WO2019235511A1 - Phase plate, objective lens, and observation device - Google Patents

Phase plate, objective lens, and observation device Download PDF

Info

Publication number
WO2019235511A1
WO2019235511A1 PCT/JP2019/022287 JP2019022287W WO2019235511A1 WO 2019235511 A1 WO2019235511 A1 WO 2019235511A1 JP 2019022287 W JP2019022287 W JP 2019022287W WO 2019235511 A1 WO2019235511 A1 WO 2019235511A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
modulation unit
phase plate
light
wavelength
Prior art date
Application number
PCT/JP2019/022287
Other languages
French (fr)
Japanese (ja)
Inventor
大瀧 達朗
隆一 星加
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2020523137A priority Critical patent/JP7031740B2/en
Publication of WO2019235511A1 publication Critical patent/WO2019235511A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a phase plate, an objective lens, and an observation apparatus.
  • Patent Document 1 discloses a phase plate that can be used in a phase contrast microscope using a dark contrast method for observing a subject (a phase object having a refractive index higher than that of a medium) with a darker contrast than the background.
  • the bright contrast method for observing a subject with a brighter contrast than the background requires a phase plate different from the dark contrast method.
  • the phase plate may include a translucent substrate.
  • the phase plate is formed of a first material having a higher refractive index as the wavelength is longer on the substrate.
  • the phase plate modulates the light transmittance and delays the phase of the transmitted light by a quarter wavelength with respect to the wavelength region.
  • a modulation unit may be provided.
  • the phase plate may include a second modulation unit that is formed around the first modulation unit on the substrate and modulates the light transmittance to a transmittance different from the transmittance of the first modulation unit.
  • the wavelength range may be a visible wavelength range.
  • the first material may include at least one of titanium (Ti), chromium (Cr), and tantalum (Ta).
  • the upper surface of the first modulator may be covered with a second material having a lower refractive index as the wavelength is longer.
  • the second material may be an oxide of the first material.
  • the second modulation unit may be formed with a thickness different from that of the first modulation unit using the first material.
  • the second modulation unit may have a smaller thickness than the first modulation unit.
  • the first modulation unit and the second modulation unit include a first portion formed in a region on the substrate occupied by the first modulation unit and the second modulation unit with a thickness equal to the second modulation unit, and a first portion on the first portion. And a second portion formed with a thickness equal to a difference between the thicknesses of the first modulation unit and the second modulation unit in a region occupied by one modulation unit.
  • the first modulation unit may have an annular shape.
  • the objective lens may include the phase plate according to any one of items 1 to 9.
  • the observation apparatus may include the objective lens described in Item 10.
  • the observation apparatus may include the phase plate according to any one of items 1 to 9 and an objective lens disposed at a position conjugate with the phase plate.
  • phase plate which concerns on this embodiment is shown by a front view.
  • the cross-sectional structure of the phase plate regarding the reference line BB in FIG. 1 is shown.
  • An example of chromatic dispersion of a phase by a phase plate is shown.
  • a comparative example of phase chromatic dispersion by a phase plate is shown.
  • Another comparative example of phase chromatic dispersion by a phase plate is shown.
  • 1 shows a schematic configuration of a phase contrast microscope. Examples and comparative examples of bright and dark images obtained by observing a subject with a phase contrast microscope using the phase plate according to the present embodiment are shown.
  • FIG. 1 and 2 show a configuration of the phase plate 1 according to the present embodiment.
  • FIG. 1 is a front view
  • FIG. 2 is a cross-sectional view of the reference line BB in FIG.
  • the phase plate 1 is a phase plate that modulates the transmittance and phase of light that can be used in phase difference observation by the bright contrast method, and includes a substrate 2, a first modulation unit 3a, and a second modulation unit 4a.
  • the bright contrast method refers to light diffracted by a phase object in a subject having a higher refractive index than that of the medium (that is, a medium and a phase object in the subject).
  • Diffracted light is a contrast method in which the phase difference between direct light and diffracted light is set to zero by delaying the wavelength by 1/4 wavelength to make the subject bright and the background dark.
  • the substrate 2 is a plate-like member that supports the first and second modulators 3a and 4a.
  • a member having translucency in the visible light region for example, a wavelength region of 380 to 780 nm
  • a glass substrate can be adopted.
  • the upper surface of the substrate 2 where the first and second modulation sections 3a and 4a, which will be described later, are not formed, that is, the inner and outer exposed surfaces of the ring-shaped first and second modulation sections 3a and 4a also have light transmittance.
  • the non-modulation part 2a which does not modulate a phase is made.
  • the first modulator 3a is a film body that modulates the light transmittance and delays the phase of the transmitted light by a quarter wavelength with respect to the light passing through the air layer of the same thickness.
  • the first modulation unit 3a is formed in an annular shape on the substrate 2 corresponding to the case where the object to be observed is observed using annular illumination as an example. In addition, it is not limited to the annular zone, and may have an arbitrary small shape such as a circle or a rectangle corresponding to the illumination shape.
  • the first modulation unit 3a includes a main body 3b and an adjustment film 3c.
  • the main body 3b is a portion formed immediately above the substrate 2.
  • the main body 3b is a material having a light transmittance of less than 1 and a refractive index of 1 or more in the visible light region (meaning the wavelength region of visible light, particularly the reference wavelength 550 nm), and the higher the wavelength, the higher the refractive index.
  • a wavelength characteristic of the refractive index is also referred to as reverse dispersion
  • a material having reverse dispersion is also referred to as reverse dispersion material.
  • a material in which the phase delay of transmitted light increases with respect to the increase in wavelength may be used.
  • titanium (Ti), chromium (Cr), or tantalum (Ta) can be used. By using these metals, it is possible to sufficiently reduce the light transmittance with a small film thickness, so that the details of the test object can be clearly displayed in the phase difference observation by the bright contrast method.
  • the adjustment film 3c is a part that covers the upper surface of the main body 3b in order to adjust the wavelength dispersion of the first modulation unit 3a by the main body 3b.
  • the adjustment film 3c can be formed of a material having a lower refractive index as the wavelength is longer. Such wavelength characteristics of refractive index are also referred to as positive dispersion, and a material having positive dispersion is also referred to as a positive dispersion material. Note that a material in which the phase delay of transmitted light decreases with an increase in wavelength may be used. Thereby, the chromatic dispersion of the phase by the first modulator 3a is adjusted, and the chromatic dispersion of the target phase can be realized by only two layers of the main body 3b and the adjustment film 3c.
  • an oxide of a material forming the main body 3b for example, TiO 2 , Cr 2 O 3 , or Ta 2 O 5 can be used. Since the material forming the main body 3b and the material forming the adjustment film 3c exhibit dispersibility opposite to each other, the first modulator 3a can be configured using these, and in addition, the same metal is used for each. By including, it shows the same tolerance with respect to the chemical
  • the second modulation unit 4a is a film body that modulates the light transmittance to a different transmittance (but less than 1) from the first modulation unit 3a.
  • the second modulation unit 4a is formed on the substrate 2 so as to sandwich the first modulation unit 3a around the first modulation unit 3a, that is, between the two annular zones arranged inside and outside the first modulation unit 3a. ing.
  • the second modulation unit 4a is formed using the same material as that used to form the main body 3b of the first modulation unit 3a, but with a different film thickness from the first modulation unit 3a. That is, the light transmittance in the second modulation unit 4a is different from that in the first modulation unit 3a.
  • the second modulation unit 4a is formed with a smaller film thickness than the first modulation unit 3a. As a result, the transmittance of the second modulator 4a is greater than the transmittance of the first modulator 3a, and the phase modulation of the transmitted light is reduced.
  • a first resist film in which an annular region occupied by the first and second modulators 3a and 4a is formed on the substrate 2 is formed.
  • the first resist film is used as a mask by the sputtering method, and the above-mentioned reverse dispersive material is deposited on the substrate 2 to form the ring-shaped first layer 4.
  • the thickness of the first layer 4 is determined so as to obtain a desired transmittance of the second modulator 4a.
  • the thickness of the first layer 4 is about 25 nm.
  • the transmittance of the second modulation unit 4a is about 8%, and when observing a test object having a large phase difference, a halo, that is, a blotting-like light blur that may occur around the object image occurs. And good contrast can be obtained.
  • the second resist film is used as a mask, and the same material as the previously used reverse dispersion material is deposited on the first layer 4 to form the annular zone-like second layer 3. .
  • the thickness of the second layer 3 is determined such that a desired transmittance of the first modulation unit 3a can be obtained.
  • the thickness of the second layer 3 is about 25 nm (the total thickness of the first and second layers 4 and 3 is about 50 nm).
