WO2019238081A1 - 一种离子渗透调节方法和装置 - Google Patents

一种离子渗透调节方法和装置 Download PDF

Info

Publication number
WO2019238081A1
WO2019238081A1 PCT/CN2019/091022 CN2019091022W WO2019238081A1 WO 2019238081 A1 WO2019238081 A1 WO 2019238081A1 CN 2019091022 W CN2019091022 W CN 2019091022W WO 2019238081 A1 WO2019238081 A1 WO 2019238081A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
solute
magnetic field
membrane
semi
Prior art date
Application number
PCT/CN2019/091022
Other languages
English (en)
French (fr)
Inventor
毛靖宇
Original Assignee
毛靖宇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 毛靖宇 filed Critical 毛靖宇
Publication of WO2019238081A1 publication Critical patent/WO2019238081A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2603Application of an electric field, different from the potential difference across the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2607Application of a magnetic field

Definitions

  • the present invention relates to the field of osmotic assistance, and in particular, to a method and a device for adjusting ion permeability.
  • a thin film that is selective for a transmissive substance is called a semi-permeable membrane.
  • a thin film that can penetrate only a solvent but not a solute is regarded as an ideal semipermeable membrane.
  • osmosis technologies based on osmosis phenomena include forward osmosis (FO) technology and reverse osmosis (RO) technology.
  • forward osmosis (FO) technology is still in the theoretical experimental stage, but more and more countries recognize that it has good application prospects in the fields of medicine, food processing, membrane separation, desalination, sewage treatment, power generation, etc., especially "Pressure-delayed infiltration (PRO) seawater power generation” is a very promising clean and renewable energy development technology, so a lot of funds have been invested in research.
  • Reverse osmosis (RO) technology is a membrane separation operation that acts on a solution with a pressure greater than the osmotic pressure to separate the solvent from the solution.
  • RO reverse osmosis
  • the invention overcomes the prejudice for understanding the infiltration phenomenon and solves the problems of the infiltration theory and the microstructure. Based on this, an improved osmotic adjustment method and device was developed, which is suitable for osmosis involving ionic solutes and can produce the following effects: 1) adjust osmotic pressure, 2) improve concentration polarization, and 3) reduce membranes Fouling, 4) Locking up some or all of the ionic solutes to form a persistent osmotic pressure on both sides of the membrane.
  • the solute can be dissolved in the solvent, indicating that on the interface between the solution and the pure solute ( Figure 1-1), the force F 2 of the solvent molecule on the solute molecule is gravitational and will not be much smaller than the intermolecular force of the pure solute.
  • F 1 in most cases, F 2 ⁇ F 1 , the solute molecules on the contact surface will continuously enter the solvent to form a dissolution phenomenon, and the intermolecular forces change with the intermolecular distance. It is concluded that the solute molecules on the contact surface between the solution and the pure solute have a force equilibrium interface 8 that the first layer of solute molecules that have been close to the pure solute have even crossed the first layer of solute molecules into the pure solute.
  • solute molecules on the contact surface are also affected by the force F 1 ′ of other solute molecules in the solution, which is getting larger and larger, because the distance between solute molecules in the solution is very large at the molecular level. Therefore, F 1 ′ is gravitational, which means that the dissolution rate becomes faster and faster as the solution concentration increases.
  • the solute can be dissolved in the solvent, indicating that the potential energy of the solute molecules in the solution is smaller than the potential energy of the pure solutes, so the solute molecules preferentially fill the low potential energy region.
  • the energy changes include: the molecular potential energy Ep 1 of the pure solute molecules increases greatly, the molecular potential energy Ep 2 between the solute molecules outside the solution and the solvent molecules decreases sharply, and the The molecular potential energy Ep 2 ′ decreases slightly, and the molecular potential energy Ep 1 ′ between solute molecules in the solution decreases slightly.
  • dissolution is a phenomenon in which the molecular potential energy between the solvent molecules and the solute molecules is converted into the molecular potential energy between the solute molecules.
  • both Ep 1 ′ and Ep 2 ′ decrease, and the difference between the potential energy of the solute molecules in the solution and the potential energy of the solute molecules in the pure solute increases, which means that the rate of dissolution increases with the concentration of the solution. Increasing faster and faster.
  • the solvent molecules thermal motion rms rate i.e. It is the thermal root mean square velocity of liquid.
  • the thermal root mean square velocity V 1rms of solute molecules in solution is much larger than the thermal root mean square velocity of liquid solutes. It can be concluded that the thermal root mean square velocity V 1rms of solute molecules in solution is close to the thermal root mean square velocity of gas molecules.
  • solute mass M 1 M 2 increases the mass of solvent and solvent molecules thermal motion rms V 2rms rate remain unchanged, can be derived thermal motion of molecules in solution the solute concentration of the solution increases mean square root With rate V 1rms While decreasing.
  • Micro on the contact surface of the solution and semi-permeable membrane, solution and wall, or solution and air, when the solute molecules reach the outside of the solvent, they are subject to the force of the solvent molecules—gravity F 2 , and other solute molecules in the solution.
  • the force on it, the gravitational force F 1 ′, is subjected to the force F 3 on it by molecules of the semi-permeable membrane, wall or air.
  • F 2 Under the action of F 2 , the kinetic energy of the solute molecule decreases, and the corresponding solvent molecule increases the kinetic energy. Its value is the work done by F 2 during the entire process of the solute molecule moving outside the solvent.
  • Macro The solute is dissolved in the solvent, so when the solute molecules move to the contact surface of the solution and any substance, the solvent will prevent the solute from leaving the solution range.
  • the solute molecules return directly to the solution under the action of the solvent
  • the molecular kinetic energy Ek 1 ′ of the solute is greatly reduced
  • the molecular kinetic energy Ek 2 of the solvent is greatly increased
  • the molecular potential energy Ep 1 ′ of the solute molecules in the solution near the contact surface is decreased
  • the molecular potential energy Ep of the solvent in the solution near the contact surface is decreased. 2 increases slightly; the other is that the solute molecules first reach the surface of the substance in contact with the solvent and then return to the solution.
  • the molecular kinetic energy Ek 1 ′ of the solute is greatly reduced, and the molecular kinetic energy Ek 2 of the solvent is greatly increased.
  • the molecular kinetic energy Ek 3 of the substance increases slightly, the molecular potential energy Ep 1 ′ of the solute molecules in the solution near the contact surface decreases slightly, and the molecular potential energy Ep 2 of the solvent in the solution near the contact surface increases slightly; the third is that the solute molecules leave the solution attached to the surface of the contact material, the solute molecular kinetic energy Ek 1 'is greatly reduced, the solvent molecules is greatly increased kinetic energy Ek 2, the solute fraction
  • Micro on the contact surface between solution and pure solute, solution and wall, or solution and semi-permeable membrane, when the solute molecules reach outside the solvent, they are subject to the force of the solvent molecules on it—gravity F 2 , and other solutes in the solution.
  • V 1 When the velocity of the solute molecules moving outside the solvent in the solution is V 1 > V 1 8 , it will leave the solution and return to the pure solute, which is the solute precipitation phenomenon.
  • the reverse transformation requires the molecular kinetic energy in the solution before the solute molecules in the changed state change Ek 1 ′ > ⁇ (Ek 1 + Ek 2 ).
  • Ek 1 ′ > ⁇ (Ek 1 + Ek 2 )
  • Ek 1 + Ek 2 the number of solute molecules satisfying the molecular kinetic energy
  • Ek 1 '> ⁇ (Ek 1 + Ek 2 ) increases, and the rate of precipitation and transformation increases.
  • the saturated state is the dynamic balance of precipitation transformation and dissolution transformation. Condensation and pollution are the replacement of Ep 1 on the right with Ep 3 -the molecular potential energy of solute molecules and other substance molecules is converted to the left.
