WO2019238995A1 - Procedimientos de preparación de clústeres cuánticos atómicos purificados - Google Patents

Procedimientos de preparación de clústeres cuánticos atómicos purificados Download PDF

Info

Publication number
WO2019238995A1
WO2019238995A1 PCT/ES2019/070403 ES2019070403W WO2019238995A1 WO 2019238995 A1 WO2019238995 A1 WO 2019238995A1 ES 2019070403 W ES2019070403 W ES 2019070403W WO 2019238995 A1 WO2019238995 A1 WO 2019238995A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqc
metal atoms
zero valence
transition metal
aqcs
Prior art date
Application number
PCT/ES2019/070403
Other languages
English (en)
French (fr)
Inventor
David BUCETA FERNÁNDEZ
Fernando DOMÍNGUEZ PUENTE
Manuel Arturo López Quintela
Original Assignee
Nanogap Sub-Nm-Powder, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanogap Sub-Nm-Powder, S.A. filed Critical Nanogap Sub-Nm-Powder, S.A.
Priority to JP2020569110A priority Critical patent/JP7461894B2/ja
Priority to US17/057,677 priority patent/US20210197256A1/en
Priority to AU2019286811A priority patent/AU2019286811A1/en
Priority to EP19736768.3A priority patent/EP3808474A1/en
Priority to BR112020024948-3A priority patent/BR112020024948A2/pt
Priority to KR1020207035857A priority patent/KR20210021306A/ko
Priority to CA3103328A priority patent/CA3103328A1/en
Priority to CN201980038870.9A priority patent/CN112262005B/zh
Publication of WO2019238995A1 publication Critical patent/WO2019238995A1/es
Priority to IL278981A priority patent/IL278981A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/38Silver; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the invention relates to methods for purifying atomic quantum clusters, purified compositions and uses of said compositions.
  • WO2012 / 059572 and EP2457572 describe a combination of at least one AQC and at least one antineoplastic drug for the prevention and / or treatment of a cell proliferation disorder.
  • AQC which consist of between 2 and 25 zero valence transition metal atoms that have a cytotoxic and antiproliferative effect on cancer cell lines and, therefore, can be used in combination with antineoplastic agents to treat cell proliferation disorders.
  • An object of the invention is to provide purified compositions and methods of preparing purified AQC compositions.
  • the invention provides a process of purification of atomic quantum clusters (AQC) consisting of 3 or less metal atoms of zero valence transition comprising:
  • the invention provides a composition purified by the process described herein, which is substantially free of AQC consisting of more than 3 zero valence transition metal atoms.
  • the invention provides a composition comprising atomic quantum clusters (AQC) consisting of 3 or less transition metals of zero valence, which is substantially free of AQC consisting of more than 3 transition metal atoms of zero valence
  • AQC atomic quantum clusters
  • the invention provides the composition described herein, in combination with an antiproliferative agent for use in the treatment of a cell proliferation disorder.
  • the invention provides the composition described herein, optionally in combination with an antiproliferative agent, for use in the prevention of cancerous metastases of the lymph nodes.
  • the invention provides the composition described herein, in combination with an antiproliferative agent, for use in the treatment of cancerous metastases of lymph nodes.
  • the invention provides the composition described herein, in combination with an antiproliferative agent for use in the treatment of a cell proliferation disorder.
  • FIG. 1 Synthesis and purification of Ag3 clusters (Ag3 AQC). Scheme of electrochemical synthesis (left) and purification procedure, using a thiolated resin (right) for the production of AQC of Ag3. Box: DFT calculations showing that the interaction of Ag3 AQC with thiols is energetically unfavorable.
  • FIG. 1 AQC UV-Vis absorption spectrum of Ag3 in water.
  • FIG. 4 ESI mass spectrometry.
  • Figure 5 Image of AFM of AQC of Ag3 deposited in mica (mean quadratic roughness «150 pm).
  • Figure 6 HOMO-LUMO distances and position of HOMO / LUMO levels for some Ag clusters of different sizes, according to the Jellium approach.
  • Figure 7 Optimized geometry and relative energy of three isomeric AQC structures of Ag3 (large, three-atom structure) in the presence of three O2 molecules (small, two-atom molecules).
  • Figure 8 Optimized AQC geometry of Ag3 (large, three-atom structure) in the presence of five, seven and nine O2 molecules (small, two-atom molecules).
  • FIG. 10 Ag3 AQCs induce nucleosome destabilization.
  • Individual nucleosomes were treated with etoposide (60 mM), doxorubicin (20 mM) or DMSO (vehicle) for 4 hours at room temperature, or AQC of Ag3 (AQC, 83 ng / mL) for 30 minutes. From each reaction, half of the sample was electrophoresed under non-denaturing conditions and the gel was stained with ethidium bromide (upper left panel) and silver (lower left panel). The remaining part of the sample was analyzed to verify that equal amounts of histones were charged in all cases (right panel). The position of unbound DNA, assembled nucleosomes and histones is indicated.
  • Figure 11 Fluorescence titration spectral curves recorded for the AQC Ag3 / H system. (a) Spectral curves, (b) Binding isotherm with linear adjustment of ec. 2 to the data pairs.
  • Figure 12 CD spectral curves registered for the AQC system of Ag3 / H.
  • Figure 13 Direct display of chromatin accessibility through STORM super resolution microscopy.
  • f Quantification of chromatin density.
  • Figure 15 The co-administration of AQC of Ag3 and cisplatin (CDDP) increases the amount of platinum bound to DNA in proliferating A549 cells and in lung tumors of mice, resulting in an increase in cell mortality.
  • CDDP cisplatin
  • FIG 16 Co-administration of AQC of Ag3 and CDDP increases the amount of platinum bound to DNA in (a) glioblastoma cell lines (U87) and (b) breast adenocarcinoma (MCF7).
  • the cells were treated with Ag3 AQC (83 ng / mL) for 1 hour and with CDDP (50 mM) for an additional 24 hours. After that, the cells were collected, the DNA was extracted and the amount of platinum was quantified by mass spectrometry. Data represent the mean ⁇ standard deviation of 2 independent experiments with 3 replicates per experiment. Mann Whitney test ((*) p ⁇ 0.01).
  • Figure 17 Co-administration of AQC of Ag3 and drugs that act on DNA.
  • A549 Luc-C8 cells were seeded in 96-well and 24-hour plates (proliferating cells) (a) or 72 hours (non-proliferative cells) (b) then treated with 1) Ag3 AQC (55.61 ng / ml_ ) in serum-free medium for 1 hour and 24 hours more in complete medium, 2) Ag3 AQC (55.61 ng / ml_) in serum-free medium for 1 hour and 24 hours more with different doses of CDDP (EC5: 5 mM , EC25: 10 pM, EC50: 50 pM and EC75: 100 pM).
  • CDDP was replaced by carboplatin (EC5: 0.25 pM, EC25: 0.5 pM, EC50: 1 pM and EC75: 2 pM) or oxaliplatin (EC5: 2.5 pM, EC25: 12.5 pM, EC50: 50 pM and EC75: 200 pM) with similar results found for CDDP.
  • carboplatin EC5: 0.25 pM, EC25: 0.5 pM, EC50: 1 pM and EC75: 2 pM
  • oxaliplatin EC5: 2.5 pM, EC25: 12.5 pM, EC50: 50 pM and EC75: 200 pM
  • Figure 18 Quantification by mass spectrometry of CDDP bound to DNA in cell cultures pretreated with Ag3 medium or AQC (83 ng / mL) for 1 hour and after 24 hours with CDDP (50 pM) for an additional 24 hours.
  • Figure 19 Co-administration of AQC of Ag3 with drugs that bind to DNA increases cell mortality.
  • A549 cells were previously incubated for 1 hour with medium or with Ag3 AQC (83 ng / mL) and treated for 24 hours with 50 pM oxaliplatin (OXA), 1 mM carboplatin (CBCDA), b, gemcitabine ( GEM) 100 pM (c), carmustine (BCNU) 400 pM (d) and doxorubicin (DOX) 7.5 pM (e), and then cell viability was measured by flow cytometry. Data represent the mean ⁇ standard deviation of 3 independent experiments with 3 replicates per experiment. Mann Whitney test ((*) p ⁇ 0.01). (f) Measurement of intracellular DOX uptake.
  • Figure 21 The co-administration of Ag3 AQC enhances the CDDP-mediated reduction of tumor growth and invasion of mediastinal lymph nodes in mice with orthotopic lung cancer.
  • Tumor growth measured in vivo by luminescence (I VIS® Spectrum). The black arrows represent the treatment administration times
  • the black arrows represent the treatment administration times
  • Mouse body weight throughout the experiment
  • Quantification of the tumor load measured ex vivo in the pulmonary and mediastinal lymph nodes.
  • (d) Immunohistochemical staining of mouse lungs using anti-CK7 antibody. Bar 300 pm.
  • Figure 22 Schematic representation and fluorescence spectrum of the cluster samples obtained after the first dialysis with DNA as a separation medium.
  • Figure 23 Schematic representation and fluorescence spectrum of cluster samples obtained after final dialysis with DNA as a separation medium. The DNA was denatured before this stage of dialysis extraction to release purified Ag3 clusters.
  • atomic quantum clusters refers to a group / cluster of 2 to 500 transition metals of zero valence, such as between 2 and 200, 2 and 100 , 2 and 50 or 2 and 25 transition metal atoms, and with a size less than 2 nm, such as less than 1 nm.
  • the AQCs may comprise zero-valence transition metal atoms of identical (mononuclear clusters) or different (heteronuclear clusters) transition metals. It will be understood that this term does not include metal ions.
  • references to AQC consisting of "more than 3" zero valence transition metal atoms refer to AQC comprising 4, 5, 6, 7, 8, 9, 10 or more transition metal atoms of zero valence (that is, this term does not include AQC with 3 metal atoms). Therefore, this term can be used interchangeably with "4 or more".
  • references to AQCs that consist of "3 or less" zero valence transition metal atoms refer to AQCs with 2 or 3 atoms of transition of zero valence metals. It will also be understood that references to AQCs consisting of "3" zero valence transition metal atoms refer to AQCs with only 3 zero valence transition metal atoms.
  • transition metal refers to the elements of the periodic table known as transition metals, but does not refer to the electrical behavior of said elements.
  • the confinement of electrons in the AQC causes the quantum separation of energy levels that produce important changes in the properties of these materials, as reported in EP1914196. Therefore, the metal atoms in the AQCs described herein may have a behavior similar to a semiconductor or even an insulator.
  • substantially free of may be used to refer to a composition that is mostly or totally free of an entity specifically mentioned below (for example, AQC with more than 3 transition metal atoms of zero valence), or at least not It contains the entity in an amount such that the entity affects the efficiency, storage capacity, ease of use with respect to the necessary safety issues and / or the stability of the composition.
  • entity specifically mentioned below for example, AQC with more than 3 transition metal atoms of zero valence
  • purified refers to compositions where substantially all AQCs consisting of the unwanted number of zero-valence transition metal atoms have been removed.
  • the processes described herein increase the degree of purity of the compositions by substantially eliminating all AQC (preferably all) consisting of more than 3 transition metal atoms of zero valence.
  • separation medium refers to a material that has the ability to separate entities from a mixture.
  • the separation medium has the ability to selectively purify AQCs consisting of 3 or less zero-valence transition metal atoms of a mixture of AQC containing larger clusters (i.e., 4 or more atoms of transition metals of zero valence). Examples of such means are provided herein.
  • thiol refers to a carbon-linked sulfhydryl (R-SH) group (where R represents an alkyl or other organic substituent).
  • aromatic group is well known in the art and refers to a flat cyclic molecule or fraction with (or comprising) a ring of resonance bonds. This includes benzene (i.e., ObHb) and derivatives thereof. Most aromatic groups are benzene derivatives. However, this term may also include heteroaromatic groups (i.e., one or more of the atoms in the aromatic ring is of a non-carbon element), for example, pyridine, pyrazine, pyrrole, imidazole, pyrazole, oxazole, thiophene and its benzoanulated analogs.
  • DNA deoxyribonucleic acid
  • the polynucleotide chains are composed of nucleotides, each of which comprises a base, a sugar (deoxyribose) and a phosphate group. Nucleotides are linked together in a chain by covalent bonds between the sugar of one nucleotide and the phosphate group of the next, to produce a sugar-phosphate main chain.
  • the bases may comprise natural bases (ie, cytosine [C], guanine [G], adenine [A] or thymine [T]) or unnatural bases.
  • the bases of the two separate polynucleotide chains are linked together by hydrogen bonds according to the base pairing rules (A with T and C with G) to form double stranded DNA.
  • This definition includes DNA that has been modified, for example, to include unnatural bases or a modified main chain, provided that a double helix is formed so that the AQC of 3 atoms can be intercalated.
  • a purification process of atomic quantum clusters (AQC) consisting of 3 or less zero-valence transition metal atoms comprising: (i) the application of a solution comprising a mixture of AQC to a medium of separation, wherein said separation means binds to AQC which consist of more than 3 transition metal atoms of zero valence or binds to AQC consisting of 3 or less transition metal atoms of zero valence; and
  • the present invention provides a process of purification of atomic quantum clusters (AQC) comprising the application of a solution comprising a mixture of AQC to a separation medium and the isolation of AQCs consisting of 3 or less transition metal atoms of zero valence.
  • AQC atomic quantum clusters
  • the present invention provides a method for selectively purifying AQC consisting of 3 or less transition metal atoms of zero valence.
  • the separation medium is attached to the AQCs consisting of more than 3 transition metals of zero valence and the process comprises isolating the AQCs consisting of 3 or less transition metals atoms of zero valence. of the unbound solution.
  • References to the "unbound solution” refer to the solution that contains components that are not attached to the separation medium. Examples of such means are provided herein.
  • One skilled in the art would know if a means of separation is capable of binding to AQC consisting of more than 3 atoms of transition metals of zero valence using procedures known in the art. For example, they could test the eluate after passing the sample through the separation medium and determine the types of AQC present in the eluate using fluorescence spectroscopy. Other characterization procedures are described in the Examples, which can be used in combination or alternatively for fluorescence spectroscopy.
  • the separation means comprises a functional group that binds to AQC consisting of more than 3 transition metal atoms of zero valence.
  • the functional group is a thiol group.
  • the separation means comprises a thiolated resin, such as thiolated silica.
  • the amount of dissolved oxygen in aqueous samples of AQC of Ag3 is sufficient to prevent the interaction of AQC of Ag3 with thiols, as seen in the box in Figure 1, where the union of methyl thiol with the AQC of Ag3 is not favorable (characterized by a positive binding energy).
  • the only species in addition to the AQC of Ag3 in the samples are AQC of Ag2.
  • these clusters are no longer spectators due to their lack of reactivity.
  • said Ag2 AQCs can be separated from Ag3 AQCs by the methods described herein.
  • the AQC mixture is present in an aqueous solution.
  • the aqueous solution comprises dissolved oxygen, such as at at least 2 times, or at least 3 times, the concentration of AQC (in particular, the concentration of AQC consisting of 3 transition metals of zero valence) present in the mixture.
  • the separation means binds to the AQCs that consist of 3 or less zero valence transition metal atoms and the process comprises discarding the AQC that consist of more than 3 valence transition metal atoms. zero in the unbound solution and isolate the AQCs consisting of 3 or less transition metal atoms of zero valence from the separation medium.
  • the process comprises isolation by means of a process (for example, heating) of the separation medium to release AQC consisting of 3 or less transition metals of zero valence.
  • the separation means comprises a functional group that binds to AQC consisting of more than 3 transition metal atoms of zero valence.
  • the separation medium comprises DNA.
  • the separation means comprises DNA that is substantially double stranded (ie, so that a double helix is formed).
  • the DNA can be completely double stranded (i.e., with blunt ends) or substantially double stranded (i.e., when one or more of the nucleotides in the DNA is not present on a base pair, for example, to form a single stranded adherent end) .
  • the DNA has at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 nucleotides in length. In one embodiment, the DNA is 15 or more, such as 20, 30, 40, 50, 60, 70, 80, 90 or 100 or more nucleotides in length. It will be understood that these embodiments refer to the number of nucleotides in each strand of the double stranded DNA, although the number of nucleotides in each strand may be the same or different (for example, if the DNA is substantially double stranded).
  • the size / length of the DNA used will be sufficient to allow the use of the DNA as a means of separation, that is, so that it can be separated from the AQC consisting of more than 3 transition metal atoms of zero valence that remain without bind in solution and that can be isolated from said solution.
  • the DNA is of sufficient size to prevent it from passing through the semipermeable membrane of a dialysis device (which would depend on the pore size of the membrane used). Therefore, in one embodiment, the molecular weight (PM) of the DNA is greater than the pore size of the semipermeable membrane used.
  • the PM of the DNA is greater than 3.5 kDa, such as about 4 kDa or greater.
  • a person skilled in the art would know how to design and synthesize DNA of the appropriate length.
  • DNA can be used to selectively purify AQCs consisting of 3 metal atoms of zero valence because this is the only cluster size that is sandwiched into the DNA. Larger clusters do not interact with DNA and AQCs consisting of 2 metal atoms of zero valence can be easily removed (for example, they can be separated by dialysis) because they are weakly bound to the outside of the double helix of DNA
  • the process comprises the application of a wash solution to remove AQC consisting of less than 3 transition metals of zero valence (i.e., AQC consisting of 2 metal atoms of zero valence transition), so that only AQCs consisting of 3 zero valence transition metal atoms are joined by the separation means.
  • the process comprises isolation by a process comprising denaturation of the DNA to release AQC consisting of 3 transition metal atoms of zero valence.
  • the process may further comprise the application of a second wash solution to isolate the released AQCs consisting of 3 zero-valent transition metal atoms from the denatured DNA, for example by dialysis.
  • the DNA is denatured by heating, for example, at about 96 ° C.
  • a wash solution can be used to isolate the released AQCs consisting of 3 transition metals of zero valence.
  • this embodiment includes the placement of a dialysis device comprising the denatured DNA and the AQC consisting of 3 transition metals of zero valence, in a solution of washing and isolation of the released AQCs consisting of 3 transition metal atoms of zero valence (which have passed into the washing solution).
  • the process further comprises the application of the isolated AQCs consisting of 3 or less transition metal atoms of zero valence to a second separation means and the isolation of the AQCs consisting of 3 atoms of zero valence transition metals. This allows AQCs consisting of 3 atoms to be separated from AQCs consisting of 2 atoms that do not bind to the second separation medium.
  • the second separation means is attached to the AQC consisting of 3 transition metal atoms of zero valence and the process comprises discarding the AQC consisting of less than 3 transition metal atoms of zero valence (i.e., the AQC consisting of 2 transition metal atoms of zero valence) in the unbound solution, and isolating the AQC consisting of 3 transition metal atoms of zero valence of the second separation means.
  • the process comprises isolation by means of a process (for example, heating) of the separation medium to release AQC consisting of 3 or less transition metals of zero valence.
  • the second separation means comprises a functional group that binds to AQC consisting of more than 3 transition metal atoms of zero valence.
  • the functional group is an aromatic group, such as a cyclic and polycyclic aromatic group.
  • Said aromatic group may additionally carry one or more substituents, for example, alkyl groups (such as methyl), alkenyl groups (such as allyl), halogen groups (eg chlorine), etc.
  • the aromatic group may comprise a benzene ring.
  • Said benzene ring may be present in a polybenzene structure, such as: naphthalene (a fused pair of benzene rings); anthracene or phenanthrene (three fused benzene rings); tetracene, chrysene, triphenylene or pyrene (four fused benzene rings); pentaphene or benzo [a] pyrene (five fused benzene rings).
  • the aromatic group may comprise a pyrene ring.
  • the benzene ring may comprise one or more additional substituents, such as: toluene or styrene (also known as ethenylbenzene, vinylbenzene or phenylethane).
  • the aromatic group may comprise a pyridine group.
  • the aromatic group may be selected from the list consisting of benzene and pyridine.
  • the aromatic group can be part of a larger structure, which can be used in the second separation medium such as graphene, nanotubes of carbon, fullerenes or quantum carbon points.
  • the second separation means comprises double stranded DNA. Since DNA can be used to purify AQCs consisting of 3 transition metals of zero valence only, it will be understood that it can be used only as a separation medium or together with the processes described above as a second separation medium. The last option guarantees that AQCs consisting of 3 zero-transition metal atoms can be purified.
  • the process may comprise: (i) application of a mixture of AQC to a separation medium comprising a thiolated resin; (ii) collection of the unbound solution comprising AQC consisting of 3 or less transition metal atoms of zero valence; and (iii) application of this solution to a second / additional separation medium comprising double stranded DNA.
  • AQCs consisting of 3 zero valence transition metal atoms are isolated by heating the second separation means to release the AQC consisting of 3 zero valence transition metal atoms and applying a wash solution to isolate the released AQCs consisting of 3 transition metal atoms of the second separation medium, for example, by chromatography or dialysis.
  • the second separation means can be heated to about 100 ° C to release AQCs consisting of 3 transition metals of zero valence.
  • a wash solution can then be used to isolate the released AQCs consisting of 3 transition metals of zero valence.
  • one or more of the purification procedures described herein may be repeated one or more times. By carrying out the purification procedure several times can increase the purification of the sample and allow the desired purification to be achieved.
  • the separation medium is used in a chromatographic procedure.
  • Chromatography is a procedure used to separate a mixture by passing a mobile phase that comprises the mixture through a phase stationary (for example, comprising the separation means described herein). The mixture is separated based on the way in which the components of the mobile phase interact with the stationary phase. It will be understood that if the separation medium retains the AQCs that consist of more than 3 atoms of transition metals of zero valence, then the eluate (comprising the AQCs consisting of 3 or less atoms of transition metals of zero valence will be collected) ).
  • the separation medium retains the AQCs that consist of 3 or less zero valence transition metal atoms, then the eluate (which comprises the AQC consisting of more than 3 zero valence transition metals) is discarded. .
  • the separation medium is present in a chromatography column.
  • chromatography columns are commercially available.
  • the chromatography column can be used as part of various chromatographic procedures that include, for example, high performance liquid chromatography (HPLC).
  • the process is a chromatographic process where the separation medium is the solid phase and the solution comprising a mixture of AQC is the mobile phase.
  • the AQCs that consist of more than 3 zero valence transition metal atoms are joined by the solid phase and the AQCs that consist of 3 or less zero valence transition metal atoms are isolated from the mobile phase. .
  • the AQCs consisting of 3 or less zero valence transition metal atoms are joined and then isolated from the solid phase.
  • the mobile phase comprising the AQCs consisting of more than 3 zero-transition metal atoms is discarded, before the separation medium is treated (for example, heated) to release the AQCs consisting at 3 or less zero valence transition metal atoms and a second mobile phase, for example, a washing solution, is applied to the separation medium to isolate the released AQC consisting of 3 or less valence transition metal atoms zero.
  • a second mobile phase for example, a washing solution
  • the separation medium is used in a dialysis procedure.
  • Dialysis is a procedure of separation of molecules that is based on their diffusion rates through a semipermeable membrane.
  • the solution comprising a mixture of AQC could be applied to a separation medium and then placed in a dialysis device (for example, a cassette of dialysis or a dialysis tube). Said cassettes, tubes or dialysis devices are commercially available.
  • Dialysis membranes can be chosen with a molecular weight cut chosen according to the separation requirements (for example, according to the molecular weight of the DNA used in the separation medium).
  • the process comprises applying a solution comprising a mixture of AQC to a separation medium and then placing the mixture in a dialysis device comprising a semipermeable membrane, for example a membrane of 3.5 kDa Said semipermeable membrane prevents the passage of the separation means and anything attached to them.
  • a dialysis device comprising a semipermeable membrane, for example a membrane of 3.5 kDa Said semipermeable membrane prevents the passage of the separation means and anything attached to them.
  • the separation medium is bound to the AQCs that consist of 3 or less transition metal atoms of zero valence
  • the solution that passes through the semipermeable membrane (comprising the AQCs consisting of more than 3 atoms of transition metals of zero valence) is discarded.
  • AQC Atomic Quantum Clusters
  • the metal atoms are selected from silver (Ag), gold (Au), copper (Cu), platinum (Pt), iron (Fe), chromium (Cr), palladium (Pd), nickel (Ni) , rhodium (Rh), lead (Pb), iridium (Ir), ruthenium (Ru), osmium (Os), cobalt (Co), titanium (Ti), vanadium (V) or any combination thereof.
  • the metal atoms are selected from Ag, Au, Cu, Pt or any combination thereof.
  • the metal atoms are Ag.
  • the AQCs described herein are stable, that is, they retain the number of atoms and, therefore, their properties, over time, so that they can be isolated and manipulated like any other chemical compound. AQCs can be preserved for months, even years, without the need for an external stabilizer.
  • the AQC mixture can be synthesized by various known procedures. in the art, for example, those described in EP1914196 or Buceta et al. 2015, which are incorporated by reference in this report.
  • the mixture can also be synthesized using the procedure described herein in Example 1. More specifically, there is provided a method for synthesizing silver AQC comprising performing the procedure in a three electrode electrochemical cell comprising a electrode of hydrogen as a reference electrode and two silver electrodes as a counter electrode and working electrode, where the silver electrodes comprise a surface area that is greater than 5 cm 2 , such as greater than 10 cm 2 , for example approximately 17 cm 2 , and where a constant voltage that is greater than 4 V, such as about 6 V, is applied at about 25 ° C for at least 3,000 seconds, for example about 3,600 seconds.
  • Silver electrodes can be polished before synthesis, for example, using sandpaper and / or alumina. The process can be carried out in purified, deaerated water, such as deaerated MilliQ water. Optionally, any excess Ag + ions can be removed by adding NaCl and subsequent precipitation and filtration.
  • references to the AQCs used herein include those in the form of hydrate, that is, they have water molecules attached to the cluster via a non-covalent bond.
  • a purified composition is provided by a process as described herein, which is substantially free of AQC consisting of more than 3 zero valence transition metal atoms.
  • compositions comprising AQC consisting of 3 or less transition metal atoms of zero valence will be described herein. It has been found that such compositions do not have a cytotoxic effect on eukaryotic cells themselves, but provide a surprising synergistic effect when combined with drugs that act on DNA. This mechanism is unique for clusters of this size. Therefore, this application provides, for the first time, the motivation to purify the AQC, so that the composition consists only of AQC with 3 or less transition metal atoms of zero valence. Even if compositions comprising small AQCs have been synthesized previously, see for example Buceta et al. 2015, the reports indicate that they were not purified before the analysis.
  • compositions of the invention provide purer compositions than described above and, therefore, have the distinctive property of having no cytotoxic effect on eukaryotic cells when administered alone (for example, see Example 8).
  • composition comprising atomic quantum clusters (AQC) consisting of 3 atoms or less of zero valence transition metals, which is substantially free of AQC consisting of more than 3 transition metal atoms of zero valence.
  • AQC atomic quantum clusters
  • the composition is substantially free of AQC consisting of more than 3 transition metals of zero valence, for example, the composition may contain less than about 10 mol% (molar percentage based on the total AQC content of the composition), such as less than about 7 mol%, less than about 5 mol%, less than about 2 mol%, less than about 1 mol% or less than about 0.5 mol% of AQC consisting of more than 3 transition metal atoms of zero valence.
  • the composition is substantially free of AQC consisting of 2 transition metal atoms of zero valence.
  • the isolation of AQC consisting of 3 zero-transition metal atoms can be achieved, for example, using DNA as a separation medium.
  • the compositions described herein may be referred to as purified compositions.
  • the composition is substantially free of AQC consisting of more than 2 transition metal atoms of zero valence, for example, the composition may contain less than about 10 mol% (mole percentage based on the total AQC content of the composition), such as less than about 7 mol%, less than about 5 mol%, less than about 2 mol%, less than about 1 mol% or less than about 0.5 mol% of AQC consisting of more than 2 transition metal atoms of zero valence.
  • the composition may contain less than about 10 mol% (mole percentage based on the total AQC content of the composition), such as less than about 7 mol%, less than about 5 mol%, less than about 2 mol%, less than about 1 mol% or less than about 0.5 mol% of the AQCs consist of more than 3 and 2 transition metals of zero valence.
  • a property of a composition that can be considered "substantially free of AQC consisting of more than 3 zero-transition metal atoms" is that it has no cytotoxic effect when administered alone, that is, not in the presence of an agent. antiproliferative and / or when AQC with larger clusters are present. This property can be used to identify such compositions.
  • the composition is substantially free of metal ions.
  • Metal ions are often a byproduct during the synthesis of AQCs. These can be eliminated using, for example, NaCI or the purification procedures described herein. It will be understood that the reference to metal ions is with respect to the ions of the transition metal contained in the AQCs.
  • the composition contains less than about 20 mol%, such as less than about 15 mol%, 10 mol%, the 5 mol%, 2 mol%, 1 mol% or 0.5 mol% of metal ions (i.e. ion free ions of the transition metal used to synthesize the AQCs).
  • metal ions i.e. ion free ions of the transition metal used to synthesize the AQCs.
  • the new purification approaches set forth herein allowed obtaining a sufficiently high amount of metallic AQC of 3 atoms to explore the action of these AQCs on chromatin, in particular in human lung and breast adenocarcinomas and glioblastomas cell lines, and in mice carrying cancer.
  • the composition is provided as described herein, in combination with an antiproliferative agent for use in the treatment of a cell proliferation disorder.
  • AQCs consisting of 3 or less zero-valence transition metal atoms do not have cytostatic or cytotoxic properties characteristic of eukaryotic cells. This fact contradicts the teaching of WO2012 / 059572 and EP2457572 (see Example 3 and Example 4 of WO2012 / 059572 and EP2457572) and indicates that the material described in that document as Ag3 was not purified Ag3 and must have contained other biologically active contaminants.
  • purified AQCs are administered consisting of 3 zero valence transition metal atoms in combination with an antiproliferative agent, in particular DNA binding agents, there is a surprising synergistic effect.
  • references to a "cell proliferation disorder” refer to a disorder that produces a new abnormal growth of cells or a growth of abnormal cells without physiological control. This can produce an unstructured mass, that is, a tumor.
  • the cell proliferation disorder is a tumor and / or cancer.
  • Cancers may include, but are not limited to: spleen cancer, colorectal and / or colon cancer, colon carcinomas, ovarian carcinomas, ovarian cancer, breast cancer, uterine carcinomas, lung cancer, stomach cancer , esophageal cancer, liver cancer, pancreatic carcinomas, kidney cancer, bladder cancer, prostate cancer, testicular cancer, bone cancer, skin cancer, sarcoma, Kaposi sarcomas, brain tumors, myosarcomas, neuroblastomas, lymphomas and leukemia, melanoma, glioma, medulloblastoma and carcinoma of the head and neck.
  • the cancer is selected from lung, breast, colon or brain cancer (in particular, glioblastoma).
  • the cancer is brain cancer, such as glioblastoma.
  • the composition is provided as described herein, optionally in combination with an antiproliferative agent, for use in the prevention of cancerous metastases of the lymph nodes.
  • the composition described herein is provided, in combination with an agent. antiproliferative, for use in the treatment of cancerous metastases of the lymph nodes.
  • the lymph node is a mediastinal ganglion. These mediastinal nodes are a group of lymph nodes located in the thoracic cavity of the body.
  • the prevention of cancerous metastasis is an essential part of cancer treatment to prevent secondary cancers and recurrences.
  • the administration of Ag3 AQC has the capacity to reduce tumor burden in the mediastinal nodes.
  • administration of cisplatin with AQC of Ag3 was significantly more efficient in reducing lymph node invasion than cisplatin alone (see Example 17 and Figure 21). Therefore, it has surprisingly been found that the compositions of the invention have an additional beneficial effect in the treatment and prevention of cancerous metastases of the lymph nodes.
  • the antiproliferative agent is selected from DNA binding drugs, DNA intercalation drugs, alkylating agents and nucleoside analogs.
  • the antiproliferative agent is one that acts to inhibit or suppress cell growth, multiplication and proliferation. They normally act by destroying rapidly dividing cells, that is, those that are affected by cell proliferation disorder.
  • Cytotoxic DNA binding drugs are the first option in the treatment of many types of cancer.
  • An important factor in the resistance of chemotherapy is that an insufficient amount of drug can reach DNA, and chromatin is an important barrier that limits accessibility to DNA.
  • chromatin compaction that affects the action of chemotherapeutic DNA-binding drugs could not be assessed.
  • unloaded metal clusters of only 3 atoms the present application provides evidence of the importance of attacking chromatin compaction to increase the therapeutic index of chemotherapy.
  • the antiproliferative agent is a DNA binding agent, such as cisplatin, oxaliplatin, carboplatin, carmustine or doxorubicin.
  • the antiproliferative agent is cisplatin.
  • the antiproliferative agent is not cisplatin.
  • the antiproliferative agent is a nucleoside analog, such as gemcitabine.
  • compositions of the invention can be administered with multiple antiproliferative agents, such as at least one, for example two, three, four or more antiproliferative agents.
  • the composition and the antiproliferative agent are administered simultaneously.
  • the two agents are administered at the same time or substantially at the same time. They can also be administered by the same route and, optionally, in the same composition. Alternatively, they can be administered by different routes, that is, separately, but at the same time or substantially at the same time.
  • composition and the antiproliferative agent are administered in sequence.
  • the two agents are administered at different times, so that one of the agents is administered before the second agent. They can be administered by the same routes or by different routes.