  • the transmittance of the first modulator 3a (main body 3b) approximately 2%, is obtained.
  • the small transmittance of the first modulation unit 3a makes it possible to detect a minute phase difference of the diffracted light, that is, the resolution of the test object is increased.
  • the main body 3b of the ring-shaped first modulation unit 3a and the second modulation unit 4a surrounding it are formed on the substrate 2 as shown in FIG. Therefore, it is confirmed that the product of the refractive index and the film thickness of the main body 3b of the first modulation unit 3a is approximately equal to a quarter of the wavelength of light in the entire visible light region.
  • the above-described positively dispersible material is deposited on the second layer 3 to form the adjustment film 3c.
  • the oxide of the reverse dispersion material used previously can be used as the normal dispersion material.
  • tantalum (Ta) is used as the reverse dispersion material
  • Ta 2 O 5 can be used as the normal dispersion material.
  • the phase plate 1 is obtained by removing the resist film from the substrate 2.
  • the resist film may be stripped using a stripping solution.
  • the first and second modulators 3a and 4a formed on the substrate 2 have a film thickness equal to that of the second modulator 4a in a region on the substrate 2 occupied by the first and second modulators 3a and 4a.
  • FIG. 3 shows an example (example) of phase chromatic dispersion by the phase plate 1 configured as described above.
  • the chromatic dispersion of the refractive index of the first modulation unit 3a and the chromatic dispersion of the phase of the transmitted light in the visible light region (the phase delay of the light transmitted through the first modulation unit 3a), respectively.
  • FIG. 4 shows a comparative example of phase wavelength dispersion by the phase plate.
  • the chromatic dispersion of the refractive index of the first modulator 3a and the chromatic dispersion of the phase of the transmitted light in the visible light region (the phase delay of the light transmitted through the first modulator 3a), respectively.
  • the refractive index of the first modulation unit 3a is substantially constant with respect to the wavelength as in this example, the phase delay of the light transmitted through the first modulation unit 3a increases with an increase in wavelength in the visible light region. To do.
  • FIG. 5 shows another comparative example of phase wavelength dispersion by the phase plate.
  • the chromatic dispersion of the refractive index of the first modulator 3a and the chromatic dispersion of the phase of the transmitted light in the visible light region (the phase delay of the light transmitted through the first modulator 3a), respectively.
  • the refractive index of the first modulation unit 3a decreases as the wavelength increases as in this example, the phase delay of the light transmitted through the first modulation unit 3a is greater than the increase in wavelength in the visible light region. Strongly increases.
  • the phase plate 1 modulates the light transmittance, which is formed on the translucent substrate 2 and the substrate 2 from a material having a higher refractive index as the wavelength is longer.
  • a second modulator 4a that modulates the transmittance different from the transmittance of the first modulator 3a is provided.
  • a phase characteristic can be realized that delays the wavelength by a quarter of the phase of light that passes through the air layer of the same thickness (that is, light that passes through the non-modulation part 2a), and is used for phase contrast observation by the bright contrast method.
  • a possible phase plate can be provided.
  • FIG. 6 shows a schematic configuration of a phase contrast microscope 10 (an example of an observation apparatus) using the phase plate 1 according to the present embodiment.
  • the phase contrast microscope 10 includes a light source LS, a diaphragm AP, a lens G1, and an objective lens G.
  • the light source LS generates illumination light.
  • the aperture AP has a ring-shaped opening and is disposed at the front focal position F of the lens G1.
  • the lens G1 condenses illumination light through the aperture AP.
  • the objective lens G includes a pair of lenses G2 and G3 and a phase plate 1 disposed therebetween.
  • the phase plate 1 is conjugate with the aperture AP at the rear focal position F ′ of the lens G2, that is, the shape of the first modulation unit 3a is similar to the aperture shape of the aperture AP and the combined magnification of the lenses G1 and G2.
  • One modulator 3a is arranged at a position conjugate with the aperture of the aperture AP.
  • the illumination light emitted from the light source LS is limited to a ring shape through the aperture AP, and is condensed by the lens G1 to illuminate the test object O.
  • the light transmitted through the test object O is focused on the image plane 11 by the objective lens G and imaged.
  • the illumination light illuminating the test object O is divided into direct light L1 transmitted through the test object and diffracted light ( ⁇ first order) L2 diffracted by the test object, and the first modulation of the phase plate 1 respectively. It passes through the part 3a and the non-modulation part 2a. Note that an angle difference between each of the direct light L1 and the ⁇ first-order diffracted light L2 is a diffraction angle ⁇ .
  • the phase of the direct light L1 is delayed by a quarter wavelength with respect to the diffracted light L2. Due to the action of the phase plate, the direct light L1 and the diffracted light L2 are collected on the image plane 11 and interfere with each other, so that the phase difference between them is reproduced as the brightness of the image, and the object O Can be observed.
  • the diffraction angle ⁇ decreases and the intensity of the diffracted light L2 increases. For this reason, the separation distance between the direct light L1 and the diffracted light L2 is reduced, and the direct light L1 is transmitted through the first modulating unit 3a and the diffracted light L2 is transmitted through the second modulating unit 4a. Therefore, the ratio of the respective transmittances of the first and second modulators 3a and 4a becomes the substantial transmittance modulation of the direct light L1 with respect to the diffracted light L2, whereby a low-contrast observation image can be obtained.
  • the ratio of the transmittance of each of the first modulation unit 3a and the non-modulation unit 2a is a substantial transmittance modulation of the direct light L1 with respect to the diffracted light L2, thereby reducing only the amplitude of the direct light L1. Can be obtained.
  • the transmittance varies stepwise between the first modulation unit 3a, the second modulation unit 4a, and the non-modulation unit 2a. Since the amplitude (light quantity ratio) with the light L2 is moderately modulated, and preferably modulated so as to be substantially equal, in the bright contrast method, it is possible to obtain an observation image with good contrast that reflects the subject brightly on a dark background. .
  • FIG. 7 shows examples and comparative examples of bright and dark images obtained by observing the subject with the phase-contrast microscope 10 using the phase plate 1 according to the present embodiment.
  • A) to (C) respectively show a dark contrast method with a low contrast using the objective lens DLL, a dark contrast method with a relatively high contrast using the objective lens DM, and a comparatively high contrast with the objective lens BM. It is an image obtained by a high bright contrast method.
  • (D) is an image obtained by the bright contrast method (apodization bright contrast method) with high contrast using the objective lens ABH by the phase contrast microscope 10 including the phase plate 1 according to the present embodiment.
  • mouth early embryo size is about 80 micrometers in diameter was used as a test object.
  • titanium (Ti), chromium (Cr), or tantalum (Ta) is used as a material for forming the main body 3b of the first modulation unit 3a. Not limited thereto, any combination thereof may be used, and further other materials may be included. In the case of using a plurality of materials, one film body including them may be formed on the substrate 2, or a plurality of layers including each may be stacked on the substrate 2.
  • the second modulation unit 4a is formed using the same material as that of the main body 3b of the first modulation unit 3a, but may be formed using a different material.
  • titanium (Ti), chromium (Cr), nickel (Ni), niobium (Nb), silver (Ag), tantalum (Ta), gold (Au), and inconel (chromium, iron, silicon) Or any combination thereof may be used.
  • the phase contrast microscope 10 is configured to include the objective lens G having the phase plate 1, but is not limited thereto, and includes the phase plate 1 and the objective lens G separately. It may be configured. In such a case, the phase plate 1 and the exit pupil plane of the objective lens G are disposed at optically conjugate positions. Thereby, a bright subject can be brightly viewed on a dark background by the bright contrast method.
  • DESCRIPTION OF SYMBOLS 1 Phase plate, 2 ... Board

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Polarising Elements (AREA)

Abstract

A phase plate 1 according to an embodiment of the present invention is provided with: a translucent base plate 2; a first modulating portion 3a which is formed on the base plate from a material having a refractive index that is higher the longer the wavelength, and which modulates the transmittance of light and delays the phase of transmitted light by a quarter of a wavelength with respect to the wavelength region of visible light; and a second modulating portion 4a which is formed on the base plate around the first modulating portion, and which modulates the transmittance of light to a transmittance different from the transmittance in the first modulating portion. Forming the first modulating portion on the base plate using a material having a refractive index that is higher the longer the wavelength makes it possible to achieve a phase characteristic whereby, for an arbitrarily defined wavelength in the visible light region, the phase of light transmitted through the first modulating portion is delayed by a quarter of a wavelength relative to the phase of light passing through an air layer having the same thickness, thereby making it possible to provide a phase plate that can be used in phase difference observation employing a bright contrast method.