  • the potential energy of the solute molecules in the solution is smaller than that in the pure solute.
  • the kinetic energy of the solute molecules in the solution is greater than the kinetic energy of the solute in the pure solute, which changes under the impetus of the high energy. It is driven by high potential energy, and the precipitation is driven by the high kinetic energy of solute molecules in the solution.
  • the solution concentration increases, the difference between the potential energy of the solute molecules in the solution and the potential energy of the solute molecules in the pure solute increases, and the number of solute molecules with high kinetic energy in the solution increases, that is, the cycle rate of dissolution and precipitation increases with the solution concentration. Increase faster and faster.
  • the latter is the macroscopic chemical thermodynamic description of the "permeation phenomenon".
  • the infiltration phenomenon also includes a series of energy conversions after infiltration. Therefore, it can only be said that one result of the phenomenon of penetration is the release of the chemical potential of the solvent in the solution from the chemical potential of the pure solvent. Van't Hoff's theory is closest to the actual situation, and the only problem is the object of the solute molecule collision.
  • the permeation phenomenon is caused by the solute molecules in the solution impacting the membrane composed of the outermost solvent molecules on the boundary of the solution. This reason not only produces the phenomenon of permeation, but also produces two phenomena-the increase of the surface activity of the solution, the decrease of the freezing point, the decrease of the freezing point, and the phenomenon of water absorption and circulation on the wall.
  • the rate of the osmosis phenomenon—that is, the size of the osmotic pressure is not only positively related to the concentration and temperature of the solution, but also positively related to the maximum kinetic energy of the solute molecules that cannot pass through the solvent membrane.
  • Various factors such as the type, the type of solvent, the material of the semi-permeable membrane, the solution pressure, and the solution concentration are jointly determined.
  • Claim 1 A method for adjusting ion permeability, comprising: a) using a solution with an ionic solute as an osmotic participant, all of the following solutions refer to a solution with an ionic solute without special instructions; b) a solution and a semipermeable membrane An electric field or a magnetic field or an electric field and a magnetic field are arranged in part or all of the area in which it is located.
  • an electromagnetic field can be arranged to affect the infiltration by acting on the ionic solute.
  • Claim 2 The method according to claim 1, further comprising: dividing the entire space into two areas, the solution side and the membrane side, with the contact surface of the solution and the semi-permeable membrane as the boundary, and the solution side means the interface with the solution
  • the membrane side refers to all spaces on the same side of the interface as the semi-permeable membrane.
  • the arrangement of the electric field a) For a solution that needs to increase the osmotic pressure of a certain kind of electric ion, arrange the opposite electrode On the membrane side, the electrode with the same electrical properties is on the solution side, and only one of the above electrodes can be arranged in a single-electrode electric field; b) For a solution that needs to reduce the electrical osmotic pressure, arrange the opposite electrode to On the solution side, the electrode with the same electrical properties is on the membrane side, and a single-electrode electric field can only arrange any one of the above electrodes; c) For a solution that needs to increase all osmotic pressures at the same time, both electrodes are arranged on the membrane side, the optimal way Two semi-permeable membranes are arranged on both sides of the solution, and two electrodes are respectively arranged on the two membrane sides; d) For a solution that needs to reduce all osmotic pressure at the same time, both electrodes are arranged on the solution side.
  • the electric field uses the distribution of potential energy to achieve the following effects: a) the ion concentration in the region with a low potential energy increases, and the ion concentration in the region with a high potential energy decreases, and the permeability is adjusted by changing the ion solute concentration in the solution near the membrane; b) the ions are directed toward it The rate of movement in the direction of low potential energy increases, and the rate of movement of ions in the direction of their high potential energy decreases.
  • the rate of penetration can be changed by increasing or decreasing the rate at which the ionic solute hits the solvent membrane; c) it can even lock the ionic solute in the membrane In the nearby solution, its concentration does not decrease with the occurrence of infiltration, thereby maintaining the infiltration phenomenon continuously.
  • an AC electric field can be used.
  • the change of the AC electric field can reduce membrane fouling, but its frequency of change should not be too high. Too high a frequency of change will cause the ion solute to be redistributed too late, thereby affecting the weakening of the electric field. Adjust the effect.
  • Claim 3 The method according to claim 1 or 2, further comprising: the arrangement of the magnetic field: a) For a solution that needs to reduce the osmotic pressure of the ion, the magnetic field is arranged in the region where the solution and the membrane are located, and the magnetic field lines Or all the ionic solutes are separated from the semi-permeable membrane; b) For the solution that needs to increase the osmotic pressure of the ion, the magnetic field is arranged in the area where the solution is located, and the magnetic field lines separate most or all of the ionic solutes from the semi-permeable membrane on the same side.
  • the magnetic field can change the movement of the ion solute perpendicular to the direction of the magnetic field line into a circular motion, so that the ion solute cannot pass through the magnetic field vertically, and the magnetic field boundary is equivalent to a semi-permeable membrane without osmotic pressure.
  • the limiting effect of the magnetic field is used in the solution area.
  • the ionic solute can be restricted to be kept or away from the solution near the membrane to adjust the permeation rate.
  • the use of magnetic field restriction in the membrane area can limit the rate at which the ionic solute impacts the membrane to reduce the permeation rate.
  • the magnetic field generating structure includes any one or more of the following: a) a permanent magnet, b) an electromagnet, and c) a superconducting magnet.
  • the magnetic field generating structure includes any one or more of the following: a) a permanent magnet, b) an electromagnet, and c) a superconducting magnet.
  • Permanent magnet A magnet that can maintain its magnetic properties for a long time.
  • Electromagnet A device consisting of a magnetic core and a coil that generates a magnetic field when a current flows through the coil.
  • Superconducting magnet A magnet using a superconducting wire as the excitation coil.
  • Claim 6 The method according to any one of claims 1, 2, 4, and 5, further comprising: the electric field generating structure includes any one or more of the following: a) electrical conductor, b) permanent electricity Body, c) capacitor structure.
  • Electric conductor A substance that has the ability to conduct electric charges.
  • Permanent electric body also known as electret, is a kind of dielectric with permanent polarization.
  • Capacitor structure two conductors insulated from each other.
  • the ion osmotic adjustment device comprising: a semi-permeable membrane and a cavity which can or can be accommodated with an ion solute solution in contact with the semi-permeable membrane, an electromagnetic field generating device, and the electromagnetic field generating device can generate an electric field, or can A device that generates a magnetic field or can generate both an electric field and a magnetic field.
  • the electromagnetic field generating device operates, part or all of both the cavity and the semi-permeable membrane are in the field generated by the electromagnetic field generating device.
  • the structure of the electromagnetic field generating device includes any one or more of the following structures: a) an electric conductor, b) a permanent electric body, and c) a capacitor structure , D) permanent magnet, e) electromagnet, and f) superconducting magnet.
  • Figure 1-1 is a general diagram of the solution phenomenon
  • Figure 1-2 is a schematic diagram of the dissolution phenomenon
