WO2019237785A1 - 储能单元分离式变流器及其应用系统、控制方法 - Google Patents

储能单元分离式变流器及其应用系统、控制方法 Download PDF

Info

Publication number
WO2019237785A1
WO2019237785A1 PCT/CN2019/078817 CN2019078817W WO2019237785A1 WO 2019237785 A1 WO2019237785 A1 WO 2019237785A1 CN 2019078817 W CN2019078817 W CN 2019078817W WO 2019237785 A1 WO2019237785 A1 WO 2019237785A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage unit
converter
switch
switch group
Prior art date
Application number
PCT/CN2019/078817
Other languages
English (en)
French (fr)
Inventor
谢晔源
王宇
连建阳
段军
刘洪德
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810606795.9A external-priority patent/CN108767841B/zh
Priority claimed from CN201810606793.XA external-priority patent/CN108767882B/zh
Priority claimed from CN201810606509.9A external-priority patent/CN108711875B/zh
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to JP2020569888A priority Critical patent/JP2021526786A/ja
Priority to EP19819033.2A priority patent/EP3799244A4/en
Publication of WO2019237785A1 publication Critical patent/WO2019237785A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/77Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means arranged for operation in parallel

Definitions

  • the invention belongs to the technical field of power electronic converters, and particularly relates to a separate converter for an energy storage unit, an application system thereof, and a control method.
  • the integration of distributed power into the DC grid needs to pass through the power electronic conversion unit.
  • the power electronic conversion units all have a certain capacity energy storage unit, which is used to filter out harmonics and stabilize the voltage during the AC / DC conversion process. In the prior art, this part of the energy storage unit is integrated with the power electronic conversion unit. When the distributed power source is taken out of operation, all of it is taken out of operation, and it is not fully utilized. A large amount of distributed energy storage Units need unified and coordinated control so that the separated energy storage units in the distributed energy storage unit can be economically and reliably connected to the DC grid.
  • the entire system cannot operate normally after the energy storage unit or the converter fails, and the reliability and flexibility are poor.
  • Each energy storage unit operates independently, sharing of energy storage units cannot be achieved, and the overall system utilization is low.
  • the energy storage system itself has a high cost and a large footprint, and an economic, flexible, and highly reliable energy storage system is urgently needed.
  • An embodiment of the present application provides an energy storage unit separate converter, including a power electronic conversion unit, characterized in that the converter further includes: at least one separate energy storage unit and a first switch group, The first switch group is connected in series between the energy storage unit and the DC side of the power electronic conversion unit. By separating the positive switch and the negative switch in the first switch group, the energy storage unit and the The power electronic conversion unit is separated.
  • the power electronic conversion unit includes a DC-DC converter, one end of which is connected to the first switch group, and the other end of which is connected to a DC load or a DC power source.
  • the power electronic conversion unit includes an AC-DC converter or an DC-AC converter, the DC end of the AC-DC converter is connected to the first switch group, and the AC-DC conversion The AC terminal of the converter is connected to an AC load or AC power source; the DC terminal of the DC-AC converter is connected to the first switch group, and the AC terminal of the DC-AC converter is used as an AC output terminal.
  • the converter further includes a DC switch and a current limiting resistor connected in parallel and connected in series between the energy storage unit and the DC power grid.
  • the DC switch includes two power semiconductor switching devices with anti-parallel diodes connected in anti-series.
  • the converter further includes a current detection unit that detects a current flowing between the energy storage unit and the DC power grid.
  • the converter further includes a current limiting inductor connected in series between the energy storage unit and the DC power grid.
  • the energy storage unit is easily separated from the power electronic conversion unit in structure.
  • the converter further includes a second switch group connected in series between the energy storage unit and a DC grid or an energy storage bus.
  • the converter further includes: a distributed energy storage controller that controls the power electronic conversion unit and the first switch group; when the converter includes the second switch group or / and When the DC switch is described, the distributed energy storage controller also controls the second switch group or / and the tributary switch.
  • the distributed energy storage controller includes a communication module and a control module, and the communication module accepts external instructions; the control module controls the power electronic conversion unit and the first switch group based on the external instructions; when the variable When the current transformer includes the second switch group or / and the DC switch, the control module also controls the second switch group or / and the branch current switch.
  • the distributed energy storage controller and the energy storage unit are arranged nearby, and the energy storage unit is controlled when the power electronic conversion unit is out of operation.
  • An embodiment of the present application further provides a distributed energy storage system, which is characterized in that the distributed energy storage system includes: an energy storage bus and N energy storage unit split-type converters (N ⁇ 2); the energy storage unit separated converter is connected in parallel on the energy storage bus; a second switch group is connected in series between the energy storage unit and the energy storage bus, and can be separated by a second The positive switch and the negative switch in the switch group separate the energy storage unit from the energy storage bus.
  • the distributed energy storage system further includes: N distributed energy storage controllers described above, one-to-one control of the energy storage unit separate converter; a total controller, Communicate with N said distributed energy storage controllers.
  • the embodiment of the present application further provides a distributed energy storage unit coordinated control system, which is characterized in that the coordinated control system includes: N energy storage unit separated converters (N ⁇ 2) described above; M The above-mentioned distributed energy storage controller (M ⁇ 2); the main controller is in communication with the distributed energy storage controller; the separate converter of the energy storage unit further includes: a second switch group connected in series Between the energy storage unit and the DC grid, the energy storage unit can be separated from the DC grid by separating a positive switch and a negative switch in the second switch group.
  • the coordinated control system further includes: K energy-storage-free converters (K ⁇ 1), and the energy-storage-free converters include the power electronic conversion unit.
  • one-to-one communication or one-to-many communication can be performed between the distributed energy storage controller and the energy storage unit separated converter or the non-energy storage converter.
  • the distributed energy storage controller may control the opening and closing of the first switch group and the second switch group in the energy storage unit separated converter in which communication is established.
  • the coordinated control system further includes: a main converter, the main converter is an AC-DC converter, an AC side is connected to an AC power source, and a DC side is connected to a DC power grid.
  • the distributed energy storage controller may receive active and reactive power setting values issued by the main controller, and control the power electronic conversion unit.
  • An embodiment of the present application further provides a control method for a separate converter of an energy storage unit described above, wherein the control method includes the following steps: when the power electronic conversion unit and the storage unit are required, When the energy unit is separated, the power electronic conversion unit is stopped and the first switch group is separated.
  • the energy storage unit separated converter includes a control unit, a second switch group or / and a DC switch and a current limiting resistor connected in parallel, and the control unit receives an energy storage unit input instruction
  • the control unit receives an energy storage unit input instruction
  • the control method further includes the steps of closing the second switch group or / and the DC switch to enter an energy storage input state.
  • the control method includes The following steps: close the first switch group; close the second switch group or / and the DC switch; start the power electronic conversion unit and enter the grid connection state.
  • control unit detects that the power electronic conversion unit is faulty, and the control method includes the steps of: stopping the power electronic conversion unit; separating the first switch group; judging whether the fault is cleared; if the fault is not cleared , Separate the second switch group; if the fault has been cleared, maintain the closed state of the first switch group so that the energy storage unit can still be put into operation.
  • the control method includes the following steps: separating the DC switch To switch on the current limiting resistor; to separate the second switch group; to separate the first switch group to enter an offline state.
  • the current limit setting value does not exceed the maximum severable current value of the DC switch.
  • An embodiment of the present application further provides a control method for a distributed energy storage system as described above, which is characterized in that when the separated converter of the energy storage unit operates independently, the control method includes the following steps: Separate all the second switch groups; close all the first switch groups; activate all the power electronic conversion units.
  • the method further includes the step of separating all the DC switches.
  • An embodiment of the present application further provides a control method for a distributed energy storage system as described above, which is characterized in that, when the separated converter of the energy storage unit includes a DC switch and a current limiting resistor connected in parallel, When the distributed converter shares the energy storage unit, the control method includes the following steps: closing all the first switch groups; separating all the DC switches; closing all the second switch groups; waiting for each of the energy storage units After the DC voltages of the unit-separated converters are equalized, all the DC switches are closed; all the power electronic conversion units are started.
  • the control method further includes the following steps: the energy storage unit split type After the converter detects that the current exceeds the current limiting action threshold, the DC switch is separated; the faulty energy storage unit separate converter is judged; and the faulty energy storage unit separate converter is separated by the second switch Group and the first switch group; after the DC voltages of the other energy storage unit separated converters are equalized, the DC switches in the other energy storage unit separated converters are closed; and the faulty energy storage unit is separated.
