WO2019237443A1 - 一种电解加工中阴极表面绝缘的装置 - Google Patents

一种电解加工中阴极表面绝缘的装置 Download PDF

Info

Publication number
WO2019237443A1
WO2019237443A1 PCT/CN2018/094737 CN2018094737W WO2019237443A1 WO 2019237443 A1 WO2019237443 A1 WO 2019237443A1 CN 2018094737 W CN2018094737 W CN 2018094737W WO 2019237443 A1 WO2019237443 A1 WO 2019237443A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
tool
gas
electrolytic processing
electrolyte
Prior art date
Application number
PCT/CN2018/094737
Other languages
English (en)
French (fr)
Inventor
徐坤
张朝阳
朱浩
戴学仁
顾秦铭
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US16/467,673 priority Critical patent/US11331737B2/en
Publication of WO2019237443A1 publication Critical patent/WO2019237443A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/04Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2300/00Power source circuits or energization
    • B23H2300/10Pulsed electrochemical machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment

Definitions

  • the invention relates to the field of electrochemical processing, and in particular to a device for cathode surface insulation in electrolytic processing.
  • Electrolytic processing is a material removal process based on the electrochemical dissolution of anode workpieces. It has the advantages of high production efficiency, wide processing range, good surface quality, no residual stress and plastic deformation, and no tool loss. It is widely used in aerospace, military and national defense fields. .
  • the electric field dispersion can easily cause the processed area of the workpiece to be secondary processed, causing stray corrosion; and when processing three-dimensional structures, it often causes the side gap to continuously increase and the side wall to form a cone , Limiting the precision of electrolytic machining to produce high-precision three-dimensional structures. It is a common practice to reduce the stray corrosion and reduce the taper of the sidewall by performing electrode surface insulation treatment in electrolytic processing and limiting the electric field to the electrode end.
  • the surface insulation of electrodes usually adopts the method of adding a surface insulation film, and various surface insulation methods also often have the disadvantages that the insulation film is easily dissolved and destroyed, the bonding force to the substrate is not strong, or the film-forming process is complicated and costly.
  • the superhydrophobic surface shows excellent performance in the fields of self-cleaning, anti-icing and anti-frost, fluid drag reduction, oil-water separation, micro-droplet directional transmission, anti-corrosion and anti-fouling, and biomedical materials. It has great application potential.
  • Hydrophobic surface gas can easily replace the characteristics of liquid.
  • the superhydrophobic surface adsorbs gas to form an insulating gas film, which realizes the function of selective insulation of the tool cathode in electrolytic processing.
  • the purpose of the present invention is to provide a reliable and convenient method for the surface insulation needs in electrolytic processing, a method for the cathode surface insulation in electrolytic processing, to prepare superhydrophobic microstructures on the surfaces that require insulation, Adsorption, the formation of insulating gas film on the surface, to achieve the insulation effect.
  • a cathode surface insulation device in electrolytic processing includes a tool cathode, a workpiece, an electrolyte tank, a power source, and a moving mechanism; the electrolyte tank is placed on a workbench, and the electrolyte tank and the workpiece are contained in the electrolyte tank; the workpiece and the tool
  • the cathode is respectively connected to the positive electrode and the negative electrode of the power source; and the tool cathode is installed on the moving mechanism through a cathode clamp; the moving mechanism is connected to a computer; the computer controls the movement of the moving mechanism.
  • a super-hydrophobic structure is prepared on the outer wall of the cathode of the tool by laser scanning or electrochemical deposition or a combination of the two.
  • the tool cathode has a hollow structure.
  • a gas is passed in the tool cathode, and the gas is introduced into the tool cathode through an air pipe through an air pump.
  • the super-hydrophobic structure can adsorb air bubbles in the electrolyte to form an insulating gas film, thereby achieving insulation of the outer wall of the cathode of the tool.
  • the power source is a pulse power source.
  • the outer wall of a part of the tool cathode where the electrolyte is placed is provided with tiny pores.
  • the superhydrophobic structure is prepared in the area where the cathode surface of the tool needs to be insulated.
  • the superhydrophobic structure is used to adsorb bubbles under the liquid, adsorb the gas in the electrolyte to form an insulating gas film, and realize the selective insulation of the cathode surface of the tool.
  • the purpose of confining the electric field to the processing area is to reduce stray corrosion and side wall taper, and to improve processing efficiency and accuracy.
  • the role of the super-hydrophobic structure is: 1 adsorb air bubbles to form an insulating gas film; 2 maintain the stability of the insulating gas film and prevent the gas film from being damaged due to flushing and other reasons.
  • Figure 1 is a schematic illustration of electrolytic processing using a superhydrophobic sidewall insulation cathode
  • Fig. 2 is a schematic diagram of a ventilation-assisted superhydrophobic sidewall insulation cathode electrolytic processing system.
  • Electrolyte 2. Tool cathode; 3. Insulating gas film; 4. Work piece; 5. Workbench; 6. Electrolyte tank; 7. Power supply; 8. Air pump; 9. Gas tube; 10. Hollow cathode; 11. Cathode clamp; 12, computer; 13, moving mechanism.
  • a cathode surface insulation device in electrolytic processing includes a tool cathode 2, a work piece 4, an electrolyte tank 6, a power source 7, and a moving mechanism 13.
