WO2019235452A1 - Tertiary-alkyl-substituted polycyclic aromatic compounds - Google Patents

Tertiary-alkyl-substituted polycyclic aromatic compounds Download PDF

Info

Publication number
WO2019235452A1
WO2019235452A1 PCT/JP2019/022071 JP2019022071W WO2019235452A1 WO 2019235452 A1 WO2019235452 A1 WO 2019235452A1 JP 2019022071 W JP2019022071 W JP 2019022071W WO 2019235452 A1 WO2019235452 A1 WO 2019235452A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
alkyl
substituted
aryl
carbon atoms
Prior art date
Application number
PCT/JP2019/022071
Other languages
French (fr)
Japanese (ja)
Inventor
琢次 畠山
一志 枝連
孝弘 小林
笹田 康幸
Original Assignee
学校法人関西学院
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西学院, Jnc株式会社 filed Critical 学校法人関西学院
Priority to CN201980024838.5A priority Critical patent/CN111936505A/en
Priority to KR1020207035722A priority patent/KR102661365B1/en
Priority to JP2020523107A priority patent/JP7445923B2/en
Publication of WO2019235452A1 publication Critical patent/WO2019235452A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups

Definitions

  • the present invention relates to a tertiary alkyl-substituted polycyclic aromatic compound, an organic electroluminescent element, an organic field effect transistor and an organic thin film solar cell using the same, and a display device and a lighting device.
  • organic electroluminescent device may be referred to as “organic EL device” or simply “device”.
  • the organic EL element has a structure composed of a pair of electrodes composed of an anode and a cathode, and one layer or a plurality of layers including an organic compound disposed between the pair of electrodes.
  • the layer containing an organic compound include a light-emitting layer and a charge transport / injection layer that transports or injects charges such as holes and electrons.
  • Various organic materials suitable for these layers have been developed.
  • a benzofluorene compound has been developed (International Publication No. 2004/061047).
  • a hole transport material for example, a triphenylamine compound has been developed (Japanese Patent Laid-Open No. 2001-172232).
  • an anthracene compound has been developed (Japanese Patent Laid-Open No. 2005-170911).
  • the charge transport property of a NO-linked compound (Compound 1 on page 63) is evaluated, but a method for producing a material other than the NO-linked compound is not described, and the element to be linked is not described. Since the electronic state of the entire compound is different if it is different, the characteristics obtained from materials other than NO-linked compounds are not yet known. Other examples of such compounds can be found (WO 2011/107186).
  • a compound having a conjugated structure with a large triplet exciton energy (T1) can emit phosphorescence having a shorter wavelength, and thus is useful as a blue light-emitting layer material.
  • a compound having a novel conjugated structure having a large T1 is also required as an electron transport material or a hole transport material sandwiching the light emitting layer.
  • the host material of the organic EL element is generally a molecule in which a plurality of existing aromatic rings such as benzene and carbazole are connected by a single bond, phosphorus atom or silicon atom. This is because a large HOMO-LUMO gap (band gap Eg in a thin film) required for the host material is secured by connecting a large number of relatively conjugated aromatic rings. Furthermore, a host material of an organic EL device using a phosphorescent material or a thermally activated delayed fluorescent material also requires high triplet excitation energy (E T ), but the molecule has a donor or acceptor aromatic ring or substituent.
  • E T triplet excitation energy
  • Patent Document 6 a polycyclic aromatic compound containing boron and an organic EL device using the same are reported.
  • layer materials particularly dopant materials.
  • the present inventors have arranged a layer containing a polycyclic aromatic compound into which a tertiary alkyl group having a specific structure is introduced between a pair of electrodes, for example, organic EL It has been found that an excellent organic EL device can be obtained by configuring the device, and the present invention has been completed. That is, the present invention provides the following tertiary alkyl-substituted polycyclic aromatic compounds or multimers thereof, and further, organic EL device materials containing the following tertiary alkyl-substituted polycyclic aromatic compounds or multimers thereof, etc. The material for organic devices is provided.
  • the chemical structure or substituent may be represented by the number of carbons.
  • the number of carbons in the case where a substituent is substituted on the chemical structure or the substituent is further substituted on the chemical group is the chemical structure.
  • the number of carbon atoms of each substituent and does not mean the total number of carbon atoms of the chemical structure and the substituent, or the total number of carbon atoms of the substituent and the substituent.
  • “substituent B of carbon number Y substituted by substituent A of carbon number X” means that “substituent B of carbon number Y” is substituted for “substituent B of carbon number Y”.
  • the carbon number Y is not the total carbon number of the substituent A and the substituent B.
  • substituted with substituent A means that “substituent A having no carbon number” is substituted for “substituent B having carbon number Y”.
  • the carbon number Y is not the total carbon number of the substituent A and the substituent B.
  • a ring, B ring and C ring are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings may be substituted;
  • Y 1 is B, P, P ⁇ O, P ⁇ S, Al, Ga, As, Si—R or Ge—R, wherein R in Si—R and Ge—R is aryl, alkyl or cycloalkyl
  • X 1 and X 2 are each independently>O,>N—R,> C (—R) 2 ,> S or> Se, and R in> N—R may be substituted
  • a ring, B ring and C ring are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings is substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted Or unsubstituted diarylamino, substituted or unsubstituted diheteroarylamino, substituted or unsubstituted arylheteroarylamino, substituted or unsubstituted diarylboryl (the two aryls are bonded via a single bond or a linking group).
  • Y 1 A 5-membered ring sharing a bond with the fused bicyclic structure in the center of the above formula, consisting of X 1 and X 2 Or a 6-membered ring Y 1 is B, P, P ⁇ O, P ⁇ S, Al, Ga, As, Si—R or Ge—R, wherein R in Si—R and Ge—R is aryl, alkyl or cycloalkyl And X 1 and X 2 are each independently>O,>N—R,> C (—R) 2 ,> S or> Se, wherein R in> N—R is alkyl or cycloalkyl Heteroaryl, alkyl or cycloalkyl optionally substituted with aryl, alkyl or
  • Item 3 The polycyclic aromatic compound according to item 1, represented by the following general formula (2): (In the above formula (2), R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls are bonded via a single bond or a linking group).
  • Aryl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 14 carbons; X 1 and X 2 are each independently>O,>N—R,> C (—R) 2 ,> S or> Se, and R in> N—R has 6 to 12 carbon atoms Aryl, C 2 -C 15 heteroaryl, C 1 -C 6 alkyl or C 3 -C 14 cycloalkyl, wherein R in> C (—R) 2 is hydrogen, C 6 -C 12 Aryl, C 1-6 alkyl or C 3-14 cycloalkyl, and R of> N—R and / or R of> C (—R) 2 is —O—, — S—, —C (—R) 2 —, or a single bond may be bonded to the a ring, b ring and / or c ring, and R in the —C (—R) 2 — may have 1 to 6 alkyl or cycloalkyl having 3 to 14
  • R 1 to R 11 are each independently hydrogen, aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, diarylamino (wherein aryl is aryl having 6 to 12 carbon atoms), diarylboryl (provided that Aryl is aryl having 6 to 12 carbons, and two aryls may be bonded via a single bond or a linking group), alkyl having 1 to 24 carbons or cycloalkyl having 3 to 24 carbons
  • adjacent groups of R 1 to R 11 are bonded to form an aryl ring having 9 to 16 carbon atoms or a heteroaryl ring having 6 to 15 carbon atoms together with the a ring, b ring or c ring.
  • At least one hydrogen in the ring formed may be substituted with aryl having 6 to 10 carbon atoms, alkyl having 1 to 12 carbon atoms or cycloalkyl having 3 to 16 carbon atoms.
  • Y 1 is B, P, P ⁇ O, P ⁇ S or Si—R, wherein R in Si—R is aryl having 6 to 10 carbon atoms, alkyl having 1 to 4 carbon atoms, or 5 to 5 carbon atoms.
  • X 1 and X 2 are each independently>O,>N—R,> C (—R) 2 or> S, where R in> N—R is aryl having 6 to 10 carbon atoms, An alkyl having 1 to 4 carbons or a cycloalkyl having 5 to 10 carbons, wherein R in> C (—R) 2 is hydrogen, aryl having 6 to 10 carbons, alkyl having 1 to 4 carbons or carbon A cycloalkyl having a number of 5 to 10, At least one hydrogen in the compound of formula (2) may be substituted with deuterium, cyano or halogen, and At least one hydrogen in the compound represented by the formula (2) is substituted with a group represented by the general formula (tR); In the above formula (tR), R a is alkyl having 2 to 24 carbon atoms, R b and R c are each independently alkyl having 1 to 24 carbon atoms, and any —CH 2 — in the alkyl is -O- may be
  • R a is alkyl having 2 to 24 carbon atoms
  • R b and R c are each independently alkyl having 1 to 24 carbon atoms, and any —CH 2 — in the alkyl is -O- may be substituted
  • the group represented by the above formula (tR) is substituted with at least one hydrogen in the compound represented by the above formula (2) in *.
  • Item 4. The polycyclic aromatic compound according to Item 3.
  • R 1 to R 11 are each independently hydrogen, aryl having 6 to 16 carbon atoms, diarylamino (where aryl is aryl having 6 to 10 carbon atoms), diarylboryl (where aryl is aryl having 6 to 10 carbon atoms) And two aryls may be bonded via a single bond or a linking group), alkyl having 1 to 12 carbons or cycloalkyl having 3 to 16 carbons, Y 1 is B, X 1 and X 2 are both> N—R, or X 1 is> N—R and X 2 is> O, and the R of> N—R has 6 to 10 carbon atoms Aryl, alkyl having 1 to 4 carbons or cycloalkyl having 5 to 10 carbons, and At least one hydrogen in the compound represented by the formula (2) is substituted with a group represented by the general formula (tR); In the above formula (tR), R a is alkyl having 2 to 24 carbon atoms, R b and R c are each
  • Item 7 Substituted with a diarylamino group substituted with a group represented by the general formula (tR), a carbazolyl group substituted with a group represented by the general formula (tR), or a group represented by the general formula (tR) Item 7.
  • the polycyclic aromatic compound or the multimer thereof according to any one of Items 1 to 6, which is substituted with a selected benzocarbazolyl group.
  • Item 8 Any one of Items 3 to 6, wherein R 2 is a diarylamino group substituted with a group represented by the general formula (tR) or a carbazolyl group substituted with a group represented by the general formula (tR) The polycyclic aromatic compound described in 1.
  • Item 9 The polycyclic aromatic compound or the multimer thereof according to any one of Items 1 to 8, wherein the halogen is fluorine.
  • Item 10 The polycyclic aromatic compound according to Item 1, represented by any of the following structural formulas. (“TBu” in each formula is a t-butyl group, and “tAm” is a t-amyl group.)
  • Item 11 The polycyclic aromatic compound according to Item 1, represented by any of the following structural formulas. (In each formula, “Me” is a methyl group, “tBu” is a t-butyl group, and “tAm” is a t-amyl group.)
  • Item 12. A reactive compound, wherein the polycyclic aromatic compound or the multimer thereof according to any one of items 1 to 11 is substituted with a reactive substituent.
  • Item 13 A polymer compound obtained by polymerizing the reactive compound described in Item 12 as a monomer, or a polymer crosslinked product obtained by further crosslinking the polymer compound.
  • Item 14 A pendant polymer compound obtained by substituting the reactive compound described in Item 12 for a main chain polymer, or a pendant polymer crosslinked product obtained by further crosslinking the pendant polymer compound.
  • Item 15. An organic device material containing the polycyclic aromatic compound or the multimer thereof according to any one of Items 1 to 11.
  • Item 16 An organic device material comprising the reactive compound according to Item 12.
  • Item 17. An organic device material comprising the polymer compound or polymer crosslinked product according to Item 13.
  • Item 18 An organic device material containing the pendant polymer compound or the pendant polymer crosslinked product according to Item 14.
  • Item 19 The organic device material according to any one of Items 15 to 18, wherein the organic device material is an organic electroluminescent element material, an organic field effect transistor material, or an organic thin film solar cell material.
