WO2019237521A1 - 一种基于onu粒度的接入网olt切片的方法及系统 - Google Patents

一种基于onu粒度的接入网olt切片的方法及系统 Download PDF

Info

Publication number
WO2019237521A1
WO2019237521A1 PCT/CN2018/104254 CN2018104254W WO2019237521A1 WO 2019237521 A1 WO2019237521 A1 WO 2019237521A1 CN 2018104254 W CN2018104254 W CN 2018104254W WO 2019237521 A1 WO2019237521 A1 WO 2019237521A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
line card
virtual forwarding
chip
uplink
Prior art date
Application number
PCT/CN2018/104254
Other languages
English (en)
French (fr)
Inventor
吴浩
周箴
Original Assignee
烽火通信科技股份有限公司
武汉烽火技术服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司, 武汉烽火技术服务有限公司 filed Critical 烽火通信科技股份有限公司
Publication of WO2019237521A1 publication Critical patent/WO2019237521A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects

Definitions

  • the present invention relates to the technical field of communication equipment, and in particular to a method and system for OLT slicing of an access network based on ONU granularity.
  • PON access network Passive Optical Network
  • Passive Optical Network is a new low-cost, high-capacity new optical fiber access network technology. It uses a point-to-multipoint structure and passive optical fiber transmission. It can support multiple services such as data, voice, and video at the same time. It has low cost, high bandwidth, high scalability, strong compatibility, convenient management, and flexible service carrying methods. advantage.
  • a typical PON access system consists of an optical line terminal (OLT), an optical network unit (ONU), and an optical distribution network (ODN).
  • OLT Optical Line Terminal
  • ONU Optical Network Unit
  • ODN Optical Distributed Network
  • OLT is mainly connected to the OLT and ONU by one or several optical splitters. Its function is to distribute downlink data and centralize uplink data.
  • ODN uses passive components and can be placed in an all-weather environment.
  • the OLT is a convergence node of the PON access system.
  • User-side data is aggregated to the line card PON chip of the OLT through the ONU and ODN. Multiple line cards are then exchanged through the main control panel. The chips are converged to the uplink port.
  • the concept of access network slice can be introduced, and the physical OLT is divided into multiple logical slices.
  • the service forwarding and configuration management between the slices are independent of each other.
  • the OLT is a network device with a multi-level switching architecture including a main control panel and a line card
  • the current mainstream slicing scheme is to divide multiple forwarding domains on the main control switching chip to achieve slot-based slicing capabilities.
  • the slot-based OLT slicing function can solve the problem of coarse-grained access network partitioning, but it cannot meet the needs of fine-grained slicing. For example, different ONUs in the same ODN cannot be divided into multiple logical domains for independent forwarding and management, and this type of demand is a typical scenario for operators to isolate different services or subcontract services.
  • the purpose of the present invention is to provide an ONU granularity-based method and system for OLT slicing in an access network, which implements ONU granularity slicing, and meets the operator's need for flexible slicing of access devices .
  • the technical solution adopted by the present invention is: a method for OLT slice of an access network based on ONU granularity, including the following steps:
  • the line card PON chip When the line card PON chip receives the upstream packet, it marks the outer layer of the upstream packet with a T-TAG that carries ONU information and forwards it to the line card switching chip.
  • the line card switching chip strips the T- TAG, according to the configuration, a plurality of first virtual forwarding domains are created, and an operation tag O-TAG carrying OLT slice information is added to the outer layer of the uplink packet, and the uplink packet is forwarded to the main control disk switching chip through the first virtual forwarding domain. ;
  • the main control disk exchange chip strips the outer layer of O-TAG of the uplink message, creates a plurality of second virtual forwarding domains according to the configuration, and forwards the uplink messages to the upstream device through the second virtual forwarding domain;
  • the master control disk exchange chip When the master control disk exchange chip receives the downlink message, it maps the downlink message to the second virtual forwarding domain corresponding to the slogan on the main control disk, and marks the O-TAG corresponding to the second virtual forwarding domain on the outer layer of the downlink message. And forward downstream packets to the line card switching chip;
  • the line card switching chip maps the downlink message to the corresponding first virtual forwarding domain according to the O-TAG, strips the O-TAG of the outer layer of the downlink message, and then marks T on the outer layer of the downlink message with the first virtual forwarding domain. -TAG, and forward the downstream message to the line card PON chip.
  • the line card PON chip strips the outer T-TAG of the downstream message, and forwards the downstream message to the ONU corresponding to the T-TAG.
  • the line card PON chip when the line card PON chip receives the uplink packet, it marks the outer layer of the uplink packet with a T-TAG carrying ONU information and forwards it to the line card switching chip, which specifically includes the following steps:
  • the line card PON chip When the line card PON chip receives uplink packets from different ONUs, it adds a T-TAG to the outer layer of the uplink packets, sets the VLAN ID value of the T-TAG equal to the GemPort ID of the ONU, and forwards the uplink packets to Line card switching chip.
  • the line card switching chip strips the T-TAG of the outer layer of the uplink message, creates multiple first virtual forwarding domains according to the configuration, and adds the O-TAG carrying the OLT slice information to the outer layer of the uplink message.
  • Forwarding the uplink packet to the master control disk switching chip through the first virtual forwarding domain includes the following steps:
  • the line card switching chip maps the uplink message to the logical subport of the line card and strips the T-TAG according to the PON port number and T-TAG of the received uplink message;
  • the first virtual forwarding domain mark the corresponding O-TAG on the outer layer of the uplink packet as the identifier of the OLT slice;
  • the uplink message is forwarded to the main control panel switching chip in the corresponding first virtual forwarding domain.
  • the main control disk exchange chip strips the outer O-TAG of the uplink message, creates multiple second virtual forwarding domains according to the configuration, and forwards the upstream messages to the upstream through the second virtual forwarding domain.
  • Equipment including the following steps:
  • the main control panel switching chip maps uplink packets to the main control panel logical subports according to the slot port number and O-TAG, and strips the O-TAG;
  • the upstream packet is forwarded to the upstream device through the uplink port of the main control panel switching chip in the corresponding second virtual forwarding domain.
  • the master control disk exchange chip when the master control disk exchange chip receives the downlink message, it maps the downlink message to the second virtual forwarding domain corresponding to the link slogan on the main control disk, and adds a second virtual forwarding to the outer layer of the downlink message. O-TAG corresponding to the domain, and forwards the downlink message to the line card switching chip, including the following steps:
  • the master control panel switching chip receives the downlink message from the joint port on the master control panel, and maps the downlink message to the corresponding second virtual forwarding domain according to the joint port number of the master control panel that receives the downlink message;
  • the second virtual forwarding domain find the corresponding master control logical subport and the master control logical subport corresponding to the O-TAG by looking up the table, and mark the outer layer of the downstream packet with the O-TAG as the identifier of the OLT slice;
  • the line card switching chip maps the downlink message to the corresponding first virtual forwarding domain according to the O-TAG, strips the O-TAG of the outer layer of the downlink message, and then adds the first The T-TAG corresponding to a virtual forwarding domain, and forwards the downstream packets to the line card PON chip, which specifically includes the following steps:
  • the line card switching chip maps the downlink message to the corresponding first virtual forwarding domain according to the O-TAG in the received downlink message;
  • T-TAG is marked on the outer layer of the downstream message and forwarded to the line card PON chip.
  • the line card PON chip strips the outer T-TAG of the downlink message and forwards the downlink message to the ONU corresponding to the T-TAG, which specifically includes the following steps:
  • the line card PON chip strips the outer T-TAG of the downlink message, and encapsulates the downlink message into a GemPort ID corresponding Gem frame according to the T-TAG, and forwards it to the corresponding ONU.
  • the invention also discloses an ONU granularity-based access network OLT slicing system, which includes a line card PON chip, a line card exchange chip, and a main control panel exchange chip:
  • the T-TAG carrying the ONU information is marked on the outer layer of the uplink packet and forwarded to the line card switching chip;
  • the line card switching chip is used to strip the outer T-TAG of the uplink message, create multiple first virtual forwarding domains according to the line card configuration, and add an O-TAG carrying the OLT slice information to the outer layer of the uplink message.