  • the electrolyte tank 6 is placed on a workbench 5, and the electrolyte tank 6 is built in.
  • Electrolyte 1 and work piece 4; work piece 4 and tool cathode 2 are connected to the positive and negative electrodes of power source 7, respectively; and tool cathode 2 is mounted on a moving mechanism 13 through a cathode clamp 11; the moving mechanism 13 is connected to a computer 12; the computer 12 controls Movement of the moving mechanism 13.
  • a super-hydrophobic structure is prepared on the outer wall of the tool cathode 2 by laser scanning or electrochemical deposition or a combination of the two.
  • the tool cathode 2 has a hollow structure. Gas is passed in the tool cathode 2, and the gas is passed into the tool cathode 2 through an air pipe 9 through an air pump 8.
  • the super-hydrophobic structure can adsorb the air bubbles in the electrolyte 1 to form an insulating gas film 5 to achieve insulation of the outer wall of the tool cathode 2.
  • the power source 7 is a pulse power source.
  • the tool cathode 2 is provided on the outer wall of a part of the electrolyte 1 with micro air holes.
  • FIG. 1 is a schematic diagram of electrolytic processing using a super-hydrophobic sidewall insulation cathode, which includes an electrolyte 1, a tool cathode 2, an insulating gas film 3, and a workpiece 4. Its characteristics are to prepare a super-hydrophobic structure on the area where the surface of the tool cathode 2 needs to be insulated, use the super-hydrophobic structure to adsorb bubbles under the liquid, adsorb the gas in the electrolyte 1 to form an insulating gas film 3, and realize the selectivity of the surface of the tool cathode 2 insulation.
  • the superhydrophobic structure on the surface of the tool cathode 2 forms an insulating gas film by adsorbing gas, thereby achieving the function of selective insulation of the surface of the tool cathode 2.
  • the source of the bubbles may be generated by electrolytic processing, or may be a gas mixed with the electrolyte in the mixed gas electrolytic processing, or may be a gas delivered to the surface of the cathode by using an auxiliary gas source.
  • Fig. 2 is a schematic diagram of a ventilation-assisted superhydrophobic sidewall insulation cathode electrolytic processing system.
  • the system is composed of electrolyte 1, insulating gas film 3, work piece 4, table 5, electrolyte tank 6, power source 7, air pump 8, air pipe 9, hollow cathode 10, computer 11, cathode clamp 12, and moving mechanism 13.
  • the electrolytic solution tank 6 and the moving mechanism 13 are installed on the workbench 5, the workpiece 4 is mounted on the electrolytic solution 6, and an appropriate amount of electrolytic solution 1 is injected into the electrolytic solution tank 6.
  • the hollow cathode 10 is connected to the moving mechanism 13 through the cathode fixture 12, and
  • the computer 12 controls the moving mechanism 13 to drive the hollow cathode 10 to move, and can realize functions such as tool setting, feeding and processing.
  • the superhydrophobic structure is prepared in the area where the cathode of the tool requires insulation (usually the side wall).
  • the preparation method can be laser etching, chemical etching, sol-gel method, anodizing method, hydrothermal method, electrochemical deposition method, etc.
  • One or more composites or multiple combinations, and the superhydrophobic structure does not change the macro size of the tool cathode.
  • the tool cathode 2 is connected to the power source 7 negative electrode, and the workpiece 4 is connected to the power source 7 positive electrode.
  • the surface of the cathode will generate hydrogen.
  • the bubbles contact the superhydrophobic surface, they will be adsorbed by the surface of the superhydrophobic structure and form insulation on the surface of the tool cathode 2.
  • the air film 3 realizes selective insulation of the tool cathode 2.
  • mixed gas electrolytic processing is a processing method to improve processing accuracy.
  • a certain proportion of gas is mixed in the electrolytic solution 1 to make the gas-liquid mixture enter the processing gap, and the gas mixing can make the processing gap uniform, and improve the replication accuracy.
  • the gas in the electrolytic solution 1 includes not only hydrogen produced by the electrolytic reaction, but also mixed gas, and the increase of the gas content is more conducive to forming a stable insulating gas film 3 on the super-hydrophobic surface.
  • FIG. 2 provides a The device consists of an air pump 8, an air pipe 9, and a hollow cathode 10. Air holes are distributed between the cavity of the hollow cathode and the super-hydrophobic surface.
  • the air pump 8 delivers gas to the hollow cathode through the air pipe 9, and the gas directly reaches the vicinity of the super-hydrophobic surface through the air holes, which is beneficial to the generation and maintenance of a stable insulating gas film.
  • the superhydrophobic structure is prepared on the surface of the tool cathode 7 that needs to be insulated.
  • the superhydrophobic structure is used to adsorb air bubbles under the liquid, and the gas in the electrolyte is absorbed to form an insulating gas film 5 to achieve insulation on the surface of the tool cathode 7.
  • the air bubble may be a gas generated by a cathode during electrolytic processing, a gas mixed with an electrolyte during gas-mixed electrolytic processing, or a gas added through an auxiliary device or equipment such as a gas pump.
  • an air pump 8 can be used to transmit gas through the small holes to the surface of the tool cathode 2 to form a stable insulating gas film 3 on the surface of the super-hydrophobic structure.
  • the gas mixed in the electrolyte, or the gas added through auxiliary devices such as air pumps, does not chemically react with the electrolyte, nor will it corrode tool cathodes and workpieces, nor cause damage to the superhydrophobic structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