  • a second switch group of the energy-converting converter after the DC capacitor voltage of the faulty energy storage unit split-type converter is normal, the DC switch of the faulty energy-storage unit split-type converter is closed.
  • the embodiment of the present application further provides a control method for a distributed energy storage unit coordinated control system as described above, which is characterized in that the control method includes the following steps: the distributed energy storage controller receives An instruction from the main controller; the instruction is sent by the main controller after controlling the main converter to start and detecting that the DC bus voltage is stable; based on the instruction, controlling the first switch group, The second switch group is closed or separated and the power electronic conversion unit is started or stopped.
  • the controlling, based on the instruction, closing or separating the first switch group, the second switch group, and starting or stopping the power electronic conversion unit includes: The following steps: control to close all the first switch groups; control to close all the second switch groups; after confirming that the positions of all the switch groups are correct, start the power electronic conversion unit; and feedback the startup success command to the main controller .
  • controlling the closing or separation of the first switch group, the second switch group, and the activation or Stopping includes the following steps: controlling to separate all the first switch groups; controlling to close all the second switch groups; and after confirming that the positions of all the switch groups are correct, the input success command is fed back to the main controller.
  • control method further includes the following steps: the distributed energy storage controller locks the power electronic conversion unit; after the failure disappears, restarting the power Electronic conversion unit.
  • control method includes the following steps: the distributed energy storage controller blocks the power electronic conversion unit; and separates the first switch group.
  • the energy storage unit of the idle converter when the converter stops working, can be used to separate the energy storage unit from the converter through a switch, and the converter is connected to the DC bus.
  • the DC bus provides energy storage capacity and improves equipment utilization; the energy storage unit is easy to expand, and the energy storage unit can be separated from the converter. Increasing the capacity itself does not affect the converter part, which is convenient for capacity expansion.
  • FIG. 1 is a schematic diagram of a topology of a separate converter of an energy storage unit according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a topology of a separate converter of an energy storage unit according to another embodiment of the present application;
  • FIG. 3 is a schematic diagram of a direct-to-direct converter topology according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an AC-DC converter topology according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the composition of an energy storage unit separated converter with an AC-DC converter according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of the composition of a separate converter of an energy storage unit with an AC-DC converter according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram of a composition of a separate converter of an energy storage unit with a direct-to-direct converter according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the composition of a separate converter of an energy storage unit with a direct-to-direct converter according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a topology of a distributed energy storage system according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an application topology of an energy storage unit split converter provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a DC switch provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a topology of an energy storage unit split converter operating in an independent mode according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a system topology when an energy storage unit separated converter energy storage unit is shared according to an embodiment of the present application
  • FIG. 14 is a schematic diagram of a failure of a power electronic conversion unit in the energy storage unit separated converter 1 according to an embodiment of the present application;
  • FIG. 15 is a schematic diagram of a topology of a distributed energy storage unit coordinated control system according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a topology of a separate converter of an energy storage unit according to an embodiment of the present application.
  • the separated energy storage unit converter of this embodiment includes a power electronic conversion unit, a separated energy storage unit, and a first switch group.
  • the first switch group is connected in series with the energy storage unit and the power. Between the DC side of the electronic conversion, the energy storage unit and the power electronic conversion unit can be separated by separating the positive switch and the negative switch in the first switch group.
  • the power electronic conversion unit includes, but is not limited to, a DC-DC converter or an AC-DC converter.
  • FIG. 3 is a schematic diagram of a direct-to-direct converter topology according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an AC-DC converter topology according to an embodiment of the present application.
  • the power electronic conversion unit is an AC-DC converter.
  • the DC output end of the AC-DC converter is connected to the first switch group, and the other end is connected to the three-phase AC load.
  • FIG. 5 A schematic diagram of the composition of an energy storage unit split converter with an AC-DC converter provided by an embodiment of the application.
  • the power electronic conversion unit is an AC-DC converter
  • the DC output end of the AC-DC converter is connected to the first switch group, and the other end is connected to the three-phase AC power source, as shown in FIG. 6 and FIG. 6 is A schematic diagram of the composition of an energy storage unit separated converter with an AC-DC converter provided by another embodiment of the present application.
  • the power electronic conversion unit is a direct-to-direct converter.
  • the direct-current output terminal of the direct-to-direct converter is connected to the first switch group, and the other end is connected to a DC load.
  • FIG. 7 is the present application.
  • a schematic diagram of the composition of an energy storage unit split converter with a direct-to-direct converter provided by an embodiment.
  • the power electronic conversion unit is a direct-to-direct converter.
  • the direct-current output terminal of the direct-to-direct converter is connected to the first switch group, and the other end can also be connected to a direct current power source, as shown in FIG. 8 and FIG. 8.
  • FIG. 8 and FIG. 8 A schematic diagram of the composition of a separate converter of an energy storage unit with a direct-to-direct converter provided by another embodiment of the present application.
  • the separated energy storage unit in the separated converter is structurally designed to be easily separated from the power electronic conversion unit.
  • FIG. 2 is a schematic diagram of a topology of a separate converter of an energy storage unit according to another embodiment of the present application.
  • the separated energy storage unit converter of this embodiment includes a power electronic conversion unit, a separated energy storage unit, and a first switch group.
  • the first switch group is connected in series with the energy storage unit and the power. Between the DC side of the electronic conversion, the energy storage unit and the power electronic conversion unit can be separated by separating the positive switch and the negative switch in the first switch group.
  • the energy storage unit separated converter may further include a second switch group, and the second switch group is connected in series between the energy storage unit and the DC power grid.
  • the energy storage unit separate converter may further include a DC switch and a current limiting resistor connected in parallel, and the parallel connection is connected in series between the DC power grid and the energy storage unit.
  • the DC switch is selected but not limited to IGBT.
  • a current-limiting device is added between the energy storage unit and the DC power grid, which can prevent the instantaneous current from being too large when the DC short circuit or the capacitor is charged and discharged, and damage the equipment.
  • the energy storage unit separate converter can also include a current detection unit that can detect the current flowing between the DC grid and the energy storage unit.
  • the energy storage unit split converter can also include a current limiting inductor connected in series between the DC grid and the energy storage unit.
  • the energy storage unit separate converter further includes a control unit, which can control the power electronic conversion unit, the first switch group, the second switch group, and the DC switch.
  • the control unit and the separated energy storage unit are arranged nearby, and the energy storage unit can be controlled when the power electronic conversion unit is out of operation.
  • control unit in the energy storage unit separate converter further includes a communication module and a control module, and the communication module can accept external instructions.
  • the control module controls the power electronic conversion unit and the first switch group based on an external instruction.
  • the control module also controls the second switch group or / and the DC switch.
  • the embodiment of the present application also provides a method for controlling a separate converter of an energy storage unit, which is characterized in that the control method includes the following steps: when the power electronic conversion unit needs to be separated from the energy storage unit, stopping the power electronic conversion unit and separating First switch group.
  • the control method further includes the following steps: closing the second switch group or / and the DC switch to enter the energy storage input state.
  • the control unit receives the grid connection instruction
  • the control method includes the following steps: closing the first switch group; closing the second switch group or / and the DC switch; starting the power electronic conversion unit to enter the grid connection state.
  • the control method includes the following steps: stopping the power electronic conversion unit; separating the first switch group; judging whether the fault is cleared; if the fault is not cleared, separate the first Two switch groups; if the fault has been cleared, maintain the closed state of the first switch group so that the energy storage unit can still be put into operation.
  • the control method includes the following steps:
  • the DC switch enables the current-limiting resistor to be switched on; separates the second switch group; separates the first switch group and goes offline.
  • the current limit setting value does not exceed the maximum disconnectable current value of the DC switch.
  • the maximum switchable current of the DC switch IGBT is 3000A, and the current limit setting value is designed to be 2500A, leaving a certain margin.
  • FIG. 9 is a schematic diagram of a topology of a distributed energy storage system according to an embodiment of the present application.
  • the distributed energy storage system includes one energy storage bus, N energy storage unit separated converters (N ⁇ 2), and a second switch group.