  • the first virtual forwarding domain forwards the uplink packet to the master control disk switching chip;
  • the main control disk exchange chip is used to strip the outer layer of O-TAG of the uplink packet, create multiple second virtual forwarding domains according to the configuration of the main control disk, and forward the uplink packets to the upstream device through the second virtual forwarding domain;
  • the master control disk exchange chip In the downstream direction, when the master control disk exchange chip is used to receive the downlink message, it maps the downlink message to the second virtual forwarding domain corresponding to the slogan on the main control disk, and marks the second virtual forwarding domain corresponding to the outer layer of the downlink message. O-TAG, and forward the downstream packets to the line card switching chip;
  • the line card switching chip is used to map the downlink message to the corresponding first virtual forwarding domain according to the O-TAG, strip the outer O-TAG of the downlink message, and then mark the first virtual forwarding domain corresponding to the outer layer of the downlink message. T-TAG, and forward the downstream message to the line card PON chip;
  • the line card PON chip is used to strip the outer T-TAG of the downstream message and forward the downstream message to the ONU corresponding to the T-TAG.
  • the outer layer of the uplink card is marked with a T-TAG carrying ONU information and forwarded to the line card switching chip.
  • the specific steps include the following steps:
  • the line card PON chip When the line card PON chip receives uplink packets from different ONUs, it adds a T-TAG to the outer layer of the uplink packets, sets the VLAN ID value of the T-TAG equal to the GemPort ID of the ONU, and forwards the uplink packets to Line card switching chip.
  • the line card switching chip strips the T-TAG of the outer layer of the uplink packet, creates multiple first virtual forwarding domains according to the configuration, and adds an O- TAG, which forwards the uplink packet to the master control disk switching chip through the first virtual forwarding domain, and specifically includes the following steps:
  • the line card switching chip maps the uplink message to the logical subport of the line card and strips the T-TAG according to the PON port number and T-TAG of the received uplink message;
  • the first virtual forwarding domain mark the corresponding O-TAG on the outer layer of the uplink packet as the identifier of the OLT slice;
  • the uplink packet is forwarded to the main control disk switching chip in the corresponding first virtual forwarding domain.
  • the master control disk exchange chip strips the outer O-TAG of the uplink message, creates a plurality of second virtual forwarding domains according to the configuration, and forwards the uplink messages through the second virtual forwarding domain To the upstream device, it includes the following steps:
  • the main control panel switching chip maps uplink packets to the main control panel logical subports according to the slot port number and O-TAG, and strips the O-TAG;
  • the upstream packet is forwarded to the upstream device through the uplink port of the main control panel switching chip in the corresponding second virtual forwarding domain.
  • the master control panel switching chip when it receives a downlink packet, it maps the downlink packet to a second virtual forwarding domain corresponding to the link port number on the main control panel, and marks the second layer on the outer layer of the downlink packet.
  • the O-TAG corresponding to the virtual forwarding domain and forwards the downstream packets to the line card switching chip which specifically includes the following steps:
  • the master control panel switching chip receives the downlink message from the joint port on the master control panel, and maps the downlink message to the corresponding second virtual forwarding domain according to the joint port number of the master control panel that receives the downlink message;
  • the second virtual forwarding domain find the corresponding master control logical subport and the master control logical subport corresponding to the O-TAG by looking up the table, and mark the outer layer of the downstream packet with the O-TAG as the identifier of the OLT slice;
  • the line card switching chip maps the downlink message to the corresponding first virtual forwarding domain according to the O-TAG, strips the outer O-TAG of the downlink message, and then the outer layer of the downlink message.
  • the T-TAG corresponding to the first virtual forwarding domain is marked, and the downstream packet is forwarded to the line card PON chip, which specifically includes the following steps:
  • the line card switching chip maps the downlink message to the corresponding first virtual forwarding domain according to the O-TAG in the received downlink message;
  • T-TAG is marked on the outer layer of the downstream message and forwarded to the line card PON chip.
  • the line card PON chip strips the outer T-TAG of the downlink message and forwards the downlink message to the ONU corresponding to the T-TAG, which specifically includes the following steps:
  • the line card PON chip strips the outer T-TAG of the downlink message, and encapsulates the downlink message into a GemPort ID corresponding Gem frame according to the T-TAG, and forwards it to the corresponding ONU.
  • the line card PON chip and line card switching chip of the OLT device of the present invention identify packets forwarded from different ONUs, and use T-Tags to carry ONU information to the line card switching chip to establish a first virtual forwarding domain; the line card switching chip is based on the first virtual
  • the forwarding domain uses the O-Tag to carry the OLT slice information to the OLT master control disk switching chip to establish a second virtual forwarding domain.
  • FIG. 1 is a schematic diagram of networking of a network slice based on an ONU granularity method of an access network OLT slice according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of an ONU granularity-based OLT slice method in an embodiment of the present invention
  • FIG. 3 is a data flow mapping diagram of the ONU granularity-based GPON access network slice method of the ONU granularity-based OLT slice method.
  • GEM G-PON Encapsulation Mode
  • GEM is a way to encapsulate data on GPON.
  • GEM can realize simple and efficient adaptation and encapsulation of a variety of data, uniformly adapt variable-length or fixed-length data fragments, and provide port multiplexing functions, providing the same connection-oriented communication as ATM.
  • LLID Logical Link Identifier
  • Gemport is a virtual interface in GPON. It is a basic data unit that implements forwarding between OLT and ONU. Gemport can carry a single service or multiple services, which can map a single or multiple VLANs to a Gemport. Gemport ID is the Gemport interface number. Under the same PON port, Gemport ID is unique.
  • An embodiment of the present invention provides a method for OLT slice of an access network based on ONU granularity, including the following steps:
  • the line card PON chip When the line card PON chip receives the upstream packet, it marks the outer layer of the upstream packet with a Tunnel-Tag (T-TAG) carrying ONU information and forwards it to the line card switching chip; the line card switching chip strips the upstream
  • T-TAG Tunnel-Tag
  • O-TAG Operator-Tag
  • the virtual forwarding domain forwards the uplink message to the master control disk exchange chip; the master control disk exchange chip strips the outer O-TAG of the uplink message, creates multiple second virtual forwarding domains according to the configuration, and passes the second virtual forwarding The domain forwards the upstream packets to the upstream device;
  • the master control disk exchange chip When the master control disk exchange chip receives the downlink message, it maps the downlink message to the second virtual forwarding domain corresponding to the slogan on the main control disk, and marks the O-TAG corresponding to the second virtual forwarding domain on the outer layer of the downlink message. And forward the downstream message to the line card switching chip; the line card switching chip maps the downstream message to the corresponding first virtual forwarding domain according to the O-TAG, strips the outer O-TAG of the downstream message, and then reports the downstream The outer layer of the text is marked with the T-TAG corresponding to the first virtual forwarding domain and forwards the downstream message to the line card PON chip; the line card PON chip strips the outer T-TAG of the downstream message and forwards the downstream message to T -TAG corresponds to the ONU.
  • the PON access network includes a central office OLT device and a remote ONU device.
  • the OLT and the ONU are connected through an optical splitter ODN.
  • the forwarding path of the OLT is shared by all the ONUs it serves, and is managed by a unified network management system (EMS).
  • EMS unified network management system
  • the forwarding path of the OLT is divided into multiple independent virtual forwarding domains.
  • the physical OLT is divided into three network slices: slice 1 contains ONUs 1 and 2 of uplink port 1 and PON1.
  • Slice 2 includes the uplink port 2 and ONU3 of PON1, and ONU1 ⁇ 2 of PON2.
  • Slice 3 contains all the objects remaining in the system. The forwarding between each slice is independent of each other and does not affect each other.
  • the ONU granularity-based OLT slice method includes the following steps:
  • the line card PON chip When the line card PON chip receives an upstream packet from a different ONU, it adds a T-TAG to the outer layer of the upstream packet, sets the VLAN ID value of the T-TAG to be equal to the GemPort ID value of the ONU, and sets the upstream packet. Forwarded to the line card switching chip.