Description

位相板、対物レンズ、及び観察装置Phase plate, objective lens, and observation device
 本発明は、位相板、対物レンズ、及び観察装置に関する。 The present invention relates to a phase plate, an objective lens, and an observation apparatus.
 位相差顕微鏡は、被検体を照明光により照明し、被検体により回折した光を対物レンズ内に配された位相板を介することで位相を変調し、これにより生じる光の位相差をコントラストに変換することで被検体の明暗像を観察する。位相差顕微鏡は、生物標本などの無色透明な被検体を染色することなしに観察することができる。例えば特許文献1には、被検体(媒質よりも高い屈折率を持つ位相物体)を背景より暗いコントラストで観察するダークコントラスト法による位相差顕微鏡で利用可能な位相板が開示されている。被検体を背景より明るいコントラストで観察するブライトコントラスト法では、ダークコントラスト法とは異なる位相板が必要である。
 [特許文献1]特開平6-289438号公報
The phase contrast microscope illuminates the subject with illumination light, modulates the phase of the light diffracted by the subject through a phase plate arranged in the objective lens, and converts the resulting phase difference of light into contrast By doing so, the bright and dark image of the subject is observed. The phase contrast microscope can observe a colorless and transparent subject such as a biological specimen without staining. For example, Patent Document 1 discloses a phase plate that can be used in a phase contrast microscope using a dark contrast method for observing a subject (a phase object having a refractive index higher than that of a medium) with a darker contrast than the background. The bright contrast method for observing a subject with a brighter contrast than the background requires a phase plate different from the dark contrast method.
[Patent Document 1] Japanese Patent Laid-Open No. 6-289438
一般的開示General disclosure
 (項目1)
 位相板は、透光性の基板を備えてよい。
 位相板は、基板上に波長が長いほど屈折率が高い第1材料から形成された、光の透過率を変調するとともに、波長域に対して透過光の位相を4分の1波長遅らせる第1変調部を備えてよい。
 位相板は、基板上の第1変調部の周囲に形成された、光の透過率を、第1変調部の透過率と異なる透過率に変調する第2変調部を備えてよい。
 (項目2)
 波長域は可視光線の波長域であってよい。
 (項目3)
 第1材料は、チタン(Ti)、クロム(Cr)、及びタンタル(Ta)のうちの少なくとも1つを含んでよい。
 (項目4)
 第1変調部は、波長が長いほど屈折率が低い第2材料を用いて上面が覆われてよい。
 (項目5)
 第2材料は、第1材料の酸化物であってよい。
 (項目6)
 第2変調部は、第1材料を用いて第1変調部と異なる厚さで形成されてよい。
 (項目7)
 第2変調部は、第1変調部より小さい厚さを有してよい。
 (項目8)
 第1変調部及び第2変調部は、第1変調部及び第2変調部が占める基板上の領域に第2変調部に等しい厚さで成形された第1部分と、第1部分上の第1変調部が占める領域に第1変調部及び第2変調部の厚さの差に等しい厚さで形成された第2部分と、を有してよい。
 (項目9)
 第1変調部は、輪帯形状を有してよい。
(Item 1)
The phase plate may include a translucent substrate.
The phase plate is formed of a first material having a higher refractive index as the wavelength is longer on the substrate. The phase plate modulates the light transmittance and delays the phase of the transmitted light by a quarter wavelength with respect to the wavelength region. A modulation unit may be provided.
The phase plate may include a second modulation unit that is formed around the first modulation unit on the substrate and modulates the light transmittance to a transmittance different from the transmittance of the first modulation unit.
(Item 2)
The wavelength range may be a visible wavelength range.
(Item 3)
The first material may include at least one of titanium (Ti), chromium (Cr), and tantalum (Ta).
(Item 4)
The upper surface of the first modulator may be covered with a second material having a lower refractive index as the wavelength is longer.
(Item 5)
The second material may be an oxide of the first material.
(Item 6)
The second modulation unit may be formed with a thickness different from that of the first modulation unit using the first material.
(Item 7)
The second modulation unit may have a smaller thickness than the first modulation unit.
(Item 8)
The first modulation unit and the second modulation unit include a first portion formed in a region on the substrate occupied by the first modulation unit and the second modulation unit with a thickness equal to the second modulation unit, and a first portion on the first portion. And a second portion formed with a thickness equal to a difference between the thicknesses of the first modulation unit and the second modulation unit in a region occupied by one modulation unit.
(Item 9)
The first modulation unit may have an annular shape.
 (項目10)
 対物レンズは、項目1から9のいずれか一項に記載の位相板を備えてよい。
(Item 10)
The objective lens may include the phase plate according to any one of items 1 to 9.
 (項目11)
 観察装置は、項目10に記載の対物レンズを備えてよい。
(Item 11)
The observation apparatus may include the objective lens described in Item 10.
 観察装置は、項目1から9のいずれか一項に記載の位相板と、位相板と共役な位置に配される対物レンズと、を備えてよい。 The observation apparatus may include the phase plate according to any one of items 1 to 9 and an objective lens disposed at a position conjugate with the phase plate.
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
本実施形態に係る位相板の構成を正面視により示す。The structure of the phase plate which concerns on this embodiment is shown by a front view. 図1における基準線BBに関する位相板の断面構成を示す。The cross-sectional structure of the phase plate regarding the reference line BB in FIG. 1 is shown. 位相板による位相の波長分散の実施例を示す。An example of chromatic dispersion of a phase by a phase plate is shown. 位相板による位相の波長分散の比較例を示す。A comparative example of phase chromatic dispersion by a phase plate is shown. 位相板による位相の波長分散の別の比較例を示す。Another comparative example of phase chromatic dispersion by a phase plate is shown. 位相差顕微鏡の概略構成を示す。1 shows a schematic configuration of a phase contrast microscope. 本実施形態に係る位相板を用いた位相差顕微鏡により被検体を観察して得られた明暗像の実施例及び比較例を示す。Examples and comparative examples of bright and dark images obtained by observing a subject with a phase contrast microscope using the phase plate according to the present embodiment are shown.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1及び図2に、本実施形態に係る位相板1の構成を示す。ここで、図1は、正面図であり、図2は、図1における基準線BBに関する断面図である。位相板1は、ブライトコントラスト法による位相差観察において利用可能な光の透過率及び位相を変調する位相板であり、基板2、第1変調部3a、及び第2変調部4aを備える。なお、ブライトコントラスト法とは、被検体(すなわち、被検体内の媒質及び位相物体)を透過する直接光の位相を媒質よりも高い屈折率を有する被検体内の位相物体により回折した光(すなわち、回折光)に対して1/4波長遅らせて直接光及び回折光間の位相差をゼロにすることで、被検体を明るく、背景を暗く映すコントラスト法をいう。 1 and 2 show a configuration of the phase plate 1 according to the present embodiment. Here, FIG. 1 is a front view, and FIG. 2 is a cross-sectional view of the reference line BB in FIG. The phase plate 1 is a phase plate that modulates the transmittance and phase of light that can be used in phase difference observation by the bright contrast method, and includes a substrate 2, a first modulation unit 3a, and a second modulation unit 4a. The bright contrast method refers to light diffracted by a phase object in a subject having a higher refractive index than that of the medium (that is, a medium and a phase object in the subject). , Diffracted light) is a contrast method in which the phase difference between direct light and diffracted light is set to zero by delaying the wavelength by 1/4 wavelength to make the subject bright and the background dark.
 基板2は、第1及び第2変調部3a,4aを支持する板状部材である。基板2は、可視光領域(例えば、380~780nmの波長領域)において透光性を有する部材、例えばガラス基板を採用することができる。なお、後述する第1及び第2変調部3a,4aが形成されない基板2の上面、すなわち輪帯状の第1及び第2変調部3a,4aの内側及び外側の露出面は、光の透過率も位相も変調しない無変調部2aをなす。 The substrate 2 is a plate-like member that supports the first and second modulators 3a and 4a. As the substrate 2, a member having translucency in the visible light region (for example, a wavelength region of 380 to 780 nm), for example, a glass substrate can be adopted. Note that the upper surface of the substrate 2 where the first and second modulation sections 3a and 4a, which will be described later, are not formed, that is, the inner and outer exposed surfaces of the ring-shaped first and second modulation sections 3a and 4a also have light transmittance. The non-modulation part 2a which does not modulate a phase is made.
 第1変調部3aは、光の透過率を変調するとともに、透過光の位相を同厚の空気層を通る光に対して4分の1波長遅らせる膜体である。第1変調部3aは、基板2上に、一例として輪帯照明を用いて被検物を照明して観察する場合に対応して輪帯状に形成されている。なお、輪帯に限らず、照明形状に対応して、円、矩形等の任意の小幅の形状であってもよい。第1変調部3aは、本体3b及び調整膜3cを含む。 The first modulator 3a is a film body that modulates the light transmittance and delays the phase of the transmitted light by a quarter wavelength with respect to the light passing through the air layer of the same thickness. The first modulation unit 3a is formed in an annular shape on the substrate 2 corresponding to the case where the object to be observed is observed using annular illumination as an example. In addition, it is not limited to the annular zone, and may have an arbitrary small shape such as a circle or a rectangle corresponding to the illumination shape. The first modulation unit 3a includes a main body 3b and an adjustment film 3c.