  • the composition is administered before the antiproliferative agent.
  • the AQCs in the composition induce chromatin decompaction, which increases the efficacy of the antiproliferative agent once administered. Therefore, if the agents are administered separately, the antiproliferative agent is administered while the composition is still effective, that is, the composition and the antiproliferative agent are administered within a period of time that will exert a synergistic effect after administration to a patient.
  • the composition is administered no more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24 hours before the antiproliferative agent.
  • the composition is administered approximately 15, 20, 30 or 45 minutes or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 , 17, 18, 19, 20, 21, 22, 23 or 24 hours before the antiproliferative agent.
  • the composition is administered between 0 and 24 hours, for example between 0 and 20 hours, 0 and 10 hours, 0 and 6 hours, 0 and 4 hours, 0 and 2 hours or 0 and 1 hour, before proliferative agent
  • This embodiment includes simultaneous administration (ie, 0 hours) and in sequence.
  • the composition and the antiproliferative agent are present in a weight ratio such that the resulting composition will exert a synergistic effect upon administration to a patient.
  • Suitable weight ratios can be determined by procedures well known to those skilled in the art.
  • the composition is provided as described herein, in combination with radiotherapy for use in the treatment of a cell proliferation disorder, such as cancer.
  • a composition of the invention comprising AQC consisting of three or less transition metals of zero valence is used which is substantially free of AQC consisting of more than 3 atoms of transition metals of zero valence, and which can optionally be combined with an antiproliferative agent.
  • compositions of the invention have the ability to intercalate in the DNA and produce chromatin decompaction. Therefore, they can be used to increase the susceptibility of the cells treated to radiation and, therefore, improve the effectiveness of radiotherapy.
  • Radiation therapy also known as radiation therapy
  • Such therapy may be in the form of an external beam or as internal radiotherapy.
  • the choice of radiotherapy may depend of the type of cancer, the size of the tumor, the location of the tumor and other factors, such as age, general health and medical history of the patient and the other types of cancer treatment used.
  • composition and radiotherapy are applied simultaneously. In an alternative embodiment, the composition and radiotherapy are applied in sequence.
  • compositions of the invention can improve the efficacy of an antiproliferative agent or radiotherapy at least twice, for example three times, compared to the efficacy of the antiproliferative agent or radiotherapy for the treatment of the disorder alone.
  • a pharmaceutical composition comprising the compositions as described herein.
  • the pharmaceutical composition may further comprise an antiproliferative agent (for example, if they are to be administered simultaneously). If both agents are present in the pharmaceutical composition, they may be in the form of a mixture or spatially separated from each other, either as part of the same dosage form or as a kit of parts.
  • compositions, and combinations where appropriate can be formulated as a pharmaceutical composition, optionally comprising a pharmaceutically acceptable excipient, diluent or carrier.
  • pharmaceutically acceptable carriers include one or more of water, saline, phosphate buffer, dextrose, glycerol, ethanol and the like, as well as combinations thereof. Suitable pharmaceutical carriers, excipients or diluents are described in "Remington's Pharmaceutical Sciences” by EW Martin.
  • Pharmaceutically acceptable carriers may further comprise small amounts of auxiliary substances such as wetting or emulsifying agents, preservatives or buffers, which enhance the shelf life or effectiveness of the compositions of the invention.
  • compositions may also include non-sticks, binders, coatings, disintegrants, flavors, colors, lubricants, sorbents, preservatives, sweeteners, lyophilized excipients (including lyoprotectants) or compression aids.
  • the pharmaceutical compositions of the invention can be administered in a plurality of pharmaceutical administration forms, for example, solids (such as tablets, pills, capsules, granules, etc.) or liquids (such as solutions, suspensions, syrups, ointments, creams , gels or emulsions).
  • the pharmaceutical compositions of the invention may comprise a therapeutically effective amount.
  • the therapeutically effective amount (that is, the amount that produces an effect to help cure or cure the disorder to be treated) that can be administered to a subject will depend on multiple factors, such as disease status, age, sex and weight of the individual, and the ability of the pharmaceutical composition to elicit a desired response in the individual.
  • a therapeutically effective amount is also an amount with which any toxic or harmful effect of the composition is compensated by the therapeutically beneficial effects.
  • composition is provided as described herein, in combination with an antiproliferative agent for the treatment of a cell proliferation disorder.
  • the composition is provided as described herein, optionally in combination with an antiproliferative agent, for use in the prevention of cancerous metastases of the lymph nodes.
  • the use of the composition is provided as described herein, optionally in combination with an antiproliferative agent, to prevent metastasis of lymph node cancer.
  • the use of the composition is provided as described herein, in combination with radiotherapy for the treatment of a cell proliferation disorder.
  • the use of a composition as described herein is provided in the manufacture of a medicament for the treatment of a cell proliferation disorder.
  • the composition can be used in combination with an antiproliferative agent and / or radiation.
  • Treatment Procedures According to one aspect of the invention, there is provided a method for treating a patient with a cell proliferation disorder that comprises the administration of a composition as described herein, in combination with an antiproliferative agent and / or radiotherapy.
  • the embodiments described hereinbefore for the compositions may be applied to said treatment procedure (eg, administration time, formulation of the composition, etc.).
  • a method for preventing cancerous metastasis of the lymph nodes comprising the administration of a composition as described herein, optionally in combination with an antiproliferative agent and / or radiotherapy.
  • a method for treating cancerous metastasis of the lymph nodes comprising the administration of a composition as described herein, in combination with an antiproliferative agent and / or radiotherapy.
  • the patient can be any subject suffering from the disorder.
  • the patient is a mammal.
  • the mammal is selected from a human being or a mouse.
  • the composition (and optionally the antiproliferative agent) is administered by any suitable mode of administration, such as intravenously, intraarterially, intracardially, intracutaneously, subcutaneously, transdermally, interperitoneally, intramuscularly, orally, lingually, sublingually, buccally, intrarectal or by enema.
  • suitable mode of administration such as intravenously, intraarterially, intracardially, intracutaneously, subcutaneously, transdermally, interperitoneally, intramuscularly, orally, lingually, sublingually, buccally, intrarectal or by enema.
  • a topical application is also possible (for example, for the treatment of melanomas).
  • a particular form of topical application consists in introducing the composition (and optionally the antiproliferative agent) into a vehicle system, in particular a drug delivery system, and implementing said delivery system. vehicle in the cancerous tissues, where said carrier system releases said composition (and optionally the agent) specifically at the site of the cancerous tissue. In this way, it is possible to avoid side effects, as may occur in the case of systemic administration, that is, to reduce the general tension in the organism.
  • a kit comprising the separation means described herein for use in a process for the purpose of purifying a mixture of AQC (i.e. to isolate AQCs consisting of 3 or minus zero valence transition metal atoms), optionally comprising instructions for using said kit according to the purification procedures described herein.
  • kits of parts comprising: (i) the composition and (ii) an antiproliferative agent.
  • the two components (i) and (ii) may be in admixture with a pharmaceutically acceptable adjuvant, diluent or carrier.
  • the kit according to this aspect of the invention can be used in the treatment of a cell proliferation disorder.
  • Sandpaper 1,000 grit was supplied by Wolfcraft Espa ⁇ a S.L., Madrid, Spain. All aqueous solutions were prepared with MilliQ quality water using a Direct-Q8UV system from Millipore (Millipore Ibérica S.A., Madrid, Spain). The thiol functionalized silica particles (SiliaMetS® Thiol, 40-63 pm, 60A) were purchased from Teknokroma Anal ⁇ tica S.A., Barcelona, Spain. Mica sheets (V-1 quality muscovite) were purchased from SPI Supplies, West Chester, PA, USA.
  • VWR Puranity TU system
  • VWR UV and ultrafilter lamp
  • UV-vis v fluorescence spectroscopy The spectroscopy experiments of UV-vis and fluorescence were performed at room temperature using 1 cm long Hellma quartz cuvettes (Hellma GmbH & Co. KG, Müllheim, Germany). UV-vis spectra were recorded with an Analytik Jena Specord S600 spectrometer (Analytik Jena AG, Jena, Germany) with a diode array detector, and fluorescence spectra were recorded with a Varian Cary Eclipse fluorometer (Agilent Technologies Spain, SL, Madrid, Spain).
  • AFM Atomic force microscope
  • ESI mass spectra were acquired using an LTQ Orbitrap Discovery mass spectrometer (Thermo-Fisher Scientific, Waltham, USA) equipped with an ESI source that operated in negative ionization mode.
  • the conditions of the ESI source were the following: source voltage -4.5 kV, heated capillary temperature 275 ° C, capillary voltage -35 V and coating gas and auxiliary gas 5 and 2 (N 2 , arbitrary units).
  • the spectra were recorded in the m / z range of 100 to 2,000 with a scan rate of 1 scan / s.
  • the mass resolution was set at 30,000 FWHM.
  • the Orbitrap instrument was calibrated using a calibration solution according to the manufacturer's instructions.
  • follow-up experiments were performed to obtain maximum sensitivity for cluster detection.
  • the solutions were injected directly into the cell after mixing 1 to 1 with a solution of acetonitrile with 1 mM NH4CI and 0.1% formic acid.
  • lonometer The ion concentration was measured using a previously calibrated pH and Ion-Meter GLP 22 (Crison Instruments SA, Barcelona, Spain) by adding a stabilizing solution (5 M sodium nitrate) in a 2: 100 ratio to the sample at a constant temperature of 25 ° C. Atomic absorption spectroscopy by flame.
  • the total Ag content in the cluster samples was analyzed by flame atomic absorption spectroscopy, performed with a Perkin-Elmer 3110 with an Ag Lumia hollow cathode lamp from Perkin-Elmer (Madrid, Spain) (10 mA current).
  • the human lung adenocarcinoma cell line (A549) and the human breast adenocarcinoma cell line (MCF7) were obtained from DMSZ (Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany).
  • a luciferase-expressing cell line obtained from A549 cells by stable transfection of the Northworm luciferase gene expressed from the CMV promoter (A549 Luc-C8 Bioware® cell line) obtained from Caliper LifeSciences (Caliper Life Sciences, Hopkinton, MA, USA). UU.).
  • Modified Dulbecco Eagle (high glucose) (D5671, Sigma). The medium was supplemented with 10% fetal calf serum and 1% v / v L-glutamine, penicillin and streptomycin (Gibco, Thermofisher). In the case of modified cell lines, puromycin (1.3 pg / mL for A549-Luc and 5 pg / mL for U87-Luc) was added to the medium to select stably transfected cells. The cells were incubated in a humidified incubator at 37 ° C with 5% CO2 and grown on 100 mm culture plates to approximately 70-80% confluence.
  • the medium was removed and the cells were washed with phosphate buffer saline (PBS); Trypsin / EDTA (Gibco) was used to induce cell shedding. Finally, the cells were suspended in culture medium and transferred to new plates in a ratio of 1: 5 or 1: 10. When necessary, the cells were counted with a Neubauer hemocytometer. All procedures were performed under sterile conditions in a laminar air flow hood. All cell lines were stored frozen with complete growth medium supplemented with 10% DMSO (Sigma, D2650) at liquid nitrogen vapor temperature.
  • PBS phosphate buffer saline
  • Trypsin / EDTA Gibco
  • mice In vivo studies athymic female mice weighing approximately 20-25 grams were used at the age of 8-12 weeks (Janvier Laboratoires, Le Genest-Saint-lsle, France). The animals were acclimatized for at least 1 week before experimentation and were housed in ventilated polypropylene cages at an average temperature of 22 ° C, with 12 hours of daily exposure to light and 12 hours to darkness. All mice received a standard diet of food and water laboratory ad libitum. The experiments were performed according to the Standards of the Bioethics Committee of the University of Santiago de Compostela and in accordance with the Principles of Laboratory Animal Care according to Spanish national legislation (RD 53/2013).
  • the antitumor efficacy of AQC from Ag3 was evaluated in a model of orthotopic lung cancer that metastasizes to mediastinal lymph nodes.
  • the model was developed following the protocol described by Borrajo et al. J. Control. Release 2016, 238: 263, adapted from Cui et al. Cancer Res. Treat. 2006, 38: 234.
  • a suspension of 1 c 10 6 cells expressing non-small cell lung carcinoma luciferase (A549 Luc-C8 Bioware® cell line) was injected into PBS (50 pL) through the intercostal space in the left lung of hairless nude mice. During this procedure, the mice were anesthetized with 4% isoflurane inhalation.
  • luciferin was injected into the intraperitoneal cavity at a dose of 150 mg / kg body weight approximately 5 minutes before imaging. Luciferase bioluminescence was performed under anesthesia with vaporized isoflurane using an I VIS® Living Image® System (Caliper Life Sciences, Hopkinton, MA, USA) that allowed monitoring of primary tumor growth and cell dissemination. cancerous semiquantitatively. After obtaining images in vivo for several days (up to 37 days), the mice were sacrificed and protein extracts from different organs were obtained to quantify luciferase activity.
  • the organs were homogenized in DIP buffer (50 mM, pH 7.5, 150 mM NaCI, 1 mM EDTA, EGTA 2.5 mM, 0.1% Tween-20, 10 mM b-glycerophosphate, 1 mM sodium orthovanadate, 0.1 M PMSF, 0.1 M NaF and bitor protease cocktail (Sigma) using a homogenizer tissues. After 15 minutes of high speed centrifugation, the supernatants were quantified using a Bradford colorimetric procedure, and the luminescence was measured using a Lumat BL 9507 luminometer (Berthold Technologies GmbH & Co., Bad Wildbad, Germany). The results were expressed as relative luminescence units (RLU) per pg of extracted protein.
  • RLU relative luminescence units
  • A549 cells were plated at 20,000 cells / plate in a medium containing 10% FBS. After 24 hours, the medium was replaced with medium supplemented with 0.05% FBS for 72 hours. The cells were collected and the cell cycle profile was analyzed by flow cytometry to evaluate the percentage of cells in the G0 / G1 phase (quiescent state). The cells were fixed in 70% ethanol overnight, washed twice with PBS and incubated for 30 minutes in the dark in 0.5 mL of propidium iodide (0.1 mg / mL).
  • Chromatin accessibility after Ag3 AQC treatment was measured in an A549 cell line and in tissues of mice bearing orthotopic lung tumors derived from A549 cells.
  • 5 x 10 5 A549 cells were seeded in 60 mm culture plates, and 24 (proliferating cells) or 72 (dead serum cells) hours later treated with Ag3 AQC (55.61 ng / mL) for 1 hour in medium without serum. The medium was then completely replaced for 3 hours, and the cells were washed twice with PBS, trypsinized and centrifuged. Supernatants were removed and the cell pellets washed with PBS and suspended in lysis buffer.
  • mice Orthotopic lung tumor carriers derived from A549 cells were injected AQC of Ag3 (0.05 mg / kg). After 24 hours, the animals were sacrificed and the lungs and kidneys were removed. Small pieces (1-2 mm 3 ) of tumor (lung) and kidney were homogenized using a Dounce homogenizer and suspended in lysis buffer. From this point on, cells and tissues were treated similarly; Chromatin was isolated and treated with a mixture of nucleases following the instructions provided by the manufacturer using an EpiQuick TM chromatin accessibility test kit (Epigentek, Farmingdale, NY, USA). The DNA was then isolated and amplified using the real-time PCR system (Applied Biosystems, Thermofisher, Spain) and gene specific primers for GAPDH (Epigentek).
  • mice bearing tumors were injected with 1) 100 pL of CDDP (4 mg / kg) or 2) 50 pL of CDDP (4 mg / kg ) and 50 pL of AQC of Ag3 (0.05 mg / kg). After 24 hours, the animals were sacrificed and the organs were removed. Small pieces (1-2 mm 3 ) of tumor (lung) and other organs (heart, liver, kidney, spleen, brain and bone marrow) were separated using a scalpel.
  • the amount of platinum was determined by mass spectrometry using an ICP-MS BRUCKER 820-MS with a low flow glass Micromist nebulizer and a double pass spray chamber with a Peltier cooling (3 ° C) and a lamp Quartz (Bruker Corp., Billerica, MA, USA).
  • A549 cells (6 x 10 4 ) were seeded in 12-well plates and 24 hours later (proliferating cells) or 72 hours later (quiescent cells) were treated with 1) Ag3 AQC (55.61 ng / mL ) in serum-free medium for 1 hour and then 24 hours in complete medium; 2) AQC of Ag3 (55.61 ng / mL) in serum-free medium for 1 hour and then 24 hours with various drugs (50 mM CDDP, 50 pM OXA, 100 mM CBDCA, 100 pM GEM, 400 pM BCNU or DOX 7 ,5 pm); 3) 24 hours with various drugs (50 pM CDDP, 50 pM OXA, 100 mM CBDCA, 100 pM GEM, 400 pM BCNU or 7.5 pM DOX); or 4) AQC of Ag 3 (55.61 ng / mL) in medium
  • the cells were collected, washed with PBS and suspended in 500 pL of PBS. To prepare stained samples, the cell suspension was mixed with the Guava ViaCount reagent (Millipore) following the manufacturer's instructions. Stained cells were analyzed in the Guava EasyCyte flow cytometer (Millipore) using the Guava ViaCount software.
  • A549 Luc-C8 cells were seeded in 96-well plates and 24 hours (proliferating cells) or 72 hours (serum-free cells) were later treated with 1) Ag3 AQC (55.61 ng / mL) in medium without serum for 1 hour and 24 hours more in complete medium, 2) AQC of Ag3 (55.61 ng / mL) in medium without serum for 1 hour and 24 hours more with different doses of CDDP (IC5: 5 mM, IC25: 10 pM, IC50: 50 pM and IC75: 100 pM), OXA (IC5: 2.5 pM, IC25: 12.5 pM, IC50: 50 pM and IC75: 200 pM) or CBDA (IC5: 0.25 pM, IC25: 0.5 pM, IC50: 1 mM and IC75: 2 mM) and 3) 24 hours with different doses of CDDP (IC5: 5 pM,
  • A549 cells (5 x 10 5 ) were seeded in 60 mm culture plates. After 24 hours, the cells were treated with Ag3 AQC (41.5 ng / mL) for 1 hour in serum free medium. The medium was then removed and completely replaced for 0, 4 or 24 hours. At this time, the cells were collected and their RNA was isolated using the NucleoSpin RNA kit (Macherey-Nagel, Düren, Germany) following the manufacturer's instructions.
  • RNA concentration was quantified using a spectrophotometer (Nanodrop 2000), and the quality was evaluated by measuring the RNA Integrity Number (RIN) using the Agilent RNA 6000 Nano kit and the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, USA) ⁇ Only samples with RIN> 7 were considered acceptable. Samples were stored at -80 ° C until use. Human Gene ST 2.1 Array (Affymetrix, Santa Clara, USA) was used to hybridize human samples following the manufacturer's instructions. Background correction, normalization, probe summary and data analysis were performed using the Expression Console and the Transcriptome Analysis Console (Affymetrix).
  • H2AX phosphorylated H2AX
  • Block-9 buffer 150 pL of Block-9 buffer with 0.6 pg / mL of FITC anti-pH2AX conjugate (ser139) (16-202A, Millipore) was added, and the cells were incubated at 4 ° C for 3 hours while protected of the light. The cells were washed twice with PBS and incubated overnight in the dark with 0.1 mL of propidium iodide (0.01 mg / mL). Stained cells were analyzed on the Guava EasyCyte flow cytometer using the InCyte (Millipore) program.
  • A549 cells (5 x 10 5 ) were seeded in 60 mm plates and 24 hours later treated with Ag3 AQC (55.61 ng / mL) or positive H2O2 control (100 mM) for 1 hour in serum free medium. The cells were subsequently collected by trypsinization and washed once in ice-cold PBS (free of Ca 2+ and Mg 2+ ). The cells were then suspended in cold PBS (1 x 10 5 cells / mL) and an alkaline comet assay was performed according to the instructions provided by the manufacturer (Trevigen, Gaithersburg, USA). The images were obtained using an Olympus 1X51 microscope equipped with an Olympus DP72 camera and software CellSens Imaging (Olympus, Tokyo, Japan).
  • DOX nuclear uptake was determined by fluorescence microscopy.
  • A549 cells (5 x 10 5 ) were seeded in 12-well plates. After 24 hours, the cells were treated with 1) DOX (7.5 mM) for 30 minutes or 2) AQC of Ag3 (55.61 ng / mL) for 30 minutes and DOX (7.5 pM) for another 30 minutes
  • the images were obtained using an Olympus 1X51 microscope equipped with an Olympus DP72 camera and the CellSens Imaging software (Olympus, Tokyo, Japan).
  • A549 cells (5 x 10 5) were seeded in 12 - well plates. Twenty-four hours later, the cells were treated with 1) DOX (7.5 pM) for 4 hours or 2) AQC of Ag3 (55.61 ng / mL) for 30 minutes and DOX (7.5 pM) for 4 hours. After this, the cells were collected, washed with cold PBS and fixed with 0.2% paraformaldehyde (PFA) for 5 minutes. The samples were then suspended in 200 pL of PBS and analyzed on the Guava EasyCyte flow cytometer using the InCyte program.
  • PFA paraformaldehyde
  • the mouse lungs were fixed in formalin with 10% neutral buffer for 24 hours and included in paraffin.
  • 4 mm thick sections were mounted on FLEX IHC microscope slides (Dako-Agilent, Glostrup, Denmark) and heated in an oven at 60 ° C for 1 hour.
  • the immunohistochemical technique was performed automatically using an AutostainerLink 48 (Dako-Agilent). After dewaxing and epitope recovery in the EnVision FLEX target recovery solution (high pH) for 20 minutes at 97 ° C, the slides were allowed to cool in PT Link slides at 65 ° C and then in a wash buffer Dako for 5 minutes at room temperature (TA).
  • TA room temperature
  • the immunostaining protocol included incubation at room temperature in: (1) EnVision FLEX peroxidase blocking reagent (Dako-Agilent) for 5 minutes; (2) ready-to-use primary FLEX antibody (Dako-Agilent) anti-CK7 (clone OV-TL 12/30), for 20 minutes; (3) EnVision FLEX / HRP (dextran polymer conjugated with horseradish peroxidase and goat anti-mouse and anti-rabbit immunoglobulins isolated by affinity) for 20 minutes; (4) working solution of the substrate (mixture) (3,3'-diaminobenzidine tetrahydrochloride chromogen solution) (Dako-Agilent) for 10 minutes; and (5) hematoxylin EnVision FLEX (Dako-Agilent) for 9 minutes. Sections were examined and photographed using an Olympus PROVIS AX70 microscope equipped with an Olympus DP70 camera.
  • the activity was evaluated using the Human Topoisomerase I relaxation kit according to the manufacturer (Inspiralis, Norwich, United Kingdom). Briefly, 0.5 mg of pBR322 DNA relaxed for 30 minutes at room temperature with AQC of Ag3 was pre-incubated in a 30 mL reaction under the following conditions: 35 mM Tris-HCI (pH 7.5), 24 mM KOI, 4 mM MgCl2, 2 mM DTT, 1.8 mM spermidine, 1 mM ATP, 6.5% glycerol (w / v) and 0.1 mg mL -1 of BSA. After this, 1 U of human mole I was added and incubation was continued for 30 minutes at 37 ° C.
  • reaction was stopped by the addition of 30 mL of chloroform / isoamyl alcohol and 6 mL of loading buffer before loading on an agarose gel (1%: w / v) in TAE (40 mM Tris-acetate, 2 mM EDTA ) without ethidium bromide.
  • Topo II Human Topoisomerase II Deconcatenation Assay Human Topo II activity was evaluated using a commercial kit (Inspiralis, Norwich, United Kingdom). Briefly, 200 ng of kDNA were pre-incubated for 5 minutes at room temperature with AQC of Ag3 at various concentrations in 40 mM HEPES-KOH (pH 7.6), 100 mM potassium glutamate, 10 mM magnesium acetate, 10 mM DTT, 1 mM ATP and 50 mg mL -1 of albumin, in 30 mL of total reaction volume. After this, 1 U of Topo II was added and incubation was continued for 30 minutes at 37 ° C.
  • reaction was stopped by the addition of 30 mL of chloroform / isoamyl alcohol and 6 mL of loading buffer, vortexed and centrifuged briefly (5-10 seconds each) before loading on an agarose gel (1% : p / v) in TAE (40 mM Trisacetate, 2 mM EDTA).
  • the synthesis was carried out with a Biologic VMP300 potentiostat (Seyssinet-Pariset, France).
  • a thermally insulated three electrode electrode cell from Methrom was used with a hydrogen electrode as a reference and two Ag sheets (surface area of 17.5 cm 2 ) as a counter electrode and working electrode. These electrodes were placed facing each other and separated at a distance of 3 cm.
  • a constant voltage of 6 V was applied at 25 ° C for 3,600 seconds.
  • the two silver electrodes were polished with sandpaper followed by alumina ( ⁇ 50 nm), washed thoroughly with MilliQ water and treated with ultrasound.
  • EXAMPLE 2 Purification of AQC from Ag3 using DNA An aqueous dispersion of small silver clusters was synthesized as described in Example 1. A sample containing Ag cations and small size clusters (less than 10 atoms) was used for the preparation of DNA adducts and methods of dialysis. The characterization of AFM and UV-Vis indicated that the sample contained mainly Ag2 and Ag3 clusters.
  • the incubation mixture, Ag + AQC DNA (1: 1 by mass) was prepared by mixing calculated volumes of aqueous DNA solutions and Ag AQC samples, followed by gentle stirring for 12 hours at room temperature. After this step, the mixture was transferred to a dialysis cassette with a 3.5 kDa membrane.
  • the cassette was immersed in MilliQ water for 24 hours.
  • a solution of greater ionic strength (1 M NaC1) was used in order to eliminate any trace of silver cation present as a minor impurity after the first dialysis stage.
  • the DNA / AQC mixture Prior to the third dialysis, the DNA / AQC mixture was heated at 96 ° C for 8 hours, to denature the DNA allowing separation of interleaved clusters, and immediately cooled to 0 ° C to avoid renaturation. The last dialysis was performed in MilliQ water for 24 hours at 0 ° C.
  • the procedure consisted of adding 400 mg of thiolated silica particles to approximately 1 L of the synthesis reaction. The mixture was stirred overnight, with subsequent separation of silica particles. A selective electrode of ions to verify the removal of Ag + ions, and several techniques were used to characterize Ag clusters in the final samples (as previously reported in Huseyinova et al., J. Phys. Chem. 2000, 104: 2630, and Buceta and col., 2015, and as described herein).
  • the purified samples were finally concentrated at 35 ° C using a rotary evaporator (Buchi Rotavapor R-210 at a pressure of 2 mbar) (Massó Anal ⁇ tica SA, Barcelona, Spain) at a final concentration of approximately 30 mg / L as determined by atomic absorption spectroscopy by flame.
  • a rotary evaporator (Buchi Rotavapor R-210 at a pressure of 2 mbar) (Massó Anal ⁇ tica SA, Barcelona, Spain) at a final concentration of approximately 30 mg / L as determined by atomic absorption spectroscopy by flame.
  • Cluster samples were characterized by UV-Vis and fluorescence spectroscopy, AFM mass spectrometry and ESI-TOF. The spectroscopic characterization of the samples is very as previously reported for AQC of Ag3 in Lin et al. ACS Nano 2009, 3: 395.
  • Figure 2 shows the UV-Vis spectrum of an AQC water dispersion of Ag3. The absence of the Ag plasmon band (around 400 nm) indicates the absence of free electrons due to the confinement of the quantum size, which is observed with the clusters (see Philip et al. Nano Lett. 2012, 12: 4661). In comparison with the previously reported UV-Vis samples of AQC of Ag3 naked in Buceta et al.
  • FIG. 3 shows that Ag3 AQCs have a single emission peak at « 305 nm, which is very consistent with the results previously obtained in Huseyinova et al., 2000.
  • This band can be associated, using the Jellium model approximation, to clusters containing only 2 or 3 atoms.
  • the presence of only one peak for any excitation wavelength shows the high monodispersity of the sample (even at such a high concentration of clusters), and confirms the high efficiency of the synthesis and purification procedures developed in this work.
  • Figure 4 of the SI shows the agreement of the isotopic distributions with the theoretical simulations and also with previous publications (for example, figure 2 of the backing information of Buceta et al., 2015). Therefore, the results show the presence of only AQC of Ag2 and AQC of Ag3 in very good agreement with the previous characterization procedures.
  • Ag2 AQCs are present in the samples, their presence has no influence on the reported results. In an earlier publication, no experimental evidence of the formation of a DNA-Ag2 complex, or distortion of DNA with these species could be detected (see Buceta et al., 2015, page 7725, right column). In addition, theoretical calculations clearly demonstrate that Ag2 AQCs are not intercalated in DNA unlike Ag3 AQCs that show an intercalation interaction. In addition, Ag2 AQCs must have a closed electronic layer configuration (1S2), which would indicate a very stable and non-reactive behavior (see Akola et al., Proc. Nati. Acad. Sci. 2008, 105: 9157).
  • Ag3 AQCs did not show cytotoxicity when administered to A549 human lung adenocarcinoma cells (for example, see Figure 15c-e).
  • Eukaryotic DNA is packaged in chromatin that has a physical barrier that must be overcome by DNA binding factors (Skene et al. Bife 2014, 3: e02042). Therefore, it was considered whether chromatin could affect the action of Ag3 AQC eukaryotic cells.
  • the nucleosome is the basic unit of chromatin (Kornberg & Lorch, Ce // 2016, 98: 285).
  • the nucleosome assembly depends on the torsion in the DNA molecule.
  • Doxorubicin (DOX) that modifies DNA torsion affects nucleosomes (Yang et al. Curr. Biol. 2013, 23: 782 and Pang et al. Nat. Commun. 2013, 4: 1908). Therefore, using DOX as a model, it was investigated whether Ag3 AQCs affect nucleosome assembly. As with DOX, Ag3 AQCs were sufficient to dissociate single-nucleosome preparations ( Figure 10).
  • Ge displacement test For the gel displacement test, 5% non-denaturing polyacrylamide gels were prepared using TBE buffer. After a preliminary run of 1 hour at 100 V, the reactions containing nucleosomes were mixed with the DNA loading buffer and electrophoresis was performed at 100 V for 2 h. The gels were stained with ethidium bromide to visualize the DNA and the signal was captured using the Gel Doc XR (Bio-Rad) system. To detect histones, the gels were subsequently stained with silver using the PlusOne Silver staining kit (GE Healthcare Europe GmbH, Barcelona, Spain).
  • Nucleosomes migrated more slowly than free DNA in native gels, as detected by staining with ethidium bromide for DNA (Figure 10a, upper left panel) or by silver staining for histones (Figure 10a, lower left panel). The same samples were analyzed by SDS-PAGE and stained with silver, which shows that in all cases equal amounts of histones were loaded ( Figure 10a, right panel).
  • Doxorubicin (DOX) which dissociated in nucleosomes, and etoposide, which has no effect, were used as controls (Banerjee et al. FEBS Open Bio 2014, 4: 251).
  • the AQCs of Ag3 were sufficient to dissociate the nucleosomes ( Figure 10a).
  • the effect of Ag3 AQCs on nucleosome stability depends on the dose ( Figure 10b).
  • CD circular dichroism
  • FIG. 11 shows the fluorescence spectral curves recorded by adding AQC of Ag3 to a histone solution (H) of 13.4 pM; a cooling effect is observed due to the formation of the AQC complex of Ag3 / H according to equation (ec.) 1.
  • a first estimate of Df and A 93 / H -FH is obtained from the amplitude of the titration curve.
  • the final values of Df and K were obtained by an iterative procedure.
  • K EB / octame m e r o 1, 9 x 10 5 M 1
  • Kir / octam e r o 1, 4 x 10 5 M 1 , with only a negligible difference between low and high ionic strength values.
  • These constants were two orders of magnitude lower than those of the Ag3 / octamer AQC system, indicating that the interaction with the octamer could be of a different nature.
  • Figure 12a reveals strong variations in the histone CD spectral curves caused by the addition of very small amounts of AQC of Ag3, reaching saturation for CAQC-A93 / CH 3 ⁇ 4 0.02, indicating that the effect of AQC of Ag3 in the octamer is huge.
  • Ag3 AQCs affect the histone nucleus by altering the secondary structure of the octamer and disaggregating it, probably due to the high affinity of Ag3 AQCs with the formed fragments.
  • the cells were then fixed and permeabilized with methanol-acetone solution (1: 1) at 20 ° C for 10 minutes and blocked (3% BSA + 0.01% Triton X-100) for 1 hour at TA Finally, the cells were washed three times with PBS and stained with Alexa Fluor 647 following the instructions provided by the manufacturer (Click-iT® EdU Alexa Fluor® 488 Imaging Kit, Thermo Fisher Scientific).
  • Chromatin images were taken using a commercial microscope system from Nikon Instruments (NSTORM). First, 647 nm laser light was used at a maximum power density for 15 minutes to bring the vast majority of AlexaFluor647 molecules bound to EdU into the dark state. Subsequently, 50,000-frame image sequences were acquired using 647 nm continuous laser excitation to directly excite AlexaFluor647 and, at the same time, 405 nm (5%, 30 pW) laser light was used to reactivate the dye in a fluorescent state ( dSTORM).
  • Imaging was performed using an image buffer described above (Cysteamine MEA [SigmaAldrich, # 30070-50G], Glox Solution: 0.5 mg / mL glucose oxidase, 40 mg / mL catalase [all Sigma], 10% glucose in PBS), see Bates et al. Science 2007, 317: 1749.
  • Representative images of nuclei containing fluorescent EdU were taken using conventional microscopy and STORM superresolution.
  • Figure 13a the square represents the size and typical location of the images with magnification for obtaining STORM images.
  • magenta points represent x and individual locations, while the dark areas correspond to regions without chromatin. All images are 50 pm 2 in size and represent approximately 1/3 of the nucleus, as shown by the yellow square in Figure 13a, and contain the same number of locations that allow a reliable visual determination of the differences in the accessibility of the chromatin
  • STORM images were analyzed and reproduced as described previously in Bates et al. 2007. Briefly, the spots on the images of a single molecule were identified as a function of a threshold and adjusted to a Gaussian to identify its position in x and y. The application of this approach in the 50,000 frames produces the raw STORM data, which consists of a list of x-y coordinates, corresponding to the localized positions of all fluorophores. The reconstructed images from the x-y coordinates were shown using Insight3, after drift correction.
  • EXAMPLE 11 Investigation of the effect of Ag3 AQCs using the chromatin accessibility test A hypersensitive nuclease approach (Gross & Garrard, Annu. Rev. Biochem. 1988, 57: 159) was used in combination with a real-time PCR assay (qPCR) (Rao et al. J. Immunol. 2001, 167: 4494) in the region of the cleaning gene, GAPDH, to further explore whether Ag3 AQCs have an effect not only on cells but also on multicellular organisms. The presence of nucleosomes can be identified according to the accessibility of DNA to exogenous nucleases (Kornberg and Lorch 2016).
  • the DNA, protected by the nucleosome, is inaccessible to exogenous nucleases and is available for subsequent amplification of the qPCR with significant changes in the threshold cycle (Ct) between digested and undigested samples; Ct is a relative measure of the concentration of the target in the qPCR reaction.
  • Ct is a relative measure of the concentration of the target in the qPCR reaction.
  • DNA that is outside the nucleosome is accessible to nucleases and is susceptible to digestion; This DNA is not available for qPCR, with a large change in Ct between digested and undigested samples.
  • a schematic diagram of the experimental approach adopted is described in Figure 14a. A549 proliferating cells showed greater chromatin accessibility to external nucleases, as shown by the change in Ct between treated and untreated cells ( Figure 14b).
  • the effect of Ag3 AQCs was also investigated in animals carrying a lung tumor.
  • the effect of administering CDDP alone or co-administered was compared. with AQC of Ag3, in the amount of CDDP bound to DNA in the lung (which contains the tumor) and in other mouse organs (selected as potential targets of unwanted side effects of CDDP).
  • a single administration of CDDP in combination with Ag3 AQC to tumor-bearing mice when compared to the administration of the same dose of CDDP alone, increased the amount of DNA-bound CDDP by a factor of 5.5 only in the lung, without affecting the amount of CDDP bound to the DNA in the other organs (Figure 15b).
  • nucleosomes near the origins of replication are the objectives of the AQC of Ag3, and that the action of the AQCs of Ag3 is limited to the S phase of the cell cycle.
  • EXAMPLE 17 Anticancer efficacy in vivo.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Se proporciona una invención relacionada con los procedimientos de purificación de clústeres cuánticos atómicos, en particular los que consisten en 3 o menos átomos de metal de valencia cero. La invención también se refiere a composiciones y usos de dichas composiciones, para el tratamiento de trastornos de proliferación celular.

