WO2019237963A1 - 一种服务器的数据发送方法和装置 - Google Patents

一种服务器的数据发送方法和装置 Download PDF

Info

Publication number
WO2019237963A1
WO2019237963A1 PCT/CN2019/089926 CN2019089926W WO2019237963A1 WO 2019237963 A1 WO2019237963 A1 WO 2019237963A1 CN 2019089926 W CN2019089926 W CN 2019089926W WO 2019237963 A1 WO2019237963 A1 WO 2019237963A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
server
terminal
downlink data
data frame
Prior art date
Application number
PCT/CN2019/089926
Other languages
English (en)
French (fr)
Inventor
谢玖实
王�华
李国银
邓江
陈东杰
Original Assignee
阿里巴巴集团控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿里巴巴集团控股有限公司 filed Critical 阿里巴巴集团控股有限公司
Publication of WO2019237963A1 publication Critical patent/WO2019237963A1/zh
Priority to US17/120,808 priority Critical patent/US11502692B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/028Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only of generators comprising piezoelectric resonators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/04Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/026Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using a memory for digitally storing correction values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a server data sending method and a server data sending device.
  • LoRa is an ultra-long-distance transmission scheme based on spread-spectrum technology in the Internet of Things. It has the characteristics of long transmission distance, low power consumption, multiple nodes, and low cost.
  • the LoRa network includes terminals, base stations, and servers.
  • the working modes of the LoRa terminal include: Class B mode.
  • the terminal running in the Class B mode and the server agree to open the receiving window in a foreseeable time window, and the server sends a downlink data frame to the terminal in the receiving window.
  • the base station will send the preamble first.
  • the terminal will continue to open the receiving window to receive subsequent valid data signals. If the receiving window of the terminal misses the preamble, this will cause the downlink data frame to be lost.
  • the terminal works at different working rates (Data Rate) according to the state of the network signal.
  • Data Rate working rates
  • the window calibration between the terminal and the server will have high accuracy requirements, and the local time of the terminal is generally a crystal oscillator.
  • the time error of the crystal oscillator is unstable. If the terminal misses the preamble when the receiving window is opened due to the crystal oscillator error, the downlink data frame is lost.
  • embodiments of the present application are provided in order to provide a server data sending method and a corresponding server data sending device that overcome the above problems or at least partially solve the above problems.
  • an embodiment of the present application discloses a data sending method of a server, including:
  • the server obtains the crystal error information and working rate information of the terminal
  • the server sends a downlink data frame to the terminal, and the downlink data frame includes a preamble having the preamble length information.
  • the step of the server setting preamble length information according to the crystal error information and the operating rate information includes:
  • the server searches for the corresponding preamble length information according to the crystal error information and the operating rate information; among the preamble length information corresponding to the combination of the same crystal error information and different operating rate information, the operating rate information is relatively large
  • the preamble length information corresponding to the combination is greater than or equal to the preamble length information corresponding to the combination with the smaller working rate information.
  • the crystal oscillator In the preamble length information corresponding to the combination of the same working rate information and different crystal error information, the crystal oscillator
  • the preamble length information corresponding to the combination with larger error information is greater than or equal to the preamble length information corresponding to the combination with smaller crystal error information.
  • the crystal oscillator error information includes crystal oscillator error level information
  • the operating rate information includes operating rate level information
  • the step of the server finding corresponding preamble length information according to the crystal oscillator error information and the operating rate information include:
  • the server searches for the corresponding preamble length information according to the crystal error level information and the working rate level information.
  • the server works.
  • the preamble length information corresponding to the combination with larger rate level information is greater than or equal to the preamble length information corresponding to the combination with smaller working rate level information; at the same working rate level information, the crystal error error level information corresponds to different combinations.
  • the preamble length information corresponding to the combination with larger crystal error level information is greater than or equal to the preamble length information corresponding to the combination with smaller crystal error level information.
  • the step of the server sending a downlink data frame to the terminal includes:
  • the server sends a downlink data frame to the terminal when the server reaches the agreed time window according to the crystal oscillator error information and the operating rate information.
  • the step of the server sending a downlink data frame to the terminal includes:
  • the server sends a downlink data frame to the terminal in a preset time period before reaching the agreed time window according to the crystal oscillator error information and the operating rate information.
  • the step of sending, by the server, the downlink data frame to the terminal according to the crystal oscillator error information and the operating rate information when reaching an agreed time window includes:
  • the server sends a downlink data frame to the terminal when it reaches an agreed time window according to the crystal oscillator error level information and the operating rate level information.
  • the step of sending, by the server, a downlink data frame to the terminal for a preset period of time before reaching the agreed time window according to the crystal oscillator error information and the operating rate information includes:
  • the server sends a downlink data frame to the terminal for a preset period of time before reaching the agreed time window according to the crystal oscillator error level information and the operating rate level information.
  • the embodiment of the present application further discloses a server data sending method, including:
  • the server obtains time error information and working rate information of the terminal
  • the server sends a downlink data frame to the terminal, and the downlink data frame includes a preamble having the preamble length information.
  • An embodiment of the present application further discloses a server data sending device, including:
  • a length information setting module located at the server configured to set preamble length information according to the crystal error information and the operating rate information;
  • a downlink data frame sending module located at the server is configured to send a downlink data frame to the terminal, where the downlink data frame includes a preamble having the preamble length information.
  • the length information setting module includes:
  • the length information searching submodule is configured to find corresponding preamble length information according to the crystal error information and the operating rate information.
  • the preamble length information corresponding to the combination with the larger working rate information is greater than or equal to the preamble length information corresponding to the combination with the smaller working rate information; the preamble corresponding to the different combination of the crystal error information at the same working rate information
  • the preamble length information corresponding to the combination with the larger crystal error information is greater than or equal to the preamble length information corresponding to the combination with the smaller crystal error information.
  • the crystal oscillator error information includes crystal oscillator error level information
  • the operating rate information includes operating rate level information
  • the length information search submodule includes:
  • a length information searching unit is configured to find corresponding preamble length information according to the crystal error level information and the operating rate level information; the preamble length corresponding to different combinations of the crystal error level information and the different operating rate level information is the same In the information, the preamble length information corresponding to the combination with larger working rate level information is greater than or equal to the preamble length information corresponding to the combination with smaller working rate level information; at the same working rate level information, the crystal error level information is different In the preamble length information corresponding to the combination of the, the preamble length information corresponding to the combination with the larger crystal error level information is greater than or equal to the preamble length information corresponding to the combination with the smaller crystal error level information.
  • the downlink data frame sending module includes:
  • a first downlink data frame sending sub-module is configured to send a downlink data frame to the terminal when the predetermined time window is reached according to the crystal oscillator error information and the operating rate information.
  • the downlink data frame sending module includes:
  • a second downlink data frame sending sub-module is configured to send a downlink data frame to the terminal in a preset time period before reaching an agreed time window according to the crystal error information and the operating rate information.
  • the first downlink data frame sending sub-module includes:
  • the first downlink data frame sending unit is configured to send a downlink data frame to the terminal according to the crystal oscillator error level information and the operating rate level information when reaching a predetermined time window.
  • the second downlink data frame sending sub-module includes:
  • a second downlink data frame sending unit is configured to send a downlink data frame to the terminal in a preset time period before reaching an agreed time window according to the crystal oscillator error level information and the operating rate level information.
  • An embodiment of the present application further discloses a server data sending device, including:
  • a length information setting module located at the server, configured to set preamble length information according to the time error information and the working rate information;
  • a downlink data frame sending module located at the server is configured to send a downlink data frame to the terminal, where the downlink data frame includes a preamble having the preamble length information.
  • An embodiment of the present application further discloses a device, including:
  • One or more processors are One or more processors.
  • One or more machine-readable media having instructions stored thereon, when executed by the one or more processors, cause the apparatus to perform one or more methods as described above.
  • Embodiments of the present application also disclose one or more machine-readable media having instructions stored thereon that, when executed by one or more processors, cause the processors to perform one or more of the methods described above.
  • the server may set the preamble length information according to the crystal error information and the working rate information of the terminal, and send a downlink data frame including the preamble with the preamble length information to the terminal.
  • the terminal can detect the preamble in a longer period of time, and improve the success rate of downlink data frame delivery.
  • FIG. 1 is a flowchart of steps in a first embodiment of a server data sending method according to the present application
  • FIG. 2 is a flowchart of steps in a second embodiment of a server data sending method according to the present application
  • FIG. 3 is a flowchart of steps in a third embodiment of a server data sending method according to the present application.
  • FIG. 4 is a structural block diagram of an embodiment of a server data sending apparatus according to the present application.
  • the LoRa network includes a terminal, a base station (Gateway), and a server.
  • the terminal has a LoRa network connection capability and accesses the LoRa network.