  • Item 20 The organic device material according to Item 19, wherein the organic electroluminescent element material is a light emitting layer material.
  • Item 21 Item 12. An ink composition comprising the polycyclic aromatic compound or the multimer thereof according to any one of Items 1 to 11 and an organic solvent.
  • Item 22 Item 13. An ink composition comprising the reactive compound according to Item 12 and an organic solvent.
  • Item 23 An ink composition comprising a main chain type polymer, the reactive compound described in Item 12, and an organic solvent.
  • Item 24 Item 14.
  • An ink composition comprising the polymer compound or polymer crosslinked product according to Item 13 and an organic solvent.
  • Item 25 Item 15. An ink composition comprising the pendant polymer compound or the pendant polymer crosslinked product according to Item 14, and an organic solvent.
  • Item 26 A pair of electrodes consisting of an anode and a cathode, a polycyclic aromatic compound or a multimer thereof according to any one of claims 1 to 11, disposed between the pair of electrodes, a reactive compound according to claim 12, 13.
  • An organic electroluminescent device comprising the polymer compound or crosslinked polymer described in Item 13 or the organic layer containing the pendant polymer compound or pendant crosslinked polymer described in Item 14.
  • Item 27 A pair of electrodes composed of an anode and a cathode, a polycyclic aromatic compound according to any one of Items 1 to 11 or a multimer thereof disposed between the pair of electrodes, a reactive compound according to Item 12, an item 13
  • An organic electroluminescent device comprising the polymer compound or crosslinked polymer described in 1) or the light-emitting layer containing the pendant polymer compound or pendant crosslinked polymer described in Item 14.
  • the light emitting layer includes a host and the polycyclic aromatic compound as a dopant, a multimer thereof, a reactive compound, a polymer compound, a polymer crosslinked body, a pendant polymer compound, or a pendant polymer crosslinked body.
  • Item 27 The organic electroluminescent device according to Item 27.
  • Item 29 The organic electroluminescence device according to Item 28, wherein the host is an anthracene compound, a fluorene compound, a dibenzochrysene compound or a pyrene compound.
  • Item 30 An electron transport layer and / or an electron injection layer disposed between the cathode and the light emitting layer, wherein at least one of the electron transport layer and the electron injection layer is a borane derivative, a pyridine derivative, a fluoranthene derivative, BO Item 26 containing at least one selected from the group consisting of a series derivative, anthracene derivative, benzofluorene derivative, phosphine oxide derivative, pyrimidine derivative, carbazole derivative, triazine derivative, benzimidazole derivative, phenanthroline derivative, and quinolinol metal complex 30.
  • the organic electroluminescent device as described in any one of.
  • the electron transport layer and / or the electron injection layer further includes an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or an alkaline earth metal.
  • Item 30 contains at least one selected from the group consisting of halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, and rare earth metal organic complexes.
  • Item 32 A polymer compound in which at least one of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer is polymerized using a low molecular compound capable of forming each layer as a monomer, or A polymer crosslinked product obtained by further crosslinking the polymer compound, or a pendant polymer compound obtained by reacting a low molecular compound capable of forming each layer with a main chain polymer, or the pendant polymer compound.
  • the organic electroluminescent device according to any one of Items 26 to 31, further comprising a crosslinked pendant polymer crosslinked body.
  • Item 33 A display device or illumination device comprising the organic electroluminescent element according to any one of Items 26 to 32.
  • Item 34 A composition for forming a light emitting layer for coating and forming a light emitting layer of an organic electroluminescent device, As the first component, at least one polycyclic aromatic compound or a multimer thereof according to any one of Items 1 to 11, As a second component, at least one host material; As a third component, at least one organic solvent; A composition for forming a light emitting layer.
  • Item 35 An organic electroluminescence device comprising: a pair of electrodes composed of an anode and a cathode; and a light emitting layer disposed between the pair of electrodes and formed by applying and drying the composition for forming a light emitting layer described in Item 34.
  • a novel tertiary alkyl-substituted polycyclic aromatic compound that can be used as an organic device material such as an organic EL element material can be provided.
  • an organic device material such as an organic EL element material
  • an excellent organic device such as an organic EL element can be provided.
  • a polycyclic aromatic compound (basic skeleton portion) in which aromatic rings are connected with heteroelements such as boron, phosphorus, oxygen, nitrogen, and sulfur has a large HOMO-LUMO gap (in a thin film). It has been found that it has a band gap Eg) and a high triplet excitation energy (E T ). This is because a 6-membered ring containing a hetero element has low aromaticity, so that the reduction of the HOMO-LUMO gap accompanying the expansion of the conjugated system is suppressed, and the triplet excited state (T1 ) SOMO1 and SOMO2 are considered to be localized.
  • the polycyclic aromatic compound (basic skeleton portion) containing a hetero element according to the present invention has less exchange interaction between both orbitals due to localization of SOMO1 and SOMO2 in the triplet excited state (T1). Therefore, since the energy difference between the triplet excited state (T1) and the singlet excited state (S1) is small and shows thermally activated delayed fluorescence, it is also useful as a fluorescent material for organic EL elements.
  • a material having a high triplet excitation energy (E T ) is also useful as an electron transport layer or a hole transport layer of a phosphorescent organic EL device or an organic EL device using thermally activated delayed fluorescence.
  • these polycyclic aromatic compounds (basic skeleton parts) can move the energy of HOMO and LUMO arbitrarily by introducing substituents, the ionization potential and electron affinity are optimized according to the surrounding materials. It is possible.
  • the basic skeleton part of the polycyclic aromatic compound has high molecular planarity, and the interaction between molecules is large.
  • it when it is used as a dopant material for the light emitting layer of an organic EL device, it is derived from molecular aggregation.
  • the luminous efficiency of the device may be reduced. Therefore, conventionally, the light emission efficiency has been improved by introducing an alkyl group into the basic skeleton portion to reduce the interaction between molecules.
  • the t-butyl group is not an alkyl chain length that increases the solubility of the compound. If the solubility of the compound is low, an enormous amount of organic solvent is required for processing such as synthesis and purification, and man-hours and production are reduced. This is not preferable because the cost increases.
  • Tertiary alkyl substituted polycyclic aromatic compounds and multimers thereof has a plurality of polycyclic aromatic compounds represented by the following general formula (1) or structures represented by the following general formula (1).
  • a polycyclic aromatic compound preferably a polycyclic aromatic compound represented by the following general formula (2), or a polycyclic aromatic compound having a plurality of structures represented by the following general formula (2) And at least one hydrogen in these compounds or structures is substituted with a group represented by the following general formula (tR).
  • the A ring, B ring and C ring in the general formula (1) are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings may be substituted with a substituent.
  • This substituent is substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted diarylamino, substituted or unsubstituted diheteroarylamino, substituted or unsubstituted arylheteroarylamino (with aryl Amino groups having heteroaryl), substituted or unsubstituted diarylboryl (two aryls may be linked via a single bond or linking group), substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl Preferred are substituted or unsubstituted alkoxy or substituted or unsubstituted aryloxy.
  • substituents include aryl, heteroaryl, alkyl and cycloalkyl.
  • the aryl ring or heteroaryl ring may have a 5-membered or 6-membered ring sharing a bond with the central condensed bicyclic structure composed of Y 1 , X 1 and X 2. preferable.
  • the “fused bicyclic structure” means a structure in which two saturated hydrocarbon rings composed of Y 1 , X 1 and X 2 shown in the center of the general formula (1) are condensed.
  • the “six-membered ring sharing a bond with the condensed bicyclic structure” means, for example, an a ring (benzene ring (6-membered ring)) condensed to the condensed bicyclic structure as shown in the general formula (2). means.
  • the aryl ring or heteroaryl ring (which is A ring) has this 6-membered ring” means that the A ring is formed only by this 6-membered ring or includes this 6-membered ring.
  • aryl ring or heteroaryl ring having a 6-membered ring means that the 6-membered ring constituting all or part of the A ring is fused to the condensed bicyclic structure.
  • a ring (or B ring, C ring) in the general formula (1) is a ring in the general formula (2) and its substituents R 1 to R 3 (or b ring and its substituents R 8 to R 11 , c Corresponding to the ring and its substituents R 4 to R 7 ). That is, the general formula (2) corresponds to a structure in which “A to C rings having a 6-membered ring” are selected as the A to C rings of the general formula (1). In that sense, each ring of the general formula (2) is represented by lower case letters a to c.
  • adjacent groups of the substituents R 1 to R 11 of the a ring, b ring, and c ring are bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring, or c ring.
  • at least one hydrogen in the formed ring is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryls are connected via a single bond or a linking group).
  • the polycyclic aromatic compound represented by the general formula (2) has the following formulas (2-1) and (2-2) depending on the mutual bonding form of the substituents in the a-ring, b-ring and c-ring. As shown, the ring structure constituting the compound changes. A ′ ring, B ′ ring and C ′ ring in each formula correspond to A ring, B ring and C ring in general formula (1), respectively.
  • the A ′ ring, the B ′ ring and the C ′ ring are adjacent to the substituents R 1 to R 11 in the general formula (2).
  • the aryl ring or heteroaryl ring formed together with the a ring, b ring and c ring, respectively the condensed ring formed by condensing another ring structure to the a ring, b ring or c ring. It can also be said).
  • b-ring R 8 and c-ring R 7 , b-ring R 11 and a-ring R 1 , c-ring R 1 R 4 and R 3 in the a ring do not correspond to “adjacent groups” and they are not bonded. That is, “adjacent group” means an adjacent group on the same ring.
  • the compound represented by the above formula (2-1) or formula (2-2) is, for example, a benzene ring, an indole ring, a pyrrole ring, a benzofuran ring with respect to a benzene ring which is a ring (or b ring or c ring).
  • a compound having an A ′ ring (or B ′ ring or C ′ ring) formed by condensation of a benzothiophene ring, and a formed condensed ring A ′ (or condensed ring B ′ or condensed ring C ′) are respectively a naphthalene ring, a carbazole ring, an indole ring, a dibenzofuran ring or a dibenzothiophene ring.
  • Y 1 in the general formula (1) is B, P, P ⁇ O, P ⁇ S, Al, Ga, As, Si—R or Ge—R, and R in Si—R and Ge—R is Aryl, alkyl or cycloalkyl.
  • the atom bonded to the A ring, B ring or C ring is P, Si or Ge.
  • Y 1 is preferably B, P, P ⁇ O, P ⁇ S or Si—R, and particularly preferably B. This explanation is the same for Y 1 in the general formula (2).
  • X 1 and X 2 in the general formula (1) are each independently>O,>N—R,> C (—R) 2 ,> S or> Se, and R in> N—R is , An optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted alkyl or an optionally substituted cycloalkyl, wherein R in> C (—R) 2 is hydrogen , An optionally substituted aryl, an optionally substituted alkyl or an optionally substituted cycloalkyl, wherein R of> N—R and / or R of> C (—R) 2 are linked It may be bonded to the B ring and / or C ring by a group or a single bond, and the linking group is preferably —O—, —S— or —C (—R) 2 —.
  • R in the “—C (—R) 2 —” is hydrogen, alkyl or cycloalkyl. This description is the same for X 1 and X 2 in
  • R of> N—R and / or R of> C (—R) 2 is bonded to the A ring, B ring and / or C ring by a linking group or a single bond.
  • the R of> N—R and / or R of> C (—R) 2 is —O—, —S—, —C (—R”. 2 ) or a single bond to the ring a, b and / or c ”.
  • This definition can be expressed by a compound having a ring structure represented by the following formula (2-3-1) in which X 1 and X 2 are incorporated into the condensed ring B ′ and the condensed ring C ′. That is, for example, a B ′ ring (or a ring formed by condensation of another ring so as to incorporate X 1 (or X 2 ) into the benzene ring which is the b ring (or c ring) in the general formula (2) (or C ′ ring).
  • the formed condensed ring B ′ (or condensed ring C ′) is, for example, a phenoxazine ring, a phenothiazine ring or an acridine ring.