  • the energy storage unit split converter includes a power electronic conversion unit and at least one energy storage unit and a first switch group.
  • the first switch group is connected in series between the energy storage unit and the DC side of the power electronic conversion unit.
  • the positive switch and the negative switch in one switch group separate the energy storage unit from the power electronic conversion unit.
  • the second switch group is connected in series between the energy storage unit and the energy storage bus.
  • the positive switch in the second switch group can be separated from The negative switch separates the energy storage unit from the energy storage bus.
  • FIG. 10 is a schematic diagram of an application topology of an energy storage unit split converter provided by an embodiment of the present application.
  • the power electronic conversion unit When the power electronic conversion unit is a direct-to-direct converter, one end of the direct-to-direct converter is connected to a separate energy storage unit, and the other end is used as a DC output terminal.
  • the power electronic conversion unit When the power electronic conversion unit is a DC-AC converter, the DC end of the DC-AC converter is connected to a separate energy storage unit, and the other end is used as an AC output end.
  • the technical solution provided in this embodiment realizes the sharing of energy storage units in each distributed converter by constructing a separable design of the energy storage bus and the energy storage unit.
  • the energy storage can be controlled
  • the excess energy storage unit supports it, which greatly improves the utilization of the system's energy storage capacity.
  • the converter also includes a DC switch and a current limiting resistor connected in parallel, and is connected in series between the second switch group and the energy storage bus after being connected in parallel.
  • the current-limiting resistor and the bypass switch constitute a current-limiting unit in parallel, which can effectively limit the charge and discharge current during the mutual support between distributed energy storage units, and limit the short-circuit current when the short-circuit fault occurs in the system, improving system reliability .
  • the distributed energy storage system also includes N distributed energy storage controllers (N ⁇ 2), a main controller, and the distributed energy storage controller one-to-one control of the energy storage unit separate converter.
  • the main controller communicates with N distributed energy storage controllers.
  • FIG. 11 is a schematic diagram of a DC switch provided by an embodiment of the present application.
  • the DC switch includes, but is not limited to, two power semiconductor switching devices with anti-parallel diodes connected in series in reverse.
  • FIG. 12 is a schematic diagram of a topology of an energy storage unit split converter running in an independent mode according to an embodiment of the present application.
  • the control method includes the following steps: separating all the second switching groups of the energy storage unit separated converters; closing all the first switching groups; Start all power electronics conversion units.
  • the method further includes the step of separating all the DC switches.
  • the final state is shown in Figure 12.
  • FIG. 13 is a schematic diagram of a system topology when an energy storage unit split converter energy storage unit is shared according to an embodiment of the present application.
  • the control method includes the following steps: closing all energy storage unit separation Separate all DC switches; close all second switch groups; wait for the DC voltages of the separate converters of each energy storage unit to close; close all DC switches; start all power electronic conversion units.
  • the final state is shown in Figure 13.
  • the system can be operated in either a centralized shared energy storage mode or an independent energy storage mode, with good flexibility and high cost performance.
  • FIG. 14 is a schematic diagram of a failure of a power electronic conversion unit in an energy storage unit separated converter 1 provided by an embodiment of the present application.
  • the control method further includes the following steps: After the current detected by the converter exceeds the current-limiting action threshold, the DC switch is separated; the faulty energy storage unit split converter is determined; the faulty energy storage unit split converter is separated from the second switch group and the first Switch group; after the DC voltages of other energy storage unit split converters are equalized, close the DC switches in the other power storage unit split converters; close the second switch of the faulty storage unit split converter Group; after the DC capacitor voltage of the faulty energy storage unit split converter is normal, close the DC switch of the faulty energy storage unit split converter.
  • the final state is shown in Figure 14.
  • FIG. 15 is a schematic diagram of a topology of a distributed energy storage unit coordinated control system according to an embodiment of the present application.
  • the coordinated control system includes N energy storage unit separated converters (N ⁇ 2), M distributed energy storage controllers (M ⁇ 2), and a main controller.
  • the unit-separated converter further includes: a second switch group.
  • the energy-storage unit separated converter includes a power electronic converter, an energy-storage unit, a first switch group 1, and a second switch group 2.
  • the first switch group is connected in series between the energy storage unit and the DC side of the power electronic conversion.
  • the energy storage unit can be separated from the power electronic converter by separating the positive switch and the negative switch in the first switch group.
  • the second switch group is connected in series between the energy storage unit and the DC grid;
  • the power electronic conversion unit in the energy storage unit separated converter may be a direct-to-direct converter. One end of the direct-to-direct converter is connected to the first switch group, and the other end is connected to a DC load or a DC power source.
  • the power electronic conversion unit in the energy storage unit separated converter may be an AC-DC converter, the DC end of the AC-DC converter is connected to the first switch group, and the AC end is connected to an AC load or an AC power source.
  • the coordinated control system further includes K energy-storage-free converters (K ⁇ 1), and the energy-storage-free converters include power electronic conversion units.
  • K 2.
  • the power electronic conversion unit in the energy-free converter can be a direct-to-direct converter.
  • One end of the direct-to-direct converter is connected to a DC power grid, and the other end is connected to a DC load or a DC power source.
  • the power electronic conversion unit in the energy-free converter can be an AC-DC converter.
  • the DC end of the AC-DC converter is connected to the DC power grid, and the AC end is connected to the AC load or AC power source.
  • One-to-one communication can be performed between the distributed energy storage controller and the separated or no energy storage converter, as shown in FIG. 9, the energy storage controller 1, the energy storage controller 2 and the energy storage control M -1 One-to-one communication with 3 energy storage unit separated converters.
  • One-to-many communication can also be performed between the distributed energy storage controller and the separated or no energy storage converter. As shown in FIG. 9, the energy storage controller M and the two non-energy storage converters implement one-to-two communication.
  • the distributed energy storage controller in this embodiment can control the opening and closing of the first switch group and the second switch group in the separated energy storage unit that establishes communication with the distributed energy storage controller.
  • the control system of this embodiment further includes a main converter.
  • the main converter is an AC-DC converter.
  • the AC side is connected to an AC power source, and the DC side is connected to a DC power grid.
  • the distributed energy storage controller in this embodiment can accept the active and reactive power fixed values issued by the main controller, and control the power electronic conversion unit to respond to the instruction.
  • the embodiment of the present application further provides the above-mentioned control method for a distributed energy storage unit coordinated control system, which includes the following steps.
  • the distributed energy storage controller receives the instruction from the main controller; the instruction is the main The controller sends it after controlling the start of the main converter and detecting that the DC bus voltage is stable. Based on the instructions, the distributed energy storage controller controls the closing or separation of the first switch group and the second switch group and the start or stop of the power electronic conversion unit.
  • the first switch group and the second switch group are in a separate state.
  • the main controller receives the grid connection instruction or the energy storage unit input instruction, Controls the start of the main converter. Then send instructions to the distributed energy storage controller.
  • the distributed energy storage controller controls the closing or separation of the first switch group and the second switch group, and the start or stop of the power electronic conversion unit, including the following steps: the distributed energy storage controller Control closing all the first switch groups; control closing all the second switch groups; after confirming that the positions of all the switch groups are correct, start the power electronic conversion unit; and feedback the startup success command to the main controller.
  • the distributed energy storage controller controls the closing or separation of the first switch group, the second switch group, and the start or stop of the power electronic conversion unit, including the following steps: distributed storage The controller can control and separate all the first switch groups; control and close all the second switch groups; after confirming that the positions of all the switch groups are correct, the input success command is fed back to the main controller.
  • the main controller can perform unified coordination and scheduling.
  • control method further includes the following steps: distributed energy storage control The device locks the power electronic conversion unit; after the fault disappears, restart the power electronic conversion unit.
  • the control method includes the following steps: distributed energy storage The controller blocks the power electronic conversion unit; the first switch group is separated.
  • the energy storage unit of the idle converter can be used to separate the energy storage unit from the converter through a switch, and the converter is connected to the DC bus, which can provide energy storage for the DC bus.
  • Capacity which improves equipment utilization rate; the system of this application also contains no energy storage converters, which can use the energy storage units in adjacent converters to separate energy storage units to achieve Sharing, reducing the total cost of the system; through coordinated control, the energy storage unit is effectively used, and the voltage distributed on the DC bus is guaranteed to be stable.
  • distributed energy storage can make the DC bus voltage It is evenly distributed everywhere to avoid the occurrence of circulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Rectifiers (AREA)

