WO2019237972A1 - 一种声波信号编码、解码的方法及装置 - Google Patents

一种声波信号编码、解码的方法及装置 Download PDF

Info

Publication number
WO2019237972A1
WO2019237972A1 PCT/CN2019/090057 CN2019090057W WO2019237972A1 WO 2019237972 A1 WO2019237972 A1 WO 2019237972A1 CN 2019090057 W CN2019090057 W CN 2019090057W WO 2019237972 A1 WO2019237972 A1 WO 2019237972A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
data
unit
bit
frequency
Prior art date
Application number
PCT/CN2019/090057
Other languages
English (en)
French (fr)
Inventor
杨丽玉
唐鸿
Original Assignee
厦门声连网信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门声连网信息科技有限公司 filed Critical 厦门声连网信息科技有限公司
Publication of WO2019237972A1 publication Critical patent/WO2019237972A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver

Definitions

  • the present invention relates to the technical field of communication coding, and in particular, to a method and a device for encoding and decoding acoustic signals.
  • sonic communication has been widely used in electronic device application systems such as IOS and Android.
  • the principle of sonic communication is actually relatively simple. It mainly uses fixed-frequency sound signals to encode data and then plays these fixed-frequency sounds.
  • the receiver After the sound data is collected, the frequency information contained in it is identified, and then the data is decoded according to the frequency. For example, a sine wave with a frequency f0 corresponds to the number 0, a sine wave with a frequency f1 corresponds to the number 1, a sine wave with a frequency f2 corresponds to the number 2, ..., and a sine wave with a frequency f9 corresponds to the number 9.
  • the digital string 2014 is encoded into 4 segments of sine waves with frequencies of f2, f0, f1, and f4, and each sine wave is required to last for 50ms.
  • the digital string 2014 corresponds to a 200ms sound segment.
  • the receiver records the sound, parses the received sound, identifies the frequencies contained in it: f2, f0, f1, and f4, and then searches the codebook.
  • the decoded number string is 2014.
  • the technical problem mainly solved by the present invention is to provide a method and a device for encoding a sound wave signal, which can effectively identify a sound wave signal in which a drift occurs.
  • a technical solution adopted by the present invention is to provide a method for encoding a sound wave signal.
  • the method includes: parsing the original data to obtain n data units, wherein each of the data units consists of m Data bits, m and n are natural numbers; the n data units obtained by analysis are sequentially corresponding to the n signal units of the selected reference sound wave signal; wherein the reference sound wave signal is The original signal of the signal unit is a reference bit signal; for each of the signal units, a corresponding bit signal of the first frequency or the second frequency is superimposed synchronously according to each data bit of its corresponding data unit; and After the signal superposition is completed, the signal units are sequentially spliced to form an encoded acoustic signal.
  • the reference acoustic wave signal is composed of n signal units, and each of the signal units is composed of m data bit signals and 1 reference bit signal, and each data bit signal has a first frequency and a first frequency. Two frequencies.
  • the corresponding bit signal of the first frequency or the second frequency is superimposed synchronously, specifically for each said signal unit An,
  • a bit signal B m- ( l-1) when the lth data bit is 0, a bit signal B m- ( l-1) ; when the lth data bit is 1, the second frequency bit signal B m- (l-1) of the signal unit An is superimposed on the signal unit An; wherein, 1 ⁇ l ⁇ m-1, l is a natural number.
  • the device includes: an analysis unit configured to parse the original data to obtain n data units;
  • the data units are each composed of m data bits, and m and n are natural numbers;
  • the coding unit is configured to correspond to the n signal units obtained by analysis and the n signal units of the selected reference acoustic signal in sequence; and
  • For each of the signal units according to the respective data bits of the corresponding data unit, a bit signal of a corresponding first frequency or a second frequency is superimposed synchronously; wherein the reference acoustic wave signal, each of the signals
  • the original signal of the unit is a reference bit signal;
  • the first integration unit is configured to sequentially stitch the signal units processed by the encoding unit to form an encoded acoustic wave signal.
  • the reference acoustic wave signal is composed of n signal units, and each of the signal units is composed of m data bit signals and 1 reference bit signal, and each data bit signal has a first frequency and a first frequency. Two frequencies.
  • the encoding unit is further configured to synchronize and superimpose the signal unit An on the signal unit An according to each data bit of the corresponding data unit Cn when the first data bit is 0.
  • Bit signal B m- (l-1) where 1 ⁇ l ⁇ m-1, l is a natural number.
  • Another technical solution adopted by the present invention is to provide a method for decoding an acoustic wave signal.
  • the method includes: analyzing the received acoustic wave signal, and correspondingly generating each block according to the size of a data unit defined in the encoding process.
  • the size of the sound wave signal is used to split the received sound wave signal to obtain n segments of sound wave signals; wherein the size of each said data unit is defined as consisting of m data bits, and m and n are natural numbers; for each Four of the sound wave signals are Fourier transformed to obtain corresponding frequency domain waveforms, and the actual frequency value of the reference bit signal in the corresponding signal unit is determined according to the frequency domain waveforms; the corresponding correspondence is identified according to the frequency shift rule defined in the encoding process.
  • the actual frequency value of the data bit signal in the signal unit to restore m data bits according to the actual frequency value; and m data bits obtained from each segment of the acoustic wave signal to be sequentially spliced together to obtain the original data.
  • the reference acoustic wave signal is composed of n signal units, and each of the signal units is composed of m data bit signals and 1 reference bit signal, and each data bit signal has a first frequency and a first frequency. Two frequencies.
  • the frequency shift rule is defined in advance: for each of the signal units An, according to each data bit of the corresponding data unit Cn, when the lth data bit is 0, the signal unit An
  • the bit signal B m- (l-1) of the first frequency of the signal unit An is superimposed synchronously on An; when the first data bit is 1, the signal unit An is superimposed synchronously on the signal unit
  • Bit signal B m- (l-1) of the second frequency of An wherein, 1 ⁇ l ⁇ m-1, l is a natural number.
  • a sound wave signal decoding device the device includes: a splitting unit, configured to analyze the received sound wave signal, and according to the data defined by the encoding process The unit size corresponds to the size of each generated acoustic signal waveform, and the received acoustic signal is split to obtain n segments of acoustic signals; wherein the size of each data unit is defined as consisting of m data bits, m, n are all natural numbers; a decoding unit is configured to: perform a Fourier transform on each segment of the acoustic wave signal to obtain a corresponding frequency domain waveform; and determine an actual reference bit signal in the corresponding signal unit according to the frequency domain waveform A frequency value; and identifying an actual frequency value of a data bit signal in a corresponding signal unit according to a frequency shift rule defined in an encoding process, so as to obtain m data bits by restoring according to the actual frequency value; a second integration unit, configured to
  • the reference acoustic wave signal is composed of n signal units, and each of the signal units is composed of m data bit signals and 1 reference bit signal, and each data bit signal has a first frequency and a first frequency. Two frequencies.
  • the frequency shift rule is defined in advance: for each of the signal units An, according to each data bit of the corresponding data unit Cn, when the lth data bit is 0, the signal unit An
  • the bit signal B m- (l-1) of the first frequency of the signal unit An is superimposed synchronously on An; when the first data bit is 1, the signal unit An is superimposed synchronously on the signal unit
  • Bit signal B m- (l-1) of the second frequency of An wherein, 1 ⁇ l ⁇ m-1, l is a natural number.