  • the above definition is a compound having a ring structure in which X 1 and / or X 2 is incorporated into the condensed ring A ′, which is represented by the following formula (2-3-2) or formula (2-3-3) But it can be expressed. That is, for example, a compound having an A ′ ring formed by condensing another ring so as to incorporate X 1 (and / or X 2 ) into the benzene ring which is the a ring in the general formula (2). .
  • the formed condensed ring A ′ is, for example, a phenoxazine ring, a phenothiazine ring or an acridine ring.
  • Examples of the “aryl ring” that is A ring, B ring and C ring in the general formula (1) include aryl rings having 6 to 30 carbon atoms, preferably aryl rings having 6 to 16 carbon atoms, An aryl ring having 6 to 12 carbon atoms is more preferable, and an aryl ring having 6 to 10 carbon atoms is particularly preferable.
  • the “aryl ring” is defined as “an aryl ring formed by bonding adjacent groups of R 1 to R 11 together with a ring, b ring or c ring” defined in the general formula (2).
  • the total number of carbon atoms of the condensed ring in which a 5-membered ring is condensed is a carbon having a lower limit. Number.
  • aryl rings include monocyclic benzene rings, bicyclic biphenyl rings, condensed bicyclic naphthalene rings, tricyclic terphenyl rings (m-terphenyl, o -Terphenyl, p-terphenyl), condensed tricyclic systems such as acenaphthylene ring, fluorene ring, phenalene ring, phenanthrene ring, condensed tetracyclic systems such as triphenylene ring, pyrene ring, naphthacene ring, condensed pentacyclic system Examples include a perylene ring and a pentacene ring.
  • heteroaryl ring that is A ring, B ring and C ring in the general formula (1) include heteroaryl rings having 2 to 30 carbon atoms, preferably heteroaryl rings having 2 to 25 carbon atoms.
  • a heteroaryl ring having 2 to 20 carbon atoms is more preferable, a heteroaryl ring having 2 to 15 carbon atoms is more preferable, and a heteroaryl ring having 2 to 10 carbon atoms is particularly preferable.
  • heteroaryl ring include a heterocycle containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituent atom.
  • the “heteroaryl ring” is a heteroaryl formed together with a ring, b ring or c ring by bonding adjacent groups of “R 1 to R 11 ” defined in the general formula (2).
  • the a ring (or b ring, c ring) is already composed of a benzene ring having 6 carbon atoms, the total number of carbon atoms of the condensed ring in which a 5-membered ring is condensed is lower limit. The number of carbons.
  • heteroaryl ring examples include pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, oxadiazole ring, thiadiazole ring, triazole ring, tetrazole ring, pyrazole ring, Pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, triazine ring, indole ring, isoindole ring, 1H-indazole ring, benzimidazole ring, benzoxazole ring, benzothiazole ring, 1H-benzotriazole ring, quinoline ring, isoquinoline ring Cinnoline ring, quinazoline ring, quinoxaline ring, phthalazine ring, naphthyridine ring, purine ring, p
  • At least one hydrogen in the above “aryl ring” or “heteroaryl ring” is the first substituent, which is substituted or unsubstituted “aryl”, substituted or unsubstituted “heteroaryl”, substituted or unsubstituted “Diarylamino”, substituted or unsubstituted “diheteroarylamino”, substituted or unsubstituted “arylheteroarylamino”, substituted or unsubstituted “diarylboryl” (two aryls are connected via a single bond or a linking group)
  • Optionally substituted) ", substituted or unsubstituted” alkyl ", substituted or unsubstituted” cycloalkyl ", substituted or unsubstituted” alkoxy ", or substituted or unsubstituted” aryloxy "
  • an aryl group such as “aryl”, “heteroaryl”, or “diarylamin
  • alkyl as the first substituent may be either linear or branched, and examples thereof include linear alkyl having 1 to 24 carbon atoms and branched alkyl having 3 to 24 carbon atoms.
  • Alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons) is preferable, alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons) is more preferable, and alkyl having 1 to 6 carbons. (Branched alkyl having 3 to 6 carbon atoms) is more preferable, and alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms) is particularly preferable.
  • alkyl having 1 to 4 carbon atoms a methyl group and a t-butyl group are more preferable, but a t-butyl group is more preferable.
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, and 1-methyl.
  • Pentyl 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propyl Pentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl, n-dodecyl, n- Tridecyl, 1-hexylheptyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-hepta Sill, n- octadecyl, such as n- eicosyl, and the like
  • Cycloalkyl as the first substituent includes cycloalkyl having 3 to 24 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, cycloalkyl having 3 to 16 carbon atoms, and cycloalkyl having 3 to 14 carbon atoms. Cycloalkyl having 5 to 10 carbon atoms, cycloalkyl having 5 to 8 carbon atoms, cycloalkyl having 5 to 6 carbon atoms, cycloalkyl having 5 carbon atoms and the like.
  • cycloalkyl examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, and alkyl (particularly methyl) substituents having 1 to 4 carbon atoms, norbornenyl, bicyclo [1 .0.1] butyl, bicyclo [1.1.1] pentyl, bicyclo [2.0.1] pentyl, bicyclo [1.2.1] hexyl, bicyclo [3.0.1] hexyl, bicyclo [2 1.2] heptyl, bicyclo [2.2.2] octyl, adamantyl, diamantyl, decahydronaphthalenyl, decahydroazulenyl and the like.
  • alkoxy as the first substituent includes, for example, straight-chain alkoxy having 1 to 24 carbon atoms or branched alkoxy having 3 to 24 carbon atoms.
  • C1-C18 alkoxy (C3-C18 branched alkoxy) is preferred, C1-C12 alkoxy (C3-C12 branched alkoxy) is more preferred, and C1-C6 Of alkoxy (C3-C6 branched chain alkoxy) is more preferable, and C1-C4 alkoxy (C3-C4 branched chain alkoxy) is particularly preferable.
  • alkoxy examples include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy and the like.
  • aryl in the “diarylboryl” of the first substituent, the above-mentioned explanation of aryl can be cited.
  • the two aryls may be bonded via a single bond or a linking group (eg,> C (—R) 2 ,>O,> S or> N—R).
  • R in> C (—R) 2 and> N—R is aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy, or aryloxy (hereinafter, the first substituent), and the first The substituent may be further substituted with aryl, heteroaryl, alkyl or cycloalkyl (hereinafter, the second substituent).
  • Specific examples of these groups include aryl, hetero as the first substituent described above. References can be made to aryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy.
  • the second substituent may be substituted with a second substituent.
  • the second substituent include aryl, heteroaryl, alkyl, and cycloalkyl. Specific examples thereof include the above-described monovalent group of “aryl ring” or “heteroaryl ring”, and Reference may be made to the description of “alkyl” or “cycloalkyl” as one substituent.
  • at least one hydrogen in them is aryl such as phenyl (specific examples are the groups described above), alkyl such as methyl (specific examples are the groups described above) or cyclohexyl.
  • a structure substituted with cycloalkyl (specific examples are the groups described above) is also included in the aryl and heteroaryl as the second substituent.
  • the second substituent is a carbazolyl group
  • a carbazolyl group in which at least one hydrogen at the 9-position is substituted with an aryl such as phenyl, an alkyl such as methyl, or a cycloalkyl such as cyclohexyl is also used.
  • alkyl, cycloalkyl or alkoxy in R 1 to R 11 see the description of “alkyl”, “cycloalkyl” or “alkoxy” as the first substituent in the description of the general formula (1). can do.
  • aryl, heteroaryl, alkyl or cycloalkyl as a substituent for these groups.
  • adjacent groups of R 1 to R 11 are bonded to form an aryl ring or a heteroaryl ring together with a ring, b ring or c ring, heteroaryl which is a substituent for these rings , Diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryls may be linked via a single bond or linking group), alkyl, cycloalkyl, alkoxy or aryloxy, and further The same applies to the substituents aryl, heteroaryl, alkyl or cycloalkyl.
  • the emission wavelength can be adjusted by the steric hindrance, electron donating property, and electron withdrawing property of the structure of the first substituent, preferably a group represented by the following structural formula, more preferably , Methyl, t-butyl, phenyl, o-tolyl, p-tolyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 2,4,6-mesityl, diphenylamino, di-p- Tolylamino, bis (p- (t-butyl) phenyl) amino, carbazolyl, 3,6-dimethylcarbazolyl, 3,6-di-t-butylcarbazolyl and phenoxy, more preferably methyl, t -Butyl, phenyl, o-tolyl, 2,6-xylyl, 2,4,6-mesityl, diphenylamino, di-p-tolylamino, bis (p- (t-but
  • t-butyl, o-tolyl, p-tolyl, 2,4-xylyl, 2,5 -Xylyl, 2,6-xylyl, 2,4,6-mesityl, di-p-tolylamino, bis (p- (t-butyl) phenyl) amino, 3,6-dimethylcarbazolyl and 3,6-di- -T-Butylcarbazolyl is preferred.
  • R in Si—R and Ge—R in Y 1 in the general formula (1) is aryl, alkyl or cycloalkyl, and examples of the aryl, alkyl or cycloalkyl include the groups described above.
  • aryl having 6 to 10 carbon atoms for example, phenyl, naphthyl, etc.
  • alkyl having 1 to 4 carbon atoms for example, methyl, ethyl, t-butyl, etc., especially t-butyl
  • cycloalkyl having 5 to 10 carbon atoms preferably Is preferably cyclohexyl or adamantyl.
  • This explanation is the same for Y 1 in the general formula (2).
  • R in> N—R in X 1 and X 2 in the general formula (1) is aryl, heteroaryl, alkyl or cycloalkyl, which may be substituted with the second substituent described above. At least one hydrogen in aryl may be substituted, for example with alkyl or cycloalkyl. Examples of the aryl, heteroaryl, alkyl or cycloalkyl include the groups described above.
  • aryl having 6 to 10 carbon atoms eg, phenyl, naphthyl, etc.
  • heteroaryl having 2 to 15 carbon atoms eg, carbazolyl, etc.
  • alkyl having 1 to 4 carbon atoms eg, methyl, ethyl, t-butyl, etc.
  • cycloalkyl having 5 to 10 carbon atoms preferably cyclohexyl or adamantyl.
  • C (-R) 2 of R in X 1 and X 2 in the general formula (1) is hydrogen, may be substituted with a second substituent described above, aryl, alkyl or cycloalkyl, aryl At least one hydrogen in may be substituted, for example with alkyl or cycloalkyl.
  • aryl, alkyl or cycloalkyl include the groups described above.
  • aryl having 6 to 10 carbon atoms for example, phenyl, naphthyl, etc.
  • alkyl having 1 to 4 carbon atoms for example, methyl, ethyl, t-butyl, etc., especially t-butyl
  • cycloalkyl having 5 to 10 carbon atoms preferably Is preferably cyclohexyl or adamantyl.
  • R in “—C (—R) 2 —” which is the linking group in the general formula (1) is hydrogen, alkyl or cycloalkyl, and examples of the alkyl or cycloalkyl include the groups described above.
  • alkyl having 1 to 4 carbon atoms for example, methyl, ethyl, t-butyl, etc., especially t-butyl) or cycloalkyl having 5 to 10 carbon atoms (preferably cyclohexyl or adamantyl) is preferable.
  • This explanation is the same for “—C (—R) 2 —” which is a linking group in the general formula (2).
  • the present invention also provides a multimer of polycyclic aromatic compounds having a plurality of unit structures represented by the general formula (1), preferably a polycyclic aromatic having a plurality of unit structures represented by the general formula (2).
  • the multimer is preferably a dimer to hexamer, more preferably a dimer to trimer, and particularly preferably a dimer.
  • the multimer may be in a form having a plurality of the above unit structures in one compound.
  • the unit structure is a single bond, a linking group such as an alkylene group having 1 to 3 carbon atoms, a phenylene group, or a naphthylene group.
  • any ring (A ring, B ring or C ring, a ring, b ring or c ring) contained in the unit structure is shared by the multiple unit structures
  • the bonded form (ring-shared multimer) may be used, and any ring (A ring, B ring or C ring, a ring, b ring or c ring) included in the unit structure may be May be combined in a condensed form (ring-condensed multimer), but a ring-shared multimer and a ring-condensed multimer are preferable, and a ring-shared multimer is more preferable.