  • the line card switching chip maps the uplink message to the logical subport of the line card and strips the T-TAG according to the PON port number and T-TAG of the received uplink packet; according to the issued configuration, the logical subport of the online card and A first virtual forwarding domain is created between the connection ports on the line card.
  • the corresponding O-TAG is marked on the outer layer of the uplink packet as the identifier of the OLT slice.
  • the card logical sub-port forwards the uplink packet to the main control disk switching chip in the corresponding first virtual forwarding domain.
  • the main control panel switching chip maps uplink packets to the main control panel logical subports and strips the O-TAG according to the slot port number and O-TAG; according to the issued configuration, the main control panel logical subports and main control panel A virtual second pseudo-forwarding domain is created between the joint ports on the control panel; according to the logical subport of the main control panel that receives the uplink packet, the uplink packet is passed through the main control panel switch chip on the corresponding second virtual forwarding domain. The joint port is forwarded to the upstream device.
  • the master control disk exchange chip receives the downlink message from the uplink port on the master control disk, and maps the downlink message to the corresponding second virtual forwarding domain according to the uplink port number of the master control disk that receives the downlink message.
  • the corresponding master logical disk logical subport and the master logical disk logical subport corresponding to the O-TAG are found by looking up the table, and the O-TAG is marked on the outer layer of the downstream packet as the OLT slice identifier; according to the master control,
  • the second virtual forwarding domain corresponding to the logical subport of the disk forwards the downlink packet to the corresponding line card switching chip.
  • the line card switching chip maps the downlink message to the corresponding first virtual forwarding domain according to the O-TAG in the received downlink message; first strips the O-TAG, and in the corresponding first virtual forwarding domain, passes Look up the table to find the corresponding line card logical sub-port, the destination PON port and GemPort ID; according to the destination PON port and GemPort ID, add a T-TAG to the outer layer of the downstream message and forward it to the line card PON chip.
  • the line card PON chip strips the outer T-TAG of the downlink message, and encapsulates the downlink message into a GemPort ID corresponding Gem frame according to the T-TAG, and forwards it to the corresponding ONU.
  • the line card PON chip when the line card PON chip receives uplink packets from different ONUs, in step S1, the line card PON chip can map multiple GEMs or LLIDs to the same T-TAG. Configuration decisions sent to the line card PON chip.
  • the T-TAGs mapped between the PON ports can be the same.
  • the line card switching chip completes the definition of the first virtual forwarding domain according to the configuration.
  • the configured parameters include a line card logical sub-port list, a line card connection port, a first virtual forwarding domain ID, and an O-TAG ID. If a logical subport of a line card is not configured in any of the first virtual forwarding domains, it belongs to the default first virtual forwarding domain, and its O-TAG ID is the default value of O-TAGdef. In the first virtual forwarding domain, the independence of forwarding and learning is controlled by hardware.
  • the outbound port of the uplink packet is the port on the line card.
  • the ⁇ MAC address, SVLAN (Service VLAN), and logical subport are learned in the forwarding table. No. ⁇ triples. If different first virtual forwarding domains between different line cards belong to the same OLT slice, the O-TAG carried in the uplink packet is the same.
  • the slot port + O-TAG and the logical subport of the main control panel are mapped one by one.
  • the main control panel switching chip completes the definition of the second virtual forwarding domain according to the configuration.
  • the configured parameters include the main control panel logical sub-port list, the main control panel connection port list, the second virtual forwarding domain ID, and the O-TAG ID. If the O-TAG ID is the default value of O-TAG, it belongs to the default second virtual forwarding domain. In the second virtual forwarding domain, the independence of forwarding and learning is controlled by hardware.
  • the uplink packet lookup table determines the uplink port in the outbound direction. The ⁇ MAC address, SVLAN, and logical subport number ⁇ ternary is learned in the forwarding table. group. If it is a broadcast message, it will be flooded in its second virtual forwarding domain.
  • the master control panel switching chip receives a downlink message from the main control panel connection port, in step S4, the main control panel connection port and the second virtual forwarding domain are many-to-one. Mapping relationship. If the joint port on a master disk is not configured in any second virtual forwarding domain, it belongs to the default second virtual forwarding domain. Downlink packets can be uniquely identified by a joint port on the main control panel, and a second virtual forwarding domain can be used to perform table lookup forwarding. If it is a broadcast message, it will be flooded in its second virtual forwarding domain.
  • the O-TAG and the first virtual forwarding domain of the line card switching chip are in a one-to-one mapping relationship.
  • the downlink packet carrying the O-TAGdef is mapped to the default first virtual forwarding domain.
  • the downlink message is forwarded in a table in the first virtual forwarding domain. If it is a broadcast message, it is marked with a T-TAG identifying the broadcast GEM or broadcast LLID.
  • the minimum granularity of the OLT slice proposed by the present invention is ONU. If the PON port + T-TAG is mapped to the line card logical subport and the PON port is mapped to the line card logical subport, the OLT slice with the granularity of the PON port can be realized; Mapping the slot port + O-TAG to the logical sub-port of the main control panel is modified to map the slot port to the logical sub-port of the main control panel, so that OLT slice with granularity can be realized.
  • this embodiment provides a specific implementation method of GPON access network slice based on ONU granularity, including:
  • the line card PON chip receives uplink packets from different GemPorts.
  • the line card PON chip is marked with T-TAG on the outer layer of the uplink packet, and the value of the VLAN ID is equal to the value of the GemPort ID;
  • the line card exchange maps the uplink data flow to a logical sub-port (VP, Virtual Port) according to the T-TAG and the PON slogan, and strips the T-TAG;
  • VP logical sub-port
  • VD Virtual Domain
  • the master control switch maps the uplink data flow to the logical sub-port (VP) according to the O-TAG and the slot slogan, and strips the O-TAG;
  • VD virtual forwarding domain
  • the master control switch forwards the uplink packet to the uplink port corresponding to the virtual forwarding domain
  • Downward direction the master control switch receives the downlink data stream from the uplink port, and determines the virtual forwarding domain of the downlink message
  • the downstream direction finds the corresponding logical subport by looking up the table
  • the line card switching chip determines a virtual forwarding domain of the downlink packet
  • the downstream direction finds the corresponding logical subport by looking up the table, and strips the O-TAG
  • the line card PON chip strips the outer T-TAG of the downlink message, encapsulates the downlink message into a Gem frame according to the T-TAG, and forwards it to the ONU.
  • This embodiment discloses an ONU granularity-based access network OLT slicing system, which includes a line card PON chip, a line card exchange chip, and a main control panel exchange chip:
  • the T-TAG carrying the ONU information is marked on the outer layer of the uplink packet and forwarded to the line card switching chip;
  • the line card switching chip is used to strip the outer T-TAG of the uplink message, create multiple first virtual forwarding domains according to the line card configuration, and add an O-TAG carrying the OLT slice information to the outer layer of the uplink message.
  • the first virtual forwarding domain forwards the uplink packet to the master control disk switching chip;
  • the main control disk exchange chip is used to strip the outer layer of O-TAG of the uplink packet, create multiple second virtual forwarding domains according to the configuration of the main control disk, and forward the uplink packets to the upstream device through the second virtual forwarding domain;
  • the master control disk exchange chip In the downstream direction, when the master control disk exchange chip is used to receive the downlink message, it maps the downlink message to the second virtual forwarding domain corresponding to the slogan on the main control disk, and the second virtual forwarding domain corresponding to the outer layer of the downlink message O-TAG, and forward the downstream packets to the line card switching chip;
  • the line card switching chip is used to map the downlink message to the corresponding first virtual forwarding domain according to the O-TAG, strip the outer O-TAG of the downlink message, and then mark the first virtual forwarding domain corresponding to the outer layer of the downlink message. T-TAG, and forward the downstream message to the line card PON chip;
  • the line card PON chip is used to strip the outer T-TAG of the downstream message and forward the downstream message to the ONU corresponding to the T-TAG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明公开了一种基于ONU粒度的接入网OLT切片的方法及系统,涉及通信设备技术领域,包括本发明OLT设备的线卡PON芯片和线卡交换芯片识别从不同ONU转发的报文,使用T-Tag携带ONU信息给线卡交换芯片建立第一虚拟转发域;线卡交换芯片根据第一虚拟转发域,使用O-Tag携带OLT切片信息给OLT主控盘交换芯片建立第二虚拟转发域。通过两级虚拟转发域的定义,在OLT设备中实现业务转发及配置管理的相互独立和隔离,实现了基于ONU粒度的OLT切片功能,满足运营商对接入设备灵活划分切片的需求。