  • the terminal may include different electronic devices. For example, when the LoRa network is used in city management, the terminal may include smart meters; in the LoRa network is used in digital homes At this time, the terminal may include various smart home appliances and the like.
  • the working modes of the terminal include: Class A mode, Class B mode, and Class C mode.
  • Class A mode terminals use the ALOHA protocol to report data on demand. After each uplink, two short-term downlink receiving windows are followed immediately to realize bidirectional transmission. This operation is the most power efficient.
  • Class B mode terminals allow more receiving windows.
  • Class B terminals can open the receiving window within a predictable time outside the receiving window after the Class A terminal randomly uplinks. This window is called a pulse slot slot).
  • the downlink data frame sent by the server in the receiving window is called a pulse frame (Ping frame).
  • the terminal In order for the terminal to open the receiving window at a specified time, the terminal needs to receive time-synchronized beacon frames from the base station. In this way, the server can also know the moments of all receiving windows of the terminal device.
  • the terminal in Class C mode basically keeps the receiving window open, and only closes briefly when sending. Class C terminals will consume more power than Class A and Class B.
  • the base station also known as a gateway or concentrator in the LoRa network, has the function of wireless connection aggregation, including the terminal providing an entrance to the LoRa network, and forwarding data from the server or terminal to realize the connection between the terminal and the server. Data interaction.
  • the base station can also perform data interaction with other base stations within the signal coverage range of the base station by transmitting wireless frames.
  • the server may include a server or a server cluster, and is configured to perform service processing according to data obtained from the base station or terminal, and control the working mode and working state of the base station or the terminal.
  • FIG. 1 there is shown a flowchart of steps in a first embodiment of a server data sending method according to the present application, which may specifically include the following steps:
  • Step 101 The server obtains the crystal error information and the working rate information of the terminal.
  • the local time of the terminal is usually calibrated by a crystal oscillator.
  • the time error of the crystal oscillator is unstable and is related to the temperature of the environment in which the terminal is located.
  • the crystal error information can indicate the magnitude of the crystal error.
  • the larger the crystal oscillator error the larger the time error between the server and the terminal; the smaller the crystal oscillator, the smaller the time error between the server and the terminal.
  • the crystal error information of each terminal is pre-recorded.
  • the server may search the crystal error information of the terminal from the pre-recorded crystal error information.
  • the terminal operates in a Class B mode.
  • the terminal needs to agree with the server on the period information for opening the receiving window and the terminal operating rate information.
  • the terminal can open the receiving window at a foreseeable time according to the agreed periodic information.
  • the terminal may periodically report the working rate information to the server, so that the server knows the current working rate of the terminal.
  • the terminal can work at different working rates according to the state of the network signal. The higher the working rate, the greater the transmission rate and the lower the sensitivity; the lower the working rate, the smaller the transmission rate, and the higher the sensitivity.
  • Sensitivity refers to the ability of a terminal to demodulate a valid signal from interference and noise. The larger the working rate, the higher the probability of terminal demodulation errors under the same interference and noise conditions (such as transmission distance and penetration conditions); the larger the working rate, the shorter the signal transmission distance, and the worse the penetrability.
  • the server may send a request to the terminal, and the terminal reports the current working rate information to the server after receiving the request.
  • the server may send the desired operating rate information to the terminal, and the terminal sets its own operating rate information to the desired operating rate information of the server.
  • Step 102 The server sets preamble length information according to the crystal error information and the working rate information.
  • the preamble is a regular wireless signal used to notify the wireless receiver that the wireless signal behind contains valid information. After the current preamble is sent, valid data will be sent immediately.
  • the preamble can take 8 symbols as the default value.
  • the length of the preamble is the duration of the transmission of the preamble. In the case that the crystal error of the terminal cannot be changed, adjusting the length of the preamble can enable the terminal to detect the preamble in a longer period of time and improve the success of the downlink data frame delivery. rate.
  • Step 103 The server sends a downlink data frame to the terminal, where the downlink data frame includes a preamble having the preamble length information.
  • the server may add the preamble with the preamble length information to a downlink data frame, and then send the downlink data frame to the terminal.
  • the server may set the preamble length information according to the crystal error information and operating rate information of the terminal, and send a downlink data frame including the preamble with the preamble length information to the terminal.
  • the terminal can detect the preamble in a longer period of time, and improve the success rate of downlink data frame delivery.
  • FIG. 2 a flowchart of steps in a second embodiment of a server data sending method according to the present application is shown, which may specifically include the following steps:
  • Step 201 The server obtains crystal error information and working rate information of the terminal.
  • the crystal error information of each terminal is pre-recorded.
  • the server may search the crystal error information of the terminal from the pre-recorded crystal error information.
  • the terminal operates in a Class B mode.
  • the terminal needs to agree with the server on the period information for opening the receiving window and the working rate information of the terminal.
  • the terminal can open the receiving window at a foreseeable time according to the agreed periodic information.
  • the terminal may periodically report the working rate information to the server, so that the server knows the current working rate of the terminal.
  • the server may send a request to the terminal, and the terminal reports the current working rate information to the server after receiving the request.
  • the server may send the desired operating rate information to the terminal, and the terminal sets its own operating rate information to the desired operating rate information of the server.
  • the server searches for the corresponding preamble length information according to the crystal error information and the operating rate information.
  • the operating rate In the preamble length information corresponding to the combination of the same crystal error information and different operating rate information, the operating rate The preamble length information corresponding to the combination with larger information is greater than or equal to the preamble length information corresponding to the combination with smaller working rate information; at the same working rate information, the preamble length information corresponding to different combinations of crystal error information , The preamble length information corresponding to the combination with the larger crystal error information is greater than or equal to the preamble length information corresponding to the combination with the smaller crystal error information;
  • each crystal oscillator error information and each operating rate information constitute a combination, and each combination corresponds to a preamble length information.
  • the server may be preset with multiple combinations of crystal oscillator error information and working rate information, and preamble length information corresponding to each combination. After receiving the current crystal oscillator error information and operating rate information of the terminal, the server searches for preamble length information that matches the combination of the current crystal oscillator error information and operating rate information from the preset information.
  • the preamble length information corresponding to the combination with larger operating rate information is greater than or equal to the preamble corresponding to the combination with smaller operating rate information.
  • the crystal error information of combination 1 is the same as that of combination 2.
  • the working rate information of combination 1 is greater than the working rate information of combination 2. Therefore, the preamble length information corresponding to combination 1 may be greater than or equal to the preamble corresponding to combination 2. Length information.
  • the preamble length information corresponding to the combination with the larger crystal error information is greater than or equal to the preamble corresponding to the combination with the smaller crystal error information.
  • the working rate information of Combination 3 is the same as that of Combination 4, and the crystal error information of Combination 3 is greater than that of Combination 4; therefore, the preamble length information corresponding to Combination 3 may be greater than or equal to the preamble corresponding to Combination 4. Length information.
  • the crystal oscillator error information may include crystal oscillator error level information
  • the operating rate information may include operating rate level information
  • the crystal error level information refers to information classified according to the magnitude of the crystal error.
  • the crystal error of the terminal can be divided into 3 levels according to different production standards and different operating environments. If the crystal error is within 10ppm (ppm is one millionth), it is classified as crystal error level 1; if the crystal error is between 10ppm-20ppm, it is classified as crystal error level 2; if the crystal error is between 20ppm-30ppm, it is classified as crystal Error level 3. When the crystal error is greater than 30ppm, the server will not be able to control the window alignment, so the server may not send downlink data frames to the terminal.
  • the work rate level information refers to information that is classified according to the size of the work rate.
  • LoRa terminals on the market all support 6 working rate classifications, which are working rate level 0, working rate level 1, working rate level 2, working rate level 3, working rate level 4, and working rate level 5.
  • the actual rate is as follows (unit bit / sec): working rate level 0 about 293; working rate level 1 about 537; working rate level 2 about 977; working rate level 3 about 1758; working rate level 4 about 3125; working rate level 5 5469.
  • the step 202 may include:
  • the server searches for the corresponding preamble length information according to the crystal error level information and the working rate level information.
  • the server works.
  • the preamble length information corresponding to the combination with larger rate level information is greater than or equal to the preamble length information corresponding to the combination with smaller working rate level information; at the same working rate level information, the crystal error error level information corresponds to different combinations.
  • the preamble length information corresponding to the combination with larger crystal error level information is greater than or equal to the preamble length information corresponding to the combination with smaller crystal error level information.
  • each crystal oscillator error level information and each working rate level information constitute a combination, and each combination corresponds to a preamble length information.
  • the server may preset a combination of a plurality of different crystal oscillator error level information and different working rate level information, and corresponding preamble length information.
  • the preamble length information corresponding to the larger working rate level information is greater than or equal to the smaller working rate level information. Corresponding preamble length information.
  • the crystal error level information of combination 5 is the same as that of combination 6, and the operating rate level information of combination 5 is greater than the operating rate level information of combination 6. Therefore, the preamble length information corresponding to combination 5 may be greater than or equal to that of combination 6. Preamble length information.