 本体3bは、基板2の直上に形成された部分である。本体3bは、可視光領域(可視光線の波長域の意味であり、特に基準波長550nm)において光の透過率が1未満且つ屈折率が1以上であり、特に波長が長いほど屈折率が高い材料から形成することができる。このような屈折率の波長特性を逆分散性ともいい、逆分散性を有する材料を逆分散性材料とも呼ぶ。なお、透過光の位相の遅れが波長の増大に対して増大する材料を用いてもよい。斯かる逆分散性材料として、チタン(Ti)、クロム(Cr)、又はタンタル(Ta)を使用することができる。これらの金属を使用することで小さい膜厚で光の透過率を十分下げることができ、それによりブライトコントラスト法による位相差観察において被検物の細部を鮮明に映し出すことが可能となる。 The main body 3b is a portion formed immediately above the substrate 2. The main body 3b is a material having a light transmittance of less than 1 and a refractive index of 1 or more in the visible light region (meaning the wavelength region of visible light, particularly the reference wavelength 550 nm), and the higher the wavelength, the higher the refractive index. Can be formed from Such a wavelength characteristic of the refractive index is also referred to as reverse dispersion, and a material having reverse dispersion is also referred to as reverse dispersion material. Note that a material in which the phase delay of transmitted light increases with respect to the increase in wavelength may be used. As such a reverse dispersion material, titanium (Ti), chromium (Cr), or tantalum (Ta) can be used. By using these metals, it is possible to sufficiently reduce the light transmittance with a small film thickness, so that the details of the test object can be clearly displayed in the phase difference observation by the bright contrast method.
 調整膜3cは、本体3bによる第1変調部3aの波長分散性を調整するために本体3bの上面を覆う部分である。調整膜3cは、波長が長いほど屈折率が低い材料から形成することができる。このような屈折率の波長特性を正分散性ともいい、正分散性を有する材料を正分散性材料とも呼ぶ。なお、透過光の位相の遅れが波長の増大に対して減少する材料を用いてもよい。これにより第1変調部3aによる位相の波長分散が調整され、本体3b及び調整膜3cの2層のみで目的の位相の波長分散を具現することができる。斯かる正分散性材料として、本体3bを形成する材料の酸化物、例えばTiO、Cr、又はTaを使用することができる。本体3bを形成する材料と調整膜3cを形成する材料とが相反する分散性を示すことで、これらを用いて第1変調部3aを構成することができることに加えて、それぞれが同一の金属を含むことで位相板1の製造工程において使用される薬液等に対して同じ耐性を示すこととなり、位相板1を容易に製造することが可能となる。 The adjustment film 3c is a part that covers the upper surface of the main body 3b in order to adjust the wavelength dispersion of the first modulation unit 3a by the main body 3b. The adjustment film 3c can be formed of a material having a lower refractive index as the wavelength is longer. Such wavelength characteristics of refractive index are also referred to as positive dispersion, and a material having positive dispersion is also referred to as a positive dispersion material. Note that a material in which the phase delay of transmitted light decreases with an increase in wavelength may be used. Thereby, the chromatic dispersion of the phase by the first modulator 3a is adjusted, and the chromatic dispersion of the target phase can be realized by only two layers of the main body 3b and the adjustment film 3c. As such a positively dispersible material, an oxide of a material forming the main body 3b, for example, TiO 2 , Cr 2 O 3 , or Ta 2 O 5 can be used. Since the material forming the main body 3b and the material forming the adjustment film 3c exhibit dispersibility opposite to each other, the first modulator 3a can be configured using these, and in addition, the same metal is used for each. By including, it shows the same tolerance with respect to the chemical | medical solution etc. which are used in the manufacturing process of the phase plate 1, and it becomes possible to manufacture the phase plate 1 easily.
 第2変調部4aは、光の透過率を第1変調部3aと異なる透過率(ただし、1未満)に変調する膜体である。第2変調部4aは、基板2上に、第1変調部3aの周囲、つまり輪帯状の第1変調部3aをその内側及び外側のそれぞれに配される2つの輪帯で挟むように形成されている。第2変調部4aは、第1変調部3aの本体3bを形成するのに用いられる材料と同一の材料を用いて、ただし第1変調部3aと異なる膜厚で形成される。つまり、第2変調部4aにおける光の透過率は、第1変調部3aにおけるそれと異なることとなる。本実施形態では、第2変調部4aは、第1変調部3aより小さい膜厚で形成される。それにより、第2変調部4aの透過率は第1変調部3aの透過率より大きくなり、また透過光の位相の変調は小さくなる。 The second modulation unit 4a is a film body that modulates the light transmittance to a different transmittance (but less than 1) from the first modulation unit 3a. The second modulation unit 4a is formed on the substrate 2 so as to sandwich the first modulation unit 3a around the first modulation unit 3a, that is, between the two annular zones arranged inside and outside the first modulation unit 3a. ing. The second modulation unit 4a is formed using the same material as that used to form the main body 3b of the first modulation unit 3a, but with a different film thickness from the first modulation unit 3a. That is, the light transmittance in the second modulation unit 4a is different from that in the first modulation unit 3a. In the present embodiment, the second modulation unit 4a is formed with a smaller film thickness than the first modulation unit 3a. As a result, the transmittance of the second modulator 4a is greater than the transmittance of the first modulator 3a, and the phase modulation of the transmitted light is reduced.
 基板2上に第1及び第2変調部3a,4aを形成する方法を説明する。 A method for forming the first and second modulators 3a and 4a on the substrate 2 will be described.
 まず、基板2上に第1及び第2変調部3a,4aが占める円環状の領域が開口する1つめのレジスト膜を成形する。 First, a first resist film in which an annular region occupied by the first and second modulators 3a and 4a is formed on the substrate 2 is formed.
 次いで、スパッタリング法により、1つめのレジスト膜をマスクとして使用し、上記の逆分散性材料を基板2上に堆積して、輪帯状の第1レイヤ4を成形する。第1レイヤ4の厚さは、第2変調部4aの所望の透過率が得られる厚さに定められる。例えば、逆分散性材料としてタンタル(Ta)を使用した場合、第1レイヤ4の厚さは約25nmである。これにより、第2変調部4aの透過率、約8%が得られ、位相差の大きい被検物を観察した際にハロー、すなわち物体像の周囲に生じ得る隈取り状の光の滲みが生ずることなく、良好なコントラストを得ることができる。 Next, the first resist film is used as a mask by the sputtering method, and the above-mentioned reverse dispersive material is deposited on the substrate 2 to form the ring-shaped first layer 4. The thickness of the first layer 4 is determined so as to obtain a desired transmittance of the second modulator 4a. For example, when tantalum (Ta) is used as the reverse dispersion material, the thickness of the first layer 4 is about 25 nm. As a result, the transmittance of the second modulation unit 4a is about 8%, and when observing a test object having a large phase difference, a halo, that is, a blotting-like light blur that may occur around the object image occurs. And good contrast can be obtained.
 次いで、基板2上の1つめのレジスト膜上に又は1つめのレジスト膜を剥離した基板2上に、第1変調部3aが占める円環状の領域が開口する2つめのレジスト膜を成形する。なお、基板2上のレジスト膜を剥離する場合、剥離液を使用してもよい。 Next, on the first resist film on the substrate 2 or on the substrate 2 from which the first resist film has been peeled off, a second resist film in which an annular region occupied by the first modulation section 3a is opened is formed. In addition, when peeling the resist film on the board | substrate 2, you may use stripping solution.
 次いで、スパッタリング法により、2つめのレジスト膜をマスクとして使用し、先に使用した逆分散性材料と同一の材料を第1レイヤ4上に堆積して、輪帯状の第2レイヤ3を成形する。第2レイヤ3の厚さは、第1変調部3aの所望の透過率が得られる厚さに定められる。例えば、タンタル(Ta)を使用した場合、第2レイヤ3の厚さは約25nm(第1及び第2レイヤ4,3の合計の厚さは約50nm)である。これにより、第1変調部3a(本体3b)の透過率、約2%が得られる。この第1変調部3aの小さい透過率により、回折光の微小な位相差を検出することが可能となる、すなわち被検物の解像力が上がる。 Next, by sputtering, the second resist film is used as a mask, and the same material as the previously used reverse dispersion material is deposited on the first layer 4 to form the annular zone-like second layer 3. . The thickness of the second layer 3 is determined such that a desired transmittance of the first modulation unit 3a can be obtained. For example, when tantalum (Ta) is used, the thickness of the second layer 3 is about 25 nm (the total thickness of the first and second layers 4 and 3 is about 50 nm). Thereby, the transmittance of the first modulator 3a (main body 3b), approximately 2%, is obtained. The small transmittance of the first modulation unit 3a makes it possible to detect a minute phase difference of the diffracted light, that is, the resolution of the test object is increased.
 以上の工程により、基板2上に、図1に示すように正面視において輪帯状の第1変調部3aの本体3b及びこれを囲む第2変調部4aが形成される。そこで、およそ可視光領域の全域において、第1変調部3aの本体3bの屈折率及び膜厚の積がおよそ光の波長の4分の1に等しいことを確認する。 Through the above-described steps, the main body 3b of the ring-shaped first modulation unit 3a and the second modulation unit 4a surrounding it are formed on the substrate 2 as shown in FIG. Therefore, it is confirmed that the product of the refractive index and the film thickness of the main body 3b of the first modulation unit 3a is approximately equal to a quarter of the wavelength of light in the entire visible light region.