Description

PROCEDIMIENTOS DE PREPARACIÓN DE CLÚSTERES CUÁNTICOS
ATÓMICOS PURIFICADOS DESCRIPCIÓN CAMPO DE LA INVENCIÓN
La invención se refiere a procedimientos para purificar clústeres cuánticos atómicos, composiciones purificadas y usos de dichas composiciones. ANTECEDENTES DE LA INVENCIÓN
La aparición de nuevos procedimientos para la síntesis y el aislamiento de clústeres cuánticos atómicos (AQC, atomic quantum clusters) metálicos ha ofrecido resultados prometedores en una amplia diversidad de aplicaciones biológicas, catalíticas, electrónicas y ópticas. Las ventajas adicionales de estas nanoestructuras se pueden encontrar en su tamaño pequeño y en su toxicidad relativamente baja, lo que las hace muy atractivas en diferentes campos, tales como las etiquetas biológicas y la bioimagen. Hasta hace muy poco tiempo, la síntesis química de pequeños clústeres de metales desnudos (es decir, AQC que tienen un número bajo de átomos y son menores que « 1 nm) sin usar ligandos de unión fuerte se consideró prácticamente imposible porque se suponía que estas especies muy pequeñas eran altamente reactivas. Sin embargo, se ha demostrado que estos clústeres tienen una estabilidad inesperadamente alta debido al intenso confinamiento cuántico, lo que induce una distancia HOMO-LUMO en el nivel de Fermi. Esta distancia aumenta a medida que disminuye el tamaño del clúster y, al mismo tiempo, disminuye la reactividad, lo que hace que los clústeres con solo 2 átomos casi no reaccionen. La aparición de dicha distancia da lugar a estructuras geométricas/electrónicas marcadamente diferentes de los materiales (o nanomateriales) en volumen, lo que a su vez proporciona a los clústeres nuevas propiedades, como luminiscencia, catálisis y otras. Por otra parte, para clústeres pequeños (número de átomos de menos de 15-20 aproximadamente), las distancias de bandas grandes imparten una alta resistencia a la oxidación. Por lo tanto, el estado natural de los pequeños clústeres es no cargado. El documento EP1914196 describe los procesos de obtención de una familia de clústeres de metales de valencia cero, denominados AQC. Se encontró que los AQC dejan de comportarse de una forma "metálica" y su comportamiento se vuelve de naturaleza molecular. Así, en estos clústeres aparecen nuevas propiedades que no se observan en nanopartículas, mi ero partí cu las o materiales metálicos en volumen. Esta aplicación describe un procedimiento controlado cinético para producir AQC estables en un intervalo de tamaños, por ejemplo, de 2 a 27 átomos.
Los documentos WO2012/059572 y EP2457572 describen una combinación de al menos un AQC y al menos un fármaco antineoplásico para la prevención y/o el tratamiento de un trastorno de proliferación celular. La solicitud describe AQC que consisten en entre 2 y 25 átomos de metales de transición de valencia cero que tienen un efecto citotóxico y antiproliferativo en líneas celulares cancerosas y, por lo tanto, pueden usarse en combinación con agentes antineoplásicos para tratar trastornos de proliferación celular.
Buceta y col., Angew. Chemie Int. Ed. 2015, 54: 7612 comunicaron que los clústeres de plata de tres átomos (AQC de Ag3) interaccionan con el ADN bicatenario mediante intercalación. Esta intercalación depende estrictamente del número de átomos en el clúster y es independiente del tipo de pares de bases (AT o GC) de la doble hélice. Sin embargo, las muestras sometidas a ensayo en Buceta y col. 2015 no se purificaron para garantizar que solo estaban presentes AQC de menos de 3 átomos. Los clústeres de plata de mayor tamaño muestran inmensas actividades catalíticas para la oxidación del tiol que provocan la muerte celular. Por lo tanto, es deseable obtener AQC puros y altamente concentrados con tres átomos, sin tensioactivos u otros ligandos de unión intensa que pudieran enmascarar su actividad biológica, lo cual es un gran desafío.
Un objetivo de la invención es proporcionar composiciones purificadas y procedimientos de preparación de composiciones purificadas de AQC.
RESUMEN DE LA INVENCIÓN
En un primer aspecto, la invención proporciona un proceso de purificación de clústeres cuánticos atómicos (AQC) que consisten en 3 o menos átomos de metales de transición de valencia cero que comprende:
(i) la aplicación de una solución que comprende una mezcla de AQC a un medio de separación, donde dicho medio de separación se une a AQC que consisten en más de 3 átomos de metales de transición de valencia cero o se une a AQC que consisten en 3 o menos átomos de metales de transición de valencia cero; y
(ii) el aislamiento de los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero.
En otro aspecto, la invención proporciona una composición purificada por el proceso descrito en la presente memoria, que está sustancialmente libre de AQC que consisten en más de 3 átomos de metales de transición de valencia cero.
En otro aspecto, la invención proporciona una composición que comprende clústeres cuánticos atómicos (AQC) que consisten en 3 o menos átomos de metales de transición de valencia cero, que está sustancialmente libre de AQC que consisten en más de 3 átomos de metales de transición de valencia cero.
En otro aspecto, la invención proporciona la composición descrita en la presente memoria, en combinación con un agente antiproliferativo para su uso en el tratamiento de un trastorno de proliferación celular.
En otro aspecto, la invención proporciona la composición descrita en la presente memoria, opcionalmente en combinación con un agente antiproliferativo, para su uso en la prevención de metástasis cancerosa de los ganglios linfáticos.
En otro aspecto, la invención proporciona la composición descrita en la presente memoria, en combinación con un agente antiproliferativo, para su uso en el tratamiento de metástasis cancerosa de los ganglios linfáticos.
En otro aspecto, la invención proporciona la composición descrita en la presente memoria, en combinación con un agente antiproliferativo para su uso en el tratamiento de un trastorno de proliferación celular. Estos y otros aspectos se describen con más detalle en la siguiente descripción.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1 : Síntesis y purificación de clústeres de Ag3 (AQC de Ag3). Esquema de la síntesis electroquímica (izquierda) y procedimiento de purificación, usando una resina tiolada (derecha) para la producción de AQC de Ag3. Recuadro: cálculos de DFT que muestran que la interacción de AQC de Ag3 con tioles es energéticamente desfavorable.
Figura 2: Espectro de absorción UV-Vis de AQC de Ag3 en agua.
Figura 3: Espectro de emisión de fluorescencia (Aexc = 230 nm) de AQC de Ag3 en agua.
Figura 4: Espectrometría de masas ESI. (a) Espectros de masas ESI de AQC de Ag3 detectados en modo negativo (b-e) Picos experimentales y teóricos de los diferentes AQC de Ag presentes en la muestra.
Figura 5: Imagen de AFM de AQC de Ag3 depositados en mica (rugosidad cuadrática media « 150 pm).
Figura 6: Distancias de HOMO-LUMO y posición de los niveles de HOMO/LUMO para algunos clústeres de Ag de diferentes tamaños, según el enfoque de Jellium.
Figura 7: Geometría optimizada y energía relativa de tres estructuras isoméricas de AQC de Ag3 (grande, estructura de tres átomos) en presencia de tres moléculas de O2 (pequeñas, moléculas de dos átomos).
Figura 8: Geometría optimizada de AQC de Ag3 (grande, estructura de tres átomos) en presencia de cinco, siete y nueve moléculas de O2 (pequeñas, moléculas de dos átomos).
Figura 9: Efecto de AQC de Ag3 en la actividad de topoisomerasas humanas.
(a) Actividad de la Topoisomerasa Humana I. Se muestra la resolución del ADN pBR322 superenrollado (pista 1) y las especies de ADN relajado generadas por la acción de la enzima están presentes como una distribución gaussiana de topoisómeros (pista 2), el tratamiento previo del ADN con AQC de Ag3 inhibió de un modo dependiente de la dosis la acción de la enzima (pistas 3-9). (b) Actividad de desconcatenación de la Topoisomerasa II humana. La topoisomerasa II generó ADN mellado (NOC) y circular cerrado de forma covalente (CCC) (pista 1). La preincubación del ADN con los AQC de Ag3 inhibe la enzima de una manera dependiente de la dosis (pista 2-7), se usó doxorrubicina (DOXO) como un control positivo inhibidor (pista 8). Las redes de kDNA son demasiado grandes para entrar en el gel. Las imágenes son representativas de tres experimentos independientes.
Figura 10: Los AQC de Ag3 inducen desestabilización de nucleosoma. (a) Los nucleosomas individuales se trataron con etopósido (60 mM), doxorrubicina (20 mM) o DMSO (vehículo) durante 4 horas a temperatura ambiente, o AQC de Ag3 (AQC, 83 ng/mL) durante 30 minutos. De cada reacción, la mitad de la muestra se sometió a electroforesis en condiciones no desnaturalizantes y el gel se tiñó con bromuro de etidio (panel izquierdo superior) y plata (panel izquierdo inferior). Se analizó la parte restante de la muestra para verificar que se cargaron cantidades iguales de histonas en todos los casos (panel derecho). Se indica la posición del ADN no unido, los nucleosomas ensamblados y las histonas. (b) Los nucleosomas se incubaron con etopósido o doxorrubicina como en (a) o las diluciones de AQC de Ag3 indicadas (concentración inicial, AQC 1 : 10 = 83 ng/mL). Las muestras se analizaron mediante electroforesis de poliacrilamida nativa, y el gel se tiñó primero con bromuro de etidio (parte superior) y posteriormente con plata (parte inferior) para visualizar las histonas. Esta imagen es representativa de dos experimentos independientes.
Figura 11 : Curvas espectrales de titulación de fluorescencia registradas para el sistema AQC de Ag3/H. (a) Curvas espectrales, (b) Isoterma de unión con ajuste lineal de la ec. 2 a los pares de datos.
Figura 12: Curvas espectrales de CD registradas para el sistema AQC de Ag3/H.
(a) Curvas espectrales, (b) Isoterma de unión con ajuste lineal de la ec. 2 a los pares de datos. CoH = 26,7 mM, CA93- AQC/CH = 0 - 0,02.
Figura 13: Visualización directa de la accesibilidad de la cromatina mediante microscopía de superresolución STORM. (a) Imagen representativa de un núcleo que contiene EdU fluorescente, obtenida mediante microscopía convencional (barra de escala de 4 pm) y superresolución STORM (barras de escala de 2 pm). (b-d) Imagen representativa STORM reconstruida de la cromatina en células en condiciones no tratadas (b), después del tratamiento con AQC de Ag3 (c) y después del tratamiento con cationes de plata libres (d). (e) Cuantificación del porcentaje de área nuclear cubierta por la cromatina. (f) Cuantificación de la densidad de la cromatina.
Figura 14: Los AQC de Ag3 aumentan la accesibilidad de la cromatina. (a)
Procedimiento esquemático del ensayo de accesibilidad de la cromatina. (b-e) gráficos ACt de: células en proliferación (b); células A549 privadas de suero (c); muestra de tumor pulmonar (d); y muestra de riñón (e).
Figura 15: La coadministración de AQC de Ag3 y cisplatino (CDDP) aumenta la cantidad de platino unido al ADN en células en proliferación A549 y en tumores pulmonares de ratones, lo que produce un aumento de la mortalidad celular.
Cuantificación por espectrometría de masas del platino unido al ADN en (a) células A549 en proliferación o privadas de suero tratadas con CDDP en solitario o en combinación con AQC de Ag3 o DOX y (b) en órganos de ratones tratados con CDDP en solitario o en combinación con AQC de Ag3. (c-e) Medición por citometría de flujo de la viabilidad celular en células A549 proliferativas (c) y privadas de suero (d) tratadas con AQC de Ag3 o CDDP en solitario o con una combinación de ambos (e) Células en proliferación A549 tratadas con AQC de Ag3 y 24 horas después con CDDP. Debe tenerse en cuenta que en (d) y (e) se pierde el efecto potenciador de AQC de Ag3 en la acción de CDDP.
Figura 16: La coadministración de AQC de Ag3 y CDDP aumenta la cantidad de platino unido al ADN en (a) líneas celulares de glioblastoma (U87) y (b) adenocarcinoma de mama (MCF7). Las células se trataron con AQC de Ag3 (83 ng/mL) durante 1 hora y con CDDP (50 mM) durante 24 horas más. Después de eso, se recogieron las células, se extrajo el ADN y se cuantificó la cantidad de platino por espectrometría de masas. Los datos representan la media ± desviación estándar de 2 experimentos independientes con 3 réplicas por experimento. Prueba de Mann Whitney ((*) p < 0,01). Figura 17: Coadministración de AQC de Ag3 y fármacos que actúan sobre el ADN. Se sembraron células A549 Luc-C8 en placas de 96 pocilios y 24 horas (células en proliferación) (a) o 72 horas (células no proliferativas) (b) después se trataron con 1) AQC de Ag3 (55,61 ng/ml_) en medio sin suero durante 1 hora y 24 horas más en medio completo, 2) AQC de Ag3 (55,61 ng/ml_) en medio sin suero durante 1 hora y 24 horas más con diferentes dosis de CDDP (EC5: 5 mM, EC25: 10 pM, EC50: 50 pM y EC75: 100 pM). Después de eso, se Usaron las células y se cuantificó la cantidad de proteína usando un método colorimétrico de Bradford y se midió la luminiscencia usando un luminómetro Lumat BL 9507 (Berthold Technologies). Los resultados se expresaron como unidades de luminiscencia relativa (RLU) por pg de proteína extraída (c) Se evaluó el porcentaje de muerte celular causada por la coadministración de AQC de Ag3 considerando que el CDDP en solitario fue del 100% (control). Los datos representan la media ± desviación estándar de 2 experimentos independientes con 3 réplicas por experimento. Prueba de Mann Whitney ((*) p < 0,01). (d) En otra serie de experimentos, el CDDP fue sustituido por carboplatino (EC5: 0,25 pM, EC25: 0,5 pM, EC50: 1 pM y EC75: 2 pM) u oxaliplatino (EC5: 2,5 pM, EC25: 12,5 pM, EC50: 50 pM y EC75: 200 pM) con resultados similares encontrados para CDDP.
Figura 18: Cuantificación por espectrometría de masas de CDDP unido a ADN en cultivos celulares pretratados con medio o AQC de Ag3 (83 ng/mL) durante 1 hora y después de 24 horas con CDDP (50 pM) durante 24 horas más. Figura 19: La coadministración de AQC de Ag3 con fármacos que se unen al ADN aumenta la mortalidad celular. Se incubaron previamente células A549 durante 1 hora con medio o con AQC de Ag3 (83 ng/mL) y se trataron durante 24 horas con oxaliplatino (OXA) 50 pM (a), carboplatino (CBCDA) 1 mM (b), gemcitabina (GEM) 100 pM (c), carmustina (BCNU) 400 pM (d) y doxorrubicina (DOX) 7,5 pM (e), y después se midió la viabilidad celular mediante citometría de flujo. Los datos representan la media ± desviación estándar de 3 experimentos independientes con 3 réplicas por experimento. Prueba de Mann Whitney ((*) p < 0,01). (f) Medida de captación de DOX intracelular. Izquierda: Perfil citométrico de flujo de células A549 tratadas con DOX (7,5 pM) durante 4 horas o pretratadas con AQC de Ag3 (83 ng/mL) durante 30 minutos y DOX (7,5 pM) durante 4 horas. Derecha: Imágenes de microscopía por fluorescencia de células A549 tratadas con DOX (3,75 mM y 7,5 pM) durante 30 minutos o pretratadas con AQC de Ag3 (83 ng/ml_) durante 30 minutos y DOX (3,75 pM y 7,5 pM) durante otros 30 minutos.
Figura 20: Los AQC de Ag3 no inducen daño en el ADN en células A549. (a)
Medición por citometría de flujo de la fosforilación de gamma-H2AX después del tratamiento con etopósido (12,5 pM) durante 1 hora, AQC de Ag3 (83 ng/mL) durante 30 minutos o AQC de Ag3 (83 ng/mL) durante 30 minutos seguido por etopósido (12,5 pM) durante 1 hora. Recuadro, células positivas, los datos representan la media ± desviación estándar de 3 experimentos independientes, 3 réplicas por experimento (b) El ensayo cometa de células A549 después de 1 hora de tratamiento con AQC de Ag3 (83 ng/mL) también muestra ausencia de daño en el ADN. Se incluyó H2O2 como control positivo.
Figura 21 : La coadministración de AQC de Ag3 potencia la reducción mediada por CDDP del crecimiento tumoral y la invasión de los ganglios linfáticos mediastínicos en ratones con cáncer de pulmón ortotópico. (a) Crecimiento tumoral medido in vivo por luminiscencia (I VIS® Spectrum). Las flechas negras representan los tiempos de administración del tratamiento (b) Peso corporal del ratón durante todo el experimento (c) Cuantificación de la carga tumoral medida ex vivo en los ganglios linfáticos pulmonares y mediastínicos. (d) Tinción inmunohistoquímica de pulmones de ratón usando anticuerpo anti-CK7. Barra = 300 pm.
Figura 22: Representación esquemática y espectro de fluorescencia de las muestras de clústeres obtenidas después de la primera diálisis con ADN como medio de separación.
Figura 23: Representación esquemática y espectro de fluorescencia de las muestras de clústeres obtenidas después de la diálisis final con ADN como medio de separación. El ADN se desnaturalizó antes de esta etapa de extracción de diálisis para liberar los clústeres de Ag3 purificados.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Definiciones Todos los términos técnicos y científicos usados en la memoria descriptiva tienen el mismo significado que los entendidos comúnmente por un experto en la materia. En toda la memoria descriptiva, el uso del término "aproximadamente" con respecto a cualquier cantidad se contempla de manera que incluye esa cantidad.
En el conjunto de la memoria descriptiva, a menos que el contexto requiera lo contrario, el término "comprende", y variaciones tales como "que comprende", deben entenderse como que implican la inclusión de un número entero, etapa, grupo de números enteros o grupo de etapas indicados, pero no la exclusión de cualquier otro número entero, etapa, grupo de números enteros o grupo de etapas.
En toda la memoria descriptiva, a menos que el contexto requiera lo contrario, se entenderá que el término "que consiste en", y variaciones como "consiste en", implican la inclusión de un número entero, etapa, grupo de números enteros o grupo de etapas indicados, con la exclusión de cualquier otro número entero, etapa, grupo de números enteros o grupo de etapas. El término "clústeres cuánticos atómicos" o "AQC" tal como se usa en la presente memoria, se refiere a un grupo/clúster de 2 a 500 átomos de metales de transición de valencia cero, tal como entre 2 y 200, 2 y 100, 2 y 50 o 2 y 25 átomos de metales de transición, y con un tamaño inferior a 2 nm, tal como inferior a 1 nm. Los AQC pueden comprender átomos de metales de transición de valencia cero de metales de transición idénticos (clústeres mononucleares) o diferentes (clústeres heteronucleares). Se entenderá que este término no incluye iones metálicos.
Se entenderá que las referencias a AQC que consisten en“más de 3” átomos de metales de transición de valencia cero se refieren a AQC que comprenden 4, 5, 6, 7, 8, 9, 10 o más átomos de metales de transición de valencia cero (es decir, este término no comprende AQC con 3 átomos metálicos). Por lo tanto, este término se puede usar indistintamente con "4 o más".
Se entenderá que las referencias a los AQC que consisten en "3 o menos" átomos de metal de transición de valencia cero se refieren a los AQC con 2 ó 3 átomos de transición de metales de valencia cero. También se entenderá que las referencias a los AQC que consisten en“3” átomos de metal de transición de valencia cero se refieren a los AQC con solo 3 átomos de metal de transición de valencia cero.
Se entenderá que el término "metal de transición" se refiere a los elementos de la tabla periódica conocidos como metales de transición, pero no se refiere al comportamiento eléctrico de dichos elementos. El confinamiento de electrones en los AQC origina la separación cuántica de los niveles de energía que producen cambios importantes en las propiedades de estos materiales, como se comunicó en el documento EP1914196. Por lo tanto, los átomos metálicos en los AQC descritos en la presente memoria pueden tener un comportamiento similar a un semiconductor o incluso a un aislante.
El término "sustancialmente libre de" puede usarse para referirse a una composición que está mayoritaria o totalmente libre de una entidad específicamente mencionada más adelante (por ejemplo, AQC con más de 3 átomos de metales de transición de valencia cero), o al menos no contiene la entidad en una cantidad tal que la entidad afecte a la eficacia, la capacidad de almacenamiento, la facilidad de uso con respecto a las cuestiones de seguridad necesarias y/o la estabilidad de la composición.
El término "purificado", tal como se usa en la presente memoria, se refiere a composiciones donde se han eliminado sustancialmente todos los AQC que consisten en el número no deseado de átomos de metales de transición de valencia cero. En particular, los procedimientos descritos en la presente memoria aumentan el grado de pureza de las composiciones al eliminar sustancialmente todos los AQC (preferentemente todos) que consisten en más de 3 átomos de metales de transición de valencia cero.
Las referencias al término "medio de separación" se refieren a un material que tiene la capacidad de separar entidades de una mezcla. En la presente solicitud, el medio de separación tiene la capacidad de purificar selectivamente los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero de una mezcla de AQC que contienen clústeres más grandes (es decir, 4 o más átomos de metales de transición de valencia cero). En la presente memoria se proporcionan ejemplos de dichos medios. Se entenderá que el término "tiol" se refiere a un grupo sulfhidrilo (R-SH) unido a carbono (donde R representa un alquilo u otro sustituyente orgánico). El término "grupo aromático" es bien conocido en la técnica y se refiere a una molécula o fracción cíclica plana con (o que comprende) un anillo de enlaces de resonancia. Esto incluye el benceno (es decir, ObHb) y derivados del mismo. La mayoría de los grupos aromáticos son derivados del benceno. Sin embargo, este término también puede incluir grupos heteroaromáticos (es decir, uno o más de los átomos en el anillo aromático es de un elemento distinto al carbono), por ejemplo, piridina, pirazina, pirrol, imidazol, pirazol, oxazol, tiofeno y sus análogos benzoanulados.
Las referencias a "ADN" (ácido desoxirribonucleico) se refieren a moléculas que contienen dos cadenas de polidesoxirribonucleótidos sustancialmente emparejadas y formando una doble hélice. Las cadenas de polinucleótidos están compuestas por nucleótidos, cada uno de los cuales comprende una base, un azúcar (desoxirribosa) y un grupo fosfato. Los nucleótidos se unen entre sí en una cadena mediante enlaces covalentes entre el azúcar de un nucleótido y el grupo fosfato del siguiente, para producir una cadena principal de azúcar-fosfato. Las bases pueden comprender bases naturales (es decir, citosina [C], guanina [G], adenina [A] o timina [T]) o bases no naturales. Las bases de las dos cadenas de polinucleótidos separadas están unidas entre sí por enlaces de hidrógeno según las reglas de apareamiento de bases (A con T y C con G) para formar ADN bicatenario. Esta definición incluye el ADN que se ha modificado, por ejemplo, para incluir bases no naturales o una cadena principal modificada, siempre que se forme una doble hélice para que se puedan intercalar los AQC de 3 átomos.
Procedimientos de purificación
Según un aspecto de la invención, se proporciona un proceso de purificación de clústeres cuánticos atómicos (AQC) que consisten en 3 o menos átomos de metales de transición de valencia cero que comprenden: (i) la aplicación de una solución que comprende una mezcla de AQC a un medio de separación, donde dicho medio de separación se une a AQC que consisten en más de 3 átomos de metales de transición de valencia cero o se une a AQC que consisten en 3 o menos átomos de metales de transición de valencia cero; y
(ii) el aislamiento de los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero.
La presente invención proporciona un proceso de purificación de clústeres cuánticos atómicos (AQC) que comprende la aplicación de una solución que comprende una mezcla de AQC a un medio de separación y el aislamiento de los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero. Como se describirá en la presente memoria, las investigaciones sobre las propiedades de los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero (en particular, los AQC que consisten en 3 átomos de metales de transición de valencia cero) han resaltado la necesidad de proporcionar procedimientos de purificación de dichos clústeres. Anteriormente, los AQC se sintetizaban y se separaban mediante precipitación selectiva una vez que se alcanzaba el tamaño deseado de clúster, por ejemplo, véase el documento EP1914196. Sin embargo, este procedimiento todavía produce la presencia de una mezcla de AQC de diferentes tamaños, incluso si existe un clúster de tamaño predominante. La contaminación de una composición con múltiples tamaños de AQC puede afectar al comportamiento y las propiedades de la composición.
Por lo tanto, la presente invención proporciona un procedimiento para purificar selectivamente AQC que consiste en 3 o menos átomos de metales de transición de valencia cero.
En una realización, el medio de separación se une a los AQC que consisten en más de 3 átomos de metales de transición de valencia cero y el proceso comprende el aislamiento de los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero de la solución no unida. Las referencias a la "solución no unida" aluden a la solución que contiene componentes que no están unidos al medio de separación. En la presente memoria se proporcionan ejemplos de dichos medios. Un experto en la materia sabría determinar si un medio de separación es capaz de unirse a AQC que consisten en más de 3 átomos de metales de transición de valencia cero usando procedimientos conocidos en la técnica. Por ejemplo, podrían someter a ensayo el eluato después de hacer pasar la muestra a través del medio de separación y determinar los tipos de AQC presentes en el eluato usando espectroscopia de fluorescencia. Se describen otros procedimientos de caracterización en los Ejemplos, que pueden usarse de forma combinada o alternativa para la espectroscopia de fluorescencia.
En una realización, el medio de separación comprende un grupo funcional que se une a AQC que consiste en más de 3 átomos de metales de transición de valencia cero.
En una realización, el grupo funcional es un grupo tiol. En una realización adicional, el medio de separación comprende una resina tiolada, tal como sílice tiolada.
Inesperadamente, se encontró que los AQC de Ag3, a diferencia de los iones Ag, no se unen a los tioles, por lo tanto, en la presente memoria se ha establecido un procedimiento de purificación eficiente que usa una resina tiolada para separar selectivamente los iones de los clústeres sintetizados (figura 1). Además, sorprendentemente se encontró también que los clústeres mayores que los AQC de Ag3 interaccionan con las resinas tioladas, por lo tanto, este procedimiento de purificación también garantiza la ausencia de contaminaciones con clústeres más grandes.
Sin desear limitarse a ninguna teoría, parece que la cantidad de oxígeno disuelto en muestras acuosas de AQC de Ag3 es suficiente para impedir la interacción de los AQC de Ag3 con tioles, como se observa en el recuadro de la figura 1 , donde la unión del metil-tiol con los AQC de Ag3 no es favorable (caracterizado por una energía de unión positiva). Las únicas especies además de los AQC de Ag3 en las muestras son AQC de Ag2. Sin embargo, como se explicará en la presente memoria, estos clústeres no pasan de ser espectadores debido a su ausencia de reactividad. Además, dichos AQC de Ag2 pueden separarse de los AQC de Ag3 mediante los procedimientos descritos en la presente memoria.
En una realización, la mezcla de AQC está presente en una solución acuosa. En una realización adicional, la solución acuosa comprende oxígeno disuelto, tal como al menos 2 veces, o al menos 3 veces, la concentración de AQC (en particular, la concentración de AQC que consisten en 3 átomos de metales de transición de valencia cero) presentes en la mezcla.
En otro aspecto de la invención, el medio de separación se une a los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero y el proceso comprende descartar los AQC que consisten en más de 3 átomos de metales de transición de valencia cero en la solución no unida y aislar los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero del medio de separación. En una realización adicional, el proceso comprende el aislamiento mediante un proceso de tratamiento (por ejemplo, calentamiento) del medio de separación para liberar AQC que consisten en 3 o menos átomos de metales de transición de valencia cero.
En una realización, el medio de separación comprende un grupo funcional que se une a AQC consistente en más de 3 átomos de metales de transición de valencia cero.