Abstract

本申请提供储能单元分离式变流器及其应用系统、控制方法。所述储能单元分离式变流器,包括电力电子变换单元,至少一个分离式的储能单元及第一开关组,所述第一开关组串联在所述储能单元与所述电力电子变换单元的直流侧之间,可通过分开所述第一开关组中的正极开关与负极开关,使所述储能单元与所述电力电子变换单元分离。

Description

储能单元分离式变流器及其应用系统、控制方法 技术领域
本发明属于电力电子变流器技术领域,具体涉及储能单元分离式变流器及其应用系统、控制方法。
背景技术
近年来分布式发电技术的不断进步以及电力电子技术的日益成熟,分布式发电在电网中的应用范围越来越广泛,且逐渐成为大电网的有效补充,分布式电源、负荷以及储能装置构成直流微网。
一方面,由于大量的分布式电源并入电网运行,分布式电源本身的出力波动性较大,因此需要大容量的储能单元平抑潮流的波动,达到供需的平衡。而大容量的储能单元成本过高,占地过大,储能技术的瓶颈严重限制了分布式发电技术的发展。
另一方面,分布式电源并入直流电网需要经过电力电子变换单元,电力电子变换单元均带有一定容量的储能单元,用于在进行交直流变换过程中起到滤除谐波,稳定电压的作用,在现有技术中,这部分的储能单元是与电力电子变换单元集成在一起的,在分布式电源退出运行时,全部退出运行,未得到充分的利用,大量的分布式储能单元需要统一协调控制,使分布式储能单元中的分离式储能单元经济、可靠的接入直流电网。
如果集中式储能通过大容量变流器并网,储能单元内部或者变流器发生故障后,整套系统都无法正常运行,可靠性和灵活性较差;传统的分布式储能方式中,各个储能单元独立运行,无法实现储能单元的共享,系统整体利用率低。储能系统本身的成本很高和占地面积大,急需一种经济、灵活、可靠性高的储能系统。
发明内容
本申请一实施例提供了一种储能单元分离式变流器,包括电力电子变换单元,其特征在于,所述变流器还包括:至少一个分离式的储能单元及第一开关组,所述第一开关组串联在所述储能单元与所述电力电子变换单元的直流侧之间,可通过分开所述第一开关组中的正极开关与负极开关,使所述储能单元与所述电力电子变换单元分离。
作为一种可选择的方案,所述电力电子变换单元包括直-直变换器,一端与所述第一开关组连接,另一端与直流负荷或直流电源连接。
作为一种可选择的方案,所述电力电子变换单元包括交-直变换器或直交变换器,所述交-直变换器的直流端与所述第一开关组连接,所述交-直变换器的交流端与交流负荷 或交流电源连接;所述直-交变换器的直流端与所述第一开关组连接,所述直-交变换器的交流端作为交流输出端。
进一步地,所述变流器还包括并联连接的直流开关与限流电阻,串联在所述储能单元与直流电网之间。
进一步地,当所述储能单元分离式变流器包括所述直流开关时,所述直流开关包括反向串联连接的两个带反并联二极管的功率半导体开关器件。
作为一种可选择的方案,所述变流器还包括电流检测单元,检测流过所述储能单元与直流电网之间的电流。
作为一种可选择的方案,所述变流器还包括限流电感,串联在所述储能单元与直流电网之间。
进一步地,所述储能单元在结构上与所述电力电子变换单元便于分离。
作为一种可选择的方案,所述变流器还包括第二开关组,串联在所述储能单元与直流电网或储能母线之间。
进一步地,所述变流器还包括:分布式储能控制器,控制所述电力电子变换单元、所述第一开关组;当所述变流器包括所述第二开关组或/和所述直流开关时,所述分布式储能控制器还控制所述第二开关组或/和所述支流开关。
进一步地,所述分布式储能控制器包括通讯模块、控制模块,通讯模块接受外部指令;控制模块基于所述外部指令控制所述电力电子变换单元和所述第一开关组;当所述变流器包括所述第二开关组或/和所述直流开关时,所述控制模块还控制所述第二开关组或/和所述支流开关。
进一步地,所述分布式储能控制器与所述储能单元就近布置,在所述电力电子变换单元退出运行时对所述储能单元进行控制。
本申请实施例还提供一种分布式储能系统,其特征在于,所述分布式储能系统包括:一条储能母线和N个上述所述所述的储能单元分离式变流器(N≥2);所述储能单元分离式变流器并联连接在所述储能母线上;第二开关组,串联在所述储能单元与所述储能母线之间,可通过分开第二开关组中的正极开关与负极开关,使所述储能单元与所述储能母线分离。
作为一种可选择的方案,所述分布式储能系统还包括:N个上述所述的分布式储能控制器,一对一控制所述储能单元分离式变流器;总控制器,与N个所述分布式储能控制器通讯。
本申请实施例还提供一种分布式储能单元协调控制系统,其特征在于,所述协调控制系统包括:N个上述所述的储能单元分离式变流器(N≥2);M个上述所述的分布式储能控制器(M≥2);主控制器,与所述分布式储能控制器通讯;所述储能单元分离式变流器还包括:第二开关组,串联在所述储能单元与所述直流电网之间,可通过分开所述第二开关组中的正极开关与负极开关,使所述储能单元与所述直流电网分离。
进一步地,所述协调控制系统还包括:K个无储能变流器(K≥1),所述无储能变流器包括所述电力电子变换单元。
进一步地,所述分布式储能控制器的数量M≤(N+K)。
进一步地,所述分布式储能控制器与所述储能单元分离式变流器或所述无储能变流器之间可进行一对一通讯或一对多通讯。
进一步地,所述分布式储能控制器可以控制与其建立通讯的所述储能单元分离式变流器中的所述第一开关组与所述第二开关组的分合。
进一步地,所述协调控制系统还包括:主变流器,所述主变流器为交-直变换器,交流侧连接交流电源,直流侧连接直流电网。
进一步地,所述分布式储能控制器可以接收所述主控制器下发的有功和无功定值,控制所述电力电子变换单元。
本申请实施例还提供一种上述所述的一种储能单元分离式变流器的控制方法,其特征在于,所述控制方法包括如下步骤:在需要所述电力电子变换单元与所述储能单元分离时,停止所述电力电子变换单元,分开所述第一开关组。
进一步地,当所述储能单元分离式变流器包括控制单元、第二开关组或/和并联连接的直流开关与限流电阻,所述控制单元接收到储能单元投入指令时,所述控制方法还包括如下步骤:闭合所述第二开关组或/和所述直流开关,进入储能投入状态。
进一步地,当所述储能单元分离式变流器包括控制单元、第二开关组或/和并联连接的直流开关与限流电阻,所述控制单元接收并网指令时,所述控制方法包括如下步骤:闭合所述第一开关组;闭合所述第二开关组或/和所述直流开关;启动所述电力电子变换单元,进入并网状态。
进一步地,所述控制单元检测到所述电力电子变换单元故障,所述控制方法包括如下步骤:停止所述电力电子变换单元;分开所述第一开关组;判断故障是否清除;如故障未清除,分开所述第二开关组;如故障已清除,维持所述第一开关组的闭合状态,使所述储能单元仍然可以投入运行。
进一步地,当所述储能单元分离式变流器包括所述电流检测单元,且所述电流检测单元检测到电流超过限流定值时,所述控制方法包括如下步骤:分开所述直流开关,使所述限流电阻投入;分开所述第二开关组;分开所述第一开关组,进入离线状态。
进一步地,所述限流定值不超过直流开关的最大可分断电流值。
本申请实施例还提供一种上述所述的一种分布式储能系统的控制方法,其特征在于,当所述储能单元分离式变流器独立运行时,所述控制方法包括如下步骤:分开所有所述第二开关组;闭合所有所述第一开关组;启动所有所述电力电子变换单元。
进一步地,当所述储能单元分离式变流器包括并联连接的直流开关与限流电阻时,所述分开所有所述第二开关组之后,还包括如下步骤:分开所有所述直流开关。
本申请实施例还提供一种上述所述的一种分布式储能系统的控制方法,其特征在于,当所述储能单元分离式变流器包括并联连接的直流开关与限流电阻时,分布式变流器共享储能单元时,所述控制方法包括如下步骤:闭合所有所述第一开关组;分开所有所述直流开关;闭合所有所述第二开关组;等待各个所述储能单元分离式变流器的直流电压均衡后,闭合所有所述直流开关;启动所有所述电力电子变换单元。
进一步地,当分布式变流器共享储能单元,其中一个所述储能单元分离式变流器的电力电子单元发生故障时,所述控制方法还包括如下步骤:所述储能单元分离式变流器检测电流超过限流动作门槛后,分开所述直流开关;判断出发生故障的储能单元分离式变流器;分开所述发生故障的储能单元分离式变流器的第二开关组以及第一开关组;等待其他储能单元分离式变流器的直流电压均衡后,闭合所述其他储能单元分离式变流器中的直流开关;闭合所述发生故障的储能单元分离式变流器的第二开关组;等待所述发生故障的储能单元分离式变流器的直流电容电压正常后,闭合所述发生故障的储能单元分离式变流器的直流开关。