 さらに、スパッタリング法により、2つめのレジスト膜をマスクとして使用し、上記の正分散性材料を第2レイヤ3上に堆積して、調整膜3cを成形する。ここで、正分散性材料として、先に使用した逆分散性材料の酸化物を使用することができる。例えば逆分散性材料としてタンタル(Ta)を使用した場合、正分散性材料としてTaを使用することができる。これにより第1変調部3aによる位相の波長分散が調整され、可視光領域において透過光の位相が同厚の空気層を通る光(すなわち、無変調部2aを通る光)に対して4分の1波長遅れる位相特性が具現される。 Furthermore, by using the second resist film as a mask by sputtering, the above-described positively dispersible material is deposited on the second layer 3 to form the adjustment film 3c. Here, the oxide of the reverse dispersion material used previously can be used as the normal dispersion material. For example, when tantalum (Ta) is used as the reverse dispersion material, Ta 2 O 5 can be used as the normal dispersion material. Thereby, the wavelength dispersion of the phase by the first modulation unit 3a is adjusted, and in the visible light region, the phase of the transmitted light is four minutes with respect to the light passing through the air layer having the same thickness (that is, the light passing through the non-modulation unit 2a). A phase characteristic delayed by one wavelength is implemented.
 最後に、基板2上からレジスト膜を剥離することで、位相板1が得られる。なお、剥離液を使用してレジスト膜を剥離してもよい。ここで、基板2上に形成された第1及び第2変調部3a,4aは、第1及び第2変調部3a,4aが占める基板2上の領域に第2変調部4aに等しい膜厚で成形された第1レイヤ4、第1レイヤ4上の第1変調部3aが占める領域に第1及び第2変調部3a,4aの厚さの差に等しい膜厚で形成された第2レイヤ3を含んで構成される。斯かる積層構造により、第1及び第2変調部3a,4aを簡便に位置合わせして基板2上に形成することができる。 Finally, the phase plate 1 is obtained by removing the resist film from the substrate 2. Note that the resist film may be stripped using a stripping solution. Here, the first and second modulators 3a and 4a formed on the substrate 2 have a film thickness equal to that of the second modulator 4a in a region on the substrate 2 occupied by the first and second modulators 3a and 4a. The second layer 3 formed with a film thickness equal to the difference between the thicknesses of the first and second modulators 3a and 4a in the molded first layer 4 and the region occupied by the first modulator 3a on the first layer 4 It is comprised including. With such a laminated structure, the first and second modulation sections 3a and 4a can be easily aligned and formed on the substrate 2.
 図3に、上述の通り構成された位相板1による位相の波長分散の例(実施例)を示す。ここで、図面左及び右に、それぞれ、およそ可視光領域における第1変調部3aの屈折率の波長分散及び透過光の位相の波長分散(第1変調部3aを透過した光の位相の遅れ)を示す。逆分散性材料チタン(Ti)、クロム(Cr)、又はタンタル(Ta)を使用して本体3bを形成し、正分散性材料、すなわち本体3bを形成する材料の酸化物TiO、Cr、又はTaを使用して調整膜3cを形成することで、第1変調部3aの屈折率が波長に比例して増大することとなる。これにより、第1変調部3aを透過する光の位相は、およそ可視光領域において波長に対して一定して(360度を基準に)90度遅れることとなる。 FIG. 3 shows an example (example) of phase chromatic dispersion by the phase plate 1 configured as described above. Here, on the left and right of the drawing, respectively, the chromatic dispersion of the refractive index of the first modulation unit 3a and the chromatic dispersion of the phase of the transmitted light in the visible light region (the phase delay of the light transmitted through the first modulation unit 3a), respectively. Indicates. The inversely dispersible material titanium (Ti), chromium (Cr), or tantalum (Ta) is used to form the main body 3b, and the positively dispersive material, that is, the oxides of the material forming the main body 3b, TiO 2 and Cr 2 O 3 or Ta 2 O 5 is used to form the adjustment film 3c, whereby the refractive index of the first modulation unit 3a increases in proportion to the wavelength. As a result, the phase of the light transmitted through the first modulation unit 3a is approximately 90 degrees behind the wavelength in the visible light region (based on 360 degrees) and delayed by 90 degrees.
 図4に、位相板による位相の波長分散の比較例を示す。ここで、図面左及び右に、それぞれ、およそ可視光領域における第1変調部3aの屈折率の波長分散及び透過光の位相の波長分散(第1変調部3aを透過した光の位相の遅れ)を示す。本例のように第1変調部3aの屈折率が波長に対してほぼ一定である場合、第1変調部3aを透過する光の位相の遅れはおよそ可視光領域において波長の増大に対して増大する。 FIG. 4 shows a comparative example of phase wavelength dispersion by the phase plate. Here, on the left and right of the drawing, respectively, the chromatic dispersion of the refractive index of the first modulator 3a and the chromatic dispersion of the phase of the transmitted light in the visible light region (the phase delay of the light transmitted through the first modulator 3a), respectively. Indicates. When the refractive index of the first modulation unit 3a is substantially constant with respect to the wavelength as in this example, the phase delay of the light transmitted through the first modulation unit 3a increases with an increase in wavelength in the visible light region. To do.
 図5に、位相板による位相の波長分散の別の比較例を示す。ここで、図面左及び右に、それぞれ、およそ可視光領域における第1変調部3aの屈折率の波長分散及び透過光の位相の波長分散(第1変調部3aを透過した光の位相の遅れ)を示す。本例のように第1変調部3aの屈折率が波長の増大に対して減少する場合、第1変調部3aを透過する光の位相の遅れはおよそ可視光領域において波長の増大に対してより強く増大する。 FIG. 5 shows another comparative example of phase wavelength dispersion by the phase plate. Here, on the left and right of the drawing, respectively, the chromatic dispersion of the refractive index of the first modulator 3a and the chromatic dispersion of the phase of the transmitted light in the visible light region (the phase delay of the light transmitted through the first modulator 3a), respectively. Indicates. When the refractive index of the first modulation unit 3a decreases as the wavelength increases as in this example, the phase delay of the light transmitted through the first modulation unit 3a is greater than the increase in wavelength in the visible light region. Strongly increases.
 以上詳細に説明したように、本実施形態に係る位相板1は、透光性の基板2、基板2上に波長が長いほど屈折率が高い材料から形成された、光の透過率を変調するとともに、可視光線の波長域に対して透過光の位相を4分の1波長遅らせる第1変調部3a、及び基板2上の第1変調部3aの周囲に形成された、光の透過率を、第1変調部3aの透過率と異なる透過率に変調する第2変調部4aを備える。波長が長いほど屈折率が高い材料を用いて基板2上に第1変調部3aを形成することで、可視光領域内の任意の波長に対して第1変調部3aを透過する光の位相を同厚の空気層を通る光(すなわち、無変調部2aを通る光)の位相に対して4分の1波長遅らせる位相特性を具現することができ、これによりブライトコントラスト法による位相差観察において利用可能な位相板を提供することが可能となる。 As described above in detail, the phase plate 1 according to the present embodiment modulates the light transmittance, which is formed on the translucent substrate 2 and the substrate 2 from a material having a higher refractive index as the wavelength is longer. Along with the first modulator 3a that delays the phase of the transmitted light by a quarter wavelength with respect to the wavelength range of visible light, and the light transmittance formed around the first modulator 3a on the substrate 2, A second modulator 4a that modulates the transmittance different from the transmittance of the first modulator 3a is provided. By forming the first modulation unit 3a on the substrate 2 using a material having a higher refractive index as the wavelength is longer, the phase of light transmitted through the first modulation unit 3a with respect to an arbitrary wavelength in the visible light region is changed. A phase characteristic can be realized that delays the wavelength by a quarter of the phase of light that passes through the air layer of the same thickness (that is, light that passes through the non-modulation part 2a), and is used for phase contrast observation by the bright contrast method. A possible phase plate can be provided.
 図6に、本実施形態に係る位相板1を用いた位相差顕微鏡10(観察装置の一例)の概略構成を示す。位相差顕微鏡10は、光源LS、絞りAP、レンズG1、及び対物レンズGを備える。光源LSは、照明光を生成する。絞りAPは、輪帯状の開口を有し、レンズG1の前側焦点位置Fに配置される。レンズG1は、絞りAPを介した照明光を集光する。対物レンズGは、一対のレンズG2,G3及びこれらの間に配された位相板1を有する。位相板1は、レンズG2の後側焦点位置F'に絞りAPと共役に、すなわち第1変調部3aの形状が絞りAPの開口の形状とレンズG1,G2の合成倍率で相似であり、第1変調部3aが絞りAPの開口と共役な位置に配されている。 FIG. 6 shows a schematic configuration of a phase contrast microscope 10 (an example of an observation apparatus) using the phase plate 1 according to the present embodiment. The phase contrast microscope 10 includes a light source LS, a diaphragm AP, a lens G1, and an objective lens G. The light source LS generates illumination light. The aperture AP has a ring-shaped opening and is disposed at the front focal position F of the lens G1. The lens G1 condenses illumination light through the aperture AP. The objective lens G includes a pair of lenses G2 and G3 and a phase plate 1 disposed therebetween. The phase plate 1 is conjugate with the aperture AP at the rear focal position F ′ of the lens G2, that is, the shape of the first modulation unit 3a is similar to the aperture shape of the aperture AP and the combined magnification of the lenses G1 and G2. One modulator 3a is arranged at a position conjugate with the aperture of the aperture AP.