  • Figure 1-3 is a schematic diagram of the microscopic stress of the thermal movement of solute molecules
  • Figure 1-4 is the phenomenon of penetration / water absorption cycle on the wall /
  • Figure 1-5 saturation phenomenon / solute precipitation phenomenon / solute condensation phenomenon / membrane fouling microscopic schematic diagram.
  • Figures 2 to 7 show several examples of electric field-regulated osmosis. Among them, Figures 2 and 3 increase the two types of osmotic pressure at the same time, and Figures 4 and 5 decrease the two types of osmotic pressure at the same time. Figure 6 It is to increase the negative ion osmotic pressure and weaken the positive ion osmotic pressure. Figure 7 is to weaken the negative ion osmotic pressure and increase the positive ion osmotic pressure.
  • Figures 8 to 11 show several examples of magnetic field-adjusted osmosis. Among them, Figures 8 and 9 are to increase the osmotic pressure, and Figures 10 and 11 are to reduce the osmotic pressure.
  • Figures 12 to 16 show several embodiments of electric and magnetic fields to adjust the permeability, wherein Figures 12 and 13 increase the two types of osmotic pressure at the same time, and Figure 14 decreases the two types of osmotic pressure at the same time.
  • 15 is to increase the negative ion osmotic pressure and weaken the positive ion osmotic pressure
  • FIG. 16 is to weaken the negative ion osmotic pressure and increase the positive ion osmotic pressure.
  • 1 is pure solute
  • 2 is pure solvent
  • 3 is solution
  • 4 is semi-permeable membrane
  • 5 is container wall
  • 6 is solute molecule
  • 7 is solvent molecule
  • 8 is the contact surface between solution and pure solute.
  • 9 is the solution and wall or solution and semipermeable membrane contact surface solute molecule force equilibrium interface
  • 10 is the gas molecule in the air
  • 11 is the molecule of the container wall
  • 12 is the semipermeable membrane molecule
  • F 1 is the intermolecular force of pure solutes
  • F 2 is the force of solvent molecules on solute molecules
  • F 3 is the force of molecules of semi-permeable membrane, wall or air on it
  • F 1 ′ is between solute molecules in solution
  • Acting force 13 is a solution with ionic solutes
  • 14 is a dilute solution or solvent
  • 15 is the positive electrode of the electric field
  • 16 is the negative electrode of the electric field
  • 17 is the magnetic field, where the
  • FIG. 2 to FIG. 7 show several embodiments of electric field regulating permeation.
  • This embodiment only illustrates the positional relationship among the electric field electrode, the semi-permeable membrane, and the solution with ionic solutes.
  • the interface between the solution and the semi-permeable membrane is taken as the boundary, and the entire space is divided into two regions of the solution side and the membrane side.
  • the double membrane structure has two membrane side regions and one solution side region.
  • the position of the negative electrode is shown in only one of the solution-side and film-side regions.
  • the symbols of 15-electrode positive and 16-electrode negative are just for illustration.
  • the electric field can adopt any form of electric field, uniform electric field, point electric field, special-shaped electric field, etc.
  • FIGS. 8 to 11 show several embodiments of magnetic field to regulate permeation. This embodiment only illustrates the positional relationship among the magnetic field, the semi-permeable membrane, and the solution with ionic solutes.
  • 17 is the magnetic field.
  • the arrows indicate several types of magnetic field lines.
  • the magnetic field can use any form of magnetic field, uniform magnetic field, special-shaped magnetic field, etc., as long as it satisfies part of the magnetic field line separation solution.
  • the position marked 13 in the solution 13 with ionic solutes in the figure is where most of the ionic solutes are located. In specific implementation, complex structures such as multi-membrane composites and special-shaped membranes are often used.
  • the structure belongs to the The scope of the examples.
  • the manner in which the magnetic field regulates permeation in the present invention includes several embodiments listed herein, but is not limited to these embodiments.
  • the 12 to 16 show several embodiments in which the electric field and the magnetic field jointly regulate the permeation.
  • This embodiment only illustrates the positional relationship among the electric field electrode, the magnetic field, the semi-permeable membrane, and the solution with an ion solute.
  • the interface between the solution and the semi-permeable membrane is taken as the boundary, and the entire space is divided into two regions of the solution side and the membrane side.
  • the double membrane structure has two membrane side regions and one solution side region.
  • the position of the negative electrode is shown in only one of the solution-side and film-side regions.
  • the symbols of 15-electrode positive and 16-electrode negative are just for illustration.
  • the electric field can adopt any form of electric field, uniform electric field, point electric field, special-shaped electric field, etc.
  • AC electric field can be used.
  • 17 is the magnetic field.
  • the arrows indicate several types of magnetic field lines.
  • the magnetic field can use any form of magnetic field, uniform magnetic field, special-shaped magnetic field, etc., as long as it satisfies part of the magnetic field line separation solution.
  • the position marked 13 in the solution 13 with ionic solutes in the figure is where most of the ionic solutes are located.
  • complex structures such as multi-membrane composites and special-shaped membranes are often used.
  • the structure It belongs to the reference range of this embodiment.
  • the manner for the electric field and the magnetic field to jointly regulate the permeation in the present invention includes several embodiments listed here, but is not limited to these embodiments.
  • the adjustment of the electric field is divided into two aspects: First, the ion solute concentration is higher in the position where the potential energy is lower than in the position where the potential energy is higher, and the ion solute concentration is increased or decreased near the membrane in the solution.
  • the second is that the movement rate of the ionic solute increases toward the direction of low potential energy, the movement rate of the ionic solute decreases toward the direction of high potential energy, and the rate at which the ionic solute hits the solvent membrane increases or decreases in the membrane region.
  • the correlation is related to multiple factors such as the osmotic device, the type of ionic solutes, and the type of solvents. .
  • the concentration polarization phenomenon will weaken with the increase of the electric field strength.
  • the electric field can lock the ionic solute, even if the concentration of the ionic solute near the membrane is higher than the solution. The other parts do not decrease with the occurrence of infiltration, so that the infiltration can be continued.
  • the magnetic field does not do work, it will only make the movement of the surface perpendicular to the direction of the magnetic field into a circular motion.
  • the boundary of the magnetic field is a layer through which other substances can pass but ions cannot pass.
  • "Semi-permeable membrane” and this "semi-permeable membrane” has no permeability. You can use this "semi-permeable membrane” to reduce or not reduce the ion concentration near the membrane to adjust the permeability, or use this "semi-permeable membrane” to reduce the rate of ion impact on the solvent membrane to reduce penetration. That is to say, the adjustment of the magnetic field is limited and cannot directly increase the osmotic pressure of a solution. Moreover, the magnetic field in the membrane area can only weaken the penetration.
  • the relationship between magnetic field strength and regulation The magnetic field has a basic magnetic field intensity for each determined permeation. Below this intensity, there is no regulation ability. Above this intensity, it has regulation ability.
  • the basic magnetic field strength is related to the type of ions that are penetrated, the motion of the solution, and the range of the magnetic field.
  • the magnetic field strength is higher than the basic magnetic field strength, as the magnetic field strength increases, the adjustment capacity increases.
  • the adjustment capacity is maximized. In this case, the magnetic field can lock the ionic solute, even if the concentration of the ionic solute near the membrane is higher than other parts of the solution and does not decrease with the occurrence of infiltration, so that the infiltration can continue.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种离子渗透调节方法和装置,包括:a)使用带离子溶质的溶液(13)作为渗透的参与者;b)在溶液(13)和半透膜(4)所在的部分区域或全部区域布置电场或布置磁场(17)或布置电场和磁场(17)。