本申请实施例还提供一种如上所述的一种分布式储能单元协调控制系统的控制方法,其特征在于,所述控制方法包括如下步骤:所述分布式储能控制器接收来自所述主控制器的指令;所述指令是所述主控制器在控制所述主变流器启动后并检测到直流母线电压稳定后发来的;基于所述指令,控制所述第一开关组、所述第二开关组的闭合或分开以及所述电力电子变换单元的启动或停止。
进一步地,当所述指令为启动指令时,所述基于所述指令,控制所述第一开关组、所述第二开关组的闭合或分开以及所述电力电子变换单元的启动或停止,包括如下步骤:控制闭合所有所述第一开关组;控制闭合所有所述第二开关组;确认所有开关组位置正确后,启动所述电力电子变换单元;将启动成功命令反馈给所述主控制器。
进一步地,当所述指令为储能单元投入指令时,所述基于所述指令,控制所述第一开关组、所述第二开关组的闭合或分开以及所述电力电子变换单元的启动或停止,包括如下步骤:控制分开所有所述第一开关组;控制闭合所有所述第二开关组;确认所有开关组位置正确后,将投入成功命令反馈给所述主控制器。
进一步地,当所述电力电子变换单元发生临时故障时,所述控制方法还包括如下步骤:所述分布式储能控制器闭锁所述电力电子变换单元;等待故障消失后,重新所述启动电力电子变换单元。
进一步地,当所述电力电子变换单元发生永久故障时,所述控制方法包括如下步骤:所述分布式储能控制器闭锁电力电子变换单元;分开所述第一开关组。
本申请实施例提供的技术方案,在变流器停止工作时,可利用闲置变流器的储能单元,通过开关将储能单元与变流器分离,变流器与直流母线连接,可为直流母线提供储能容量,提高了设备利用率;储能单元易扩容,储能单元与变流器可分离,自身增加容量不影响变流器部分,便于扩容。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的一种储能单元分离式变流器拓扑示意图;
图2是本申请另一实施例提供的一种储能单元分离式变流器拓扑示意图;
图3是本申请一实施例提供的一种直-直变换器拓扑示意图;
图4是本申请一实施例提供的一种交-直变换器拓扑示意图;
图5是本申请一实施例提供的一种带有交-直变换器的储能单元分离式变流器组成示意图;
图6是本申请另一实施例提供的一种带有交-直变换器的储能单元分离式变流器组成示意图;
图7是本申请一实施例提供的一种带有直-直变换器的储能单元分离式变流器组成示意图;
图8是本申请另一实施例提供的一种带有直-直变换器的储能单元分离式变流器组成示意图;
图9是本申请一实施例提供的一种分布式储能系统拓扑示意图;
图10是本申请一实施例提供的一种储能单元分离式变流器应用拓扑示意图;
图11是本申请一实施例提供的一种直流开关示意图;
图12是本申请一实施例提供的一种储能单元分离式变流器运行于独立模式系统拓扑示意图;
图13是本申请一实施例提供的一种储能单元分离式变流器储能单元共享时系统拓扑示意图;
图14是本申请一实施例提供的储能单元分离式变流器1中的电力电子变换单元发生故障的示意图;
图15是本申请一实施例提供的一种分布式储能单元协调控制系统拓扑示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,以下将结合附图和实施例,对本申请技术方案的具体实施方式进行更加详细、清楚的说明。然而,以下描述的具体实施方式和实施例仅是说明的目的,而不是对本申请的限制。其只是包括了本申请一部 分实施例,而不是全部的实施例,本领域技术人员对于本申请的各种变化获得的其他实施例,都属于本申请保护的范围。
图1是本申请一实施例提供的一种储能单元分离式变流器拓扑示意图。如图1所示,本实施例的储能单元分离式变流器,包括一个电力电子变换单元、一个分离式的储能单元及第一开关组,第一开关组串联在储能单元与电力电子变换的直流侧之间,可通过分开第一开关组中的正极开关与负极开关,使储能单元与电力电子变换单元分离。
电力电子变换单元包括但不限于直-直变换器或交直变换器。如图3所示,图3是本申请一实施例提供的一种直-直变换器拓扑示意图。如图4所示,图4是本申请一实施例提供的一种交-直变换器拓扑示意图。
在一实施例中,电力电子变换单元为交-直变换器,交-直变换器的直流输出端连接第一开关组,另一端连接三相交流负荷,如图5所示,图5是本申请一实施例提供的一种带有交-直变换器的储能单元分离式变流器组成示意图。
在另一实施例中,电力电子变换单元为交-直变换器,交-直变换器的直流输出端连接第一开关组,另一端连接三相交流电源,如图6所示,图6是本申请另一实施例提供的一种带有交-直变换器的储能单元分离式变流器组成示意图。
在又一实施例中,电力电子变换单元为直-直变换器,直-直变换器的直流输出端连接第一开关组,另一端连接直流负荷,如图7所示,图7是本申请一实施例提供的一种带有直-直变换器的储能单元分离式变流器组成示意图。
在再一实施例中,电力电子变换单元为直-直变换器,直-直变换器的直流输出端连接第一开关组,另一端也可连接直流电源,如图8所示,图8是本申请另一实施例提供的一种带有直-直变换器的储能单元分离式变流器组成示意图。
分离式变流器中的分离式储能单元在结构上与电力电子变换单元设计成便于分离的形式。
图2是本申请另一实施例提供的一种储能单元分离式变流器拓扑示意图。如图2所示,本实施例的储能单元分离式变流器,包括一个电力电子变换单元、一个分离式的储能单元及第一开关组,第一开关组串联在储能单元与电力电子变换的直流侧之间,可通过分开第一开关组中的正极开关与负极开关,使储能单元与电力电子变换单元分离。
作为一种可选择的方案,储能单元分离式变流器还可以包括第二开关组,第二开关组串联在储能单元与直流电网之间。
作为一种可选择的方案,储能单元分离式变流器还可以包括并联连接的直流开关与限流电阻,并联连接串联在直流电网与储能单元之间。在本实施中直流开关选用但不限于IGBT。
储能单元与直流电网之间增加了限流装置,可避免直流短路或电容充放电时,瞬时电流过大,损坏设备。
作为一种可选择的方案,储能单元分离式变流器还可以包括一个电流检测单元,可 检测流过直流电网与储能单元之间的电流。
作为一种可选择的方案,储能单元分离式变流器还可以包括一个限流电感,串联在直流电网与储能单元之间。
其中,储能单元分离式变流器还包括控制单元,控制单元可控制电力电子变换单元、第一开关组、第二开关组以及直流开关。控制单元与分离式储能单元就近布置,在电力电子变换单元退出运行时可对储能单元进行控制。
其中,储能单元分离式变流器中的控制单元还包括通讯模块、控制模块,通讯模块可接受外部指令。控制模块基于外部指令控制电力电子变换单元和第一开关组。当变流器包括第二开关组或/和直流开关时,控制模块还控制第二开关组或/和直流开关。
本申请实施例还提供一种储能单元分离式变流器的控制方法,其特征在于,控制方法包括如下步骤:在需要电力电子变换单元与储能单元分离时,停止电力电子变换单元,分开第一开关组。
当储能单元分离式变流器包括控制单元、第二开关组或/和并联连接的直流开关与限流电阻,变流器处于离线状态时,第一开关组、第二开关组与直流开关处于分开的状态,控制单元接收到储能单元投入指令时,控制方法还包括如下步骤:闭合第二开关组或/和直流开关,进入储能投入状态。
当储能单元分离式变流器包括控制单元、第二开关组或/和并联连接的直流开关与限流电阻,变流器处于离线状态时,第一开关组、第二开关组与直流开关处于分开的状态,控制单元接收并网指令时,控制方法包括如下步骤:闭合第一开关组;闭合第二开关组或/和直流开关;启动电力电子变换单元,进入并网状态。
当装置运行于并网状态时,控制单元检测到电力电子变换单元故障时,控制方法包括如下步骤:停止电力电子变换单元;分开第一开关组;判断故障是否清除;如故障未清除,分开第二开关组;如故障已清除,维持第一开关组的闭合状态,使储能单元仍然可以投入运行。
当变流器处于储能投入状态或并网状态时,当储能单元分离式变流器包括电流检测单元,且电流检测单元检测到电流超过限流定值时,控制方法包括如下步骤:分开直流开关,使限流电阻投入;分开第二开关组;分开第一开关组,进入离线状态。其中,限流定值不超过直流开关的最大可分断电流值。在本实施例中直流开关IGBT最大可分断电流为3000A,限流定值设计为2500A,留有一定裕量。
图9是本申请一实施例提供的一种分布式储能系统拓扑示意图。