一种电解加工中阴极表面绝缘的装置,包括工具阴极(2)、工件(4)、电解液槽(6)、电源(7)、移动机构(13);电解液槽(6)置于工作台(5)上,电解液槽(6)内有电解液(1)和工件(4);工件(4)与工具阴极(2)分别接电源(7)的正极、负极;且工具阴极(2)通过阴极夹具(11)安装在移动机构(13)上;移动机构(13)与计算机(12)相连;计算机(12)控制移动机构(13)的移动,在需要绝缘的阴极表面制备超疏水微结构。

Description

一种电解加工中阴极表面绝缘的装置 技术领域
本发明涉及电化学加工领域,尤其涉及到一种电解加工中阴极表面绝缘的装置。
背景技术
电解加工是基于阳极工件电化学溶解的材料去除过程,具有生产效率高,加工范围广泛,表面质量好,无残余应力与塑性变形,无工具损耗等优点,广泛用于航空航天、军工国防等领域。
由于电解加工时难以将电场约束在加工区域,电场分散极易导致工件已加工区域被二次加工,造成杂散腐蚀;并且在加工三维结构时往往造成侧面间隙不断增大,侧壁形成锥状,限制了电解加工制备高精度三维结构的精度。在电解加工中进行电极表面绝缘处理,将电场限定在电极端部,是减小杂散腐蚀,降低侧壁锥度的常用做法。
电极表面绝缘通常采用添加表面绝缘膜的方法,而各种表面绝缘方法也往往存在绝缘膜容易被溶解破坏,与基体结合力不强,或者制膜工序复杂成本高等缺点。超疏水表面在自清洁、防冰防霜、流体减阻、油水分离、微液滴定向传输、防腐防污、生物医学材料等领域展现出了优异的性能,极具应用潜力,本发明利用超疏水表面气体极易取代液体的特性,通过超疏水表面吸附气体形成绝缘气膜,实现电解加工中工具阴极选择性绝缘的功能。
发明内容
本发明的目的是针对电解加工中表面绝缘需求,提供一种可靠便捷的方法,一种电解加工中阴极表面绝缘的方法,在需要绝缘的表面制备超疏水微结构,通过超疏水微结构对气体的吸附,在表面生成绝缘气膜,达到绝缘效果。
本发明是通过如下技术方案得以实现的:
一种电解加工中阴极表面绝缘的装置,包括工具阴极、工件、电解液槽、电源、移动机构;所述电解液槽置于工作台上,电解液槽内有电解液和工件;工件与工具阴极分别接电源的正极、负极;且工具阴极通过阴极夹具安装在移动机构上;所述移动机构与计算机相连;计算机控制移动机构的移动。
进一步的,所述工具阴极外壁上通过激光扫描或者电化学沉积或者二者结合的方式制备有超疏水结构。
进一步的,所述工具阴极为中空结构。
进一步的,所述工具阴极内通有气体,该气体通过气泵经气管通入到工具阴极内部。
进一步的,所述超疏水结构可吸附电解液中的气泡形成绝缘气膜,实现工具阴极外壁的绝缘。
进一步的,所述电源为脉冲电源。
进一步的,所述工具阴极置于电解液的部分外壁上开设有微小细孔。
有益效果:
1.在工具阴极表面需要绝缘的区域制备超疏水结构,利用超疏水结构在液下对气泡的吸附作用,吸附电解液中气体形成绝缘气膜,实现了工具阴极表面的选择性绝缘,从而实现了将电场约束在加工区域,降低杂散腐蚀和侧壁锥度,提高加工效率和精度的目的。
2.超疏水结构的作用是:①吸附气泡,形成绝缘气膜;②维持绝缘气膜的稳定,防止气膜因冲液等原因被破坏。
3.通过在工具阴极内部开设中空结构,中空阴极的空腔和超疏水表面之间分布有气孔,气泵通过气管向中空阴极输送气体,气体通过气孔直接到达超疏水表面附近,更有利于生成和维持稳定的绝缘气膜。
附图说明
图1是采用超疏水侧壁绝缘阴极电解加工示意图;
图2是通气辅助超疏水侧壁绝缘阴极电解加工系统示意图。
附图标记如下:
1、电解液;2、工具阴极;3、绝缘气膜;4、工件;5、工作台;6、电解液槽;7、电源;8、气泵;9、气管;10、中空阴极;11、阴极夹具;12、计算机;13、移动机构。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