Description

一种离子渗透调节方法和装置 技术领域
本发明涉及渗透辅助领域,具体涉及一种离子渗透调节方法和装置。
背景技术
对透过的物质具有选择性的薄膜称为半透膜。一般将只能透过溶剂而不能透过溶质的薄膜视为理想的半透膜。当把稀溶液和浓溶液分别置于一容器的两侧,中间用半透膜阻隔,稀溶液中的溶剂将自然的穿过半透膜,向浓溶液侧流动,此现象即是渗透现象。流动一段时间,浓溶液侧的液面会比稀溶液的液面高出一定高度,形成一个压力差,达到渗透平衡状态,此压力差即为渗透压。
目前,基础化学教科书上对于渗透现象的解释是:由于半透膜两边溶剂的浓度不相同,以至单位时间内由纯溶剂扩散进入溶液的溶剂分子数目要比从溶液扩散进入纯溶剂的溶剂分子数多,从而导致了渗透现象的发生,并认为渗透压不是溶质分子的压力,而是溶剂扩散引起的。宏观的化学热力学认为:渗透现象是溶液中溶剂的化学势与纯溶剂的化学势差造成的。范特霍夫(Van’t Hoff)是1901年以渗透压和化学动力学的研究成果而获第一位诺贝尔化学奖的世界著名科学家,他发现,稀溶液的渗透压居然等于溶质在相同温度下转化为理想气体并占有溶液体积时产生的气压。因此他认为:“气体产生气压和溶液产生渗透压的实质机理是相同的,不仅是形式上的相似而已。在气体场合,气压是由气体分子冲击容器壁产生的;在溶液情况下,由于溶质分子冲击半透膜而产生渗透压。至于溶剂分子,由于存在于半透膜两边,可以自由穿行,因此不产生压力作用”。
基于渗透现象的技术应用有正渗透(FO)技术和反渗透(RO)技术。其中,正渗透(FO)技术仍处于理论实验阶段,但越来越多国家认识到其在医药、食品加工、膜分离、海水淡化、污水处理、发电等领域具有很好的应用前景,特别是“压力延缓渗透(PRO)海水发电”,更是一项极具前景的清洁再生能源开发技术,因此投入大量资金进行研究。反渗透(RO)技术,是一种以大于渗透压的压力作用于溶液,从溶液中分离出溶剂的膜分离操作,是对渗透现象的反向利用,可以达到分离、提取、纯化和浓缩的目的。目前反渗透(RO)技术已经相当成熟,在海水淡化、海水浓缩制盐、废水处理以及食品医药等行业中规模化应用。
发明内容
本发明克服了对于渗透现象认识的偏见,解决了渗透理论及微观结构的难题。并在 此基础上,开发了一种离子渗透调节改良方法和装置,适用于有离子溶质参与的渗透,可以产生以下作用:1)调节渗透压、2)改善浓差极化、3)减少膜污染、4)锁定部分或全部离子溶质在膜两侧形成持续存在的渗透压。
对于渗透现象的几种理论解释,均存在着很多难以自圆其说之处,说明这些理论还有待商榷。“迄今还没有一个可以接受的理论能解释渗透的微观结构”,在上世纪80年代末,由美国物理学评述委员会组织的等离子体和流体物理学专门小组曾这样描述。因此,他们将渗透现象的微观结构列为20世纪90年代的物理学重要课题之一。但直到现在,仍没有取得实质性的进展。
以下将从微观宏观两方面分析溶液中的各种现象及其微观结构,并提出渗透理论。
溶解现象。
微观:溶质能溶解到溶剂中,说明在溶液和纯溶质的接触面(附图1-1)上,溶剂分子对溶质分子的作用力F 2是引力且不会远小于纯溶质分子间作用力F 1,绝大多数情况下,F 2≥F 1,接触面上的溶质分子才会不断进入溶剂中,形成溶解现象,而分子间作用力皆是随着分子间距离而改变的,即可以得出溶液和纯溶质接触面上的溶质分子受力平衡界面8已经贴近纯溶质的第一层溶质分子甚至已经越过第一层溶质分子进入纯溶质内。随着溶解的溶质越来越多,接触面上溶质分子还受到溶液中其他溶质分子对其作用力F 1'且越来越大,因溶液中的溶质分子间距离在分子级别上是非常大的,故F 1'是引力,意味着溶解的速率随着溶液浓度的增大越来越快。
宏观:溶质能溶解到溶剂中,说明溶质分子在溶液中的势能小于其在纯溶质中的势能,故溶质分子优先排满低势能区域。在溶解过程中,能的变化有:纯溶质分子间分子势能Ep 1大幅增大,溶液外溶质分子与溶剂分子之间的分子势能Ep 2大幅减小,溶液中溶质分子与溶剂分子之间的分子势能Ep 2'少量减小,溶液中溶质分子间分子势能Ep 1'微量减小,大部分情况下溶液的分子动能(Ek 1+Ek 2)增大,等式△Ep 2+△Ep 2'+(△Ep 1')=△Ep 1+△(Ek 1+Ek 2)成立,(△Ep 1')可以近似忽略。变化的势能中,Ep 1和Ep 2在纯溶质中,Ep 1'和Ep 2'在溶液中,由溶质分子在溶液中的势能小于其在纯溶质中的势能得出Ep 1+Ep 2>Ep 1'+Ep 2',变换可得(Ep 2-Ep 2')>(Ep 1'-Ep 1)。由以上两式皆可得出溶解是溶剂分子与溶质分子之间的分子势能转化为溶质分子间分子势能的现象。随着溶液浓度的增大,Ep 1'和Ep 2'均减小,溶质分子在溶液中的势能和溶质分子在纯溶质中的势能之差增大,意味着溶解的速率随着溶液浓度的增大越来越快。
溶液中溶质分子热运动状态、扩散现象。
微观:对于溶液中的溶质分子进行受力分析(附图1-2),其受到溶剂分子对其的作用力F 2,受到溶液中其他溶质分子对其作用力F 1',溶剂分子在溶液中均匀分布,故综合考虑F 2相互近似抵消,仅会溶质分子的运动路线产生影响,不会对溶质分子的运动状态产生过大影响,而溶液中的溶质分子间距离在分子级别上是非常大的,故F 1'很小,综上,溶液中的溶质分子受力状态近似于气体中气体分子受力状态,可得出溶液中溶质分子热运动近似于气体分子热运动的结论。随着溶液浓度增加,作用力F 1'也会缓慢增大,意味着溶液中溶质分子热运动随着溶液浓度的增大而减弱。
