WO2019237338A1 - 上报测量信息的方法、配置终端设备的方法和设备 - Google Patents

上报测量信息的方法、配置终端设备的方法和设备 Download PDF

Info

Publication number
WO2019237338A1
WO2019237338A1 PCT/CN2018/091516 CN2018091516W WO2019237338A1 WO 2019237338 A1 WO2019237338 A1 WO 2019237338A1 CN 2018091516 W CN2018091516 W CN 2018091516W WO 2019237338 A1 WO2019237338 A1 WO 2019237338A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal device
network device
signal quality
measurement information
Prior art date
Application number
PCT/CN2018/091516
Other languages
English (en)
French (fr)
Inventor
杨宁
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112020025219-0A priority Critical patent/BR112020025219A2/pt
Priority to AU2018427414A priority patent/AU2018427414B2/en
Priority to KR1020207033234A priority patent/KR20200143738A/ko
Priority to CA3100759A priority patent/CA3100759A1/en
Priority to CN201880090955.7A priority patent/CN111837416A/zh
Priority to MX2020013295A priority patent/MX2020013295A/es
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP18922677.2A priority patent/EP3780708B1/en
Priority to PCT/CN2018/091516 priority patent/WO2019237338A1/zh
Priority to JP2020564926A priority patent/JP2021525038A/ja
Priority to CN202011574524.3A priority patent/CN112738825A/zh
Publication of WO2019237338A1 publication Critical patent/WO2019237338A1/zh
Priority to US17/093,841 priority patent/US20210067999A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention relate to the field of communications, and more specifically, to a method for reporting measurement information, a method and device for configuring a terminal device.
  • LTE long-term evolution
  • MN master node
  • the addition of the SN node is usually based on the measurement results reported by the UE, and the measurement results need to be reported after security activation. Therefore, in general, the UE will first enter the non-DC mode and then establish a bearer. If the measurement results are satisfied, SN can be added Requirements, and then re-configured into the DC mode through Radio Resource Control (RRC) connection, that is, additional RRC signaling is required to add SN nodes, which increases the signaling overhead, and requires the change of bearer type. Data may be lost due to changes in the bearer.
  • RRC Radio Resource Control
  • a method for reporting measurement information and a method and device for configuring terminal equipment, so that when an idle or inactive terminal equipment enters a dual link mode, it can effectively save signaling overhead, and can avoid Changes cause data loss.
  • a method for reporting measurement information is provided, which is applied to a terminal device in an idle state or an inactive state.
  • the method includes:
  • the terminal device measures signal quality of at least one cell
  • the terminal device reports measurement information according to the signal quality of each of the at least one cell.
  • the method before the terminal device measures a signal quality of at least one cell, the method further includes:
  • the first instruction information includes at least one of the following information:
  • An identifier of at least one cell group to which the at least one cell belongs an identifier of the at least one cell, a measurement frequency, and a subcarrier interval.
  • the terminal device reporting measurement information according to the signal quality of each of the at least one cell includes:
  • the terminal device determines a threshold value
  • the terminal device generates and reports the measurement information according to whether the signal quality of each cell meets the threshold.
  • the measurement information includes an identifier of the target cell group and / or an identifier of the target cell
  • each cell group in the target cell group includes at least one cell that meets the threshold
  • the target cell is A cell that meets the threshold value in the at least one cell.
  • the measurement information includes second indication information, and the second indication information is used to indicate whether the signal quality of each cell meets a threshold value.
  • the second indication information includes:
  • At least one bit sequence, and the first bit sequence in the at least one bit sequence is used to indicate whether the signal quality of each cell in the first cell group in the at least one cell group meets the threshold.
  • the presence of at least one bit in each bit sequence of the at least one bit sequence indicates that the signal quality of the cell meets the threshold.
  • the second indication information further includes:
  • the first bit sequence includes a first value and / or a second value, where the first value is used to indicate that a signal quality of a cell does not meet the threshold, and the second value is used to indicate a cell The signal quality meets this threshold.
  • the first value is 0 and the second value is 1.
  • the method before the terminal device reports measurement information according to the signal quality of each of the at least one cell, the method further includes:
  • the terminal device receives the threshold value broadcast by the network device.
  • the threshold value is a pre-configured threshold value.
  • the threshold includes:
  • Reference signal received power RSRP threshold and / or reference signal received quality RSRQ threshold are reference signal received power RSRP threshold and / or reference signal received quality RSRQ threshold.
  • the terminal device reporting measurement information according to the signal quality of each of the at least one cell includes:
  • the terminal device reports the signal quality of each of the above-mentioned cells to the network device in the order of the signal quality from high to low.
  • the terminal device reporting measurement information according to the signal quality of each of the at least one cell includes:
  • the terminal device reports the measurement information to the network device in message 5 MSG5 or a security mode command or measurement report.
  • the method before the terminal device reports measurement information according to the signal quality of each of the at least one cell, the method further includes:
  • the terminal device sends third instruction information to the network device, and the third instruction information is used to instruct the terminal device to report the measurement information to the network device in a message 5 MSG5 or a security mode command or measurement report.
  • the terminal device sends third instruction information to the network device, including:
  • the terminal device sends a message 3 MSG3 to the network device, and the MSG3 includes the third indication information.
  • a method for configuring a terminal device including:
  • the network device receives measurement information sent by the terminal device, where the measurement information is information generated by the terminal device in an idle state or a non-connected state according to the signal quality of each cell in at least one cell;
  • the network device configures an auxiliary network device and / or an auxiliary serving cell for the terminal device according to the measurement information.
  • the method before the network device receives the measurement information sent by the terminal device, the method further includes:
  • first instruction information to the terminal device in an idle or inactive state, where the first instruction information is used by the terminal device to determine the at least one cell;
  • the first instruction information includes at least one of the following information:
  • An identifier of at least one cell group to which the at least one cell belongs an identifier of the at least one cell, a measurement frequency, and a subcarrier interval.
  • the method before the network device receives the measurement information sent by the terminal device, the method further includes:
  • the network device broadcasts a threshold value to the terminal device, and the threshold value is used by the terminal device to generate the measurement information according to whether the signal quality of each cell meets the threshold value.
  • the measurement information includes an identifier of the target cell group and / or an identifier of the target cell.
  • Each cell group in the target cell group includes at least one cell that meets a threshold value, and the target cell is the foregoing A cell that meets a threshold value in at least one cell.
  • the measurement information includes second indication information, and the second indication information is used to indicate whether the signal quality of each cell meets a threshold value.
  • the second indication information includes:
  • At least one bit sequence, and the first bit sequence in the at least one bit sequence is used to indicate whether the signal quality of each cell in the first cell group in the at least one cell group meets the threshold.
  • the presence of at least one bit in each bit sequence of the at least one bit sequence indicates that the signal quality of the cell meets the threshold.
  • the second indication information further includes:
  • the first bit sequence includes a first value and / or a second value, where the first value is used to indicate that a signal quality of a cell does not meet the threshold, and the second value is used to indicate a cell The signal quality meets this threshold.
  • the first value is 0 and the second value is 1.
  • the threshold includes:
  • Reference signal received power RSRP threshold and / or reference signal received quality RSRQ threshold are reference signal received power RSRP threshold and / or reference signal received quality RSRQ threshold.
  • the network device receiving the measurement information sent by the terminal device includes:
  • the network device receives the signal quality of each of the above-mentioned cells reported by the terminal device in the order of high to low signal quality.
  • the network device receiving the measurement information sent by the terminal device includes:
  • the network device receives the measurement information carried in the MSG5 message or the security mode command or measurement report sent by the terminal device.
  • the method before the network device receives the measurement information sent by the terminal device, the method further includes:
  • the network device receives third instruction information sent by the terminal device, and the third instruction information is used to instruct the terminal device to report the measurement information to the network device in a message 5 MSG5 or a security mode command or measurement report.
  • the network device receiving the third instruction information sent by the terminal device includes:
  • the network device receives the message 3 MSG3 sent by the terminal device, and the MSG3 includes the third indication information.
  • a communication device for executing the method in any one of the first to second aspects or the method in any one of the foregoing possible implementation manners.
  • the communication device includes:
  • the communication device is a terminal device, and the terminal device is configured to execute the foregoing first aspect or a method in any of the foregoing possible implementation manners of the first aspect.
  • the communication device is a network device, and the network device is configured to execute the method in the foregoing second aspect or any one of the foregoing possible implementation manners of the second aspect.
  • a communication device including:
  • the processor is configured to call and run a computer program from the memory, where the computer program is configured to execute the method in any one of the first to second aspects or the method in any one of the foregoing possible implementation manners.
  • the communication device further includes:
  • a memory for storing the computer program.
  • the communication device is a terminal device, and the terminal device is configured to execute the foregoing first aspect or a method in any of the foregoing possible implementation manners of the first aspect.
  • the communication device is a network device, and the network device is configured to execute the method in the foregoing second aspect or any one of the foregoing possible implementation manners of the second aspect.
  • a chip is provided for executing the method in any one of the first to second aspects or the method in any one of the possible implementation manners described above.
  • the chip includes:
  • the processor is configured to call and run a computer program from the memory, where the computer program is configured to execute the method in any one of the first to second aspects or the method in any one of the foregoing possible implementation manners.
  • the chip further includes:
  • a memory for storing the computer program.
  • a computer-readable storage medium is provided, where the storage medium is used to store a computer program, and the computer program is used to execute the method of any one of the first to second aspects, or any of the foregoing.
  • the storage medium is used to store a computer program
  • the computer program is used to execute the method of any one of the first to second aspects, or any of the foregoing.
  • a computer program product including computer program instructions, where the computer program is configured to execute the method of any one of the first to second aspects, or any one of the foregoing possible implementation manners. method.
  • a computer program that, when run on a computer, causes the computer to execute the method in any one of the first to second aspects or the method in any one of the possible implementation manners described above.
  • a communication system including:
  • Terminal equipment and network equipment in idle or inactive state
  • the terminal device is configured to: measure the signal quality of at least one cell; report measurement information according to the signal quality of each cell in the at least one cell;
  • the network device is configured to: receive measurement information sent by a terminal device; and configure an auxiliary network device and / or an auxiliary serving cell for the terminal device according to the measurement information.
  • the terminal device is configured to execute the method of the foregoing first aspect or the method in any one of the foregoing possible implementation manners
  • the network device is configured to execute any of the foregoing second aspects.
  • a terminal device in an idle state or an inactive state directly measures the signal quality of the cell and reports measurement information.
  • the configuration of the terminal device with an auxiliary network device or an auxiliary serving cell can effectively reduce the delay and reduce the signaling overhead.
  • the network device broadcasts the measurement demand information to the terminal device in the form of broadcasting, that is, the cell group that the terminal device needs to measure, thereby realizing the terminal device to report the measurement information and the network device to configure the terminal device, so that the terminal in the idle or inactive state
  • the network device first enters the non-DC mode, establishes a bearer, and then reconfigures to enter the DC mode through the RRC connection, which can effectively save signaling overhead.
  • the network device can also use the signaling existing in the competitive random access process to enable the terminal device to report measurement information and the network device to configure the terminal device, so that when the idle or inactive terminal device enters the dual link mode, it can Effectively saves signaling overhead, and can avoid data loss due to change of bearer type.
  • the UE is configured with the first indication information in the idle or inactive state, and the UE reports the measurement information before the dedicated bearer is established to assist the network in configuring the DC and selecting the SN node.
  • the dedicated bearer is established to assist the network in configuring the DC and selecting the SN node.
  • FIG. 1 is an example of an application scenario according to an embodiment of the present invention.
  • FIG. 2 is an example of an EN-DC overall networking architecture according to an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of an MN and an SN under dual connectivity according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a contention-based random access according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of reporting measurement information according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a configuration terminal device according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a network device according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a communication device according to an embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a chip according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of a communication system according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a system 100 according to an embodiment of the present application.
  • the terminal device 110 is connected to the first network device 130 in the first communication system and the second network device 120 in the second communication system.
  • the first network device 130 is a long-term evolution (Long Terminal Evolution , LTE)
  • the second network device 120 is a network device under New Radio (NR).
  • LTE Long Terminal Evolution
  • NR New Radio
  • the first network device 130 and the second network device 120 may include multiple cells.
  • FIG. 1 is an example of a communication system in the embodiment of the present application, and the embodiment of the present application is not limited to that shown in FIG. 1.
  • the communication system adapted in the embodiment of the present application may include at least multiple network devices under the first communication system and / or multiple network devices under the second communication system.
  • the system 100 shown in FIG. 1 may include a primary network device under a first communication system and at least one secondary network device under a second communication system. At least one auxiliary network device is respectively connected to the one main network device to form a multi-connection, and is respectively connected to the terminal device 110 to provide services for it. Specifically, the terminal device 110 may establish a connection through the primary network device and the secondary network device at the same time.
  • connection established by the terminal device 110 and the primary network device is a primary connection
  • connection established by the terminal device 110 and the auxiliary network device is a secondary connection
  • the control signaling of the terminal device 110 may be transmitted through the primary connection
  • the data of the terminal device 110 may be transmitted simultaneously through the primary connection and the secondary connection, or may be transmitted only through the secondary connection.
  • first communication system and the second communication system in the embodiments of the present application are different, but the specific types of the first communication system and the second communication system are not limited.
  • the first communication system and the second communication system may be various communication systems, such as: a Global System for Mobile (GSM) system, a Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Time Division Duplex (TDD) ), Universal Mobile Telecommunication System (UMTS), etc.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the first network device 130 is a primary network device
  • the second network device 120 is an auxiliary network device.
  • the first network device 130 may be an LTE network device, and the second network device 120 may be an NR network device.
  • the first network device 130 may be an NR network device
  • the second network device 120 may be an LTE network device.
  • both the first network device 130 and the second network device 120 may be NR network devices.
  • the first network device 130 may be a GSM network device, a CDMA network device, etc.
  • the second network device 120 may also be a GSM network device, a CDMA network device, or the like.
  • the first network device 130 may be a macro base station (Macrocell)
  • the second network device 120 may be a microcell base station (Microcell), a picocell base station (Picocell), or a femtocell base station (Femtocell).
  • the first network device 130 and the second network device 120 may be any access network device.
  • the access network device may be a Global System (GSM) system or a base station (Base Transceiver Station (BTS)) in a Code Division Multiple Access (CDMA) system. It is a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, and it can also be an evolutionary base station (Evolutionary Node B, eNB or eNodeB).
  • GSM Global System
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • NodeB, NB base station
  • WCDMA Wideband Code Division Multiple Access
  • the access network device may also be a next-generation radio access network (Next Generation Radio Access Network, NGRAN), or a base station (gNB) in an NR system, or a cloud radio access network (Cloud Radio)
  • Next Generation Radio Access Network NGRAN
  • gNB base station
  • Cloud Radio Cloud Radio
  • a wireless controller in Access Network CRAN
  • the access network device may be a relay station, an access point, a vehicle-mounted device, a wearable device, or a public land mobile network (PLMN) in a future evolution Network equipment, etc.
  • PLMN public land mobile network
  • the technical solution in this embodiment of the present application can be applied to wide area long term evolution (LTE) coverage and NR Island cover pattern.
  • LTE long term evolution