  • a method and a device for encoding and decoding a sound wave signal provided by embodiments of the present invention, select a reference sound wave signal, segment the original data to be encoded with reference to the reference sound wave signal, and use a predefined frequency shift rule to the original data to be encoded. Encoding, so that the actual frequency of the reference signal can be identified according to the definition of the encoding process, and the actual frequency values of all the acoustic signals are decoded according to the frequency shift rule, so as to obtain the transmitted data, which can improve the accuracy of the acoustic signal identification. Greatly improves the reliability of data transmission.
  • FIG. 1 is a schematic diagram of a data structure of an acoustic wave signal in the prior art
  • FIG. 2 is a schematic structural diagram of an acoustic wave signal encoding device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a data structure of an acoustic wave signal to be encoded
  • FIG. 4 is a schematic diagram of a data structure of a data unit C2 of an acoustic signal to be encoded after being encoded;
  • FIG. 5 is a schematic flowchart of an acoustic wave signal encoding method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a sound wave signal decoding device according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of an acoustic wave signal decoding method according to an embodiment of the present invention.
  • Acoustic wave A vibrating mechanical wave that transmits sound in an elastic medium.
  • Acoustic signal A communication signal superimposed on a sound wave.
  • Acoustic signal drift A situation where the acoustic communication signal is shifted from its original position. For example, on the frequency axis, the signal drifts up or down.
  • an acoustic wave signal is composed of n reference bit signals and n * m data bit signals.
  • one acoustic wave signal is composed of n signal units spliced; one signal unit is composed of m + 1 bit signals superimposed, that is, m data bit signals and 1 reference bit signal; among which, the data bit
  • the signal is divided into a first frequency and a second frequency.
  • a bit signal is a sine wave signal or a cosine wave signal.
  • FIG. 1 is a schematic diagram of a data structure of an acoustic signal in the prior art.
  • an acoustic wave signal consists of twelve signal units A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, and seamlessly stitched in order on the time axis.
  • Each signal unit is composed of five bit signals B1, B2, B3, B4, and B5, which are superimposed synchronously, that is, it contains 4 data bit signals and 1 reference bit signal; each bit signal consists of one
  • the sine signal or cosine signal with a duration of 43537.42 ⁇ s is composed of a single signal.
  • the bit signal B1 is a reference bit signal, its reference frequency is 18863.09Hz, and the allowable drift range is ⁇ 300.00Hz;
  • the first frequency is the actual frequency of the reference bit signal B1 is shifted down by 861.33 Hz, and the second frequency is the first frequency thereof is shifted up by 172.27 Hz;
  • the first frequency is the actual frequency of the reference bit signal B1 is shifted down by 344.53Hz, and the second frequency is its first frequency shifted up by 172.27Hz;
  • the first frequency is the actual frequency of the reference bit signal B1 being shifted up by 172.27Hz, and the second frequency is the first frequency being shifted by 172.27Hz;
  • the first frequency is the actual frequency of the reference bit signal B1 being shifted up by 689.06 Hz
  • the second frequency is its first frequency being shifted by 172.27 Hz.
  • the present invention performs encoding based on the characteristics of the acoustic signal as described above, and the specific working principle is as follows.
  • FIG. 2 is a schematic structural diagram of an acoustic signal encoding device according to an embodiment of the present invention.
  • the device 10 includes a parsing unit 11, an encoding unit 12, and a first integration unit 13.
  • the parsing unit 11 is configured to parse the original data to obtain n data units.
  • Each data unit is composed of m data bits, and m and n are natural numbers.
  • the original data is data to be encoded.
  • the size of the original data is m * n, that is, the original data is binary data of m * n bits.
  • the encoding unit 12 is used to sequentially correspond to the n data units obtained from the analysis and the n signal units of the selected reference acoustic signal.
  • the original signal of each signal unit is a reference bit signal.
  • the selected reference acoustic wave signal includes n signal units (A1, A2, ..., An), and is seamlessly spliced in order on the time axis.
  • Each signal unit is composed of m data bit signals (B1, B2, ..., Bm) and a reference bit signal synchronized and superimposed.
  • n data units (C1, C2, ..., Cn) are sequentially corresponding to n signal units (A1, A2, ..., An) of the selected reference acoustic wave signal.
  • FIG. 3 is a schematic structural diagram of the original data to be encoded.
  • the selected reference sound wave signal is composed of 12 signal units A1, A2, ..., A12, and each signal unit is composed of 4 data bit signals B2, B3, B4, B5, and 1 reference bit signal B1.
  • Data units C1, C2, ..., C12 are obtained by analyzing the original data to be encoded, and each data unit corresponds to 4 data bits, and the signal units A1 to A12 of the selected reference acoustic wave signal are sequentially selected in sequence. correspond.
  • the four data bits constituting the data unit C5 are 1, 0, 0, and 1, respectively.
  • the original signal of each signal unit is the reference bit signal B1, that is, the data bit signals B2 to B5 of each signal unit are also corresponding reference values.
  • the specific encoding rules and principles are as follows.
  • the encoding unit 12 is further configured to synchronize, for each signal unit, a bit signal of a corresponding first frequency or a second frequency according to each data bit of a corresponding data unit.
  • the encoding unit 12 pairs the signal unit An, and according to each data bit of the corresponding data unit Cn, when the first data bit is 0, the first unit of the signal unit An is superimposed on the signal unit An synchronously.
  • 1 ⁇ l ⁇ m-1, l is a natural number. That is, the first frequency or the second frequency is superimposed on the reference value of the bit signal B m- (l-1) of the signal unit An, thereby obtaining an encoded value, that is, the frequency value of the data unit Cn .
  • FIGS. 1 and 3 the schematic diagram of the sound signal data structure shown in FIGS. 1 and 3 is taken as an example.
  • the principle of frequency synchronization superposition is as follows:
  • the bit signal B5 of the first frequency of the signal unit An is superimposed synchronously.
  • the bit signal B4 of the first frequency of the signal unit An is synchronously superimposed, and if the second bit of the data bit corresponding to the data unit Cn is 1, the synchronization is synchronized.
  • the bit signal B3 of the first frequency of the signal unit An is superimposed synchronously. If the third bit of the data bit corresponding to the data unit Cn is 1, the synchronization is synchronized. Superimpose the bit signal B3 of the second frequency of the signal unit An;
  • the bit signal B2 of the first frequency of the signal unit An is synchronously superimposed; if the fourth bit of the data bit corresponding to the data unit Cn is 1, the synchronization is synchronized Superimpose the bit signal B2 of the second frequency of the signal unit An;
  • the data bits constituting the data unit C2 are "0, 0, 1, 1", and are processed according to the frequency synchronization superposition method as described above, and the superposed data unit C2 'is shown in the figure.
  • B2 is a bit signal B2 of the second frequency
  • B3 is a bit signal B3 of the second frequency
  • B4 ' is a bit signal B4 of the first frequency
  • B5' is a bit signal B5 of the first frequency.
  • the first integration unit 13 is configured to sequentially stitch the signal unit An obtained through the processing of the encoding unit 12 to form an encoded acoustic wave signal.
  • FIG. 5 is a schematic flowchart of an acoustic signal encoding method according to an embodiment of the present invention.
  • the method includes:
  • Step S20 Parse the original data to obtain n data units.
  • Each data unit is composed of m data bits, and m and n are natural numbers.
  • the original data is data to be encoded.
  • the size of the original data is m * n, that is, the original data is binary data of m * n bits.
  • step S21 the n data units obtained through analysis correspond to the n signal units of the selected reference acoustic wave signal in sequence.
  • the original signal of each signal unit is a reference bit signal.
  • the selected reference acoustic wave signal includes n signal units (A1, A2, ..., An), and is seamlessly spliced in order on the time axis.
  • Each signal unit is composed of m data bit signals (B1, B2, ..., Bm) and a reference bit signal synchronized and superimposed. Therefore, the n data units (C1, C2, ..., Cn) are sequentially corresponding to the n signal units (A1, A2, ..., An) of the selected reference acoustic wave signal.
  • the original data is 48-bit binary data