宏观:将溶液中的溶剂和溶质分割作为两个个体考虑,它们处于同一环境,相互密切接触,故温度趋于一致,即热交换单位区域内两者热运动的总动能趋于一致,溶质质量为M 1、分子热运动方均根速率为V 1rms,溶剂质量为M 2、分子热运动方均根速率为V 2rms,则有M 1V 1rms 2/2=M 2V 2rms 2/2,在单位区域溶液中溶质的质量M 1通常远远小于溶剂的质量M 2,所以溶质分子热运动方均根速率V 1rms远大于溶剂分子热运动方均根速率V 2rms,宏观即表现为扩散现象,溶剂分子热运动方均根速率即是液体的热运动方均根速率,溶液中溶质分子热运动方均根速率V 1rms远大于液体的热运动方均根速率,可得出溶液中溶质分子热运动方均根速率V 1rms接近于气体分子热运动方均根速率。随着溶液浓度增加,溶质质量M 1增大而溶剂质量M 2和溶剂分子热运动方均根速率V 2rms均不变,可得出溶液中溶质分子热运动方均根速率V 1rms随着溶液浓度的增大而减小。
渗透现象/壁面吸水循环现象/溶液冰点、凝点降低现象。
微观:在溶液和半透膜、溶液和壁或溶液和空气的接触面上,当溶质分子到达溶剂外时,其受到溶剂分子对其的作用力——引力F 2,受到溶液中其他溶质分子对其作用力——引力F 1',受到半透膜、壁或空气的分子对其的作用力F 3。在F 2的作用下溶质分子的动能减小,相应的溶剂分子会增加动能,其值为溶质分子在溶剂外运动的整个过程中F 2所做的功。当接触半透膜或壁时,溶剂分子增加动能的速度指向溶剂外溶质分子的方向,该速度在附近各种分子的共同作用下反向朝向溶液内部,然后此部位便会吸引附近其他的溶剂分子,形成渗透现象或壁面吸水循环现象;当接触空气时,溶剂分子的动能增加表现为溶液表面活性增大、冰点降低、凝点降低。
宏观:溶质是溶解在溶剂中,所以当溶质分子运动到溶液和任何物质的接触表面上时溶剂会阻止溶质脱离溶液范围,此时有三种情况:一种是溶质分子在溶剂作用下直接返回溶液中,溶质的分子动能Ek 1'大幅减小,溶剂的分子动能Ek 2大幅增大,接触面附近溶液中溶质分子的分子势能Ep 1'少量减小,接触面附近溶液中溶剂的分子势能Ep 2少量增大; 另一种是溶质分子在溶剂作用下先到达所接触物质的表面而后返回溶液中,溶质的分子动能Ek 1'大幅减小,溶剂的分子动能Ek 2大幅增大,所接触物质的分子动能Ek 3少量增大,接触面附近溶液中溶质分子的分子势能Ep 1'少量减小,接触面附近溶液中溶剂的分子势能Ep 2少量增大;第三种是溶质分子脱离溶液附着在所接触物质的表面,溶质的分子动能Ek 1'大幅减小,溶剂的分子动能Ek 2大幅增大,溶质分子与其他物质分子的分子势能Ep 3大幅减小,溶液外溶质分子与溶剂分子之间的分子势能Ep 2大幅增大,溶液中溶质分子与溶剂分子之间的分子势能Ep 2'少量增大,溶质分子的分子势能Ep 1'微量增大。以上这三种情况都是由溶液中溶质的分子动能Ek 1'驱动的。溶液和任何物质的接触面上,溶剂的分子动能Ek 2大幅增加,溶剂的分子势能Ep 2少量增大,部分分子动能Ek 2和分子势能Ep 2的增大宏观表现为溶液表面活性增大、冰点降低、凝点降低,部分整体增加的分子动能Ek 2会汇聚为宏观的溶剂运动,在不同接触面分别是渗透现象、壁面吸水循环现象。
饱和现象/溶质析出现象/溶质凝结现象/膜污染现象。
微观:在溶液和纯溶质、溶液和壁或溶液和半透膜的接触面上,当溶质分子到达溶剂外时,其受到溶剂分子对其的作用力——引力F 2,受到溶液中其他溶质分子对其作用力——引力F 1',受到纯溶质分子对其的作用力F 1,或受到壁、半透膜对其的作用力F 3,溶液中溶质分子可以到达溶液与纯溶质接触面上溶质分子受力平衡界面8的最小速度为V 1 8,溶液中溶质分子可以到达溶液和壁或溶液和半透膜接触面上溶质分子受力平衡界面9的最小速度为V 1 9。当运动到溶剂外的溶质分子在溶液中的速度V 1>V 1 8,其会脱离溶液返回纯溶质,即是溶质析出现象,当此过程与溶解过程达到平衡时,溶液即达到饱和状态。当运动到溶剂外的溶质分子在溶液中的速度V 1>V 1 9,其会脱离溶液到达壁或半透膜表面,此即是溶质凝结现象或膜污染现象。
宏观:溶解过程中有等式△Ep 2+△Ep 2'+(△Ep 1')=△Ep 1+△(Ek 1'+Ek 2)成立,等式左边为:溶液外溶质分子与溶剂分子之间的分子势能Ep 2,溶液中溶质分子与溶剂分子之间的分子势能Ep 2',溶液中溶质分子间分子势能Ep 1';等式右边为:纯溶质分子间分子势能Ep 1,溶液的分子动能(Ek 1'+Ek 2)。溶解是由等式左边向右边的转化,析出即是反向的转化,反向转化要求变化状态的溶质分子变化前在溶液中的分子动能Ek 1'>△(Ek 1+Ek 2),随着溶液浓度的增加,溶质分子数量增多,满足分子动能Ek 1'>△(Ek 1+Ek 2)的溶质分子数目增多,析出转化的速率增大。饱和状态即是析出转化和溶解转化的动态平衡。凝结和污染是右侧的Ep 1替换为Ep 3——溶质分子与其他物质分子的分子势能后向左侧的转化。溶质分子在溶液中的势能小于其在纯溶质中的势能,溶质分子在溶液中 的动能大于其在纯溶质中的动能,在高能的推动下发生变化,即溶解是溶质分子在纯溶质中的高势能推动的,析出是溶质分子在溶液中的高动能推动。随着溶液浓度的增加,溶质分子在溶液中的势能和溶质分子在纯溶质中的势能之差增大,溶液中具有高动能的溶质分子数量增多,即溶解和析出的循环速率随着溶液浓度的增大越来越快。