Alternativamente, en una realización, el medio de separación comprende ADN. En una realización adicional, el medio de separación comprende ADN que es sustancialmente bicatenario (es decir, de modo que se forma una doble hélice). El ADN puede ser completamente bicatenario (es decir, con extremos romos) o sustancialmente bicatenario (es decir, cuando uno o más de los nucleótidos en el ADN no está presente en un par de bases, por ejemplo, para formar un extremo adherente monocatenario).
Se ha demostrado que los clústeres de tres átomos metálicos interaccionan con el ADN a través de intercalación. Esta intercalación depende estrictamente del número de átomos en el clúster y es independiente del tipo de pares de bases (AT o GC) de la doble hélice. Por lo tanto, se entenderá que para el medio de separación de ADN de la presente invención puede usarse cualquier secuencia de polinucleótidos. También se entenderá que el ADN en el medio de separación es sustancialmente bicatenario y tiene una longitud suficiente para formar una doble hélice.
En una realización, el ADN tiene al menos 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 ó 100 nucleótidos de longitud. En una realización, el ADN tiene 15 o más, tal como 20, 30, 40, 50, 60, 70, 80, 90 ó 100 o más nucleótidos de longitud. Se entenderá que estas realizaciones se refieren al número de nucleótidos en cada cadena del ADN bicatenario, aunque el número de nucleótidos en cada cadena puede ser igual o diferente (por ejemplo, si el ADN es sustancialmente bicatenario).
Se entenderá que el tamaño/longitud del ADN usado será suficiente para permitir el uso del ADN como medio de separación, es decir, para que pueda separarse de los AQC que consisten en más de 3 átomos de metales de transición de valencia cero que permanecen sin unir en solución y que se pueden aislar de dicha solución. Por ejemplo, si dicho ADN se usa en un procedimiento de diálisis, el ADN tiene un tamaño suficiente para evitar que pase a través de la membrana semipermeable de un dispositivo de diálisis (lo cual dependería del tamaño de poro de la membrana usada). Por lo tanto, en una realización, el peso molecular (PM) del ADN es mayor que el tamaño de poro de la membrana semipermeable usada. Por ejemplo, en una realización, el PM del ADN es mayor que 3,5 kDa, tal como aproximadamente 4 kDa o superior. Un experto en la materia sabría cómo diseñar y sintetizar ADN de la longitud apropiada.
Tal como se muestra en los Ejemplos proporcionados en la presente memoria, el ADN se puede usar para purificar selectivamente los AQC que consisten en 3 átomos de metal de valencia cero porque este es el único tamaño de clúster que se intercala en el ADN. Los clústeres de mayor tamaño no interaccionan con el ADN y los AQC que consisten en 2 átomos de metal de valencia cero pueden eliminarse fácilmente (por ejemplo, se pueden separar por diálisis) debido a que están ligados de manera débil al exterior de la doble hélice del ADN.
Por lo tanto, en una realización, el proceso comprende la aplicación de una solución de lavado para eliminar los AQC que consisten en menos de 3 átomos de metales de transición de valencia cero (es decir, los AQC que consisten en 2 átomos de metales de transición de valencia cero), de modo que solo los AQC que consisten en 3 átomos de metales de transición de valencia cero están unidos por el medio de separación. En una realización, el proceso comprende el aislamiento mediante un proceso que comprende la desnaturalización del ADN para liberar AQC que consiste en 3 átomos de metales de transición de valencia cero. El proceso puede comprender además la aplicación de una segunda solución de lavado para aislar los AQC liberados que consisten en 3 átomos de metales de transición de valencia cero del ADN desnaturalizado, por ejemplo mediante diálisis.
El experto en la materia conocerá los procedimientos de desnaturalización, por ejemplo, aplicando calor o un agente químico (como formamida, guanidina, salicilato de sodio, dimetilsulfóxido (DMSO), propilenglicol y urea). En una realización, el ADN se desnaturaliza por calentamiento, por ejemplo, a aproximadamente 96°C. Una vez que el ADN se desnaturaliza, se puede usar una solución de lavado para aislar los AQC liberados que consisten en 3 átomos de metales de transición de valencia cero. Si el ADN se usa en un procedimiento de diálisis, se entenderá entonces que esta realización incluye la colocación de un dispositivo de diálisis que comprende el ADN desnaturalizado y los AQC que consisten en 3 átomos de metales de transición de valencia cero, en una solución de lavado y el aislamiento de los AQC liberados que consisten en 3 átomos de metal de transición de valencia cero (que han pasado a la solución de lavado).
Procedimientos de purificación de AQC consistentes en 3 átomos
Una vez que se hayan aislado los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero, puede ser conveniente separar dichos AQC para obtener soluciones de AQC que consistan en 2 o 3 átomos de metales de transición de valencia cero. Por lo tanto, en una realización, el proceso comprende además la aplicación de los AQC aislados que consisten en 3 o menos átomos de metales de transición de valencia cero a un segundo medio de separación y el aislamiento de los AQC que consisten en 3 átomos de metales de transición de valencia cero. Esto permite que los AQC que consisten en 3 átomos se separen de los AQC que consisten en 2 átomos que no se unen al segundo medio de separación.
En una realización, el segundo medio de separación se une a los AQC que consisten en 3 átomos de metal de transición de valencia cero y el proceso comprende descartar los AQC que consisten en menos de 3 átomos de metal de transición de valencia cero (es decir, los AQC que consisten en 2 átomos de metal de transición de valencia cero) en la solución no unida, y aislar los AQC que consisten en 3 átomos de metales de transición de valencia cero del segundo medio de separación. En una realización adicional, el proceso comprende el aislamiento mediante un proceso de tratamiento (por ejemplo, calentamiento) del medio de separación para liberar AQC que consisten en 3 o menos átomos de metales de transición de valencia cero.
En una realización, el segundo medio de separación comprende un grupo funcional que se une a AQC que consisten en más de 3 átomos de metales de transición de valencia cero.
Se ha descubierto que en una mezcla de AQC que comprenden 2 y 3 átomos de metal, los AQC de 3 átomos de metal se unen selectivamente a los grupos aromáticos, de manera que los AQC de 3 átomos pueden separarse de los AQC de 2 átomos. Por lo tanto, en una realización, el grupo funcional es un grupo aromático, tal como un grupo aromático cíclico y policíclico. Dicho grupo aromático puede llevar adicionalmente uno o más sustituyentes, por ejemplo, grupos alquilo (tales como metilo), grupos alquenilo (tales como alilo), grupos halógeno (por ejemplo, cloro), etc.
En una realización, el grupo aromático puede comprender un anillo bencénico. Dicho anillo bencénico puede estar presente en una estructura de polibenceno, como por ejemplo: naftaleno (un par fusionado de anillos bencénicos); antraceno o fenantreno (tres anillos bencénicos fusionados); tetraceno, criseno, trifenileno o pireno (cuatro anillos bencénicos fusionados); pentafeno o benzo[a]pireno (cinco anillos bencénicos fusionados). En una realización particular, el grupo aromático puede comprender un anillo de pireno. Además, el anillo bencénico puede comprender uno o más sustituyentes adicionales, como por ejemplo: tolueno o estireno (también conocido como etenilbenceno, vinilbenceno o feniletano).
En una realización, el grupo aromático puede comprender un grupo piridina. En una realización adicional, el grupo aromático puede seleccionarse de entre la lista que consiste en benceno y piridina.
El grupo aromático puede formar parte de una estructura más grande, que puede usarse en el segundo medio de separación como, por ejemplo, grafeno, nanotubos de carbono, fullerenos o puntos cuánticos de carbono.
En una realización alternativa, el segundo medio de separación comprende ADN bicatenario. Como el ADN se puede usar para purificar los AQC que consisten en 3 átomos de metales de transición de valencia cero solamente, se entenderá que se puede usar solo como medio de separación o junto con los procesos descritos anteriormente como segundo medio de separación. La última opción garantiza que los AQC que consisten en 3 átomos de metales de transición de valencia cero puedan purificarse. Por ejemplo, el proceso puede comprender: (i) aplicación de una mezcla de AQC a un medio de separación que comprende una resina tiolada; (ii) recogida de la solución no unida que comprende AQC que consisten en 3 o menos átomos de metales de transición de valencia cero; y (iii) aplicación de esta solución a un medio de separación segundo/adicional que comprende ADN bicatenario.
En una realización, los AQC que consisten en 3 átomos de metal de transición de valencia cero se aíslan calentando el segundo medio de separación para liberar los AQC que consisten en 3 átomos de metal de transición de valencia cero y aplicando una solución de lavado para aislar los AQC liberados que consisten en 3 átomos de metales de transición del segundo medio de separación, por ejemplo, por cromatografía o diálisis. Por ejemplo, el segundo medio de separación puede calentarse a aproximadamente 100°C para liberar los AQC que consisten en 3 átomos de metales de transición de valencia cero. A continuación puede usarse una solución de lavado para aislar los AQC liberados que consisten en 3 átomos de metales de transición de valencia cero.
Se entenderá que uno o más de los procedimientos de purificación descritos en la presente memoria pueden repetirse una o más veces. Al llevar a cabo el procedimiento de purificación varias veces puede aumentar la purificación de la muestra y permitir que se logre la purificación deseada.
Cromatografía y diálisis
En una realización, el medio de separación se usa en un procedimiento cromatográfico. La cromatografía es un procedimiento usado para separar una mezcla haciendo pasar una fase móvil que comprende la mezcla a través de una fase estacionaria (por ejemplo, que comprende el medio de separación descrito en la presente memoria). La mezcla se separa basándose en el modo en que interaccionan los componentes de la fase móvil con la fase estacionaria. Se entenderá que si el medio de separación retiene los AQC que consisten en más de 3 átomos de metales de transición de valencia cero, entonces se recogerá el eluato (que comprende los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero). Alternativamente, si el medio de separación retiene los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero, entonces el eluato (que comprende los AQC que consisten en más de 3 átomos de metales de transición de valencia cero) se descarta. En una realización, el medio de separación está presente en una columna de cromatografía. Dichas columnas de cromatografía están disponibles comercialmente. La columna de cromatografía puede usarse como parte de diversos procedimientos cromatográficos que incluyen, por ejemplo, cromatografía líquida de alto rendimiento (HPLC).
En una realización, el proceso es un procedimiento cromatográfico donde el medio de separación es la fase sólida y la solución que comprende una mezcla de AQC es la fase móvil. En una realización adicional, los AQC que consisten en más de 3 átomos de metales de transición de valencia cero están unidos por la fase sólida y los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero están aislados de la fase móvil. En una realización alternativa, los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero se unen y a continuación se aíslan de la fase sólida. En esta realización, la fase móvil que comprende los AQC que consisten en más de 3 átomos de metales de transición de valencia cero se desecha, antes de que se trate el medio de separación (por ejemplo, se calienta) para liberar los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero y se aplica una segunda fase móvil, por ejemplo, una solución de lavado, al medio de separación para aislar los AQC liberados que consisten en 3 o menos átomos de metales de transición de valencia cero.
En una realización, el medio de separación se usa en un procedimiento de diálisis. La diálisis es un procedimiento de separación de moléculas que se basa en sus tasas de difusión a través de una membrana semipermeable. Por ejemplo, la solución que comprende una mezcla de AQC podría aplicarse a un medio de separación y a continuación colocarse en un dispositivo de diálisis (por ejemplo, una casete de diálisis o un tubo de diálisis). Dichas casetes, tubos o dispositivos para diálisis están disponibles comercialmente. Las membranas de diálisis se pueden elegir con un corte de peso molecular elegido según los requisitos de la separación (por ejemplo, según el peso molecular del ADN usado en el medio de separación).
Por lo tanto, en una realización, el proceso comprende la aplicación de una solución que comprende una mezcla de AQC a un medio de separación y a continuación la colocación de la mezcla en un dispositivo de diálisis que comprende una membrana semipermeable, por ejemplo una membrana de 3,5 kDa. Dicha membrana semipermeable impide el paso de los medios de separación y cualquier cosa unida a ellos. Se entenderá que si el medio de separación se une a los AQC que consisten en más de 3 átomos de metales de transición de valencia cero, entonces se aísla la solución que pasa a través de la membrana semipermeable (que comprende AQC que consisten en 3 o menos átomos de metales de transición de valencia cero). Alternativamente, si el medio de separación se une a los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero, la solución que pasa a través de la membrana semipermeable (que comprende los AQC que consisten en más de 3 átomos de metales de transición de valencia cero) se descarta.
Clústeres Cuánticos Atómicos (AQC)
En una realización, los átomos metálicos se seleccionan de entre plata (Ag), oro (Au), cobre (Cu), platino (Pt), hierro (Fe), cromo (Cr), paladio (Pd), níquel (Ni), rodio (Rh), plomo (Pb), iridio (Ir), rutenio (Ru), osmio (Os), cobalto (Co), titanio (Ti), vanadio (V) o cualquier combinación de los mismos. En una realización adicional, los átomos metálicos se seleccionan de entre Ag, Au, Cu, Pt o cualquier combinación de los mismos. En una realización adicional más, los átomos metálicos son Ag.
Los AQC descritos en la presente memoria son estables, es decir, conservan el número de átomos y, por lo tanto, sus propiedades, con el tiempo, de manera que puedan aislarse y manipularse como cualquier otro compuesto químico. Los AQC pueden conservarse durante meses, incluso años, sin necesidad de un estabilizador externo.
La mezcla de AQC puede sintetizarse mediante diversos procedimientos conocidos en la técnica, por ejemplo, los descritos en el documento EP1914196 o Buceta y col. 2015, que se incorporan como referencia en la presente memoria.
La mezcla también se puede sintetizar usando el procedimiento descrito en la presente memoria en el Ejemplo 1. Más en concreto, se proporciona un procedimiento para sintetizar AQC de plata que comprende la realización del procedimiento en una celda electroquímica de tres electrodos que comprende un electrodo de hidrógeno como electrodo de referencia y dos electrodos de plata como contraelectrodo y electrodo de trabajo, donde los electrodos de plata comprenden un área superficial que es mayor que 5 cm2, tal como mayor que 10 cm2, por ejemplo aproximadamente 17 cm2, y donde se aplica una tensión constante que es mayor que 4 V, tal como aproximadamente 6 V, a aproximadamente 25°C durante al menos 3.000 segundos, por ejemplo unos 3.600 segundos. Los electrodos de plata pueden pulirse antes de la síntesis, por ejemplo, usando papel de lija y/o alúmina. El procedimiento se puede llevar a cabo en agua purificada, desaireada, tal como agua MilliQ desaireada. Opcionalmente, cualquier exceso de iones Ag+ puede eliminarse mediante la adición de NaCI y la posterior precipitación y filtración.
Las referencias a los AQC usados en la presente memoria incluyen las que están en forma de hidrato, es decir, tienen moléculas de agua unidas al clúster mediante un enlace no covalente.
Composiciones
Según un aspecto de la invención, se proporciona una composición purificada mediante un proceso como se describe en la presente memoria, que está sustancialmente libre de AQC que consisten en más de 3 átomos de metales de transición de valencia cero.
En la presente memoria se describirán los posibles usos terapéuticos de composiciones que comprenden AQC que consisten en 3 o menos átomos de metales de transición de valencia cero. Se ha encontrado que dichas composiciones no tienen un efecto citotóxico en las células eucariotas por sí mismas, pero proporcionan un efecto sinérgico sorprendente cuando se combinan con fármacos que actúan sobre el ADN. Este mecanismo es único para clústeres de este tamaño. Por lo tanto, esta aplicación proporciona, por primera vez, la motivación para purificar los AQC, de modo que la composición consiste solo en AQC con 3 o menos átomos de metales de transición de valencia cero. Aun cuando anteriormente se han sintetizado composiciones que comprenden AQC de pequeño tamaño, véase por ejemplo Buceta y col. 2015, los informes indican que no se purificaban antes del análisis. Por lo tanto, estas propiedades singulares estaban enmascaradas debido a la presencia de AQC con clústeres más grandes. Las composiciones de la invención proporcionan composiciones más puras de lo descrito anteriormente y, por lo tanto, tienen la propiedad distintiva de no tener efecto citotóxico en las células eucariotas cuando se administran por sí solas (por ejemplo, véase el Ejemplo 8).
Por lo tanto, según un aspecto de la invención, se proporciona una composición que comprende clústeres cuánticos atómicos (AQC) que consisten en 3 átomos o menos de metales de transición de valencia cero, que está sustancialmente libre de AQC que consisten en más de 3 átomos de metales de transición de valencia cero.
En esta realización de la invención, la composición está sustancialmente libre de AQC que consisten en más de 3 átomos de metales de transición de valencia cero, por ejemplo, la composición puede contener menos de aproximadamente el 10% en moles (porcentaje molar basado en el contenido total de AQC de la composición), tal como menos de aproximadamente el 7% en moles, menos de aproximadamente el 5% en moles, menos de aproximadamente el 2% en moles, menos de aproximadamente el 1 % en moles o menos de aproximadamente el 0,5% en moles de AQC que consisten en más de 3 átomos de metales de transición de valencia cero.
En una realización, la composición está sustancialmente libre de AQC que consisten en 2 átomos de metales de transición de valencia cero. Tal como se muestra mediante los procedimientos descritos en la presente memoria, el aislamiento de AQC que consiste en 3 átomos de metales de transición de valencia cero se puede lograr, por ejemplo, usando el ADN como medio de separación. Las composiciones descritas en la presente memoria pueden denominarse composiciones purificadas.
En esta realización de la invención, la composición está sustancialmente libre de AQC que consisten en más de 2 átomos de metales de transición de valencia cero, por ejemplo, la composición puede contener menos de aproximadamente el 10% en moles (porcentaje molar basado en el contenido total de AQC de la composición), tal como menos de aproximadamente el 7% en moles, menos de aproximadamente el 5% en moles, menos de aproximadamente el 2% en moles, menos de aproximadamente el 1 % en moles o menos de aproximadamente el 0,5% en moles de AQC que consisten en más de 2 átomos de metales de transición de valencia cero.
En una composición que está sustancialmente libre de AQC que consisten en más de 3 y 2 átomos de metales de transición de valencia cero (es decir, la composición consiste esencialmente en AQC que consisten en 3 átomos de metales de transición de valencia cero), la composición puede contener menos de aproximadamente el 10% en moles (porcentaje molar basado en el contenido total de AQC de la composición), tal como menos de aproximadamente el 7% en moles, menos de aproximadamente el 5% en moles, menos de aproximadamente el 2% en moles, menos de aproximadamente el 1 % en moles o menos de aproximadamente el 0,5% en moles de los AQC consisten en más de 3 y 2 átomos de metales de transición de valencia cero.
Una propiedad de una composición que puede considerarse“sustancialmente libre de AQC que consisten en más de 3 átomos de metales de transición de valencia cero” es que no posee efecto citotóxico cuando se administra por sí sola, es decir, no en presencia de un agente antiproliferativo y/o cuando están presentes AQC con clústeres más grandes. Esta propiedad puede usarse para identificar dichas composiciones.
En una realización, la composición está sustancialmente libre de iones metálicos. Los iones metálicos son frecuentemente un subproducto durante la síntesis de los AQC. Estos pueden eliminarse usando, por ejemplo, NaCI o los procedimientos de purificación descritos en la presente memoria. Se entenderá que la referencia a los iones metálicos es con respecto a los iones del metal de transición contenido en los AQC.
En una realización, la composición contiene menos de aproximadamente el 20% en moles, tal como menos de aproximadamente el 15% en moles, el 10% en moles, el 5% en moles, el 2% en moles, el 1 % en moles o el 0,5% en moles de iones metálicos (es decir, iones libres de iones del metal de transición usado para sintetizar los AQC).
Usos de las composiciones
Los nuevos enfoques de purificación expuestos en la presente memoria permitieron obtener una cantidad suficientemente alta de AQC metálicos de 3 átomos para explorar la acción de estos AQC en la cromatina, en particular en líneas celulares de adenocarcinomas y glioblastomas de pulmón y mama humanos, y en ratones portadores de cáncer.
Se ha comprobado que la selección de ADN provoca una destrucción relativamente potente y selectiva de células tumorales (Cheung-Ong y col. Chem. Biol. 2013, 20: 648 y Gurova, Future Oncol. 2009, 5: 1685). Sin embargo, los mecanismos de resistencia dificultan su eficacia; por ejemplo, una cantidad suficiente de cisplatino (CDDP) puede no llegar al ADN (Kelland, Nat. Rev. Cáncer. 2007, 7: 573). Se ha encontrado ahora que la coadministración de CDDP con AQC de Ag3 aumenta no solo la cantidad de CDDP unida al ADN sino también la citotoxicidad de CDDP. Dado el efecto diferencial que presentan los AQC de Ag3 entre el tumor y el tejido sano, la coadministración de AQC de Ag3 aumenta el índice terapéutico de la quimioterapia. Por lo tanto, estos resultados subrayan la importancia de dirigirse a la compactación de la cromatina para aumentar la eficacia de los fármacos quimioterapéuticos (Davey y col. Nature Comm. 2017, 8, 1575, y Palermo y col. Chem. Meó. Chem. 2016 11 : 1199). En conjunto, estos hallazgos establecen el potencial terapéutico de los clústeres, un objetivo que también depende del desarrollo de procedimientos sintéticos eficientes capaces de proporcionar un control de tamaño preciso en la escala más baja de los nanomateriales.
Por lo tanto, según un aspecto de la invención, se proporciona la composición tal como se describe en la presente memoria, en combinación con un agente antiproliferativo para su uso en el tratamiento de un trastorno de proliferación celular.
Tal como se describe en la presente memoria, los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero no tienen propiedades citostáticas o citotóxicas propias de las células eucariotas. Este hecho contradice la enseñanza de los documentos WO2012/059572 y EP2457572 (véase el Ejemplo 3 y el Ejemplo 4 de los documentos WO2012/059572 y EP2457572) e indica que el material descrito en ese documento como Ag3 no fue Ag3 purificado y debe haber contenido otros contaminantes biológicamente activos. Sin embargo, cuando se administran AQC purificados que consisten en 3 átomos de metales de transición de valencia cero en combinación con un agente antiproliferativo, en particular agentes de unión a ADN, existe un efecto sinérgico sorprendente. Sin desear limitarse a ninguna teoría, se cree que esta sorprendente sinergia se debe, al menos en parte, al especial mecanismo de acción mostrado por los AQC de 3 átomos. Además, se demostró que este efecto solo aumenta en las células en proliferación y, por lo tanto, puede atacar selectivamente las células con una proliferación anómala afectada por el trastorno proliferativo.
Las referencias a un "trastorno de proliferación celular" aluden a un trastorno que produce un nuevo crecimiento anómalo de células o un crecimiento de células anómalas sin control fisiológico. Esto puede producir una masa no estructurada, es decir, un tumor. En una realización, el trastorno de proliferación celular es un tumor y/o cáncer.
Los cánceres pueden incluir, pero no se limitan a: cáncer de bazo, cáncer colorrectal y/o de colon, carcinomas de colon, carcinomas de ovario, cáncer de ovario, cáncer de mama, carcinomas de útero, cáncer de pulmón, cáncer de estómago, cáncer de esófago, cáncer de hígado, carcinomas de páncreas, cáncer de riñón, cáncer de vejiga, cáncer de próstata, cáncer de testículo, cáncer de huesos, cáncer de piel, sarcoma, sarcomas de Kaposi, tumores cerebrales, miosarcomas, neuroblastomas, linfomas y leucemias, melanoma, glioma, meduloblastoma y carcinoma de cabeza y cuello. En una realización, el cáncer se selecciona de entre cáncer de pulmón, de mama, de colon o cerebral (en particular, glioblastoma). En una realización adicional, el cáncer es cáncer cerebral, tal como glioblastoma.
Según un aspecto de la invención, se proporciona la composición tal como se describe en la presente memoria, opcionalmente en combinación con un agente antiproliferativo, para su uso en la prevención de metástasis cancerosa de los ganglios linfáticos. Según otro aspecto de la invención, se proporciona la composición descrita en la presente memoria, en combinación con un agente antiproliferativo, para su uso en el tratamiento de metástasis cancerosa de los ganglios linfáticos.
En una realización adicional, el ganglio linfático es un ganglio mediastínico. Dichos ganglios mediastínicos son un grupo de ganglios linfáticos ubicados en la cavidad torácica del cuerpo.
La prevención de la metástasis cancerosa es una parte fundamental del tratamiento del cáncer para prevenir los cánceres secundarios y las recidivas. Tal como se muestra en los resultados presentados en la presente memoria, la administración de AQC de Ag3 tiene capacidad para reducir la carga tumoral en los ganglios mediastínicos. Además, la administración de cisplatino con AQC de Ag3 fue significativamente más eficiente para reducir la invasión de los ganglios linfáticos que el cisplatino en solitario (véase el Ejemplo 17 y la figura 21). Por lo tanto, se ha encontrado sorprendentemente que las composiciones de la invención tienen un efecto beneficioso adicional en el tratamiento y la prevención de metástasis cancerosa de los ganglios linfáticos.
En una realización, el agente antiproliferativo se selecciona de entre fármacos de unión al ADN, fármacos de intercalación de ADN, agentes de alquilación y análogos de nucleósidos. El agente antiproliferativo es uno que actúa para inhibir o suprimir el crecimiento, la multiplicación y la proliferación celular. Normalmente actúan destruyendo las células que se dividen rápidamente, es decir, aquellas que se ven afectadas por el trastorno de proliferación celular.
Los fármacos citotóxicos de unión al ADN constituyen la primera opción en el tratamiento de muchos tipos de cáncer. Un factor importante en la resistencia de la quimioterapia es que una cantidad insuficiente de fármaco puede alcanzar el ADN, y la cromatina es una barrera importante que limita la accesibilidad al ADN. Hasta ahora, en gran parte debido a la falta de agentes que puedan actuar sobre la cromatina sin otros efectos acoplados, no se pudo evaluar la importancia de la compactación de la cromatina que afecta a la acción de los fármacos quimioterapéuticos de unión al ADN. Usando clústeres de metales sin carga de solo 3 átomos, la presente solicitud proporciona la evidencia de la importancia de atacar la compactación de la cromatina para aumentar el índice terapéutico de la quimioterapia.
En una realización, el agente antiproliferativo es un agente de unión a ADN, tal como cisplatino, oxaliplatino, carboplatino, carmustina o doxorrubicina. En una realización adicional, el agente antiproliferativo es cisplatino. En una realización alternativa, el agente antiproliferativo no es cisplatino.
En una realización, el agente antiproliferativo es un análogo de nucleósido, tal como gemcitabina.