 上述の構成の位相差顕微鏡10において、光源LSから射出された照明光は、絞りAPを介することで輪帯状に制限され、レンズG1により集光されて被検物Oを照明する。被検物Oを透過した光は、対物レンズGによって像面11に集光されて結像される。ここで、被検物Oを照明した照明光は、被検物を透過した直接光L1及び被検物により回折した回折光(±1次)L2に分かれて、それぞれ位相板1の第1変調部3a及び無変調部2aを透過する。なお、直接光L1と±1次の回折光L2のそれぞれとの間の角度差を回折角θとする。回折に伴い、直接光L1の位相が回折光L2に対して4分の1波長遅れる。位相板の作用により、直接光L1と回折光L2とが像面11上に集光されて互いに干渉することで、それらの間の位相差が像の明暗として再現されて、被検物Oを観察することができる。 In the phase contrast microscope 10 having the above-described configuration, the illumination light emitted from the light source LS is limited to a ring shape through the aperture AP, and is condensed by the lens G1 to illuminate the test object O. The light transmitted through the test object O is focused on the image plane 11 by the objective lens G and imaged. Here, the illumination light illuminating the test object O is divided into direct light L1 transmitted through the test object and diffracted light (± first order) L2 diffracted by the test object, and the first modulation of the phase plate 1 respectively. It passes through the part 3a and the non-modulation part 2a. Note that an angle difference between each of the direct light L1 and the ± first-order diffracted light L2 is a diffraction angle θ. Along with the diffraction, the phase of the direct light L1 is delayed by a quarter wavelength with respect to the diffracted light L2. Due to the action of the phase plate, the direct light L1 and the diffracted light L2 are collected on the image plane 11 and interfere with each other, so that the phase difference between them is reproduced as the brightness of the image, and the object O Can be observed.
 なお、構造(位相差量)の大きな被検物を観察する場合、回折角θが小さくなり、且つ回折光L2の強度が大きくなる。このため、直接光L1と回折光L2との離間距離が小さくなり、直接光L1は第1変調部3a、回折光L2は第2変調部4aを透過することとなる。したがって、第1及び第2変調部3a,4aのそれぞれの透過率の比が回折光L2に対する直接光L1の実質的な透過率変調となることで、低コントラストの観察像を得ることができる。 When observing a test object having a large structure (phase difference amount), the diffraction angle θ decreases and the intensity of the diffracted light L2 increases. For this reason, the separation distance between the direct light L1 and the diffracted light L2 is reduced, and the direct light L1 is transmitted through the first modulating unit 3a and the diffracted light L2 is transmitted through the second modulating unit 4a. Therefore, the ratio of the respective transmittances of the first and second modulators 3a and 4a becomes the substantial transmittance modulation of the direct light L1 with respect to the diffracted light L2, whereby a low-contrast observation image can be obtained.
 また、構造(位相差量)の小さな被検物を観察する場合、回折角θが大きくなり、且つ回折光L2の強度が小さくなる。このため、直接光L1と回折光L2との離間距離が大きくなり、直接光L1は第1変調部3a、回折光L2は無変調部2aをそれぞれ透過する。したがって、第1変調部3a及び無変調部2aのそれぞれの透過率の比が回折光L2に対する直接光L1の実質的な透過率変調となることで、直接光L1の振幅のみを低下させる高コントラストの観察像を得ることができる。 Further, when observing a test object having a small structure (phase difference amount), the diffraction angle θ increases and the intensity of the diffracted light L2 decreases. For this reason, the separation distance between the direct light L1 and the diffracted light L2 is increased, and the direct light L1 is transmitted through the first modulating unit 3a and the diffracted light L2 is transmitted through the non-modulated unit 2a. Therefore, the ratio of the transmittance of each of the first modulation unit 3a and the non-modulation unit 2a is a substantial transmittance modulation of the direct light L1 with respect to the diffracted light L2, thereby reducing only the amplitude of the direct light L1. Can be obtained.
 位相板1を使用することで、第1変調部3a、第2変調部4a、及び無変調部2aで段階的に透過率が異なるため、被検物の構造にかかわらず、直接光L1と回折光L2との振幅(光量比)が適度に変調、好ましくは略等しくなるように変調されるので、ブライトコントラスト法において、暗い背景上で被検体を明るく映すコントラストの良い観察像を得ることができる。 By using the phase plate 1, the transmittance varies stepwise between the first modulation unit 3a, the second modulation unit 4a, and the non-modulation unit 2a. Since the amplitude (light quantity ratio) with the light L2 is moderately modulated, and preferably modulated so as to be substantially equal, in the bright contrast method, it is possible to obtain an observation image with good contrast that reflects the subject brightly on a dark background. .
 図7に、本実施形態に係る位相板1を用いた位相差顕微鏡10により被検体を観察して得られた明暗像の実施例及び比較例を示す。(A)から(C)は、それぞれ、対物レンズDLLを用いたコントラストの低いダークコントラスト法、対物レンズDMを用いたコントラストの比較的高いダークコントラスト法、及び対物レンズBMを用いたコントラストの比較的高いブライトコントラスト法により得られた像である。(D)が、本実施形態に係る位相板1を備える位相差顕微鏡10により対物レンズABHを用いたコントラストの高いブライトコントラスト法(アポディゼイションブライトコントラスト法)により得られた像である。なお、被検体として、マウス初期胚(サイズは直径約80μm)を使用した。(A)及び(B)の像では、明るい背景に対して被検体の内部が暗く映し出されている。(C)の像では、暗い背景に対して被検体の内部が明るく映し出されている。ただし、これらはハローが生じている。(D)の像では、(C)と同様に暗い背景に対して被検体の内部が明るく、ただしハローが生じることなく被検体の内部が断層的に明るいコントラストで鮮明に映し出されている。 FIG. 7 shows examples and comparative examples of bright and dark images obtained by observing the subject with the phase-contrast microscope 10 using the phase plate 1 according to the present embodiment. (A) to (C) respectively show a dark contrast method with a low contrast using the objective lens DLL, a dark contrast method with a relatively high contrast using the objective lens DM, and a comparatively high contrast with the objective lens BM. It is an image obtained by a high bright contrast method. (D) is an image obtained by the bright contrast method (apodization bright contrast method) with high contrast using the objective lens ABH by the phase contrast microscope 10 including the phase plate 1 according to the present embodiment. In addition, the mouse | mouth early embryo (size is about 80 micrometers in diameter) was used as a test object. In the images (A) and (B), the inside of the subject is projected darkly against a bright background. In the image of (C), the inside of the subject is projected brightly against a dark background. However, these are hello. In the image of (D), the inside of the subject is bright against a dark background as in (C), but the inside of the subject is clearly displayed with a tomographically bright contrast without causing halo.
 なお、本実施形態に係る位相板1では、第1変調部3aの本体3bを形成する材料として、チタン(Ti)、クロム(Cr)、又はタンタル(Ta)を使用することとしたが、これに限らず、それらの任意の組み合わせを使用してもよいし、さらに別の材料を含んでもよい。複数の材料を使用する場合、それらを含む1つの膜体を基板2上に形成してもよいし、それぞれを含む複数のレイヤを基板2上に積層してもよい。 In the phase plate 1 according to this embodiment, titanium (Ti), chromium (Cr), or tantalum (Ta) is used as a material for forming the main body 3b of the first modulation unit 3a. Not limited thereto, any combination thereof may be used, and further other materials may be included. In the case of using a plurality of materials, one film body including them may be formed on the substrate 2, or a plurality of layers including each may be stacked on the substrate 2.
 なお、本実施形態に係る位相板1では、第2変調部4aを第1変調部3aの本体3bと同じ材料を用いて形成することとしたが、異なる材料を用いて形成してもよい。斯かる場合、一例として、チタン(Ti)、クロム(Cr)、ニッケル(Ni)、ニオブ(Nb)、銀(Ag)、タンタル(Ta)、金(Au)、及びインコネル(クロム、鉄、ケイ素等を含むニッケル合金)のうちの1つ又は任意の組み合わせを使用してよい。 In the phase plate 1 according to this embodiment, the second modulation unit 4a is formed using the same material as that of the main body 3b of the first modulation unit 3a, but may be formed using a different material. In such a case, as an example, titanium (Ti), chromium (Cr), nickel (Ni), niobium (Nb), silver (Ag), tantalum (Ta), gold (Au), and inconel (chromium, iron, silicon) Or any combination thereof may be used.
 なお、本実施形態に係る位相差顕微鏡10は、位相板1を有する対物レンズGを含んで構成されるものとしたが、これに限らず、位相板1と対物レンズGとを別個に含んで構成されるものとしてもよい。斯かる場合、位相板1と対物レンズGの射出瞳面とは、互いに光学的に共役な位置に配されることとする。それにより、ブライトコントラスト法により、暗い背景上で微小な被検体を明るく映して観察することができる。 The phase contrast microscope 10 according to the present embodiment is configured to include the objective lens G having the phase plate 1, but is not limited thereto, and includes the phase plate 1 and the objective lens G separately. It may be configured. In such a case, the phase plate 1 and the exit pupil plane of the objective lens G are disposed at optically conjugate positions. Thereby, a bright subject can be brightly viewed on a dark background by the bright contrast method.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
 1…位相板、2…基板、2a…無変調部、3…第2レイヤ、3a…第1変調部、3b…本体、3c…調整膜、4…第1レイヤ、4a…第2変調部、10…位相差顕微鏡、11…像面、AP…絞り、G…対物レンズ、G1,G2,G3…レンズ、L1…直接光、L2…回折光、LS…光源、O…被検物。 DESCRIPTION OF SYMBOLS 1 ... Phase plate, 2 ... Board | substrate, 2a ... Non-modulation part, 3 ... 2nd layer, 3a ... 1st modulation part, 3b ... Main body, 3c ... Adjustment film, 4 ... 1st layer, 4a ... 2nd modulation part, DESCRIPTION OF SYMBOLS 10 ... Phase contrast microscope, 11 ... Image plane, AP ... Aperture, G ... Objective lens, G1, G2, G3 ... Lens, L1 ... Direct light, L2 ... Diffracted light, LS ... Light source, O ... Test object.