教科书的溶剂扩散理论,没有任何根据,完全就是臆想。而宏观的化学热力学的看法,若将渗透前的浓溶液和溶剂与渗透后的稀溶液进行比较,溶质分子与溶剂分子之间的分子势能Ep 2'减小,溶质分子间分子势能Ep 1'减小,似乎可得出“渗透现象是溶液中溶剂的化学势与纯溶剂的化学势差造成的”。但是这之中存在认识偏差,渗透现象是溶剂自发穿过半透膜的现象,而不是浓溶液和溶剂合并变为稀溶液的现象,后者即宏观的化学热力学描述的“渗透现象”不仅仅包含渗透现象还包含渗透后一系列的能量转化。所以,只能说是渗透现象的一种结果是释放了溶液中溶剂的化学势与纯溶剂的化学势差。范特霍夫(Van’t Hoff)的理论是最接近实际情况的,唯一的问题是溶质分子碰撞的对象。
综上所述,渗透现象是溶液中溶质分子冲击溶液边界上最外层溶剂分子所组成的膜造成的。此原因不仅产生渗透现象,还产生两种现象——溶液表面活性增大、冰点降低、凝点降低现象,壁面吸水循环现象。渗透现象的速率——即渗透压的大小不仅与溶液的浓度、温度正相关,还与不能穿过溶剂膜的溶质分子的最大动能正相关,不能穿过溶剂膜的溶质分子的最大动能由溶质种类、溶剂种类、半透膜材质、溶液压强、溶液浓度等多个因素共同决定。
权利要求1.一种离子渗透调节方法,其包括:a)使用带离子溶质的溶液作为渗透的参与者,以下所有溶液无特别说明均指带离子溶质的溶液;b)在溶液和半透膜所在的部分区域或全部区域布置电场或布置磁场或布置电场和磁场。
当参与渗透的溶液中存在离子溶质时,可以布置电磁场,通过对离子溶质产生作用来影响渗透。
权利要求2.根据权利要求1所述的方法,其进一步包括:以溶液与半透膜的接触面为界,将整个空间划分为溶液侧和膜侧两个区域,溶液侧指与溶液在界面同一侧的所有空间,膜侧指与半透膜在界面同一侧的所有空间,所述电场的布置:a)对于需增强某种电性离子渗透压的溶液,布置与该电性相反的电极在膜侧,与该电性相同的电极在溶液侧,单电极电场可仅布置上述任一个电极;b)对于需减弱某种电性离子渗透压的溶液,布置与该电性相反的电极在溶液侧,与该电性相同的电极在膜侧,单电极电场可仅布置上述任一个电极;c)对于需同时增强所有离子渗透压的溶液,两个电极都布置在膜侧,最优方式是在该溶液两侧 布置两个半透膜,两个电极分别布置在两个膜侧;d)对于需同时减弱所有离子渗透压的溶液,两个电极都布置在溶液侧。
电场利用电势能的分布来达到下列作用:a)电势能低的区域离子浓度增大,电势能高的区域离子浓度降低,通过改变膜附近溶液中离子溶质浓度来调节渗透;b)离子朝向其低电势能方向的运动速率增大,离子朝向其高电势能方向的运动速率减小,通过增大或减小离子溶质冲击溶剂膜的速率来改变渗透速率;c)甚至可以锁定离子溶质在膜附近的溶液中,使其浓度不随渗透的发生而降低,从而保持渗透现象持续进行。对于两个电极在相同侧的情况,可以采用交流电场,交流电场的变化可以减少膜污染,但其变化频率不宜过高,过高的变化频率会导致离子溶质来不及重新分布,从而影响减弱电场的调节效果。
权利要求3.根据权利要求1或2所述的方法,其进一步包括:所述磁场的布置:a)对于需减弱离子渗透压的溶液,磁场布置在溶液和膜所在区域,磁场线将大部分或全部离子溶质与半透膜分隔开;b)对于需增强离子渗透压的溶液,磁场布置在溶液所在区域,磁场线将大部分或全部离子溶质与半透膜分隔在同一侧。
磁场可将离子溶质垂直于磁场线方向的运动变为圆周运动,从而使离子溶质不能垂直的穿过磁场,且磁场边界相当于一个没有渗透压的半透膜,在溶液区域利用磁场的限制作用可限制离子溶质保持或远离膜附近的溶液来调节渗透速率,在膜区域利用磁场的限制作用可限制离子溶质冲击膜的速率来减小渗透速率。
权利要求4.根据权利要求1所述的方法,其进一步包括:所述磁场的产生结构中包含以下任一种或几种:a)永磁体、b)电磁体、c)超导磁体。
权利要求5.根据权利要求3所述的方法,其进一步包括:所述磁场的产生结构中包含以下任一种或几种:a)永磁体、b)电磁体、c)超导磁体。
永磁体:能够长期保持其磁性的磁体。电磁体:由磁芯和线圈构成,当线圈中有电流流过时能产生磁场的装置。超导磁体:用超导导线作励磁线圈的磁体。
权利要求6.根据权利要求1、2、4、5之一所述的方法,其进一步包括:所述电场的产生结构中包含以下任一种或几种:a)电导体、b)永电体、c)电容器结构。
电导体:具备传导电荷能力的物质。永电体:又称驻极体,是一种具有持久性极化的电介质。电容器结构:两个彼此绝缘的导体。
权利要求7.一种离子渗透调节装置,其包括:半透膜和与半透膜接触可容纳或已容纳带离子溶质溶液的腔体、电磁场发生装置,电磁场发生装置是可以产生电场,或可以产生磁场,或可以即产生电场又产生磁场的装置,当电磁场发生装置工作时,腔体和半透膜两者 的部分或全部处于电磁场发生装置产生的场中。
权利要求8.根据权利要求7所述的装置,其进一步包括:所述的电磁场发生装置结构中包含以下任一种或几种结构:a)电导体、b)永电体、c)电容器结构、d)永磁体、e)电磁体、f)超导磁体。
附图说明
附图1-1是溶液现象总图,附图1-2是溶解现象微观示意图,附图1-3是溶质分子热运动微观受力示意图,附图1-4是渗透现象/壁面吸水循环现象/溶液冰点、凝点降低现象微观示意图,附图1-5饱和现象/溶质析出现象/溶质凝结现象/膜污染现象微观示意图。
附图2至附图7是电场调节渗透的几种实施例,其中,附图2和3是同时增强两种离子渗透压,附图4和5是同时减弱两种离子渗透压,附图6是增强负离子渗透压并减弱正离子渗透压,附图7是减弱负离子渗透压并增强正离子渗透压。