Las composiciones de la invención pueden administrarse con múltiples agentes antiproliferativos, tales como al menos uno, por ejemplo dos, tres, cuatro o más agentes antiproliferativos. En una realización, la composición y el agente antiproliferativo se administran simultáneamente. En esta realización, los dos agentes se administran al mismo tiempo o sustancialmente al mismo tiempo. También pueden administrarse por la misma vía y, opcionalmente, en la misma composición. Alternativamente, pueden administrarse por vías diferentes, es decir, por separado, pero al mismo tiempo o sustancialmente al mismo tiempo.
En una realización alternativa, la composición y el agente antiproliferativo se administran en secuencia. En esta realización, los dos agentes se administran en momentos diferentes, de manera que uno de los agentes se administra antes que el segundo agente. Pueden ser administrados por las mismas vías o por vías diferentes.
En una realización, la composición se administra antes que el agente antiproliferativo. Sin desear limitarse a ninguna teoría, se cree que los AQC en la composición inducen la descompactación de la cromatina, lo que aumenta la eficacia del agente antiproliferativo una vez administrado. Por lo tanto, si los agentes se administran por separado, el agente antiproliferativo se administra mientras la composición aún es efectiva, es decir, la composición y el agente antiproliferativo se administran dentro de un período de tiempo que ejercerá un efecto sinérgico tras la administración a un paciente. En una realización adicional, la composición se administra no más de aproximadamente 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23 ó 24 horas antes que el agente antiproliferativo. En una realización particular, la composición se administra aproximadamente 15, 20, 30 ó 45 minutos o 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23 ó 24 horas antes que el agente antiproliferativo.
En una realización, la composición se administra entre 0 y 24 horas, por ejemplo entre 0 y 20 horas, 0 y 10 horas, 0 y 6 horas, 0 y 4 horas, 0 y 2 horas o 0 y 1 hora, antes que el agente proliferativo. Esta realización incluye la administración simultánea (es decir, 0 horas) y en secuencia.
En una realización, la composición y el agente antiproliferativo están presentes en una relación en peso tal que la composición resultante ejercerá un efecto sinérgico tras la administración a un paciente. Las relaciones en peso adecuadas pueden determinarse mediante procedimientos bien conocidos por los expertos en la materia.
Según un aspecto de la invención, se proporciona la composición tal como se describe en la presente memoria, en combinación con radioterapia para su uso en el tratamiento de un trastorno de proliferación celular, tal como cáncer. De este modo, en una realización, en combinación con radioterapia se usa una composición de la invención que comprende AQC que consisten en tres o menos átomos de metales de transición de valencia cero que está sustancialmente libre de AQC que consisten en más de 3 átomos de metales de transición de valencia cero, y que puede combinarse opcionalmente con un agente antiproliferativo.
Tal como se describe en la presente memoria, las composiciones de la invención tienen la capacidad de intercalarse en el ADN y producir descompactación de la cromatina. Por lo tanto, pueden usarse para aumentar la susceptibilidad de las células tratadas a la radiación y, por lo tanto, mejorar la efectividad de la radioterapia.
La radioterapia (también conocida como terapia por radiación) usa altas dosis de radiación para dañar el ADN celular y, por lo tanto, destruir las células cancerosas y reducir el tamaño de los tumores. Dicha terapia puede estar en forma de un haz externo o como radioterapia interna. La elección de la radioterapia puede depender del tipo de cáncer, el tamaño del tumor, la ubicación del tumor y otros factores, tales como la edad, el estado general de salud y el historial médico del paciente y los otros tipos de tratamiento para el cáncer que se usen.
En una realización, la composición y la radioterapia se aplican simultáneamente. En una realización alternativa, la composición y la radioterapia se aplican en secuencia.
En una realización, las composiciones de la invención pueden mejorar la eficacia de un agente antiproliferativo o de la radioterapia al menos dos veces, por ejemplo tres veces, en comparación con la eficacia del agente antiproliferativo o radioterapia para el tratamiento del trastorno en solitario.
Según un aspecto de la invención, se proporciona una composición farmacéutica que comprende las composiciones tal como se describen en la presente memoria. La composición farmacéutica puede comprender además un agente antiproliferativo (por ejemplo, si se van a administrar simultáneamente). Si los dos agentes están presentes en la composición farmacéutica, pueden estar en forma de una mezcla o separados espacialmente entre sí, ya sea formando parte de la misma forma de dosificación o como un kit de partes.
Las composiciones, y las combinaciones cuando sea apropiado, pueden formularse como una composición farmacéutica, que comprende opcionalmente un excipiente, diluyente o vehículo farmacéuticamente aceptable. Los ejemplos de vehículos farmacéuticamente aceptables incluyen uno o más de entre agua, solución salina, solución salina con tampón de fosfato, dextrosa, glicerol, etanol y similares, así como combinaciones de los mismos. Los vehículos, excipientes o diluyentes farmacéuticos adecuados se describen en "Remington's Pharmaceutical Sciences" de E. W. Martin. Los vehículos farmacéuticamente aceptables pueden comprender además pequeñas cantidades de sustancias auxiliares tales como agentes humectantes o emulsionantes, conservantes o tampones, que potencian la vida útil o la eficacia de las composiciones de la invención. Las composiciones farmacéuticas también pueden incluir antiadherentes, aglutinantes, recubrimientos, desintegrantes, sabores, colores, lubricantes, sorbentes, conservantes, edulcorantes, excipientes liofilizados (incluidos los lioprotectores) o auxiliares de compresión. Las composiciones farmacéuticas de la invención se pueden administrar en una pluralidad de formas farmacéuticas de administración, por ejemplo, sólidos (tales como comprimidos, píldoras, cápsulas, gránulos, etc.) o líquidos (tales como soluciones, suspensiones, jarabes, pomadas, cremas, geles o emulsiones).
Las composiciones farmacéuticas de la invención pueden comprender una cantidad terapéuticamente efectiva. La cantidad terapéuticamente efectiva (es decir, la cantidad que produce un efecto para ayudar a curar o curar el trastorno a tratar) que puede administrarse a un sujeto dependerá de múltiples factores, como el estado de la enfermedad, la edad, el sexo y el peso del individuo, y la capacidad de la composición farmacéutica para provocar una respuesta deseada en el individuo. Una cantidad terapéuticamente eficaz también es una cantidad con la cual cualquier efecto tóxico o perjudicial de la composición se ve compensado por los efectos terapéuticamente beneficiosos.
Según un aspecto de la invención, se proporciona el uso de la composición tal como se describe en la presente memoria, en combinación con un agente antiproliferativo para el tratamiento de un trastorno de proliferación celular.
Según un aspecto de la invención, se proporciona la composición tal como se describe en la presente memoria, opcionalmente en combinación con un agente antiproliferativo, para su uso en la prevención de metástasis cancerosa de los ganglios linfáticos. Según otro aspecto de la invención, se proporciona el uso de la composición como se describe en el presente documento, opcionalmente en combinación con un agente antiproliferativo, para prevenir la metástasis del cáncer en los ganglios linfáticos.
Según un aspecto de la invención, se proporciona el uso de la composición tal como se describe en la presente memoria, en combinación con radioterapia para el tratamiento de un trastorno de proliferación celular.
Según un aspecto de la invención, se proporciona el uso de una composición tal como se describe en el presente documento, en la fabricación de un medicamento para el tratamiento de un trastorno de proliferación celular. Opcionalmente, la composición se puede usar en combinación con un agente antiproliferativo y/o radiación.
Procedimientos de tratamiento Según un aspecto de la invención, se proporciona un procedimiento para tratar a un paciente con un trastorno de proliferación celular que comprende la administración de una composición tal como se describe en la presente memoria, en combinación con un agente antiproliferativo y/o radioterapia. Las realizaciones descritas anteriormente en la presente memoria para las composiciones pueden aplicarse a dicho procedimiento de tratamiento (por ejemplo, tiempo de administración, formulación de la composición, etc.).
Según un aspecto de la invención, se proporciona un procedimiento para prevenir la metástasis cancerosa de los ganglios linfáticos que comprende la administración de una composición tal como se describe en la presente memoria, opcionalmente en combinación con un agente antiproliferativo y/o radioterapia. Según otro aspecto de la invención, se proporciona un procedimiento para tratar la metástasis cancerosa de los ganglios linfáticos que comprende la administración de una composición tal como se describe en la presente memoria, en combinación con un agente antiproliferativo y/o radioterapia.
El paciente puede ser cualquier sujeto que padezca el trastorno. En una realización, el paciente es un mamífero. En una realización adicional, el mamífero se selecciona de entre un ser humano o un ratón.
En una realización, la composición (y opcionalmente el agente antiproliferativo) se administra mediante cualquier modo de administración adecuado, tal como por vía intravenosa, intraarterial, intracardial, intracutánea, subcutánea, transdérmica, interperitoneal, intramuscular, oral, lingual, sublingual, bucal, intrarrectal o por enema.
También es posible una aplicación tópica (por ejemplo, para el tratamiento de melanomas). Una forma particular de aplicación tópica consiste en introducir la composición (y opcionalmente el agente antiproliferativo) en un sistema de vehículo, en particular un sistema de administración de fármacos, e implantar dicho sistema de vehículo en los tejidos cancerosos, donde dicho sistema portador libera dicha composición (y opcionalmente el agente) específicamente en el sitio del tejido canceroso. De esta manera, es posible evitar los efectos secundarios, como puede ocurrir en el caso de la administración sistémica, es decir, reducir la tensión general en el organismo.
Kits
Según un aspecto de la invención, se proporciona un kit que comprende el medio de separación descrito en la presente memoria para su uso en un procedimiento con el fin de purificar una mezcla de AQC (es decir, para aislar los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero), que comprende opcionalmente instrucciones para usar dicho kit según los procedimientos de purificación descritos en la presente memoria.
Según un aspecto de la invención, se proporciona un kit de partes que comprende: (i) la composición y (ii) un agente antiproliferativo. Los dos componentes (i) y (ii) pueden estar en mezcla con un adyuvante, diluyente o vehículo farmacéuticamente aceptable. El kit según este aspecto de la invención se puede usar en el tratamiento de un trastorno de proliferación celular.
A continuación la invención se ilustrará en los siguientes ejemplos no limitativos.
ABREVIATURAS
Todas las unidades usadas en la presente memoria deben entenderse según su definición estándar conocida en la técnica (salvo que se especifique lo contrario), incluidos los prefijos reconocidos, por ejemplo, 'k' que significa kilo, 'm' que significa mili, 'm' que significa micro y 'n 'que significa nano.
A549 Línea celular de adenocarcinoma de pulmón humano
AFM Microscopía de fuerza atómica
Ag Plata Ag2 2 átomos de plata
Ag3 3 átomos de plata
AgNOs Nitrato de plata
ANOVA Análisis de varianza
AQC Clúster cuántico atómico
ATP Trifosfato de adenosina
Au Oro
BCNU Carmustina
BSA Albúmina de suero bovino CBDCA Carboplatino
CD Dicroísmo circular
CDDP Cisplatino
C02 Dióxido de carbono
DFT Teoría funcional de la densidad DMSO Dimetilsulfóxido
ADN Ácido desoxirribonucleico
DOX Doxorrubicina DTT Ditiotreitol
EAd Energía de adsorción EB Bromuro de etidio
EDTA Acido etilendiaminotetraacético
EdU 5-etinil-2'-desoxiuridina
EGTA Acido etilenglicol-bis(éter b-qGhίhobΐίIίoo^N,N,N',N'-ΐbΐGqqoόΐίoo
ESI Espectrometría de masas de ionización por pulverización
ESI-TOF Espectrometría de masas de tiempo de vuelo de ionización por electropulverización
FBS Suero bovino fetal FDR Tasa de descubrimiento falso
FITC Isotiocianato de fluoresceína
FWHM Anchura total a la mitad de máximo
GAPDH Gliceraldehído 3-fosfato deshidrogenasa
GEM Gemcitabina H202 Peróxido de hidrógeno
HCI Clorhidrato
HEPES Acido 4-(2-hidroxietil)-1-piperacinaetanosulfónico HOMO Orbital molecular más alto ocupado
HNOs Ácido nítrico
IC Concentración inhibidora
ICP-MS Espectrometría de masas de plasma de acoplamiento inductivo
IHC Inmunohistoquímico
IP Yoduro de propidio
ITC Calorimetría de titulación isotérmica
KCI Cloruro de potasio
KOH Hidróxido de potasio
Luc Gen de la luciferasa de luciérnaga norteamericana
LUMO Orbital molecular desocupado más bajo
MCF7 Línea celular de adenocarcinoma de mama humano
MeSH Metiltiol
MgCI2 Cloruro de magnesio
N2 Nitrógeno
NaF Fluoruro de sodio
NH4CI Cloruro de amonio
02 Oxígeno OXA Oxaliplatino
PBS Solución salina con tampón de fosfato
pH2AX Histona fosforilada H2AX
PMSF Sulfonilfluoruro de fenilmetano
Pt Platino
qPCR Reacción en cadena de la polimerasa en tiempo real
RIN Número de integridad del ARN
RLU Unidades de luminiscencia relativa
ARN Ácido ribonucleico
TA Temperatura ambiente
SDS Dodecilsulfato de sodio
SDS-PAGE Electroforesis de dodecilsulfato de sodio-gel de poliacrilamida
STORM Microscopía de reconstrucción óptica estocástica
TAE Tris/ácido acético/solución tampón EDTA
TBE Tris/Borato/solución tampón EDTA
TE Tris/solución tampón EDTA
Topo I Topoisomerasa humana I Topo II Topoisomerasa humana II
Tris T ris(hidroximetil)aminometano U Unidad enzimática
U87 Línea celular multiforme de glioblastoma humano
UV-vis Espectroscopia ultravioleta-visible
MATERIALES Y PROCEDIMIENTOS
A menos que se especifique lo contrario, todos los reactivos se adquirieron en Sigma Aldrich, Co., España. Las láminas de plata (99%) se adquirieron en Goodfellow Cambridge Ltd. , Huntingdon, Reino Unido. Las nanopartículas de alúmina (tamaño promedio « 50 nm) y las almohadillas de tela se adquirieron en Buehler, Düsseldorf, Alemania.
El papel de lija (grano 1.000) fue suministrado por Wolfcraft España S.L., Madrid, España. Todas las soluciones acuosas se prepararon con agua de calidad MilliQ usando un sistema Direct-Q8UV de Millipore (Millipore Ibérica S.A., Madrid, España). Las partículas de sílice funcionalizadas con tiol (SiliaMetS® Thiol, 40-63 pm, 60 Á) se adquirieron en Teknokroma Analítica S.A., Barcelona, España. Las láminas de mica (moscovita de calidad V-1) se adquirieron en SPI Supplies, West Chester, PA, EE.UU. Las histonas centrales se obtuvieron de Sigma-Aldrich Co., España, y la solución de reserva se preparó mediante dilución en tampón de fosfato a pH = 7 que contenía cloruro de sodio 150 mM. Se prepararon soluciones tampón con agua doblemente desionizada de un sistema Puranity TU (VWR International Eurolab S.L., Barcelona, España) con lámpara UV y ultrafiltro (VWR), y el pH se ajustó en un medidor de pH Metrohm (Metrohm AG, Herisau, Suiza) 16 DMS pH Titrino provisto de un electrodo de vidrio combinado y una solución de KCI 3 M como unión líquida.
Caracterización
UV-vis v espectroscopia de fluorescencia. Los experimentos de espectroscopia de UV-vis y de fluorescencia se realizaron a temperatura ambiente usando cubetas de cuarzo Hellma de 1 cm de longitud (Hellma GmbH & Co. KG, Müllheim, Alemania). Los espectros UV-vis se registraron con un espectrómetro Analytik Jena Specord S600 (Analytik Jena AG, Jena, Alemania) con un detector de matriz de diodos, y los espectros de fluorescencia se registraron con un fluorímetro Varían de Cary Eclipse (Agilent Technologies Spain, S.L., Madrid, España).
Microscopio de fuerza atómica (AFM). Las mediciones de AFM se realizaron en condiciones ambientales normales usando un instrumento XE-100 (Park Systems, Suwon, Corea del Sur) en modo sin contacto. Las puntas AFM fueron ACTA de silicio recubierto de aluminio de Park Systems con una frecuencia de resonancia de 325 kHz. Para la obtención de imágenes de AFM, se depositó una gota de la muestra diluida de AQC de Ag3 sobre una lámina de mica recién escindida (moscovita de calidad V-1) (Park Systems, Suwon, Corea del Sur), que se lavó minuciosamente con agua Milli-Q y se secó bajo flujo de nitrógeno.
Espectrometría de masas. Los espectros de masas ESI se adquirieron usando un espectrómetro de masas LTQ Orbitrap Discovery (Thermo-Fisher Scientific, Waltham, EE.UU.) equipado con una fuente ESI que funcionaba en modo de ionización negativa. Las condiciones de la fuente de ESI fueron las siguientes: tensión de fuente -4,5 kV, temperatura capilar calentada 275°C, tensión capilar -35 V y gas de revestimiento y gas auxiliar 5 y 2 (N2, unidades arbitrarias). Para el análisis de MS de exploración completa, los espectros se registraron en el intervalo de m/z de 100 a 2.000 con una velocidad de exploración de 1 exploración/s. La resolución de masas se fijó en 30.000 FWHM. El instrumento Orbitrap se calibró usando una solución de calibración según las instrucciones del fabricante. Se realizaron experimentos de seguimiento para obtener la máxima sensibilidad para la detección de clústeres. Las soluciones se inyectaron directamente en la célula después de mezclar 1 a 1 con una solución de acetonitrilo con NH4CI 1 mM y ácido fórmico al 0, 1 %. lonómetro. La concentración de iones se midió usando un pH y un Ion-Meter GLP 22 calibrados previamente (Crison Instruments S.A., Barcelona, España) añadiendo una solución estabilizadora (nitrato de sodio 5 M) en una proporción de 2:100 a la muestra a una temperatura constante de 25°C. Espectroscopia de absorción atómica por llama. El contenido total de Ag en las muestras de clústeres se analizó mediante espectroscopia de absorción atómica por llama, realizada con una Perkin-Elmer 3110 con una lámpara de cátodo hueco Ag Lumia de Perkin-Elmer (Madrid, España) (corriente 10 mA).
Líneas celulares
La línea celular de adenocarcinoma de pulmón humano (A549) y la línea celular de adenocarcinoma de mama humana (MCF7) se obtuvieron de DMSZ (Leibniz Institute DSMZ - Colección alemana de microorganismos y cultivos celulares, Braunschweig, Alemania). Una línea celular que expresa luciferasa obtenida de células A549 por transfección estable del gen de luciferasa de luciérnaga norteamericana expresada desde el promotor CMV (línea celular A549 Luc-C8 Bioware®) obtenida de Caliper LifeSciences (Caliper Life Sciences, Hopkinton, MA, EE.UU.). Joan Seoane, Valí d'Hebron Instituí d'Oncologia (VHIO), Barcelona, España proporcionó una línea celular de glioblastoma multiforme humano (U87-Luc). Todas las líneas celulares crecen de forma adherente como monocapas. Las líneas celulares A549 y A549-Luc se mantuvieron en medio Eagle modificado de Dulbecco (bajo contenido de glucosa, D6046, Sigma), y las líneas celulares MCF7 y U87-Luc se mantuvieron en medio
Eagle modificado de Dulbecco (alto contenido de glucosa) (D5671 , Sigma). El medio se complementó con suero de ternera fetal al 10% y L-glutamina, penicilina y estreptomicina al 1% v/v (Gibco, Thermofisher). En el caso de líneas celulares modificadas, se añadió puromicina (1 ,3 pg/mL para A549-Luc y 5 pg/mL para U87- Luc) al medio para seleccionar las células transfectadas de manera estable. Las células se incubaron en una incubadora humidificada a 37°C con CO2 al 5% y se cultivaron en placas de cultivo de 100 mm hasta aproximadamente el 70-80% de confluencia. Para el subcultivo, se eliminó el medio y las células se lavaron con solución salina con tampón de fosfato (PBS); se usó tripsina/EDTA (Gibco) para inducir el desprendimiento de las células. Finalmente, las células se suspendieron en medio de cultivo y se pasaron a placas nuevas en una proporción de 1 :5 ó 1 :10. Cuando fue necesario, las células se contaron con un hemocitómetro Neubauer. Todos los procedimientos se realizaron en condiciones estériles en una campana de flujo de aire laminar. Todas las líneas celulares se almacenaron congeladas con medio de crecimiento completo complementado con DMSO al 10% (Sigma, D2650) a temperatura de vapor de nitrógeno líquido.
Animales
En los estudios in vivo se usaron ratones hembra atímicos que pesaban aproximadamente 20-25 gramos a la edad de 8-12 semanas (Janvier Laboratoires, Le Genest-Saint-lsle, Francia). Los animales se aclimataron durante al menos 1 semana antes de la experimentación y se alojaron en jaulas de polipropileno ventiladas a una temperatura media de 22°C, con 12 horas de exposición diaria a la luz y 12 horas a la oscuridad. Todos los ratones recibieron una dieta estándar de laboratorio de alimentos y agua ad libitum. Los experimentos se realizaron según las Normas del Comité de Bioética de la Universidad de Santiago de Compostela y de conformidad con los Principios del Cuidado de Animales de Laboratorio según la legislación nacional española (RD 53/2013).
Modelo de cáncer de pulmón ortotópico
La eficacia antitumoral de AQC de Ag3 se evaluó en un modelo de cáncer de pulmón ortotópico que metastatiza en los ganglios linfáticos mediastínicos. El modelo fue desarrollado siguiendo el protocolo descrito por Borrajo y col. J. Control. Release 2016, 238: 263, adaptado de Cui y col. Cáncer Res. Treat. 2006, 38: 234. Se inyectó una suspensión de 1 c 106 células que expresan luciferasa de carcinoma de pulmón no microcítico (línea celular A549 Luc-C8 Bioware®) en PBS (50 pL) a través del espacio intercostal en el pulmón izquierdo de ratones atímicos sin pelo. Durante este procedimiento, los ratones se anestesiaron con inhalación de isoflurano al 4%. Para seguir el crecimiento del tumor, se inyectó luciferina en la cavidad intraperitoneal a una dosis de 150 mg/kg de peso corporal aproximadamente 5 minutos antes de la obtención de imágenes. La bioluminiscencia de la luciferasa se realizó con anestesia con isoflurano vaporizada usando un I VIS® Living Image® System (Caliper Life Sciences, Hopkinton, MA, EE.UU.) que permitió el seguimiento del crecimiento del tumor primario y la diseminación de las células cancerosas de manera semicuantitativa. Después de obtener imágenes in vivo durante varios días (hasta 37 días), se sacrificaron los ratones y se obtuvieron extractos de proteínas de diferentes órganos para cuantificar la actividad de luciferasa. Brevemente, los órganos se homogeneizaron en tampón DIP (50 mM, pH 7,5, NaCI 150 mM, EDTA 1 mM, EGTA 2,5 mM, Tween-20 al 0,1 %, b-glicerofosfato 10 mM, ortovanadato de sodio 1 mM, PMSF 0,1 M, NaF 0,1 M y cóctel bitor de proteasa (Sigma)) usando un homogeneizador de tejidos. Después de 15 minutos de centrifugado a alta velocidad, se cuantificaron los sobrenadantes usando un procedimiento colorimétrico de Bradford, y se midió la luminiscencia usando un luminómetro Lumat BL 9507 (Berthold Technologies GmbH & Co., Bad Wildbad, Alemania). Los resultados se expresaron como unidades de luminiscencia relativa (RLU) por pg de proteína extraída.
Inducción de la quiescencia y verificación por citometría de flujo
Para detener las células en la fase G0/G1 del ciclo celular, las células A549 se colocaron en placas a 20.000 células/placa en un medio que contenía FBS al 10%. Después de 24 horas, el medio se reemplazó con medio suplementado con FBS al 0,05% durante 72 horas. Se recogieron las células y se analizó el perfil del ciclo celular mediante citometría de flujo para evaluar el porcentaje de células en fase G0/G1 (estado quiescente). Se fijaron las células en etanol al 70% durante toda la noche, se lavaron dos veces con PBS y se incubaron durante 30 minutos en la oscuridad en 0,5 mL de yoduro de propidio (0, 1 mg/mL). Se analizaron las células teñidas usando un citómetro de flujo Guava EasyCyte mediante el programa InCyte (Millipore, Merck Chemicals & Life Science S.A., Madrid, España). Una vez verificado, este protocolo se usó en todos los experimentos con células quiescentes (sin suero) en este trabajo.
Ensayo de accesibilidad de la cromatina
La accesibilidad de la cromatina después del tratamiento con AQC de Ag3 se midió en una línea celular A549 y en tejidos de ratones portadores de tumores de pulmón ortotópicos derivados de células A549. En primer lugar, se sembraron 5 x 105 células A549 en placas de cultivo de 60 mm, y 24 (células en proliferación) o 72 (células muertas de suero) horas más tarde se trataron con AQC de Ag3 (55,61 ng/mL) durante 1 hora en medio sin suero. A continuación se sustituyó el medio por medio completo durante 3 horas, y se lavaron las células dos veces con PBS, se tripsinizaron y se centrifugaron. Se eliminaron los sobrenadantes y se lavaron los sedimentos celulares con PBS y se suspendieron en tampón de lisis. En los ratones portadores de tumores de pulmón ortotópicos derivados de células A549 se inyectaron AQC de Ag3 (0,05 mg/kg). Después de 24 horas, se sacrificaron los animales y se extrajeron los pulmones y los riñones. Se homogeneizaron piezas pequeñas (1-2 mm3) de tumor (pulmón) y riñón usando un homogeneizador Dounce y se suspendieron en tampón de lisis. A partir de este punto, las células y tejidos se trataron de manera similar; la cromatina se aisló y se trató con una mezcla de nucleasas siguiendo las instrucciones proporcionadas por el fabricante usando un kit de ensayo de accesibilidad de cromatina EpiQuick™ (Epigentek, Farmingdale, NY, EE.UU.). A continuación se aisló y se amplificó el ADN usando el sistema de PCR en tiempo real (Applied Biosystems, Thermofisher, España) y los cebadores específicos de gen para GAPDH (Epigentek).
Cuantificación de platino en ADN de muestras celulares y órganos de ratón
El platino unido al ADN se evaluó tal como se describió anteriormente en Comenge y col. PLoS One 2012, 7: e47562. Brevemente, se sembraron 5 x 105 células A549, MCF7 o U87-luc en placas de 60 mm de diámetro. Después de 24 horas (o 72 horas en caso de células quiescentes), las células se trataron con 1) CDDP 50 mM durante 6 horas en medio completo, 2) AQC de Ag3 (55,61 ng/ml_) en medio sin suero durante 1 hora, o 3 horas) o la combinación de los dos tratamientos: AQC de Ag3 (55,61 ng/ml_) en medio sin suero durante 1 hora y a continuación 5 horas con CDDP 50 pM en medio completo. Después del tratamiento, se lavaron las células dos veces con PBS, se tripsinizaron y se centrifugaron. Se eliminaron los sobrenadantes y se almacenaron los sedimentos celulares a -20°C durante toda la noche. El procedimiento para cuantificar el platino en los órganos de ratones fue el siguiente: a los ratones sin pelo portadores de tumores se les inyectó 1) 100 pL de CDDP (4 mg/kg) o 2) 50 pL de CDDP (4 mg/kg) y 50 pL de AQC de Ag3 (0,05 mg/kg). Después de 24 horas, se sacrificaron los animales y se extrajeron los órganos. Se separaron trozos pequeños (1-2 mm3) de tumor (pulmón) y otros órganos (corazón, hígado, riñón, bazo, cerebro y médula ósea) usando un bisturí. A partir de este punto, los pasos para la extracción de ADN son comunes a las células y muestras de tejido. Después de congelación durante toda la noche, se suspendieron los sedimentos celulares o de tejido en 300 pL de tampón de lisis (Tris 150 mM, pH 8; EDTA 100 mM, pH 8; NaCI 100 mM; SDS al 0,5%) y 10 pL de Proteinasa K (20 pg/pL). Los gránulos/tejidos celulares se perforaron con una aguja cinco veces y se incubaron en un baño de agua a 56°C durante 2 horas para las células y durante toda la noche para los tejidos. Después de la incubación, se añadió acetato de sodio 3 M y fenol/cloroformo/alcohol isoamílico (0, 1 y 1 ,0 equivalentes de volumen) y se agitó suavemente en vórtex durante 1 minuto. Las muestras se centrifugaron a 16.000 c g durante 10 minutos y se recuperaron los sobrenadantes. Para la precipitación de ADN, se añadieron dos volúmenes de etanol frío al 10-10%, y se centrifugó la suspensión a 16.000 x g durante 10 minutos a 4°C. Después del centrifugado, se descartaron los sobrenadantes y se añadió 1 mL de etanol al 70% frío a los gránulos, se agitó con vórtex suavemente durante 5 segundos y se centrifugó a 16.000 x g durante 10 minutos a 4°C. Los gránulos se secaron a temperatura ambiente y se resuspendieron en 0, 1 mL de tampón TE. La concentración de ADN se determinó usando un espectrofotómetro NanoDrop 2000 (Thermofisher, España). A continuación, se eliminaron 0, 1 mL de tampón TE usando el speed-vac, y el ADN se resuspendió en 0,2 mL de HNO3 al 65%. Finalmente, la cantidad de platino se determinó por espectrometría de masas usando un ICP-MS BRUCKER 820-MS con un nebulizador Micromist de vidrio de bajo flujo y una cámara de pulverización de doble paso con un enfriamiento Peltier (3°C) y una lámpara de cuarzo (Bruker Corp., Billerica, MA, EE.UU.).