Description

一种基于ONU粒度的接入网OLT切片的方法及系统 技术领域
本发明涉及通信设备技术领域,具体涉及一种基于ONU粒度的接入网OLT切片的方法及系统。
背景技术
PON接入网络(Passive Optical Network)是一种低成本、高容量的新型光纤接入网技术。它采用点到多点结构、无源光纤传输,能同时支持数据、语音和视频等多种业务,具备低成本、高带宽、扩展性高、兼容性强、管理方便、业务承载方式灵活等诸多优点。
典型的PON接入系统由光线路终端(OLT)、光网络单元(ONU)、和光配线网(ODN)组成。OLT(Optical Line Terminal)放在中心机房,提供面向无源光纤网络的光纤接口。ONU(Optical Network Unit)为用户端设备,主要采用以太网协议,为用户提供宽带语音、数据或视频等业务。ODN(Optical DistributedNetwork)主要由一个或数个光分路器(Splitter)来连接OLT和ONU,它的功能是分发下行数据并集中上行数据。ODN采用无源器件,可置于全天候的环境。
由于PON网络点到多点接入的的特性,OLT是PON接入系统的一个汇聚节点,用户侧数据通过ONU和ODN汇聚到OLT的线卡PON芯片,多个线卡再通过主控盘交换芯片汇聚到上联端口。这种汇聚转发的方式存在一些问题:首先在数据转发层面,由于将所有用户的业务数据汇聚在一起,很难实现不同用户间、不同业务间的差异性服务,如在系统拥塞时保证高优先级的用户和业务的服务质量;其次是在业 务管理层面,一台OLT往往汇聚了数千个远端用户,每个用户的业务和能力复杂多样(如家庭客户、集团客户或移动客户),统一管理难度较大。
为解决上述问题,可以引入接入网络切片的概念,将物理OLT划分为多个逻辑切片,切片之间的业务转发以及配置管理都相互独立。由于OLT是一种包含主控盘和线卡的多级交换架构的网络设备,目前主流的切片方案是在主控交换芯片上划分多个转发域,实现基于槽位的切片能力。基于槽位的OLT切片功能可以解决粗粒度的接入网络划分问题,但是无法满足精细化的切片需求。例如无法将同一个ODN下不同的ONU划分到多个逻辑域中进行独立转发和管理,而这类需求是运营商隔离不同业务或进行业务分包的典型场景。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种基于ONU粒度的接入网OLT切片的方法及系统,实现了ONU粒度的切片,满足运营商对接入设备灵活划分切片的需求。
为达到以上目的,本发明采取的技术方案是:一种基于ONU粒度的接入网OLT切片的方法,包括以下步骤:
线卡PON芯片接收到上行报文时,在上行报文外层打上携带ONU信息的隧道标签T-TAG,并转发给线卡交换芯片,线卡交换芯片剥除上行报文外层的T-TAG,根据配置创建多个第一虚拟转发域,在上行报文外层打上携带OLT切片信息的操作标签O-TAG,通过所述第一虚拟转发域将上行报文转发至主控盘交换芯片;
主控盘交换芯片剥除上行报文外层的O-TAG,根据配置创建多个第二虚拟转发域,通过所述第二虚拟转发域将上行报文转发至上游设备;
主控盘交换芯片收到下行报文时,将下行报文映射到主控盘上联口号对应的第二虚拟转发域,在下行报文外层打上第二虚拟转发域对应的O-TAG,并将下行报文转发至线卡交换芯片;
线卡交换芯片根据O-TAG将下行报文映射到对应的第一虚拟转发域,剥除下行报文外层的O-TAG,再在下行报文外层打上第一虚拟转发域对应的T-TAG,并将下行报文转发给线卡PON芯片,线卡PON芯片剥除下行报文外层的T-TAG,将下行报文转发至T-TAG对应的ONU。
在上述方案的基础上,线卡PON芯片接收到上行报文时,在上行报文外层打上携带ONU信息的T-TAG,并转发给线卡交换芯片,具体包括以下步骤:
线卡PON芯片从不同的ONU接收到上行报文时,在上行报文外层打上T-TAG,设置T-TAG的VLAN ID值与ONU的GemPort ID的值相等,并将上行报文转发给线卡交换芯片。
在上述方案的基础上,线卡交换芯片剥除上行报文外层的T-TAG,根据配置创建多个第一虚拟转发域,在上行报文外层打上携带OLT切片信息的O-TAG,通过所述第一虚拟转发域将上行报文转发至主控盘交换芯片,具体包括以下步骤:
线卡交换芯片根据收到上行报文的PON口号和T-TAG,将上行报文映射到线卡逻辑子端口,并剥除T-TAG;
根据下发的配置在线卡逻辑子端口和线卡上联口之间创建第一虚拟转发域;
根据第一虚拟转发域的配置,在上行报文外层打上对应的O-TAG,作为OLT切片的标识;
根据收到上行报文的线卡逻辑子端口,在对应的第一虚拟转发域 中将上行报文转发至主控盘交换芯片。
在上述方案的基础上,主控盘交换芯片剥除上行报文外层的O-TAG,根据配置创建多个第二虚拟转发域,通过所述第二虚拟转发域将上行报文转发至上游设备,具体包括以下步骤:
主控盘交换芯片根据槽位口号和O-TAG,将上行报文映射到主控盘逻辑子端口,并剥除O-TAG;
根据下发的配置在主控盘逻辑子端口和主控盘上联口之间创建虚第二拟转发域;
根据收到上行报文的主控盘逻辑子端口,在对应的第二虚拟转发域中将上行报文通过主控盘交换芯片的上联口转发至上游设备。
在上述方案的基础上,主控盘交换芯片收到下行报文时,将下行报文映射到主控盘上联口号对应的第二虚拟转发域,在下行报文外层打上第二虚拟转发域对应的O-TAG,并将下行报文转发至线卡交换芯片,具体包括以下步骤:
主控盘交换芯片从主控盘上联口接收到下行报文,根据收到下行报文的主控盘上联口号将下行报文映射到对应的第二虚拟转发域;
在第二虚拟转发域中,通过查表找到对应的主控盘逻辑子端口及主控盘逻辑子端口对应的O-TAG,在下行报文外层打上O-TAG,作为OLT切片的标识;
根据主控盘逻辑子端口对应的第二虚拟转发域将下行报文转发给对应的线卡交换芯片。
在上述方案的基础上,线卡交换芯片根据O-TAG将下行报文映射到对应的第一虚拟转发域,剥除下行报文外层的O-TAG,再在下行报文外层打上第一虚拟转发域对应的T-TAG,并将下行报文转发给线卡PON芯片,具体包括以下步骤:
线卡交换芯片根据收到的下行报文中的O-TAG将下行报文映射到对应的第一虚拟转发域;
先剥除O-TAG,在对应的第一虚拟转发域中,通过查表找到对应的线卡逻辑子端口以及目的PON口和GemPort ID;
根据目的PON口和GemPort ID,在下行报文外层打上T-TAG,转发给线卡PON芯片。
在上述方案的基础上,线卡PON芯片剥除下行报文外层的T-TAG,将下行报文转发至T-TAG对应的ONU,具体包括以下步骤:
线卡PON芯片剥除下行报文外层的T-TAG,根据T-TAG将下行报文封装到GemPort ID对应Gem帧中,转发给对应的ONU。
本发明还公开了一种基于ONU粒度的接入网OLT切片的系统,包括线卡PON芯片、线卡交换芯片和主控盘交换芯片:
上行方向,线卡PON芯片用于接收到上行报文时,在上行报文外层打上携带ONU信息的T-TAG,并转发给线卡交换芯片;
线卡交换芯片用于剥除上行报文外层的T-TAG,根据线卡配置创建多个第一虚拟转发域,在上行报文外层打上携带OLT切片信息的O-TAG,通过所述第一虚拟转发域将上行报文转发至主控盘交换芯片;
主控盘交换芯片用于剥除上行报文外层的O-TAG,根据主控盘配置创建多个第二虚拟转发域,通过所述第二虚拟转发域将上行报文转发至上游设备;