  • the preamble length information corresponding to the larger crystal error level information is greater than or equal to the combination with the smaller crystal error level information Corresponding preamble length information.
  • the working rate level information of combination 7 is the same as that of combination 8.
  • the crystal error level information of combination 7 is greater than the crystal error level information of combination 8. Therefore, the preamble length information corresponding to combination 7 may be greater than or equal to that of combination 8. Preamble length information.
  • the preamble length information can be set in the following manner for the combination of the crystal oscillator error level information and the working rate level information.
  • Working rate level 1, crystal oscillator error level 1, preamble length information can take the default value 8;
  • Working speed level 1, crystal error level 2, preamble length information can take the default value 8;
  • Working rate level 1, crystal error level 3, preamble length information can take the default value 8;
  • Working rate level 2, crystal error level 2, preamble length information can take the default value 8;
  • Working rate level 3 crystal oscillator error level 1, preamble length information can be 12;
  • Working rate level 3 crystal error level 2
  • preamble length information can be 14;
  • Working rate level 3, crystal error level 3, preamble length information can be 16;
  • Working speed level 4 crystal oscillator error level 1, preamble length information can be 16;
  • the preamble length information can be 18;
  • Working rate level 4 crystal error level 3, preamble length information can be 20;
  • Working speed level 5 crystal oscillator error level 1, preamble length information can be 32;
  • Working rate level 5 crystal error level 2
  • preamble length information can be 36
  • Working rate level 5 crystal error level 3
  • preamble length information can be 40.
  • Step 203 The server sends a downlink data frame to the terminal, where the downlink data frame includes a preamble having the preamble length information.
  • the server may add the preamble with the preamble length information to a downlink data frame, and then send the downlink data frame to the terminal.
  • the step 203 may include the following sub-steps:
  • the server sends a downlink data frame to the terminal when the predetermined time window is reached according to the crystal oscillator error information and the operating rate information.
  • the server may send a downlink data frame to the terminal according to the crystal oscillator error information and the working rate information when it reaches the time window agreed with the terminal, that is, the receiving window opened by the terminal.
  • sub-step S11 may include:
  • the server sends a downlink data frame to the terminal when it reaches an agreed time window according to the crystal oscillator error level information and the operating rate level information.
  • the server can send a downlink data frame to the terminal when it reaches the agreed time window, and the downlink data frame includes a preamble with preamble length information corresponding to the crystal error level information and working rate level information .
  • the terminal can still receive the preamble when it is opened in the agreed time window.
  • the step 203 may include the following sub-steps:
  • the server sends a downlink data frame to the terminal in a preset time period before reaching the agreed time window according to the crystal oscillator error information and the operating rate information.
  • the server may send the downlink data frame to the terminal in a preset time period before reaching the time window agreed with the terminal, that is, before the terminal opens the receiving window, according to the crystal oscillator error information and the working rate information.
  • sub-step S12 may include:
  • the server sends a downlink data frame to the terminal for a preset period of time before reaching the agreed time window according to the crystal oscillator error level information and the operating rate level information.
  • the server is required to send a downlink data frame to the terminal before reaching the agreed time window, and the downlink data frame includes a preamble having preamble length information corresponding to the crystal error level information and the working rate level information. Otherwise, the terminal will not be able to receive the preamble when it is opened within the agreed time window.
  • the server can send a downlink data frame to the terminal 16ms in advance before reaching the agreed time window.
  • the server can send a downlink data frame to the terminal 18ms in advance before reaching the agreed time window.
  • the server can send a downlink data frame to the terminal 20ms in advance before reaching the agreed time window.
  • the server may set the preamble length information according to the crystal error information and operating rate information of the terminal, and send a downlink data frame including the preamble with the preamble length information to the terminal.
  • the terminal can detect the preamble in a longer period of time, and improve the success rate of downlink data frame delivery.
  • FIG. 3 a flowchart of steps in a third embodiment of a server data sending method according to the present application is shown, which may specifically include the following steps:
  • Step 301 The server obtains time error information and working rate information of the terminal.
  • the time error information may indicate the magnitude of the time error between the server and the terminal.
  • the time error information may be crystal error information, and the crystal error information may indicate a magnitude of the crystal error.
  • the local time of the terminal is generally calibrated by a crystal oscillator.
  • the larger the crystal oscillator error the larger the time error between the server and the terminal; the smaller the crystal oscillator, the smaller the time error between the server and the terminal.
  • Step 302 The server sets preamble length information according to the time error information and the working rate information.
  • Step 303 The server sends a downlink data frame to the terminal, where the downlink data frame includes a preamble with the preamble length information.
  • the server may set the preamble length information according to the time error information and working rate information of the terminal, and send a downlink data frame including the preamble with the preamble length information to the terminal.
  • the terminal can detect the preamble in a longer period of time, and improve the success rate of downlink data frame delivery.
  • FIG. 4 a structural block diagram of an embodiment of a server data sending apparatus according to the present application is shown, which may specifically include the following modules:
  • a terminal information acquisition module 401 located at the server, configured to acquire crystal error information and working rate information of the terminal;
  • a downlink data frame sending module 403 located on the server is configured to send a downlink data frame to the terminal, where the downlink data frame includes a preamble having the preamble length information.
  • the length information setting module 402 may include:
  • the length information searching submodule is configured to find corresponding preamble length information according to the crystal error information and the operating rate information.
  • the preamble length information corresponding to the combination with the larger working rate information is greater than or equal to the preamble length information corresponding to the combination with the smaller working rate information; the preamble corresponding to the different combination of the crystal error information at the same working rate information
  • the preamble length information corresponding to the combination with the larger crystal error information is greater than or equal to the preamble length information corresponding to the combination with the smaller crystal error information.
  • the crystal oscillator error information includes crystal oscillator error level information
  • the operating rate information includes operating rate level information
  • the length information search submodule may include:
  • a length information searching unit is configured to find corresponding preamble length information according to the crystal error level information and the operating rate level information; the preamble length corresponding to different combinations of the crystal error level information and the different operating rate level information is the same In the information, the preamble length information corresponding to the combination with larger working rate level information is greater than or equal to the preamble length information corresponding to the combination with smaller working rate level information; at the same working rate level information, the crystal error level information is different In the preamble length information corresponding to the combination of the, the preamble length information corresponding to the combination with the larger crystal error level information is greater than or equal to the preamble length information corresponding to the combination with the smaller crystal error level information.
  • the downlink data frame sending module 403 may include:
  • a first downlink data frame sending sub-module is configured to send a downlink data frame to the terminal when the predetermined time window is reached according to the crystal oscillator error information and the operating rate information.
  • the downlink data frame sending module 403 may include:
  • a second downlink data frame sending sub-module is configured to send a downlink data frame to the terminal in a preset time period before reaching an agreed time window according to the crystal error information and the operating rate information.
  • the first downlink data frame sending sub-module may include:
  • the first downlink data frame sending unit is configured to send a downlink data frame to the terminal according to the crystal oscillator error level information and the operating rate level information when reaching a predetermined time window.
  • the second downlink data frame sending sub-module may include:
  • a second downlink data frame sending unit is configured to send a downlink data frame to the terminal in a preset time period before reaching an agreed time window according to the crystal oscillator error level information and the operating rate level information.
  • This application also discloses an embodiment of a server data sending device, which may specifically include the following modules:
  • a length information setting module located at the server, configured to set preamble length information according to the time error information and the working rate information;
  • a downlink data frame sending module located at the server is configured to send a downlink data frame to the terminal, where the downlink data frame includes a preamble having the preamble length information.
  • the description is relatively simple. For the relevant part, refer to the description of the method embodiment.
  • An embodiment of the present application further provides a device, including:
  • One or more processors are One or more processors.
  • One or more machine-readable media having instructions stored thereon, when executed by the one or more processors, cause the apparatus to execute the method described in the embodiment of the present application.
  • the embodiments of the present application further provide one or more machine-readable media, on which instructions are stored, and when executed by one or more processors, cause the processors to execute the method described in the embodiments of the present application.
  • the embodiments of the embodiments of the present application may be provided as a method, an apparatus, or a computer program product. Therefore, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, the embodiments of the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing terminal device to produce a machine, such that the instructions executed by the processor of the computer or other programmable data processing terminal device Means are generated for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing terminal device to work in a specific manner, such that the instructions stored in the computer-readable memory produce a manufactured article including the instruction means, the The instruction means implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing terminal device, so that a series of operation steps can be performed on the computer or other programmable terminal device to produce a computer-implemented process, so that the computer or other programmable terminal device can
  • the instructions executed on the steps provide steps for implementing the functions specified in one or more of the flowcharts and / or one or more of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种服务器的数据发送方法和装置,所述方法包括:服务器获取终端的晶振误差信息和工作速率信息;所述服务器根据所述晶振误差信息和所述工作速率信息设置前导码长度信息;所述服务器向所述终端发送下行数据帧,所述下行数据帧包括具有所述前导码长度信息的前导码。在本申请实施例中,在终端在晶振误差无法改变的情况下,通过调整前导码的长度可以使得终端能在更长的时间段内检测到前导码,提高下行数据帧下发成功率。