  • Examples of such multimers include the following formula (2-4), formula (2-4-1), formula (2-4-2), formula (2-5-1) to formula (2-5). -4) or a multimeric compound represented by formula (2-6).
  • the multimeric compound represented by the following formula (2-4) can be represented by a plurality of general formulas (2) so as to share a benzene ring which is a ring, as explained by the general formula (2). It is a multimeric compound (ring-shared multimer) having a unit structure in one compound.
  • the multimeric compound represented by the following formula (2-4-1) can be expressed by two general formulas (2) such that a benzene ring which is a ring is shared, as explained by the general formula (2).
  • the multimeric compound represented by the following formula (2-4-2) can be described by the general formula (2), so that the benzene ring which is the a ring is shared, so that the three general formulas (2)
  • the multimeric compound represented by the following formulas (2-5-1) to (2-5-4) can be represented by the general formula (2) as a benzene ring which is a b ring (or a c ring). Is a multimeric compound (ring-sharing multimer) having a plurality of unit structures represented by the general formula (2) in one compound.
  • the multimeric compound represented by the following formula (2-6) can be represented by the general formula (2), for example, a benzene ring which is a b ring (or a ring or c ring) having a certain unit structure and a certain unit.
  • Type multimer ).
  • the multimeric compound includes a multimerized form represented by formula (2-4), formula (2-4-1) or formula (2-4-2), and formulas (2-5-1) to (2) -5-4) or a multimer in combination with a multimerized form represented by formula (2-6) may be used, and may be represented by formula (2-5-1) to formula (2-5) 4) may be a multimer in which the multimerized form represented by any one of 4) and the multimerized form represented by formula (2-6) are combined.
  • Formula (2-4) and formula (2) -4-1) or the multimerized form represented by formula (2-4-2) and the multimerized form represented by any of formulas (2-5-1) to (2-5-4) A multimer combined with the multimerized form represented by the formula (2-6) may be used.
  • all or part of the polycyclic aromatic compounds represented by the general formula (1) or (2) and the chemical structures of the multimers thereof may be deuterium, cyano, or halogen.
  • Hydrogen may be substituted with deuterium, cyano or halogen, and among these, an embodiment in which all or part of hydrogen in aryl or heteroaryl is substituted with deuterium, cyano or halogen can be mentioned.
  • Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine
  • the polycyclic aromatic compound and its multimer according to the present invention can be used as a material for organic devices.
  • an organic device an organic electroluminescent element, an organic field effect transistor, an organic thin film solar cell, etc. are mention
  • compound is R, Y 1 is B, X 1 and X 2> O compounds wherein preferably, as an electron transport material, compound Y 1 is B, X 1 and X 2 is> O, Y 1 is P Compounds in which ⁇ O, X 1 and X 2 are> O are preferably used.
  • At least one hydrogen in the chemical structure of the polycyclic aromatic compound represented by the general formula (1) or (2) and the multimer thereof is substituted with a group represented by the following general formula (tR).
  • all hydrogen or part of hydrogen may be a group represented by the following formula (tR).
  • R a is alkyl having 2 to 24 carbon atoms
  • R b and R c are each independently alkyl having 1 to 24 carbon atoms
  • any —CH 2 — in the alkyl is The group represented by the above formula (tR) may be substituted with —O—, and is substituted with at least one hydrogen in the compound or structure represented by the above formula (1) or (2) in *.
  • the “alkyl having 2 to 24 carbon atoms” for R a may be either a straight chain or branched chain, for example, a straight chain alkyl having 2 to 24 carbon atoms, a branched alkyl having 3 to 24 carbon atoms, or a carbon number of 2 Alkyl having 18 to 18 carbons (branched alkyl having 3 to 18 carbon atoms), alkyl having 2 to 12 carbon atoms (branched alkyl having 3 to 12 carbon atoms), alkyl having 2 to 6 carbon atoms (branching having 3 to 6 carbon atoms) Chain alkyl) and alkyl having 2 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms).
  • alkyl having 1 to 24 carbon atoms may be either linear or branched, for example, linear alkyl having 1 to 24 carbons or branched alkyl having 3 to 24 carbons, C1-C18 alkyl (C3-C18 branched alkyl), C1-C12 alkyl (C3-C12 branched alkyl), C1-C6 alkyl (C3-C3) 6 branched-chain alkyl) and alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms).
  • the total number of carbon atoms of R a , R b and R c in the formula (tR) of the general formula (1) is preferably 4 to 20 carbon atoms, and particularly preferably 4 to 10 carbon atoms.
  • R a , R b and R c includes methyl (excluding R a ), ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, Isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t -Octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl
  • Examples of the group represented by the formula (tR) include a t-amyl group, 1-ethyl-1-methylpropyl group, 1,1-diethylpropyl group, 1,1-dimethylbutyl group, 1-ethyl-1 -Methylbutyl, 1,1,3,3-tetramethylbutyl, 1,1,4-trimethylpentyl, 1,1,2-trimethylpropyl, 1,1-dimethyloctyl, 1,1-dimethyl Pentyl group, 1,1-dimethylheptyl group, 1,1,5-trimethylhexyl group, 1-ethyl-1-methylhexyl group, 1-ethyl-1,3-dimethylbutyl group, 1,1,2,2 -Tetramethylpropyl group, 1-butyl-1-methylpentyl group, 1,1-diethylbutyl group, 1-ethyl-1-methylpentyl group, 1,1,3-trimethylbutyl group, 1-prop
  • the polycyclic aromatic compound represented by the general formula (1) or (2) and a multimer thereof are substituted with, for example, a group of the formula (tR)
  • a group of the formula (tR) examples are substituted with a diarylamino group, a carbazolyl group substituted with a group of formula (tR), or a benzocarbazolyl group substituted with a group of formula (tR).
  • Examples of the “diarylamino group” include the groups described above as the “first substituent”.
  • Examples of the substitution form of the group of the formula (tR) for the diarylamino group, carbazolyl group and benzocarbazolyl group include a part or all of the aryl ring or benzene ring in these groups as the group of the formula (tR).
  • a substituted example is given.
  • R 2 in the polycyclic aromatic compound represented by the general formula (2) and its multimer is a diarylamino group substituted with a group of the formula (tR) or a formula (tR ) Is a carbazolyl group substituted with a group.
  • tR is a group of the formula (tR), each n is independently an integer of 1 to 5 (preferably 1), and the definition of each symbol in the structural formula is the same as the definition of each symbol in the general formula (2) It is.
  • tertiary alkyl-substituted polycyclic aromatic compounds and multimers thereof according to the present invention include one or more hydrogen atoms in one or more aromatic rings in the compound. And a compound substituted with 1 to 2 groups of the formula (tR).
  • N in the following formulas are each independently 0 to 2 (however, all n are not 0), preferably 1.
  • tR represents a group represented by the formula (tR)
  • OPh represents a phenoxy group
  • Me represents a methyl group.
  • tertiary alkyl-substituted polycyclic aromatic compound of the present invention include compounds represented by the following structural formula.
  • D is deuterium
  • Me is a methyl group
  • Et is an ethyl group
  • Pr is a propyl group
  • Hep is a heptyl group
  • tBu is a t-butyl group.
  • Tm represents a t-amyl group.
  • the polycyclic aromatic compound represented by the general formula (1) and the multimer thereof according to the present invention are a polymer compound obtained by polymerizing a reactive compound having a reactive substituent substituted thereon as a monomer (this polymer The monomer for obtaining a molecular compound has a polymerizable substituent), or a polymer crosslinked product obtained by further crosslinking the polymer compound (the polymer compound for obtaining the polymer crosslinked product is a crosslinking substituent) Or a pendant polymer compound obtained by reacting a main chain polymer and the reactive compound (the reactive compound for obtaining the pendant polymer compound has a reactive substituent), Alternatively, a pendant polymer crosslinked product obtained by further crosslinking the pendant polymer compound (the pendant polymer compound for obtaining this pendant polymer crosslinked product is a crosslinkable compound).
  • an organic device material for example, can be used a material for an organic electroluminescence device, an organic field effect transistor materials or organic thin film solar cell material.
  • reactive substituent including the polymerizable substituent, the crosslinkable substituent, and the reactive substituent for obtaining a pendant polymer, hereinafter, also simply referred to as “reactive substituent”.
  • a substituent capable of increasing the molecular weight of the polycyclic aromatic compound or a multimer thereof, a substituent capable of further crosslinking the polymer compound thus obtained, and a substituent capable of pendant reaction with a main chain polymer Although it will not specifically limit if it is group, the substituent of the following structures is preferable. * In each structural formula indicates a bonding position.
  • L is each independently a single bond, —O—, —S—,> C ⁇ O, —O—C ( ⁇ O) —, alkylene having 1 to 12 carbons, or oxyalkylene having 1 to 12 carbons. And polyoxyalkylene having 1 to 12 carbon atoms.
  • substituents they are represented by the formula (XLS-1), the formula (XLS-2), the formula (XLS-3), the formula (XLS-9), the formula (XLS-10), or the formula (XLS-17).
  • a group represented by the formula (XLS-1), the formula (XLS-3) or the formula (XLS-17) is more preferable.
  • polymer compound and polymer crosslinked product Details of the uses of such a polymer compound, polymer crosslinked product, pendant polymer compound and pendant polymer crosslinked product (hereinafter also simply referred to as “polymer compound and polymer crosslinked product”) will be described later.
  • a step of using a raw material substituted with a tertiary alkyl group represented by the formula (tR) or introducing a tertiary alkyl group represented by the formula (tR) is added.
  • the compound of the present invention in which the desired position is tertiary alkyl substituted can be produced.
  • a general reaction such as a nucleophilic substitution reaction and an Ullmann reaction can be used for an etherification reaction, and a general reaction such as a Buchwald-Hartwig reaction can be used for an amination reaction.
  • a tandem hetero Friedel-Crafts reaction continuous aromatic electrophilic substitution reaction, the same applies hereinafter
  • the second reaction is a reaction for introducing Y 1 that connects the A ring (a ring), the B ring (b ring), and the C ring (c ring).
  • Y 1 is a boron atom and X 1 and X 2 are oxygen atoms is shown below.
  • a hydrogen atom and n- butyllithium between X 1 and X 2 ortho-metalated with sec- butyllithium or t- butyl lithium, and the like.
  • the said scheme (1) and (2) mainly show the manufacturing method of the polycyclic aromatic compound represented by General formula (1) or (2), about the multimer, about several It can manufacture by using the intermediate body which has A ring (a ring), B ring (b ring), and C ring (c ring). Details will be described in the following schemes (3) to (5).
  • the target product can be obtained by setting the amount of the reagent such as butyl lithium to be doubled or tripled.
  • lithium is introduced to a desired position by orthometalation.
  • a halogen such as a bromine atom at a position where lithium is to be introduced and introduce lithium to the desired position by halogen-metal exchange. it can.
  • the intermediate before cyclization in Scheme (6) can also be synthesized by the method shown in Scheme (1) and the like. That is, an intermediate having a desired substituent can be synthesized by appropriately combining Buchwald-Hartwig reaction, Suzuki coupling reaction, or etherification reaction such as nucleophilic substitution reaction or Ullmann reaction. In these reactions, a commercially available product can be used as a raw material to become a tertiary alkyl-substituted precursor.
  • the compound of the general formula (2-A) having a tertiary alkyl-substituted diphenylamino group can also be synthesized, for example, by the following method. That is, after introducing a tertiary alkyl-substituted diphenylamino group by amination reaction such as Buchwald-Hartwig reaction between tertiary alkyl-substituted bromobenzene and trihalogenated aniline, X 1 and X 2 are N—R.
  • X 1 and X 2 are O, they are induced to an intermediate (M-3) by etherification with phenol, and then
  • tandem volatilization can be achieved by applying a metalation reagent such as butyllithium to transmetallate, then applying a boron halide such as boron tribromide, and then using a Bronsted base such as diethylisopropylamine.
  • a metalation reagent such as butyllithium to transmetallate
  • a boron halide such as boron tribromide
  • Bronsted base such as diethylisopropylamine.
  • Compound of general formula (2-A) by Friedel-Crafts reaction It can be synthesized.