  • a tightly interworking working mode between LTE and NR includes: Enhanced Mobile Ultra Broadband (eMBB), Ultra-Reliable and Low Latency Communication (URLLC), Mass Machine Communication (massive machine type communication) , MMTC).
  • eMBB aims to obtain multimedia content, services, and data for users, and its demand is growing rapidly. Because eMBB may be deployed in different scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety assurance, etc.
  • Typical characteristics of mMTC include: high connection density, small data volume, delay-insensitive services, low cost of modules, and long service life.
  • the terminal device 110 may be any terminal device.
  • the terminal equipment can communicate with one or more core networks (Radio Access Network, RAN) via the radio access network (RAN). It can also be called access terminal, user equipment (UE), user unit, user Station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • RAN Radio Access Network
  • UE user equipment
  • UE user unit
  • user Station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal, terminal, wireless communication device, user agent, or user device.
  • it can be a cell phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and a wireless communication function.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Processing
  • FIG. 2 is a schematic block diagram of an EN-DC network architecture 200 according to an embodiment of the present invention.
  • the network architecture 200 takes LTE-NR Dual Connectivity (EN-DC) as an example.
  • LTE is the master node (Master Node, MN)
  • NR is the slave node (Secondary Node, SN).
  • MN is also called MeNB
  • SeNB SeNB
  • an NR network architecture is added to the LTE architecture to form a network architecture 200.
  • the network architecture 200 may include MME / S-GW211, MME / S-GW212, and gNB221 , GNB 222, eNB 231, eNB 232.
  • MME / S-GW 211 is connected to gNB 221 and gNB 222 through S1-U interface
  • MME / S-GW 211 is connected to eNB 231 and eNB 232 through S1 interface.
  • MME / S-GW 212 is connected to gNB 221 and gNB 222 through S1-U interface, and MME / S-GW 212 is connected to eNB 231 and eNB 232 through S1 interface.
  • the gNB 221 and gNB 222 are connected through X2-U.
  • eNBs 231 and 232 are connected via X2.
  • eNB 231 and gNB 221 are connected through X2.
  • the gNB 222 and the eNB 232 are connected via X2. In other words, the eNB and the eNB are directly interconnected using the X2 interface, and the eNB is connected to the EPC through the S1 interface.
  • the S1 interface supports many-to-many connections between MME / S-GW and eNB, that is, one eNB can be connected to multiple MME / S-GW, and multiple eNBs can also be connected to the same MME / S-GW at the same time.
  • gNB and gNB are directly interconnected using an X2-U interface, and gNB is connected to the EPC through an S1-U interface.
  • the S1-U interface supports many-to-many connections between MME / S-GW and gNB, that is, one gNB can be connected to multiple MME / S-GW, and multiple gNBs can also be connected to the same MME / S-GW at the same time.
  • MME / S-GW 211 and MME / S-GW 212 belong to the packet core evolution (EPC) of the LTE network, gNB 221, gNB 222, eNB 231, and eNB.
  • EPC packet core evolution
  • 232 constitutes an Evolved Universal Terrestrial Radio Access Network (Evolved Universal Terrestrial Radio Access Network, E-UTRAN).
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the embodiments of the present application are not limited thereto.
  • the MME / S-GW 211 and the MME / S-GW 212 may be replaced by any core network device that communicates with the access network device.
  • the core network device may be a 5G core network device, for example, an Access and Mobility Management Function (AMF), and for example, a Session Management Function (SMF).
  • the core network device may also be an Evolved Packet Core (EPC) device of the LTE network, for example, Session Management Function + Core Network Data Gateway (Session Management Function + Core Packet + Gateway, SMF + PGW-C )device.
  • EPC Evolved Packet Core
  • the SMF + PGW-C can simultaneously realize the functions that the SMF and the PGW-C can achieve.
  • the AMF may perform information interaction with the SMF.
  • the SMF obtains some information on the radio access network side from the AMF.
  • the network architecture 200 shown in FIG. 2 is only an exemplary description of a dual-connection network architecture, and the embodiment of the present invention is not limited thereto.
  • a simple modification of the network architecture 200 may also be performed.
  • the gNB 221 and / or gNB 222 may not directly communicate with the EPC (ie, MME / S-GW211 and MME / S-GW (212).
  • the EN-DC shown in FIG. 2 is only an example of a dual-link network architecture.
  • the DC mode in the embodiment of the present invention includes, but is not limited to, EN-DC, NE-DC, 5GC-EN-DC, and NR. DC.
  • the LTE node acts as the MN node, and the NR node acts as the SN node, which is connected to the EPC core network.
  • the NR acts as the MN node and the eLTE acts as the SN node, which is connected to the 5GC core network.
  • eLTE acts as the MN node and NR acts as the SN node, which connects to the 5GC core network.
  • NRDC NR acts as the MN node and NR acts as the SN node, which is connected to the 5GC core network.
  • the data plane radio bearer can be independently served by the MN or SN, or it can be served by both the MN and the SN.
  • MCG bearer that is, the serving cell group controlled by MN
  • SCG bearer that is, the SN controlled serving cell group
  • split bearer also known as fork bearer.
  • it can be divided into MCG split bearer and SCG split bearer.
  • MCG split bearer and SCG split bearer are mainly due to the different functions of the Packet Data Convergence Protocol (PDCP) layer and the keys of the PDCP layer.
  • PDCP Packet Data Convergence Protocol
  • bearer harmony is proposed in order to minimize the change between MCG split bearer and SCG split bearer, reduce the difficulty of standardization, implementation and test work, and minimize the differentiation of market product characteristics.
  • bearer harmony is proposed. The concept is shown in Figure 3.
  • MCG split bearer and SCG split bearer are unified into a bearer type, that is, split bearer, that is, the split form is transparent to the UE.
  • MCG bearers, SCG bearers, and split bearers served by MN and / or SN undergo corresponding evolved universal terrestrial radio access.
  • E-UTRA Radio Link Control
  • NR New Radio
  • RLC Radio Link Control
  • MAC Media Access Control
  • both the MN and the SN have an S1-U connection.
  • the data flow is transmitted independently through the MN and the SN.
  • the SN plays the role of load sharing.
  • This architecture is called the 1a method.
  • the method has no special requirements for backhaul between base stations, and no special configuration is required for the layer 2 protocol layer.
  • the core network needs to participate. And there is a problem that data may be interrupted.
  • This architecture is called the 3c method. In this mode, users obtain downlink data from the two systems, which is convenient for load sharing and resource coordination functions. It is also beneficial to improve User rate. In addition, the handover process has less impact on the core network, and because there are multiple wireless links, the handover delay is low.
  • the disadvantages are high requirements for backhaul between base stations, high complexity of layer 2 protocols, and the need for functions such as flow control for backhaul between base stations.
  • the split bearer method is only applicable in the downlink direction. In the upstream direction, the data stream is not divided and can be transmitted via the MN or SN.
  • Each sublayer shown in FIG. 3 can send data to a specified layer of the receiving end according to the data of the protocol data unit.
  • the unprocessed data that enters each sub-layer is called a service data unit (SDU), and the data that forms a specific format after being processed by the sub-layer is called a protocol data unit (PDU).
  • SDU is an information unit transmitted from a higher-level protocol to a lower-level protocol.
  • the original data of the SDU is the PDU of the upper layer of the protocol. In other words, the PDU formed by this layer is the SDU of the next layer.
  • each logical channel of each terminal device has an RLC entity (RLC entity).
  • RLC entity Data received by the RLC entity from the PDCP layer or data sent to the PDCP layer can be referred to as RLC SDU (or PDCP PDU).
  • RLC SDU or PDCP PDU
  • the data received by the RLC entity from the MAC layer or the data sent to the MAC layer may be called RLC PDU (or MAC SDU).
  • the RLC layer is located between the PDCP layer and the MAC layer.
  • the RLC layer can communicate with the PDCP layer through a Service Access Point (SAP) and communicate with the MAC layer through a logical channel.
  • SAP Service Access Point
  • the embodiments of the present application are not limited thereto.
  • FIG. 4 shows a schematic flowchart of a method 300 for reporting measurement information according to an embodiment of the present application.
  • the method 300 may be executed by a terminal device.
  • the terminal device shown in FIG. 4 may be the terminal device shown in FIG. 1, and the terminal device may be an idle or inactive terminal device.
  • the network device shown in FIG. 4 may be shown in FIG. 1. Access network equipment.
  • the method 300 includes some or all of the following:
  • the terminal device measures signal quality of at least one cell.
  • the terminal device reports measurement information according to a signal quality of each cell in the at least one cell.
  • a terminal device in an idle state or an inactive state directly measures the signal quality of the cell and reports measurement information.
  • the configuration of the terminal device with an auxiliary network device or an auxiliary serving cell can effectively reduce the delay and reduce the signaling overhead.
  • the terminal device involved in this embodiment of the present application may be a terminal device in an idle state (RRC_IDLE) or an inactive state (RRC_INACTIVE).
  • the RRC_INACTIVE state is different from the RRC_IDLE and RRC_ACTIVE states.
  • the core network initiates paging, and the core network configures the paging area. Its mobility is cell selection or cell reselection based on terminal equipment.
  • RRC_CONNECTED state there is an RRC connection between the terminal device and the network device, and the network device and the terminal device store the AS context of the terminal device.
  • the location of the terminal equipment acquired by the network equipment is specific to the cell level. Its mobility is mobility controlled by network equipment.
  • the RRC_INACTIVE state there is a connection between the core network (CN) and the network device, the AS context of the terminal device exists on a certain network device, the radio access network (Radio Access Network, RAN) triggers page, and the RAN manages the RAN
  • the paging area that is, the location of the terminal equipment obtained by the network device is at the paging area level of the RAN. Its mobility is cell selection or cell reselection based on terminal equipment.
  • the connection between the terminal device in the RRC_INACTIVE state and the network device is in the disconnected state, and the network device retains the context information of the terminal device, which is used to quickly establish the connection between the terminal device and the network device. connection.
  • the terminal device receives first indication information broadcasted by a network device; the terminal device determines the at least one cell according to the first indication information; wherein the first indication information includes at least one of the following information: the at least one An identifier of at least one cell group to which a cell belongs, an identifier of the at least one cell, a measurement frequency, and a subcarrier interval.
  • the terminal device receives the first indication information broadcasted by the network device, obtains measurement information according to the first indication information, and finally changes the The measurement information is reported to the network equipment.
  • the first indication information may indicate an id of each cell group in the at least one cell group.
  • the terminal device supports a dual connection (DC) mode
  • the first instruction information is received.
  • CG Cell Group
  • the CG may be equivalent to a network node or a network device.
  • the determination of the at least one cell by the terminal device based on receiving the first indication information broadcast by the network device is merely an example.
  • the terminal device may also determine the at least one cell based on other methods, such as , Pre-configuration information.
  • the network device broadcasts the measured demand information to the terminal device in a broadcast form, so that the terminal device determines the cell group or cell that needs to be measured, and then the terminal device reports the measurement information and the network device configures the terminal device.
  • an idle or inactive terminal device enters the dual-link mode, compared with the network device in the prior art, it first enters the non-DC mode, establishes a bearer, and then reconfigures into the DC mode through an RRC connection, which can effectively save signaling overhead. .
  • the terminal device determines a threshold value; the terminal device generates and reports the measurement information according to whether the signal quality of each cell meets the threshold value.
  • the measurement information includes an identity of the target cell group and / or an identity of the target cell, and each cell group in the target cell group includes at least one cell satisfying the threshold value, and the target cell is the at least one cell described above. A cell that meets the threshold.
  • the measurement information includes second indication information, and the second indication information is used to indicate whether the signal quality of each cell meets a threshold value.
  • the second indication information includes: at least one bit sequence, and the first bit sequence in the at least one bit sequence is used to indicate whether the signal quality of each cell in the first cell group in the at least one cell group is Meet this threshold.
  • the presence of at least one bit in each bit sequence of the at least one bit sequence indicates that the signal quality of the cell meets the threshold.
  • the second indication information further includes: a correspondence between the first bit sequence and an identifier of the first cell group.
  • the second indication information further includes a correspondence between each bit sequence in the at least one bit sequence and at least one cell group identifier.
  • the first bit sequence includes a first value and / or a second value, where the first value is used to indicate that the signal quality of the cell does not meet the threshold, and the second value is used to indicate that the signal quality of the cell meets The threshold.
  • the first value is 0 and the second value is 1.
  • the method further includes: the terminal device receiving the threshold value broadcast by the network device.
  • the threshold is a pre-configured threshold.
  • the threshold value includes: a Reference Signal Received Power (RSRP) Threshold and / or a Reference Signal Received Quality (RSRQ) Threshold.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the measurement information generated by the terminal device based on the threshold value and including the second indication information for reporting is merely an exemplary description, and the embodiment of the present application is not limited thereto.
  • the terminal device may also report the signal quality of each of the above-mentioned cells to the network device in the order of the signal quality from high to low.
  • the terminal device may also report the signal quality of each of the above-mentioned cells to the network device in the order of low to high signal quality.
  • the network device may also use the signaling existing in the competitive random access process to report measurement information to the terminal device and configure the terminal device with the network device, so that the terminal device in the idle state or inactive state enters the dual link mode. , Can effectively save the signaling overhead, and can avoid data loss due to the change of the bearer type.
  • the terminal device may report the measurement information to the network device in a MSG5 security mode command (Securitymodecomplete) or a measurement report (measurement report).
  • a MSG5 security mode command Securitymodecomplete
  • a measurement report Measurement report
  • the terminal device sends third instruction information to the network device, where the third instruction information is used to instruct the terminal device to send the third device information to the network device.
  • the measurement information is reported to the network device in message 5 MSG5 or a security mode command (Securitymodecomplete) or a measurement report (measurement report).
  • the terminal device sends a message 3 MSG3 to the network device, and the MSG3 includes the third indication information.
  • FIG. 5 is a schematic flowchart of a contention-based random access according to an embodiment of the present invention.
  • the terminal device After the cell search process, the terminal device has achieved downlink synchronization with the cell, so the terminal device can receive downlink data. However, the terminal equipment can only perform uplink transmission if it obtains uplink synchronization with the cell.
  • the terminal device establishes a connection with the cell through a random access procedure (Random Access Procedure) and obtains uplink synchronization.
  • the main purpose of random access is to obtain uplink synchronization, and to assign a unique identifier for the terminal device to the cell wireless network temporary identifier (Cell Radio Temporary Identifier, C-RNTI).
  • C-RNTI Cell Radio Temporary Identifier
  • the process of competing for random access includes:
  • the terminal device sends a message 1 (MSG1) to the network device, where the MSG1 may carry a random access preamble (Preamble).
  • the network device may send a response message in response to the MSG1, that is, message 2 (MSG2).
  • the network device may calculate a Random Access Wireless Network Temporary Identifier (RA-RNTI) according to the resource location of the MSG1, and use the RA-RNTI to scramble the MSG2.
  • RA-RNTI Random Access Wireless Network Temporary Identifier
  • the terminal device may send a message 3 (MSG3) to the network device according to the MSG2.
  • the MSG3 may optionally carry identification information of a terminal device and the like.
  • the network device may send a message 4 (MSG4) to the terminal according to the MSG3.
  • MSG4 message 4
  • the terminal may send a message 5 (MSG5) to the network device according to the MSG4, and then perform subsequent data transmission.
  • the terminal device enters the security mode and sends the security mode completion to the network device, and further sends a measurement report to the network device.
  • the terminal device sends a preamble to the network device to tell the network device that there is a random access request, and at the same time enables the network device to estimate the transmission delay between the terminal device and the terminal device and to calibrate the uplink timing.
  • the terminal device selects a preamble index (preamble index) and a physical random access channel (Physical Random Access Channel (PRACH)) resource for transmitting the preamble, and further, the preamble uploads and transmits on the PRACH.
  • the network device will notify all terminal devices by broadcasting a system information system information block (SIB), which resources are allowed to transmit a preamble, for example, SIB2.
  • SIB system information system information block
  • the network device sends a random access response (Random Access Response (RAR)) to the terminal device.
  • RAR Random Access Response
  • the terminal device can monitor the corresponding physical downlink control channel (Physical Downlink) in the RAR time window according to the Random Access Radio Network Temporary Network Identifier (RA-RNTI) value.
  • RA-RNTI Random Access Radio Network Temporary Network Identifier
  • Control Channel PCCH
  • the terminal device sends a message 3 (Msg3) to the network device.
  • Msg3 The terminal device can carry its own unique identifier in Msg3, for example, the Cell Radio Network Temporary Identifier (C-RNTI), and for example, the message from the core network.
  • C-RNTI Cell Radio Network Temporary Identifier
  • S-TMSI Terminal equipment identification
  • the terminal device may carry the third indication information mentioned above in the Msg3.
  • the network device sends a contention resolution message to the terminal device. Specifically, in the conflict resolution mechanism, the network device carries the unique identifier of the winning terminal device in the contention resolution (Msg4). The other terminal devices that did not win the conflict resolution will re-initiate random access.
  • Msg4 the unique identifier of the winning terminal device in the contention resolution
  • the terminal device After receiving the Msg4 sent by the network device, the terminal device sends Msg5 to the network device, and further receives the security mode command sent by the network device, enters the security mode and sends the security mode completion to the network device, and then sends a measurement report to the network device.