附图8至附图11是磁场调节渗透的几种实施例,其中,附图8和9是增强离子渗透压,附图10和11是减弱离子渗透压。
附图12至附图16是电场和磁场共同调节渗透的几种实施例,其中,附图12和13是同时增强两种离子渗透压,附图14是同时减弱两种离子渗透压,附图15是增强负离子渗透压并减弱正离子渗透压,附图16是减弱负离子渗透压并增强正离子渗透压。
图中标注为:1为纯溶质,2为纯溶剂,3为溶液,4为半透膜,5为容器壁,6为溶质分子,7为溶剂分子,8为溶液和纯溶质接触面上的溶质分子受力平衡界面,9为溶液和壁或溶液和半透膜接触面上溶质分子受力平衡界面,10为空气中气体分子,11为容器壁的分子,12为半透膜的分子,F 1为纯溶质分子间作用力,F 2为溶剂分子对溶质分子的作用力,F 3为半透膜、壁或空气的分子对其的作用力,F 1'为溶液中溶质分子之间作用力,13为带离子溶质的溶液,14为稀溶液或溶剂,15为电场正极,16为电场负极,17为磁场,其中箭头为几种示意磁场线,18为溶液流动方向。
具体实施方式
附图2至附图7是电场调节渗透的几种实施例,本实施例仅示意电场电极、半透膜和带离子溶质的溶液三者的位置关系。其中,以溶液与半透膜的接触面为界,将整个空间划分为溶液侧和膜侧两个区域,双膜结构则有两个膜侧区域和一个溶液侧区域,15电场正极和16电场负极的位置仅表示在溶液侧和膜侧区域的其中一个中。15电场正极和16电场负极的符号仅为示意,电场可以采用任意形式电场,匀强电场、点电场、异形电场等等,当15电场正极和16电场负极在相同侧时,可采用交流电场。在具体实施中常采用多膜复合、异形膜 等复杂结构,只要其结构中电场电极、半透膜和带离子溶质的溶液三者的基础位置关系与某个实施例中相同,则该结构就属于该实施例的指代范围。本发明中电场调节渗透的方式包括此处列举的几种实施例,但不局限于这几种实施例。
附图8至附图11是磁场调节渗透的几种实施例,本实施例仅示意磁场、半透膜和带离子溶质的溶液三者的位置关系。图中17为磁场,其中箭头为几种示意磁场线,磁场可以采用任意形式磁场,匀强磁场、异形磁场等等,只要满足部分磁场线分隔溶液即可。图中带离子溶质的溶液13中标注13的位置为大部分离子溶质所在位置。在具体实施中常采用多膜复合、异形膜等复杂结构,只要其结构中磁场、半透膜和带离子溶质的溶液三者的基础位置关系与某个实施例中相同,则该结构就属于该实施例的指代范围。本发明中磁场调节渗透的方式包括此处列举的几种实施例,但不局限于这几种实施例。
附图12至附图16是电场和磁场共同调节渗透的几种实施例,本实施例仅示意电场电极、磁场、半透膜和带离子溶质的溶液四者的位置关系。其中,以溶液与半透膜的接触面为界,将整个空间划分为溶液侧和膜侧两个区域,双膜结构则有两个膜侧区域和一个溶液侧区域,15电场正极和16电场负极的位置仅表示在溶液侧和膜侧区域的其中一个中。15电场正极和16电场负极的符号仅为示意,电场可以采用任意形式电场,匀强电场、点电场、异形电场等等,当15电场正极和16电场负极在相同侧时,可采用交流电场。图中17为磁场,其中箭头为几种示意磁场线,磁场可以采用任意形式磁场,匀强磁场、异形磁场等等,只要满足部分磁场线分隔溶液即可。图中带离子溶质的溶液13中标注13的位置为大部分离子溶质所在位置。在具体实施中常采用多膜复合、异形膜等复杂结构,只要其结构中电场电极、磁场、半透膜和带离子溶质的溶液四者的基础位置关系与某个实施例中相同,则该结构就属于该实施例的指代范围。本发明中电场和磁场共同调节渗透的方式包括此处列举的几种实施例,但不局限于这几种实施例。
电场的调节,分为两个方面:一是电势能低的位置离子溶质浓度高于电势能高的位置,在溶液内部增加或减少膜附近离子溶质浓度。二是朝向电势能低的方向离子溶质的运动速率增大,朝向电势能高的方向离子溶质的运动速率减小,在膜区域增大或减小离子溶质冲击溶剂膜的速率。
电场强度与调节关系,在一般不发生其他变化的情况下,渗透压的调节强度随着电场强度的增大而增大,其相关关系与渗透装置、离子溶质种类、溶剂种类等多个因素有关。同时,溶液内部有电场调节的情况下,浓差极化现象会随着电场强度的增大而减弱,甚至,在一定情况下,电场可以锁定离子溶质,即使膜附近离子溶质的浓度高于溶液其他部分并不 随渗透的发生而降低,从而可以使渗透持续进行。在膜区域电场增大某离子渗透压的同时,也会增加该离子污染膜的概率;在膜区域电场减小某离子渗透压的同时,也会减少该离子污染膜的概率。
磁场的调节,磁场并不做功,只会使离子垂直于磁场方向的面上的运动变为圆周运动,当磁场强度足够时,磁场的边界便是一层其他物质可通过而离子不可通过的“半透膜”,且此“半透膜”没有渗透现象。可以利用此“半透膜”使膜附近离子浓度降低或不能降低来调节渗透,或利用此“半透膜”使离子冲击溶剂膜的速率降低来减弱渗透。即磁场的调节具有局限性,并不能直接使一种溶液渗透压增大。而且,在膜区域的磁场只能减弱渗透。
磁场强度与调节关系,磁场对于每个确定的渗透有一个基础的磁场强度,低于该强度则不具备调节能力,高于该强度则具有调节能力。基础的磁场强度与该渗透的离子种类、溶液运动情况和磁场的范围有关。当磁场强度高于基础的磁场强度,随着磁场强度的增大,调节能力增大。当所有离子溶质都完全不能通过磁场时,调节能力达到最大程度。此情况下,磁场可以锁定离子溶质,即使膜附近离子溶质的浓度高于溶液其他部分并不随渗透的发生而降低,从而可以使渗透持续进行。