  • Organic Device The tertiary alkyl-substituted polycyclic aromatic compound according to the present invention can be used as a material for an organic device.
  • an organic device an organic electroluminescent element, an organic field effect transistor, an organic thin film solar cell, etc. are mention
  • FIG. 1 is a schematic cross-sectional view showing an organic EL element according to this embodiment.
  • An organic EL element 100 shown in FIG. 1 includes a substrate 101, an anode 102 provided on the substrate 101, a hole injection layer 103 provided on the anode 102, and a hole injection layer 103.
  • the hole transport layer 104 provided, the light emitting layer 105 provided on the hole transport layer 104, the electron transport layer 106 provided on the light emitting layer 105, and the electron transport layer 106 are provided.
  • the electron injection layer 107 and the cathode 108 provided on the electron injection layer 107 are provided.
  • the organic EL element 100 is manufactured in the reverse order, for example, the substrate 101, the cathode 108 provided on the substrate 101, the electron injection layer 107 provided on the cathode 108, and the electron injection layer 107.
  • An electron transport layer 106 provided on the light emitting layer 105, a light emitting layer 105 provided on the electron transport layer 106, a hole transport layer 104 provided on the light emitting layer 105, and a hole transport layer 104.
  • the hole injection layer 103 provided on the hole injection layer 103 and the anode 102 provided on the hole injection layer 103 may be used.
  • each said layer may consist of a single layer, respectively, and may consist of multiple layers.
  • the layer constituting the organic EL element in addition to the above-described configuration aspect of “substrate / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode”, “Substrate / anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode”, “substrate / anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode”, “substrate / Anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode ”,“ substrate / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ”,“ substrate / Anode / light emitting layer / electron transport layer / electron injection layer / cathode ”,“ substrate / Anode /
  • the substrate 101 is a support for the organic EL element 100, and quartz, glass, metal, plastic, or the like is usually used.
  • the substrate 101 is formed into a plate shape, a film shape, or a sheet shape according to the purpose.
  • a glass plate, a metal plate, a metal foil, a plastic film, a plastic sheet, or the like is used.
  • glass plates and transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate, polysulfone and the like are preferable.
  • soda lime glass, non-alkali glass, or the like is used, and the thickness only needs to be sufficient to maintain the mechanical strength.
  • the upper limit value of the thickness is, for example, 2 mm or less, preferably 1 mm or less.
  • the glass material is preferably alkali-free glass because it is better to have less ions eluted from the glass.
  • soda lime glass with a barrier coat such as SiO 2 is also commercially available, so it can be used. it can.
  • the substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one surface in order to improve the gas barrier property, and a synthetic resin plate, film or sheet having a low gas barrier property is used as the substrate 101. When used, it is preferable to provide a gas barrier film.
  • the anode 102 serves to inject holes into the light emitting layer 105.
  • the hole injection layer 103 and / or the hole transport layer 104 are provided between the anode 102 and the light emitting layer 105, holes are injected into the light emitting layer 105 through these layers. .
  • Examples of the material for forming the anode 102 include inorganic compounds and organic compounds.
  • Examples of inorganic compounds include metals (aluminum, gold, silver, nickel, palladium, chromium, etc.), metal oxides (indium oxide, tin oxide, indium-tin oxide (ITO), indium-zinc oxide) Products (IZO), metal halides (copper iodide, etc.), copper sulfide, carbon black, ITO glass, Nesa glass, and the like.
  • Examples of the organic compound include polythiophene such as poly (3-methylthiophene), conductive polymer such as polypyrrole and polyaniline, and the like. In addition, it can select suitably from the substances used as an anode of an organic EL element.
  • the resistance of the transparent electrode is not limited as long as it can supply a sufficient current for light emission of the light emitting element, but is preferably low resistance from the viewpoint of power consumption of the light emitting element.
  • an ITO substrate of 300 ⁇ / ⁇ or less functions as an element electrode, but at present, since it is possible to supply a substrate of about 10 ⁇ / ⁇ , for example, 100 to 5 ⁇ / ⁇ , preferably 50 to 5 ⁇ . It is particularly desirable to use a low resistance product of / ⁇ .
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 50 to 300 nm.
  • the hole injection layer 103 plays a role of efficiently injecting holes moving from the anode 102 into the light emitting layer 105 or the hole transport layer 104.
  • the hole transport layer 104 serves to efficiently transport holes injected from the anode 102 or holes injected from the anode 102 via the hole injection layer 103 to the light emitting layer 105.
  • the hole injection layer 103 and the hole transport layer 104 are each formed by laminating and mixing one kind or two or more kinds of hole injection / transport materials or a mixture of the hole injection / transport material and the polymer binder. Is done.
  • an inorganic salt such as iron (III) chloride may be added to the hole injection / transport material to form a layer.
  • a hole injection / transport material As a hole injection / transport material, it is necessary to efficiently inject and transport holes from the positive electrode between electrodes to which an electric field is applied. The hole injection efficiency is high, and the injected holes are transported efficiently. It is desirable to do. For this purpose, it is preferable to use a substance that has a low ionization potential, a high hole mobility, excellent stability, and is less likely to generate trapping impurities during production and use.
  • a compound conventionally used as a charge transport material for holes in a photoconductive material, a p-type semiconductor, and a hole injection layer of an organic EL element are used.
  • any compound can be selected and used from known compounds used in the hole transport layer. Specific examples thereof include carbazole derivatives (N-phenylcarbazole, polyvinylcarbazole, etc.), biscarbazole derivatives such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), triarylamine derivatives (aromatic tertiary class).
  • polycarbonates, styrene derivatives, polyvinylcarbazole, polysilanes, etc. having the aforementioned monomers in the side chain are preferred, but light emitting devices There is no particular limitation as long as it is a compound that can form a thin film necessary for the fabrication, inject holes from the anode, and further transport holes.
  • organic semiconductors are strongly influenced by the doping.
  • Such an organic semiconductor matrix material is composed of a compound having a good electron donating property or a compound having a good electron accepting property.
  • Strong electron acceptors such as tetracyanoquinone dimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane (F4TCNQ) are known for doping of electron donor materials.
  • TCNQ tetracyanoquinone dimethane
  • F4TCNQ 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane
  • the hole injection layer material and the hole transport layer material described above are a polymer compound obtained by polymerizing a reactive compound substituted with a reactive substituent on the monomer as a monomer, or a crosslinked polymer thereof, or A pendant polymer compound obtained by reacting a main chain polymer and the reactive compound, or a pendant polymer crosslinked product thereof, can also be used for the material for the hole layer.
  • the reactive substituent in this case, the description of the polycyclic aromatic compound represented by the formula (1) can be cited. Details of the use of such a polymer compound and polymer crosslinked product will be described later.
  • the light-emitting layer 105 is a layer that emits light by recombining holes injected from the anode 102 and electrons injected from the cathode 108 between electrodes to which an electric field is applied.
  • the material for forming the light-emitting layer 105 may be a compound that emits light by being excited by recombination of holes and electrons (a light-emitting compound), can form a stable thin film shape, and is in a solid state It is preferable that the compound exhibits a strong light emission (fluorescence) efficiency.
  • a host material and, for example, a polycyclic aromatic compound represented by the general formula (1) as a dopant material can be used as the material for the light emitting layer.
  • the light emitting layer may be either a single layer or a plurality of layers, each formed of a light emitting layer material (host material, dopant material). Each of the host material and the dopant material may be one kind or a plurality of combinations.
  • the dopant material may be included in the host material as a whole, or may be included partially.
  • As a doping method it can be formed by a co-evaporation method with a host material. However, it can be formed by a wet film formation method after being pre-mixed with a host material and simultaneously vapor-depositing or pre-mixed with an organic solvent and a host material. A film may be formed.
  • the amount of host material used depends on the type of host material and can be determined according to the characteristics of the host material.
  • the standard of the amount of the host material used is preferably 50 to 99.999% by weight of the entire light emitting layer material, more preferably 80 to 99.95% by weight, and still more preferably 90 to 99.9% by weight. It is.
  • the amount of dopant material used depends on the type of dopant material, and can be determined according to the characteristics of the dopant material.
  • the standard of the amount of dopant used is preferably 0.001 to 50% by weight, more preferably 0.05 to 20% by weight, and further preferably 0.1 to 10% by weight of the entire material for the light emitting layer. is there.
  • the above range is preferable in that, for example, the concentration quenching phenomenon can be prevented.
  • Host materials include fused ring derivatives such as anthracene, pyrene, dibenzochrysene or fluorene that have been known as light emitters, bisstyryl derivatives such as bisstyrylanthracene derivatives and distyrylbenzene derivatives, tetraphenylbutadiene derivatives, and cyclopentadiene derivatives.
  • fused ring derivatives such as anthracene, pyrene, dibenzochrysene or fluorene that have been known as light emitters
  • bisstyryl derivatives such as bisstyrylanthracene derivatives and distyrylbenzene derivatives
  • tetraphenylbutadiene derivatives tetraphenylbutadiene derivatives
  • cyclopentadiene derivatives cyclopentadiene derivatives.
  • an anthracene compound, a fluorene compound, or a dibenzochrysene compound
  • An anthracene compound as a host is, for example, a compound represented by the following general formula (3).
  • X and Ar 4 are each independently hydrogen, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted diarylamino, optionally substituted diheteroarylamino, Arylheteroarylamino which may be substituted, alkyl which may be substituted, cycloalkyl which may be substituted, alkenyl which may be substituted, alkoxy which may be substituted, which may be substituted Aryloxy, optionally substituted arylthio or optionally substituted silyl, and all X and Ar 4 are not simultaneously hydrogen; At least one hydrogen in the compound represented by the formula (3) may be substituted with halogen, cyano, deuterium or an optionally substituted heteroaryl.
  • a multimer may be formed with the structure represented by the formula (3) as a unit structure.
  • X include a single bond, arylene (such as phenylene, biphenylene, and naphthylene), and heteroarylene (a pyridine ring, A group having a divalent valence such as a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring, a benzocarbazole ring and a phenyl-substituted carbazole ring).
  • aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkoxy, aryloxy, arylthio or silyl will be described in the following preferred embodiments.
  • substituent to these include aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkoxy, aryloxy, arylthio or silyl. Details will also be described in the preferred embodiments below.
  • each X is independently a group represented by the above formula (3-X1), formula (3-X2) or formula (3-X3), and the formula (3-X1), formula (3)
  • the group represented by (3-X2) or formula (3-X3) is bonded to the anthracene ring of formula (3) at *.
  • two Xs do not become a group represented by the formula (3-X3) at the same time. More preferably, two Xs do not simultaneously become a group represented by the formula (3-X2).
  • a multimer may be formed with the structure represented by the formula (3) as a unit structure.
  • X include a single bond, arylene (such as phenylene, biphenylene, and naphthylene), and heteroarylene (a pyridine ring, A group having a divalent valence such as a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring, a benzocarbazole ring and a phenyl-substituted carbazole ring).
  • the naphthylene moiety in formula (3-X1) and formula (3-X2) may be condensed with one benzene ring.
  • the structure thus condensed is as follows.
  • Ar 1 and Ar 2 are each independently hydrogen, phenyl, biphenylyl, terphenylyl, quaterphenylyl, naphthyl, phenanthryl, fluorenyl, benzofluorenyl, chrycenyl, triphenylenyl, pyrenylyl, or the above formula (A) Represented groups (including carbazolyl, benzocarbazolyl and phenyl-substituted carbazolyl groups).
  • the group represented by the formula (A) is the same as that in the formula (3-X1) or (3-X2) Bonds with the naphthalene ring.
  • Ar 3 is phenyl, biphenylyl, terphenylyl, quaterphenylyl, naphthyl, phenanthryl, fluorenyl, benzofluorenyl, chrysenyl, triphenylenyl, pyrenylyl, or a group represented by the above formula (A) (carbazolyl group, benzocarbyl group) A zolyl group and a phenyl-substituted carbazolyl group).
  • Ar 3 is a group represented by the formula (A)
  • the group represented by the formula (A) is bonded to a single bond represented by a straight line in the formula (3-X3) at *. . That is, the anthracene ring of formula (3) and the group represented by formula (A) are directly bonded.