  • the terminal device may carry the above measurement information in an Msg5 or a security mode command or a measurement report.
  • the second instruction information mentioned above is carried in the Msg5 or the safe mode command or measurement report.
  • the security mode command or measurement report carries a reference signal received power (RSRP) value and / or a reference signal received quality (RSRQ) value of each cell measured by the terminal device.
  • RSRP reference signal received power
  • RSSQ reference signal received quality
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • the method for reporting measurement information according to the embodiment of the present application is described in detail from the perspective of reporting measurement information by the terminal device in combination with FIG. 2 to FIG. 5 above. Method for configuring terminal equipment by network equipment after receiving measurement information reported by terminal equipment.
  • FIG. 6 shows a schematic flowchart of a method 400 for configuring a terminal device according to an embodiment of the present application.
  • the method 400 may be performed by a network device as shown in FIG. 1.
  • the method 400 includes:
  • the network device receives measurement information sent by the terminal device, where the measurement information is information generated by the terminal device in an idle state or a non-connected state according to a signal quality of each cell in at least one cell.
  • the network device configures an auxiliary network device and / or an auxiliary serving cell for the terminal device according to the measurement information.
  • the network device selects an appropriate auxiliary network device and / or auxiliary cell for addition based on the measurement information reported by the terminal device.
  • the network device broadcasts first instruction information to the terminal device in an idle or inactive state, where the first instruction information is used by the terminal device to determine the at least A cell; wherein the first indication information includes at least one of the following information:
  • An identifier of at least one cell group to which the at least one cell belongs an identifier of the at least one cell, a measurement frequency, and a subcarrier interval.
  • the network device broadcasts a threshold value to the terminal device, and the threshold value is used by the terminal device according to whether the signal quality of each cell meets the threshold The value generates this measurement information.
  • the measurement information includes an identifier of the target cell group and / or an identifier of the target cell, and each cell group in the target cell group includes at least one cell that meets a threshold value, and the target cell is one of the at least one cell. A cell that meets the threshold.
  • the measurement information includes second indication information, and the second indication information is used to indicate whether the signal quality of each cell meets a threshold value.
  • the second indication information includes at least one bit sequence, and the first bit sequence in the at least one bit sequence is used to indicate whether a signal quality of each cell in the first cell group in the at least one cell group meets The threshold.
  • the presence of at least one bit in each bit sequence of the at least one bit sequence indicates that the signal quality of the cell meets the threshold.
  • the second indication information further includes a correspondence between the first bit sequence and an identifier of the first cell group.
  • the first bit sequence includes a first value and / or a second value, where the first value is used to indicate that the signal quality of the cell does not meet the threshold, and the second value is used to indicate that the signal quality of the cell meets The threshold.
  • the first value is 0 and the second value is 1.
  • the threshold value includes an RSRP threshold value and / or an RSRQ threshold value.
  • the network device receives the signal quality of each of the above-mentioned cells reported by the terminal device in the order of high to low signal quality.
  • the network device receives the measurement information carried in the MSG5 message or the security mode command or measurement report sent by the terminal device.
  • the network device receives third instruction information sent by the terminal device, and the third instruction information is used to instruct the terminal device to carry the measurement information in the message 5 MSG5 or The security mode command or measurement report is reported to the network device.
  • the network device receives the message 3 MSG3 sent by the terminal device, and the MSG3 includes the third indication information.
  • FIG. 7 is a schematic block diagram of a terminal device 500 according to an embodiment of the present application.
  • the terminal device 500 may include:
  • the terminal device 500 is in an idle state or an inactive state.
  • the terminal device 500 includes:
  • a measurement unit 520 configured to measure a signal quality of at least one cell
  • the communication unit 510 is configured to report measurement information according to a signal quality of each of the at least one cell.
  • the communication unit 510 is further configured to:
  • first indication information broadcasted by a network device determining the at least one cell according to the first indication information; wherein the first indication information includes at least one of the following information: an identifier of at least one cell group to which the at least one cell belongs The identifier, measurement frequency, and subcarrier interval of the at least one cell.
  • the communication unit 510 is specifically configured to: determine a threshold value; and generate and report the measurement information according to whether the signal quality of each cell meets the threshold value.
  • the measurement information includes an identity of the target cell group and / or an identity of the target cell, and each cell group in the target cell group includes at least one cell satisfying the threshold, and the target cell is the at least one cell described above A cell that meets the threshold.
  • the measurement information includes second indication information, and the second indication information is used to indicate whether the signal quality of each cell meets a threshold value.
  • the second indication information includes at least one bit sequence, and the first bit sequence in the at least one bit sequence is used to indicate whether a signal quality of each cell in the first cell group in the at least one cell group meets The threshold.
  • the presence of at least one bit in each bit sequence of the at least one bit sequence indicates that the signal quality of the cell meets the threshold.
  • the second indication information further includes a correspondence between the first bit sequence and an identifier of the first cell group.
  • the first bit sequence includes a first value and / or a second value, where the first value is used to indicate that the signal quality of the cell does not meet the threshold, and the second value is used to indicate that the signal quality of the cell meets The threshold.
  • the first value is 0 and the second value is 1.
  • the communication unit 510 before the communication unit 510 reports measurement information according to the signal quality of each cell, the communication unit 510 is further configured to:
  • the threshold is a pre-configured threshold.
  • the threshold value includes: an RSRP threshold value and / or an RSRQ threshold value.
  • the communication unit 510 is specifically configured to report the signal quality of each of the above-mentioned cells to the network device in the order of high to low signal quality.
  • the communication unit 510 is specifically configured to: report the measurement information to the network device in a message 5 MSG5 or a security mode command or measurement report.
  • the communication unit 510 is further configured to send third instruction information to a network device, where the third instruction information is used to instruct the terminal device to carry the measurement information in Message 5 is reported to the network device in the MSG5 or security mode command or measurement report.
  • the communication unit 510 is specifically configured to:
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the terminal device 500 shown in FIG. 7 may correspond to a corresponding subject in executing the method 300 in the embodiment of the present application, and the foregoing and other operations and / or functions of each unit in the terminal device 500 are respectively implemented in FIG. 1.
  • the corresponding processes in each method are not repeated here.
  • FIG. 8 is a schematic block diagram of a network device 600 according to an embodiment of the present application.
  • the network device 600 may include:
  • the communication unit 610 is configured to receive measurement information sent by a terminal device, where the measurement information is information generated by the terminal device in an idle state or a non-connected state according to a signal quality of each cell in at least one cell;
  • a configuration unit 620 is configured to configure an auxiliary network device and / or an auxiliary serving cell for the terminal device according to the measurement information.
  • the communication unit 610 before the communication unit 610 receives the measurement information sent by the terminal device, the communication unit 610 is further configured to broadcast first instruction information to the terminal device in an idle or inactive state, where the first instruction information is used by the terminal device to determine the foregoing. At least one cell; wherein the first indication information includes at least one of the following information:
  • An identifier of at least one cell group to which the at least one cell belongs an identifier of the at least one cell, a measurement frequency, and a subcarrier interval.
  • the communication unit 610 is further configured to broadcast a threshold value to the terminal device, where the threshold value is used by the terminal device to meet the threshold according to the signal quality of each cell described above Limits generate this measurement information.
  • the measurement information includes an identifier of the target cell group and / or an identifier of the target cell, and each cell group in the target cell group includes at least one cell that meets a threshold value, and the target cell is one of the at least one cell. A cell that meets the threshold.
  • the measurement information includes second indication information, and the second indication information is used to indicate whether the signal quality of each cell meets a threshold value.
  • the second indication information includes at least one bit sequence, and the first bit sequence in the at least one bit sequence is used to indicate whether a signal quality of each cell in the first cell group in the at least one cell group meets The threshold.
  • the presence of at least one bit in each bit sequence of the at least one bit sequence indicates that the signal quality of the cell meets the threshold.
  • the second indication information further includes a correspondence between the first bit sequence and an identifier of the first cell group.
  • the first bit sequence includes a first value and / or a second value, where the first value is used to indicate that the signal quality of the cell does not meet the threshold, and the second value is used to indicate that the signal quality of the cell meets The threshold.
  • the first value is 0 and the second value is 1.
  • the threshold value includes an RSRP threshold value and / or an RSRQ threshold value.
  • the communication unit 610 is specifically configured to receive the signal quality of each of the above-mentioned cells reported by the terminal device in the order of high to low signal quality.
  • the communication unit 610 is specifically configured to receive the measurement information carried in the message 5 MSG5 or the security mode command or measurement report sent by the network device.
  • the communication unit 610 is specifically configured to receive, before receiving the measurement information sent by the terminal device, a third instruction information sent by the terminal device, where the third instruction information is used to instruct the terminal device to carry the measurement information. Report to the network device in message 5 MSG5 or safe mode command or measurement report.
  • the communication unit 610 is specifically configured to receive the message 3 MSG3 sent by the terminal device, where the MSG3 includes the third indication information.
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the network device 600 shown in FIG. 8 may correspond to a corresponding subject in performing the method 400 in the embodiment of the present application, and the foregoing and other operations and / or functions of each unit in the network device 600 are respectively for implementing For the sake of brevity, the corresponding processes in each method are not repeated here.
  • the communication device has been described above with reference to FIGS. 7 and 8 from the perspective of a functional module. It should be understood that the functional module may be implemented by hardware, or by instructions in software, or by a combination of hardware and software modules.
  • each step of the method embodiments in the embodiments of the present application may be completed by using hardware integrated logic circuits and / or software form instructions in the processor, and the steps of the method disclosed in the embodiments of the present application may be directly embodied as hardware.
  • the execution of the decoding processor is completed, or the combination of hardware and software modules in the decoding processor is used for execution.
  • the software module may be located in a mature storage medium in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps in the foregoing method embodiment in combination with its hardware.
  • the communication unit 510 shown in FIG. 7 and the communication unit 610 shown in FIG. 8 may be implemented by a transceiver, and the measurement unit 520 shown in FIG. 7 and the configuration unit 620 shown in FIG. 8 may be processed by ⁇ achieving.
  • FIG. 9 is a schematic structural diagram of a communication device 700 according to an embodiment of the present application.
  • the communication device 700 shown in FIG. 9 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 700 may further include a memory 720.
  • the memory 720 may be used to store instruction information, and may also be used to store code, instructions, and the like executed by the processor 710.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the communication device 700 may further include a transceiver 730, and the processor 710 may control the transceiver 730 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other information. Information or data sent by the device.
  • the transceiver 730 may include a transmitter and a receiver.
  • the transceiver 730 may further include antennas, and the number of antennas may be one or more.
  • the communication device 700 may be a network device according to the embodiment of the present application, and the communication device 700 may implement a corresponding process implemented by the network device in each method in the embodiments of the present application. That is, the communication device 700 in the embodiment of the present application may correspond to the terminal device 500 in the embodiment of the present application, and may correspond to the corresponding subject in the method 300 according to the embodiment of the present application. To repeat.
  • the communication device 700 may be a terminal device in the embodiment of the present application, and the communication device 700 may implement a corresponding process implemented by the terminal device in each method in the embodiment of the present application, that is, the The communication device 700 may correspond to the network device 600 in the embodiment of the present application, and may correspond to the corresponding subject in the method 400 according to the embodiment of the present application. For brevity, details are not described herein again.
  • bus system includes a power bus, a control bus, and a status signal bus in addition to a data bus.
  • a chip is provided in the embodiment of the present application.
  • the chip may be an integrated circuit chip with signal processing capabilities, and can implement or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 800 shown in FIG. 10 includes a processor 810, and the processor 810 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 800 may further include a memory 820.
  • the processor 810 may call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 620 may be used to store instruction information, and may also be used to store code, instructions, and the like executed by the processor 610.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
  • the chip 800 may further include an input interface 830.
  • the processor 810 may control the input interface 830 to communicate with other devices or chips. Specifically, the processor 810 may obtain information or data sent by other devices or chips.
  • the chip 800 may further include an output interface 840.
  • the processor 810 may control the output interface 840 to communicate with other devices or chips. Specifically, the processor 810 may output information or data to the other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip. It should also be understood that various components in the chip 800 are connected through a bus system, where the bus system includes a power bus, a control bus, and a status signal bus in addition to a data bus.
  • the processor mentioned in the embodiments of the present application may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a ready-made programmable gate array (field programmable gate array). , FPGA) or other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), or Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate Synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM), direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on.
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • SDRAM Synchronous dynamic random access memory
  • Double SDRAM double data rate Synchronous dynamic random access memory
  • Double SDRAM double data rate Synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM), direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on.
  • a computer-readable storage medium is also provided in the embodiment of the present application for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal / terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application.
  • a computer program product is also provided in the embodiments of the present application, including computer program instructions.
  • the computer program product can be applied to a network device in the embodiment of the present application, and the computer program instruction causes a computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product may be applied to a mobile terminal / terminal device in the embodiments of the present application, and the computer program instructions cause a computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method of the embodiments of the present application, For brevity, I will not repeat them here.
  • a computer program is also provided in the embodiments of the present application.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • FIG. 11 is a schematic block diagram of a communication system 900 according to an embodiment of the present application.
  • the communication system 900 includes a terminal device 910 and a network device 920.
  • the terminal device 910 may be used to implement the corresponding functions implemented by the terminal device in the foregoing methods 300 and 400, and the composition of the terminal device 910 may be shown in the terminal device 500 in FIG. More details.
  • the network device 920 may be used to implement the corresponding functions implemented by the network device in the above methods 300 and 400, and the composition of the network device 920 may be shown as the network device 600 in FIG. .
  • the technical solution of the embodiments of the present application is essentially a part that contributes to the existing technology or a part of the technical solution may be embodied in the form of a software product, which is stored in a storage medium. , Including a number of instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • the division of units or modules or components in the device embodiments described above is only a logical function division. In actual implementation, there may be another division manner. For example, multiple units or modules or components may be combined or integrated. To another system, or some units or modules or components can be ignored or not implemented.
  • the units / modules / components described above as separate / display components may or may not be physically separated, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units / modules / components may be selected according to actual needs to achieve the objectives of the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种上报测量信息的方法、配置终端设备的方法和设备。该上报测量信息的方法应用于处于空闲态或非激活态的终端设备,该方法包括:该终端设备测量至少一个小区的信号质量;该终端设备根据上述至少一个小区中每个小区的信号质量上报测量信息。本申请实施例中,处于空闲态或非激活态的终端设备直接测量小区的信号质量并上报测量信息,避免了终端设备先进入激活态,再由网络设备基于上报的测量结果和建立的承载为终端设备配置辅助网络设备或者辅助服务小区,能够有效降低时延,同时减少信令开销。