Claims (12)

  1.  透光性の基板と、
     前記基板上に波長が長いほど屈折率が高い第1材料から形成された、光の透過率を変調するとともに、波長域に対して透過光の位相を4分の1波長遅らせる第1変調部と、
     前記基板上の前記第1変調部の周囲に形成された、光の透過率を、前記第1変調部の透過率と異なる透過率に変調する第2変調部と、
    を備える位相板。
    A translucent substrate;
    A first modulation unit formed of a first material having a higher refractive index as the wavelength is longer on the substrate, which modulates the light transmittance and delays the phase of the transmitted light by a quarter wavelength with respect to the wavelength region; ,
    A second modulation unit that is formed around the first modulation unit on the substrate and modulates the light transmittance to a transmittance different from the transmittance of the first modulation unit;
    A phase plate.
  2.  前記波長域は可視光線の波長域である、請求項1に記載の位相板。 The phase plate according to claim 1, wherein the wavelength range is a visible wavelength range.
  3.  前記第1材料は、チタン(Ti)、クロム(Cr)、及びタンタル(Ta)のうちの少なくとも1つを含む、請求項1又は2に記載の位相板。 The phase plate according to claim 1 or 2, wherein the first material includes at least one of titanium (Ti), chromium (Cr), and tantalum (Ta).
  4.  前記第1変調部は、波長が長いほど屈折率が低い第2材料を用いて上面が覆われる、請求項1から3のいずれか一項に記載の位相板。 The phase plate according to any one of claims 1 to 3, wherein an upper surface of the first modulation section is covered with a second material having a lower refractive index as the wavelength is longer.
  5.  前記第2材料は、前記第1材料の酸化物である、請求項4に記載の位相板。 The phase plate according to claim 4, wherein the second material is an oxide of the first material.
  6.  前記第2変調部は、前記第1材料を用いて前記第1変調部と異なる厚さで形成される、請求項1から5のいずれか一項に記載の位相板。 The phase plate according to any one of claims 1 to 5, wherein the second modulation unit is formed with a thickness different from that of the first modulation unit using the first material.
  7.  前記第2変調部は、前記第1変調部より小さい厚さを有する、請求項6に記載の位相板。 The phase plate according to claim 6, wherein the second modulation section has a smaller thickness than the first modulation section.
  8.  前記第1変調部及び前記第2変調部は、前記第1変調部及び前記第2変調部が占める前記基板上の領域に前記第2変調部に等しい厚さで成形された第1部分と、前記第1部分上の前記第1変調部が占める領域に前記第1変調部及び前記第2変調部の厚さの差に等しい厚さで形成された第2部分と、を有する、請求項7に記載の位相板。 The first modulation unit and the second modulation unit are formed in a region on the substrate occupied by the first modulation unit and the second modulation unit with a thickness equal to the second modulation unit, 8. A second portion formed in a region occupied by the first modulation portion on the first portion with a thickness equal to a difference in thickness between the first modulation portion and the second modulation portion. The phase plate described in 1.
  9.  前記第1変調部は、輪帯形状を有する、請求項1から8のいずれか一項に記載の位相板。 The phase plate according to any one of claims 1 to 8, wherein the first modulation unit has an annular shape.
  10.  請求項1から9のいずれか一項に記載の位相板を備える対物レンズ。 An objective lens comprising the phase plate according to any one of claims 1 to 9.
  11.  請求項10に記載の対物レンズを備える観察装置。 An observation apparatus comprising the objective lens according to claim 10.
  12.  請求項1から9のいずれか一項に記載の位相板と、
     前記位相板と共役な位置に配される対物レンズと、
    を備える観察装置。
    The phase plate according to any one of claims 1 to 9,
    An objective lens disposed at a position conjugate with the phase plate;
    An observation apparatus comprising:
PCT/JP2019/022287 2018-06-05 2019-06-05 Phase plate, objective lens, and observation device WO2019235511A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020523137A JP7031740B2 (en) 2018-06-05 2019-06-05 Phase plate, objective lens, and observation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-107670 2018-06-05
JP2018107670 2018-06-05