下行方向,主控盘交换芯片用于收到下行报文时,将下行报文映射到主控盘上联口号对应的第二虚拟转发域,在下行报文外层打上第二虚拟转发域对应的O-TAG,并将下行报文转发至线卡交换芯片;
线卡交换芯片用于根据O-TAG将下行报文映射到对应的第一虚 拟转发域,剥除下行报文外层的O-TAG,再在下行报文外层打上第一虚拟转发域对应的T-TAG,并将下行报文转发给线卡PON芯片;
线卡PON芯片用于剥除下行报文外层的T-TAG,将下行报文转发至T-TAG对应的ONU。
在上述方案的基础上,所述线卡PON芯片接收到上行报文时,在上行报文外层打上携带ONU信息的T-TAG,并转发给线卡交换芯片,具体包括以下步骤:
线卡PON芯片从不同的ONU接收到上行报文时,在上行报文外层打上T-TAG,设置T-TAG的VLAN ID值与ONU的GemPort ID的值相等,并将上行报文转发给线卡交换芯片。
在上述方案的基础上,所述线卡交换芯片剥除上行报文外层的T-TAG,根据配置创建多个第一虚拟转发域,在上行报文外层打上携带OLT切片信息的O-TAG,通过所述第一虚拟转发域将上行报文转发至主控盘交换芯片,具体包括以下步骤:
线卡交换芯片根据收到上行报文的PON口号和T-TAG,将上行报文映射到线卡逻辑子端口,并剥除T-TAG;
根据下发的配置在线卡逻辑子端口和线卡上联口之间创建第一虚拟转发域;
根据第一虚拟转发域的配置,在上行报文外层打上对应的O-TAG,作为OLT切片的标识;
根据收到上行报文的线卡逻辑子端口,在对应的第一虚拟转发域中将上行报文转发至主控盘交换芯片。
在上述方案的基础上,所述主控盘交换芯片剥除上行报文外层的O-TAG,根据配置创建多个第二虚拟转发域,通过所述第二虚拟转发域将上行报文转发至上游设备,具体包括以下步骤:
主控盘交换芯片根据槽位口号和O-TAG,将上行报文映射到主控盘逻辑子端口,并剥除O-TAG;
根据下发的配置在主控盘逻辑子端口和主控盘上联口之间创建虚第二拟转发域;
根据收到上行报文的主控盘逻辑子端口,在对应的第二虚拟转发域中将上行报文通过主控盘交换芯片的上联口转发至上游设备。
在上述方案的基础上,所述主控盘交换芯片收到下行报文时,将下行报文映射到主控盘上联口号对应的第二虚拟转发域,在下行报文外层打上第二虚拟转发域对应的O-TAG,并将下行报文转发至线卡交换芯片,具体包括以下步骤:
主控盘交换芯片从主控盘上联口接收到下行报文,根据收到下行报文的主控盘上联口号将下行报文映射到对应的第二虚拟转发域;
在第二虚拟转发域中,通过查表找到对应的主控盘逻辑子端口及主控盘逻辑子端口对应的O-TAG,在下行报文外层打上O-TAG,作为OLT切片的标识;
根据主控盘逻辑子端口对应的第二虚拟转发域将下行报文转发给对应的线卡交换芯片。
在上述方案的基础上,所述线卡交换芯片根据O-TAG将下行报文映射到对应的第一虚拟转发域,剥除下行报文外层的O-TAG,再在下行报文外层打上第一虚拟转发域对应的T-TAG,并将下行报文转发给线卡PON芯片,具体包括以下步骤:
线卡交换芯片根据收到的下行报文中的O-TAG将下行报文映射到对应的第一虚拟转发域;
先剥除O-TAG,在对应的第一虚拟转发域中,通过查表找到对应的线卡逻辑子端口以及目的PON口和GemPort ID;
根据目的PON口和GemPort ID,在下行报文外层打上T-TAG,转发给线卡PON芯片。
在上述方案的基础上,所述线卡PON芯片剥除下行报文外层的T-TAG,将下行报文转发至T-TAG对应的ONU,具体包括以下步骤:
线卡PON芯片剥除下行报文外层的T-TAG,根据T-TAG将下行报文封装到GemPort ID对应Gem帧中,转发给对应的ONU。
与现有技术相比,本发明的优点在于:
本发明OLT设备的线卡PON芯片和线卡交换芯片识别从不同ONU转发的报文,使用T-Tag携带ONU信息给线卡交换芯片建立第一虚拟转发域;线卡交换芯片根据第一虚拟转发域,使用O-Tag携带OLT切片信息给OLT主控盘交换芯片建立第二虚拟转发域。通过两级虚拟转发域的定义,在OLT设备中实现业务转发及配置管理的相互独立和隔离,实现了基于ONU粒度的OLT切片功能,满足运营商对接入设备灵活划分切片的需求。
附图说明
图1为本发明实施例中基于ONU粒度的接入网OLT切片的方法的网络切片的组网示意图;
图2为本发明实施例中基于ONU粒度的接入网OLT切片的方法的流程示意图;
图3为本发明实施例中基于ONU粒度的接入网OLT切片的方法的基于ONU粒度的GPON接入网络切片的数据流映射图。
具体实施方式
以下结合附图及实施例对本发明作进一步详细说明。
GEM(G-PON Encapsulation Mode,GPON封装方式)是一种在 GPON上封装数据的方式。GEM可以实现多种数据的简单、高效的适配封装,将变长或者定长的数据分片进行统一的适配处理,并提供端口复用功能,提供和ATM一样的面向连接的通信。
LLID(Logical Link Identifier,逻辑链路标记)。LLID是EPON系统分配给逻辑链接的一种数字标识.每一个逻辑链接都会分配到不同的LLID。
Gemport是GPON中一种虚拟的接口,是实现OLT和ONU之间转发的基本数据单元。Gemport可以承载单业务,也可以承载多业务,即可将单个或多个VLAN映射到Gemport中。Gemport ID为Gemport接口号,在同一个PON口下,Gemport ID是唯一的。
实施例1:
本发明实施例提供一种基于ONU粒度的接入网OLT切片的方法,包括以下步骤:
线卡PON芯片接收到上行报文时,在上行报文外层打上携带ONU信息的隧道标签(Tunnel-Tag,简称T-TAG),并转发给线卡交换芯片;线卡交换芯片剥除上行报文外层的T-TAG,根据配置创建多个第一虚拟转发域,在上行报文外层打上携带OLT切片信息的操作标签(Operator-Tag,简称O-TAG),通过所述第一虚拟转发域将上行报文转发至主控盘交换芯片;主控盘交换芯片剥除上行报文外层的O-TAG,根据配置创建多个第二虚拟转发域,通过所述第二虚拟转发域将上行报文转发至上游设备;
主控盘交换芯片收到下行报文时,将下行报文映射到主控盘上联口号对应的第二虚拟转发域,在下行报文外层打上第二虚拟转发域对应的O-TAG,并将下行报文转发至线卡交换芯片;线卡交换芯片根据O-TAG将下行报文映射到对应的第一虚拟转发域,剥除下行报文 外层的O-TAG,再在下行报文外层打上第一虚拟转发域对应的T-TAG,并将下行报文转发给线卡PON芯片;线卡PON芯片剥除下行报文外层的T-TAG,将下行报文转发至T-TAG对应的ONU。
参见图1所示,PON接入网络包括局端的OLT设备和远端的ONU设备,OLT和ONU之间通过光分路器ODN连接。传统的PON接入网络中,OLT的转发路径被其服务的所有ONU共享,通过统一网络管理系统(EMS)来管理。将OLT分割成多个网络切片后,OLT的转发路径被分割成多个独立的虚拟转发域。图1中物理OLT被划分为3个网络切片:切片1包含上联口1和PON1的ONU1~2。切片2包含上联口2和PON1的ONU3、PON2的ONU1~2。切片3包含系统剩余的所有对象。每个切片之间的转发相互独立,互不影响。
实施例2:
在实施例1的基础上,参见图2所示,基于ONU粒度的接入网OLT切片的方法,具体包括以下步骤:
S1,线卡PON芯片从不同的ONU接收到上行报文时,在上行报文外层打上T-TAG,设置T-TAG的VLAN ID值与ONU的GemPort ID的值相等,并将上行报文转发给线卡交换芯片。