如图9所示,分布式储能系统包括一条储能母线和N个储能单元分离式变流器(N≥2)、第二开关组。储能单元分离式变流器包括一个电力电子变换单元和至少一个储能单元、第一开关组,第一开关组串联在储能单元与电力电子变换单元的直流侧之间,可通过分开第一开关组中的正极开关与负极开关,使储能单元与电力电子变换单元分离;第二开关组串联在储能单元与储能母线之间,可通过分开第二开关组中的正极开关 与负极开关,使储能单元与储能母线分离,如图10所示,图10是本申请一实施例提供的一种储能单元分离式变流器应用拓扑示意图。
其中,电力电子变换单元为直-直变换器时,直-直变换器的一端与分离式储能单元连接,另一端作为直流输出端。电力电子变换单元为直-交变换器时,直-交变换器的直流端与分离式储能单连接,另一端作为交流输出端。
本实施例提供的技术方案,通过构建储能母线以及储能单元的可分离设计,实现了各个分布式变流器中储能单元的共享,当单个储能单元容量不足时,可以控制储能容量过剩的储能单元对其进行支援,极大的提高了系统储能容量的利用率。
其中,变流器还包括并联连接的直流开关与限流电阻,并联连接后串联在第二开关组与储能母线之间。
限流电阻与旁路开关并联构成限流单元,可以有效的限制分布式储能单元之间相互支援过程中的充放电电流,并在系统内部发生短路故障时,限制短路电流,提高系统可靠性。
其中,分布式储能系统还包括N个分布式储能控制器(N≥2)、1个主控制器,分布式储能控制器一对一控制储能单元分离式变流器。主控制器与N个分布式储能控制器通讯。
图11是本申请一实施例提供的一种直流开关示意图,其中,直流开关包括但不限于两个带反并联二极管的功率半导体开关器件反向串联连接。
本申请一实施例还提供一种分布式储能系统的控制方法,图12是本申请一实施例提供的一种储能单元分离式变流器运行于独立模式系统拓扑示意图。
如图12所示,当储能单元分离式变流器独立运行时,所述控制方法包括如下步骤:分开所有储能单元分离式变流器的第二开关组;闭合所有第一开关组;启动所有电力电子变换单元。
当储能单元分离式变流器包括并联连接的直流开关与限流电阻时,步骤分开所有第二开关组之后,还包括如下步骤:分开所有所述直流开关。最终状态如图12所示。
图13是本申请一实施例提供的一种储能单元分离式变流器储能单元共享时系统拓扑示意图。
如图13所示,当储能单元分离式变流器包括并联连接的直流开关与限流电阻时,分布式变流器共享储能单元时,控制方法包括如下步骤:闭合所有储能单元分离式变流器的第一开关组;分开所有直流开关;闭合所有第二开关组;等待各个储能单元分离式变流器的直流电压均衡后,闭合所有直流开关;启动所有电力电子变换单元。最终状态如图13所示。
通过协调控制,使系统既可运行于集中共享储能模式,也可以运行于独立储能模式,灵活性好,性价比高。
图14是本申请一实施例提供的储能单元分离式变流器1中的电力电子变换单元发生故障的示意图。
如图14所示,当分布式变流器共享储能单元时,其中一个储能单元分离式变流器的电力电子单元发生故障时,所述控制方法还包括如下步骤:储能单元分离式变流器检测电流超过限流动作门槛后,分开直流开关;判断出发生故障的储能单元分离式变流器;分开发生故障的储能单元分离式变流器的第二开关组以及第一开关组;等待其他储能单元分离式变流器的直流电压均衡后,闭合其他储能单元分离式变流器中的直流开关;闭合发生故障的储能单元分离式变流器的第二开关组;等待发生故障的储能单元分离式变流器的直流电容电压正常后,闭合发生故障的储能单元分离式变流器的直流开关。最终状态如图14所示。
图15是本申请一实施例提供的一种分布式储能单元协调控制系统拓扑示意图。
如图15所示,协调控制系统包含N个储能单元分离式变流器(N≥2)、M个分布式储能控制器(M≥2)、1个主控制器,所述储能单元分离式变流器还包括:第二开关组。
在本实施例中N=3,M=4,1个主控制器可以与4个分布式储能控制器通讯。其中储能单元分离式变流器包含一个电力电子变换器、储能单元、第一开关组1、第二开关组2。第一开关组串联在储能单元与电力电子变换的直流侧之间,可通过分开第一开关组中的正极开关与负极开关,使储能单元与电力电子变换器分离。第二开关组串联在储能单元与直流电网之间;
储能单元分离式变流器中的电力电子变换单元可以为直-直变换器,直-直变换器的一端与第一开关组连接,另一端与直流负荷或直流电源连接。储能单元分离式变流器中的电力电子变换单元可以为交-直变换器,交-直变换器的直流端与第一开关组连接,交流端与交流负荷或交流电源连接。
其中,所述协调控制系统还包含K个无储能变流器(K≥1),无储能变流器包含电力电子变换单元,本实施例中K=2。
无储能变流器中的电力电子变换单元可以为直-直变换器,直-直变换器的一端与直流电网连接,另一端与直流负荷或直流电源连接。无储能变流器中的电力电子变换单元可以为交-直变换器,交-直变换器的直流端与直流电网连接,交流端与交流负荷或交流电源连接。
其中,所述分布式储能控制器的数量M≤(N+K),本实施例中4<(2+3)。
分布式储能控制器与分离式变流器或无储能变流器之间可进行一对一通讯,如图9所示,储能控制器1,储能控制器2和储能控制M-1与3个储能单元分离式变流器一对一通讯。
分布式储能控制器与分离式变流器或无储能变流器之间也可进行一对多通讯。如图9所示,储能控制器M与两个无储能变流器之间实现1对2的通讯。
其中,本实施例分布式储能控制器可以控制与其建立通讯的分离式储能单元中的第 一开关组与第二开关组的分合。
其中,本实施例控制系统还包括1个主变流器,主变流器为交-直变换器,交流侧连接交流电源,直流侧连接直流电网。
其中,本实施例分布式储能控制器可以接受主控制器下发的有功和无功定值,控制电力电子变换单元响应指令。
本申请实施例还提供上述所述的一种分布式储能单元协调控制系统的控制方法,包括如下步骤。
当储能单元分离式变流器与主变流器处于离线状态时,第一开关组、第二开关组处于分开的状态,分布式储能控制器接收来自主控制器的指令;指令是主控制器在控制主变流器启动后并检测到直流母线电压稳定后发来的。基于指令,分布式储能控制器控制第一开关组、第二开关组的闭合或分开以及电力电子变换单元的启动或停止。
其中,当储能单元分离式变流器与主变流器处于离线状态时,第一开关组、第二开关组处于分开的状态,主控制器接收到并网指令或储能单元投入指令后控制主变流器启动。然后向分布式储能控制器发送指令。
当指令为启动指令时,基于指令,分布式储能控制器控制第一开关组、第二开关组的闭合或分开以及电力电子变换单元的启动或停止,包括如下步骤:分布式储能控制器控制闭合所有第一开关组;控制闭合所有第二开关组;确认所有开关组位置正确后,启动电力电子变换单元;将启动成功命令反馈给主控制器。
当指令为储能单元投入指令时,基于指令,分布式储能控制器控制第一开关组、第二开关组的闭合或分开以及电力电子变换单元的启动或停止,包括如下步骤:分布式储能控制器控制分开所有第一开关组;控制闭合所有第二开关组;确认所有开关组位置正确后,将投入成功命令反馈给主控制器。
其中储能单元投入时,可以选择全部投入,也可以选择部分投入,可根据实际情况,由主控制器进行统一协调调度。
当储能单元分离式变流器处于在线状态时,第一开关组、第二开关组处于合闸的状态,电力电子变换单元发生临时故障时,控制方法还包括如下步骤:分布式储能控制器闭锁电力电子变换单元;等待故障消失后,重新启动电力电子变换单元。
当储能单元分离式变流器处于在线状态时,第一开关组、第二开关组处于合闸的状态,所述电力电子变换单元发生永久故障时,控制方法包括如下步骤:分布式储能控制器闭锁电力电子变换单元;分开第一开关组。
本实施例中,变流器停止工作时,可利用闲置变流器的储能单元,通过开关将储能单元与变流器分离,变流器与直流母线连接,可为直流母线提供储能容量,提高了设备利用率;本申请系统中还包含无储能变流器,无储能变流器可以利用临近的储能单元分离式变流器中的储能单元,实现了设备之间的共享,减少系统的总成本;通过协调控制,使储能单元得到有效利用的同时,保证分布在直流母线的电压稳定,分布式储能与集中 式储能相比,可使直流母线电压在各处均匀分布,避免产生环流;将全部设备接入控制系统,可搜集整个网络的设备状态,以此作为判据,来进行实时控制,一旦检测到有单元故障,可及时调整协调控制策略,提高系统运行可靠性。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本申请而非限制本申请的范围,本领域的普通技术人员应当理解,在不脱离本申请的精神和范围的前提下对本申请进行的修改或者等同替换,均应涵盖在本申请的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (36)

