passage of the heat input through the catalytic zone and to its arrival at the point of observation of the temperature T5 in a transfer time t2.
[0042] Le procédé de l’invention consiste à enregistrer corrélativement le temps de charge tl et le temps de transfert t2 aux termes desquels la température amont T4 et la température aval T5 atteignent leurs seuils prédéterminés T4s et T5s. The method of the invention consists in correlatively recording the charging time tl and the transfer time t2 under which the upstream temperature T4 and the downstream temperature T5 reach their predetermined thresholds T4s and T5s.
[0043] Selon une première variante du procédé, ce sont les résultats de ces mesures de temps qui permettent de conclure sur la présence ou l’absence d’un catalyseur dans la zone catalytique de la ligne d’échappement. According to a first variant of the method, it is the results of these time measurements which make it possible to conclude on the presence or absence of a catalyst in the catalytic zone of the exhaust line.
[0044] En effet, l’intervalle (t2-tl), référencé t3, entre le temps de charge tl et le temps de transfert t2 représente le retard de l’élévation de la température T5 jusqu’au seuil T5s, en sortie de la zone catalytique. Indeed, the interval (t2-tl), referenced t3, between the charging time tl and the transfer time t2 represents the delay in the rise in temperature T5 to the threshold T5s, at the output of the catalytic zone.
[0045] L’ invention prévoit de fixer une valeur de seuil de temps ou durée de référence t3s correspondant à l’intervalle de valeur positive t2-tl et calculée en considérant la présence d’un catalyseur ayant une capacité d’absorption de l’énergie thermique donnée qui est à l’origine du retard. The invention provides for fixing a threshold time value or reference duration t3s corresponding to the positive value interval t2-tl and calculated in considering the presence of a catalyst having a capacity for absorbing the given thermal energy which is the cause of the delay.
[0046] Dans ces conditions, si l’intervalle entre le temps de charge tl et le temps de transfert t2 est supérieur ou égal à cette durée de référence t3s, on peut conclure à la présence du catalyseur dans la zone catalytique, comme illustré par la figure IA. Under these conditions, if the interval between the charging time tl and the transfer time t2 is greater than or equal to this reference duration t3s, it can be concluded that the catalyst is present in the catalytic zone, as illustrated by Figure IA.
[0047] En revanche, si cet intervalle est inférieur à la durée de référence voir négatif (t2 étant alors inférieur à tl), on peut conclure à une élévation rapide voir anticipée de la température aval T5 jusqu’à T5s qui traduit l’absence d’un catalyseur dans la zone catalytique, comme illustré par la figure IB. [0048] Selon une autre variante du procédé de l’invention, si l’intervalle entre le temps de charge tl et le temps de transfert t2 est supérieur ou égal à la durée de référence t3s, on effectue alors le calcul de l’intégrale de l’enthalpie définie par la formule suivante en valeur absolue ; On the other hand, if this interval is less than the reference duration see negative (t2 then being less than tl), it can be concluded that there is a rapid or even anticipated rise in the downstream temperature T5 to T5s which reflects the absence of a catalyst in the catalytic zone, as illustrated in FIG. 1B. According to another variant of the method of the invention, if the interval between the charging time tl and the transfer time t2 is greater than or equal to the reference duration t3s, the calculation of the integral is then carried out the enthalpy defined by the following formula in absolute value;
((T4-T4i)-(T5-T5i))/(273,15+T4-0.5x(T4i-T5i)) où T4i et T5i sont les températures initiales, respectivement, amont et aval à l’issue de la phase de stabilisation ou de macération. ((T4-T4i) - (T5-T5i)) / (273.15 + T4-0.5x (T4i-T5i)) where T4i and T5i are the initial temperatures, respectively, upstream and downstream at the end of the phase stabilization or maceration.
[0049] Si la valeur de l’enthalpie est supérieure ou égale à un seuil prédéterminé, le diagnostic conclut à la présence du catalyseur dans la zone catalytique ou sinon à son absence. [0050] Le procédé de détection de l’invention est associé à la loi de commande décrite ci-après et illustrée par la figure 2. If the value of the enthalpy is greater than or equal to a predetermined threshold, the diagnosis concludes with the presence of the catalyst in the catalytic zone or otherwise with its absence. The detection method of the invention is associated with the control law described below and illustrated in Figure 2.
[0051] Lorsqu’au temps t2la température d’aval T5a atteint la valeur de seuil T5s, alors l’indicateur booléen de fin de diagnostic (END) passe à 1 signifiant que le résultat du diagnostic est alors fiable, et que simultanément le compteur de temps t3, initié lorsque la température amont T4a atteint la valeur de seuil T4s, n’a pas dépassé la valeur de seuil correspondant à la durée de référence t3s, alors le résultat booléen du diagnostic (RES) est à 1 indiquant l’absence d’un catalyseur. [0052] Le procédé de l’invention s’applique à la détection du catalyseur d’oxydation dans les lignes d’échappement pour une intégration dans les lois de commande des moteurs diesel conformes à la norme Euro 6.3. When at time t2 the downstream temperature T5a reaches the threshold value T5s, then the boolean end of diagnosis indicator (END) changes to 1 signifying that the result of the diagnosis is then reliable, and that simultaneously the counter time t3, initiated when the upstream temperature T4a reaches the threshold value T4s, has not exceeded the threshold value corresponding to the reference duration t3s, then the boolean diagnostic result (RES) is 1 indicating the absence of a catalyst. The method of the invention applies to the detection of the oxidation catalyst in the exhaust lines for integration into the control laws of diesel engines in accordance with the Euro 6.3 standard.