  • the selected reference sound wave signal is spliced from 12 signal units A1, A2, ..., A12
  • each signal unit is composed of 4 data bit signals B2. , B3, B4, B5, and a reference bit signal B1 are simultaneously superimposed.
  • Data units C1, C2, ..., C12 are obtained by analyzing the original data to be encoded, and each data unit corresponds to 4 data bits, and the signal units A1 to A12 of the selected reference acoustic wave signal are sequentially selected in sequence. correspond.
  • the four data bits constituting the data unit C5 are 1, 0, 0, and 1, respectively.
  • the original signal of each signal unit is the reference bit signal B1, that is, the data bit signals B2 to B5 of each signal unit are also corresponding reference values.
  • the original data to be encoded has data units C1 to C12 corresponding to the signal units A1 to A12 of the reference acoustic wave signal, it is assumed that the value of each data unit C1 to C12 is also a reference value, and then the encoding rules are further used in Frequency synchronization is superimposed on the basis of the reference value to obtain the actual value of each data unit.
  • Step S22 For each signal unit, according to each data bit of a corresponding data unit, a bit signal of a corresponding first frequency or a second frequency is superimposed synchronously.
  • the first frequency bit of the signal unit An is superimposed on the signal unit An synchronously.
  • Signal B m- (l-1) when the first data bit is 1, the bit signal B m- (l-1) of the first frequency of the signal unit An is superimposed on the signal unit An in synchronization.
  • 1 ⁇ l ⁇ m-1, l is a natural number. That is, the first frequency or the second frequency is superimposed on the reference value of the bit signal B m- (l-1) of the signal unit An, thereby obtaining an encoded value, that is, the frequency value of the data unit Cn .
  • the bit signal B5 of the first frequency of the signal unit An is superimposed synchronously.
  • the bit signal B4 of the first frequency of the signal unit An is synchronously superimposed; if the second bit of the data bit corresponding to the data unit Cn is 1, the synchronization is synchronized Superimpose the bit signal B4 of the second frequency of the signal unit An;
  • the bit signal B3 of the first frequency of the signal unit An is superimposed synchronously. If the third bit of the data bit corresponding to the data unit Cn is 1, the synchronization is synchronized. Superimpose the bit signal B3 of the second frequency of the signal unit An;
  • the bit signal B2 of the first frequency of the signal unit An is synchronously superimposed; if the fourth bit of the data bit corresponding to the data unit Cn is 1, the synchronization is synchronized The bit signal B2 of the second frequency of the signal unit An is superimposed.
  • step S23 the obtained signal units are sequentially spliced to form an encoded acoustic wave signal.
  • FIG. 6 is a schematic structural diagram of a sound wave signal decoding device according to an embodiment of the present invention.
  • the device 40 includes a splitting unit 41, a decoding unit 42, and a second integration unit 43.
  • the splitting unit 41 is configured to analyze the received acoustic wave signal, and divide the received acoustic wave signal according to the size of each acoustic wave signal waveform generated corresponding to the size of the data unit defined in the encoding process to obtain n-band acoustic wave signals.
  • each data unit Cn includes m data bits, and the m data bits included in each data unit Cn are encoded by using the encoding rule described above to determine each data bit.
  • An acoustic wave signal generating device will generate an acoustic wave signal having a corresponding frequency value waveform according to the encoding rule, thereby transmitting the acoustic wave signal.
  • the dividing unit 41 divides the acoustic wave signal according to the same coding rule, so that each segment of the acoustic wave signal corresponding to the data unit before the acoustic wave signal is encoded.
  • the decoding unit 42 is configured to:
  • the actual frequency value of the data bit signal in the corresponding signal unit is identified according to the frequency shift rule defined in the encoding process, so that m data bits are restored according to the actual frequency value.
  • the decoding unit 42 performs a Fourier transform process on each data waveform to determine the corresponding frequency value. Since each segment of the acoustic wave signal corresponds to the data unit before encoding, the Fourier transform process will obtain m Frequency value. Further, the decoding unit 42 also compares the encoding rules to identify the actual frequency value of the reference signal in the bit signal (corresponding to the bit signal B1), and then according to the relative frequency shift rules of the bit signals (B2, B3, B4, B5). , Identify other bit signals (B2, B3, B4, B5), and then effectively identify acoustic signals.
  • the frequency shift rule is defined in advance: for each of the signal units An, according to each data bit of the corresponding data unit Cn, when the lth data bit is 0, the signal unit An
  • the bit signal B m- (l-1) of the first frequency of the signal unit An is superimposed synchronously on An; when the first data bit is 1, the signal unit An is superimposed synchronously on the signal unit
  • Bit signal B m- (l-1) of the second frequency of An wherein, 1 ⁇ l ⁇ m-1, l is a natural number.
  • the second integration unit 43 is configured to sequentially splice m data bits obtained by reducing the sonic signals in each segment to obtain original data.
  • FIG. 8 is a schematic flowchart of a method for decoding an acoustic wave signal according to an embodiment of the present invention.
  • the method includes:
  • step S50 the received acoustic wave signals are analyzed, and the received acoustic wave signals are split according to the size of each acoustic wave signal waveform corresponding to the size of the data unit defined in the encoding process to obtain n segments of acoustic wave signals.
  • each data unit is defined as being composed of m data bits, and m and n are natural numbers.
  • Step S51 Fourier transform each of the acoustic wave signals to obtain a corresponding frequency domain waveform, and determine an actual frequency value of a reference bit signal in a corresponding signal unit according to the frequency domain waveform.
  • the reference acoustic wave signal is composed of n signal units, and each of the signal units is composed of m data bit signals and 1 reference bit signal, and each data bit signal has a first frequency and a second frequency. .
  • Step S52 Identify the actual frequency value of the data bit signal in the corresponding signal unit according to the frequency shift rule defined in the encoding process, so as to obtain m data bits by restoring according to the actual frequency value.
  • the frequency shift rule is defined in advance: For each of the signal units An, according to each data bit of the corresponding data unit Cn, when the lth data bit is 0, the signal unit An is superimposed synchronously.
  • step S53 m data bits obtained by restoring the acoustic signals of each segment are sequentially spliced to obtain original data.
  • a method and a device for encoding and decoding a sound wave signal provided by embodiments of the present invention, select a reference sound wave signal, divide the sound wave signal to be encoded with reference to the reference sound wave signal, and encode the sound wave signal to be encoded using a predefined frequency shift rule. Therefore, the actual frequency of the reference signal can be identified according to the definition of the encoding process, and the actual frequency values of all the acoustic signals are decoded according to the frequency shift rule, so as to obtain the transmitted data, which can improve the accuracy of the acoustic signal identification, greatly Improves the reliability of data transmission.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules or units is only a logical function division.
  • multiple units or components may be divided.
  • the combination can either be integrated into another system, or some features can be ignored or not implemented.
  • the mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium. Based on this understanding, all or part of the technical solution of the present invention may be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions for making a computer device (which may be a personal computer, A management server, or a network device, etc.) or processor executes all or part of the steps of the method described in each embodiment of the present invention.
  • the aforementioned storage medium includes: a U disk, a mobile hard disk, a read-only memory (English: read-only memory, abbreviation: ROM), a random access memory (English: Random Access Memory, abbreviation: RAM), a magnetic disk or an optical disk, etc Various media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Auxiliary Devices For Music (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Telephone Function (AREA)