Viabilidad celular
Medición de citometría de flujo
La viabilidad celular se cuantificó mediante citometría de flujo usando el Reactivo Guava ViaCount (Millipore). Las células A549 (6 x 104) se sembraron en placas de 12 pocilios y 24 horas más tarde (células en proliferación) o 72 horas más tarde (células quiescentes) se trataron con 1) AQC de Ag3 (55,61 ng/mL) en medio sin suero durante 1 hora y a continuación 24 horas en medio completo; 2) AQC de Ag3 (55,61 ng/mL) en medio sin suero durante 1 hora y a continuación 24 horas con diversos fármacos (CDDP 50 mM, OXA 50 pM, CBDCA 100 mM, GEM 100 pM, BCNU 400 pM o DOX 7,5 pM); 3) 24 horas con diversos fármacos (CDDP 50 pM, OXA 50 pM, CBDCA 100 mM, GEM 100 pM, BCNU 400 pM o DOX 7,5 pM); o 4) AQC de Ag3 (55,61 ng/mL) en medio sin suero durante 1 hora, 24 horas en medio completo sin tratamiento y a continuación 24 horas con CCDP 50 pM. Después del tratamiento, se recogieron las células, se lavaron con PBS y se suspendieron en 500 pL de PBS. Para preparar muestras teñidas, se mezcló la suspensión celular con el reactivo Guava ViaCount (Millipore) siguiendo las instrucciones del fabricante. Las células teñidas se analizaron en el citómetro de flujo Guava EasyCyte (Millipore) usando el software Guava ViaCount.
Ensayo de luminiscencia
Se sembraron 5 x 103 células A549 Luc-C8 en placas de 96 pocilios y 24 horas (células en proliferación) o 72 horas (células sin suero) se trataron más tarde con 1) AQC de Ag3 (55,61 ng/mL) en medio sin suero durante 1 hora y 24 horas más en medio completo, 2) AQC de Ag3 (55,61 ng/mL) en medio sin suero durante 1 hora y 24 horas más con diferentes dosis de CDDP (IC5: 5 mM, IC25: 10 pM, IC50: 50 pM e IC75: 100 pM), OXA (IC5: 2,5 pM, IC25: 12,5 pM, IC50: 50 pM e IC75: 200 pM) o CBDA (IC5: 0,25 pM, IC25: 0,5 pM, IC50: 1 mM e IC75: 2 mM) y 3) 24 horas con diferentes dosis de CDDP (IC5: 5 pM, IC25: 10 pM, IC50: 50 pM e IC75: 100 pM), OXA (IC5: 2,5 pM, IC25: 12,5 pM, IC50: 50 pM e IC75: 200 pM) o CBDCA (IC5: 0,25 pM, IC25: 0,5 pM, IC50: 1 mM e IC75: 2 mM). Después de esto, se retiraron los tratamientos y se añadieron 20 pL de tampón de lisis (Promega) a los pocilios y se incubaron durante 30 minutos, en fragmentos. A continuación se transfirieron los lisados a tubos de 1 ,5 mL y se centrifugaron durante 15 minutos a alta velocidad. Después de esto, se lisaron las células y se cuantificó la cantidad de proteína usando un procedimiento colorimétrico de Bradford y se midió la luminiscencia usando un luminómetro Lumat BL 9507 (Berthold Technologies). Los resultados se expresaron como unidades de luminiscencia relativa (RLU) por pg de proteína extraída.
Micromatríces
Se sembraron células A549 (5 x 105) en placas de cultivo de 60 mm. Después de 24 horas, las células se trataron con AQC de Ag3 (41 ,5 ng/mL) durante 1 hora en medio sin suero. A continuación se retiró el medio y se sustituyó por medio completo durante 0, 4 o 24 horas. En estos instantes de tiempo, se recogieron las células y se aisló su ARN usando el kit NucleoSpin ARN (Macherey-Nagel, Düren, Alemania) siguiendo las instrucciones del fabricante. Se cuantificó la concentración de ARN usando un espectrofotómetro (Nanodrop 2000), y se evaluó la calidad midiendo el Número de Integridad del ARN (RIN) usando el kit Agilent RNA 6000 Nano y el Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, EE.UU.)· Solo las muestras con RIN > 7 se consideraron aceptables. Las muestras se almacenaron a -80°C hasta su uso. Se usó Human Gene ST 2.1 Array (Affymetrix, Santa Clara, EE.UU.) para hibridar las muestras humanas siguiendo las instrucciones del fabricante. La corrección de fondo, la normalización, el resumen de la sonda y el análisis de datos se realizaron usando la Consola de Expresión y la Consola de Análisis de Transcriptoma (Affymetrix).
Ensayos de daños en el ADN
Evaluación de H2AX fosforilada
La evaluación de H2AX fosforilada (pH2AX) se realizó tal como se describe en Muslimovic, y col. Nat. Protoc. 2008, 3: 1 187. Brevemente, se sembraron células A549 (4,5 x 104) en una placa de 6 pocilios. Después de 24 horas, se trataron las células con AQC de Ag3 y etopósido en medio sin suero durante 1 hora. Se recogieron las células y se lavaron dos veces con PBS frío. Se descartó el sobrenadante y se fijó el sedimento en 50 pL de tampón de fijación durante 5 minutos mientras se protegía de la luz. A continuación se añadieron 150 pL de tampón Block- 9 con 0,6 pg/mL de conjugado FITC anti-pH2AX (ser139) (16-202A, Millipore), y las células se incubaron a 4°C durante 3 horas mientras estaban protegidas de la luz. Las células se lavaron dos veces con PBS y se incubaron durante toda la noche en la oscuridad con 0, 1 mL de yoduro de propidio (0,01 mg/mL). Las células teñidas se analizaron en el citómetro de flujo Guava EasyCyte usando el programa InCyte (Millipore).
Ensayo cometa
Se sembraron células A549 (5 x 105) en placas de 60 mm y 24 horas después se trataron con AQC de Ag3 (55,61 ng/mL) o control positivo de H2O2 (100 mM) durante 1 hora en medio sin suero. Posteriormente se recogieron las células mediante tripsinización y se lavaron una vez en PBS enfriado en hielo (libre de Ca2+ y Mg2+). A continuación, se suspendieron las células en PBS frío (1 x 105 células/mL) y se realizó un ensayo cometa alcalino según las instrucciones proporcionadas por el fabricante (Trevigen, Gaithersburg, EE.UU.). Las imágenes se obtuvieron usando un microscopio Olympus 1X51 equipado con una cámara Olympus DP72 y el software CellSens Imaging (Olympus, Tokio, Japón).
Análisis DOX
Contenido de DOX nuclear
La captación nuclear de DOX se determinó mediante microscopía de fluorescencia. Se sembraron células A549 (5 x 105) en placas de 12 pocilios. Después de 24 horas, las células se trataron con 1) DOX (7,5 mM) durante 30 minutos o 2) AQC de Ag3 (55,61 ng/mL) durante 30 minutos y DOX (7,5 pM) durante otros 30 minutos. Las imágenes se obtuvieron usando un microscopio Olympus 1X51 equipado con una cámara Olympus DP72 y el software CellSens Imaging (Olympus, Tokio, Japón).
Medición por citometría de flujo de la acumulación de DOX
Para cuantificar la captación celular de DOX en presencia de AQC de Ag3, se sembraron células A549 (5 x 105) en placas de 12 pocilios. Veinticuatro horas después, las células se trataron con 1) DOX (7,5 pM) durante 4 horas o 2) AQC de Ag3 (55,61 ng/mL) durante 30 minutos y DOX (7,5 pM) durante 4 horas. Después de esto, se recogieron las células, se lavaron con PBS frío y se fijaron con paraformaldehído (PFA) al 0,2% durante 5 minutos. A continuación se suspendieron las muestras en 200 pL de PBS y se analizaron en el citómetro de flujo Guava EasyCyte usando el programa InCyte.
Análisis histológico
Los pulmones de ratón se fijaron en formalina con tampón neutro al 10% durante 24 horas y se incluyeron en parafina. Se montaron secciones de 4 mm de grosor en portaobjetos de microscopio FLEX IHC (Dako-Agilent, Glostrup, Dinamarca) y se calentaron en un horno a 60°C durante 1 hora. La técnica inmunohistoquímica se realizó automáticamente usando un AutostainerLink 48 (Dako-Agilent). Después de la desparafinación y la recuperación del epítopo en la solución de recuperación de la diana EnVision FLEX (pH alto) durante 20 minutos a 97°C, se dejó enfriar los portaobjetos en PT Link a 65°C y a continuación en un tampón de lavado Dako durante 5 minutos a temperatura ambiente (TA). El protocolo de inmunotinción incluyó la incubación a temperatura ambiente en: (1) reactivo de bloqueo de peroxidasa EnVision FLEX (Dako-Agilent) durante 5 minutos; (2) anticuerpo FLEX primario listo para usar (Dako-Agilent) anti-CK7 (clon OV-TL 12/30), durante 20 minutos; (3) EnVision FLEX/HRP (polímero de dextrano conjugado con peroxidasa de rábano picante e inmunoglobulinas anti-ratón y anti-conejo de cabra aisladas por afinidad) durante 20 minutos; (4) solución de trabajo del sustrato (mezcla) (solución cromógena de tetraclorhidrato de 3,3'-diaminobencidina) (Dako-Agilent) durante 10 minutos; y (5) hematoxilina EnVision FLEX (Dako-Agilent) durante 9 minutos. Las secciones se examinaron y se fotografiaron usando un microscopio PROVIS AX70 de Olympus equipado con una cámara Olympus DP70.
Análisis estadístico
Se aplicó una prueba de Mann-Whitney para examinar las diferencias en los estudios de biodistribución y eficacia asociados con los tratamientos de CDDP frente a CDDP + AQC de Ag3. Para cada grupo de tratamiento se determinó la media ± desviación estándar (DE). Las diferencias se consideraron significativas para * p < 0,05, y muy significativas para * p < 0,01. Para el análisis STORM, la significación se calculó usando ANOVA de una vía. Todos los análisis estadísticos se realizaron con el software GraphPad Prism versión 5.0 (GraphPad Software, Inc., La Jolla, EE.UU.).
Ensayo de relajación de la Topoisomerasa I (Topo I) humana
La actividad se evaluó usando el kit de relajación de la Topoisomerasa Humana I según el fabricante (Inspiralis, Norwich, Reino Unido). Brevemente, se preincubaron 0,5 mg de ADN de pBR322 relajado durante 30 minutos a temperatura ambiente con AQC de Ag3 en una reacción de 30 mL en las siguientes condiciones: Tris-HCI 35 mM (pH 7,5), KOI 24 mM, MgCI2 4 mM, DTT 2 mM, espermidina 1 ,8 mM, ATP 1 mM, glicerol al 6,5% (p/v) y 0, 1 mg mL-1 de BSA. Después de esto, se añadió 1 U de Topo I humana y se prosiguió con la incubación durante 30 minutos a 37°C. La reacción se detuvo mediante la adición de 30 mL de cloroformo/alcohol isoamílico y 6 mL de tampón de carga antes de cargar en un gel de agarosa (1 %: p/v) en TAE (Tris-acetato 40 mM, EDTA 2 mM) sin bromuro de etidio.
Ensayo de desconcatenación de la Topoisomerasa II (Topo II) humana La actividad de Human Topo II se evaluó usando un kit comercial (Inspiralis, Norwich, Reino Unido). Brevemente, se preincubaron 200 ng de kDNA durante 5 minutos a temperatura ambiente con AQC de Ag3 a varias concentraciones en HEPES-KOH 40 mM (pH 7,6), glutamato de potasio 100 mM, acetato de magnesio 10 mM, DTT 10 mM, ATP 1 mM y 50 mg mL-1 de albúmina, en 30 mL de volumen de reacción total. Después de esto, se añadió 1 U de Topo II y se continuó la incubación durante 30 minutos a 37°C. La reacción se detuvo mediante la adición de 30 mL de cloroformo/alcohol isoamílico y 6 mL de tampón de carga, se agitó en vórtex y se centrifugó brevemente (5-10 segundos cada uno) antes de cargarse en un gel de agarosa (1%: p/v) en TAE (Tris- ace tato 40 mM, EDTA 2 mM).
EJEMPLO 1 : Procedimiento de síntesis de AQC de Ag3 Los AQC de Ag3 se sintetizaron mediante un nuevo desarrollo de un procedimiento electroquímico descrito previamente en Buceta y col., Angew. Chemie Int. Ed. 2015, 54: 7612, por lo que se podrían obtener altas cantidades de AQC de Ag3 requeridas en este trabajo para pruebas en animales. Las modificaciones sustanciales consistieron en aumentar el área del electrodo siete veces y la tensión y el tiempo de la reacción se triplicaron. Para llevar a cabo estas modificaciones, el contraelectrodo de Pt usado anteriormente se sustituyó por un electrodo de Ag, ya que la evolución de H2 en el electrodo de Pt impide el uso de altas tensiones y, por lo tanto, reduce el rendimiento de la síntesis. Por otra parte, el uso de Pt como contraelectrodo requiere un proceso de limpieza más complejo y es más costoso. La síntesis se llevó a cabo con un potenciostato Biologic VMP300 (Seyssinet-Pariset, Francia). Se usó una celda electroquímica de tres electrodos aislada térmicamente de Methrom con un electrodo de hidrógeno como referencia y dos láminas de Ag (área superficial de 17,5 cm2) como contraelectrodo y electrodo de trabajo. Estos electrodos se pusieron uno frente al otro y se separaron a una distancia de 3 cm. Se aplicó una tensión constante de 6 V a 25°C durante 3.600 segundos. Antes de la síntesis, se pulieron los dos electrodos de plata con papel de lija seguido de alúmina (~ 50 nm), se lavaron a fondo con agua MilliQ y se trataron con ultrasonidos.
EJEMPLO 2: Purificación de AQC de Ag3 usando ADN Se sintetizó una dispersión acuosa de clústeres de plata de bajo tamaño tal como se describe en el Ejemplo 1. Se usó una muestra que contenía cationes Ag y clústeres de tamaño pequeño (menos de 10 átomos) para la preparación de aducios de ADN y procedimientos de diálisis. La caracterización de AFM y UV-Vis indicó que la muestra contenía principalmente clústeres de Ag2 y Ag3.
La mezcla de incubación, ADN + AQC de Ag (1 : 1 en masa) se preparó mezclando volúmenes calculados de soluciones acuosas de ADN y muestras de AQC de Ag, seguido de agitación suave durante 12 horas a temperatura ambiente. Después de este paso, la mezcla se transfirió a una casete de diálisis con una membrana de 3,5 kDa.
A lo largo del proceso de separación se realizaron tres procedimientos de diálisis diferentes. En el primer paso, se sumergió la casete en agua MilliQ durante 24 horas. En la segunda diálisis, se usó una solución de mayor fuerza iónica (NaC1 1 M) con el objetivo de eliminar cualquier rastro de catión de plata presente como una impureza menor después de la primera etapa de diálisis.
Antes de la tercera diálisis, la mezcla de ADN/AQC se calentó a 96°C durante 8 horas, para desnaturalizar el ADN que permite la separación de clústeres intercalados, y se enfrió inmediatamente a 0°C para evitar la renaturalización. La última diálisis se realizó en agua MilliQ durante 24 horas a 0°C.
Se llevó a cabo un seguimiento de la eficiencia de la separación por espectroscopia de fluorescencia, que fue elegida como herramienta de caracterización de los productos de extracción de diálisis, debido a su alta sensibilidad y sencillez. El resultado obtenido después de la primera diálisis se muestra en la figura 22. Se puede observar la presencia de solo la banda a 300 nm asociada con la presencia de Ag2. Esto indica la separación efectiva de Ag2 de la muestra del clúster inicial, tal como se representa en el esquema de la misma figura. La diálisis posterior no muestra evidencia de ninguna especie, lo que indica la separación total de Ag2 (primer paso de diálisis) de la muestra original. La última extracción de diálisis, después de la desnaturalización del ADN (96°C durante 8 horas), se muestra en la figura 23. Se puede observar la presencia de una banda principal a 350 nm, atribuida a Ag3, que confirma el aislamiento de los clústeres de Ag3 después de los pasos de diálisis anteriores.
Los resultados obtenidos confirman los informes anteriores (Buceta y col. 2015) que muestran que los clústeres de Ag3 tienden a intercalarse entre las cadenas de ADN, mientras que los clústeres de Ag2 están más probablemente unidos al exterior de la hélice. Esto explica la razón por la que el Ag2, no unido al ADN, se eluye muy fácilmente en los pasos iniciales de diálisis.
Este trabajo demuestra la posibilidad de usar las diferentes propiedades de unión al ADN para separar pequeños clústeres desnudos preformados que difieren en un solo átomo. Debido a la alta especificidad de la interacción, se puede usar de manera eficiente para la separación selectiva de Ag2 y Ag3 en muestras de clústeres que contienen las dos especies. Por otra parte, el procedimiento desarrollado permite también la purificación de AQC de Ag3 (principalmente a partir de iones Ag como subproducto de la síntesis).
EJEMPLO 3: Purificación de AQC de Ag3 usando resina tiolada
La eliminación de iones Ag (que siempre están presentes después de la síntesis del clúster) de las muestras sintetizadas se realizó previamente mediante la adición de NaCI. Sin embargo, este proceso es ineficiente porque se elimina un número significativo de clústeres junto con el precipitado de plata. La resina tiolada se usó para separar selectivamente los iones Ag, lo que mejoró en gran medida los resultados de la etapa de purificación (véase la figura 1). El nuevo procedimiento se basa en la observación de que los AQC de Ag3 inesperadamente no se unen a tioles opuestos a los iones Ag. Por lo tanto, se usaron partículas de sílice comerciales funcionalizadas con tioles para eliminar los iones de plata debido a la gran diferencia observada en la afinidad entre clústeres e iones con los tioles. Este procedimiento también se encontró, inesperadamente, para eliminar los AQC mayores de 3 átomos, por lo que este procedimiento también se usó para purificar selectivamente los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero.
El procedimiento consistió en añadir 400 mg de partículas de sílice tiolada a aproximadamente 1 L de reacción de síntesis. La mezcla se agitó durante la noche, con posterior separación de partículas de sílice. Se usó un electrodo selectivo de iones para verificar la eliminación de iones Ag+, y se usaron varias técnicas para caracterizar los clústeres de Ag en las muestras finales (como se comunicó anteriormente en Huseyinova y col., J. Phys. Chem. 2000, 104: 2630, y Buceta y col., 2015, y tal como se describe en la presente memoria). Las muestras purificadas se concentraron finalmente a 35°C usando un evaporador rotatorio (Buchi Rotavapor R- 210 a una presión de 2 mbar) (Massó Analítica S.A., Barcelona, España) a una concentración final de aproximadamente 30 mg/L según se determinó mediante espectroscopia de absorción atómica por llama.
EJEMPLO 4: Caracterización de AQC de Ag3
Las muestras de clústeres se caracterizaron por espectroscopia de UV-Vis y fluorescencia, espectrometría de masas AFM y ESI-TOF. La caracterización espectroscópica de las muestras está muy según lo comunicado previamente para AQC de Ag3 en Lin y col. ACS Nano 2009, 3: 395. La figura 2 muestra el espectro UV-Vis de una dispersión en agua de AQC de Ag3. La ausencia de la banda de plasmones de Ag (alrededor de 400 nm) indica la ausencia de electrones libres debido al confinamiento del tamaño cuántico, que se observa con los clústeres (véase Philip y col. Nano Lett. 2012, 12: 4661). En comparación con las UV-Vis comunicadas previamente de muestras de AQC de Ag3 desnudas en Buceta y col. 2015, se puede observar claramente un aumento en la intensidad de absorción entre 250 nm y 300 nm, debido al aumento de la concentración de AQC de Ag3 obtenida con este nuevo procedimiento de síntesis. El confinamiento del tamaño cuántico provoca una división de los niveles de energía en el nivel de Fermi y la aparición de un intervalo de banda, que es mayor a medida que el tamaño del clúster se hace más pequeño. Este intervalo de banda se puede determinar, como se hizo anteriormente para otros clústeres (véase Huseyinova y col., J. Phys. Chem. 2016, 120: 15902; Attia y col., J. Am. Chem. Soc. 2014, 136: 1182, y Buceta y col., 2015) midiendo la emisión de fluorescencia. La figura 3 muestra que los AQC de Ag3 presentan un pico de emisión único a « 305 nm, que es muy consistente con los resultados obtenidos previamente en Huseyinova y col., 2000. Esta banda puede asociarse, usando la aproximación del modelo de Jellium, a clústeres que contienen solo 2 o 3 átomos. La presencia de solo un pico para cualquier longitud de onda de excitación muestra la alta monodispersidad de la muestra (incluso a una concentración tan alta de clústeres), y confirma la alta eficiencia de los procedimientos de síntesis y purificación desarrollados en este trabajo.
Se usó la espectrometría de masas ESI ya que esta técnica usa una ionización muy suave y de esta manera se puede evitar la fragmentación, siendo ideal para la caracterización de pequeños clústeres metálicos (véase Lu y Chen, Anal. Chem. 2015, 87: 10659, y González y col., Nanoscale 2012, 4: 7632). Se obtuvieron cuatro picos en el modo negativo, cuyas asignaciones se ven facilitadas por la distribución isotópica de Ag: m/z = 266,8 (AQC de Ag2), m/z = 440,76, m/z = 498,65 y m/z = 556,61 (AQC de Ag3). En la figura 4 de la IS se puede ver el acuerdo de las distribuciones isotópicas con las simulaciones teóricas y también con publicaciones anteriores (por ejemplo, la figura 2 de la información de respaldo de Buceta y col., 2015). Por lo tanto, los resultados muestran la presencia solo de AQC de Ag2 y AQC de Ag3 en muy buena concordancia con los procedimientos de caracterización anteriores.
La caracterización adicional fue realizada por AFM sin contacto. Para este fin se depositó una muestra diluida sobre mica (rugosidad cuadrática media « 150 pm). La figura 5 muestra unas islas altas de 300 pm, correspondientes a los clústeres de tamaño 2D y así se confirma la presencia de clústeres con un número de átomos menor que alrededor de 7-10 átomos, como se predice a partir de modelos teóricos (véase Lee y col., J. Phys. Chem. 2003, 107: 9994). Este resultado también está según el resto de las técnicas de caracterización y con los estudios de AFM de Ag comunicados anteriormente en Buceta y col., 2015. EJEMPLO 5: No reactividad de los AQC de Ag2 con ADN
Aunque los AQC de Ag2 están presentes en las muestras, su presencia no tiene influencia en los resultados comunicados. En una publicación anterior no se pudieron detectar evidencias experimentales de la formación de un complejo ADN-Ag2, ni distorsión del ADN con estas especies (véase Buceta y col., 2015, página 7725, columna derecha). Además, los cálculos teóricos demuestran claramente que los AQC de Ag2 no se intercalan en el ADN a diferencia de los AQC de Ag3 que muestran una interacción de intercalación. Además, los AQC de Ag2 deben tener una configuración de capa electrónica cerrada (1S2), lo que indicaría un comportamiento muy estable y no reactivo (consúltese Akola y col., Proc. Nati. Acad. Sci. 2008, 105: 9157). Este hecho, junto con el gran intervalo de banda esperada para dichos clústeres (aproximadamente 4,3 eV), y la posición de los niveles correspondientes de HOMO (+2,8 V frente a RHE) y LUMO (-1 ,5 V frente a RHE) (véase la figura 6) indican que los AQC de Ag2 deben ser casi no reactivos.
EJEMPLO 6: Interacción de AQC de Ag3 con 02 y MeSH
Cálculos de la teoría funcional de la densidad (DFT)
Para comprender el resultado inesperado de que los AQC de Ag3 no se unen a los tioles observados en el Ejemplo 3, se realizaron cálculos de DFT que muestran la presencia de oxígeno adsorbido en los AQC de Ag3.
Para calcular la energía de adsorción en presencia de moléculas de 02 adsorbidas se ha realizado una serie de cálculos DFT para determinar la cantidad máxima de 02 que se puede adsorber en los AQC de Ag3. Por ejemplo, considerando la adsorción de tres moléculas de oxígeno en los AQC de Ag3 (figura 7), los tres isómeros de energía más baja encontrados muestran que el puente 1 ,2 produce las estructuras más estables, en comparación con otros modos posibles de unión de Ag-O. La presencia de más de tres moléculas de oxígeno alrededor de los AQC de Ag3 siempre produce estructuras donde las moléculas de oxígeno adicionales se adsorben solo de forma laxa, por ejemplo, por encima y por debajo del plano de los AQC de Ag3. Este hecho se muestra, por ejemplo, mediante los isómeros de menor energía encontrados para la interacción de cinco, siete y nueve moléculas de oxígeno con los AQC de Ag3 (figura 8). Como consecuencia, un modelo adecuado para imitar la adsorción de metiltiol (MeSH) en los AQC de Ag3, en solución acuosa y en condiciones aeróbicas, fue la estructura a la izquierda de la figura 8, donde se adsorben tres moléculas de 02 en la posición del puente 1 ,2 y dos moléculas de 02 interaccionan libremente por debajo y por encima del plano de los AQC de Ag3. A partir de este modelo, MeSH se unió a uno de los átomos de Ag para imitar la adsorción en presencia de oxígeno. En las estructuras optimizadas, la energía de adsorción (EAd) de MeSH en los clústeres AQC de Ag3 se determinó mediante la siguiente ecuación:
EAd = E(Ag3/502/MeSH) - E (Ag3/502) - E(MeSH) Se ha encontrado la estructura de energía mínima, que se muestra en el recuadro de la figura 1 , para la cual, de hecho, la energía de adsorción es positiva, lo que indica que no es un sistema estable. En lo que se refiere a la estructura, tres moléculas de oxígeno permanecen unidas a dos átomos de Ag, mientras que MeSH y las otras dos moléculas de oxígeno interaccionan libremente con el clúster. Dicho resultado permite explicar la observación empírica de que los derivados de tiol no se unen a los AQC de Ag3. Cálculos similares realizados para clústeres más grandes (AQC de Ag(n), con n > 3 a n = 9) muestran que para dichos clústeres, a diferencia de los AQC de Ag3, se favorece la adsorción de derivados de tiol.
Detalles de cálculo
Para imitar la unión entre los AQC de Ag3 y los tioles en solución acuosa y en presencia de oxígeno molecular, se realizaron cálculos de DFT usando la B3LYP funcional. Se usó el conjunto de base 6-31 G (d, p) para los átomos de O, S, C y H, y se usó el conjunto de base de Lanl2dz para los átomos de Ag, como se comunicó recientemente para sistemas donde intervienen clústeres pequeños de Au (Corma y col., Nat Chem. 2013, 5: 775). La geometría de los sistemas considerados se optimizó completamente en presencia de un disolvente de agua implícito, usando el "modelo continuo polarizado tipo conductor" (Barone y Cossi, J. Phys. Chem. 1998, 102: 1995). Se realizaron cálculos de frecuencia de vibración dentro de la aproximación armónica para confirmar que la geometría optimizada representaba un mínimo en la superficie de energía potencial.
EJEMPLO 7: Inhibición por AQC de Ag3 de topoisomerasas humanas recombinantes
El efecto de los AQC de Ag3 en el desenrollamiento del ADN y el posterior alargamiento de la doble hélice es muy intenso (Buceta y col., 2015). Como consecuencia de la modificación topológica del ADN, los AQC de Ag3 inhiben la unión de proteínas específicas de la secuencia de ADN al ADN y la unión de proteínas de unión dependientes de la topología del ADN como topoisomerasa IV y ADN girasa bacterianas (Neissa y col. Chem. Sci. 2015, 6: 6717). Los inhibidores de las topoisomerasas humanas se usan actualmente como agentes anticancerosos (Pommier y col. Chem. Biol. 2010, 17: 421). Por lo tanto, se investigó si los AQC de Ag3 también afectan a las topoisomerasas I y II recombinantes humanas. La relajación de la Topo I humana y la desconcatenación de la Topo II humana en ensayos in vitro demostraron que esto era lo que sucedía, tal como se muestra en la figura 9.
EJEMPLO 8: Acción de los AQC de Ag3 en la desestabilización de nucleosoma individual
Inesperadamente, los AQC de Ag3 no presentaron citotoxicidad cuando se administraron a células de adenocarcinoma de pulmón humano A549 (por ejemplo, véase la figura 15c-e). El ADN eucariota se empaqueta en cromatina que presenta una barrera física que debe ser superada por los factores de unión al ADN (Skene y col. Bife 2014, 3: e02042). Por lo tanto, se consideró si la cromatina podría afectar la acción de los AQC de Ag3 las células eucariotas.
El nucleosoma es la unidad básica de la cromatina (Kornberg & Lorch, Ce// 2016, 98: 285). El ensamblaje del nucleosoma depende de la torsión en la molécula de ADN. La doxorrubicina (DOX) que modifica la torsión del ADN afecta a los nucleosomas (Yang y col. Curr. Biol. 2013, 23: 782 y Pang y col. Nat. Commun. 2013, 4: 1908). Por lo tanto, usando DOX como modelo, se investigó si los AQC de Ag3 afectan al ensamblaje del nucleosoma. Al igual que con DOX, los AQC de Ag3 fueron suficientes para disociar preparaciones de un solo nucleosoma (figura 10).
El estudio de los efectos de los AQC de Ag3 en preparaciones de un solo nucleosoma in vitro se basó en Pang y col. 2013. Las preparaciones de un solo nucleosoma se expusieron a los AQC de Ag3 y se analizaron por electroforesis.
Ensamblaje de un nucleosoma individual in vitro
Se obtuvieron preparaciones de un solo nucleosoma usando el kit de ensamblaje de nucleosoma Epimark (New England Biolabs, Ipswich, EE.UU.) siguiendo el protocolo de ensamblaje de dilución del fabricante.
Ensayo de desplazamiento de ge! Para el ensayo de desplazamiento de gel, se prepararon geles de poliacrilamida no desnaturalizantes al 5% usando tampón TBE. Después de una ejecución preliminar de 1 hora a 100 V, las reacciones que contenían nucleosomas se mezclaron con el tampón de carga de ADN y la electroforesis se realizó a 100 V durante 2 h. Los geles se tiñeron con bromuro de etidio para visualizar el ADN y la señal se capturó usando el sistema Gel Doc XR (Bio-Rad). Para detectar las histonas, los geles se tiñeron posteriormente con plata usando el kit de tinción PlusOne Silver (GE Healthcare Europe GmbH, Barcelona, España).
Análisis de datos