Description

一种服务器的数据发送方法和装置
本申请要求2018年06月13日递交的申请号为201810610156.X、发明名称为“一种服务器的数据发送方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别是涉及一种服务器的数据发送方法和一种服务器的数据发送装置。
背景技术
物联网技术是继计算机和互联网之后的第三次信息技术革命,具有实时性和交互性等优点,已经被广泛应用于城市管理、数字家庭、定位导航、物流管理、安保系统等多个领域。其中,LoRa是物联网中一种基于扩频技术的超远距离传输方案,具有传输距离远、低功耗、多节点和低成本等特性。
LoRa网络包括终端、基站和服务器。LoRa终端的工作模式包括:Class B模式。运行在Class B模式的终端与服务器约定在可预见的时间窗口打开接收窗口,服务器在该接收窗口向终端发送下行数据帧。在下行数据时,基站会先发送前导码。前导码在发送的过程中,如果终端的接收窗口打开且收到了前导码,终端会继续打开接收窗口接收后续的有效数据信号。如果终端的接收窗口错过了前导码,这将使得下行数据帧丢失。
终端根据网络信号状态工作在不同的工作速率(Data Rate)下,工作速率越高传输速率越大,灵敏度越低;工作速率越低,传输速率越小,灵敏度越高。
在实际的运行过程中,如果终端的工作速率较高,同时采用默认长度的前导码,此时对终端和服务器间的窗口校准将会有很高的精度要求,而终端本地的时间一般采用晶振来进行校准,晶振的时间误差是不稳定的,如果终端由于晶振误差导致在接收窗口打开时错过了前导码,使得下行数据帧丢失。
发明内容
鉴于上述问题,提出了本申请实施例以便提供一种克服上述问题或者至少部分地解决上述问题的一种服务器的数据发送方法和相应的一种服务器的数据发送装置。
为了解决上述问题,本申请实施例公开了一种服务器的数据发送方法,包括:
服务器获取终端的晶振误差信息和工作速率信息;
所述服务器根据所述晶振误差信息和所述工作速率信息设置前导码长度信息;
所述服务器向所述终端发送下行数据帧,所述下行数据帧包括具有所述前导码长度信息的前导码。
优选的,所述服务器根据所述晶振误差信息和所述工作速率信息设置前导码长度信息的步骤包括:
所述服务器根据所述晶振误差信息和所述工作速率信息,查找对应的前导码长度信息;在晶振误差信息相同,工作速率信息不同的组合所对应的前导码长度信息中,工作速率信息较大的组合所对应的前导码长度信息,大于或者等于工作速率信息较小的组合所对应的前导码长度信息;在工作速率信息相同,晶振误差信息不同的组合所对应的前导码长度信息中,晶振误差信息较大的组合所对应的前导码长度信息,大于或者等于晶振误差信息较小的组合所对应的前导码长度信息。
优选的,所述晶振误差信息包括晶振误差级别信息,所述工作速率信息包括工作速率级别信息;所述服务器根据所述晶振误差信息和所述工作速率信息,查找对应的前导码长度信息的步骤包括:
所述服务器根据所述晶振误差级别信息和所述工作速率级别信息,查找对应的前导码长度信息;在晶振误差级别信息相同,工作速率级别信息不同的组合所对应的前导码长度信息中,工作速率级别信息较大的组合所对应的前导码长度信息,大于或者等于工作速率级别信息较小的组合所对应的前导码长度信息;在工作速率级别信息相同,晶振误差级别信息不同的组合所对应的前导码长度信息中,晶振误差级别信息较大的组合所对应的前导码长度信息,大于或者等于晶振误差级别信息较小的组合所对应的前导码长度信息。
优选的,所述服务器向所述终端发送下行数据帧的步骤包括:
所述服务器根据所述晶振误差信息和所述工作速率信息,在到达约定的时间窗口时,向所述终端发送下行数据帧。
优选的,所述服务器向所述终端发送下行数据帧的步骤包括:
所述服务器根据所述晶振误差信息和所述工作速率信息,在到达约定的时间窗口之前,提前预设时间段向所述终端发送下行数据帧。
优选的,所述服务器根据所述晶振误差信息和所述工作速率信息,在到达约定的时 间窗口时,向所述终端发送下行数据帧的步骤包括:
所述服务器根据所述晶振误差级别信息和所述工作速率级别信息,在到达约定的时间窗口时,向所述终端发送下行数据帧。
优选的,所述服务器根据所述晶振误差信息和所述工作速率信息,在到达约定的时间窗口之前,提前预设时间段向所述终端发送下行数据帧的步骤包括:
所述服务器根据所述晶振误差级别信息和所述工作速率级别信息,在到达约定的时间窗口之前,提前预设时间段向所述终端发送下行数据帧。
本申请实施例还公开了一种服务器的数据发送方法,包括:
服务器获取终端的时间误差信息和工作速率信息;
所述服务器根据所述时间误差信息和所述工作速率信息设置前导码长度信息;
所述服务器向所述终端发送下行数据帧,所述下行数据帧包括具有所述前导码长度信息的前导码。
本申请实施例还公开了一种服务器的数据发送装置,包括:
位于服务器的终端信息获取模块,用于获取终端的晶振误差信息和工作速率信息;
位于所述服务器的长度信息设置模块,用于根据所述晶振误差信息和所述工作速率信息设置前导码长度信息;
位于所述服务器的下行数据帧发送模块,用于向所述终端发送下行数据帧,所述下行数据帧包括具有所述前导码长度信息的前导码。
优选的,所述长度信息设置模块包括:
长度信息查找子模块,用于根据所述晶振误差信息和所述工作速率信息,查找对应的前导码长度信息;在晶振误差信息相同,工作速率信息不同的组合所对应的前导码长度信息中,工作速率信息较大的组合所对应的前导码长度信息,大于或者等于工作速率信息较小的组合所对应的前导码长度信息;在工作速率信息相同,晶振误差信息不同的组合所对应的前导码长度信息中,晶振误差信息较大的组合所对应的前导码长度信息,大于或者等于晶振误差信息较小的组合所对应的前导码长度信息。
优选的,所述晶振误差信息包括晶振误差级别信息,所述工作速率信息包括工作速率级别信息;所述长度信息查找子模块包括:
长度信息查找单元,用于根据所述晶振误差级别信息和所述工作速率级别信息,查找对应的前导码长度信息;在晶振误差级别信息相同,工作速率级别信息不同的组合所对应的前导码长度信息中,工作速率级别信息较大的组合所对应的前导码长度信息,大 于或者等于工作速率级别信息较小的组合所对应的前导码长度信息;在工作速率级别信息相同,晶振误差级别信息不同的组合所对应的前导码长度信息中,晶振误差级别信息较大的组合所对应的前导码长度信息,大于或者等于晶振误差级别信息较小的组合所对应的前导码长度信息。
优选的,所述下行数据帧发送模块包括:
第一下行数据帧发送子模块,用于根据所述晶振误差信息和所述工作速率信息,在到达约定的时间窗口时,向所述终端发送下行数据帧。
优选的,所述下行数据帧发送模块包括:
第二下行数据帧发送子模块,用于根据所述晶振误差信息和所述工作速率信息,在到达约定的时间窗口之前,提前预设时间段向所述终端发送下行数据帧。
优选的,所述第一下行数据帧发送子模块包括:
第一下行数据帧发送单元,用于根据所述晶振误差级别信息和所述工作速率级别信息,在到达约定的时间窗口时,向所述终端发送下行数据帧。
优选的,所述第二下行数据帧发送子模块包括:
第二下行数据帧发送单元,用于根据所述晶振误差级别信息和所述工作速率级别信息,在到达约定的时间窗口之前,提前预设时间段向所述终端发送下行数据帧。
本申请实施例还公开了一种服务器的数据发送装置,包括:
位于服务器的终端信息获取模块,用于获取终端的时间误差信息和工作速率信息;
位于所述服务器的长度信息设置模块,用于根据所述时间误差信息和所述工作速率信息设置前导码长度信息;
位于所述服务器的下行数据帧发送模块,用于向所述终端发送下行数据帧,所述下行数据帧包括具有所述前导码长度信息的前导码。
本申请实施例还公开了一种装置,包括:
一个或多个处理器;和
其上存储有指令的一个或多个机器可读介质,当由所述一个或多个处理器执行时,使得所述装置执行如上所述的一个或多个的方法。
本申请实施例还公开了一个或多个机器可读介质,其上存储有指令,当由一个或多个处理器执行时,使得所述处理器执行如上所述的一个或多个的方法。
本申请实施例包括以下优点:
在本申请实施例中,服务器可以根据终端的晶振误差信息和工作速率信息设置前导 码长度信息,并向终端发送包括具有该前导码长度信息的前导码的下行数据帧。在终端在晶振误差无法改变的情况下,通过调整前导码的长度可以使得终端能在更长的时间段内检测到前导码,提高下行数据帧下发成功率。
附图说明
图1是本申请的一种服务器的数据发送方法实施例一的步骤流程图;
图2是本申请的一种服务器的数据发送方法实施例二的步骤流程图;
图3是本申请的一种服务器的数据发送方法实施例三的步骤流程图;
图4是本申请的一种服务器的数据发送装置实施例的结构框图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
LoRa网络包括终端、基站(Gateway)和服务器。终端具有LoRa网络连接能力,并接入该LoRa网络。根据该LoRa网络所部署的应用场景的不同,该终端可以包括不同的电子设备,比如,在该LoRa网络应用于城市管理中时,该终端可以包括智能电表;在该LoRa网络应用于数字家庭中时,该终端可以包括各种智能家电等等。
终端的工作模式包括:Class A模式、Class B模式、Class C模式。
Class A模式的终端采用ALOHA协议按需上报数据。在每次上行后都会紧跟两个短暂的下行接收窗口,以此实现双向传输。这种操作是最省电的。