一种电解加工中阴极表面绝缘的装置,包括工具阴极2、工件4、电解液槽6、电源7和移动机构13;所述电解液槽6置于工作台5上,电解液槽6内置有电解液1和工件4;工件4与工具阴极2分别接电源7的正极、负极;且工具阴极2通过阴极夹具11安装在移动机构13上;所述移动机构13与计算机12相连;计算机12控制移动机构13的移动。所述工具阴极2外壁上通过激光扫描或者电化学沉积或者二者结合的方式制备有超疏水结构。所述工具阴极2为中空结构。所述工具阴极2内通有气体,该气体通过气 泵8经气管9通入到工具阴极2内部。所述超疏水结构可吸附电解液1中的气泡形成绝缘气膜5,实现工具阴极2外壁的绝缘。所述电源7为脉冲电源。所述工具阴极2置于电解液1的部分外壁上开设有微小气孔。
图1是采用超疏水侧壁绝缘阴极电解加工示意图,包括电解液1、工具阴极2、绝缘气膜3和工件4。其特点是在工具阴极2表面需要绝缘的区域制备超疏水结构,利用超疏水结构在液下对气泡的吸附作用,吸附电解液1中气体形成绝缘气膜3,实现工具阴极2表面的选择性绝缘。在电解加工时,工具阴极2表面超疏水结构通过吸附气体形成绝缘气膜,实现工具阴极2表面选择性绝缘的功能。气泡的来源可以是电解加工产生的,也可以是混气电解加工中电解液混入的气体,也可以是采用辅助气源输送至阴极表面的气体。
图2是通气辅助超疏水侧壁绝缘阴极电解加工系统示意图。该系统由电解液1、绝缘气膜3、工件4、工作台5、电解液槽6、电源7、气泵8、气管9、中空阴极10、计算机11、阴极夹具12和移动机构13组成。电解液槽6和移动机构13安装在工作台5上,工件4安装在电解液6上,并在电解液槽6中注入适量电解液1;中空阴极10通过阴极夹具12连接移动机构13,通过计算机12控制移动机构13带动中空阴极10移动,可以实现对刀、进给、加工等功能。
下面结合图1和图2其工作过程简述如下:
在工具阴极需要绝缘区域(通常为侧壁)制备超疏水结构,制备方法可以是激光刻蚀、化学刻蚀、溶胶凝胶法、阳极氧化法、水热法,电化学沉积法等方法中的一个或者多种复合或者多种组合,且超疏水结构不改变工具阴极的宏观尺寸。
工作中,工具阴极2接电源7负极,工件4接电源7正极,加工过程中阴极表面会产生氢气,当气泡接触到超疏水表面,受到超疏水结构表面的吸附,在工具阴极2表面形成绝缘气膜3,实现工具阴极2的选择性绝缘。
在电解加工中,混气电解加工是提高加工精度的一种加工方法。在电解液1中混入一定比例的气体,使气液混合物进入加工间隙,混气可使加工间隙趋向均匀,提高复制精度。在混气电解加工中,电解液1中的气体不仅有电解反应产生的氢气,还有混入的气体,气体含量的增加,更加有利于在超疏水表面形成稳定绝缘气膜3。
在成形电解加工中,往往需要冲液来促使加工产物排出、更新电解液,冲液会影响稳定绝缘气膜3的形成和保持,图2提供一种更加容易形成和保持稳定绝缘气膜3的设备,由气泵8、气管9和中空阴极10组成。该中空阴极的空腔和超疏水表面之间分布有 气孔,气泵8通过气管9向中空阴极输送气体,气体通过气孔直接到达超疏水表面附近,有利于生成和维持稳定的绝缘气膜。
工具阴极7表面需要绝缘的区域制备超疏水结构,利用超疏水结构在液下对气泡的吸附作用,吸附电解液中气体形成绝缘气膜5,实现工具阴极7表面的绝缘;超疏水结构吸附的气泡,可以是电解加工中阴极产生的气体,也可以是混气电解加工中电解液混入的气体,也可以是通过气泵等辅助装置或设备添加的气体。使用侧壁分布微细小孔的中空结构工具阴极2时,可采用气泵8将气体通过微细小孔传输至工具阴极2表面,在超疏水结构表面形成稳定的绝缘气膜3,混气电解加工中电解液混入的气体,或者通过气泵等辅助装置或设备添加的气体,均不与电解液发生化学反应,也不会腐蚀工具阴极和工件,也不会对超疏水结构造成破坏。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (7)