Claims

Revendications claims
1 . Procédé de détection d’un catalyseur d’oxydation dans la ligne d’échappement d’un moteur diesel par mesure des températures en amont (T4) et en aval (T5) de la zone catalytique, caractérisé en ce qu’il comprend les opérations suivantes :1. Method for detecting an oxidation catalyst in the exhaust line of a diesel engine by measuring the temperatures upstream (T4) and downstream (T5) of the catalytic zone, characterized in that it comprises the operations following:
- arrêt du moteur et stabilisation thermique de la ligne d’échappement pour atteindre un équilibre entre la température amont (T4) et la température aval (T5) de la zone catalytique, - engine shutdown and thermal stabilization of the exhaust line to achieve a balance between the upstream temperature (T4) and the downstream temperature (T5) of the catalytic zone,
- démarrage du moteur et enregistrement conjoint, d’une part, du temps de charge (tl) au terme duquel la température amont (T4) atteint un seuil prédéterminé (T4s) correspondant à un apport thermique minimum dans la zone catalytique et, d’autre part, du temps de transfert (t2) au terme duquel la température aval (T5) atteint un seuil prédéterminé (T5s) de température correspondant au passage dudit apport thermique au travers de la zone catalytique,  - starting the engine and joint recording, on the one hand, of the charging time (tl) at the end of which the upstream temperature (T4) reaches a predetermined threshold (T4s) corresponding to a minimum thermal contribution in the catalytic zone and, on the other hand, the transfer time (t2) at the end of which the downstream temperature (T5) reaches a predetermined threshold (T5s) of temperature corresponding to the passage of said heat input through the catalytic zone,
- calcul de l’intervalle (t3) entre le temps de charge (tl) et le temps de transfert (t2) et,  - calculation of the interval (t3) between the charging time (tl) and the transfer time (t2) and,
comparaison dudit intervalle avec une durée de référence (t3s) pour déterminer si ledit intervalle est supérieur ou égal à ladite durée.  comparing said interval with a reference duration (t3s) to determine whether said interval is greater than or equal to said duration.
2. Procédé de détection selon la revendication 1, caractérisé en ce que le seuil de la température aval (T5s) est inférieur au seuil de la température amont (T4s). 2. Detection method according to claim 1, characterized in that the threshold of the downstream temperature (T5s) is lower than the threshold of the upstream temperature (T4s).
3. Procédé de détection selon l’une des revendications précédentes, caractérisé en ce que si l’intervalle (t3) entre le temps de charge (tl) et le temps de transfert (t2) est supérieur ou égal à la durée de référence (t3s), on conclut à la présence du catalyseur dans la zone catalytique ou sinon à son absence. 3. Detection method according to one of the preceding claims, characterized in that if the interval (t3) between the charging time (tl) and the transfer time (t2) is greater than or equal to the reference duration ( t3s), it is concluded that the catalyst is present in the catalytic zone or otherwise is absent.