Class B模式的终端允许更多的接收窗口,Class B的终端可以在Class A终端随机上行后的接收窗口之外,在可预见的时间内开启接收窗口,该窗口称为脉冲时隙(Ping-slot)。服务器在该接收窗口发送的下行数据帧称之为脉冲帧(Ping帧)。为了让终端可以在指定时间打开接收窗口,终端需要从基站接收时间同步的信标帧。这样服务器也就可以获知终端设备的所有接收窗口的时刻。
Class C模式的终端基本是一直打开着接收窗口,只在发送时短暂关闭。Class C的终端会比Class A和Class B更加耗电。
基站,在LoRa网络中又称为网关(Gateway)或者集中器,具有无线连接汇聚功能,包括终端提供接入LoRa网络的入口,对来自服务器或终端的数据进行转发,实现该终端与该服务器之间的数据交互。当然,基站也能够与处于该基站的信号覆盖范围内的其 它基站通过传输无线帧的方式进行数据交互。
服务器可以包括一个服务器或者服务器集群,用于根据从基站或终端获取到的数据进行业务处理,以及对该基站或该终端的工作模式和工作状态进行控制。
参照图1,示出了本申请的一种服务器的数据发送方法实施例一的步骤流程图,具体可以包括如下步骤:
步骤101,服务器获取终端的晶振误差信息和工作速率信息;
终端本地的时间一般采用晶振来进行时间校准,晶振的时间误差是不稳定的,并跟终端所处环境的温度相关。
晶振误差信息可以表示晶振误差的大小。晶振误差越大,服务器与终端之间的时间误差越大;晶振越小,服务器与终端之间的时间误差越小。
在本申请实施例中,各个终端的晶振误差信息被预先记录,当服务器需要向某个终端发送下行数据帧时,服务器可以从预先记录的晶振误差信息中查找该终端的晶振误差信息。
在本申请实施例中,终端运行在Class B模式。终端需要与服务器约定打开接收窗口的周期信息以及终端工作速率信息。
终端可以按照约定的周期信息,在可预见的时间打开接收窗口。
在一种示例中,终端可以定时上报工作速率信息给服务器,让服务器知道终端当前的工作速率。终端可以根据网络信号状态工作在不同的工作速率下,工作速率越高传输速率越大,灵敏度越低;工作速率越低,传输速率越小,灵敏度越高。灵敏度指的是终端从干扰和噪声中解调出有效信号的能力。工作速率越大,相同的干扰噪声条件(比如传送距离和穿透条件)下,终端解调出错的概率越高;工作速率越大,信号传送距离越短,穿透性越差。
在另一种示例中,可以是由服务器发送请求给终端,终端在接收到请求后向服务器上报当前的工作速率信息。
在另一种示例中,可以是由服务器将期望的工作速率信息发送给终端,终端将自身的工作速率信息设置为服务器期望的工作速率信息。
步骤102,所述服务器根据所述晶振误差信息和所述工作速率信息设置前导码长度信息;
前导码(Preamble)是一段规则的无线信号,用以通知无线接收者后面的无线信号包含有效信息。当前导码发送完毕后,会立即发送有效数据,在LoRaWAN协议的参考 实现中,前导码可以取8个符号数(Symbol)为默认值。
前导码的长度即前导码的发送持续时间,在无法改变终端晶振误差的情况下,调整前导码的长度可以使得终端能在更长的时间段内检测到前导码,提高下行数据帧下发成功率。
步骤103,所述服务器向所述终端发送下行数据帧,所述下行数据帧包括具有所述前导码长度信息的前导码。
服务器在设置了前导码长度信息后,可以将该具有前导码长度信息的前导码添加到下行数据帧中,然后向终端发送该下行数据帧。
在本申请实施例中,服务器可以根据终端的晶振误差信息和工作速率信息设置前导码长度信息,并向终端发送包括具有该前导码长度信息的前导码的下行数据帧。在终端在晶振误差无法改变的情况下,通过调整前导码的长度可以使得终端能在更长的时间段内检测到前导码,提高下行数据帧下发成功率。
参照图2,示出了本申请的一种服务器的数据发送方法实施例二的步骤流程图,具体可以包括如下步骤:
步骤201,服务器获取终端的晶振误差信息和工作速率信息;
在本申请实施例中,各个终端的晶振误差信息被预先记录,当服务器需要向某个终端发送下行数据帧时,服务器可以从预先记录的晶振误差信息中查找该终端的晶振误差信息。
在本申请实施例中,终端运行在Class B模式。终端需要与服务器约定打开接收窗口的周期信息以及终端的工作速率信息。
终端可以按照约定的周期信息,在可预见的时间打开接收窗口。
在一种示例中,终端可以定时上报工作速率信息给服务器,让服务器知道终端当前的工作速率。
在另一种示例中,可以是由服务器发送请求给终端,终端在接收到请求后向服务器上报当前的工作速率信息。
在另一种示例中,可以是由服务器将期望的工作速率信息发送给终端,终端将自身的工作速率信息设置为服务器期望的工作速率信息。
步骤202,所述服务器根据所述晶振误差信息和所述工作速率信息,查找对应的前导码长度信息;在晶振误差信息相同,工作速率信息不同的组合所对应的前导码长度信息中,工作速率信息较大的组合所对应的前导码长度信息,大于或者等于工作速率信息 较小的组合所对应的前导码长度信息;在工作速率信息相同,晶振误差信息不同的组合所对应的前导码长度信息中,晶振误差信息较大的组合所对应的前导码长度信息,大于或者等于晶振误差信息较小的组合所对应的前导码长度信息;
在本申请实施例中,每个晶振误差信息和每个工作速率信息构成一个组合,每个组合都对应有一个前导码长度信息。
服务器中可以预置有多个晶振误差信息和工作速率信息的组合,以及各个组合所对应的前导码长度信息。服务器在接收到终端当前的晶振误差信息和工作速率信息后,从预置的信息中查找与当前的晶振误差信息和工作速率信息的组合所匹配的前导码长度信息。
在晶振误差信息相同,工作速率信息不同的组合所对应的前导码长度信息中,工作速率信息较大的组合所对应的前导码长度信息,大于或者等于工作速率信息较小的组合所对应的前导码长度信息。
例如,组合1与组合2的晶振误差信息相同,组合1的工作速率信息比组合2的工作速率信息大;因此,组合1所对应的前导码长度信息可以大于或者等于组合2所对应的前导码长度信息。
在工作速率信息相同,晶振误差信息不同的组合所对应的前导码长度信息中,晶振误差信息较大的组合所对应的前导码长度信息,大于或者等于晶振误差信息较小的组合所对应的前导码长度信息。
例如,组合3与组合4的工作速率信息相同,组合3的晶振误差信息比组合4的晶振误差信息大;因此,组合3所对应的前导码长度信息可以大于或者等于组合4所对应的前导码长度信息。
进一步的,在本申请实施例中,所述晶振误差信息可以包括晶振误差级别信息,所述工作速率信息可以包括工作速率级别信息;
晶振误差级别信息是指根据晶振误差的大小进行分级的信息。
在实际中,终端的晶振误差可以按照生产标准以及运行环境的不同分为3个级别。晶振误差在10ppm(ppm为百万分之一)之内,则分为晶振误差级别1;晶振误差在10ppm-20ppm,则分为晶振误差级别2;晶振误差在20ppm-30ppm,则分为晶振误差级别3。当晶振误差大于30ppm时,服务器将无法控制窗口对齐,因此服务器可以不向终端发送下行数据帧。
工作速率级别信息是指根据工作速率的大小进行分级的信息。目前市面上的LoRa 终端都支持6个工作速率分级,分别为工作速率级别0、工作速率级别1、工作速率级别2、工作速率级别3、工作速率级别4、工作速率级别5。
实际速率如下(单位bit/sec):工作速率级别0约293;工作速率级别1约537;工作速率级别2约977;工作速率级别3约1758;工作速率级别4约3125;工作速率级别5约5469。
所述步骤202可以包括:
所述服务器根据所述晶振误差级别信息和所述工作速率级别信息,查找对应的前导码长度信息;在晶振误差级别信息相同,工作速率级别信息不同的组合所对应的前导码长度信息中,工作速率级别信息较大的组合所对应的前导码长度信息,大于或者等于工作速率级别信息较小的组合所对应的前导码长度信息;在工作速率级别信息相同,晶振误差级别信息不同的组合所对应的前导码长度信息中,晶振误差级别信息较大的组合所对应的前导码长度信息,大于或者等于晶振误差级别信息较小的组合所对应的前导码长度信息。
在本申请实施例中,每个晶振误差级别信息和每个工作速率级别信息构成一个组合,每个组合都对应有一个前导码长度信息。服务器中可以预先设置多个不同的晶振误差级别信息和不同的工作速率级别信息的组合,所对应的前导码长度信息。
在晶振误差级别信息相同,工作速率级别信息不同的组合所对应的前导码长度信息中,工作速率级别信息较大的组合所对应的前导码长度信息,大于或者等于工作速率级别信息较小的组合所对应的前导码长度信息。
例如,组合5与组合6的晶振误差级别信息相同,组合5的工作速率级别信息比组合6的工作速率级别信息大;因此,组合5所对应的前导码长度信息可以大于或者等于组合6所对应的前导码长度信息。
在工作速率级别信息相同,晶振误差级别信息不同的组合所对应的前导码长度信息中,晶振误差级别信息较大的组合所对应的前导码长度信息,大于或者等于晶振误差级别信息较小的组合所对应的前导码长度信息。
例如,组合7与组合8的工作速率级别信息相同,组合7的晶振误差级别信息比组合8的晶振误差级别信息大;因此,组合7所对应的前导码长度信息可以大于或者等于组合8所对应的前导码长度信息。
具体的,根据实际经验数据可以对晶振误差级别信息和工作速率级别信息的组合,按照如下方式设置前导码长度信息。