Publications (1)

Publication Number Publication Date
WO2019235511A1 true WO2019235511A1 (en) 2019-12-12

Family

ID=68769563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022287 WO2019235511A1 (en) 2018-06-05 2019-06-05 Phase plate, objective lens, and observation device

Country Status (2)

Country Link
JP (1) JP7031740B2 (en)
WO (1) WO2019235511A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS263341B1 (en) * 1950-02-01 1951-06-26
JPS52113236A (en) * 1976-03-19 1977-09-22 Nippon Chemical Ind Absorbent thin film
JPH06289438A (en) * 1993-03-31 1994-10-18 Olympus Optical Co Ltd Structural of phase control film
JPH0933959A (en) * 1995-07-14 1997-02-07 Olympus Optical Co Ltd Phase control film structure
JP2001508557A (en) * 1997-09-29 2001-06-26 ライカ マイクロシステムス ヴェツラー ゲゼルシャフト ミット ベシュレンクテル ハフツング Phase ring for realizing positive phase difference
JP2003098592A (en) * 2001-09-19 2003-04-03 Fuji Photo Film Co Ltd Picture reader, picture reading method and auxiliary unit for picture reader
WO2009110527A1 (en) * 2008-03-06 2009-09-11 Suenaga Yutaka Optical part and phase-contrast microscope using optical part
US20180003860A1 (en) * 2016-06-30 2018-01-04 Lg Display Co., Ltd. Polarizer, Display Device Having the Polarizer, and Method of Fabricating the Polarizer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3663920B2 (en) * 1998-06-30 2005-06-22 株式会社ニコン Phase difference observation device
JP2011002514A (en) * 2009-06-16 2011-01-06 National Institute Of Advanced Industrial Science & Technology Phase contrast microscope

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS263341B1 (en) * 1950-02-01 1951-06-26
JPS52113236A (en) * 1976-03-19 1977-09-22 Nippon Chemical Ind Absorbent thin film
JPH06289438A (en) * 1993-03-31 1994-10-18 Olympus Optical Co Ltd Structural of phase control film
JPH0933959A (en) * 1995-07-14 1997-02-07 Olympus Optical Co Ltd Phase control film structure
JP2001508557A (en) * 1997-09-29 2001-06-26 ライカ マイクロシステムス ヴェツラー ゲゼルシャフト ミット ベシュレンクテル ハフツング Phase ring for realizing positive phase difference
JP2003098592A (en) * 2001-09-19 2003-04-03 Fuji Photo Film Co Ltd Picture reader, picture reading method and auxiliary unit for picture reader
WO2009110527A1 (en) * 2008-03-06 2009-09-11 Suenaga Yutaka Optical part and phase-contrast microscope using optical part
US20180003860A1 (en) * 2016-06-30 2018-01-04 Lg Display Co., Ltd. Polarizer, Display Device Having the Polarizer, and Method of Fabricating the Polarizer

Also Published As

Publication number Publication date
JPWO2019235511A1 (en) 2021-06-10
JP7031740B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
CA3028775C (en) Spatial and spectral filtering apertures and optical imaging systems including the same
JPH0241604Y2 (en)
JP3663920B2 (en) Phase difference observation device
JP2011002514A (en) Phase contrast microscope
WO2008004679A1 (en) Microscope device
CN105425411B (en) Light beam complex amplitude composite modulation device and method applied to super-resolution
DE10338472A1 (en) Optical imaging system with extended depth of field
EP3143451B1 (en) Phase-contrast microscope and phase plate with annular phase-shift region
WO2019235511A1 (en) Phase plate, objective lens, and observation device
JPH03188407A (en) Ultraviolet ray conforming dry objective lens of microscope
CN109116536A (en) A kind of optical system of 15X industrial microscope
CN105807413A (en) Epi-illumination metallographic microscope based on light modulation technology
JP3395351B2 (en) Lighting equipment for microscope
WO2016063429A1 (en) Specimen observation device and specimen observation method
JP4370636B2 (en) Phase difference observation device
JPH03267910A (en) Microscope
JP6762282B2 (en) Phase contrast microscope
US10823951B2 (en) Method for imaging in a microscope with oblique illumination
CN205691849U (en) A kind of based on light modulation techniques fall radioglold phase microscope
CN205899065U (en) A phase plate for contrast phase microscope
JP2000066092A (en) Focusing optical system
CN106094092A (en) A kind of for phase-contrast phase-plate
JP2001194592A (en) Phase object observation device
JP2006145831A (en) Optical lens
Piper Condenser aperture reduction phase contrast: a new technique for improved imaging in light microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815575

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020523137

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815575

Country of ref document: EP

Kind code of ref document: A1