4. Procédé de détection selon l’une des revendications 1 ou 2, caractérisé en ce que si l’intervalle entre le temps de charge (tl) et le temps de transfert (t2) est supérieur ou égal à la durée de référence (t3s), on effectue le calcul de l’intégrale de l’enthalpie définie par la formule :  4. Detection method according to one of claims 1 or 2, characterized in that if the interval between the charging time (tl) and the transfer time (t2) is greater than or equal to the reference duration (t3s ), the integral of the enthalpy defined by the formula is calculated:
valeur absolue de (((T4-T4i)-(T5-T5i)))/(273,15+T4-0.5x(T4i-T5i)) , où T4i et T5i sont les valeurs initiales, respectivement, de la température amont (T4) et de la température aval (T5) à l’issue de l’opération de stabilisation. absolute value of (((T4-T4i) - (T5-T5i))) / (273.15 + T4-0.5x (T4i-T5i)), where T4i and T5i are the initial values, respectively, of the upstream temperature (T4) and the downstream temperature (T5) at the end of the stabilization operation.
5. Procédé de détection selon la revendication précédente, caractérisé en ce que si la valeur de l’enthalpie est supérieure ou égale à un seuil prédéterminé, on conclut à la présence du catalyseur dans la zone catalytique ou sinon à son absence.  5. Detection method according to the preceding claim, characterized in that if the value of the enthalpy is greater than or equal to a predetermined threshold, it is concluded that the catalyst is present in the catalytic zone or otherwise is absent.
6. Procédé de détection selon l’une des revendications précédentes, caractérisé en ce que, lorsqu’au temps (t2) la température d’aval (T5) a atteint la valeur de seuil (T5s), alors l’indicateur booléen de fin de diagnostic (END) passe à 1 signifiant que le résultat du diagnostic est alors fiable, et que simultanément le compteur de temps (t3), initié lorsque la température amont (T4) a atteint la valeur de seuil (T4s), n’a pas dépassé la valeur de seuil correspondant à la durée de référence (t3s), alors le résultat booléen du diagnostic (RES) est à 1 indiquant l’absence d’un catalyseur  6. Detection method according to one of the preceding claims, characterized in that, when at time (t2) the downstream temperature (T5) has reached the threshold value (T5s), then the boolean indicator of end diagnostic (END) goes to 1 meaning that the diagnostic result is then reliable, and that simultaneously the time counter (t3), initiated when the upstream temperature (T4) has reached the threshold value (T4s), has not exceeded the threshold value corresponding to the reference duration (t3s), then the boolean diagnostic result (RES) is 1 indicating the absence of a catalyst
7. Utilisation du procédé de détection selon l’une des revendications 1 à 6, pour des véhicules automobiles équipés de moteurs diesel. 7. Use of the detection method according to one of claims 1 to 6, for motor vehicles equipped with diesel engines.
PCT/FR2019/051203 2018-06-11 2019-05-24 Method for detecting an oxidation catalyst in the exhaust line of a diesel engine and a law for controlling the implementation thereof WO2019239025A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19744754.3A EP3803073A1 (en) 2018-06-11 2019-05-24 Method for detecting an oxidation catalyst in the exhaust line of a diesel engine and a law for controlling the implementation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1855056 2018-06-11
FR1855056A FR3082236B1 (en) 2018-06-11 2018-06-11 DETECTION PROCESS OF AN OXIDATION CATALYST IN THE EXHAUST LINE OF A DIESEL ENGINE AND USE OF THE SAID PROCESS FOR MOTOR VEHICLES EQUIPPED WITH DIESEL ENGINES