  1. 一种电解加工中阴极表面绝缘的装置,其特征在于:包括工具阴极(2)、工件(4)、电解液槽(6)、电源(7)和移动机构(13);所述电解液槽(6)置于工作台(5)上,电解液槽(6)内置有电解液(1)和工件(4);工件(4)与工具阴极(2)分别接电源(7)的正极、负极;且工具阴极(2)通过阴极夹具(11)安装在移动机构(13)上;所述移动机构(13)与计算机(12)相连;计算机(12)控制移动机构(13)的移动。
  2. 根据权利要求1所述的一种电解加工中阴极表面绝缘的装置,其特征在于:所述工具阴极(2)外壁上通过激光扫描或者电化学沉积或者二者结合的方式制备有超疏水结构。
  3. 根据权利要求1所述的一种电解加工中阴极表面绝缘的装置,其特征在于:所述工具阴极(2)为中空结构。
  4. 根据权利要求3所述的一种电解加工中阴极表面绝缘的装置,其特征在于:所述工具阴极(2)内通有气体,该气体通过气泵(8)经气管(9)通入到工具阴极(2)内部。
  5. 根据权利要求2所述的一种电解加工中阴极表面绝缘的装置,其特征在于:所述超疏水结构可吸附电解液(1)中的气泡形成绝缘气膜(5),实现工具阴极(2)外壁的绝缘。
  6. 根据权利要求1所述的一种电解加工中阴极表面绝缘的装置,其特征在于:所述电源(7)为脉冲电源。
  7. 根据权利要求3所述的一种电解加工中阴极表面绝缘的装置,其特征在于:所述工具阴极(2)置于电解液(1)的部分外壁上开设有微小气孔。
PCT/CN2018/094737 2018-06-15 2018-07-06 一种电解加工中阴极表面绝缘的装置 WO2019237443A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/467,673 US11331737B2 (en) 2018-06-15 2018-07-06 Device for insulating cathode surface in electrochemical machining

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810622392.3A CN108817582B (zh) 2018-06-15 2018-06-15 一种用于电解加工中阴极绝缘的装置
CN201810622392.3 2018-06-15

Publications (1)

Publication Number Publication Date
WO2019237443A1 true WO2019237443A1 (zh) 2019-12-19

Family

ID=64142439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094737 WO2019237443A1 (zh) 2018-06-15 2018-07-06 一种电解加工中阴极表面绝缘的装置

Country Status (3)