Los nucleosomas migraron más lentamente que el ADN libre en geles nativos, según se detectó mediante tinción con bromuro de etidio para el ADN (figura 10a, panel superior izquierdo) o mediante tinción con plata para histonas (figura 10a, panel inferior izquierdo). Las mismas muestras se analizaron mediante SDS-PAGE y se tiñeron con plata, lo que muestra que en todos los casos se cargaron cantidades iguales de histonas (figura 10a, panel derecho). La doxorrubicina (DOX), que se disociaba en los nucleosomas, y el etopósido, que no tiene efecto, se usaron como controles (Banerjee y col. FEBS Open Bio 2014, 4: 251). Los AQC de Ag3 fueron suficientes para disociar los nucleosomas (figura 10a). Además, el efecto de los AQC de Ag3 en la estabilidad del nucleosoma depende de la dosis (figura 10b).
EJEMPLO 9: Interacción entre las histonas del núcleo de octámeros y AQC de Ag3
Siguiendo el Ejemplo 8, se estudió la reacción entre el octámero de histonas y los AQC de Ag3 mediante mediciones de fluorescencia y dicroísmo circular (figuras 11, 12). Estos estudios indicaron que los AQC de Ag3 afectan al octámero de histonas al alterar la estructura secundaria del octámero y provocar su desagregación. Por lo tanto, se concluyó que los AQC de Ag3 afectan al ensamblaje del nucleosoma en un modelo in vitro.
Titulación de dicroísmo circular (CD) Los espectros de CD se registraron en un dicrógrafo Bio-Logic MOS-450 (Seyssinet- Pariset, Francia) usando células de longitud de trayectoria de 1 ,0 cm. Las titulaciones de CD se llevaron a cabo a 25°C mediante la adición de cantidades crecientes de AQC de Ag3 en la célula que contenía la solución de histona central (26,7 mM).
Titulación de fluorescencia
Los espectros de fluorescencia se registraron en un espectrómetro de fotoluminiscencia FLS980 (Edinburgh Instruments, Livingston, Reino Unido) a Aexc = 278 nm y Aem = 500 nm. Se añadieron microcantidades cada vez mayores de AQC de Ag3 directamente a la célula que contenía una solución de histona central de 13,4 pM.
Estudios cinéticos y termodinámicos
La reacción entre las histonas del núcleo de octámeros y los AQC de Ag3 se estudió mediante mediciones de fluorescencia y dicroísmo circular (CD) a pH 7,0 y en medios con tampón de fosfato. La figura 11 a muestra las curvas espectrales de fluorescencia registradas al añadir AQC de Ag3 a una solución de histonas (H) de 13,4 pM; se observa un efecto de enfriamiento debido a la formación del complejo AQC de Ag3/H según la ecuación (ec.) 1. La figura 11 b muestra la curva de titulación isotérmica decreciente registrada; la saturación se consigue para un contenido de AQC de Ag3 0,8 mM, correspondiente a la relación de concentración CAQC-A93/CH = 0,09. Esta alta afinidad de los AQC de Ag3 con la histona también se refleja en la gran constante de equilibrio, K = (2,4 ± 0,4) x 107 M 1 , obtenida ajustando la ec. 2 a los pares de datos isotérmicos:
Figure imgf000058_0001
ec. (1)
AF _ KÁ^Ag,}
C» í + g ec. (2)
Los resultados de fluorescencia fueron corroborados por los espectros de CD registrados. La figura 12a muestra la disminución en la elipticidad molar de las histonas del núcleo como consecuencia de la adición de AQC de Ag3. Los clústeres no mostraron ningún efecto de CD. El análisis del comportamiento observado a 220 nm (figura 12b) produce una isoterma que explica la formación del complejo AQC de Ag3/H. Los pares de datos fueron analizados con la ec. 2, sustituyendo AF por D[q] y Df por Dq. El valor obtenido, K = (7,5 ± 2, 1) x 106 M 1 , es solo un poco menor que el obtenido a partir de mediciones de fluorescencia. AF y D [Q] representan, respectivamente, el cambio en la fluorescencia y el dicroísmo circular molar durante la titulación. AF = F- fi-iCHy YH = F7CH, donde F° denota la fluorescencia de la solución de histonas pura. Se obtiene una primera estimación de Df = yA93/H - FH a partir de la amplitud de la curva de titulación. Los valores finales de Df y K se obtuvieron mediante un procedimiento iterativo. Se aplicó un procedimiento similar a D[Q] = [Q] - HCH, donde [Q] = 3.298,2 (£L - £R) (deg x cm2 x mol 1), siendo £i_y £R las absortividades de la luz polarizada circularmente a izquierdas y a derechas, respectivamente; H = [0]°/CH, siendo [q]° el valor de [Q] para la solución de histonas puras; y D0 = 0A93/H - 0H.
Este resultado revela que los AQC de Ag3 muestran un comportamiento dual; por un lado, se intercalan en el ADN y, por otro lado, interaccionan con las histonas. Esta característica es bastante rara cuando se trata de moléculas pequeñas. Resultó interesante comparar los AQC de Ag3 con los intercaladores reconocidos clásicos de bromuro de etidio (EB) y yoduro de propidio (IP) (Banerjee y col. 2014). La comparación de los AQC de Ag3 y EB resalta que las dos especies se intercalan en el ADN con constantes de afinidad cercanas, KEB/ADN = (1 ,4 ± 0,4) x 105 M_1 y KAoc de A93/ADN = (7,9 ± 0,7) x 104 M 1 (véase Meyer-Almes & Porschke, Biochemistry 1993, 32: 4246 y Buceta y col., 2015, respectivamente), las dos constantes obtenidas en condiciones similares mediante mediciones de flujo detenido. Con respecto a la interacción con histonas objeto de seguimiento por ITC y mediciones de fluorescencia, los autores de la invención calcularon las constantes de formación a 25°C para los complejos EB/octámero e IP/octámero, siendo KEB/octámero = 1 ,9 x 105 M 1 y Kir/octámero = 1 ,4 x 105 M 1 , con solo una diferencia insignificante entre los valores de fuerza iónica baja y alta. Estas constantes fueron dos órdenes de magnitud inferiores a las del sistema de AQC de Ag3/ octámero, lo que indica que la interacción con octámero podría ser de una naturaleza diferente. Al igual que con los AQC de Ag3, la fluorescencia mostrada por el octámero se inactivó al añadir EB e IP; sin embargo, la adición de EB al octámero (no mostrado con IP) no altera los espectros de CD del octámero, incluso en condiciones donde EB tiene un exceso de 12 veces con respecto a la histona, es decir, CEB/CH = 12. Dicho comportamiento se atribuyó al hecho de que EB no provoca ninguna perturbación de la estructura secundaria de las proteínas de histonas del octámero. La figura 12a revela fuertes variaciones en las curvas espectrales de CD de la histona causadas por la adición de cantidades muy pequeñas de AQC de Ag3, alcanzando la saturación para CAQC-A93/CH ¾ 0,02, lo que indica que el efecto de los AQC de Ag3 en el octámero es enorme. Por comparación con EB, se puede deducir que los AQC de Ag3 afectan al núcleo de las histonas mediante la alteración de la estructura secundaria del octámero y desagregándolo, probablemente debido a la alta afinidad de los AQC de Ag3 con los fragmentos formados.
EJEMPLO 10: Imágenes del efecto de los AQC de Ag3 en la organización de la cromatina
Para investigar si los resultados presentados en los Ejemplos 8 y 9 tienen un efecto similar en las células eucariotas, se realizó una STORM (microscopía de reconstrucción óptica estocástica) de superresolución en núcleos intactos de células proliferantes A549 para visualizar directamente el efecto de los AQC de Ag3 en la organización de la cromatina en A549. Al localizar la posición de fluoróforos individuales con precisión nanométrica en conjuntos de imágenes secuenciales, STORM puede proporcionar una resolución efectiva de alrededor de 20 nm (Rust y col. Nat. Methods 2006, 3: 793). Usando esta técnica, varios grupos de investigación han visualizado la complejidad y la organización de la cromatina en el nivel de una sola célula ( Zessin y col. J. Struct. Biol. 2012, 177: 344; Ricci y col. Cell 2015, 160: 1145; Lakadamyali y Cosma, FEBS Lett. 2015, 589: 3023; y Boettiger y col. HHS Public Access 2016, 529: 418). El ADN recientemente replicado marcado con EdU- AF6472 (figura 13a) se visualizó en presencia y ausencia de AQC de Ag3, así como en presencia de cationes de plata libres (AgNOs) como muestra en blanco (figura 13b-d). Las imágenes de STORM muestran un cambio sorprendente de la compactación de la cromatina tras la adición de AQC de Ag3. Mientras que en las células de control la cromatina está contenida en regiones altamente compactas (manchas grises) (figura 13b), la adición de AQC de Ag3 conduce a una descorrí pactación masiva de estas regiones (figura 13c). La cuantificación de las imágenes de STORM en múltiples células muestra que la cromatina ocupa un porcentaje mayor del área nuclear (figura 13e) y que la densidad de la cromatina disminuye como resultado del tratamiento con AQC de Ag3 (figura 13f), consistente con la descom pactación de la cromatina. Estas diferencias fueron específicas para el tratamiento con AQC de Ag3, ya que la muestra en blanco con cationes de plata no afectó a la compactación de la cromatina (figura 13d-f).
Preparación de la muestra mediante estudio de imagen STORM
Se colocaron 1 ,5 x 104 células A549 en una cámara de vidrio de cubierta Lab-tek de 8 pocilios (Nunc) y 24 horas más tarde, las células se sincronizaron en fase S mediante la adición de hidroxiurea 0,8 mM (H-8627, Sigma) al medio de cultivo. Después de una incubación durante toda la noche, las células se lavaron dos veces con medio sin suero y se incubaron con ACQ de Ag3 (55,61 ng/mL) o AgNÜ3 (5 mM) en medio sin suero durante 30 minutos. El medio se eliminó y se sustituyó por medio completo que contenía EdU (20 pM) durante 2 horas. A continuación se fijaron las células y se permeabilizaron con solución de metanol-acetona (1 : 1) a 20°C durante 10 minutos y se bloquearon (BSA al 3% + Tritón X-100 al 0,01 %) durante 1 hora a TA. Finalmente, se lavaron las células tres veces con PBS y se tiñeron con Alexa Fluor 647 siguiendo las instrucciones proporcionadas por el fabricante (Click-iT® EdU Alexa Fluor® 488 Imaging Kit, Thermo Fisher Scientific).
Imágenes STORM
Se tomaron imágenes de la cromatina usando un sistema de microscopio comercial de Nikon Instruments (NSTORM). En primer lugar, se usó luz láser de 647 nm a una densidad de potencia máxima durante 15 minutos para llevar a la gran mayoría de las moléculas de AlexaFluor647 unidas a EdU al estado oscuro. Posteriormente, se adquirieron secuencias de imágenes de 50.000 fotogramas usando excitación láser continua de 647 nm para excitar directamente AlexaFluor647 y, al mismo tiempo, se usó luz láser de 405 nm (5%, 30 pW) para reactivar el colorante en un estado fluorescente (dSTORM). La obtención de imágenes se realizó usando un tampón de imágenes descrito anteriormente (Cysteamine MEA [SigmaAldrich, # 30070-50G], Glox Solution: 0,5 mg/mL de glucosa oxidasa, 40 mg/mL de catalasa [todo Sigma], glucosa al 10% en PBS), véase Bates y col. Science 2007, 317: 1749. Se tomaron imágenes representativas de núcleos que contenían EdU fluorescente usando microscopía convencional y superresolución STORM. En las imágenes de microscopía convencional (figura 13a), el cuadrado representa el tamaño y la ubicación típica de las imágenes con aumento para la obtención de imágenes STORM. En las imágenes STORM reconstruidas, los puntos magenta representan localizaciones x-y individuales, mientras que las áreas oscuras corresponden a regiones sin cromatina. Todas las imágenes tienen un tamaño de 50 pm2 y representan aproximadamente 1/3 del núcleo, como muestra el cuadrado amarillo en la figura 13a, y contienen el mismo número de localizaciones que permiten una determinación visual fiable de las diferencias en la accesibilidad de la cromatina.
Análisis de datos
Las imágenes STORM se analizaron y reprodujeron tal como se describió anteriormente en Bates y col. 2007. Brevemente, las manchas en las imágenes de una sola molécula se identificaron en función de un umbral y se ajustaron a una gaussiana para identificar su posición en x e y. La aplicación de este enfoque en las 50.000 tramas produce los datos de STORM sin procesar, que consisten en una lista de coordenadas x-y, correspondientes a las posiciones localizadas de todos los fluoróforos. Las imágenes reconstruidas a partir de las coordenadas x-y se mostraron usando Insight3, después de la corrección de deriva.
Dado que la densidad de etiquetado de la EdU fue muy alta, todas las imágenes se normalizaron aproximadamente para el mismo número de localizaciones por pm2 del núcleo, variando el número de tramas usadas en la imagen reconstruida final. A continuación se calculó el porcentaje de píxeles no nulos de las imágenes reconstruidas en ImageJ, y también se calculó el porcentaje del área nuclear cubierta por EdU. La densidad de cromatina por pm2 se extrajo dividiendo el número de localizaciones (igual para cada núcleo registrado) sobre el área cubierta de cromatina.
EJEMPLO 11 : Investigación del efecto de los AQC de Ag3 usando el ensayo de accesibilidad de cromatina Se usó un enfoque de nucleasa hipersensible (Gross & Garrard, Annu. Rev. Biochem. 1988, 57: 159) en combinación con un ensayo de PCR en tiempo real (qPCR) (Rao y col. J. Immunol. 2001 , 167: 4494) en la región del gen de limpieza, GAPDH, para explorar más a fondo si los AQC de Ag3 tienen un efecto no solo en las células sino también en los organismos multicelulares. La presencia de nucleosomas puede identificarse según la accesibilidad del ADN a las nucleasas exógenas (Kornberg y Lorch 2016). El ADN, protegido por el nucleosoma, es inaccesible para las nucleasas exógenas y está disponible para la posterior amplificación de la qPCR con cambios significativos en el ciclo umbral (Ct) entre las muestras digeridas y no digeridas; Ct es una medida relativa de la concentración de la diana en la reacción de qPCR. En contraste, el ADN que se encuentra fuera del nucleosoma es accesible para las nucleasas y es susceptible de digestión; este ADN no está disponible para qPCR, con un gran cambio de Ct entre muestras digeridas y no digeridas. En la figura 14a se describe un diagrama esquemático del enfoque experimental adoptado. Las células en proliferación A549 presentaron una mayor accesibilidad de la cromatina a las nucleasas externas, como se muestra por el cambio de Ct entre las células tratadas y las no tratadas (figura 14b). También se evaluó la diferencia en Ct (ACt) entre las muestras de ADN digeridas con nucleasa frente a las no digeridas de las células tratadas con AQC de Ag3 y las células de control. Cuando las muestras no se digirieron, las células y los controles tratados con AQC de Ag3 tenían valores de Ct similares; después de la digestión, las células tratadas con AQC de Ag3 tuvieron valores de Ct significativamente más altos, incrementando el ACt (figura 14b) y apoyando la opinión de que los AQC de Ag3 indujeron la descompactación de la cromatina y facilitaron así la digestión con nucleasas. Por otra parte, el enfoque hipersensible de nucleasa y las imágenes de STORM dieron resultados compatibles que apoyan el enfoque hipersensible de nucleasa como un procedimiento válido para estudiar la organización de la cromatina.
Debido a las alteraciones en todo el genoma de la estructura de la cromatina que se producen durante la replicación del ADN (Groth y col. Cell 2007, 128: 721), se investigó si los efectos de los AQC de Ag3 se vieron afectados por la replicación. Con ese fin, los experimentos se repitieron en células que fueron privadas de suero durante 72 horas para detenerlas antes de la fase S del ciclo celular. En particular, las diferencias encontradas entre las células tratadas con AQC de Ag3 y las no tratadas desaparecieron (figura 14c), lo que indica que la mejora de la accesibilidad a la cromatina mediada por AQC de Ag3 está restringida a las células en proliferación (para una discusión más detallada, véase el Ejemplo 13).
Para explorar la acción de los AQC de Ag3 en ratones, se razonó que si las células en proliferación activa mostraban una mayor accesibilidad a la cromatina después del tratamiento con AQC de Ag3, los AQC de Ag3 serían más activos en los tumores que en los tejidos normales, cuyas células son en su mayoría quiescentes. Para examinar esta posibilidad, se indujo un tumor de pulmón ortotópico en ratones y se sometió a ensayo la accesibilidad de la cromatina en un tumor de pulmón y muestras de riñón 24 horas después de la administración de AQC de Ag3. En particular, la accesibilidad a la cromatina aumentó significativamente después del tratamiento en muestras de tumores (figura 14d), pero no en los riñones (figura 14e).
EJEMPLO 12: Combinación de AQC de Ag3 y cisplatino
Para confirmar los efectos de los AQC de Ag3 en la accesibilidad de la cromatina, se usó un enfoque experimental diferente. Se estudió el efecto de la coadministración de AQC de Ag3 con cisplatino (CDDP). Solo alrededor del 1 % de CDDP intracelular se une al ADN nuclear (González y col. Mol. Pharmacol. 2001 , 59: 657), lo que sugiere baja accesibilidad. Por lo tanto, se razonó que el efecto de los AQC de Ag3 en la accesibilidad de la cromatina podría usarse para aumentar la unión de CDDP al ADN. Se encontró que la coadministración de AQC de Ag3 aumentó la cantidad de CDDP unida al ADN en células A549 en aproximadamente tres veces (figura 15a). Además, este efecto estuvo presente en las células en proliferación, pero no en las células que no proliferan en el suero y no en proliferación (figura 15a), lo que implica que está mediado por un aumento en la accesibilidad de la cromatina, que a su vez está mediado por los AQC de Ag3. De forma interesante, el DOX, que induce el desalojo de histonas, no incrementó la unión de CDDP al ADN (figura 15a).
El efecto de los AQC de Ag3 en el aumento de CDDP unido al ADN se confirmó en otras líneas celulares humanas, incluido el glioblastoma (U87) y el adenocarcinoma de mama (MCF7) (figura 16).
El efecto de los AQC de Ag3 también se investigó en animales portadores de un tumor de pulmón. Se comparó el efecto de administrar CDDP solo o coadministrado con AQC de Ag3, en la cantidad de CDDP unido al ADN en el pulmón (que contiene el tumor) y en otros órganos del ratón (seleccionados por ser objetivos potenciales de efectos secundarios no deseados del CDDP). Una sola administración de CDDP en combinación con AQC de Ag3 a ratones portadores de tumores, cuando se comparó con la administración de la misma dosis de CDDP en solitario, aumentó la cantidad de CDDP unida al ADN en un factor de 5,5 solo en el pulmón, sin afectar a la cantidad de CDDP unida al ADN en los otros órganos (figura 15b).
Aunque el CDDP ejerce efectos anticancerosos a través de una vía de señalización entrelazada (Galluzzi y col. Cell Death Dis. 2014, 5: e1257, y Galluzzi y col. Oncogene 2012, 31 : 1869), la unión al ADN todavía se considera el principal mecanismo responsable de la muerte de las células tumorales (Hall y col. Annu. Rev. Pharmacol. Toxico!. 2008, 48: 495). Para verificar si la coadministración de AQC de Ag y CDDP tuvo un efecto en la muerte celular, se evaluó la viabilidad celular y se encontró que se vio afectada de manera diferente cuando se administró CDDP en solitario o con AQC de Ag3 en células en proliferación (figura 15c), pero no en las células no proliferantes y privadas de suero (figura 15d). Este resultado indica que la acción de los AQC de Ag3 está mediada por una mejor accesibilidad de la cromatina a CDDP. Además, las acciones de los AQC de Ag3 son específicas del ciclo celular y dependen de la concentración de CDDP (véase también el Ejemplo 13 y la figura 17).
La ausencia de efectos de los AQC de Ag3 en la expresión génica y el daño en el ADN (véanse los Ejemplos 15 y 16) podrían ser consecuencia del efecto de corta duración de los AQC de Ag3 dentro de la célula. Por desgracia, no se dispone de tecnología que permita la cuantificación de los AQC de Ag3 en muestras biológicas, lo que excluye los estudios de farmacocinética, pero la duración del efecto de los AQC de Ag3 se puede estimar indirectamente usando una mayor accesibilidad de la cromatina a CDDP como un marcador sustituto del efecto de los AQC de Ag3. Los AQC de Ag3 incrementaron la incorporación de CDDP en el ADN cuando se administraron CDDP y AQC de Ag3 simultáneamente, pero no cuando la administración de CDDP se retrasó 24 horas después de la administración de los AQC de Ag3, lo que indica que el efecto de los AQC de Ag3 es transitorio (figura 18). Se obtuvieron resultados similares cuando se usó la viabilidad celular como punto final, en lugar de CDDP unido al ADN (figura 15e). Por lo tanto, se puede concluir que la acción de los AQC de Ag3 dentro de la célula fue transitoria.
EJEMPLO 13: Las acciones de los AQC de Ag3 son específicas del ciclo celular y dependen de la concentración de CDDP
Dos razones complementarias pueden explicar que los AQC de Ag3 aumentan la mortalidad de solo una fracción de las células cuando se administran con CDDP (figura 15c). Una depende de la cantidad de CDDP presente dentro de la célula. La mortalidad de las células dependerá de los niveles intracelulares de CDDP; en consecuencia, las celdas se pueden encontrar distribuidas en tres grupos: 1) células que tienen suficiente CDDP para morir independientemente de la presencia de AQC de Ag3; 2) células con niveles intermedios de CDDP que morirán únicamente en presencia de AQC de Ag3; y 3) células con niveles muy bajos de CDDP que sobrevivirán de cualquier manera. La otra razón se basa en que los AQC de Ag3 actúan solo en una fase del ciclo celular, en este caso la fase S. Solo aquellas células que están en la fase correcta se beneficiarán del tratamiento con AQC de Ag3. Para verificar estas dos explicaciones, se suministraron concentraciones de CDDP en solitario o con AQC de Ag3 a células A549 proliferantes y no proliferantes. Tal como se muestra, las células no proliferantes no se benefician de los AQC de Ag3 y el efecto de los AQC de Ag3 es más intenso con dosis más altas de CDDP (véanse las figuras 17a-c), lo que apoya que las acciones de los AQC de Ag3 sean específicas del ciclo celular y dependan de la concentración de CDDP.
Los resultados indican claramente que el efecto de los AQC de Ag3 en el acceso a la cromatina depende de las etapas del ciclo celular; de hecho, está restringido a la fase S. Este efecto se explica simplemente por la acción directa de los AQC de Ag3 en los nucleosomas. Durante la replicación del ADN, cada nucleosoma a través del genoma debe ser interrumpido y reformado cuando pasa la horquilla de replicación (Rhind y Gilbert, Coid Spring Harb. Perspect. Biol. 2013, a010132). Por lo tanto, como se indica en Lucchini y col. EMBO J. 2001 , 20: 7294, se abre una "ventana de oportunidad" después del paso de la horquilla de replicación y persiste hasta la deposición del primer nucleosoma posicionado, donde el ADN está libre de nucleosomas. Se especuló con la idea de que los AQC de Ag3 amplían la ventana temporal cuando el ADN está libre de nucleosomas, lo que facilita la unión de los fármacos de unión al ADN. Esta hipótesis se basa en el hecho de que el ensamblaje del nucleosoma depende de la torsión en la molécula de ADN (Gupta y col. Biophys. J. 2009, 97: 3150, y Yang y col. Biochim. Biophys. Acta. 2014, 1845: 84). Por lo tanto, la ampliación y la posterior distorsión del ADN causada por la intercalación de los AQC de Ag3, así como la interacción con las histonas del núcleo, afectan al ensamblaje del nucleosoma, retrasando su deposición. Al interrumpir el ensamblaje de la cromatina, el complejo del factor I (un complejo nuclear que ensambla los tetrámeros de histonas en el ADN replicante), la colocación del nucleosoma alrededor de los promotores no está alterada, pero las posiciones del nucleosoma en la cromatina recién replicada se ven afectadas de forma espectacular (Ramachandran y Henikoff, Cell 2016, 165, 580). En conjunto, los datos actuales indican que los nucleosomas cerca de los orígenes de replicación son los objetivos de los AQC de Ag3, y que la acción de los AQC de Ag3 se limita a la fase S del ciclo celular.
EJEMPLO 14: Efecto de los AQC en otros fármacos que actúan sobre el ADN
Se argumentó que el efecto de los AQC de Ag3 sobre la accesibilidad de la cromatina podría beneficiar a otros fármacos que actúan sobre el ADN. Para este fin, se probaron medicamentos relacionados con el CDDP, como el oxaliplatino (OXA) y el carboplatino (CBDCA), y se encontró que los AQC de Ag3 también aumentaron su citotoxicidad (figura 17d, 19a, b). Otros medicamentos contra el cáncer que pueden interaccionar con el ADN, como la carmustina (BCNU) y la doxorrubicina (DOX), también se vieron afectados (figura 19d, e). Además, la fluorescencia de DOX se usó para confirmar que los AQC de Ag3 aumentaron la acumulación de DOX en los núcleos, lo que respalda la observación de que la coadministración de AQC de Ag3 mejora la accesibilidad del fármaco al ADN (figura 19f).
De forma interesante, la gemcitabina (GEM), un análogo de nucleósido incorporado en las cadenas de ADN en crecimiento, mostró un mayor efecto en la muerte celular cuando se administró junto con AQC de Ag3 (figura 19c), lo que apoya que los AQC de Ag3 estén actuando en la proximidad de los focos de replicación para facilitar la incorporación de GEM en el ADN recién sintetizado.
EJEMPLO 15: Análisis de la expresión génica
Las perturbaciones del ensamblaje de los nucleosomas y su dinámica han conducido a defectos en la función del genoma, incluida la expresión de genes aberrantes (Gross y Garrard, 1988). Por lo tanto, una preocupación imperativa era saber si los AQC de Ag3 afectan a la expresión génica. Con este fin, se realizó un análisis de micromatrices de alta densidad para medir los niveles de expresión génica a las 0, 4 y 24 horas después del tratamiento con AQC de Ag3 (consúltense las secciones de Materiales). No se encontraron diferencias significativas en la expresión génica individual, ya sea entre grupos tratados y no tratados o entre los mismos grupos en diferentes momentos (la significación se designó cuando el valor p de FDR (tasa de descubrimiento falso) era < 0,05). En resumen, estos resultados indican que los AQC de Ag3 no afectan significativamente a la expresión génica.
EJEMPLO 16: Análisis de daños en el ADN
La pregunta sigue siendo si los AQC de Ag3 pueden causar daños en el ADN. Para explorar esta posibilidad se investigó si los AQC de Ag3 dentro de las células podrían inducir roturas de la cadena de ADN. Para ese propósito, se usó citometría de flujo para evaluar el efecto de los AQC de Ag3 en la expresión de la histona H2AX fosforilada (pH2AX), un marcador de daño en el ADN (Sharma y col., en DNA Repair Protocol (Ed: L. Bjergbask), Springer Science, Nueva York, 2012, cap. 40). Los AQC de Ag3 no aumentaron el valor de pH2AX sobre los niveles de control (figura 20a), pero, tal como se describe para DOX (Pang y col. 2013), se observó que los AQC de Ag3 podría inducir el desalojo de pH2AX, enmascarando así el efecto de daños en el ADN. Para verificar que no sucedía esto, se administraron conjuntamente AQC de Ag3 con etopósido, un agente dañino del ADN bien caracterizado (Pommier y col. 2010). La expresión de pH2AX resultante se evaluó sin encontrar que los AQC de Ag3 disminuyeran la expresión de pH2AX (figura 20a). Por lo tanto, la ausencia de un efecto de los AQC de Ag3 en la expresión de pH2AX no se debe a un mayor desalojo de pH2AX sino a la ausencia de daño en el ADN. Usando un ensayo cometa de ADN (Collins, Mol. Biotechnol. 2004, 26: 249), un procedimiento diferente para evaluar el daño en el ADN, se encontró que los AQC de Ag3 no tienen ningún efecto en el daño en el ADN (figura 20b).
EJEMPLO 17: Eficacia anticancerosa in vivo.
Para determinar la eficacia anticancerosa in vivo se evaluó la efectividad de los AQC de Ag3 en un modelo de cáncer de pulmón ortotópico A549. El crecimiento del tumor se observó in vivo midiendo la bioluminiscencia de las células tumorales desde el momento de la inyección de las células tumorales hasta 37 días después de la inyección. Los animales de control mostraron un crecimiento tumoral gradual hasta el final del experimento. El CDDP (4 mg/kg) inyectado por vía intravenosa en la vena caudal redujo significativamente el crecimiento de tumores; la coadministración con AQC de Ag3 (0,01 mg/kg) potenció este efecto (figura 21 a). Merece reseñarse que los AQC de Ag3 no afectaron al peso corporal de los animales (figura 21 b), excluyendo así la toxicidad grave e indicando que los clústeres no aumentaron la toxicidad de CDDP cuando se coadministraron. A los 37 días, se sacrificó a los animales, se extrajo la proteína de los pulmones y los ganglios mediastínicos, y se midió la actividad luciferasa, solo presente en las células tumorales. El CDDP redujo significativamente los niveles de luciferasa de los ganglios pulmonares y mediastínicos en comparación con el grupo de control. Nuevamente, la coadministración de CDDP con AQC de Ag3 tuvo el efecto más intenso (figura 21c). Los pulmones de ratón se tiñeron con un anticuerpo monoclonal contra una citoqueratina humana. Sólo se tiñeron células tumorales A549 de origen humano (figura 21 d). En particular, la coadministración de CDDP con AQC de Ag3 tuvo el mayor efecto en la reducción del tamaño de los focos tumorales, confirmando los hallazgos relacionados con los niveles de luciferasa.
Todas las patentes y solicitudes de patente a las que se hace referencia en la presente memoria se incorporan como referencia en su totalidad. Además, todas las realizaciones descritas en la presente memoria pueden aplicarse a todos los aspectos de la invención.