  • Ar 3 may have a substituent, and at least one hydrogen in Ar 3 is further alkyl having 1 to 4 carbons, cycloalkyl having 5 to 10 carbons, phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl. , Fluorenyl, chrycenyl, triphenylenyl, pyrenylyl, or a group represented by the above formula (A) (including a carbazolyl group and a phenyl-substituted carbazolyl group). Note that when the substituent that Ar 3 has is a group represented by the formula (A), the group represented by the formula (A) is bonded to Ar 3 in the formula (3-X3) at *.
  • Ar 4 is each independently substituted with hydrogen, phenyl, biphenylyl, terphenylyl, naphthyl, or alkyl having 1 to 4 carbon atoms (methyl, ethyl, t-butyl, etc.) and / or cycloalkyl having 5 to 10 carbon atoms. Has been silyl.
  • alkyl having 1 to 4 carbon atoms to be substituted with silyl examples include methyl, ethyl, propyl, i-propyl, butyl, sec-butyl, t-butyl, cyclobutyl and the like. Are substituted with these alkyls.
  • sil substituted with alkyl having 1 to 4 carbon atoms include trimethylsilyl, triethylsilyl, tripropylsilyl, trii-propylsilyl, tributylsilyl, trisec-butylsilyl, tri-t-butylsilyl, ethyl Dimethylsilyl, propyldimethylsilyl, i-propyldimethylsilyl, butyldimethylsilyl, sec-butyldimethylsilyl, t-butyldimethylsilyl, methyldiethylsilyl, propyldiethylsilyl, i-propyldiethylsilyl, butyldiethylsilyl, sec-butyl Diethylsilyl, t-butyldiethylsilyl, methyldipropylsilyl, ethyldipropylsilyl, buty
  • Cycloalkyl having 5 to 10 carbon atoms to be substituted with silyl is cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, norbornenyl, bicyclo [1.1.1] pentyl, bicyclo [2.0.1] pentyl, Bicyclo [1.2.1] hexyl, bicyclo [3.0.1] hexyl, bicyclo [2.1.2] heptyl, bicyclo [2.2.2] octyl, adamantyl, decahydronaphthalenyl, decahydro Azulenyl and the like, and the three hydrogens in silyl are each independently substituted with these cycloalkyls.
  • sil substituted with a cycloalkyl having 5 to 10 carbon atoms include tricyclopentylsilyl, tricyclohexylsilyl and the like.
  • Substituted silyls include dialkylcycloalkylsilyl substituted with two alkyls and one cycloalkyl, and alkyldicycloalkylsilyl substituted with one alkyl and two cycloalkyls.
  • Substituted alkyls and cycloalkyls Specific examples of these include the groups described above.
  • hydrogen in the chemical structure of the anthracene compound represented by the general formula (3) may be substituted with a group represented by the above formula (A).
  • the group represented by formula (A) substitutes at least one hydrogen in the compound represented by formula (3) at *.
  • the group represented by the formula (A) is one of the substituents that the anthracene compound represented by the formula (3) may have.
  • Y is —O—, —S— or> N—R 29
  • R 21 to R 28 are each independently hydrogen, optionally substituted alkyl, or optionally substituted.
  • R 29 may be hydrogen or substituted A reel.
  • alkyl of “optionally substituted alkyl” in R 21 to R 28 may be either linear or branched, for example, linear alkyl having 1 to 24 carbon atoms or having 3 to 24 carbon atoms.
  • Alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons) is preferable, alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons) is more preferable, and alkyl having 1 to 6 carbons. (Branched alkyl having 3 to 6 carbon atoms) is more preferable, and alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms) is particularly preferable.
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1 -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2 -Propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecy
  • Cycloalkyl of “optionally substituted cycloalkyl” for R 21 to R 28 is cycloalkyl having 3 to 24 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, or cycloalkyl having 3 to 16 carbon atoms. Cycloalkyl having 3 to 14 carbon atoms, cycloalkyl having 5 to 10 carbon atoms, cycloalkyl having 5 to 8 carbon atoms, cycloalkyl having 5 to 6 carbon atoms, cycloalkyl having 5 carbon atoms, and the like.
  • cycloalkyl examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, and alkyl (especially methyl) substituents thereof having 1 to 4 carbon atoms, norbornenyl, bicyclo [1.0.1] butyl, bicyclo [1.1.1] pentyl, bicyclo [2.0.1] pentyl, bicyclo [1.2.1] hexyl, bicyclo [3.0.1] hexyl, bicyclo [2.1.2] heptyl, bicyclo [2.2.2] octyl, adamantyl, diamantyl, decahydronaphthalenyl, decahydroazurenyl and the like.
  • Examples of the “aryl” of “optionally substituted aryl” in R 21 to R 28 include aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 16 carbon atoms, and 6 to 12 carbon atoms. Are more preferable, and aryl having 6 to 10 carbon atoms is particularly preferable.
  • aryl includes monocyclic phenyl, bicyclic biphenylyl, fused bicyclic naphthyl, tricyclic terphenylyl (m-terphenylyl, o-terphenylyl, p-terphenylyl) And condensed tricyclic systems such as acenaphthylenyl, fluorenyl, phenalenyl, phenanthrenyl, condensed tetracyclic systems such as triphenylenyl, pyrenyl, naphthacenyl, and condensed pentacyclic systems such as perylenyl and pentacenyl.
  • heteroaryl in the “optionally substituted heteroaryl” in R 21 to R 28 include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, A heteroaryl having 2 to 20 carbon atoms is more preferred, a heteroaryl having 2 to 15 carbon atoms is more preferred, and a heteroaryl having 2 to 10 carbon atoms is particularly preferred.
  • heteroaryl include heterocycles containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
  • heteroaryl examples include pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, isoindolyl, 1H— Indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthyridinyl, purinyl, pteridinyl, carbazolyl, acridinyl, phenoxaziny
  • alkoxy of “optionally substituted alkoxy” in R 21 to R 28 include straight-chain alkoxy having 1 to 24 carbon atoms or branched alkoxy having 3 to 24 carbon atoms.
  • C1-C18 alkoxy (C3-C18 branched alkoxy) is preferred, C1-C12 alkoxy (C3-C12 branched alkoxy) is more preferred, and C1-C6 Of alkoxy (C3-C6 branched chain alkoxy) is more preferable, and C1-C4 alkoxy (C3-C4 branched chain alkoxy) is particularly preferable.
  • alkoxy examples include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy and the like.
  • Aryloxy of “optionally substituted aryloxy” in R 21 to R 28 is a group in which hydrogen of —OH group is substituted with aryl, and this aryl is the above-mentioned R 21 to R 28 . Reference may be made to groups described as “aryl”.
  • arylthio of the “optionally substituted arylthio” in R 21 to R 28 is a group in which the hydrogen of the —SH group is substituted with aryl, and this aryl is the “aryl” in R 21 to R 28 described above. Can be cited.
  • Examples of “trialkylsilyl” in R 21 to R 28 include groups in which three hydrogens in the silyl group are each independently substituted with alkyl, and this alkyl is referred to as “alkyl” in R 21 to R 28 described above.
  • the groups described can be cited.
  • Preferable alkyl for substitution is alkyl having 1 to 4 carbon atoms, and specific examples include methyl, ethyl, propyl, i-propyl, butyl, sec-butyl, t-butyl, cyclobutyl and the like.
  • trialkylsilyl include trimethylsilyl, triethylsilyl, tripropylsilyl, tri-i-propylsilyl, tributylsilyl, trisec-butylsilyl, tri-t-butylsilyl, ethyldimethylsilyl, propyldimethylsilyl, i-propyl Dimethylsilyl, butyldimethylsilyl, sec-butyldimethylsilyl, t-butyldimethylsilyl, methyldiethylsilyl, propyldiethylsilyl, i-propyldiethylsilyl, butyldiethylsilyl, sec-butyldiethylsilyl, t-butyldiethylsilyl, methyl Dipropylsilyl, ethyldipropylsilyl, butyldipropylsilyl, butyl
  • Preferred cycloalkyl for substitution is cycloalkyl having 5 to 10 carbon atoms, specifically, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, bicyclo [1.1.1] pentyl, bicyclo [ 2.0.1] pentyl, bicyclo [1.2.1] hexyl, bicyclo [3.0.1] hexyl, bicyclo [2.1.2] heptyl, bicyclo [2.2.2] octyl, adamantyl, Decahydronaphthalenyl, decahydroazulenyl and the like can be mentioned.
  • tricycloalkylsilyl includes tricyclopentylsilyl, tricyclohexylsilyl and the like.
  • dialkylcycloalkylsilyl substituted with two alkyls and one cycloalkyl and alkyldicycloalkylsilyl substituted with one alkyl and two cycloalkyls are selected from the specific alkyls and cycloalkyls described above And silyl substituted with the above group.
  • Examples of the “substituted amino” of the “optionally substituted amino” in R 21 to R 28 include an amino group in which two hydrogens are substituted with aryl or heteroaryl.
  • An amino in which two hydrogens are substituted with aryl is a diaryl-substituted amino
  • an amino in which two hydrogens are substituted with a heteroaryl is a diheteroaryl-substituted amino
  • an amino in which two hydrogens are substituted with aryl and heteroaryl Is an arylheteroaryl-substituted amino.
  • the groups described as “aryl” and “heteroaryl” in R 21 to R 28 described above can be cited.
  • substituted amino include diphenylamino, dinaphthylamino, phenylnaphthylamino, dipyridylamino, phenylpyridylamino, naphthylpyridylamino, and the like.
  • halogen in R 21 to R 28 include fluorine, chlorine, bromine and iodine.
  • R 21 to R 28 some may be substituted as described above, and examples of the substituent in this case include alkyl, cycloalkyl, aryl, and heteroaryl.
  • This alkyl, cycloalkyl, aryl or heteroaryl can refer to the groups described as “alkyl”, “cycloalkyl”, “aryl” or “heteroaryl” in R 21 to R 28 described above.
  • R 29 in the "> N-R 29" as Y is hydrogen or aryl which may be substituted, be cited a group described as the "aryl” in R 21 ⁇ R 28 described above as the aryl Further, as the substituent, the groups described as the substituents for R 21 to R 28 can be cited.
  • Adjacent groups of R 21 to R 28 may be bonded to each other to form a hydrocarbon ring, an aryl ring or a heteroaryl ring.
  • the case where no ring is formed is a group represented by the following formula (A-1), and the case where a ring is formed includes, for example, groups represented by the following formulas (A-2) to (A-14): It is done.
  • At least one hydrogen in the group represented by any of formulas (A-1) to (A-14) is alkyl, cycloalkyl, aryl, heteroaryl, alkoxy, aryloxy, arylthio, trialkylsilyl, It may be substituted with tricycloalkylsilyl, dialkylcycloalkylsilyl, alkyldicycloalkylsilyl, diaryl-substituted amino, diheteroaryl-substituted amino, arylheteroaryl-substituted amino, halogen, hydroxy or cyano.
  • Examples of the ring formed by bonding adjacent groups to each other include a cyclohexane ring as long as it is a hydrocarbon ring, and examples of the aryl ring and heteroaryl ring include “aryl” and “heteroaryl” in R 21 to R 28 described above. And the ring is formed so as to be condensed with one or two benzene rings in the above formula (A-1).
  • Examples of the group represented by the formula (A) include groups represented by any of the above formulas (A-1) to (A-14), and the above formulas (A-1) to (A ⁇ 5) and a group represented by any of formulas (A-12) to (A-14) are preferred, and a group represented by any of the above formulas (A-1) to (A-4) Is more preferable, a group represented by any one of the above formulas (A-1), (A-3) and (A-4) is more preferable, and a group represented by the above formula (A-1) is more preferable. Particularly preferred.
  • the group represented by the formula (A) is represented by * in the formula (A), a naphthalene ring in the formula (3-X1) or the formula (3-X2), a single bond in the formula (3-X3), a formula As described above, it binds to Ar 3 in (3-X3) and substitutes at least one hydrogen in the compound represented by formula (3).