Description

上报测量信息的方法、配置终端设备的方法和设备 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及上报测量信息的方法、配置终端设备的方法和设备。
背景技术
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性。为此,第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)国际标准组织开始研发第五代移动通信技术(5-Generation,5G)。
在新空口(New Radio,NR)早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的长期演进(Long Term Evolution,LTE)覆盖和NR的孤岛覆盖模式。而且由于大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。因此,NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。现有技术中,为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧密互通(tight interworking)的工作模式。具体而言,通过带宽(band)组合来支持LTE-NR双连接(Dual Connection,DC)传输数据,即在一个主节点(Master Node,MN)的覆盖下存在另一个从节点(Slave Node,SN)的覆盖,提高系统吞吐量。
但是,通常SN节点的添加基于UE的上报的测量结果,而测量结果的上报需要在安全激活之后,所以一般情况下,UE将首先进入非DC模式,然后建立承载,如果测量结果满足可以添加SN的要求,再通过无线资源控制(Radio Resource Control,RRC)连接重配置进入DC模式,即需要额外的RRC信令进行SN节点的添加,增加了信令开销,而且需要涉及承载类型的变更,很有可能由于承载变更导致数据丢失等。
发明内容
提供了一种上报测量信息的方法、配置终端设备的方法和设备,使得处于空闲态或非激活态的终端设备进入双链接模式时,能够有效节省的信令开销,并能够避免由于承载类型的变更导致数据丢失。
第一方面,提供了一种上报测量信息的方法,应用于处于空闲态或非激活态的终端设备,所述方法包括:
该终端设备测量至少一个小区的信号质量;
该终端设备根据上述至少一个小区中每个小区的信号质量上报测量信息。
在一些可能的实现方式中,该终端设备测量至少一个小区的信号质量之前,该方法还包括:
该终端设备接收网络设备广播的第一指示信息;
该终端设备根据该第一指示信息确定上述至少一个小区;
其中,该第一指示信息包括以下信息中的至少一项:
上述至少一个小区所属的至少一个小区组的标识、上述至少一个小区的标识、测量频率和子载波间隔。
在一些可能的实现方式中,该终端设备根据上述至少一个小区中每个小区的信号质量上报测量信息,包括:
该终端设备确定门限值;
该终端设备根据上述每个小区的信号质量是否满足该门限值,生成并上报该测量信息。
在一些可能的实现方式中,该测量信息包括目标小区组的标识和/或目标小区的标识,该目标小区组中的每个小区组至少包括一个满足该门限值的小区,该目标小区为上 述至少一个小区中满足该门限值的小区。
在一些可能的实现方式中,该测量信息包括第二指示信息,该第二指示信息用于指示上述每个小区的信号质量是否满足门限值。
在一些可能的实现方式中,该第二指示信息包括:
至少一个比特序列,上述至少一个比特序列中的第一比特序列用于表示上述至少一个小区组中的第一小区组中的每个小区的信号质量是否满足该门限值。
在一些可能的实现方式中,上述至少一个比特序列中的每个比特序列至少存在一个比特表示小区的信号质量满足该门限值。
在一些可能的实现方式中,该第二指示信息还包括:
该第一比特序列和该第一小区组的标识的对应关系。
在一些可能的实现方式中,该第一比特序列包括第一数值和/或第二数值,该第一数值用于表示小区的信号质量不满足该门限值,该第二数值用于表示小区的信号质量满足该门限值。
在一些可能的实现方式中,该第一数值为0,该第二数值为1。
在一些可能的实现方式中,该终端设备根据上述至少一个小区中每个小区的信号质量上报测量信息之前,该方法还包括:
该终端设备接收该网络设备广播的该门限值。
在一些可能的实现方式中,该门限值为预配置门限值。
在一些可能的实现方式中,该门限值包括:
参考信号接收功率RSRP门限值和/或参考信号接收质量RSRQ门限值。
在一些可能的实现方式中,该终端设备根据上述至少一个小区中每个小区的信号质量上报测量信息,包括:
该终端设备按照信号质量由高到低的顺序,向该网络设备上报上述每个小区的信号质量。
在一些可能的实现方式中,该终端设备根据上述至少一个小区中每个小区的信号质量上报测量信息,包括:
该终端设备将该测量信息携带在消息5 MSG5或安全模式命令或测量报告中上报给该网络设备。
在一些可能的实现方式中,该终端设备根据上述至少一个小区中每个小区的信号质量上报测量信息之前,该方法还包括:
该终端设备向该网络设备发送第三指示信息,该第三指示信息用于指示该终端设备将该测量信息携带在消息5 MSG5或安全模式命令或测量报告中上报给该网络设备。
在一些可能的实现方式中,该终端设备向该网络设备发送第三指示信息,包括:
该终端设备向该网络设备发送消息3 MSG3,该MSG3包括该第三指示信息。
第二方面,提供了一种配置终端设备的方法,包括:
网络设备接收终端设备发送的测量信息,该测量信息为处于空闲态或非连接态的该终端设备根据至少一个小区中每个小区的信号质量生成的信息;
该网络设备根据该测量信息,为该终端设备配置辅助网络设备和/或辅助服务小区。
在一些可能的实现方式中,该网络设备接收终端设备发送的测量信息之前,该方法还包括:
该网络设备向处于空闲态或非激活态的该终端设备广播第一指示信息,该第一指示信息用于该终端设备确定上述至少一个小区;
其中,该第一指示信息包括以下信息中的至少一项:
上述至少一个小区所属的至少一个小区组的标识、上述至少一个小区的标识、测量频率和子载波间隔。
在一些可能的实现方式中,该网络设备接收终端设备发送的测量信息之前,该方法 还包括:
该网络设备向该终端设备广播门限值,该门限值用于该终端设备根据上述每个小区的信号质量是否满足该门限值生成该测量信息。
在一些可能的实现方式中,该测量信息包括目标小区组的标识和/或目标小区的标识,该目标小区组中的每个小区组至少包括一个满足门限值的小区,该目标小区为上述至少一个小区中满足门限值的小区。
在一些可能的实现方式中,该测量信息包括第二指示信息,该第二指示信息用于指示上述每个小区的信号质量是否满足门限值。
在一些可能的实现方式中,该第二指示信息包括:
至少一个比特序列,上述至少一个比特序列中的第一比特序列用于表示上述至少一个小区组中的第一小区组中的每个小区的信号质量是否满足该门限值。
在一些可能的实现方式中,上述至少一个比特序列中的每个比特序列至少存在一个比特表示小区的信号质量满足该门限值。
在一些可能的实现方式中,该第二指示信息还包括:
该第一比特序列和该第一小区组的标识的对应关系。
在一些可能的实现方式中,该第一比特序列包括第一数值和/或第二数值,该第一数值用于表示小区的信号质量不满足该门限值,该第二数值用于表示小区的信号质量满足该门限值。
在一些可能的实现方式中,该第一数值为0,该第二数值为1。
在一些可能的实现方式中,该门限值包括:
参考信号接收功率RSRP门限值和/或参考信号接收质量RSRQ门限值。
在一些可能的实现方式中,该网络设备接收终端设备发送的测量信息,包括:
该网络设备按照信号质量由高到低的顺序,接收该终端设备上报的上述每个小区的信号质量。
在一些可能的实现方式中,该网络设备接收终端设备发送的测量信息,包括:
该网络设备接收该终端设备发送的消息5 MSG5或安全模式命令或测量报告中携带的该测量信息。
在一些可能的实现方式中,该网络设备接收终端设备发送的测量信息之前,该方法还包括:
该网络设备接收该终端设备发送的第三指示信息,该第三指示信息用于指示该终端设备将该测量信息携带在消息5 MSG5或安全模式命令或测量报告中上报给该网络设备。
在一些可能的实现方式中,该网络设备接收终端设备发送的第三指示信息,包括:
该网络设备接收该终端设备发送的消息3 MSG3,该MSG3包括该第三指示信息。
第三方面,提供了一种通信设备,用于执行上述第一方面至第二方面中的任一方面的方法或者上述任一种可能的实现方式中的方法。
在一些可能的实现方式中,所述通信设备包括:
用于执行上述第一方面至第二方面中的任一方面的方法或者上述任一种可能的实现方式中的方法的功能模块。
在一些可能的实现方式中,所述通信设备为终端设备,所述终端设备用于执行上述第一方面或者上述第一方面中任一种可能实现的方式中的方法。
在一些可能的实现方式中,所述通信设备为网络设备,所述网络设备用于执行前述第二方面或者前述第二方面中任一种可能实现的方式中的方法。
第四方面,提供了一种通信设备,包括:
处理器,用于从存储器中调用并运行计算机程序,所述计算机程序用于执行上述第一方面至第二方面中的任一方面的方法或者上述任一种可能的实现方式中的方法。
在一些可能的实现方式中,所述通信设备还包括:
存储器,所述存储器用于存储所述计算机程序。
在一些可能的实现方式中,所述通信设备为终端设备,所述终端设备用于执行上述第一方面或者上述第一方面中任一种可能实现的方式中的方法。
在一些可能的实现方式中,所述通信设备为网络设备,所述网络设备用于执行前述第二方面或者前述第二方面中任一种可能实现的方式中的方法。
第五方面,提供了一种芯片,用于执行上述第一方面至第二方面中的任一方面的方法或者上述任一种可能的实现方式中的方法。
在一些可能的实现方式中,所述芯片包括:
处理器,用于从存储器中调用并运行计算机程序,所述计算机程序用于执行上述第一方面至第二方面中的任一方面的方法或者上述任一种可能的实现方式中的方法。
在一些可能的实现方式中,所述芯片还包括:
存储器,所述存储器用于存储所述计算机程序。
第六方面,提供了一种计算机可读存储介质,所述存储介质用于存储计算机程序,所述计算机程序用于执行上述第一方面至第二方面中的任一方面的方法或者上述任一种可能的实现方式中的方法。
第七方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序用于执行上述第一方面至第二方面中的任一方面的方法或者上述任一种可能的实现方式中的方法。
第八方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面的方法或者上述任一种可能的实现方式中的方法。
第九方面,提供了一种通信系统,包括:
处于空闲态或非激活态的终端设备和网络设备;
其中,所述终端设备用于:测量至少一个小区的信号质量;根据所述至少一个小区中每个小区的信号质量上报测量信息;
所述网络设备用于:接收终端设备发送的测量信息;根据所述测量信息,为所述终端设备配置辅助网络设备和/或辅助服务小区。
在一些可能的实现方式中,所述终端设备用于执行上述第一方面的方法或者上述任一种可能的实现方式中的方法,以及所述网络设备用于执行前述第二方面中的任一方面或其各实现方式中的方法。
本申请实施例中,处于空闲态或非激活态的终端设备直接测量小区的信号质量并上报测量信息,避免了终端设备先进入激活态,再由网络设备基于上报的测量结果和建立的承载为终端设备配置辅助网络设备或者辅助服务小区,能够有效降低时延,同时减少信令开销。
进一步地,网络设备通过广播的形式向终端设备广播测量需求信息,即终端设备需要测量的小区组,进而实现终端设备上报测量信息以及网络设备配置终端设备,使得处于空闲态或非激活态的终端设备进入双链接模式时,相对于现有技术中网络设备先进入非DC模式,建立承载,然后通过RRC连接重配置进入DC模式,能够有效节省的信令开销。
更进一步地,网络设备还可以借助竞争随机接入过程中存在的信令实现终端设备上报测量信息以及网络设备配置终端设备,使得处于空闲态或非激活态的终端设备进入双链接模式时,能够有效节省的信令开销,并能够避免由于承载类型的变更导致数据丢失。
综上所述,本申请实施例中,通过给空闲态或非激活态的UE配置第一指示信息,且UE在专用承载建立前上报测量信息,用于辅助网络配置DC以及选择SN节点。达到快速进入DC模式目的,避免用额外的RRC信令进行SN节点的添加,达到节省信令的目的,而且不涉及承载类型的变更,避免由于承载变更带来的数据丢失等影响。
附图说明
图1是本发明实施例的应用场景的示例。
图2是本发明实施例的EN-DC整体组网架构的示例。
图3是本发明实施例的双连接下的MN和SN的示意性框图。
图4是本发明实施例的竞争随机接入的示意性流程图。
图5是本发明实施例的上报测量信息的示意性流程图。
图6是本发明实施例的配置终端设备的示意性流程图。
图7是本发明实施例的终端设备的示意性框图。
图8是本发明实施例的网络设备的示意性框图。
图9是本发明实施例的通信设备的示意性框图。
图10是本发明实施例的芯片的示意性框图。
图11是本发明实施例的通信系统的示意性框图。
具体实施方式
图1是本申请实施例的系统100的示意图。
如图1所示,终端设备110与第一通信系统下的第一网络设备130和第二通信系统下的第二网络设备120相连,例如,该第一网络设备130为长期演进(Long Term Evolution,LTE)下的网络设备,该第二网络设备120为新空口(New Radio,NR)下的网络设备。
其中,该第一网络设备130和该第二网络设备120下可以包括多个小区。
应理解,图1是本申请实施例的通信系统的示例,本申请实施例不限于图1所示。
作为一个示例,本申请实施例适应的通信系统可以包括至少该第一通信系统下的多个网络设备和/或该第二通信系统下的多个网络设备。
例如,图1所示的系统100可以包括第一通信系统下的一个主网络设备和第二通信系统下的至少一个辅助网络设备。至少一个辅助网络设备分别与该一个主网络设备相连,构成多连接,并分别与终端设备110连接为其提供服务。具体地,终端设备110可以通过主网络设备和辅助网络设备同时建立连接。
可选地,终端设备110和主网络设备建立的连接为主连接,终端设备110与辅助网络设备建立的连接为辅连接。终端设备110的控制信令可以通过主连接进行传输,而终端设备110的数据可以通过主连接以及辅连接同时进行传输,也可以只通过辅连接进行传输。
作为又一示例,本申请实施例中的第一通信系统和第二通信系统不同,但对第一通信系统和该第二通信系统的具体类别不作限定。
例如,该第一通信系统和该第二通信系统可以是各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
在图1所示的系统100中,以该第一网络设备130为主网络设备,以该第二网络设备120为辅助网络设备为例。
该第一网络设备130可以为LTE网络设备,该第二网络设备120可以为NR网络设备。或者该第一网络设备130可以为NR网络设备,第二网络设备120可以为LTE网络设备。或者该第一网络设备130和该第二网络设备120都可以为NR网络设备。或者该第一网络设备130可以为GSM网络设备,CDMA网络设备等,该第二网络设备120也可以为GSM网络设备,CDMA网络设备等。或者第一网络设备130可以是宏基站(Macrocell),第二网络设备120可以为微蜂窝基站(Microcell)、微微蜂窝基站(Picocell) 或者毫微微蜂窝基站(Femtocell)等。
可选地,该第一网络设备130和该第二网络设备120可以是任意接入网络设备。
可选地,该接入网设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB)。
可选地,该接入网设备还可以是下一代无线接入网(Next Generation Radio Access Network,NG RAN),或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
以该第一网络设备130为LTE网络设备,该第二网络设备120为NR网络设备为例,本申请实施例的技术方案可以应用于广域的长期演进(Long Term Evolution,LTE)覆盖和NR的孤岛覆盖模式。可选地,LTE和NR之间紧密连接(tight interworking)的工作模式。其中,5G的主要应用场景包括:增强移动超宽带(Enhance Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable and Low Latency Communication,URLLC)、大规模机器类通信(massive machine type of communication,mMTC)。其中,eMBB以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。由于eMBB可能部署在不同的场景中。例如,室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,可以结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