Publications (1)

Publication Number Publication Date
WO2019239025A1 true WO2019239025A1 (en) 2019-12-19

Family

ID=63834126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/051203 WO2019239025A1 (en) 2018-06-11 2019-05-24 Method for detecting an oxidation catalyst in the exhaust line of a diesel engine and a law for controlling the implementation thereof

Country Status (3)

Country Link
EP (1) EP3803073A1 (en)
FR (1) FR3082236B1 (en)
WO (1) WO2019239025A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624333B2 (en) 2021-04-20 2023-04-11 Kohler Co. Exhaust safety system for an engine
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19955947A1 (en) * 1999-11-19 2001-06-07 Heraeus Electro Nite Int Process for checking the catalytic activity of a catalyst
FR2864145A1 (en) * 2003-12-19 2005-06-24 Renault Sas Exhaust gas treatment system e.g. particle filter, presence determining method for motor vehicle, involves determining absence of exhaust gas treatment system if measured time period is less than threshold time period
US20110143449A1 (en) 2009-12-10 2011-06-16 Cummins Ip, Inc. Apparatus, system, and method for catalyst presence detection
DE102014203327A1 (en) 2014-02-25 2015-08-27 Robert Bosch Gmbh drilling
US20160363032A1 (en) 2015-06-15 2016-12-15 Deere & Company Catalytic device detection system
DE102015212372A1 (en) * 2015-07-02 2017-01-05 Ford Global Technologies, Llc Method and system for monitoring operation of a catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19955947A1 (en) * 1999-11-19 2001-06-07 Heraeus Electro Nite Int Process for checking the catalytic activity of a catalyst
FR2864145A1 (en) * 2003-12-19 2005-06-24 Renault Sas Exhaust gas treatment system e.g. particle filter, presence determining method for motor vehicle, involves determining absence of exhaust gas treatment system if measured time period is less than threshold time period
US20110143449A1 (en) 2009-12-10 2011-06-16 Cummins Ip, Inc. Apparatus, system, and method for catalyst presence detection
DE102014203327A1 (en) 2014-02-25 2015-08-27 Robert Bosch Gmbh drilling
US20160363032A1 (en) 2015-06-15 2016-12-15 Deere & Company Catalytic device detection system
DE102015212372A1 (en) * 2015-07-02 2017-01-05 Ford Global Technologies, Llc Method and system for monitoring operation of a catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11624333B2 (en) 2021-04-20 2023-04-11 Kohler Co. Exhaust safety system for an engine

Also Published As

Publication number Publication date
FR3082236B1 (en) 2021-04-16
EP3803073A1 (en) 2021-04-14
FR3082236A1 (en) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2019239025A1 (en) Method for detecting an oxidation catalyst in the exhaust line of a diesel engine and a law for controlling the implementation thereof
FR2723403A1 (en) METHOD FOR CONTROLLING THE OPERATIVE SUITABILITY OF AN ATMOSPHERE INSTALLATION OF A MOTOR VEHICLE TANK.
FR2710105A1 (en) Method for monitoring the starting behavior of a catalyst system of a motor vehicle.
WO2009144428A1 (en) Method and device for recognizing combustion in a particle filter
EP1834074B1 (en) Protecting an oxidation catalyst upstream of a particulate filter for a diesel engine by limitation of injected fuel
WO2011128041A1 (en) Diagnostic method and device for a bleed valve of a hybrid motor vehicle
EP3655633B1 (en) Process of starting a particulate filter regeneration
EP2545261B1 (en) Method for regulating the regeneration temperature of a particulate filter
EP3652421A1 (en) Method for estimating a charge of the controlled ignition combustion engine particulate filter
FR3040075A1 (en) METHOD AND DEVICE FOR DETERMINING THE EFFICIENCY OF CONVERSION BY A CATALYST OF EXHAUST GAS
EP3237732B1 (en) Method for diagnosing a nitrogen oxide trap and associated device
FR2928969A1 (en) METHOD FOR DETECTING FAILURE OF AN INJECTION SOLENOID VALVE FOR THE EXHAUST OF A COMBUSTION ENGINE
FR3091896A1 (en) EFFICIENCY TEST METHOD OF AN EXHAUST LINE CATALYST OF A THERMAL ENGINE
EP4303409A1 (en) Method for optimizing catalyst heating to limit fuel consumption
EP4041998B1 (en) Diagnostic method of an exhaust gas aftertreatment system of a spark ignited internal combustion engine
EP3060770B1 (en) Method for diagnosing a nitrogen oxide trap and related device
FR3070443A1 (en) DEVICE FOR CONTROLLING FUEL INJECTION
EP3060769B1 (en) Method for diagnosing a nitrogen oxide trap and related device
EP3034827B1 (en) Nitrogen oxide trap diagnosing method and associated device
FR3056254A1 (en) METHOD OF DIAGNOSING A PROPORTIONAL OXYGEN PROBE ARRANGED BEFORE THE POST-PROCESSING SYSTEM OF AN INTERNAL COMBUSTION ENGINE WITH CONTROLLED IGNITION.
FR2933445A1 (en) Nitrogen oxide trap desulphurizing method for post processing of exhaust gas emitted by diesel engine of motor vehicle, involves desulphurizing trap after beginning and before ending of regeneration of filter
FR2936018A1 (en) METHOD FOR STARTING AN INTERNAL COMBUSTION ENGINE
FR3120921A1 (en) Method for diagnosing faulty operation of a vehicle engine
FR2985771A3 (en) Method for managing nitrogen oxide trap for post-processing of exhaust gas emitted by power train of car with diesel engine, involves authorizing launching of regeneration of nitrogen oxide trap according to e.g. speed of car
FR3069017A1 (en) METHOD FOR CONFIRMING A DIAGNOSTIC OF CLOSING OF A PARTICLE FILTER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019744754

Country of ref document: EP

Effective date: 20210111