Abstract

本发明公开了一种声波信号编码、解码的方法及装置,其中,该编码方法包括:对原始数据进行解析得到n个数据单元;其中,每个所述数据单元均由m个数据位元组成,m、n均为自然数;将解析得到的n个所述数据单元与选取的基准声波信号的n个信号单元依序分别对应;其中,所述基准声波信号,每个所述信号单元的原始信号为基准位元信号;对每个所述信号单元,根据其对应的数据单元的各个数据位元,同步叠加相应的第一频率或第二频率的位元信号;以及将完成信号叠加后的各信号单元,依序拼接形成编码后的声波信号。利用本发明,能够提高声波信号的识别准确率,极大的提高了数据传输的可靠性。

Description

一种声波信号编码、解码的方法及装置 【技术领域】
本发明涉及通信编码技术领域,特别涉及一种声波信号编码、解码的方法及装置。
【背景技术】
目前声波通信已经在IOS和Android等电子设备应用系统中得到了广泛普及,声波通信的原理其实比较简单,主要是利用固定频率的声音信号对数据进行编码,然后播放这些固定频率的声音,接收方在采集到声音数据后,识别出其中包含的频率信息,然后根据频率解码出数据。例如,可以将频率为f0的正弦波对应数字0,频率为f1的正弦波对应数字1,频率为f2的正弦波对应数字2,……,频率为f9的正弦波对应数字9。那么数字串2014就被编码为4段正弦波,其频率分别为f2、f0、f1、f4,规定每段正弦波持续50ms,则数字串2014对应200毫秒的声音段。接收方录制声音,对接收到的声音进行解析,识别出其中包含的频率:f2、f0、f1和f4,然后查找码本,解码出的数字串就是2014。
现有技术下,声波信号处理过程中,并没有考虑到声波信号容易受到处理设备精度而导致的声波信号漂移,从而影响声波信号的有效识别,造成实际应用中数据传输的不可靠。
【发明内容】
本发明主要解决的技术问题是提供一种声波信号编码方法及装置,能够有效识别出现漂移情况的声波信号。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种声波信号编码方法,所述方法包括:对原始数据进行解析得到n个数据单元;其中,每个所述数据单元均由m个数据位元组成,m、n均为自然数;将解析得到的n 个所述数据单元与选取的基准声波信号的n个信号单元依序分别对应;其中,所述基准声波信号,每个所述信号单元的原始信号为基准位元信号;对每个所述信号单元,根据其对应的数据单元的各个数据位元,同步叠加相应的第一频率或第二频率的位元信号;以及将完成信号叠加后的各信号单元,依序拼接形成编码后的声波信号。
其中,所述基准声波信号由n个信号单元组成,每个所述信号单元由m个数据位元信号以及1个基准位元信号同步叠加组成,每个数据位元信号具有第一频率和第二频率。
其中,对每个所述信号单元,根据其对应的数据单元的各个数据位元,同步叠加相应的第一频率或第二频率的位元信号,具体为:对每个所述信号单元An,根据所对应的数据单元Cn的各个数据位元,当第l个数据位元为0时,在所述信号单元An上同步叠加所述信号单元An的第一频率的位元信号B m-(l-1);当第l个数据位元为1时,在所述信号单元An上同步叠加所述信号单元An的第二频率的位元信号B m-(l-1);其中,1≤l≤m-1,l为自然数。
其中,n=12,m=4。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种声波信号编码装置,所述装置包括:解析单元,用于对原始数据进行解析得到n个数据单元;其中,每个所述数据单元均由m个数据位元组成,m、n为自然数;编码单元,用于将解析得到的n个所述数据单元与选取的基准声波信号的n个信号单元依序分别对应;以及对每个所述信号单元,根据对应的所述数据单元的各个数据位元,同步叠加相应的第一频率或第二频率的位元信号;其中,所述基准声波信号,每个所述信号单元的原始信号为基准位元信号;第一整合单元,用于将经过所述编码单元处理得到的信号单元依序拼接形成编码后的声波信号。
其中,所述基准声波信号由n个信号单元组成,每个所述信号单元由m个数据位元信号以及1个基准位元信号同步叠加组成,每个数据位元信号具有第一频率和第二频率。
其中,所述编码单元还用于对所述信号单元An,根据所对应的数据单元Cn的各个数据位元,当第l个数据位元为0时,在所述信号单元An上同步叠加所述信号单元An的第一频率的位元信号B m-(l-1);当第l个数据位元为1时,在所述信号单元An上同步叠加所述信号单元An的第二频率的位元信号B m-(l-1);其中,1≤l≤m-1,l为自然数。
其中,n=12,m=4。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种声波信号解码方法,所述方法包括:分析接收到的声波信号,按照编码过程所定义的数据单元大小对应生成的每块声波信号波形大小对接收到的声波信号进行拆分,得到n段声波信号;其中,每个所述数据单元的大小被定义为由m个数据位元组成,m、n均为自然数;对每个所述声波信号进行傅里叶变换得到相应的频域波形,并根据所述频域波形确定对应信号单元中的基准位元信号的实际频率值;按照编码过程所定义的频移规则识别对应信号单元中的数据位元信号的实际频率值,以根据所述实际频率值还原得到m个数据位元;以及将每段所述声波信号还原得到的m个数据位元依序拼接起来得到原始数据。
其中,所述基准声波信号由n个信号单元组成,每个所述信号单元由m个数据位元信号以及1个基准位元信号同步叠加组成,每个数据位元信号具有第一频率和第二频率。
其中,所述频移规则被预先定义为:对每个所述信号单元An,根据所对应的数据单元Cn的各个数据位元,当第l个数据位元为0时,在所述信号单元An上同步叠加所述信号单元An的第一频率的位元信号B m-(l-1);当第l个数据位元为1时,在所述信号单元An上同步叠加所述信号单元An的第二频率的位元信号B m-(l-1);其中,1≤l≤m-1,l为自然数。
其中,n=12,m=4。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种声波信号解码装置,所述装置包括:拆分单元,用于分析接收到的声波信号,并按照 编码过程所定义的数据单元大小对应生成的每块声波信号波形大小对接收到的声波信号进行拆分,得到n段声波信号;其中,每个所述数据单元的大小被定义为由m个数据位元组成,m、n均为自然数;解码单元,用于:对每段所述声波信号进行傅里叶变换,以得到相应的频域波形;根据所述频域波形确定对应信号单元中的基准位元信号的实际频率值;以及按照编码过程所定义的频移规则识别对应信号单元中的数据位元信号的实际频率值,以根据所述实际频率值还原得到m个数据位元;第二整合单元,用于将每段所述声波信号还原得到的m个数据位元依序拼接起来得到原始数据。
其中,所述基准声波信号由n个信号单元组成,每个所述信号单元由m个数据位元信号以及1个基准位元信号同步叠加组成,每个数据位元信号具有第一频率和第二频率。
其中,所述频移规则被预先定义为:对每个所述信号单元An,根据所对应的数据单元Cn的各个数据位元,当第l个数据位元为0时,在所述信号单元An上同步叠加所述信号单元An的第一频率的位元信号B m-(l-1);当第l个数据位元为1时,在所述信号单元An上同步叠加所述信号单元An的第二频率的位元信号B m-(l-1);其中,1≤l≤m-1,l为自然数。