可选地,终端设备110可以是任意终端设备。终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network)进行通信,也可称为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及5G网络中的终端设备等。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图2是本发明实施例的EN-DC网络架构200的示意性框图。
如图2所示,该网络架构200以LTE-NR双链接(LTE-NR Dual Connectivity,EN-DC)为例。这里LTE作为主节点Master Node,MN),NR作为从节点(Secondary Node,SN),在其他可替代实施例中,MN又称为MeNB,SN又称为SeNB。
本申请实施例中,在LTE架构中加入了NR网络构架,进而形成网络构架200,如图2所示,该网络架构200可以包括MME/S-GW 211、MME/S-GW 212、gNB 221、gNB 222、eNB 231、eNB 232。其中,MME/S-GW 211通过S1-U接口连接到gNB 221和gNB 222,MME/S-GW 211通过S1接口连接到eNB 231和eNB 232。MME/S-GW 212通过S1-U接口连接到gNB 221和gNB 222,MME/S-GW 212通过S1接口连接到eNB 231和eNB 232。gNB 221和gNB 222之间通过X2-U连接。eNB 231和eNB 232之间通过X2连接。类似地,eNB 231和gNB 221之间通过X2连接。gNB 222和eNB 232之间通过X2连接。 换句话说,eNB和eNB之间采用X2接口方式直接互连,eNB通过S1接口连接到EPC。S1接口支持MME/S-GW和eNB之间的多对多连接,即一个eNB可以和多个MME/S-GW连接,多个eNB也可以同时连接到同一个MME/S-GW。类似地,gNB和gNB之间采用X2-U接口方式直接互连,gNB通过S1-U接口连接到EPC。S1-U接口支持MME/S-GW和gNB之间的多对多连接,即一个gNB可以和多个MME/S-GW连接,多个gNB也可以同时连接到同一个MME/S-GW。
如图2所示,本申请实施例中,MME/S-GW 211和MME/S-GW 212属于LTE网络的分组核心演进(Evolved Packet Core,EPC),gNB 221、gNB 222、eNB 231以及eNB 232构成了演进的通用陆地无线接入网络(Evolved Universal Terrestrial Radio Access Network,E-UTRAN)。但本申请实施例不限于此,例如,该MME/S-GW 211和MME/S-GW 212可用与接入网设备进行通信的任何核心网络设备进行替代。
可选地,核心网络设备可以是5G核心网络设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。
应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。
可选地,在本申请实施例中,AMF可以与SMF进行信息交互,例如,SMF从AMF获取一些无线接入网侧的信息。
需要注意的是,图2所示的网络构架200仅为双连接网络构架的示例性描述,本发明实施例不限于此。例如,在其他可替代实施例中,也可以对该网络构架200做简单的变形,例如,作为一个示例,该gNB 221和/或gNB 222可以不直接与EPC(即MME/S-GW 211和MME/S-GW 212)连接。还应理解,图2所示的EN-DC仅为双链接网络构架的示例,本发明实施例中的DC模式包括但不限于,包括EN-DC,NE-DC,5GC-EN-DC,NR DC。EN-DC中,LTE节点作为MN节点,NR节点作为SN节点,连接EPC核心网。NE-DC中NR作为MN节点,eLTE作为SN节点,连接5GC核心网。5GC-EN-DC中,eLTE作为MN节点,NR作为SN节点,连接5GC核心网。NR DC中,NR作为MN节点,NR作为SN节点,连接5GC核心网。
在双连接网络构架中,数据面无线承载可以由MN或者SN独立服务,也可由MN和SN同时服务。仅由MN服务时称为MCG承载(bearer),即MN控制的服务小区组,仅由SN服务时称为SCG承载,即SN控制的服务小区组,同时由MN和SN服务时称为分离承载(split bearer),又称分叉承载。具体地,可以分为MCG split bearer和SCG split bearer。MCG split bearer和SCG split bearer主要在于分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层的功能不同和PDCP层的密钥不同。本申请实施例中,为了最小化MCG split bearer和SCG split bearer之间的变更,降低标准化难度、实现和测试的工作以及最小化市场产品特性的分化,可选地,提出了bearer调和(harmonization)的概念,即如图3所示,MCG split bearer和SCG split bearer统一为一个承载类型,即Split bearer,也就是那种split形式对于UE来说是透明的。
在实际应用中,如图3所示,由MN和/或SN服务的MCG承载(bearer)、SCG承载以及分叉承载(split bearer)经过相应的演进通用陆地无线接入(Evolved Universal Terrestrial Radio Access),E-UTRA)无线链路控制(Radio Link Control,RLC)或新空口(New Radio,NR)RLC层,到达相应的E-UTRA或NR的媒体接入控制(Media Access Control,MAC)层。
在一个实施例中,MN与SN都存在S1-U连接,数据流在核心网络分割后,经由MN和SN独立进行传送,SN起到负荷分担的作用,这种架构称为1a方式,这种方式对基站间回程没有特殊要求,层2协议层也无需进行特殊配置,基站间不存在负荷分担功 能,其峰值速率完全取决于MN和SN自身的无线能力,切换过程中,需要核心网络参与,并存在数据可能中断的问题。
在另一个实施例中,只在MN与核心网络之间存在S1-U连接,所有下行数据流首先传送到MN,再经MN按照一定算法和比例进行分割后,由X2接口把部分数据发送给SN,最终在MN和SN上同时给UE下发数据,此架构称为3c方式,这种方式下,用户从2个系统中获取下行数据,便于实现负荷分担和资源协调功能,也有利于提高用户速率。另外,切换过程对核心网络影响较小,且由于存在多条无线链路,所以切换时延低。其缺点在于,对基站间回程要求高,层2协议复杂性要求高,且基站间回程需要实现流量控制等功能。另外,分离承载方式只适用于下行方向。上行方向上,数据流不进行分割,可以经由MN或者SN进行传输。
图3所示的每一子层可以根据协议数据单元的数据的不同,发送数据到接收端的指定层。进入每个子层未被处理的数据称为服务数据单元(service data unit,SDU),经过子层处理后形成特定格式的数据被称为协议数据单元(Protocol Data Unit,PDU)。SDU是从高层协议传送到低层协议的信息单元。SDU的原数据是协议上层的PDU。也就是说,本层形成的PDU即为下一层的SDU。
例如,每个终端设备的每个逻辑信道都具有一个RLC实体(RLC entity),RLC实体从PDCP层接收到的数据,或发往PDCP层的数据可以称为RLC SDU(或PDCP PDU)。RLC实体从MAC层接收到的数据,或发往MAC层的数据可以称为RLC PDU(或MAC SDU)。
应理解,本申请实施例中,RLC层位于PDCP层和MAC层之间,RLC层可以通过服务接入点(Service Access Point,SAP)与PDCP层进行通信,并通过逻辑信道与MAC层进行通信。但本申请实施例不限于此。
图4示出了根据本申请实施例的上报测量信息的方法300的示意性流程图,该方法300可以由终端设备执行。图4中所示的终端设备可以是如图1所示的终端设备,该终端设备可以是处于空闲态或非激活态的终端设备,图4中所示的网络设备可以是如图1所示的接入网设备。该方法300包括以下部分或全部内容:
S310,该终端设备测量至少一个小区的信号质量;
S320,该终端设备根据上述至少一个小区中每个小区的信号质量上报测量信息。
本申请实施例中,处于空闲态或非激活态的终端设备直接测量小区的信号质量并上报测量信息,避免了终端设备先进入激活态,再由网络设备基于上报的测量结果和建立的承载为终端设备配置辅助网络设备或者辅助服务小区,能够有效降低时延,同时减少信令开销。
本申请实施例涉及的终端设备可以是处于空闲态(RRC_IDLE)或者非激活态(RRC_INACTIVE)的终端设备。
为了便于理解,下面对处于空闲态、非激活态以及激活态(RRC_ACTIVE)的终端设备进行一个简单介绍。
RRC_INACTIVE状态是有别于RRC_IDLE和RRC_ACTIVE状态的。
针对RRC_IDLE状态,终端设备和网络设备之间不存在RRC连接,网络设备也不存储终端设备AS上下文。在需要寻呼该终端设备时,由核心网络发起寻呼,由核心网络配置寻呼区域。其移动性为基于终端设备的小区选择或者小区重选。
针对RRC_CONNECTED状态,终端设备和网络设备之间存在RRC连接,网络设备和终端设备存储有该终端设备的AS上下文。网络设备获取的终端设备的位置是具体小区级别的。其移动性是由网络设备进行控制的移动性。
针对RRC_INACTIVE状态,核心网络(CN)与网络设备之间存在连接,终端设备的AS上下文存在某个网络设备上,由无线接入网(Radio Access Network,RAN)触发寻呼,由RAN管理RAN的寻呼区域,也就是说,网络设备获取的终端设备位置是RAN 的寻呼区域级别的。其移动性为基于终端设备的小区选择或者小区重选。换句话说,处于RRC_INACTIVE状态的终端设备与网络设备的连接处于断开状态,且该网络设备保留有该终端设备的上下文信息,该上下文信息用于快速建立该终端设备和该网络设备之间的连接。
可选地,该终端设备接收网络设备广播的第一指示信息;该终端设备根据该第一指示信息确定上述至少一个小区;其中,该第一指示信息包括以下信息中的至少一项:上述至少一个小区所属的至少一个小区组的标识、上述至少一个小区的标识、测量频率和子载波间隔。
例如,以该第一指示信息包括上述至少一个小区所属的至少一个小区组的标识为例,终端设备接收网络设备广播的第一指示信息,并根据该第一指示信息获得测量信息,最后将该测量信息上报给网络设备。进一步地,该第一指示信息可以指示上述至少一个小区组中每个小区组的id。
可选地,该终端设备支持双连接(Dual Connection,DC)模式时,接收该第一指示信息。
应理解,在双连接(Dual Connection,DC)场景下,多个网络节点(小区组(Cell Group,CG))可以为终端设备服务,每个小区组都可能构成该终端设备的双连接架构。
应理解,在本申请实施例中,CG可以等同于网络节点或网络设备等。
还应理解,上述终端设备基于接收网络设备广播的第一指示信息确定上述至少一个小区仅为示例,在其他可替代实施例中,该终端设备还可以基于其他的方式确定上述至少一个小区,例如,预配置信息。
本申请实施例中,网络设备通过广播的形式向终端设备广播测量的需求信息,使得终端设备确定需要测量的小区组或者小区,进而实现终端设备上报测量信息以及网络设备配置终端设备,由此,处于空闲态或非激活态的终端设备进入双链接模式时,相对于现有技术中网络设备先进入非DC模式,建立承载,然后通过RRC连接重配置进入DC模式,能够有效节省的信令开销。
可选地,该终端设备确定门限值;该终端设备根据上述每个小区的信号质量是否满足该门限值,生成并上报该测量信息。
可选地,该测量信息包括目标小区组的标识和/或目标小区的标识,该目标小区组中的每个小区组至少包括一个满足该门限值的小区,该目标小区为上述至少一个小区中满足该门限值的小区。
可选地,该测量信息包括第二指示信息,该第二指示信息用于指示上述每个小区的信号质量是否满足门限值。
下面对终端设备基于门限值该第二指示信息的具体形式进行示例性说明:
可选地,该第二指示信息包括:至少一个比特序列,上述至少一个比特序列中的第一比特序列用于表示上述至少一个小区组中的第一小区组中的每个小区的信号质量是否满足该门限值。
可选地,上述至少一个比特序列中的每个比特序列至少存在一个比特表示小区的信号质量满足该门限值。
可选地,该第二指示信息还包括:该第一比特序列和该第一小区组的标识的对应关系。
可选地,该第二指示信息还包括上述至少一个比特序列中的每个比特序列和至少一个小区组标识的对应关系。
可选地,该第一比特序列包括第一数值和/或第二数值,该第一数值用于表示小区的信号质量不满足该门限值,该第二数值用于表示小区的信号质量满足该门限值。
可选地,该第一数值为0,该第二数值为1。
可选地,该终端设备根据上述至少一个小区中每个小区的信号质量上报测量信息之 前,该方法还包括:该终端设备接收该网络设备广播的该门限值。
可选地,该门限值为预配置门限值。
可选地,该门限值包括:参考信号接收功率(Reference Signal Receiving Power,RSRP)门限值和/或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)门限值。
应理解,本申请实施例中,以终端设备基于门限值生成包括第二指示信息的测量信息进行上报仅为示例性说明,本申请实施例不限于此。
例如。该终端设备也可以按照信号质量由高到低的顺序,向该网络设备上报上述每个小区的信号质量。
又例如。该终端设备也可以按照信号质量由低到高的顺序,向该网络设备上报上述每个小区的信号质量。
本申请实施例中,网络设备还可以借助竞争随机接入过程中存在的信令实现终端设备上报测量信息以及网络设备配置终端设备,使得处于空闲态或非激活态的终端设备进入双链接模式时,能够有效节省的信令开销,并能够避免由于承载类型的变更导致数据丢失。
可选地,终端设备该终端设备可以将该测量信息携带在消息5 MSG5安全模式命令(Securitymodecomplete)或测量报告(measurement report)中上报给该网络设备。
可选地,该终端设备根据上述至少一个小区中每个小区的信号质量上报测量信息之前,该终端设备向该网络设备发送第三指示信息,该第三指示信息用于指示该终端设备将该测量信息携带在消息5 MSG5或安全模式命令(Securitymodecomplete)或测量报告(measurement report)中上报给该网络设备。
可选地,该终端设备向该网络设备发送消息3 MSG3,该MSG3包括该第三指示信息。
为便于理解对上述携带测量信息和第三指示信息的消息,下面结合图5先对本发明实施例的竞争随机接入进行说明。
图5是本发明实施例的竞争随机接入的示意性流程图。
应理解,在小区搜索过程之后,终端设备已经与小区取得了下行同步,因此终端设备能够接收下行数据。但终端设备只有与小区取得上行同步,才能进行上行传输。终端设备通过随机接入过程(Random Access Procedure)与小区建立连接并取得上行同步。
其中,随机接入的主要目的是获得上行同步,以及为终端设备分配一个唯一的标识小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)。
如图5所示,本发明实施例中,该竞争随机接入的流程包括:
终端设备向网络设备发送消息1(MSG1),其中,该MSG1可以携带随机接入前导码(Preamble)。网络设备在接收到终端设备发送的MSG1之后,可以发送响应于该MSG1的响应消息,也即消息2(MSG2)。其中,网络设备可以根据该MSG1的资源位置,计算随机接入无线网络临时标识(Random Access Radio Network Temporary Identifier,RA-RNTI),并利用该RA-RNTI对该MSG2进行加扰。终端设备在接收到该MSG2之后,可以根据该MSG2,向网络设备发送消息3(MSG3)。该MSG3中可选地可以携带终端设备的标识信息等。网络设备在接收到终端发送的MSG3之后,可以根据该MSG3,向终端发送消息4(MSG 4)。终端在接收到该MSG4之后,在确定该MSG4是针对自身的之后,可以根据该MSG4,向网络设备发送消息5(MSG5),进而进行后续的数据传输。随后,终端设备接收到网络设备发送的安全模式命令后,进入安全模式并向网络设备发送安全模式完成,并进一步向网络设备发送测量报告。