  • formula (3-X1) Alternatively, a form in which the naphthalene ring in the formula (3-X2), the single bond in the formula (3-X3) and / or Ar 3 in the formula (3-X3) is bonded is preferable.
  • the position at which Ar 3 is bonded to at least one hydrogen in the compound represented by the formula (3) is Any one of the two benzene rings in the structure of the formula (A) or an adjacent group among R 21 to R 28 in the structure of the formula (A) Any ring formed by bonding to each other, or any position in R 29 in “> NR 29 ” as Y in the structure of formula (A) can be bonded.
  • Examples of the group represented by the formula (A) include the following groups. Y and * in the formula are as defined above.
  • all or part of the hydrogen in the chemical structure of the anthracene compound represented by the general formula (3) may be deuterium.
  • anthracene compound examples include compounds represented by the following formulas (3-1) to (3-72).
  • “Me” represents a methyl group
  • “D” represents deuterium
  • “tBu” represents a t-butyl group.
  • the anthracene compound represented by the formula (3) includes a compound having a reactive group at a desired position of the anthracene skeleton and a compound having a reactive group in a partial structure such as the structure of X, Ar 4 and the formula (A) Can be produced by applying Suzuki coupling, Negishi coupling, and other known coupling reactions.
  • Examples of the reactive group of these reactive compounds include halogen and boronic acid.
  • the synthesis method in paragraphs [0089] to [0175] of International Publication No. 2014/141725 can be referred to.
  • R 1 to R 10 are each independently hydrogen, aryl, heteroaryl (the heteroaryl may be bonded to the fluorene skeleton in the above formula (4) via a linking group), diarylamino, dihetero Arylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkoxy or aryloxy, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl; R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 or R 9 and R 10 are bonded independently.
  • Examples of the alkenyl in R 1 to R 10 include alkenyl having 2 to 30 carbon atoms, preferably alkenyl having 2 to 20 carbon atoms, more preferably alkenyl having 2 to 10 carbon atoms, and 2 to 6 carbon atoms. Alkenyl is more preferable, and alkenyl having 2 to 4 carbon atoms is particularly preferable.
  • Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl.
  • any one of the compounds of the following formula (4-Ar1), formula (4-Ar2), formula (4-Ar3), formula (4-Ar4) or formula (4-Ar5) may be used. Also included are monovalent groups represented by removing one hydrogen atom.
  • Y 1 is each independently O, S or N—R, R is phenyl, biphenylyl, naphthyl, anthracenyl or hydrogen; At least one hydrogen in the structures of the above formulas (4-Ar1) to (4-Ar5) may be substituted with phenyl, biphenylyl, naphthyl, anthracenyl, phenanthrenyl, methyl, ethyl, propyl, or butyl.
  • heteroaryls may be bonded to the fluorene skeleton in the above formula (4) via a linking group. That is, not only the fluorene skeleton in the formula (4) and the heteroaryl are directly bonded but also a bond between them may be bonded.
  • this linking group include phenylene, biphenylene, naphthylene, anthracenylene, methylene, ethylene, —OCH 2 CH 2 —, —CH 2 CH 2 O—, or —OCH 2 CH 2 O—.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 or R 7 and R 8 are bonded independently.
  • R 9 and R 10 may be combined to form a spiro ring.
  • the condensed ring formed by R 1 to R 8 is a ring condensed with the benzene ring in the formula (4), and is an aliphatic ring or an aromatic ring.
  • An aromatic ring is preferred, and examples of the structure including the benzene ring in formula (4) include a naphthalene ring and a phenanthrene ring.
  • the spiro ring formed by R 9 and R 10 is a ring that is spiro-bonded to the 5-membered ring in formula (4), and is an aliphatic ring or an aromatic ring. Preferred is an aromatic ring, such as a fluorene ring.
  • the compound represented by the general formula (4) is preferably a compound represented by the following formula (4-1), formula (4-2), or formula (4-3). ) In which R 1 and R 2 are combined to form a condensed benzene ring, in general formula (4), a compound in which R 3 and R 4 are combined to form a condensed benzene ring, general formula (4 ) In which none of R 1 to R 8 is bonded.
  • R 1 to R 10 in Formula (4-1), Formula (4-2), and Formula (4-3) are the same as the corresponding R 1 to R 10 in Formula (4).
  • the definitions of R 11 to R 14 in 1) and formula (4-2) are the same as R 1 to R 10 in formula (4).
  • the compound represented by the general formula (4) is more preferably a compound represented by the following formula (4-1A), formula (4-2A), or formula (4-3A). -1), a compound having a spiro-fluorene ring formed by combining R 9 and R 10 in formula (4-1) or formula (4-3).
  • R 2 to R 7 in formula (4-1A), formula (4-2A), and formula (4-3A) are defined in formula (4-1), formula (4-2), and formula (4-3). corresponding the same from R 2 and R 7, R in the formula also defined formula (4-1) of the R 14 from R 11 in (4-1A) and (4-2A) and (4-2) 11 from is the same as R 14.
  • all or part of the hydrogen in the compound represented by the formula (4) may be substituted with halogen, cyano or deuterium.
  • the dibenzochrysene-type compound as a host is a compound represented, for example by following General formula (5).
  • R 1 to R 16 are each independently hydrogen, aryl, heteroaryl (the heteroaryl may be bonded to the dibenzochrysene skeleton in the above formula (5) via a linking group), diarylamino, diaryl Heteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkoxy or aryloxy, in which at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl; Further, adjacent groups of R 1 to R 16 may be bonded to form a condensed ring, and at least one hydrogen in the formed ring is aryl or heteroaryl (the heteroaryl is connected via a linking group).
  • alkenyl in the definition of the above formula (5) examples include alkenyl having 2 to 30 carbon atoms, preferably alkenyl having 2 to 20 carbon atoms, more preferably alkenyl having 2 to 10 carbon atoms, and 2 to 2 carbon atoms. More preferred is alkenyl having 6 carbon atoms, and particularly preferred is alkenyl having 2 to 4 carbon atoms.
  • Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl.
  • any one of the compounds of the following formula (5-Ar1), formula (5-Ar2), formula (5-Ar3), formula (5-Ar4) or formula (5-Ar5) may be used. Also included are monovalent groups represented by removing one hydrogen atom.
  • Y 1 is each independently O, S or N—R, R is phenyl, biphenylyl, naphthyl, anthracenyl or hydrogen; At least one hydrogen in the structures of the above formulas (5-Ar1) to (5-Ar5) may be substituted with phenyl, biphenylyl, naphthyl, anthracenyl, phenanthrenyl, methyl, ethyl, propyl, or butyl.
  • heteroaryls may be bonded to the dibenzochrysene skeleton in the above formula (5) via a linking group. That is, not only the dibenzochrysene skeleton in the formula (5) and the heteroaryl are directly bonded, but may be bonded via a linking group between them. Examples of this linking group include phenylene, biphenylene, naphthylene, anthracenylene, methylene, ethylene, —OCH 2 CH 2 —, —CH 2 CH 2 O—, or —OCH 2 CH 2 O—.
  • R 1 , R 4 , R 5 , R 8 , R 9 , R 12 , R 13 and R 16 are preferably hydrogen.
  • R 2 , R 3 , R 6 , R 7 , R 10 , R 11 , R 14 and R 15 in formula (5) are each independently hydrogen, phenyl, biphenylyl, naphthyl, anthracenyl, phenanthrenyl.
  • a monovalent group having the structure of the above formula (5-Ar1), formula (5-Ar2), formula (5-Ar3), formula (5-Ar4) or formula (5-Ar5) (1 having the structure)
  • the valent group is represented by the above formula (5) via phenylene, biphenylene, naphthylene, anthracenylene, methylene, ethylene, —OCH 2 CH 2 —, —CH 2 CH 2 O—, or —OCH 2 CH 2 O—. And may be bonded to the dibenzochrysene skeleton), methyl, ethyl, propyl, or butyl.
  • the compound represented by the general formula (5) is more preferably R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 9 , R 10 , R 12 , R 13 , R 15 and R. 16 is hydrogen.
  • at least one (preferably one or two, more preferably one) of R 3 , R 6 , R 11 and R 14 in formula (5) is a single bond, phenylene, biphenylene, naphthylene, Via the anthracenylene, methylene, ethylene, —OCH 2 CH 2 —, —CH 2 CH 2 O—, or —OCH 2 CH 2 O—, the above formula (5-Ar1), formula (5-Ar2), formula A monovalent group having a structure of (5-Ar3), formula (5-Ar4) or formula (5-Ar5);
  • Other than the at least one (that is, other than the position where the monovalent group having the structure is substituted) is hydrogen, phenyl, biphenylyl, nap
  • R 2 , R 3 , R 6 , R 7 , R 10 , R 11 , R 14 and R 15 in the formula (5) are represented by the above formulas (5-Ar1) to (5-Ar5).
  • at least one hydrogen in the structure may be bonded to any one of R 1 to R 16 in formula (5) to form a single bond. .
  • the pyrene compound as the host is, for example, a compound represented by the following general formula (6).
  • s pyrene moieties and p Ar moieties are bonded at any position of * of the pyrene moiety and any position of the Ar moiety;
  • At least one hydrogen of the pyrene moiety is independently an aryl having 6 to 10 carbon atoms, a heteroaryl having 2 to 11 carbon atoms, an alkyl having 1 to 30 carbon atoms, a cycloalkyl having 3 to 24 carbon atoms, or a carbon number.
  • Heteroaryl having 2 to 11 carbon atoms, alkyl having 1 to 30 carbon atoms, cycloalkyl having 3 to 24 carbon atoms, alkenyl having 2 to 30 carbon atoms, alkoxy having 1 to 30 carbon atoms or aryl having 6 to 30 carbon atoms May be substituted with oxy
  • Ar is each independently an aryl having 14 to 40 carbon atoms or a heteroaryl having 12 to 40 carbon atoms, and at least one hydrogen in these is each independently an aryl having 6 to 10 carbon atoms
  • Substituted with 2-11 heteroaryl, alkyl with 1-30 carbons, cycloalkyl with 3-24 carbons, alkenyl with 2-30 carbons, alkoxy with 1-30 carbons or aryloxy with 6-30 carbons May have been s and p are each independently an integer of 1 or 2, and s and p are not simultaneously 2; when s is 2, the two pyrene moieties are structurally identical including the substituent And when
  • alkenyl examples include alkenyl having 2 to 30 carbon atoms, preferably alkenyl having 2 to 20 carbon atoms, more preferably alkenyl having 2 to 10 carbon atoms, and further preferably alkenyl having 2 to 6 carbon atoms. Particularly preferred is alkenyl having 2 to 4 carbon atoms.
  • Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl.
  • heteroaryl a monovalent having a structure of the following formula (6-Ar1), formula (6-Ar2), formula (6-Ar3), formula (6-Ar4) or formula (6-Ar5)
  • Y 1 is each independently>O,> S or> N—R, where R is phenyl, biphenylyl, naphthyl, anthracenyl or hydrogen.
  • At least one hydrogen in the structures of the above formulas (6-Ar1) to (6-Ar5) may be substituted with phenyl, biphenylyl, naphthyl, anthracenyl, phenanthrenyl, methyl, ethyl, propyl, or butyl.
  • heteroaryls may be bonded to the pyrene moiety in the above formula (6) through a linking group. That is, not only the pyrene moiety in the formula (6) and the heteroaryl are directly bonded, but also a bond may be bonded between them.
  • this linking group include phenylene, biphenylene, naphthylene, anthracenylene, methylene, ethylene, —OCH 2 CH 2 —, —CH 2 CH 2 O—, or —OCH 2 CH 2 O—.
  • the light emitting layer material (host material and dopant material) described above is a polymer compound obtained by polymerizing a reactive compound substituted with a reactive substituent thereon as a monomer, or a crosslinked polymer thereof, or a main chain.
  • a pendant polymer compound obtained by reacting a reactive polymer with the reactive polymer, or a pendant polymer crosslinked product thereof, can also be used for the light emitting layer material.
  • the reactive substituent in this case, the description of the polycyclic aromatic compound represented by the formula (1) can be cited. Details of the use of such a polymer compound and polymer crosslinked product will be described later.