其中,n=12,m=4。
本发明实施方式提供的一种声波信号编码、解码的方法及装置,选取基准声波信号,并参照基准声波信号对待编码的原始数据进行分割以及利用预先定义的频移规则对该待编码的原始数据进行编码,因此能够在依照编码过程的定义识别基准信号的实际频率,并依据频移规则解码出全部声波信号的实际频率值,从而得到发送的数据,以此能够提高声波信号的识别准确率,极大的提高了数据传输的可靠性。
【附图说明】
图1是现有技术中声波信号的数据结构示意图;
图2是本发明实施方式中的一种声波信号编码装置的结构示意图;
图3是待编码声波信号的数据结构示意图;
图4是待编码声波信号的数据单元C2进行编码后的数据结构示意图;
图5是本发明实施方式中的一种声波信号编码方法的流程示意图;
图6是本发明实施方式中的一种声波信号解码装置的结构示意图;
图7是本发明实施方式中的一种声波信号解码方法的流程示意图。
【具体实施方式】
首先对本发明实施方式所需引用的现有技术名词进行解释。
声波:一种在弹性介质中传递声音的振动机械波。
声波信号:一种叠加在声波中的通讯信号。
声波信号漂移:一种在声波通讯信号偏移原来位置的情形。例如,在频率轴上,信号向上漂移或向下漂移。
为详细说明本发明的技术内容、构造特征、所实现目的及效果,以下结合附图和实施例对本发明进行详细说明。
现有技术中,一个声波信号,由n个基准位元信号和n*m个数据位元信号共同组成。具体地,一个声波信号,由n个信号单元拼接组成;一个信号单元由m+1个位元信号叠加组成,即,m个数据位元信号,1个基准位元信号;其中,数据位元信号有第一频率和第二频率之分。一个位元信号是一个正弦波信号或余弦波信号。
请同时参阅图1,为现有技术中声波信号的数据结构示意图。如图1所示,一个声波信号由十二个信号单元A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、A11、A12组成,且在时间轴上按照顺序无缝拼接。其中,每个信号单元由五个位元信号B1、B2、B3、B4、B5,同步叠加组成,即,包含4个数据位元信号,1个基准位元信号;每个位元信号由一个时长为43537.42μs的正弦信号或余弦信号单一构成。
具体地,每个信号单元中,位元信号B1为基准位元信号,其基准频率为18863.09Hz,容许漂移的范围为±300.00Hz;
数据位元信号B2,第一频率为基准位元信号B1的实际频率下移861.33Hz,第二频率为其第一频率上移172.27Hz;
数据位元信号B3,第一频率为基准位元信号B1的实际频率下移344.53Hz,第二频率为其第一频率上移172.27Hz;
数据位元信号B4,第一频率为基准位元信号B1的实际频率上移172.27Hz,第二频率为其第一频率上移172.27Hz;
数据位元信号B5,第一频率为基准位元信号B1的实际频率上移689.06Hz,第二频率为其第一频率上移172.27Hz。
本发明基于声波信号如上所述的特征,进行编码,具体工作原理如下所述。
请参阅图2,为本发明实施方式的一种声波信号编码装置的结构示意图。该装置10包括解析单元11、编码单元12以及第一整合单元13。
该解析单元11用于对原始数据进行解析得到n个数据单元。
其中,每个数据单元均由m个数据位元组成,m、n均为自然数。
具体地,该原始数据为待编码的数据。
进一步地,该原始数据的大小为m*n,即,该原始数据为m*n位的二进制数据。
该编码单元12用于将解析得到的n个数据单元与选取的基准声波信号的n个信号单元依序分别对应。
其中,每个信号单元的原始信号为基准位元信号。
具体地,在对原始数据进行解析编码时,需要先确定该原始数据的大小,然后再相应地选择基准声波信号。因此,选取的基准声波信号包含n个信号单元(A1,A2,……,An),且在时间轴上按照顺序无缝拼接。每个信号单元由m个数据位元信号(B1,B2,……,Bm)以及1个基准位元信号同步叠加组成。从而,使得n个数据单元(C1,C2,……,Cn)依次与所述选取的基准声波信 号的n个信号单元(A1,A2,……,An)对应。
请同时参阅图3,为该待编码的原始数据的结构示意图。在本实施方式中,n=12,m=4,即,该原始数据为48位的二进制数据,并按照从高位到地位的顺序排列。所选取的基准声波信号由12信号单元A1,A2,……,A12拼接而成,且每个信号单元由4个数据位元信号B2,B3,B4,B5,以及1个基准位元信号B1同步叠加而成。对该待编码的原始数据进行解析得到数据单元C1,C2,……,C12,每个数据单元对应包含4个数据位元,并依次按照顺序与所选取的基准声波信号的信号单元A1~A12对应。例如,组成数据单元C5的4个数据位元,分别为1、0、0、1。
进一步地,所选取的基准声波信号中,每个信号单元的原始信号均为基准位元信号B1,即,每个信号单元的数据位元信号B2~B5也为对应的基准值。当待编码的原始数据,其数据单元C1~C12与基准声波信号的信号单元A1~A12一一对应时,具体的编码规则及原理如下所述。
该编码单元12还用于对每个信号单元,根据对应的数据单元的各个数据位元,同步叠加相应的第一频率或第二频率的位元信号。
具体地,该编码单元12对信号单元An,根据其对应的数据单元Cn的各个数据位元,当第l个数据位元为0时,在信号单元An上同步叠加该信号单元An的第一频率的位元信号B m-(l-1);当第l个数据位元为1时,在信号单元An上同步叠加该信号单元An的第二频率的位元信号B m-(l-1)。其中,1≤l≤m-1,l为自然数。也就是说,在信号单元An的位元信号B m-(l-1)的基准值的基础上叠加第一频率或第二频率,从而得到编码后的值,即,数据单元Cn的频率值。
在本实施方式中,以图1、3所示的声波信号数据结构示意图为例,依据时间轴的顺序,且当每个数据单元Cn包含4位二进制数据,具体地频率同步叠加原理如下:
若数据单元Cn对应的数据位元的第一位为0时,同步叠加信号单元An的第一频率的位元信号B5,若数据单元Cn对应的数据数据的第一位为1时,同 步叠加信号单元An的第二频率的位元信号B5;
若数据单元Cn对应的数据位元的第二位为0时,同步叠加信号单元An的第一频率的位元信号B4,若数据单元Cn对应的数据位元的第二位为1时,同步叠加信号单元An的第二频率的位元信号B4;
若数据单元Cn对应的数据位元的第三位为0时,同步叠加信号单元An的第一频率的位元信号B3,若数据单元Cn对应的数据位元的第三位为1时,同步叠加信号单元An的第二频率的位元信号B3;
若数据单元Cn对应的数据位元的第四位为0时,同步叠加信号单元An的第一频率的位元信号B2,若数据单元Cn对应的数据位元的第四位为1时,同步叠加信号单元An的第二频率的位元信号B2;
请同时参阅图4,在待编码的原始数据中选取数据单元C2为例加以说明。组成数据单元C2的数据位元为“0、0、1、1”,则依据如上所述的频率同步叠加方法进行处理,得到叠加之后的数据单元C2’如图所示。其中,B2”为第二频率的位元信号B2,B3”为第二频率的位元信号B3,B4’为第一频率的位元信号B4,B5’为第一频率的位元信号B5。
该第一整合单元13用于将经过编码单元12处理得到信号单元An依序拼接形成编码后的声波信号。
请参阅图5,为本发明实施方式中的一种声波信号编码方法的流程示意图,该方法包括:
步骤S20,对原始数据进行解析得到n个数据单元。