终端设备向网络设备发送前导码(preamble),以告诉网络设备有一个随机接入请求,同时使得网络设备能估计其与终端设备之间的传输时延并以此校准上行定时(timing)。可选地,终端设备选择前导码索引(preamble index)和用于发送preamble的物理随机接入信道(Physical Random Access Channel,PRACH)资源,进而,Preamble在PRACH上传 输。可选地,网络设备会通过广播系统信息系统信息块(System Information Block,SIB)来通知所有的终端设备,允许在哪些个资源上传输preamble,例如,SIB2。
网络设备向终端设备发送随机接入响应(Random Access Response,RAR)。具体地,终端设备发送了preamble之后,可以在RAR时间窗内根据随机访问无线网络临时标识符(Random Access Radio Network Temporary Identifier,RA-RNTI)值来监听对应的物理下行链路控制信道(Physical Downlink Control Channel,PDCCH),以接收对应RA-RNTI的RAR。如果在此RAR时间窗内没有接收到网络设备回复的RAR,可以认为此次随机接入过程失败。
终端设备向网络设备发送消息3(Msg3),终端设备可以在Msg3有携带自己唯一的标志,例如,小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI),又例如,来自核心网络的终端设备标志(S-TMSI或一个随机数)。
本申请实施例中,终端设备可以在该Msg3中携带上述涉及的第三指示信息。
网络设备向终端设备发送冲突解决消息(contention resolution)。具体地,网络设备在冲突解决机制中,会在contention resolution(Msg4)中携带胜出的终端设备的唯一的标志。而其它没有在冲突解决中胜出的终端设备将重新发起随机接入。
终端设备接收到网络设备发送的Msg4后,向网络设备发送Msg5,进一步地接收到网络设备发送的安全模式命令后,进入安全模式并向网络设备发送安全模式完成,再向网络设备发送测量报告。
本申请实施例中,终端设备可以在Msg5或安全模式命令或测量报告中携带上述测量信息。例如,在Msg5或安全模式命令或测量报告中携带上述涉及的第二指示信息。又例如,在安全模式命令或测量报告中携带终端设备测量的每个小区的参考信号接收功率(Reference Signal Receiving Power,RSRP)值和/或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)值。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图2至图5,从终端设备上报测量信息的角度详细描述了根据本申请实施例的上报测量信息的方法,下面将结合图6,从网络设备的角度描述根据本申请实施例的网络设备接收到终端设备上报的测量信息配置终端设备的方法。
图6示出了根据本申请实施例的配置终端设备的方法400的示意性流程图。该方法400可以由如图1所示的网络设备执行。如图6所示,该方法400包括:
S410,网络设备接收终端设备发送的测量信息,该测量信息为处于空闲态或非连接态的该终端设备根据至少一个小区中每个小区的信号质量生成的信息。
S420,该网络设备根据该测量信息,为该终端设备配置辅助网络设备和/或辅助服务小区。
具体而言,网络设备基于该终端设备上报的测量信息,选择合适的辅助网络设备和/或辅助小区进行添加。
可选地,该网络设备接收终端设备发送的测量信息之前,该网络设备向处于空闲态 或非激活态的该终端设备广播第一指示信息,该第一指示信息用于该终端设备确定上述至少一个小区;其中,该第一指示信息包括以下信息中的至少一项:
上述至少一个小区所属的至少一个小区组的标识、上述至少一个小区的标识、测量频率和子载波间隔。
可选地,该网络设备接收终端设备发送的测量信息之前,该网络设备向该终端设备广播门限值,该门限值用于该终端设备根据上述每个小区的信号质量是否满足该门限值生成该测量信息。
可选地,该测量信息包括目标小区组的标识和/或目标小区的标识,该目标小区组中的每个小区组至少包括一个满足门限值的小区,该目标小区为上述至少一个小区中满足门限值的小区。
可选地,该测量信息包括第二指示信息,该第二指示信息用于指示上述每个小区的信号质量是否满足门限值。
可选地,该第二指示信息包括至少一个比特序列,上述至少一个比特序列中的第一比特序列用于表示上述至少一个小区组中的第一小区组中的每个小区的信号质量是否满足该门限值。
可选地,上述至少一个比特序列中的每个比特序列至少存在一个比特表示小区的信号质量满足该门限值。
可选地,该第二指示信息还包括该第一比特序列和该第一小区组的标识的对应关系。
可选地,该第一比特序列包括第一数值和/或第二数值,该第一数值用于表示小区的信号质量不满足该门限值,该第二数值用于表示小区的信号质量满足该门限值。
可选地,该第一数值为0,该第二数值为1。
可选地,该门限值包括RSRP门限值和/或RSRQ门限值。
可选地,该网络设备按照信号质量由高到低的顺序,接收该终端设备上报的上述每个小区的信号质量。
可选地,该网络设备接收该终端设备发送的消息5 MSG5或安全模式命令或测量报告中携带的该测量信息。
可选地,该网络设备接收终端设备发送的测量信息之前,该网络设备接收终端设备发送的第三指示信息,该第三指示信息用于指示该终端设备将该测量信息携带在消息5 MSG5或安全模式命令或测量报告中上报给该网络设备。
可选地,该网络设备接收终端设备发送的消息3 MSG3,该MSG3包括该第三指示信息。
图7是本申请实施例的终端设备500的示意性框图。
具体地,如图7所示,该终端设备500可以包括:
可选地,该终端设备500处于空闲态或非激活态,该终端设备500包括:
测量单元520,用于测量至少一个小区的信号质量;
通信单元510,用于根据上述至少一个小区中每个小区的信号质量上报测量信息。
可选地,该测量单元520测量至少一个小区的信号质量之前,该通信单元510还用用于:
接收网络设备广播的第一指示信息;根据该第一指示信息确定上述至少一个小区;其中,该第一指示信息包括以下信息中的至少一项:上述至少一个小区所属的至少一个小区组的标识、上述至少一个小区的标识、测量频率和子载波间隔。
可选地,该通信单元510具体用于:确定门限值;根据上述每个小区的信号质量是否满足该门限值,生成并上报该测量信息。
可选地,该测量信息包括目标小区组的标识和/或目标小区的标识,该目标小区组中的每个小区组至少包括一个满足该门限值的小区,该目标小区为上述至少一个小区中满足该门限值的小区。
可选地,该测量信息包括第二指示信息,该第二指示信息用于指示上述每个小区的信号质量是否满足门限值。
可选地,该第二指示信息包括至少一个比特序列,上述至少一个比特序列中的第一比特序列用于表示上述至少一个小区组中的第一小区组中的每个小区的信号质量是否满足该门限值。
可选地,上述至少一个比特序列中的每个比特序列至少存在一个比特表示小区的信号质量满足该门限值。
可选地,该第二指示信息还包括该第一比特序列和该第一小区组的标识的对应关系。
可选地,该第一比特序列包括第一数值和/或第二数值,该第一数值用于表示小区的信号质量不满足该门限值,该第二数值用于表示小区的信号质量满足该门限值。
可选地,该第一数值为0,该第二数值为1。
可选地,该通信单元510根据上述每个小区的信号质量上报测量信息之前,还用于:
接收该网络设备广播的该门限值。
可选地,该门限值为预配置门限值。
可选地,该门限值包括:RSRP门限值和/或RSRQ门限值。
可选地,该通信单元510具体用于:按照信号质量由高到低的顺序,向该网络设备上报上述每个小区的信号质量。
可选地,该通信单元510具体用于:将该测量信息携带在消息5 MSG5或安全模式命令或测量报告中上报给该网络设备。
可选地,该通信单元510根据上述每个小区的信号质量上报测量信息之前,还用于向网络设备发送第三指示信息,该第三指示信息用于指示该终端设备将该测量信息携带在消息5 MSG5或安全模式命令或测量报告中上报给该网络设备。
可选地,该通信单元510具体用于:
向网络设备发送消息3 MSG3,该MSG3包括该第三指示信息。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图7所示的终端设备500可以对应于执行本申请实施例的方法300中的相应主体,并且终端设备500中的各个单元的前述和其它操作和/或功能分别为了实现图1中的各个方法中的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例的网络设备600的示意性框图。
具体地,如图8所示,该网络设备600可以包括:
通信单元610,用于接收终端设备发送的测量信息,该测量信息为处于空闲态或非连接态的该终端设备根据至少一个小区中每个小区的信号质量生成的信息;
配置单元620,用于根据该测量信息,为该终端设备配置辅助网络设备和/或辅助服务小区。
可选地,该通信单元610接收终端设备发送的测量信息之前,还用于向处于空闲态或非激活态的该终端设备广播第一指示信息,该第一指示信息用于该终端设备确定上述至少一个小区;其中,该第一指示信息包括以下信息中的至少一项:
上述至少一个小区所属的至少一个小区组的标识、上述至少一个小区的标识、测量频率和子载波间隔。
可选地,该通信单元610接收终端设备发送的测量信息之前,还用于向该终端设备广播门限值,该门限值用于该终端设备根据上述每个小区的信号质量是否满足该门限值生成该测量信息。
可选地,该测量信息包括目标小区组的标识和/或目标小区的标识,该目标小区组中的每个小区组至少包括一个满足门限值的小区,该目标小区为上述至少一个小区中满足门限值的小区。
可选地,该测量信息包括第二指示信息,该第二指示信息用于指示上述每个小区的 信号质量是否满足门限值。
可选地,该第二指示信息包括至少一个比特序列,上述至少一个比特序列中的第一比特序列用于表示上述至少一个小区组中的第一小区组中的每个小区的信号质量是否满足该门限值。
可选地,上述至少一个比特序列中的每个比特序列至少存在一个比特表示小区的信号质量满足该门限值。
可选地,该第二指示信息还包括该第一比特序列和该第一小区组的标识的对应关系。
可选地,该第一比特序列包括第一数值和/或第二数值,该第一数值用于表示小区的信号质量不满足该门限值,该第二数值用于表示小区的信号质量满足该门限值。
可选地,该第一数值为0,该第二数值为1。
可选地,该门限值包括RSRP门限值和/或RSRQ门限值。
可选地,该通信单元610具体用于按照信号质量由高到低的顺序,接收该终端设备上报的上述每个小区的信号质量。
可选地,该通信单元610具体用于接收该网络设备发送的消息5 MSG5或安全模式命令或测量报告中携带的该测量信息。
可选地,该通信单元610具体用于收终端设备发送的测量信息之前,还用于接收该终端设备发送的第三指示信息,该第三指示信息用于指示该终端设备将该测量信息携带在消息5 MSG5或安全模式命令或测量报告中上报给该网络设备。
可选地,该通信单元610具体用于接收该终端设备发送的消息3 MSG3,该MSG3包括该第三指示信息。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图8所示的网络设备600可以对应于执行本申请实施例的方法400中的相应主体,并且网络设备600中的各个单元的前述和其它操作和/或功能分别为了实现图1中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合图7和图8从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。
具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。
可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,本申请实施例中,图7所示的通信单元510和图8所示的通信单元610可由收发器实现,图7所示的测量单元520和图8所示的配置单元620可以由处理器实现。
图9是本申请实施例的通信设备700示意性结构图。图9所示的通信设备700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备700还可以包括存储器720。该存储器720可以用于存储指示信息,还可以用于存储处理器710执行的代码、指令等。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,如图9所示,通信设备700还可以包括收发器730,处理器710可以控制该收发器730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器730可以包括发射机和接收机。收发器730还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备700可为本申请实施例的网络设备,并且该通信设备700可以实现本申请实施例的各个方法中由网络设备实现的相应流程。也就是说,本申请实施例的通信设备700可对应于本申请实施例中的终端设备500,并可以对应于执行根据本申请实施例的方法300中的相应主体,为了简洁,在此不再赘述。
可选地,该通信设备700可为本申请实施例的终端设备,并且该通信设备700可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的通信设备700可对应于本申请实施例中的网络设备600,并可以对应于执行根据本申请实施例的方法400中的相应主体,为了简洁,在此不再赘述。
应当理解,该通信设备700中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
此外,本申请实施例中还提供了一种芯片,该芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。
可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图10是根据本申请实施例的芯片的示意性结构图。
图10所示的芯片800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,该芯片800还可以包括输入接口830。其中,处理器810可以控制该输入接口830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片800还可以包括输出接口840。其中,处理器810可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。还应理解,该芯片800中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
本申请实施例中提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等等。此外,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
此外,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM), 其用作外部高速缓存。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
图11是根据本申请实施例的通信系统900的示意性框图。如图11所示,该通信系统900包括终端设备910和网络设备920。其中,该终端设备910可以用于实现上述方法300和400中由终端设备实现的相应的功能,以及该终端设备910的组成可以如图7中的终端设备500所示,为了简洁,在此不再赘述。
该网络设备920可以用于实现上述方法300和400中由网络设备实现的相应的功能,以及该网络设备920的组成可以如图8中的网络设备600所示,为了简洁,在此不再赘述。
应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。
例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是 个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。
例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (43)