Claims

REIVINDICACIONES
1. Un proceso de purificación de clústeres cuánticos atómicos (AQC) que consisten en 3 o menos átomos de metales de transición de valencia cero que comprenden:
(i) la aplicación de una solución que comprende una mezcla de AQC a un medio de separación, donde dicho medio de separación se une a AQC que consisten en más de 3 átomos de metales de transición de valencia cero o se une a AQC que consisten en 3 o menos átomos de metales de transición de valencia cero; y
(ii) el aislamiento de los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero.
2. El proceso según la reivindicación 1 que es un procedimiento cromatográfico donde el medio de separación es la fase sólida y la solución que comprende una mezcla de AQC es la fase móvil.
3. El proceso según la reivindicación 1 ó 2, donde el medio de separación se une a los AQC que consisten en más de 3 átomos de metales de transición de valencia cero y el proceso comprende el aislamiento de los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero de la solución no unida.
4. El proceso según una cualquiera de las reivindicaciones 1 a 3, donde el medio de separación comprende un grupo funcional que se une a los AQC que consisten en más de 3 átomos de metales de transición de valencia cero.
5. El proceso según la reivindicación 4, donde el grupo funcional es un grupo tiol.
6. El proceso según una cualquiera de las reivindicaciones 1 a 5, donde el medio de separación comprende una resina tiolada, tal como sílice tiolada.
7. El proceso según una cualquiera de las reivindicaciones 1 a 6, que comprende además la aplicación de los AQC aislados que consisten en 3 o menos átomos de metales de transición de valencia cero a un segundo medio de separación y el aislamiento de los AQC que consisten en 3 átomos de metales de transición de valencia cero.
8. El proceso según la reivindicación 7, donde el segundo medio de separación comprende un grupo funcional que se une a AQC que consiste en 3 átomos de metales de transición de valencia cero.
9. El proceso según la reivindicación 7, donde el grupo funcional es un grupo aromático, tal como piridina o benceno.
10. El proceso según la reivindicación 7, donde el segundo medio de separación comprende ADN bicatenario.
11. El proceso según una cualquiera de las reivindicaciones 7 a 10, donde AQC que consisten en 3 átomos de metales de transición de valencia cero se aíslan calentando el segundo medio de separación para liberar AQC que consisten en 3 átomos de metales de transición de valencia cero y aplicando una solución de lavado para aislar los AQC que consisten en 3 átomos de metales de transición de valencia cero liberados a partir del segundo medio de separación, por ejemplo por cromatografía o diálisis.
12. El proceso según la reivindicación 1 ó 2, donde el medio de separación se une a los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero y el proceso comprende descartar los AQC que consisten en más de 3 átomos de metales de transición de valencia cero en la solución no unida y aislar los AQC que consisten en 3 o menos átomos de metales de transición de valencia cero del medio de separación.
13. El proceso según la reivindicación 12, donde el medio de separación comprende un grupo funcional que se une a AQC que consisten en 3 o menos átomos de metales de transición de valencia cero.
14. El proceso según la reivindicación 12, donde el medio de separación comprende ADN bicatenario.
15. El proceso según la reivindicación 14, que comprende la aplicación de una solución de lavado para eliminar los AQC que consisten en menos de 3 átomos de metales de transición de valencia cero, de manera que solo los AQC que consisten en 3 átomos de metales de transición de valencia cero están unidos por el medio de separación.
16. El proceso según la reivindicación 14 ó 15, que comprende el aislamiento por un proceso que comprende la desnaturalización del ADN para liberar AQC que consisten en 3 átomos de metales de transición de valencia cero.
17. El proceso según la reivindicación 16, que comprende la aplicación de una segunda solución de lavado para aislar los AQC que consisten en 3 átomos de metales de transición de valencia cero liberados a partir del ADN desnaturalizado, por ejemplo mediante diálisis.
18. El proceso según una cualquiera de las reivindicaciones 1 a 17, donde los átomos metálicos se seleccionan de entre Ag, Au, Cu, Pt, Fe, Cr, Pd, Ni, Rh, Pb, Ir, Ru, Os, Co, Ti, V o cualquier combinación de los mismos.
19. El proceso según la reivindicación 18, donde los átomos metálicos se seleccionan de entre Ag, Au, Cu, Pt o cualquier combinación de los mismos.
20. El proceso según la reivindicación 18 ó 19, donde los átomos metálicos son Ag.
21. Una composición purificada por el proceso según una cualquiera de las reivindicaciones 1 a 20, que está sustancialmente libre de AQC que consisten en más de 3 átomos de metales de transición de valencia cero.
22. Una composición que comprende clústeres cuánticos atómicos (AQC) que consisten en 3 átomos o menos de metales de transición de valencia cero, que está sustancialmente libre de AQC que consisten en más de 3 átomos de metales de transición de valencia cero.
23. La composición según la reivindicación 21 ó 22, que está sustancialmente libre de AQC que consisten en 2 átomos de metales de transición de valencia cero.
24. Una composición según una cualquiera de las reivindicaciones 21 a 23, en combinación con un agente antiproliferativo para el uso en el tratamiento de un trastorno de proliferación celular.
25. La composición para su uso según la reivindicación 24, donde el trastorno de proliferación celular es un tumor y/o cáncer.
26. La composición para su uso según la reivindicación 25, donde el cáncer se selecciona de entre cáncer de pulmón, de mama, de colon o cerebral.
27. Una composición según una cualquiera de las reivindicaciones 21 ó 23, opcionalmente en combinación con un agente antiproliferativo, para su uso en la prevención de metástasis cancerosa de ganglios linfáticos.
28. Una composición según una cualquiera de las reivindicaciones 21 a 23, opcionalmente en combinación con un agente antiproliferativo, para su uso en el tratamiento de una metástasis cancerosa de ganglios linfáticos.
29. La composición para su uso según una cualquiera de las reivindicaciones 24 a 28, donde el agente antiproliferativo se selecciona de entre fármacos de unión a ADN, fármacos de intercalación de ADN, agentes de alquilación y análogos de nucleósidos.
30. La composición para su uso según la reivindicación 29, donde el agente antiproliferativo se selecciona de entre cisplatino, oxaliplatino, carboplatino, carmustina y doxorrubicina.
31. La composición para su uso según la reivindicación 29, donde el agente antiproliferativo es gemcitabina.
32. La composición para su uso según una cualquiera de las reivindicaciones 24 a 31 , donde la composición y el agente antiproliferativo se administran simultáneamente.
33. La composición para su uso según una cualquiera de las reivindicaciones 24 a 31 , donde la composición y el agente antiproliferativo se administran en secuencia.
34. Una composición según una cualquiera de las reivindicaciones 21 a 33, en combinación con radioterapia para su uso en el tratamiento de un trastorno de proliferación celular.
PCT/ES2019/070403 2018-06-12 2019-06-11 Procedimientos de preparación de clústeres cuánticos atómicos purificados WO2019238995A1 (es)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2020569110A JP7461894B2 (ja) 2018-06-12 2019-06-11 精製された原子量子クラスターの調製方法
US17/057,677 US20210197256A1 (en) 2018-06-12 2019-06-11 Methods of preparing purified atomic quantum clusters
AU2019286811A AU2019286811A1 (en) 2018-06-12 2019-06-11 Methods of preparing purified atomic quantum clusters
EP19736768.3A EP3808474A1 (en) 2018-06-12 2019-06-11 Methods of preparing purified atomic quantum clusters
BR112020024948-3A BR112020024948A2 (pt) 2018-06-12 2019-06-11 Procedimentos de preparação de agrupamentos quânticos atômicos purificados
KR1020207035857A KR20210021306A (ko) 2018-06-12 2019-06-11 정제된 원자 양자 클러스터를 제조하는 방법
CA3103328A CA3103328A1 (en) 2018-06-12 2019-06-11 Methods of preparing purified atomic quantum clusters
CN201980038870.9A CN112262005B (zh) 2018-06-12 2019-06-11 制备纯化的原子量子簇的方法
IL278981A IL278981A (en) 2018-06-12 2020-11-25 Methods for preparing the purified quantum atomic clusters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18177210.4 2018-06-12
EP18177210 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019238995A1 true WO2019238995A1 (es) 2019-12-19

Family

ID=62620721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070403 WO2019238995A1 (es) 2018-06-12 2019-06-11 Procedimientos de preparación de clústeres cuánticos atómicos purificados

Country Status (10)

Country Link
US (1) US20210197256A1 (es)
EP (1) EP3808474A1 (es)
JP (1) JP7461894B2 (es)
KR (1) KR20210021306A (es)
CN (1) CN112262005B (es)
AU (1) AU2019286811A1 (es)
BR (1) BR112020024948A2 (es)
CA (1) CA3103328A1 (es)
IL (1) IL278981A (es)
WO (1) WO2019238995A1 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914196A1 (en) 2005-08-03 2008-04-23 Universidade De Santiago De Compostela Stable atomic quantum clusters, production method thereof and use of same
WO2012059572A1 (en) 2010-11-05 2012-05-10 Universidade De Santiago De Compostela COMBINATION OF ATOMIC QUANTUM CLUSTERS (AQCs) AND ANTINEOPLASIC DRUGS, AND ITS USE IN THE PREVENTION AND/OR TREATMENT OF CELL PROLIFERATIVE DISORDERS

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893104B2 (en) * 2007-03-01 2011-02-22 Jong-Min Lee Process for synthesizing silver-silica particles and applications
WO2013061109A1 (en) * 2011-10-28 2013-05-02 Indian Institute Of Technology Madras Methods of preparing metal quantum clusters in molecular confinement
JP2014008499A (ja) * 2012-07-03 2014-01-20 Toyota Central R&D Labs Inc 排ガス浄化用触媒及びその製造方法
US9683992B2 (en) * 2013-07-31 2017-06-20 Colorado State University Research Foundation Ligand passivated gold nanoparticles
CN104588645B (zh) * 2015-02-04 2016-08-24 山西大学 一种具有抗菌活性的银纳米团簇合物及其制备方法
CN106862584A (zh) * 2015-12-13 2017-06-20 中国科学院大连化学物理研究所 一种原子个数及粒子尺寸可控银纳米簇的合成方法
JP6683571B2 (ja) * 2016-08-10 2020-04-22 トヨタ自動車株式会社 排ガス浄化触媒

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914196A1 (en) 2005-08-03 2008-04-23 Universidade De Santiago De Compostela Stable atomic quantum clusters, production method thereof and use of same
WO2012059572A1 (en) 2010-11-05 2012-05-10 Universidade De Santiago De Compostela COMBINATION OF ATOMIC QUANTUM CLUSTERS (AQCs) AND ANTINEOPLASIC DRUGS, AND ITS USE IN THE PREVENTION AND/OR TREATMENT OF CELL PROLIFERATIVE DISORDERS
EP2457572A1 (en) 2010-11-05 2012-05-30 Universidade De Santiago De Compostela Use of atomic quantum clusters (aqcs) in the prevention of cell proliferative disorders, viral infections and autoimmune diseases

Non-Patent Citations (49)

* Cited by examiner, † Cited by third party
Title
AKOLA, PROC. NATL. ACAD. SCI., vol. 105, 2008, pages 9157
ATTIA, J. AM. CHEM. SOC., vol. 136, 2014, pages 1182
BANERJEE, FEBS OPEN BIO, vol. 4, 2014, pages 251
BARONECOSSI, J. PHYS. CHEM., vol. 102, no. 1995, 1998
BATES, SCIENCE, vol. 317, 2007, pages 1749
BOETTIGER, HHS PUBLIC ACCESS, vol. 529, 2016, pages 418
BORRAJO, J. CONTROL. RELEASE, vol. 238, 2016, pages 263
BUCETA, ANGEW. CHEMIE INT. ED., vol. 54, 2015, pages 7612
CHEUNG-ONG, CHEM. BIOL., vol. 20, 2013, pages 648
COLLINS, MOL. BIOTECHNOL., vol. 26, 2004, pages 249
COMENGE, PLOS ONE, vol. 7, 2012, pages e47562
CORMA, NAT CHEM., vol. 5, 2013, pages 775
CUI, CANCER RES. TREAT., vol. 38, 2006, pages 234
DAVEY, NATURE COMM., vol. 8, 2017, pages 1575
DAVID BUCETA ET AL: "Ag 2 and Ag 3 Clusters: Synthesis, Characterization, and Interaction with DNA", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 54, no. 26, 22 June 2015 (2015-06-22), DE, pages 7612 - 7616, XP055534296, ISSN: 1433-7851, DOI: 10.1002/anie.201502917 *
GALLUZZI, CELL DEATH DIS., vol. 5, 2014, pages e1257
GALLUZZI, ONCOGENE, vol. 31, 2012, pages 1869
GONZALEZ, MOL. PHARMACOL., vol. 59, 2001, pages 657
GONZALEZ, NANOSCALE, vol. 4, 2012, pages 7632
GROSSGARRARD, ANNU. REV. BIOCHEM., vol. 57, 1988, pages 159
GROTH, CELL, vol. 128, 2007, pages 721
GUPTA, BIOPHYS. J., vol. 97, 2009, pages 3150
GUROVA, FUTURE ONCOL., vol. 5, 2009, pages 1685
HALL, ANNU. REV. PHARMACOL. TOXICOL., vol. 48, 2008, pages 495
HUSEYINOVA, J. PHYS. CHEM., vol. 104, 2000, pages 2630
HUSEYINOVA, J. PHYS. CHEM., vol. 120, 2016, pages 15902
KELLAND, NAT. REV. CANCER, vol. 7, 2007, pages 573
LAKADAMYALICOSMA, FEBS LETT., vol. 589, 2015, pages 3023
LEE, J. PHYS. CHEM., vol. 107, 2003, pages 9994
LIN, ACS NANO, vol. 3, 2009, pages 395
LUCCHINI, EMBO J., vol. 20, 2001, pages 7294
LUCHEN, ANAL. CHEM., vol. 87, 2015, pages 10659
MEYER-ALMESPORSCHKE, BIOCHEMISTRY, vol. 32, 1993, pages 4246
MUSLIMOVIC, NAT. PROTOC., vol. 3, 2008, pages 1187
NEISSA, CHEM. SCI., vol. 6, 2015, pages 6717
PALERMO, CHEM. MED. CHEM., vol. 11, 2016, pages 1199
PANG, NAT. COMMUN., vol. 4, 2013, pages 1908
PHILIP, NANO LETT., vol. 12, 2012, pages 4661
POMMIER, CHEM. BIOL., vol. 17, 2010, pages 421
RAMACHANDRANHENIKOFF, CELL, vol. 165, 2016, pages 580
RAO, J. IMMUNOL., vol. 167, 2001, pages 4494
RHINDGILBERT, COLD SPRING HARB. PERSPECT. BIOL., 2013, pages a010132
RICCI, CELL, vol. 160, 2015, pages 1145
RUST, NAT. METHODS, vol. 3, 2006, pages 793
SHARMA: "DNA Repair Protocol", 2012, SPRINGER SCIENCE
SKENE, ELIFE, vol. 3, 2014, pages e02042
YANG, BIOCHIM. BIOPHYS. ACTA., vol. 1845, 2014, pages 84
YANG, CURR. BIOL., vol. 23, 2013, pages 782
ZESSIN, J. STRUCT. BIOL., vol. 177, 2012, pages 344

Also Published As

Publication number Publication date
AU2019286811A1 (en) 2020-12-17
KR20210021306A (ko) 2021-02-25
EP3808474A1 (en) 2021-04-21
CN112262005B (zh) 2023-08-22
CA3103328A1 (en) 2019-12-19
JP7461894B2 (ja) 2024-04-04
CN112262005A (zh) 2021-01-22
BR112020024948A2 (pt) 2021-03-09
US20210197256A1 (en) 2021-07-01
JP2021528560A (ja) 2021-10-21
IL278981A (en) 2021-01-31

Similar Documents

Publication Publication Date Title
Sritharan et al. A comprehensive review on time-tested anticancer drug doxorubicin
Hu et al. A potential mechanism of temozolomide resistance in glioma–ferroptosis
Novohradsky et al. Antitumor platinum (IV) derivatives of oxaliplatin with axial valproato ligands
Singh et al. Nitric oxide: role in tumour biology and iNOS/NO-based anticancer therapies
Li et al. A nuclease-mimetic platinum nanozyme induces concurrent DNA platination and oxidative cleavage to overcome cancer drug resistance
Xiao et al. A dual-targeting hybrid platinum (IV) prodrug for enhancing efficacy
Liu et al. Mannose-conjugated platinum complexes reveals effective tumor targeting mediated by glucose transporter 1
Zehra et al. Water soluble ionic Co (ii), Cu (ii) and Zn (ii) diimine–glycinate complexes targeted to tRNA: structural description, in vitro comparative binding, cleavage and cytotoxic studies towards chemoresistant prostate cancer cells
Luo et al. A simple and feasible atom-precise biotinylated Cu (I) complex for tumor-targeted chemodynamic therapy
Mukherjee et al. Synthesis, structure, interaction with DNA and cytotoxicity of a luminescent copper (II) complex with a hydrazone ligand
Li et al. Co-delivery of thioredoxin 1 shRNA and doxorubicin by folate-targeted gemini surfactant-based cationic liposomes to sensitize hepatocellular carcinoma cells
Xiao et al. Pro-oxidant response and accelerated ferroptosis caused by synergetic Au (I) release in hypercarbon-centered gold (I) cluster prodrugs
Elias et al. A photoactivatable chemotherapeutic Ru (II) complex bearing bathocuproine ligand efficiently induces cell death in human malignant melanoma cells through a multi-mechanistic pathway
Liu et al. CL4-modified exosomes deliver lncRNA DARS-AS1 siRNA to suppress triple-negative breast cancer progression and attenuate doxorubicin resistance by inhibiting autophagy
Li et al. A Pt (IV)-based mononitro-naphthalimide conjugate with minimized side-effects targeting DNA damage response via a dual-DNA-damage approach to overcome cisplatin resistance
Sallam et al. Synthesis, characterization of new heterocyclic compound: pyrazolyl hydrazino quinoxaline derivative: 3-[5-(hydroxy1methyl)-1-phenylpyrazol-3-yl]-2-[2, 4, 5-trimethoxybenzylidine] hydrazonyl-quinoxaline of potent antimicrobial, antioxidant, antiviral, and antitumor activity
Yu et al. Coordination-driven FBXW7 DNAzyme-Fe nanoassembly enables a binary switch of breast cancer cell cycle checkpoint responses for enhanced ferroptosis-radiotherapy
Xin et al. Delivery of a system xc− inhibitor by a redox-responsive levodopa prodrug nanoassembly for combination ferrotherapy
WO2019238995A1 (es) Procedimientos de preparación de clústeres cuánticos atómicos purificados
Wang et al. Identification of a luminescent platinum (II) complex with BODIPY derivative as novel photodynamic therapy agent for triple negative breast cancer cells
Li et al. Dual-target cancer theranostic for glutathione S-transferase and hypoxia-inducible factor-1α inhibition
Ma et al. G-quadruplex-guided cisplatin triggers multiple pathways in targeted chemotherapy and immunotherapy
Chen et al. Hybrid of DNA-targeting chlorambucil with Pt (IV) species to reverse drug resistance
Tang et al. Ruthenium (II) complexes as mitochondrial inhibitors of topoisomerase induced A549 cell apoptosis
Zhang et al. Cancer cell membrane fused liposomal platinum (iv) prodrugs overcome cisplatin resistance in esophageal squamous cell carcinoma chemotherapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19736768

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3103328

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020569110

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019286811

Country of ref document: AU

Date of ref document: 20190611

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020024948

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019736768

Country of ref document: EP

Effective date: 20210112

ENP Entry into the national phase

Ref document number: 112020024948

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201207