其中,每个数据单元均由m个数据位元组成,m、n均为自然数。
具体地,该原始数据为待编码的数据。该原始数据的大小为m*n,即,该原始数据为m*n位的二进制数据。
步骤S21,将解析得到的n个数据单元与选取的基准声波信号的n个信号单元依序分别对应。
其中,每个信号单元的原始信号为基准位元信号。
具体地,在对原始数据进行解析编码时,需要先确定该原始数据的大小,然后再相应地选择基准声波信号。因此,选取的基准声波信号包含n个信号单元(A1,A2,……,An),且在时间轴上按照顺序无缝拼接。每个信号单元由m个数据位元信号(B1,B2,……,Bm)以及1个基准位元信号同步叠加组成。从而,使得n个数据单元(C1,C2,……,Cn)依次与所述选取的基准声波信号的n个信号单元(A1,A2,……,An)对应。
在本实施方式中,该原始数据为48位的二进制数据,选取的基准声波信号由12信号单元A1,A2,……,A12拼接而成,且每个信号单元由4个数据位元信号B2,B3,B4,B5,以及1个基准位元信号B1同步叠加而成。对该待编码的原始数据进行解析得到数据单元C1,C2,……,C12,每个数据单元对应包含4个数据位元,并依次按照顺序与所选取的基准声波信号的信号单元A1~A12对应。例如,组成数据单元C5的4个数据位元,分别为1、0、0、1。
进一步地,所选取的基准声波信号中,每个信号单元的原始信号均为基准位元信号B1,即,每个信号单元的数据位元信号B2~B5也为对应的基准值。当待编码的原始数据,其数据单元C1~C12与基准声波信号的信号单元A1~A12一一对应时,假设每个数据单元C1~C12的值也为基准值,然后进一步地利用编码规则在基准值的基础上进行频率同步叠加,从而得到每个数据单元的实际值。
步骤S22,对每个信号单元,根据对应的数据单元的各个数据位元,同步叠加相应的第一频率或第二频率的位元信号。
具体地,对信号单元An,根据其对应的数据单元Cn的各个数据位元,当第l个数据位元为0时,在信号单元An上同步叠加该信号单元An的第一频率的位元信号B m-(l-1);当第l个数据位元为1时,在信号单元An上同步叠加该信号单元An的第一频率的位元信号B m-(l-1)。其中,1≤l≤m-1,l为自然数。也就是说,在信号单元An的位元信号B m-(l-1)的基准值的基础上叠加第一频率或第二频率,从而得到编码后的值,即,数据单元Cn的频率值。
以图1、3所示的声波信号数据示意图为例,依据时间轴的顺序,且当每个 数据单元Cn包含4位二进制数据,具体地频率同步叠加原理如下:
若数据单元Cn对应的数据位元的第一位为0时,同步叠加信号单元An的第一频率的位元信号B5,若数据单元Cn对应的数据数据的第一位为1时,同步叠加信号单元An的第二频率的位元信号B5;
若数据单元Cn对应的数据位元的第二位为0时,同步叠加信号单元An的第一频率的位元信号B4,若数据单元Cn对应的数据位元的第二位为1时,同步叠加信号单元An的第二频率的位元信号B4;
若数据单元Cn对应的数据位元的第三位为0时,同步叠加信号单元An的第一频率的位元信号B3,若数据单元Cn对应的数据位元的第三位为1时,同步叠加信号单元An的第二频率的位元信号B3;
若数据单元Cn对应的数据位元的第四位为0时,同步叠加信号单元An的第一频率的位元信号B2,若数据单元Cn对应的数据位元的第四位为1时,同步叠加信号单元An的第二频率的位元信号B2。
步骤S23,将得到的信号单元依序拼接形成编码后的声波信号。
请参阅图6,为本发明实施方式中的一种声波信号的解码装置的结构示意图。该装置40包括拆分单元41、解码单元42以及第二整合单元43。
该拆分单元41用于分析接收到的声波信号,并按照编码过程所定义的数据单元大小对应生成的每块声波信号波形大小对接收到的声波信号进行拆分,得到n段声波信号。
具体地,每个所述数据单元的大小被定义为由m个数据位元组成,m、n均为自然数。如上所述的声波信号编码过程,每个数据单元Cn包含m个数据位元,利用如上所述的编码规则针对每一个数据单元Cn所包含的m个数据位元进行编码,确定每个数据位元对应的频率值,一声波信号发生装置会依据此编码规则生成具有对应频率值波形的声波信号,从而将该声波信号发送出去。当解码装置40接收到声波信号,拆分单元41依据同样的编码规则,将该声波信号进行拆分,以使得得到的每段声波信号对应声波信号编码前的数据单元。
该解码单元42用于:
对每段所述声波信号进行傅里叶变换,以得到相应的频域波形;
根据所述频域波形确定对应信号单元中的基准位元信号的实际频率值;以及
按照编码过程所定义的频移规则识别对应信号单元中的数据位元信号的实际频率值,以根据所述实际频率值还原得到m个数据位元。
具体地,解码单元42对每块数据波形进行傅里叶变换处理以确定相应的频率值,由于每段声波信号是与编码前的数据单元对应的,因此通过傅里叶变换处理会得到m个频率值。进一步地,解码单元42同样比照编码规则,识别出位元信号中基准信号的实际频率值(对应位元信号B1),然后按照位元信号(B2、B3、B4、B5)的相对移频规则,识别其他位元信号(B2、B3、B4、B5),进而有效识别声波信号。
其中,所述频移规则被预先定义为:对每个所述信号单元An,根据所对应的数据单元Cn的各个数据位元,当第l个数据位元为0时,在所述信号单元An上同步叠加所述信号单元An的第一频率的位元信号B m-(l-1);当第l个数据位元为1时,在所述信号单元An上同步叠加所述信号单元An的第二频率的位元信号B m-(l-1);其中,1≤l≤m-1,l为自然数。
该第二整合单元43用于将每段所述声波信号还原得到的m个数据位元依序拼接起来得到原始数据。
请参阅图8,为本发明实施方式中的一种声波信号的解码方法的流程示意图,该方法包括:
步骤S50,分析接收到的声波信号,按照编码过程所定义的数据单元大小对应生成的每块声波信号波形大小对接收到的声波信号进行拆分,得到n段声波信号。
其中,每个所述数据单元的大小被定义为由m个数据位元组成,m、n均为自然数。
步骤S51,对每个所述声波信号进行傅里叶变换得到相应的频域波形,并根据所述频域波形确定对应信号单元中的基准位元信号的实际频率值。
其中,基准声波信号由n个信号单元组成,每个所述信号单元由m个数据位元信号以及1个基准位元信号同步叠加组成,每个数据位元信号具有第一频率和第二频率。
步骤S52,按照编码过程所定义的频移规则识别对应信号单元中的数据位元信号的实际频率值,以根据所述实际频率值还原得到m个数据位元。
频移规则被预先定义为:对每个所述信号单元An,根据所对应的数据单元Cn的各个数据位元,当第l个数据位元为0时,在所述信号单元An上同步叠加所述信号单元An的第一频率的位元信号B m-(l-1);当第l个数据位元为1时,在所述信号单元An上同步叠加所述信号单元An的第二频率的位元信号B m-(l-1);其中,1≤l≤m-1,l为自然数。
步骤S53,将每段所述声波信号还原得到的m个数据位元依序拼接起来得到原始数据。