Claims (8)

  1. 一种离子渗透调节方法,其包括:
    a)使用带离子溶质的溶液作为渗透的参与者,以下所有溶液无特别说明均指带离子溶质的溶液;
    b)在溶液和半透膜所在的部分区域或全部区域布置电场或布置磁场或布置电场和磁场。
  2. 根据权利要求1所述的方法,其进一步包括:
    以溶液与半透膜的接触面为界,将整个空间划分为溶液侧和膜侧两个区域,溶液侧指与溶液在界面同一侧的所有空间,膜侧指与半透膜在界面同一侧的所有空间,所述电场的布置:
    c)对于需增强某种电性离子渗透压的溶液,布置与该电性相反的电极在膜侧,与该电性相同的电极在溶液侧,单电极电场可仅布置上述任一个电极;
    d)对于需减弱某种电性离子渗透压的溶液,布置与该电性相反的电极在溶液侧,与该电性相同的电极在膜侧,单电极电场可仅布置上述任一个电极;
    e)对于需同时增强所有离子渗透压的溶液,两个电极都布置在膜侧,最优方式是在该溶液两侧布置两个半透膜,两个电极分别布置在两个膜侧;
    f)对于需同时减弱所有离子渗透压的溶液,两个电极都布置在溶液侧。
  3. 根据权利要求1或2所述的方法,其进一步包括:
    所述磁场的布置:
    a)对于需减弱离子渗透压的溶液,磁场布置在溶液和膜所在区域,磁场线将大部分或全部离子溶质与半透膜分隔开;
    b)对于需增强离子渗透压的溶液,磁场布置在溶液所在区域,磁场线将大部分或全部离子溶质与半透膜分隔在同一侧。
  4. 根据权利要求1所述的方法,其进一步包括:
    所述磁场的产生结构中包含以下任一种或几种:a)永磁体、b)电磁体、c)超导磁体。
  5. 根据权利要求3所述的方法,其进一步包括:
    所述磁场的产生结构中包含以下任一种或几种:a)永磁体、b)电磁体、c)超导磁体。
  6. 根据权利要求1、2、4、5之一所述的方法,其进一步包括:
    所述电场的产生结构中包含以下任一种或几种:a)电导体、b)永电体、c)电容器结构。
  7. 一种离子渗透调节装置,其包括:
    半透膜和与半透膜接触可容纳或已容纳带离子溶质溶液的腔体、电磁场发生装置,电磁场发生装置是可以产生电场,或可以产生磁场,或可以即产生电场又产生磁场的装置,当电磁场发生装置工作时,腔体和半透膜两者的部分或全部处于电磁场发生装置产生的场中。
  8. 根据权利要求7所述的装置,其进一步包括:
    所述的电磁场发生装置结构中包含以下任一种或几种结构:a)电导体、b)永电体、c)电容器结构、d)永磁体、e)电磁体、f)超导磁体。
PCT/CN2019/091022 2018-06-15 2019-06-13 一种离子渗透调节方法和装置 WO2019238081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810620139.4 2018-06-15
CN201810620139.4A CN110605026A (zh) 2018-06-15 2018-06-15 一种离子渗透调节方法和装置

Publications (1)

Publication Number Publication Date
WO2019238081A1 true WO2019238081A1 (zh) 2019-12-19

Family

ID=68841889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091022 WO2019238081A1 (zh) 2018-06-15 2019-06-13 一种离子渗透调节方法和装置

Country Status (2)

Country Link
CN (1) CN110605026A (zh)
WO (1) WO2019238081A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111855528B (zh) * 2020-07-23 2023-03-28 西南大学 一种基于电场强度调控的多孔材料渗透性定向调控方法及其产品
CN115657061B (zh) * 2022-12-13 2023-04-07 成都量芯集成科技有限公司 一种室内墙面三维扫描装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047012A (ja) * 2007-08-14 2009-03-05 Mitsubishi Electric Corp 浸透圧発電システム
CN102725053A (zh) * 2009-10-28 2012-10-10 Oasys水有限公司 正向渗透分离工艺
CN104016451A (zh) * 2014-06-24 2014-09-03 上海理工大学 压力场与电场协同作用双膜脱盐的设备和应用方法
CN107522268A (zh) * 2017-08-15 2017-12-29 中国科学院青岛生物能源与过程研究所 一种用于水处理、物料分离的装置及其分离方法
CN108744973A (zh) * 2018-06-15 2018-11-06 毛靖宇 一种渗透式热能利用方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047012A (ja) * 2007-08-14 2009-03-05 Mitsubishi Electric Corp 浸透圧発電システム
CN102725053A (zh) * 2009-10-28 2012-10-10 Oasys水有限公司 正向渗透分离工艺
CN104016451A (zh) * 2014-06-24 2014-09-03 上海理工大学 压力场与电场协同作用双膜脱盐的设备和应用方法
CN107522268A (zh) * 2017-08-15 2017-12-29 中国科学院青岛生物能源与过程研究所 一种用于水处理、物料分离的装置及其分离方法
CN108744973A (zh) * 2018-06-15 2018-11-06 毛靖宇 一种渗透式热能利用方法和装置

Also Published As

Publication number Publication date
CN110605026A (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
CN108275764B (zh) 可产生富氢超微气泡水的洗浴装置
US8568588B2 (en) Apparatus for osmotic power generation and desalination using salinity difference
CN107398181B (zh) 一种用于煤化工浓盐水分质浓缩的电渗析装置
WO2019238081A1 (zh) 一种离子渗透调节方法和装置
Sharma et al. Clean energy from salinity gradients using pressure retarded osmosis and reverse electrodialysis: A review
WO2019238082A1 (zh) 一种渗透式热能利用方法和装置
Wang et al. Viability of harvesting salinity gradient (blue) energy by nanopore-based osmotic power generation
Jiao et al. Membrane-based indirect power generation technologies for harvesting salinity gradient energy-A review
Ju et al. Comparison of fouling characteristics between reverse electrodialysis (RED) and pressure retarded osmosis (PRO)
CN114849478B (zh) 一种不对称双极膜电渗析装置和制备酸碱的方法
EP3041598A1 (en) Apparatus and method for product recovery and electrical energy generation
Liu et al. Current patents of forward osmosis membrane process
Wu et al. Fluidics for energy harvesting: from nano to milli scales
MX2014004133A (es) Dispositivo y metodo para tratar agua.
KR101661597B1 (ko) 해수 담수화 장치와 역 전기 투석 장치의 복합 장치 및 해당 복합 장치의 전력 밀도 향상 방법
Kim et al. Membrane-based desalination technology for energy efficiency and cost reduction
Tanaka et al. Continuous ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing plant and transport of Cl-ions and SO4 2-ions
CN106673144B (zh) 一种具有低脱盐率和高有机物截留率的电纳滤装置
US8925294B2 (en) Solute ion coulomb force accelaration and electric field monopole passive voltage source
Du et al. Membrane distillation enhanced by an asymmetric electric field
TW201348144A (zh) 脫鹽系統及方法
CN109772176B (zh) 一种高通量多孔膜的设计方法
JP2021073989A (ja) 細胞の培養方法、培養液の製造方法、培養液及び培養装置
JP2010201310A (ja) 脱塩処理方法
CN214936252U (zh) 一种基于石墨烯的海水彻底淡化的自动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819459

Country of ref document: EP

Kind code of ref document: A1