  1. 一种储能单元分离式变流器,包括电力电子变换单元,其特征在于,所述变流器还包括:
    至少一个分离式的储能单元及第一开关组,所述第一开关组串联在所述储能单元与所述电力电子变换单元的直流侧之间,可通过分开所述第一开关组中的正极开关与负极开关,使所述储能单元与所述电力电子变换单元分离。
  2. 如权利要求1所述的储能单元分离式变流器,其特征在于,所述电力电子变换单元包括:
    直-直变换器,一端与所述第一开关组连接,另一端与直流负荷或直流电源连接。
  3. 如权利要求1所述的储能单元分离式变流器,其特征在于,所述电力电子变换单元包括:
    交-直变换器或直交变换器,所述交-直变换器的直流端与所述第一开关组连接,所述交-直变换器的交流端与交流负荷或交流电源连接;所述直-交变换器的直流端与所述第一开关组连接,所述直-交变换器的交流端作为交流输出端。
  4. 如权利要求1所述的储能单元分离式变流器,其特征在于,所述变流器还包括:
    并联连接的直流开关与限流电阻,串联在所述储能单元与直流电网之间。
  5. 如权利要求4所述的储能单元分离式变流器,其特征在于,当所述储能单元分离式变流器包括所述直流开关时,所述直流开关包括反向串联连接的两个带反并联二极管的功率半导体开关器件。
  6. 如权利要求1所述的储能单元分离式变流器,其特征在于,所述变流器还包括:
    电流检测单元,检测流过所述储能单元与直流电网之间的电流。
  7. 如权利要求1所述的储能单元分离式变流器,其特征在于,所述变流器还包括:
    限流电感,串联在所述储能单元与直流电网之间。
  8. 如权利要求1所述的储能单元分离式变流器,其特征在于,所述储能单元在结 构上与所述电力电子变换单元便于分离。
  9. 如权利要求1所述的储能单元分离式变流器,其特征在于,所述变流器还包括:
    第二开关组,串联在所述储能单元与直流电网或储能母线之间。
  10. 如权利要求1至8任一项所述的储能单元分离式变流器,其特征在于,所述变流器还包括:
    分布式储能控制器,控制所述电力电子变换单元、所述第一开关组;
    当所述变流器包括所述第二开关组或/和所述直流开关时,所述分布式储能控制器还控制所述第二开关组或/和所述支流开关。
  11. 如权利要求9所述的储能单元分离式变流器,其特征在于,所述分布式储能控制器包括:
    通讯模块,接受外部指令;
    控制模块,基于所述外部指令控制所述电力电子变换单元和所述第一开关组;
    当所述变流器包括所述第二开关组或/和所述直流开关时,所述控制模块还控制所述第二开关组或/和所述支流开关。
  12. 如权利要求9所述的储能单元分离式变流器,其特征在于,所述分布式储能控制器与所述储能单元就近布置,在所述电力电子变换单元退出运行时对所述储能单元进行控制。
  13. 一种分布式储能系统,其特征在于,所述分布式储能系统包括:
    一条储能母线和N个如权利要求1至8任一项所述的储能单元分离式变流器(N≥2);所述储能单元分离式变流器并联连接在所述储能母线上;
    第二开关组,串联在所述储能单元与所述储能母线之间,可通过分开第二开关组中的正极开关与负极开关,使所述储能单元与所述储能母线分离。
  14. 如权利要求13所述的分布式储能系统,其特征在于,所述分布式储能系统还包括:
    N个如权利要求9至11任一项所述的分布式储能控制器,一对一控制所述储能单 元分离式变流器;
    总控制器,与N个所述分布式储能控制器通讯。
  15. 一种分布式储能单元协调控制系统,其特征在于,所述协调控制系统包括:
    N个如权利要求1至8任一项所述的储能单元分离式变流器(N≥2);
    M个如权利要求10至12任一项所述的分布式储能控制器(M≥2);
    主控制器,与所述分布式储能控制器通讯;
    所述储能单元分离式变流器还包括:第二开关组,串联在所述储能单元与所述直流电网之间,可通过分开所述第二开关组中的正极开关与负极开关,使所述储能单元与所述直流电网分离。
  16. 如权利要求15所述的分布式储能单元协调控制系统,其特征在于,所述协调控制系统还包括:
    K个无储能变流器(K≥1),所述无储能变流器包括所述电力电子变换单元。
  17. 如权利要求15或16所述的分布式储能单元协调控制系统,其特征在于,所述分布式储能控制器的数量M≤(N+K)。
  18. 如权利要求15或16所述的分布式储能单元协调控制系统,其特征在于,所述分布式储能控制器与所述储能单元分离式变流器或所述无储能变流器之间可进行一对一通讯或一对多通讯。
  19. 如权利要求15所述的分布式储能单元协调控制系统,所述分布式储能控制器可以控制与其建立通讯的所述储能单元分离式变流器中的所述第一开关组与所述第二开关组的分合。
  20. 如权利要求15所述的分布式储能单元协调控制系统,所述协调控制系统还包括:
    主变流器,所述主变流器为交-直变换器,交流侧连接交流电源,直流侧连接直流电网。
  21. 如权利要求15所述的分布式储能单元协调控制系统,所述分布式储能控制器可以接收所述主控制器下发的有功和无功定值,控制所述电力电子变换单元。
  22. 如权利要求1至12中任一项所述的一种储能单元分离式变流器的控制方法,其特征在于,所述控制方法包括如下步骤:
    在需要所述电力电子变换单元与所述储能单元分离时,停止所述电力电子变换单元,分开所述第一开关组。
  23. 如权利要求22所述的一种储能单元分离式变流器的控制方法,其特征在于,当所述储能单元分离式变流器包括控制单元、第二开关组或/和并联连接的直流开关与限流电阻,所述控制单元接收到储能单元投入指令时,所述控制方法还包括如下步骤:
    闭合所述第二开关组或/和所述直流开关,进入储能投入状态。
  24. 如权利要求22所述的一种储能单元分离式变流器的控制方法,其特征在于,当所述储能单元分离式变流器包括控制单元、第二开关组或/和并联连接的直流开关与限流电阻,所述控制单元接收并网指令时,所述控制方法包括如下步骤:
    闭合所述第一开关组;
    闭合所述第二开关组或/和所述直流开关;
    启动所述电力电子变换单元,进入并网状态。
  25. 如权利要求24所述的一种储能单元分离式变流器的控制方法,其特征在于,所述控制单元检测到所述电力电子变换单元故障,所述控制方法包括如下步骤:
    停止所述电力电子变换单元;
    分开所述第一开关组;
    判断故障是否清除;
    如故障未清除,分开所述第二开关组;
    如故障已清除,维持所述第一开关组的闭合状态,使所述储能单元仍然可以投入运行。
  26. 如权利要求23或24所述的一种储能单元分离式变流器的控制方法,其特征在于,当所述储能单元分离式变流器包括所述电流检测单元,且所述电流检测单元检测到 电流超过限流定值时,所述控制方法包括如下步骤:
    分开所述直流开关,使所述限流电阻投入;
    分开所述第二开关组;
    分开所述第一开关组,进入离线状态。
  27. 如权利要求26所述的一种储能单元分离式变流器的控制方法,其特征在于,所述限流定值不超过直流开关的最大可分断电流值。
  28. 如权利要求13至14任一项所述的一种分布式储能系统的控制方法,其特征在于,当所述储能单元分离式变流器独立运行时,所述控制方法包括如下步骤:
    分开所有所述第二开关组;
    闭合所有所述第一开关组;
    启动所有所述电力电子变换单元。
  29. 如权利要求28所述的一种分布式储能系统的控制方法,其特征在于,当所述储能单元分离式变流器包括并联连接的直流开关与限流电阻时,所述分开所有所述第二开关组之后,还包括如下步骤:
    分开所有所述直流开关。
  30. 如权利要求13至14任一项所述的一种分布式储能系统的控制方法,其特征在于,当所述储能单元分离式变流器包括并联连接的直流开关与限流电阻时,分布式变流器共享储能单元时,所述控制方法包括如下步骤:
    闭合所有所述第一开关组;
    分开所有所述直流开关;
    闭合所有所述第二开关组;
    等待各个所述储能单元分离式变流器的直流电压均衡后,闭合所有所述直流开关;
    启动所有所述电力电子变换单元。
  31. 如权利要求30所述的一种分布式储能系统的控制方法,其特征在于,当其中一个所述储能单元分离式变流器的电力电子单元发生故障时,所述控制方法还包括如下 步骤:
    所述储能单元分离式变流器检测电流超过限流动作门槛后,分开所述直流开关;
    判断出发生故障的储能单元分离式变流器;
    分开所述发生故障的储能单元分离式变流器的第二开关组以及第一开关组;
    等待其他储能单元分离式变流器的直流电压均衡后,闭合所述其他储能单元分离式变流器中的直流开关;
    闭合所述发生故障的储能单元分离式变流器的第二开关组;
    等待所述发生故障的储能单元分离式变流器的直流电容电压正常后,闭合所述发生故障的储能单元分离式变流器的直流开关。
  32. 如权利要求15至21任一项所述的一种分布式储能单元协调控制系统的控制方法,其特征在于,所述控制方法包括如下步骤:
    所述分布式储能控制器接收来自所述主控制器的指令;所述指令是所述主控制器在控制所述主变流器启动后并检测到直流母线电压稳定后发来的;
    基于所述指令,控制所述第一开关组、所述第二开关组的闭合或分开以及所述电力电子变换单元的启动或停止。
  33. 如权利要求32所述的一种分布式储能单元协调控制系统的控制方法,其特征在于,当所述指令为启动指令时,所述基于所述指令,控制所述第一开关组、所述第二开关组的闭合或分开以及所述电力电子变换单元的启动或停止,包括如下步骤:
    控制闭合所有所述第一开关组;
    控制闭合所有所述第二开关组;
    确认所有开关组位置正确后,启动所述电力电子变换单元;
    将启动成功命令反馈给所述主控制器。
  34. 如权利要求32所述的一种分布式储能单元协调控制方法,其特征在于,当所述指令为储能单元投入指令时,所述基于所述指令,控制所述第一开关组、所述第二开关组的闭合或分开以及所述电力电子变换单元的启动或停止,包括如下步骤:
    控制分开所有所述第一开关组;
    控制闭合所有所述第二开关组;
    确认所有开关组位置正确后,将投入成功命令反馈给所述主控制器。
  35. 如权利要求33或34所述的一种分布式储能单元协调控制方法,其特征在于,当所述电力电子变换单元发生临时故障时,所述控制方法还包括如下步骤:
    所述分布式储能控制器闭锁所述电力电子变换单元;
    等待故障消失后,重新所述启动电力电子变换单元。
  36. 如权利要求33或34所述的一种分布式储能单元协调控制方法,其特征在于,当所述电力电子变换单元发生永久故障时,所述控制方法包括如下步骤:
    所述分布式储能控制器闭锁电力电子变换单元;
    分开所述第一开关组。
PCT/CN2019/078817 2018-06-13 2019-03-20 储能单元分离式变流器及其应用系统、控制方法 WO2019237785A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020569888A JP2021526786A (ja) 2018-06-13 2019-03-20 エネルギー貯蔵ユニット分離式変流器およびその応用システム、制御方法
EP19819033.2A EP3799244A4 (en) 2018-06-13 2019-03-20 ENERGY STORAGE UNIT AND APPLICATION SYSTEM FOR IT AND CONTROL PROCEDURE FOR IT