S2,线卡交换芯片根据收到上行报文的PON口号和T-TAG,将上行报文映射到线卡逻辑子端口,并剥除T-TAG;根据下发的配置在线卡逻辑子端口和线卡上联口之间创建第一虚拟转发域;根据第一虚拟转发域的配置,在上行报文外层打上对应的O-TAG,作为OLT切片的标识;根据收到上行报文的线卡逻辑子端口,在对应的第一虚拟转发域中将上行报文转发至主控盘交换芯片。
S3,主控盘交换芯片根据槽位口号和O-TAG,将上行报文映射到主控盘逻辑子端口,并剥除O-TAG;根据下发的配置在主控盘逻 辑子端口和主控盘上联口之间创建虚第二拟转发域;根据收到上行报文的主控盘逻辑子端口,在对应的第二虚拟转发域中将上行报文通过主控盘交换芯片的上联口转发至上游设备。
S4,主控盘交换芯片从主控盘上联口接收到下行报文,根据收到下行报文的主控盘上联口号将下行报文映射到对应的第二虚拟转发域;在第二虚拟转发域中,通过查表找到对应的主控盘逻辑子端口及主控盘逻辑子端口对应的O-TAG,在下行报文外层打上O-TAG,作为OLT切片的标识;根据主控盘逻辑子端口对应的第二虚拟转发域将下行报文转发给对应的线卡交换芯片。
S5,线卡交换芯片根据收到的下行报文中的O-TAG将下行报文映射到对应的第一虚拟转发域;先剥除O-TAG,在对应的第一虚拟转发域中,通过查表找到对应的线卡逻辑子端口以及目的PON口和GemPort ID;根据目的PON口和GemPort ID,在下行报文外层打上T-TAG,转发给线卡PON芯片。
S6,线卡PON芯片剥除下行报文外层的T-TAG,根据T-TAG将下行报文封装到GemPort ID对应Gem帧中,转发给对应的ONU。
实施例3:
在实施例1的基础上,线卡PON芯片从不同的ONU接收到上行报文时,其中所述步骤S1,线卡PON芯片可将多个GEM或LLID映射到同一个T-TAG,由下发给线卡PON芯片的配置决定。PON口之间映射的T-TAG可以相同。
其中所述步骤S2,PON口+T-TAG到逻辑子端口是一一映射的关系。线卡交换芯片根据配置来完成第一虚拟转发域的定义,配置的参数包括线卡逻辑子端口列表、线卡上联口、第一虚拟转发域ID和O-TAG ID。如果某线卡逻辑子端口未被配置到任何第一虚拟转发域 中,则它属于默认的第一虚拟转发域,其O-TAG ID为默认值O-TAGdef。第一虚拟转发域由硬件控制转发和学习的独立性,在上行方向,上行报文的出端口为线卡上联口,在转发表中学习{MAC地址、SVLAN(Service VLAN)、逻辑子端口号}三元组。不同线卡间的不同第一虚拟转发域如果属于同一个OLT切片,则上行报文携带的O-TAG相同。
其中所述的步骤S3,槽位口+O-TAG与主控盘逻辑子端口是一一映射的关系。主控盘交换芯片根据配置来完成第二虚拟转发域的定义,配置的参数包括主控盘逻辑子端口列表、主控盘上联口列表、第二虚拟转发域ID和O-TAG ID。如果O-TAG ID为默认值O-TAG def,则它属于默认的第二虚拟转发域。第二虚拟转发域由硬件控制转发和学习的独立性,在上行方向,上行报文查表决定出方向的上联口,在转发表中学习{MAC地址、SVLAN、逻辑子端口号}三元组。如果是广播报文,则会在其第二虚拟转发域内洪泛。
实施例4:
在实施例1的基础上,主控盘交换芯片从主控盘上联口接收到下行报文时,其中所述的步骤S4,主控盘上联口与第二虚拟转发域是多对一的映射关系。如果某主控盘上联口未被配置到任何第二虚拟转发域中,则它属于默认的第二虚拟转发域。下行报文可以通过主控盘上联口唯一确定一个第二虚拟转发域,进行查表转发。如果是广播报文,则会在其第二虚拟转发域内洪泛。
其中所述的步骤S5,O-TAG与线卡交换芯片的第一虚拟转发域是一一映射的关系。携带O-TAGdef的下行报文被映射到默认的第一虚拟转发域。下行报文在第一虚拟转发域内进行查表转发,如果是广播报文,则被打上标识广播GEM或广播LLID的T-TAG。
本发明提出的OLT切片的最小粒度为ONU,若将PON口+T-TAG映射到线卡逻辑子端口修改为PON口映射为线卡逻辑子端口,可实现粒度为PON口的OLT切片;若将槽位口+O-TAG映射到主控盘逻辑子端口修改为槽位口映射到主控盘逻辑子端口,可以实现粒度为槽位的OLT切片。
实施例5:
在实施例1的基础上,参见图3所示,本实施例提供了基于ONU粒度的GPON接入网络切片的具体实施方法,包括:
101:上行方向,线卡PON芯片从不同的GemPort接收到上行报文;
102:线卡PON芯片在上行报文外层打上T-TAG,VLAN ID的值与GemPort ID的值相等;
103:线卡交换根据T-TAG和PON口号,将上行数据流映射到逻辑子端口(VP,Virtual Port),并剥除T-TAG;
104:根据多个逻辑子端口和上联口,在线卡交换上划分虚拟转发域(VD,Virtual Domain),上行报文根据逻辑子端口在对应的虚拟转发域中学习并转发;
105:根据虚拟转发域的配置,将上行报文打上对应的O-TAG,作为OLT切片的标识;
106:主控交换根据O-TAG和槽位口号,将上行数据流映射到逻辑子端口(VP),并剥除O-TAG;
107:根据多个逻辑子端口和上联口,在主控交换上划分虚拟转发域(VD),上行报文根据逻辑子端口在对应的虚拟转发域中学习并转发;
108:主控交换转发上行报文到虚拟转发域对应的上联口;
109:下行方向:主控交换从上联口接收到下行数据流,并确定下行报文的虚拟转发域;
110:在虚拟转发域中,下行方向通过查表找到对应的逻辑子端口;
111:根据逻辑子端口的配置,在下行报文外层打上O-TAG,作为OLT切片的标识;
112:根据O-TAG,线卡交换芯片确定下行报文的虚拟转发域;
113:在虚拟转发域中,下行方向通过查表找到对应的逻辑子端口,并剥除O-TAG
114:根据逻辑子端口的配置,在下行报文外层打上T-TAG,转发给线卡PON芯片;
115:线卡PON芯片剥除下行报文外层的T-TAG,根据T-TAG将下行报文封装到Gem帧中,转发给ONU。
实施例6:
本实施例公开了一种基于ONU粒度的接入网OLT切片的系统,包括线卡PON芯片、线卡交换芯片和主控盘交换芯片:
上行方向,线卡PON芯片用于接收到上行报文时,在上行报文外层打上携带ONU信息的T-TAG,并转发给线卡交换芯片;
线卡交换芯片用于剥除上行报文外层的T-TAG,根据线卡配置创建多个第一虚拟转发域,在上行报文外层打上携带OLT切片信息的O-TAG,通过所述第一虚拟转发域将上行报文转发至主控盘交换芯片;
主控盘交换芯片用于剥除上行报文外层的O-TAG,根据主控盘配置创建多个第二虚拟转发域,通过所述第二虚拟转发域将上行报文转发至上游设备;
下行方向,主控盘交换芯片用于收到下行报文时,将下行报文映射到主控盘上联口号对应的第二虚拟转发域,在下行报文外层打上第二虚拟转发域对应的O-TAG,并将下行报文转发至线卡交换芯片;
线卡交换芯片用于根据O-TAG将下行报文映射到对应的第一虚拟转发域,剥除下行报文外层的O-TAG,再在下行报文外层打上第一虚拟转发域对应的T-TAG,并将下行报文转发给线卡PON芯片;
线卡PON芯片用于剥除下行报文外层的T-TAG,将下行报文转发至T-TAG对应的ONU。
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (14)