Country Link
US (1) US11331737B2 (zh)
CN (1) CN108817582B (zh)
WO (1) WO2019237443A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109482991A (zh) * 2019-01-08 2019-03-19 中国工程物理研究院机械制造工艺研究所 一种复合射流微纳加工方法及加工装置
CN114131125B (zh) * 2021-11-30 2023-01-31 清华大学 具有表面疏水结构的工具电极及其制备方法
CN114131127B (zh) * 2021-12-08 2022-12-16 中国航发南方工业有限公司 非固定式阴极电解加工装置
CN114346339B (zh) * 2022-01-28 2024-01-30 温州大学激光与光电智能制造研究院 超声辅助激光与电化学复合多能场协同加工系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020110726A1 (en) * 2000-11-13 2002-08-15 Bernd Busse Electrode
CN101579762A (zh) * 2008-05-14 2009-11-18 通用电气公司 电极装置及电加工方法
CN104903040A (zh) * 2012-11-08 2015-09-09 株式会社放电精密加工研究所 电极、使用了所述电极的电解加工装置、电解加工方法以及利用该方法加工的加工品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284327A (en) * 1962-06-08 1966-11-08 Mitsubishi Electric Corp Electrolytic machining process using a gas-containing electrolyte
JP2002307249A (ja) * 2001-04-10 2002-10-23 Mitsubishi Heavy Ind Ltd 穴加工方法及び穴加工用電極
CN102151924A (zh) * 2011-05-03 2011-08-17 南京航空航天大学 电火花诱导可控烧蚀及电解复合高效加工方法
CN105215487A (zh) * 2015-10-23 2016-01-06 山东大学 一种面向非导电硬脆材料的微细高效加工方法及装置
CN107096970B (zh) * 2017-06-19 2018-10-16 南京航空航天大学 气体绝缘保护套料电解加工阴极系统及加工方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020110726A1 (en) * 2000-11-13 2002-08-15 Bernd Busse Electrode
CN101579762A (zh) * 2008-05-14 2009-11-18 通用电气公司 电极装置及电加工方法
CN104903040A (zh) * 2012-11-08 2015-09-09 株式会社放电精密加工研究所 电极、使用了所述电极的电解加工装置、电解加工方法以及利用该方法加工的加工品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU, MANHONG ET AL.: "Microelectrolysis Machining Experiment Using Hydrophobic Material Sidewall Insulating Electrode", NANOTECHNOLOGY AND PRECISION ENGINEERING, vol. 11, no. 4, 31 July 2013 (2013-07-31), pages 350 *

Also Published As

Publication number Publication date
US11331737B2 (en) 2022-05-17
CN108817582B (zh) 2020-06-09
US20210339324A1 (en) 2021-11-04
CN108817582A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2019237443A1 (zh) 一种电解加工中阴极表面绝缘的装置
Han et al. Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte
CN104014880B (zh) 一种无重铸层微小孔的激光‑电解复合加工装置及方法
WO2016201761A1 (zh) 电化学放电与激光复合加工材料的装置和方法
CN108372335B (zh) 一种密集斜方孔的电解加工方法
CN212552139U (zh) 倒置式气泡辅助排屑超声振动微细电火花加工复合系统
CN106270844B (zh) 微间隙电解辅助激光微细加工方法及装置
CN108971676B (zh) 电解打孔切割一体化加工用管电极与装置及方法
CN109482991A (zh) 一种复合射流微纳加工方法及加工装置
CN102528187B (zh) 倒置式电化学放电加工方法及装置
CN106400079A (zh) 一种铝合金表面多层超疏水复合膜层的制备方法
CN111975145B (zh) 一种抽吸式管电极微细深孔电解加工装置及其方法
CN210451271U (zh) 超声协同气膜屏蔽辅助微细电解的加工装置
CN109482990A (zh) 硝酸钠乙二醇电解液用于铝微细电解加工的方法
CN207447756U (zh) 基于气体驱动的磨料射流辅助电解加工微沟槽的装置
CN104511669B (zh) 大长径比盘状阵列群电极的电化学加工方法
CN115582589A (zh) 一种可控气膜多孔质电极电解电火花加工系统及加工方法
CN111235623A (zh) 钛或钛合金表面电化学刻蚀方法
CN112809456B (zh) 微纳米气泡增强等离子体抛光的方法
TW201722595A (zh) 混氣式電化學微噴射加工方法及其裝置
CN105127528A (zh) 阵列群电极微小孔电加工同轴冲液方法及装置
CN106392217A (zh) 一种微小孔加工方法及设备
CN207447536U (zh) 一种用于电解加工孔的多功能伸缩工具电极
CN102965708B (zh) 一种电化学电极的侧壁绝缘方法
CN205057226U (zh) 阵列群电极微小孔加工同轴冲液装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922805

Country of ref document: EP

Kind code of ref document: A1