本发明实施方式提供的一种声波信号编码、解码的方法及装置,选取基准声波信号,并参照基准声波信号对待编码声波信号进行分割以及利用预先定义的频移规则对该待编码声波信号进行编码,因此能够在依照编码过程的定义识别基准信号的实际频率,并依据频移规则解码出全部声波信号的实际频率值,从而得到发送的数据,以此能够提高声波信号的识别准确率,极大的提高了数据传输的可靠性。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电 性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,管理服务器,或者网络设备等)或处理器执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:read-only memory,缩写:ROM)、随机存取存储器(英文:Random Access Memory,缩写:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种声波信号编码方法,其特征在于,所述方法包括:
    对原始数据进行解析得到n个数据单元;其中,每个所述数据单元均由m个数据位元组成,m、n均为自然数;
    将解析得到的n个所述数据单元与选取的基准声波信号的n个信号单元依序分别对应;其中,所述基准声波信号,每个所述信号单元的原始信号为基准位元信号;
    对每个所述信号单元,根据其对应的数据单元的各个数据位元,同步叠加相应的第一频率或第二频率的位元信号;以及
    将完成信号叠加后的各信号单元,依序拼接形成编码后的声波信号。
  2. 根据权利要求1所述的声波信号编码方法,其特征在于,所述基准声波信号由n个信号单元组成,每个所述信号单元由m个数据位元信号以及1个基准位元信号同步叠加组成,每个数据位元信号具有第一频率和第二频率。
  3. 根据权利要求1所述的声波信号编码方法,其特征在于,对每个所述信号单元,根据其对应的数据单元的各个数据位元,同步叠加相应的第一频率或第二频率的位元信号,具体为:
    对每个所述信号单元An,根据所对应的数据单元Cn的各个数据位元,当第l个数据位元为0时,在所述信号单元An上同步叠加所述信号单元An的第一频率的位元信号B m-(l-1);当第l个数据位元为1时,在所述信号单元An上同步叠加所述信号单元An的第二频率的位元信号B m-(l-1);其中,1≤l≤m-1,l为自然数。
  4. 根据权利要求2所述的声波信号编码方法,其特征在于,n=12,m=4。
  5. 一种声波信号编码装置,其特征在于,所述装置包括:
    解析单元,用于对原始数据进行解析得到n个数据单元;其中,每个所述数据单元均由m个数据位元组成,m、n为自然数;
    编码单元,用于将解析得到的n个所述数据单元与选取的基准声波信号的n个信号单元依序分别对应;以及对每个所述信号单元,根据对应的所述数据单元的各个数据位元,同步叠加相应的第一频率或第二频率的位元信号;其中,所述基准声波信号,每个所述信号单元的原始信号为基准位元信号;
    第一整合单元,用于将经过所述编码单元处理得到的信号单元依序拼接形成编码后的声波信号。
  6. 根据权利要求5所述的声波信号编码装置,其特征在于,所述基准声波信号由n个信号单元组成,每个所述信号单元由m个数据位元信号以及1个基准位元信号同步叠加组成,每个数据位元信号具有第一频率和第二频率。
  7. 根据权利要求5所述的声波信号编码装置,其特征在于,所述编码单元还用于对所述信号单元An,根据所对应的数据单元Cn的各个数据位元,当第l个数据位元为0时,在所述信号单元An上同步叠加所述信号单元An的第一频率的位元信号B m-(l-1);当第l个数据位元为1时,在所述信号单元An上同步叠加所述信号单元An的第二频率的位元信号B m-(l-1);其中,1≤l≤m-1,l为自然数。
  8. 根据权利要求6所述的声波信号编码装置,其特征在于,n=12,m=4。
  9. 一种声波信号解码方法,其特征在于,所述方法包括:
    分析接收到的声波信号,按照编码过程所定义的数据单元大小对应生成的每块声波信号波形大小对接收到的声波信号进行拆分,得到n段声波信号;其中,每个所述数据单元的大小被定义为由m个数据位元组成,m、n均为自然数;
    对每个所述声波信号进行傅里叶变换得到相应的频域波形,并根据所述频域波形确定对应信号单元中的基准位元信号的实际频率值;
    按照编码过程所定义的频移规则识别对应信号单元中的数据位元信号的实际频率值,以根据所述实际频率值还原得到m个数据位元;以及
    将每段所述声波信号还原得到的m个数据位元依序拼接起来得到原始数据。
  10. 根据权利要求9所述的声波信号解码方法,其特征在于,所述基准声波 信号由n个信号单元组成,每个所述信号单元由m个数据位元信号以及1个基准位元信号同步叠加组成,每个数据位元信号具有第一频率和第二频率。
  11. 根据权利要求9所述的声波信号解码方法,其特征在于,所述频移规则被预先定义为:
    对每个所述信号单元An,根据所对应的数据单元Cn的各个数据位元,当第l个数据位元为0时,在所述信号单元An上同步叠加所述信号单元An的第一频率的位元信号B m-(l-1);当第l个数据位元为1时,在所述信号单元An上同步叠加所述信号单元An的第二频率的位元信号B m-(l-1);其中,1≤l≤m-1,l为自然数。
  12. 根据权利要求10所述的声波信号解码方法,其特征在于,n=12,m=4。
  13. 一种声波信号解码装置,其特征在于,所述装置包括:
    拆分单元,用于分析接收到的声波信号,并按照编码过程所定义的数据单元大小对应生成的每块声波信号波形大小对接收到的声波信号进行拆分,得到n段声波信号;其中,每个所述数据单元的大小被定义为由m个数据位元组成,m、n均为自然数;
    解码单元,用于:
    对每段所述声波信号进行傅里叶变换,以得到相应的频域波形;
    根据所述频域波形确定对应信号单元中的基准位元信号的实际频率值;以及
    按照编码过程所定义的频移规则识别对应信号单元中的数据位元信号的实际频率值,以根据所述实际频率值还原得到m个数据位元;
    第二整合单元,用于将每段所述声波信号还原得到的m个数据位元依序拼接起来得到原始数据。
  14. 根据权利要求13所述的声波信号解码装置,其特征在于,所述基准声波信号由n个信号单元组成,每个所述信号单元由m个数据位元信号以及1个基准位元信号同步叠加组成,每个数据位元信号具有第一频率和第二频率。
  15. 根据权利要求13所述的声波信号解码装置,其特征在于,所述频移规则被预先定义为:
    对每个所述信号单元An,根据所对应的数据单元Cn的各个数据位元,当第l个数据位元为0时,在所述信号单元An上同步叠加所述信号单元An的第一频率的位元信号B m-(l-1);当第l个数据位元为1时,在所述信号单元An上同步叠加所述信号单元An的第二频率的位元信号B m-(l-1);其中,1≤l≤m-1,l为自然数。
  16. 根据权利要求14所述的声波信号解码装置,其特征在于,n=12,m=4。
PCT/CN2019/090057 2018-06-13 2019-06-05 一种声波信号编码、解码的方法及装置 WO2019237972A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810606288.5A CN108964786B (zh) 2018-06-13 2018-06-13 一种声波信号编码、解码的方法及装置
CN201810606288.5 2018-06-13