工作速率级别0、晶振误差级别1,前导码长度信息可以取默认值8;
工作速率级别0、晶振误差级别2,前导码长度信息可以取默认值8;
工作速率级别0、晶振误差级别3,前导码长度信息可以取默认值8;
工作速率级别1、晶振误差级别1,前导码长度信息可以取默认值8;
工作速率级别1、晶振误差级别2,前导码长度信息可以取默认值8;
工作速率级别1、晶振误差级别3,前导码长度信息可以取默认值8;
工作速率级别2、晶振误差级别1,前导码长度信息可以取默认值8;
工作速率级别2、晶振误差级别2,前导码长度信息可以取默认值8;
工作速率级别2、晶振误差级别3,前导码长度信息可以取默认值8;
工作速率级别3、晶振误差级别1,前导码长度信息可以为12;
工作速率级别3、晶振误差级别2,前导码长度信息可以为14;
工作速率级别3、晶振误差级别3,前导码长度信息可以为16;
工作速率级别4、晶振误差级别1,前导码长度信息可以为16;
工作速率级别4、晶振误差级别2,前导码长度信息可以为18;
工作速率级别4、晶振误差级别3,前导码长度信息可以为20;
工作速率级别5、晶振误差级别1,前导码长度信息可以为32;
工作速率级别5、晶振误差级别2,前导码长度信息可以为36;
工作速率级别5、晶振误差级别3,前导码长度信息可以为40。
步骤203,所述服务器向所述终端发送下行数据帧,所述下行数据帧包括具有所述前导码长度信息的前导码。
服务器在设置了前导码长度信息后,可以将该具有前导码长度信息的前导码添加到下行数据帧中,然后向终端发送该下行数据帧。
在本申请实施例的一种示例中,所述步骤203可以包括如下子步骤:
子步骤S11,所述服务器根据所述晶振误差信息和所述工作速率信息,在到达约定的时间窗口时,向所述终端发送下行数据帧。
服务器可以根据晶振误差信息和工作速率信息,在到达与终端约定的时间窗口,即终端打开的接收窗口,向终端发送下行数据帧。
进一步的,所述子步骤S11可以包括:
所述服务器根据所述晶振误差级别信息和所述工作速率级别信息,在到达约定的时间窗口时,向所述终端发送下行数据帧。
具体的,根据实际经验,在工作速率级别为0、工作速率级别为1、工作速率级别为2、工作速率级别为3、工作速率级别为4时,无论终端的晶振误差是级别1,还是级别2,还是级别3,服务器都可以在到达约定的时间窗口时,向终端发送下行数据帧,并且下行数据帧中包括具有与晶振误差级别信息和工作速率级别信息对应的前导码长度信息的前导码。终端仍能在约定的时间窗口打开时,接收到前导码。
在本申请实施例的另一种示例中,所述步骤203可以包括如下子步骤:
子步骤S12,所述服务器根据所述晶振误差信息和所述工作速率信息,在到达约定的时间窗口之前,提前预设时间段向所述终端发送下行数据帧。
服务器可以根据晶振误差信息和工作速率信息,在到达与终端约定的时间窗口之前,即终端打开接收窗口之前,提前预设时间段向终端发送下行数据帧。
进一步的,所述子步骤S12可以包括:
所述服务器根据所述晶振误差级别信息和所述工作速率级别信息,在到达约定的时间窗口之前,提前预设时间段向所述终端发送下行数据帧。
具体的,根据实际经验,在终端的工作速率级别为5时,终端将难以对准约定的时间窗口。因此需要服务器在到达约定的时间窗口之前向终端发送下行数据帧,并且下行数据帧中包括具有与晶振误差级别信息和工作速率级别信息对应的前导码长度信息的前导码。否则终端将无法在约定的时间窗口打开时,接收到前导码。
在工作速率级别为5,晶振误差级别为1时,服务器可以在到达约定的时间窗口之前,提前16ms向终端发送下行数据帧。
在工作速率级别为5,晶振误差级别为2时,服务器可以在到达约定的时间窗口之前,提前18ms向终端发送下行数据帧。
在工作速率级别为5,晶振误差级别为3时,服务器可以在到达约定的时间窗口之前,提前20ms向终端发送下行数据帧。
在本申请实施例中,服务器可以根据终端的晶振误差信息和工作速率信息设置前导码长度信息,并向终端发送包括具有该前导码长度信息的前导码的下行数据帧。在终端在晶振误差无法改变的情况下,通过调整前导码的长度可以使得终端能在更长的时间段内检测到前导码,提高下行数据帧下发成功率。
参照图3,示出了本申请的一种服务器的数据发送方法实施例三的步骤流程图,具体可以包括如下步骤:
步骤301,服务器获取终端的时间误差信息和工作速率信息;
时间误差信息可以表示服务器与终端之间时间误差的大小。
具体的,时间误差信息可以为晶振误差信息,晶振误差信息可以表示晶振误差的大小。
终端本地的时间一般采用晶振来进行时间校准,晶振误差越大,服务器与终端之间的时间误差越大;晶振越小,服务器与终端之间的时间误差越小。
步骤302,所述服务器根据所述时间误差信息和所述工作速率信息设置前导码长度信息;
步骤303,所述服务器向所述终端发送下行数据帧,所述下行数据帧包括具有所述前导码长度信息的前导码。
在本申请实施例中,服务器可以根据终端的时间误差信息和工作速率信息设置前导码长度信息,并向终端发送包括具有该前导码长度信息的前导码的下行数据帧。在终端在晶振误差无法改变的情况下,通过调整前导码的长度可以使得终端能在更长的时间段内检测到前导码,提高下行数据帧下发成功率。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本申请实施例所必须的。
参照图4,示出了本申请的一种服务器的数据发送装置实施例的结构框图,具体可以包括如下模块:
位于服务器的终端信息获取模块401,用于获取终端的晶振误差信息和工作速率信息;
位于所述服务器的长度信息设置模块402,用于根据所述晶振误差信息和所述工作速率信息设置前导码长度信息;
位于所述服务器的下行数据帧发送模块403,用于向所述终端发送下行数据帧,所述下行数据帧包括具有所述前导码长度信息的前导码。
在本申请实施例中,所述长度信息设置模块402可以包括:
长度信息查找子模块,用于根据所述晶振误差信息和所述工作速率信息,查找对应的前导码长度信息;在晶振误差信息相同,工作速率信息不同的组合所对应的前导码长度信息中,工作速率信息较大的组合所对应的前导码长度信息,大于或者等于工作速率 信息较小的组合所对应的前导码长度信息;在工作速率信息相同,晶振误差信息不同的组合所对应的前导码长度信息中,晶振误差信息较大的组合所对应的前导码长度信息,大于或者等于晶振误差信息较小的组合所对应的前导码长度信息。
在本申请实施例中,所述晶振误差信息包括晶振误差级别信息,所述工作速率信息包括工作速率级别信息;所述长度信息查找子模块可以包括:
长度信息查找单元,用于根据所述晶振误差级别信息和所述工作速率级别信息,查找对应的前导码长度信息;在晶振误差级别信息相同,工作速率级别信息不同的组合所对应的前导码长度信息中,工作速率级别信息较大的组合所对应的前导码长度信息,大于或者等于工作速率级别信息较小的组合所对应的前导码长度信息;在工作速率级别信息相同,晶振误差级别信息不同的组合所对应的前导码长度信息中,晶振误差级别信息较大的组合所对应的前导码长度信息,大于或者等于晶振误差级别信息较小的组合所对应的前导码长度信息。
在本申请实施例的一种示例中,所述下行数据帧发送模块403可以包括:
第一下行数据帧发送子模块,用于根据所述晶振误差信息和所述工作速率信息,在到达约定的时间窗口时,向所述终端发送下行数据帧。
在本申请实施例的另一种示例中,所述下行数据帧发送模块403可以包括:
第二下行数据帧发送子模块,用于根据所述晶振误差信息和所述工作速率信息,在到达约定的时间窗口之前,提前预设时间段向所述终端发送下行数据帧。
在本申请实施例中,所述第一下行数据帧发送子模块可以包括:
第一下行数据帧发送单元,用于根据所述晶振误差级别信息和所述工作速率级别信息,在到达约定的时间窗口时,向所述终端发送下行数据帧。
在本申请实施例中,所述第二下行数据帧发送子模块可以包括:
第二下行数据帧发送单元,用于根据所述晶振误差级别信息和所述工作速率级别信息,在到达约定的时间窗口之前,提前预设时间段向所述终端发送下行数据帧。
本申请还公开了一种服务器的数据发送装置实施例,具体可以包括如下模块:
位于服务器的终端信息获取模块,用于获取终端的时间误差信息和工作速率信息;
位于所述服务器的长度信息设置模块,用于根据所述时间误差信息和所述工作速率信息设置前导码长度信息;
位于所述服务器的下行数据帧发送模块,用于向所述终端发送下行数据帧,所述下行数据帧包括具有所述前导码长度信息的前导码。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本申请实施例还提供了一种装置,包括:
一个或多个处理器;和
其上存储有指令的一个或多个机器可读介质,当由所述一个或多个处理器执行时,使得所述装置执行本申请实施例所述的方法。
本申请实施例还提供了一个或多个机器可读介质,其上存储有指令,当由一个或多个处理器执行时,使得所述处理器执行本申请实施例所述的方法。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本申请实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的一种服务器的数据发送方法和一种服务器的数据发送装置,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (18)