  1. 一种基于ONU粒度的接入网OLT切片的方法,其特征在于,包括以下步骤:
    线卡PON芯片接收到上行报文时,在上行报文外层打上携带ONU信息的隧道标签T-TAG,并转发给线卡交换芯片,线卡交换芯片剥除上行报文外层的T-TAG,根据配置创建多个第一虚拟转发域,在上行报文外层打上携带OLT切片信息的操作标签O-TAG,通过所述第一虚拟转发域将上行报文转发至主控盘交换芯片;
    主控盘交换芯片剥除上行报文外层的O-TAG,根据配置创建多个第二虚拟转发域,通过所述第二虚拟转发域将上行报文转发至上游设备;
    主控盘交换芯片收到下行报文时,将下行报文映射到主控盘上联口号对应的第二虚拟转发域,在下行报文外层打上第二虚拟转发域对应的O-TAG,并将下行报文转发至线卡交换芯片;
    线卡交换芯片根据O-TAG将下行报文映射到对应的第一虚拟转发域,剥除下行报文外层的O-TAG,再在下行报文外层打上第一虚拟转发域对应的T-TAG,并将下行报文转发给线卡PON芯片,线卡PON芯片剥除下行报文外层的T-TAG,将下行报文转发至T-TAG对应的ONU。
  2. 如权利要求1所述的一种基于ONU粒度的接入网OLT切片的方法,其特征在于:
    线卡PON芯片接收到上行报文时,在上行报文外层打上携带ONU信息的T-TAG,并转发给线卡交换芯片,具体包括以下步骤:
    线卡PON芯片从不同的ONU接收到上行报文时,在上行报文外层打上T-TAG,设置T-TAG的VLAN ID值与ONU的GemPort ID 的值相等,并将上行报文转发给线卡交换芯片。
  3. 如权利要求1所述的一种基于ONU粒度的接入网OLT切片的方法,其特征在于:
    线卡交换芯片剥除上行报文外层的T-TAG,根据配置创建多个第一虚拟转发域,在上行报文外层打上携带OLT切片信息的O-TAG,通过所述第一虚拟转发域将上行报文转发至主控盘交换芯片,具体包括以下步骤:
    线卡交换芯片根据收到上行报文的PON口号和T-TAG,将上行报文映射到线卡逻辑子端口,并剥除T-TAG;
    根据下发的配置在线卡逻辑子端口和线卡上联口之间创建第一虚拟转发域;
    根据第一虚拟转发域的配置,在上行报文外层打上对应的O-TAG,作为OLT切片的标识;
    根据收到上行报文的线卡逻辑子端口,在对应的第一虚拟转发域中将上行报文转发至主控盘交换芯片。
  4. 如权利要求1所述的一种基于ONU粒度的接入网OLT切片的方法,其特征在于:
    主控盘交换芯片剥除上行报文外层的O-TAG,根据配置创建多个第二虚拟转发域,通过所述第二虚拟转发域将上行报文转发至上游设备,具体包括以下步骤:
    主控盘交换芯片根据槽位口号和O-TAG,将上行报文映射到主控盘逻辑子端口,并剥除O-TAG;
    根据下发的配置在主控盘逻辑子端口和主控盘上联口之间创建虚第二拟转发域;
    根据收到上行报文的主控盘逻辑子端口,在对应的第二虚拟转发 域中将上行报文通过主控盘交换芯片的上联口转发至上游设备。
  5. 如权利要求1所述的一种基于ONU粒度的接入网OLT切片的方法,其特征在于:
    主控盘交换芯片收到下行报文时,将下行报文映射到主控盘上联口号对应的第二虚拟转发域,在下行报文外层打上第二虚拟转发域对应的O-TAG,并将下行报文转发至线卡交换芯片,具体包括以下步骤:
    主控盘交换芯片从主控盘上联口接收到下行报文,根据收到下行报文的主控盘上联口号将下行报文映射到对应的第二虚拟转发域;
    在第二虚拟转发域中,通过查表找到对应的主控盘逻辑子端口及主控盘逻辑子端口对应的O-TAG,在下行报文外层打上O-TAG,作为OLT切片的标识;
    根据主控盘逻辑子端口对应的第二虚拟转发域将下行报文转发给对应的线卡交换芯片。
  6. 如权利要求1所述的一种基于ONU粒度的接入网OLT切片的方法,其特征在于:
    线卡交换芯片根据O-TAG将下行报文映射到对应的第一虚拟转发域,剥除下行报文外层的O-TAG,再在下行报文外层打上第一虚拟转发域对应的T-TAG,并将下行报文转发给线卡PON芯片,具体包括以下步骤:
    线卡交换芯片根据收到的下行报文中的O-TAG将下行报文映射到对应的第一虚拟转发域;
    先剥除O-TAG,在对应的第一虚拟转发域中,通过查表找到对应的线卡逻辑子端口以及目的PON口和GemPort ID;
    根据目的PON口和GemPort ID,在下行报文外层打上T-TAG, 转发给线卡PON芯片。
  7. 如权利要求1所述的一种基于ONU粒度的接入网OLT切片的方法,其特征在于:
    线卡PON芯片剥除下行报文外层的T-TAG,将下行报文转发至T-TAG对应的ONU,具体包括以下步骤:
    线卡PON芯片剥除下行报文外层的T-TAG,根据T-TAG将下行报文封装到GemPort ID对应Gem帧中,转发给对应的ONU。
  8. 一种基于ONU粒度的接入网OLT切片的系统,其特征在于,包括线卡PON芯片、线卡交换芯片和主控盘交换芯片:
    上行方向,线卡PON芯片用于接收到上行报文时,在上行报文外层打上携带ONU信息的T-TAG,并转发给线卡交换芯片;
    线卡交换芯片用于剥除上行报文外层的T-TAG,根据线卡配置创建多个第一虚拟转发域,在上行报文外层打上携带OLT切片信息的O-TAG,通过所述第一虚拟转发域将上行报文转发至主控盘交换芯片;
    主控盘交换芯片用于剥除上行报文外层的O-TAG,根据主控盘配置创建多个第二虚拟转发域,通过所述第二虚拟转发域将上行报文转发至上游设备;
    下行方向,主控盘交换芯片用于收到下行报文时,将下行报文映射到主控盘上联口号对应的第二虚拟转发域,在下行报文外层打上第二虚拟转发域对应的O-TAG,并将下行报文转发至线卡交换芯片;
    线卡交换芯片用于根据O-TAG将下行报文映射到对应的第一虚拟转发域,剥除下行报文外层的O-TAG,再在下行报文外层打上第一虚拟转发域对应的T-TAG,并将下行报文转发给线卡PON芯片;
    线卡PON芯片用于剥除下行报文外层的T-TAG,将下行报文转 发至T-TAG对应的ONU。
  9. 如权利要求8所述的一种基于ONU粒度的接入网OLT切片的系统,其特征在于:
    所述线卡PON芯片接收到上行报文时,在上行报文外层打上携带ONU信息的T-TAG,并转发给线卡交换芯片,具体包括以下步骤:
    线卡PON芯片从不同的ONU接收到上行报文时,在上行报文外层打上T-TAG,设置T-TAG的VLAN ID值与ONU的GemPort ID的值相等,并将上行报文转发给线卡交换芯片。
  10. 如权利要求8所述的一种基于ONU粒度的接入网OLT切片的系统,其特征在于:
    所述线卡交换芯片剥除上行报文外层的T-TAG,根据配置创建多个第一虚拟转发域,在上行报文外层打上携带OLT切片信息的O-TAG,通过所述第一虚拟转发域将上行报文转发至主控盘交换芯片,具体包括以下步骤:
    线卡交换芯片根据收到上行报文的PON口号和T-TAG,将上行报文映射到线卡逻辑子端口,并剥除T-TAG;
    根据下发的配置在线卡逻辑子端口和线卡上联口之间创建第一虚拟转发域;
    根据第一虚拟转发域的配置,在上行报文外层打上对应的O-TAG,作为OLT切片的标识;
    根据收到上行报文的线卡逻辑子端口,在对应的第一虚拟转发域中将上行报文转发至主控盘交换芯片。
  11. 如权利要求8所述的一种基于ONU粒度的接入网OLT切片的系统,其特征在于:
    所述主控盘交换芯片剥除上行报文外层的O-TAG,根据配置创 建多个第二虚拟转发域,通过所述第二虚拟转发域将上行报文转发至上游设备,具体包括以下步骤:
    主控盘交换芯片根据槽位口号和O-TAG,将上行报文映射到主控盘逻辑子端口,并剥除O-TAG;
    根据下发的配置在主控盘逻辑子端口和主控盘上联口之间创建虚第二拟转发域;
    根据收到上行报文的主控盘逻辑子端口,在对应的第二虚拟转发域中将上行报文通过主控盘交换芯片的上联口转发至上游设备。
  12. 如权利要求8所述的一种基于ONU粒度的接入网OLT切片的系统,其特征在于:
    所述主控盘交换芯片收到下行报文时,将下行报文映射到主控盘上联口号对应的第二虚拟转发域,在下行报文外层打上第二虚拟转发域对应的O-TAG,并将下行报文转发至线卡交换芯片,具体包括以下步骤:
    主控盘交换芯片从主控盘上联口接收到下行报文,根据收到下行报文的主控盘上联口号将下行报文映射到对应的第二虚拟转发域;
    在第二虚拟转发域中,通过查表找到对应的主控盘逻辑子端口及主控盘逻辑子端口对应的O-TAG,在下行报文外层打上O-TAG,作为OLT切片的标识;
    根据主控盘逻辑子端口对应的第二虚拟转发域将下行报文转发给对应的线卡交换芯片。
  13. 如权利要求8所述的一种基于ONU粒度的接入网OLT切片的系统,其特征在于:
    所述线卡交换芯片根据O-TAG将下行报文映射到对应的第一虚拟转发域,剥除下行报文外层的O-TAG,再在下行报文外层打上第 一虚拟转发域对应的T-TAG,并将下行报文转发给线卡PON芯片,具体包括以下步骤:
    线卡交换芯片根据收到的下行报文中的O-TAG将下行报文映射到对应的第一虚拟转发域;
    先剥除O-TAG,在对应的第一虚拟转发域中,通过查表找到对应的线卡逻辑子端口以及目的PON口和GemPort ID;
    根据目的PON口和GemPort ID,在下行报文外层打上T-TAG,转发给线卡PON芯片。
  14. 如权利要求8所述的一种基于ONU粒度的接入网OLT切片的系统,其特征在于:
    所述线卡PON芯片剥除下行报文外层的T-TAG,将下行报文转发至T-TAG对应的ONU,具体包括以下步骤:
    线卡PON芯片剥除下行报文外层的T-TAG,根据T-TAG将下行报文封装到GemPort ID对应Gem帧中,转发给对应的ONU。
PCT/CN2018/104254 2018-06-14 2018-09-06 一种基于onu粒度的接入网olt切片的方法及系统 WO2019237521A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810616103.9 2018-06-14
CN201810616103.9A CN108989915B (zh) 2018-06-14 2018-06-14 一种基于onu粒度的接入网olt切片的方法及系统