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810606795.9 2018-06-13
CN201810606509.9 2018-06-13
CN201810606793.X 2018-06-13
CN201810606795.9A CN108767841B (zh) 2018-06-13 2018-06-13 一种储能单元分离式变流器及控制方法
CN201810606793.XA CN108767882B (zh) 2018-06-13 2018-06-13 一种分布式储能系统及控制方法
CN201810606509.9A CN108711875B (zh) 2018-06-13 2018-06-13 一种分布式储能单元协调控制系统及控制方法

Publications (1)

Publication Number Publication Date
WO2019237785A1 true WO2019237785A1 (zh) 2019-12-19

Family

ID=68842754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078817 WO2019237785A1 (zh) 2018-06-13 2019-03-20 储能单元分离式变流器及其应用系统、控制方法

Country Status (3)

Country Link
EP (1) EP3799244A4 (zh)
JP (1) JP2021526786A (zh)
WO (1) WO2019237785A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111934308A (zh) * 2020-07-30 2020-11-13 广东电网有限责任公司 直流楼宇微电网及其控制方法
WO2022101421A1 (de) * 2020-11-12 2022-05-19 Sma Solar Technology Ag Galvanisch getrennte vorladung und isolationsüberwachug eines stromrichters zum koppeln eines geerdeten ac netzes mit einem ungeerdeten dc netz

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039774A (ja) * 2010-08-09 2012-02-23 Toshiba Corp 蓄電装置の制御方法
CN103872784A (zh) * 2012-12-07 2014-06-18 北汽福田汽车股份有限公司 储能电源柜及具有其的并网供电系统及离网供电系统
CN107910930A (zh) * 2017-12-15 2018-04-13 深圳新恒业电气有限公司 一种单组和多组高效的储能变换装置
CN108711875A (zh) * 2018-06-13 2018-10-26 南京南瑞继保电气有限公司 一种分布式储能单元协调控制系统及控制方法
CN108767841A (zh) * 2018-06-13 2018-11-06 南京南瑞继保电气有限公司 一种储能单元分离式变流器及控制方法
CN108767882A (zh) * 2018-06-13 2018-11-06 南京南瑞继保电气有限公司 一种分布式储能系统及控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122873A (ja) * 1991-10-24 1993-05-18 Toshiba Corp 無停電電源装置
IT1399313B1 (it) * 2010-04-07 2013-04-16 Ferrari Spa Impianto elettrico di un veicolo stradale con propulsione elettrica e relativo metodo di controllo
US8593015B2 (en) * 2010-10-28 2013-11-26 A123 Systems Llc Battery balancing system
CN103561999B (zh) * 2011-05-27 2016-07-06 丰田自动车株式会社 车辆
JP2014038023A (ja) * 2012-08-14 2014-02-27 Hitachi Vehicle Energy Ltd 地絡検出回路、電源装置
JP6044460B2 (ja) * 2013-06-10 2016-12-14 トヨタ自動車株式会社 車両の電源装置
JP2015012725A (ja) * 2013-06-28 2015-01-19 ソニー株式会社 蓄電システム、蓄電モジュールおよび制御方法
JP2015216825A (ja) * 2014-04-22 2015-12-03 田中 正一 平滑回路を有するパワースイッチング装置
JP6699320B2 (ja) * 2016-04-21 2020-05-27 住友電気工業株式会社 パワーコンディショナ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039774A (ja) * 2010-08-09 2012-02-23 Toshiba Corp 蓄電装置の制御方法
CN103872784A (zh) * 2012-12-07 2014-06-18 北汽福田汽车股份有限公司 储能电源柜及具有其的并网供电系统及离网供电系统
CN107910930A (zh) * 2017-12-15 2018-04-13 深圳新恒业电气有限公司 一种单组和多组高效的储能变换装置
CN108711875A (zh) * 2018-06-13 2018-10-26 南京南瑞继保电气有限公司 一种分布式储能单元协调控制系统及控制方法
CN108767841A (zh) * 2018-06-13 2018-11-06 南京南瑞继保电气有限公司 一种储能单元分离式变流器及控制方法
CN108767882A (zh) * 2018-06-13 2018-11-06 南京南瑞继保电气有限公司 一种分布式储能系统及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3799244A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111934308A (zh) * 2020-07-30 2020-11-13 广东电网有限责任公司 直流楼宇微电网及其控制方法
WO2022101421A1 (de) * 2020-11-12 2022-05-19 Sma Solar Technology Ag Galvanisch getrennte vorladung und isolationsüberwachug eines stromrichters zum koppeln eines geerdeten ac netzes mit einem ungeerdeten dc netz

Also Published As

Publication number Publication date
EP3799244A4 (en) 2021-08-18
EP3799244A1 (en) 2021-03-31
JP2021526786A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
US10637283B2 (en) Power supply system and method
EP3651305A1 (en) Chained multi-port grid-connected interface apparatus and control method
CN107394829B (zh) 一种基于无互联通信的直流供电系统协调控制系统及方法
US20140361624A1 (en) Apparatus and methods for control of load power quality in uninterruptible power systems
CN108155657B (zh) 储能变流器及其主电路拓扑结构以及均衡控制方法
CN103828186A (zh) 用于在线ups系统的单一电池电力拓扑
CN205724930U (zh) 一种混合逆变器系统
CN202798128U (zh) 一种具有自启动功能的独立光伏供电系统
JP2020518213A (ja) エネルギーを統合し供給する装置および方法
EP2904678B1 (en) High-efficiency electric conversion and continuity management system for uninterruptible power supplies (ups) and derived apparatuses
CN107612408B (zh) 一种储能变流器和储能系统
US9257859B2 (en) Dynamic battery control based on demand
WO2013003189A2 (en) Uninterruptible power supply
WO2019237785A1 (zh) 储能单元分离式变流器及其应用系统、控制方法
CN108711875B (zh) 一种分布式储能单元协调控制系统及控制方法
CN114499144A (zh) 用于逆变器的辅助供电装置、逆变器及其启动方法
CN108767882B (zh) 一种分布式储能系统及控制方法
CN108767841B (zh) 一种储能单元分离式变流器及控制方法
CN105990849A (zh) 一种光伏并网逆变器的模式切换的控制方法及控制装置
CN110932333A (zh) 一种配电系统
CN218335341U (zh) 一种电力储能系统及其子系统
CN117913879A (zh) 一种模块化多电平换流器子模块设备及其使用方法
CN115800247A (zh) 一种配电网合环控制装置的合环控制方法、介质及设备
US20120299382A1 (en) Control method of an uninterruptible power supply for extending a discharge time under a no-load condition
CN112701730A (zh) 并离网系统及其控制方法以及新能源并离网系统和多并联并离网系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569888

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019819033

Country of ref document: EP

Effective date: 20201221