  1. 一种上报测量信息的方法,其特征在于,应用于处于空闲态或非激活态的终端设备,所述方法包括:
    所述终端设备测量至少一个小区的信号质量;
    所述终端设备根据所述至少一个小区中每个小区的信号质量上报测量信息。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备测量至少一个小区的信号质量之前,所述方法还包括:
    所述终端设备接收网络设备广播的第一指示信息;
    所述终端设备根据所述第一指示信息确定所述至少一个小区;
    其中,所述第一指示信息包括以下信息中的至少一项:
    所述至少一个小区所属的至少一个小区组的标识、所述至少一个小区的标识、测量频率和子载波间隔。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备根据所述至少一个小区中每个小区的信号质量上报测量信息,包括:
    所述终端设备确定门限值;
    所述终端设备根据所述每个小区的信号质量是否满足所述门限值,生成并上报所述测量信息。
  4. 根据权利要求3所述的方法,其特征在于,所述测量信息包括目标小区组的标识和/或目标小区的标识,所述目标小区组中的每个小区组至少包括一个满足所述门限值的小区,所述目标小区为所述至少一个小区中满足所述门限值的小区。
  5. 根据权利要求3所述的方法,其特征在于,所述测量信息包括第二指示信息,所述第二指示信息用于指示所述每个小区的信号质量是否满足门限值。
  6. 根据权利要求5所述的方法,其特征在于,所述第二指示信息包括:
    至少一个比特序列,所述至少一个比特序列中的第一比特序列用于表示所述至少一个小区组中的第一小区组中的每个小区的信号质量是否满足所述门限值。
  7. 根据权利要求6所述的方法,其特征在于,所述至少一个比特序列中的每个比特序列至少存在一个比特表示小区的信号质量满足所述门限值。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第二指示信息还包括:
    所述第一比特序列和所述第一小区组的标识的对应关系。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述第一比特序列包括第一数值和/或第二数值,所述第一数值用于表示小区的信号质量不满足所述门限值,所述第二数值用于表示小区的信号质量满足所述门限值。
  10. 根据权利要求9所述的方法,其特征在于,所述第一数值为0,所述第二数值为1。
  11. 根据权利要求3至10中任一项所述的方法,其特征在于,所述终端设备根据所述至少一个小区中每个小区的信号质量上报测量信息之前,所述方法还包括:
    所述终端设备接收所述网络设备广播的所述门限值。
  12. 根据权利要求3至11中任一项所述的方法,其特征在于,所述门限值为预配置门限值。
  13. 根据权利要求3至12中任一项所述的方法,其特征在于,所述门限值包括:
    参考信号接收功率RSRP门限值和/或参考信号接收质量RSRQ门限值。
  14. 根据权利要求1或2所述的方法,其特征在于,所述终端设备根据所述至少一个小区中每个小区的信号质量上报测量信息,包括:
    所述终端设备按照信号质量由高到低的顺序,向所述网络设备上报所述每个小区的信号质量。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述终端设备根据所述至少一个小区中每个小区的信号质量上报测量信息,包括:
    所述终端设备将所述测量信息携带在消息5MSG5或安全模式命令或测量报告中上报给所述网络设备。
  16. 根据权利要求15所述的方法,其特征在于,所述终端设备根据所述至少一个小区中每个小区的信号质量上报测量信息之前,所述方法还包括:
    所述终端设备向所述网络设备发送第三指示信息,所述第三指示信息用于指示所述终端设备将所述测量信息携带在消息5MSG5或安全模式命令或测量报告中上报给所述网络设备。
  17. 根据权利要求16所述的方法,其特征在于,所述终端设备向所述网络设备发送第三指示信息,包括:
    所述终端设备向所述网络设备发送消息3MSG3,所述MSG3包括所述第三指示信息。
  18. 一种配置终端设备的方法,其特征在于,包括:
    网络设备接收终端设备发送的测量信息,所述测量信息为处于空闲态或非连接态的所述终端设备根据至少一个小区中每个小区的信号质量生成的信息;
    所述网络设备根据所述测量信息,为所述终端设备配置辅助网络设备和/或辅助服务小区。
  19. 根据权利要求18所述的方法,其特征在于,所述网络设备接收终端设备发送的测量信息之前,所述方法还包括:
    所述网络设备向处于空闲态或非激活态的所述终端设备广播第一指示信息,所述第一指示信息用于所述终端设备确定所述至少一个小区;
    其中,所述第一指示信息包括以下信息中的至少一项:
    所述至少一个小区所属的至少一个小区组的标识、所述至少一个小区的标识、测量频率和子载波间隔。
  20. 根据权利要求18或19所述的方法,其特征在于,所述网络设备接收终端设备发送的测量信息之前,所述方法还包括:
    所述网络设备向所述终端设备广播门限值,所述门限值用于所述终端设备根据所述每个小区的信号质量是否满足所述门限值生成所述测量信息。
  21. 根据权利要求20所述的方法,其特征在于,所述测量信息包括目标小区组的标识和/或目标小区的标识,所述目标小区组中的每个小区组至少包括一个满足门限值的小区,所述目标小区为所述至少一个小区中满足门限值的小区。
  22. 根据权利要求20所述的方法,其特征在于,所述测量信息包括第二指示信息,所述第二指示信息用于指示所述每个小区的信号质量是否满足门限值。
  23. 根据权利要求22所述的方法,其特征在于,所述第二指示信息包括:
    至少一个比特序列,所述至少一个比特序列中的第一比特序列用于表示所述至少一个小区组中的第一小区组中的每个小区的信号质量是否满足所述门限值。
  24. 根据权利要求23所述的方法,其特征在于,所述至少一个比特序列中的每个比特序列至少存在一个比特表示小区的信号质量满足所述门限值。
  25. 根据权利要求23或24所述的方法,其特征在于,所述第二指示信息还包括:
    所述第一比特序列和所述第一小区组的标识的对应关系。
  26. 根据权利要求23至25中任一项所述的方法,其特征在于,所述第一比特序列包括第一数值和/或第二数值,所述第一数值用于表示小区的信号质量不满足所述门限值,所述第二数值用于表示小区的信号质量满足所述门限值。
  27. 根据权利要求26所述的方法,其特征在于,所述第一数值为0,所述第二数值为1。
  28. 根据权利要求20至27中任一项所述的方法,其特征在于,所述门限值包括:
    参考信号接收功率RSRP门限值和/或参考信号接收质量RSRQ门限值。
  29. 根据权利要求18或19所述的方法,其特征在于,所述网络设备接收终端设备发送的测量信息,包括:
    所述网络设备按照信号质量由高到低的顺序,接收所述终端设备上报的所述每个小区的信号质量。
  30. 根据权利要求18至29中任一项所述的方法,其特征在于,所述网络设备接收终端设备发送的测量信息,包括:
    所述网络设备接收所述终端设备发送的消息5MSG5或安全模式命令或测量报告中携带的所述测量信息。
  31. 根据权利要求30所述的方法,其特征在于,所述网络设备接收终端设备发送的测量信息之前,所述方法还包括:
    所述网络设备接收所述终端设备发送的第三指示信息,所述第三指示信息用于指示所述终端设备将所述测量信息携带在消息5MSG5或安全模式命令或测量报告中上报给所述网络设备。
  32. 根据权利要求31所述的方法,其特征在于,所述网络设备接收所述终端设备发送的第三指示信息,包括:
    所述网络设备接收所述终端设备发送的发送消息3MSG3,所述MSG3包括所述第三指示信息。
  33. 一种终端设备,其特征在于,所述终端设备处于空闲态或非激活态,所述终端设备包括:
    测量单元,用于测量至少一个小区的信号质量区;
    所述通信单元,用于根据所述至少一个小区中每个小区的信号质量上报测量信息。
  34. 一种网络设备,其特征在于,包括:
    通信单元,用于接收终端设备发送的测量信息,所述测量信息为处于空闲态或非连接态的所述终端设备根据至少一个小区中每个小区的信号质量生成的信息;
    配置单元,用于根据所述测量信息,为所述终端设备配置辅助网络设备和/或辅助服务小区。
  35. 一种终端设备,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,所述计算机程序包括:用于执行权利要求1至17中任一项所述的方法的指令。
  36. 一种网络设备,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,所述计算机程序包括:用于执行权利要求18至32中任一项所述的方法的指令。
  37. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,所述计算机程序包括:用于执行权利要求1至17中任一项所述的方法的指令。
  38. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,所述计算机程序包括:用于执行权利要求18至32中任一项所述的方法的指令。
  39. 一种存储介质,其特征在于,所述存储介质用于存储计算机程序,所述计算机程序包括:用于执行权利要求1至17中任一项所述的方法的指令。
  40. 一种存储介质,其特征在于,所述存储介质用于存储计算机程序,所述计算机程序包括:用于执行权利要求18至32中任一项所述的方法的指令。
  41. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行权利要求1至17中任一项所述的方法。
  42. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行权利要求18至32中任一项所述的方法。
  43. 一种通信系统,其特征在于,包括:
    处于空闲态或非激活态的终端设备和网络设备;
    其中,所述终端设备用于:测量至少一个小区的信号质量;根据所述至少一个小区中每个小区的信号质量上报测量信息;
    所述网络设备用于:接收终端设备发送的测量信息;根据所述测量信息,为所述终端设备配置辅助网络设备和/或辅助服务小区。
PCT/CN2018/091516 2018-06-15 2018-06-15 上报测量信息的方法、配置终端设备的方法和设备 WO2019237338A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
AU2018427414A AU2018427414B2 (en) 2018-06-15 2018-06-15 Method for reporting measurement information, method for configuring terminal device, and device
KR1020207033234A KR20200143738A (ko) 2018-06-15 2018-06-15 측정 정보를 리포팅하는 방법, 단말 장치를 구성하는 방법과 장치
CA3100759A CA3100759A1 (en) 2018-06-15 2018-06-15 Method for reporting measurement information, method for configuring terminal device, and device
CN201880090955.7A CN111837416A (zh) 2018-06-15 2018-06-15 上报测量信息的方法、配置终端设备的方法和设备
MX2020013295A MX2020013295A (es) 2018-06-15 2018-06-15 Metodo para comunicar informacion de medicion, metodo para configurar dispositivo de terminal y dispositivo.
BR112020025219-0A BR112020025219A2 (pt) 2018-06-15 2018-06-15 Método para relatório de informações de medição aplicado a um dispositivo terminal em um estado ocioso ou em um estado inativo, método para configuração de um dispositivo terminal, dispositivo terminal, dispositivo de rede, chip, mídia de armazenamento e sistema de comunicação
EP18922677.2A EP3780708B1 (en) 2018-06-15 2018-06-15 Method for reporting measurement information, method for configuring terminal device, and device
PCT/CN2018/091516 WO2019237338A1 (zh) 2018-06-15 2018-06-15 上报测量信息的方法、配置终端设备的方法和设备
JP2020564926A JP2021525038A (ja) 2018-06-15 2018-06-15 測定情報の報告方法、端末装置の構成方法及び装置
CN202011574524.3A CN112738825A (zh) 2018-06-15 2018-06-15 上报测量信息的方法、配置终端设备的方法和设备
US17/093,841 US20210067999A1 (en) 2018-06-15 2020-11-10 Method for reporting measurement information, method for configuring terminal device, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/091516 WO2019237338A1 (zh) 2018-06-15 2018-06-15 上报测量信息的方法、配置终端设备的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/093,841 Continuation US20210067999A1 (en) 2018-06-15 2020-11-10 Method for reporting measurement information, method for configuring terminal device, and device