Publications (1)

Publication Number Publication Date
WO2019237521A1 true WO2019237521A1 (zh) 2019-12-19

Family

ID=64540521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104254 WO2019237521A1 (zh) 2018-06-14 2018-09-06 一种基于onu粒度的接入网olt切片的方法及系统

Country Status (3)

Country Link
CN (1) CN108989915B (zh)
CL (1) CL2020001129A1 (zh)
WO (1) WO2019237521A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112688801A (zh) * 2020-12-14 2021-04-20 宁波华讯通信服务有限公司 一种基于pon网络的局域网建设方法、装置及系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385026B (zh) * 2018-12-29 2022-08-26 中兴通讯股份有限公司 一种olt设备虚拟化的方法及olt设备
CN109905785B (zh) * 2019-03-29 2021-05-28 新华三技术有限公司 一种报文转发方法及装置
CN112152899B (zh) * 2019-06-28 2023-04-07 中兴通讯股份有限公司 一种基于网络切片的数据处理方法及装置
CN112448838B (zh) * 2019-09-05 2023-05-16 中国电信股份有限公司 流量转发方法、装置和计算机可读存储介质
CN112770196A (zh) * 2019-10-21 2021-05-07 中兴通讯股份有限公司 一种虚拟化方法及装置
CN112769584B (zh) * 2019-10-21 2023-06-30 中兴通讯股份有限公司 网络切片共享上联口的方法、装置及存储介质
CN113382320B (zh) * 2020-03-10 2022-05-13 中国电信股份有限公司 基于pon的调整方法、系统和olt
CN113395612B (zh) * 2020-03-11 2022-11-22 华为技术有限公司 一种光纤通信中的数据转发方法以及相关装置
CN113840185A (zh) * 2020-06-23 2021-12-24 中兴通讯股份有限公司 组播报文处理方法、olt设备、onu设备及存储介质
CN113286206B (zh) * 2021-05-20 2022-04-26 烽火通信科技股份有限公司 一种olt跨盘链路聚合的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043294A (zh) * 2007-03-15 2007-09-26 华为技术有限公司 数据帧的切片方法和光网络单元
WO2017206306A1 (zh) * 2016-06-01 2017-12-07 华为技术有限公司 一种数据帧发送、接收的方法和设备
CN108111931A (zh) * 2017-12-15 2018-06-01 国网辽宁省电力有限公司 一种电力光纤接入网的虚拟资源切片管理方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852218A (zh) * 2006-04-19 2006-10-25 华为技术有限公司 一种配置VLANtag的方法
CN100555999C (zh) * 2007-08-13 2009-10-28 中兴通讯股份有限公司 一种实现边缘到边缘伪线仿真的方法和装置
CN103634222B (zh) * 2012-08-27 2016-12-21 华为技术有限公司 报文处理的装置、方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043294A (zh) * 2007-03-15 2007-09-26 华为技术有限公司 数据帧的切片方法和光网络单元
WO2017206306A1 (zh) * 2016-06-01 2017-12-07 华为技术有限公司 一种数据帧发送、接收的方法和设备
CN108111931A (zh) * 2017-12-15 2018-06-01 国网辽宁省电力有限公司 一种电力光纤接入网的虚拟资源切片管理方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112688801A (zh) * 2020-12-14 2021-04-20 宁波华讯通信服务有限公司 一种基于pon网络的局域网建设方法、装置及系统

Also Published As

Publication number Publication date
CL2020001129A1 (es) 2020-08-14
CN108989915B (zh) 2020-07-14
CN108989915A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2019237521A1 (zh) 一种基于onu粒度的接入网olt切片的方法及系统
US9455785B2 (en) Unified network management of hybrid fiber coaxial (HFC) network
US9130878B2 (en) Traffic switching in hybrid fiber coaxial (HFC) network
EP2355374B1 (en) Method, system and optical line terminal for message transmission in an optical communication system
CN101005445B (zh) 一种将业务流映射到业务传输通道的方法及光网络终端
EP1978654B1 (en) A method for mapping the service stream to the service transmission channel, system and optical network terminator thereof
CN101931548B (zh) 一种接入网络标签管理方法、装置和系统
US7272137B2 (en) Data stream filtering apparatus and method
CN100555949C (zh) 一种对GPON系统配置Native VLAN以及处理以太网报文的方法
CN102821029B (zh) 一种以太网无源光网络中的多业务带宽分配方法及其装置
US7873039B2 (en) Enhanced optical line terminal controller
KR20060069855A (ko) EPON(Ethernet passiv opticalnetwork) 환경에서의 패킷 발송을 위한 방법과 장치
EP2326059B1 (en) Mapping method, apparatus and system for data transmission
WO2007076671A1 (fr) Procédé de régulation du flux multidiffusion, dispositif et système d'un réseau optique passif
CN102714614B (zh) 无源光网络中数据的传输方法、用户侧设备和系统
WO2012130109A1 (zh) 业务转发方法及系统
CN101257487B (zh) 一种将业务流映射到业务传输通道的方法及光网络终端
CN107579899B (zh) 一种vpls中实现vlan隔离的接入方法及装置
KR100786388B1 (ko) 이더넷 기반 수동형 광가입자 망에서의 vid를 이용한트래픽 관리 장치 및 방법
EP2157745A1 (en) Method for routing data traffic in an access node and access node
KR101148205B1 (ko) 기가비트 수동형 광 통신망에서의 광 회선단말 및 광 회선단말의 브로드캐스트 프레임 전송방법
Liu et al. Design and FPGA implementation of VLAN in EPON
WO2010040310A1 (zh) IPv6到PON的服务质量映射方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922815

Country of ref document: EP

Kind code of ref document: A1