  1. 一种服务器的数据发送方法,其特征在于,包括:
    服务器获取终端的晶振误差信息和工作速率信息;
    所述服务器根据所述晶振误差信息和所述工作速率信息设置前导码长度信息;
    所述服务器向所述终端发送下行数据帧,所述下行数据帧包括具有所述前导码长度信息的前导码。
  2. 根据权利要求1所述的方法,其特征在于,所述服务器根据所述晶振误差信息和所述工作速率信息设置前导码长度信息的步骤包括:
    所述服务器根据所述晶振误差信息和所述工作速率信息,查找对应的前导码长度信息;在晶振误差信息相同,工作速率信息不同的组合所对应的前导码长度信息中,工作速率信息较大的组合所对应的前导码长度信息,大于或者等于工作速率信息较小的组合所对应的前导码长度信息;在工作速率信息相同,晶振误差信息不同的组合所对应的前导码长度信息中,晶振误差信息较大的组合所对应的前导码长度信息,大于或者等于晶振误差信息较小的组合所对应的前导码长度信息。
  3. 根据权利要求2所述的方法,其特征在于,所述晶振误差信息包括晶振误差级别信息,所述工作速率信息包括工作速率级别信息;所述服务器根据所述晶振误差信息和所述工作速率信息,查找对应的前导码长度信息的步骤包括:
    所述服务器根据所述晶振误差级别信息和所述工作速率级别信息,查找对应的前导码长度信息;在晶振误差级别信息相同,工作速率级别信息不同的组合所对应的前导码长度信息中,工作速率级别信息较大的组合所对应的前导码长度信息,大于或者等于工作速率级别信息较小的组合所对应的前导码长度信息;在工作速率级别信息相同,晶振误差级别信息不同的组合所对应的前导码长度信息中,晶振误差级别信息较大的组合所对应的前导码长度信息,大于或者等于晶振误差级别信息较小的组合所对应的前导码长度信息。
  4. 根据权利要求3所述的方法,其特征在于,所述服务器向所述终端发送下行数据帧的步骤包括:
    所述服务器根据所述晶振误差信息和所述工作速率信息,在到达约定的时间窗口时,向所述终端发送下行数据帧。
  5. 根据权利要求3所述的方法,其特征在于,所述服务器向所述终端发送下行数据帧的步骤包括:
    所述服务器根据所述晶振误差信息和所述工作速率信息,在到达约定的时间窗口之前,提前预设时间段向所述终端发送下行数据帧。
  6. 根据权利要求4所述的方法,其特征在于,所述服务器根据所述晶振误差信息和所述工作速率信息,在到达约定的时间窗口时,向所述终端发送下行数据帧的步骤包括:
    所述服务器根据所述晶振误差级别信息和所述工作速率级别信息,在到达约定的时间窗口时,向所述终端发送下行数据帧。
  7. 根据权利要求5所述的方法,其特征在于,所述服务器根据所述晶振误差信息和所述工作速率信息,在到达约定的时间窗口之前,提前预设时间段向所述终端发送下行数据帧的步骤包括:
    所述服务器根据所述晶振误差级别信息和所述工作速率级别信息,在到达约定的时间窗口之前,提前预设时间段向所述终端发送下行数据帧。
  8. 一种服务器的数据发送方法,其特征在于,包括:
    服务器获取终端的时间误差信息和工作速率信息;
    所述服务器根据所述时间误差信息和所述工作速率信息设置前导码长度信息;
    所述服务器向所述终端发送下行数据帧,所述下行数据帧包括具有所述前导码长度信息的前导码。
  9. 一种服务器的数据发送装置,其特征在于,包括:
    位于服务器的终端信息获取模块,用于获取终端的晶振误差信息和工作速率信息;
    位于所述服务器的长度信息设置模块,用于根据所述晶振误差信息和所述工作速率信息设置前导码长度信息;
    位于所述服务器的下行数据帧发送模块,用于向所述终端发送下行数据帧,所述下行数据帧包括具有所述前导码长度信息的前导码。
  10. 根据权利要求9所述的装置,其特征在于,所述长度信息设置模块包括:
    长度信息查找子模块,用于根据所述晶振误差信息和所述工作速率信息,查找对应的前导码长度信息;在晶振误差信息相同,工作速率信息不同的组合所对应的前导码长度信息中,工作速率信息较大的组合所对应的前导码长度信息,大于或者等于工作速率信息较小的组合所对应的前导码长度信息;在工作速率信息相同,晶振误差信息不同的组合所对应的前导码长度信息中,晶振误差信息较大的组合所对应的前导码长度信息,大于或者等于晶振误差信息较小的组合所对应的前导码长度信息。
  11. 根据权利要求10所述的装置,其特征在于,所述晶振误差信息包括晶振误差级 别信息,所述工作速率信息包括工作速率级别信息;所述长度信息查找子模块包括:
    长度信息查找单元,用于根据所述晶振误差级别信息和所述工作速率级别信息,查找对应的前导码长度信息;在晶振误差级别信息相同,工作速率级别信息不同的组合所对应的前导码长度信息中,工作速率级别信息较大的组合所对应的前导码长度信息,大于或者等于工作速率级别信息较小的组合所对应的前导码长度信息;在工作速率级别信息相同,晶振误差级别信息不同的组合所对应的前导码长度信息中,晶振误差级别信息较大的组合所对应的前导码长度信息,大于或者等于晶振误差级别信息较小的组合所对应的前导码长度信息。
  12. 根据权利要求11所述的装置,其特征在于,所述下行数据帧发送模块包括:
    第一下行数据帧发送子模块,用于根据所述晶振误差信息和所述工作速率信息,在到达约定的时间窗口时,向所述终端发送下行数据帧。
  13. 根据权利要求11所述的装置,其特征在于,所述下行数据帧发送模块包括:
    第二下行数据帧发送子模块,用于根据所述晶振误差信息和所述工作速率信息,在到达约定的时间窗口之前,提前预设时间段向所述终端发送下行数据帧。
  14. 根据权利要求12所述的装置,其特征在于,所述第一下行数据帧发送子模块包括:
    第一下行数据帧发送单元,用于根据所述晶振误差级别信息和所述工作速率级别信息,在到达约定的时间窗口时,向所述终端发送下行数据帧。
  15. 根据权利要求13所述的装置,其特征在于,所述第二下行数据帧发送子模块包括:
    第二下行数据帧发送单元,用于根据所述晶振误差级别信息和所述工作速率级别信息,在到达约定的时间窗口之前,提前预设时间段向所述终端发送下行数据帧。
  16. 一种服务器的数据发送装置,其特征在于,包括:
    位于服务器的终端信息获取模块,用于获取终端的时间误差信息和工作速率信息;
    位于所述服务器的长度信息设置模块,用于根据所述时间误差信息和所述工作速率信息设置前导码长度信息;
    位于所述服务器的下行数据帧发送模块,用于向所述终端发送下行数据帧,所述下行数据帧包括具有所述前导码长度信息的前导码。
  17. 一种服务器的数据发送装置,其特征在于,包括:
    一个或多个处理器;和
    其上存储有指令的一个或多个机器可读介质,当由所述一个或多个处理器执行时,使得所述装置执行如权利要求1-7或8所述的一个或多个的方法。
  18. 一个或多个机器可读介质,其上存储有指令,当由一个或多个处理器执行时,使得所述处理器执行如权利要求1-7或8所述的一个或多个的方法。
PCT/CN2019/089926 2018-06-13 2019-06-04 一种服务器的数据发送方法和装置 WO2019237963A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/120,808 US11502692B2 (en) 2018-06-13 2020-12-14 Server data sending method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810610156.XA CN110601790B (zh) 2018-06-13 2018-06-13 一种服务器的数据发送方法和装置
CN201810610156.X 2018-06-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/120,808 Continuation US11502692B2 (en) 2018-06-13 2020-12-14 Server data sending method and apparatus