Publications (1)

Publication Number Publication Date
WO2019237338A1 true WO2019237338A1 (zh) 2019-12-19

Family

ID=68841757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091516 WO2019237338A1 (zh) 2018-06-15 2018-06-15 上报测量信息的方法、配置终端设备的方法和设备

Country Status (10)

Country Link
US (1) US20210067999A1 (zh)
EP (1) EP3780708B1 (zh)
JP (1) JP2021525038A (zh)
KR (1) KR20200143738A (zh)
CN (2) CN111837416A (zh)
AU (1) AU2018427414B2 (zh)
BR (1) BR112020025219A2 (zh)
CA (1) CA3100759A1 (zh)
MX (1) MX2020013295A (zh)
WO (1) WO2019237338A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518352A (zh) * 2020-04-09 2021-10-19 维沃移动通信有限公司 层二测量方法和网络侧设备
WO2022011505A1 (zh) * 2020-07-13 2022-01-20 Oppo广东移动通信有限公司 波束管理方法、装置、设备及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11470672B2 (en) 2017-07-21 2022-10-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Multi-connection recovery method in non-activated state and device therefor
JP7213359B2 (ja) * 2019-01-28 2023-01-26 オッポ広東移動通信有限公司 無線通信方法、端末装置及びネットワーク装置
WO2020190197A1 (en) * 2019-03-20 2020-09-24 Telefonaktiebolaget Lm Ericsson (Publ) Flexible early measurement reporting
CN113242567B (zh) * 2021-05-12 2022-08-19 江苏亨鑫众联通信技术有限公司 非连接态终端上报信息、检测终端及移动性问题的方法
CN113613235B (zh) * 2021-07-27 2022-12-27 展讯通信(上海)有限公司 频偏调整方法与装置、终端和网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300246A (zh) * 2010-06-22 2011-12-28 华为技术有限公司 一种上报小区测量结果的方法与装置
CN103518400B (zh) * 2012-05-11 2017-04-19 华为技术有限公司 一种信号质量测量结果的上报方法、设备及系统
CN108156670A (zh) * 2016-12-05 2018-06-12 宏达国际电子股份有限公司 处理通信的装置及方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011041754A1 (en) * 2009-10-02 2011-04-07 Research In Motion Limited Mobility in a wireless network
CN102421119A (zh) * 2010-09-28 2012-04-18 中兴通讯股份有限公司 额外测量结果的上报方法及系统
US9042938B2 (en) * 2012-12-27 2015-05-26 Google Technology Holdings LLC Method and apparatus for device-to-device communication
US9723542B2 (en) * 2013-03-15 2017-08-01 Lg Electronics Inc. Method and apparatus for transmitting/receiving discovery signal in wireless communication system
JP6411383B2 (ja) * 2014-01-31 2018-10-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 端末及びハンドオーバ判定方法
CN107439034B (zh) * 2014-12-01 2020-10-27 三星电子株式会社 无线通信系统中支持授权辅助接入技术的方法和装置
US9560571B2 (en) * 2015-03-27 2017-01-31 Intel IP Corporation Method for performing mobile communications and mobile radio communication terminal device
US10506479B2 (en) * 2015-06-15 2019-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Handover for non-standard user equipment with special capabilities
CN106535223B (zh) * 2015-09-15 2019-12-27 展讯通信(上海)有限公司 一种小区测量方法及移动终端
WO2017146535A1 (en) * 2016-02-26 2017-08-31 Samsung Electronics Co., Ltd. System and method connected mode discontinuous operation in beamformed system
US9924426B2 (en) * 2016-06-06 2018-03-20 Futurewei Technologies, Inc. Apparatus, computer program, and method for criteria-based conditional cell reselection
WO2018012811A1 (ko) * 2016-07-10 2018-01-18 엘지전자 주식회사 단말이 mbms 서비스를 수신하는 방법 및 이를 지원하는 장치
US10524181B2 (en) * 2016-08-03 2019-12-31 Samsung Electronics Co., Ltd. Method for cell reselection in idle mode for next generation mobile communication systems
KR20180035638A (ko) * 2016-09-29 2018-04-06 삼성전자주식회사 RRC Inactive 및 active 상태에서 data 전송 결정 및 방법 및 장치
EP3520461B1 (en) * 2016-09-29 2022-11-16 Apple Inc. Measurement and communication of numerology of subcarrier spacing
KR20190100277A (ko) * 2016-12-22 2019-08-28 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 불연속 수신을 위한 데이터 전송 방법 및 장치
US10568007B2 (en) * 2017-03-22 2020-02-18 Comcast Cable Communications, Llc Handover random access

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300246A (zh) * 2010-06-22 2011-12-28 华为技术有限公司 一种上报小区测量结果的方法与装置
CN103518400B (zh) * 2012-05-11 2017-04-19 华为技术有限公司 一种信号质量测量结果的上报方法、设备及系统
CN108156670A (zh) * 2016-12-05 2018-06-12 宏达国际电子股份有限公司 处理通信的装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Faster Measurements and Signaling for Ultra Reliable Mobility", 3GPP TSG-RAN WG2 #97 R2-1700921, 4 February 2017 (2017-02-04), XP051223308 *
See also references of EP3780708A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518352A (zh) * 2020-04-09 2021-10-19 维沃移动通信有限公司 层二测量方法和网络侧设备
CN113518352B (zh) * 2020-04-09 2023-09-26 维沃移动通信有限公司 层二测量方法和网络侧设备
WO2022011505A1 (zh) * 2020-07-13 2022-01-20 Oppo广东移动通信有限公司 波束管理方法、装置、设备及存储介质

Also Published As

Publication number Publication date
MX2020013295A (es) 2021-02-22
EP3780708B1 (en) 2023-04-19
CN112738825A (zh) 2021-04-30
BR112020025219A2 (pt) 2021-03-09
AU2018427414B2 (en) 2021-12-09
AU2018427414A1 (en) 2020-12-03
EP3780708A4 (en) 2021-04-14
JP2021525038A (ja) 2021-09-16
CA3100759A1 (en) 2019-12-19
US20210067999A1 (en) 2021-03-04
CN111837416A (zh) 2020-10-27
EP3780708A1 (en) 2021-02-17
KR20200143738A (ko) 2020-12-24

Similar Documents

Publication Publication Date Title
WO2019237338A1 (zh) 上报测量信息的方法、配置终端设备的方法和设备
WO2020147050A1 (zh) 一种信息上报方法及装置、终端
WO2020164016A1 (zh) 小区切换的方法和设备
US10595239B2 (en) Data transmission method and device
US20220022112A1 (en) Method for cell handover, and devices
WO2021000289A1 (zh) 用于传输小数据的方法及设备
WO2020154870A1 (zh) 无线通信方法、终端设备和网络设备
WO2020220309A1 (zh) 用于小区切换的方法及设备
WO2019237763A1 (zh) 一种rlf的处理方法及装置、通信设备
WO2019242722A1 (zh) 一种测量控制方法及装置、终端设备
WO2020232611A1 (zh) 一种小区重选方法及装置、终端
EP3496454B1 (en) Beamforming information interaction method and network device
US20210360503A1 (en) Method for radio communication and terminal device
WO2020107429A1 (zh) 随机接入的方法和设备
US20230094897A1 (en) Condition-based method and device for adding secondary node or primary secondary cell
EP3386244B1 (en) Terminal device, network device, method for selecting cell, and wireless communication system
WO2020056717A1 (zh) 一种资源关联方法及装置、终端、网络设备
WO2020082248A1 (zh) 一种控制终端移动性的方法及装置、终端
WO2020056733A1 (zh) 一种负荷控制方法及装置、网络设备、终端
WO2022027489A1 (zh) 邻区测量的方法、终端设备和网络设备
WO2021184281A1 (zh) 小区切换方法和装置
WO2020220321A1 (zh) 无线通信方法、终端设备和网络设备
WO2022237575A1 (zh) 测量配置方法和装置
WO2021174467A1 (zh) 一种数据传输方法、电子设备及存储介质
WO2021046812A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018922677

Country of ref document: EP

Effective date: 20201029

ENP Entry into the national phase

Ref document number: 3100759

Country of ref document: CA

Ref document number: 20207033234

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020564926

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018427414

Country of ref document: AU

Date of ref document: 20180615

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020025219

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020025219

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201210