Publications (1)

Publication Number Publication Date
WO2019237972A1 true WO2019237972A1 (zh) 2019-12-19

Family

ID=64488819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090057 WO2019237972A1 (zh) 2018-06-13 2019-06-05 一种声波信号编码、解码的方法及装置

Country Status (2)

Country Link
CN (1) CN108964786B (zh)
WO (1) WO2019237972A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964786B (zh) * 2018-06-13 2020-10-02 厦门声连网信息科技有限公司 一种声波信号编码、解码的方法及装置
CN111816196A (zh) * 2020-05-30 2020-10-23 北京声连网信息科技有限公司 一种声波信息的解码方法及装置
CN111865952B (zh) * 2020-07-10 2023-04-18 腾讯音乐娱乐科技(深圳)有限公司 数据处理方法、装置、存储介质及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104243052A (zh) * 2014-07-24 2014-12-24 福建星网视易信息系统有限公司 一种声波通信的编码、解码的方法与装置
US20150149186A1 (en) * 2013-11-27 2015-05-28 Alibaba Group Holding Limited Data processing method and system
CN105281842A (zh) * 2014-07-24 2016-01-27 福建星网视易信息系统有限公司 一种声波通信的编码、解码的方法与装置
CN106411849A (zh) * 2016-08-30 2017-02-15 王竞 网络接入信息分享方法
CN108964786A (zh) * 2018-06-13 2018-12-07 厦门声连网信息科技有限公司 一种声波信号编码、解码的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ510627A (en) * 1998-08-21 2003-10-31 Evologics Gmbh Method for transmitting information and suitable system therefor
CN102123117B (zh) * 2010-01-07 2013-07-17 无锡爱睿芯电子有限公司 调制装置及方法
US9559789B2 (en) * 2014-02-26 2017-01-31 Contec, Llc Control device update
US9455851B1 (en) * 2015-10-02 2016-09-27 Texas Instruments Incorporated Efficient encoding/decoding algorithm for MTS constrained MFSK communications
CN107769860B (zh) * 2016-08-22 2020-05-19 美的集团股份有限公司 编码方法、解码方法、编码装置、解码装置和家用电器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150149186A1 (en) * 2013-11-27 2015-05-28 Alibaba Group Holding Limited Data processing method and system
CN104243052A (zh) * 2014-07-24 2014-12-24 福建星网视易信息系统有限公司 一种声波通信的编码、解码的方法与装置
CN105281842A (zh) * 2014-07-24 2016-01-27 福建星网视易信息系统有限公司 一种声波通信的编码、解码的方法与装置
CN106411849A (zh) * 2016-08-30 2017-02-15 王竞 网络接入信息分享方法
CN108964786A (zh) * 2018-06-13 2018-12-07 厦门声连网信息科技有限公司 一种声波信号编码、解码的方法及装置

Also Published As

Publication number Publication date
CN108964786A (zh) 2018-12-07
CN108964786B (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
WO2019237972A1 (zh) 一种声波信号编码、解码的方法及装置
CN106328126B (zh) 远场语音识别处理方法及装置
Anderson et al. Source and channel coding: an algorithmic approach
CN101479787B (zh) 用于编码和解码基于对象的音频信号的方法和装置
JP3861770B2 (ja) 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
JP2008191675A (ja) デジタル信号をハッシュする方法
CN103403710A (zh) 对来自音频信号的特征指纹的提取和匹配
US9607625B2 (en) Systems and methods for audio encoding and decoding
EP3201917A1 (en) Method, apparatus and system
JPS62159199A (ja) 音声メツセ−ジ処理装置と方法
JP5118158B2 (ja) オーディオ信号のエンコーディング方法及び装置、そしてオーディオ信号のデコーディング方法及び装置
KR100861884B1 (ko) 정현파 코딩 방법 및 장치
Ren et al. A universal audio steganalysis scheme based on multiscale spectrograms and DeepResNet
US8019598B2 (en) Phase locking method for frequency domain time scale modification based on a bark-scale spectral partition
US20080189120A1 (en) Method and apparatus for parametric encoding and parametric decoding
WO2019052121A1 (zh) 一种音乐识别系统、装置及音乐管理服务器和方法
CN115437988A (zh) 一种i2s音频时钟数据的同步方法、装置及应用
US8781134B2 (en) Method and apparatus for encoding and decoding stereo audio
JP3882822B2 (ja) 圧縮データ記録装置、圧縮データ再生装置及び方法
WO2020019879A1 (zh) 一种声波信号编码、解码方法及装置
KR100932790B1 (ko) 음원 간 상호상관을 이용한 멀티트랙 다운믹싱 장치 및 그방법
WO2019047348A1 (zh) 基于音频接口的数据发送方法和接收方法
WO2011160966A1 (en) Audio watermarking
KR102054174B1 (ko) 음파신호를 이용한 통신 방법 및 그 장치
US20240135941A1 (en) Apparatus for encoding and decoding audio signals and method of operation thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820549

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19820549

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19820549

Country of ref document: EP

Kind code of ref document: A1