Publications (1)

Publication Number Publication Date
WO2019237963A1 true WO2019237963A1 (zh) 2019-12-19

Family

ID=68842676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089926 WO2019237963A1 (zh) 2018-06-13 2019-06-04 一种服务器的数据发送方法和装置

Country Status (4)

Country Link
US (1) US11502692B2 (zh)
CN (1) CN110601790B (zh)
TW (1) TW202002573A (zh)
WO (1) WO2019237963A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502692B2 (en) 2018-06-13 2022-11-15 Alibaba Group Holding Limited Server data sending method and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383386B (zh) * 2020-11-11 2024-01-05 腾讯科技(深圳)有限公司 数据传输方法、装置、计算机设备及计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008013A2 (en) * 2001-07-20 2003-01-30 Medical Research Group Ambulatory medical apparatus and method using a telemetry system with predefined reception listening methods
US6894975B1 (en) * 2000-01-15 2005-05-17 Andrzej Partyka Synchronization and access of the nodes in a communications network
CN101883420A (zh) * 2010-06-25 2010-11-10 中国科学院软件研究所 一种无线传感器网络时间同步方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7103065B1 (en) * 1998-10-30 2006-09-05 Broadcom Corporation Data packet fragmentation in a cable modem system
ATE412289T1 (de) * 1998-10-30 2008-11-15 Broadcom Corp Kabelmodemsystem
JP2009527140A (ja) * 2006-02-13 2009-07-23 ノキア コーポレイション 連続接続性送信における適応プリアンブル長
CN101272369B (zh) * 2007-03-20 2012-05-23 富士通株式会社 前导码检测和整数倍载波频偏估计装置和方法
CN100596363C (zh) * 2007-05-31 2010-03-31 北京泛亚创知科技发展有限公司 一种信标无线个域网中中心节点与设备节点间的测距方法
US9369215B2 (en) * 2009-09-21 2016-06-14 Koninklijke Philips N.V. Asynchronous transmission with double wake up
US8532228B2 (en) * 2010-12-23 2013-09-10 Microchip Technology Incorporated Automatic frequency offset compensation in zero-intermediate frequency receivers using minimum-shift keying (MSK) signaling
JP5924880B2 (ja) * 2011-07-12 2016-05-25 ラピスセミコンダクタ株式会社 データ通信システム、プリアンブル長最適化方法、及び通信装置
CN103078812B (zh) * 2013-02-01 2015-10-21 北京傲天动联技术股份有限公司 数据转发方法和设备
US9565568B2 (en) * 2014-11-14 2017-02-07 Blackberry Limited Sharing channels in a licensed-assisted access in long term evolution operation
CN107371126B (zh) * 2017-08-21 2019-07-30 西安电子科技大学 基于fdd-lte网络的随机接入方法
CN110601790B (zh) 2018-06-13 2022-05-27 阿里巴巴集团控股有限公司 一种服务器的数据发送方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894975B1 (en) * 2000-01-15 2005-05-17 Andrzej Partyka Synchronization and access of the nodes in a communications network
WO2003008013A2 (en) * 2001-07-20 2003-01-30 Medical Research Group Ambulatory medical apparatus and method using a telemetry system with predefined reception listening methods
CN101883420A (zh) * 2010-06-25 2010-11-10 中国科学院软件研究所 一种无线传感器网络时间同步方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502692B2 (en) 2018-06-13 2022-11-15 Alibaba Group Holding Limited Server data sending method and apparatus

Also Published As

Publication number Publication date
US20210099176A1 (en) 2021-04-01
US11502692B2 (en) 2022-11-15
CN110601790B (zh) 2022-05-27
TW202002573A (zh) 2020-01-01
CN110601790A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
US11102704B2 (en) Communication between terminal and base station, and network access method and apparatus for terminal
US11375487B2 (en) Terminal apparatus, base station apparatus, and communication method
TWI795537B (zh) 基於中繼設備的通信、終端與基地台的通信方法和裝置
TWI797274B (zh) 基於中繼設備的通信、終端與基地台的通信方法和裝置
US11272473B2 (en) Method and apparatus for timing advance adjustment
WO2019237963A1 (zh) 一种服务器的数据发送方法和装置
US11177927B2 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
US11700608B2 (en) Uplink control information transmission method, uplink control information reception method, terminal, base station and devices
TWI785145B (zh) 通信網路的定位方法和系統
WO2020063266A1 (zh) 一种harq进程id的确定方法、装置、终端及介质
CN107343313A (zh) 信号强度调节方法及路由器
JP7273243B2 (ja) アクセスネットワークデバイスを認証するための方法および関連デバイス
WO2020020011A1 (zh) 一种通信方法和装置
WO2020258086A1 (en) Method and apparatus for harq feedback
US10686652B2 (en) Method for controlling the load of a data concentration gateway for a wireless communication network
WO2020238738A1 (zh) 通信网络中信标帧的通信及基站同步的方法和装置
US20210250995A1 (en) Performance-guaranteed channel access control for security alarm and image sensors
WO2020078231A1 (zh) 一种终端与基站的通信方法和装置
CN111050401B (zh) 一种终端与基站的通信方法和装置
WO2021248975A1 (zh) 信息传输方法、装置、设备和存储介质
Zhao et al. I-MAC: an incorporation MAC for wireless sensor networks
WO2016004626A1 (zh) 一种信息传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819654

Country of ref document: EP

Kind code of ref document: A1