  • MU is each independently a divalent aromatic compound
  • EC is each independently a monovalent aromatic compound
  • two hydrogens in MU are replaced with EC or MU
  • k is an integer of 2 to 50000 is there.
  • MUs are each independently arylene, heteroarylene, diarylene arylamino, diarylene arylboryl, oxaborin-diyl, azaborin-diyl,
  • Each EC is independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino or aryloxy; At least one hydrogen in MU and EC may be further substituted with aryl, heteroaryl, diarylamino, alkyl and cycloalkyl;
  • k is an integer of 2 to 50,000.
  • k is preferably an integer of 20 to 50,000, more preferably an integer of 100 to 50,000.
  • At least one hydrogen in MU and EC in the formula (SPH-1) may be substituted with alkyl having 1 to 24 carbons, cycloalkyl having 3 to 24 carbons, halogen or deuterium, and Any —CH 2 — in the alkyl may be substituted with —O— or —Si (CH 3 ) 2 —, and —CH 2 — directly connected to EC in the formula (SPH-1) in the alkyl Any —CH 2 — except for may be substituted with arylene having 6 to 24 carbon atoms, and any hydrogen in the alkyl may be substituted with fluorine.
  • Examples of MU include a divalent group represented by removing any two hydrogen atoms from any of the following compounds.
  • the MU binds to other MUs or ECs in *.
  • examples of EC include monovalent groups represented by any of the following structures. In these, EC binds to MU at *.
  • 10 to 100% of the MU total number (k) in the molecule has 1 to 24 carbon atoms alkyl. More preferably, 30 to 100% of the MU total number (k) in the molecule has alkyl having 1 to 18 carbon atoms (branched alkyl having 3 to 18 carbon atoms), and the total number of MUs in the molecule ( More preferably, 50 to 100% of MU of k) has alkyl having 1 to 12 carbon atoms (branched alkyl having 3 to 12 carbon atoms).
  • the MU total number (k) in the molecule has alkyl having 7 to 24 carbon atoms
  • the MU total number (k) It is more preferable that 30 to 100% of MU of the compound has an alkyl having 7 to 24 carbon atoms (branched alkyl having 7 to 24 carbon atoms).
  • the polycyclic aromatic compound represented by the general formula (1) can also be used as a composition for forming a light emitting layer together with an organic solvent.
  • the composition contains at least one polycyclic aromatic compound as a first component, at least one host material as a second component, and at least one organic solvent as a third component.
  • a 1st component functions as a dopant component of the light emitting layer obtained from this composition
  • a 2nd component functions as a host component of a light emitting layer.
  • the third component functions as a solvent that dissolves the first component and the second component in the composition, and gives a smooth and uniform surface shape at the time of application due to the controlled evaporation rate of the third component itself.
  • the composition for forming a light emitting layer contains at least one organic solvent as a third component.
  • the film formability, the presence or absence of defects in the coating film, the surface roughness, and the smoothness can be controlled and improved.
  • the meniscus stability at the pinhole of the ink jet head can be controlled, and the discharge performance can be controlled and improved.
  • the drying speed of the film and the orientation of the derivative molecules the electrical characteristics, light emitting characteristics, efficiency, and lifetime of the organic EL device having a light emitting layer obtained from the composition for forming a light emitting layer are improved. Can do.
  • the boiling point of at least one organic solvent is 130 ° C to 300 ° C, more preferably 140 ° C to 270 ° C, and further preferably 150 ° C to 250 ° C.
  • the boiling point is higher than 130 ° C., it is preferable from the viewpoint of ink jetting properties.
  • a boiling point is lower than 300 degreeC, it is preferable from a viewpoint of the defect of a coating film, surface roughness, a residual solvent, and smoothness.
  • the third component is more preferably composed of two or more organic solvents from the viewpoints of good ink jet discharge properties, film-forming properties, smoothness and low residual solvent.
  • the composition may be a solid state by removing the solvent from the composition for forming the light emitting layer in consideration of transportability and the like.
  • the third component comprises a good solvent (GS) and poor solvent (PS) for the host material of the second component
  • the good boiling (BP PS solvent boiling (GS) BP GS
  • PS poor solvent
  • Is particularly preferred By adding a poor solvent having a high boiling point, a good solvent having a low boiling point is volatilized first at the time of film formation, and the concentration of inclusions in the composition and the concentration of the poor solvent are increased, thereby promptly forming a film. Thereby, a coating film with few defects, a small surface roughness, and high smoothness is obtained.
  • the solubility difference (S GS ⁇ S PS ) is preferably 1% or more, more preferably 3% or more, and further preferably 5% or more.
  • the difference in boiling points (BP PS -BP GS ) is preferably 10 ° C. or higher, more preferably 30 ° C. or higher, and further preferably 50 ° C. or higher.
  • the organic solvent is removed from the coating film by a drying process such as vacuum, reduced pressure or heating after the film formation.
  • a drying process such as vacuum, reduced pressure or heating after the film formation.
  • Tg glass transition temperature
  • Tg glass transition point
  • Tg glass transition point
  • drying may be performed a plurality of times at different temperatures, or a plurality of drying methods may be used in combination.
  • organic solvents used in the composition for forming a light emitting layer include alkylbenzene solvents, phenyl ether solvents, alkyl ether solvents, cyclic ketone solvents, aliphatic ketone solvents, monocyclic Examples include ketone solvents, solvents having a diester skeleton, and fluorine-containing solvents.
  • composition for light emitting layer formation may contain arbitrary components in the range which does not impair the property.
  • optional components include a binder and a surfactant.
  • the composition for light emitting layer formation may contain the binder.
  • the binder forms a film at the time of film formation and bonds the obtained film to the substrate.
  • it plays a role of dissolving, dispersing and binding other components in the composition for forming a light emitting layer.
  • binder used in the composition for forming a light emitting layer examples include acrylic resin, polyethylene terephthalate, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, acrylonitrile-ethylene-styrene copolymer (AES) resin, Ionomer, chlorinated polyether, diallyl phthalate resin, unsaturated polyester resin, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, Teflon, acrylonitrile-butadiene-styrene copolymer (ABS) resin, acrylonitrile -Styrene copolymer (AS) resin, phenol resin, epoxy resin, melamine resin, urea resin, alkyd resin, polyurethane, and copolymer of the above resin and polymer, Re not limited to.
  • AES acrylonitrile-ethylene-styren
  • the binder used in the composition for forming a light emitting layer may be only one kind or a mixture of plural kinds.
  • the composition for forming a light emitting layer contains, for example, a surfactant for controlling the film surface uniformity, solvophilicity and liquid repellency of the film forming composition. Also good.
  • Surfactants are classified into ionic and nonionic based on the structure of the hydrophilic group, and further classified into alkyl, silicon, and fluorine based on the structure of the hydrophobic group. Further, the molecular structure is classified into a monomolecular system having a relatively small molecular weight and a simple structure, and a polymer system having a large molecular weight and having a side chain and a branch.
  • surfactant for example, Polyflow No. 45, Polyflow KL-245, Polyflow No. 75, Polyflow No. 90, polyflow no. 95 (trade name, manufactured by Kyoeisha Chemical Industry Co., Ltd.), Disperbak 161, Disper Bake 162, Disper Bake 163, Disper Bake 164, Disper Bake 166, Disper Bake 170, Disper Bake 180, Disper Bake 181 and Disper Bake 182, BYK300, BYK306, BYK310, BYK320, BYK330, BYK342, BYK344, BYK346 (trade name, manufactured by Big Chemie Japan Co., Ltd.), KP-341, KP-358, KP-368, KF-96-50CS, KF -50-100CS (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), Surflon SC-101, Surflon KH-40 (trade name, manufactured by Seimi Chemical Co., Ltd.), Footent 222F, Footage 251, FTX-218 (trade name,
  • the surfactant may be used alone or in combination of two or more.
  • composition and physical properties of composition for forming light emitting layer The content of each component in the composition for forming a light emitting layer is obtained from the good solubility, storage stability and film formability of each component in the composition for forming a light emitting layer, and the composition for forming a light emitting layer. Good film quality of the coating film, good dischargeability when using the ink jet method, and good electrical characteristics, light emission characteristics, efficiency, and lifetime of the organic EL device having a light emitting layer manufactured using the composition
  • the first component is 0.0001% by weight to 2.0% by weight relative to the total weight of the light emitting layer forming composition
  • the second component is based on the total weight of the light emitting layer forming composition.
  • the amount is preferably 0.0999 wt% to 8.0 wt%
  • the third component is preferably 90.0 wt% to 99.9 wt% with respect to the total weight of the light emitting layer forming composition.
  • the first component is 0.005 wt% to 1.0 wt% with respect to the total weight of the light emitting layer forming composition
  • the second component is with respect to the total weight of the light emitting layer forming composition, 0.095 wt% to 4.0 wt%
  • the third component is 95.0 wt% to 99.9 wt% with respect to the total weight of the light emitting layer forming composition.
  • the first component is 0.05% by weight to 0.5% by weight relative to the total weight of the light emitting layer forming composition
  • the second component is based on the total weight of the light emitting layer forming composition.
  • the amount of the third component is 97.0% by weight to 99.7% by weight with respect to the total weight of the composition for forming a light emitting layer.
  • the composition for forming a light emitting layer can be produced by appropriately selecting the above-mentioned components by stirring, mixing, heating, cooling, dissolution, dispersion, and the like by a known method. Further, after preparation, filtration, degassing (also referred to as degas), ion exchange treatment, inert gas replacement / encapsulation treatment, and the like may be selected as appropriate.
  • the viscosity of the composition for forming a light emitting layer As the viscosity of the composition for forming a light emitting layer, a higher viscosity can provide better film formability and good dischargeability when an ink jet method is used. On the other hand, it is easier to make a thin film with a low viscosity. Accordingly, the viscosity of the composition for forming a light emitting layer is preferably 0.3 mPa ⁇ s to 3 mPa ⁇ s at 25 ° C., more preferably 1 mPa ⁇ s to 3 mPa ⁇ s. In the present invention, the viscosity is a value measured using a conical plate type rotational viscometer (cone plate type).
  • the viscosity of the composition for forming a light emitting layer is preferably 20 mN / m to 40 mN / m, more preferably 20 mN / m to 30 mN / m, at 25 ° C.
  • the surface tension is a value measured using the hanging drop method.
  • the electron injection layer 107 plays a role of efficiently injecting electrons moving from the cathode 108 into the light emitting layer 105 or the electron transport layer 106.
  • the electron transport layer 106 plays a role of efficiently transporting electrons injected from the cathode 108 or electrons injected from the cathode 108 through the electron injection layer 107 to the light emitting layer 105.
  • the electron transport layer 106 and the electron injection layer 107 are each formed by laminating and mixing one or more electron transport / injection materials or a mixture of the electron transport / injection material and the polymer binder.
  • the electron injection / transport layer is a layer that is responsible for injecting electrons from the cathode and further transporting the electrons. It is desirable that the electron injection efficiency is high and the injected electrons are transported efficiently. For this purpose, it is preferable to use a substance that has a high electron affinity, a high electron mobility, excellent stability, and is unlikely to generate trapping impurities during production and use. However, considering the transport balance between holes and electrons, if the role of effectively preventing the holes from the anode from flowing to the cathode side without recombination is mainly played, the electron transport capability is much higher. Even if it is not high, the effect of improving the luminous efficiency is equivalent to that of a material having a high electron transport capability. Therefore, the electron injection / transport layer in this embodiment may include a function of a layer that can efficiently block the movement of holes.
  • a material (electron transport material) for forming the electron transport layer 106 or the electron injection layer 107 a compound conventionally used as an electron transport compound in a photoconductive material, used for an electron injection layer and an electron transport layer of an organic EL element It can be used by arbitrarily selecting from known compounds.
  • a compound composed of an aromatic ring or a heteroaromatic ring composed of one or more atoms selected from carbon, hydrogen, oxygen, sulfur, silicon and phosphorus It is preferable to contain at least one selected from pyrrole derivatives, condensed ring derivatives thereof, and metal complexes having electron-accepting nitrogen.
  • condensed ring aromatic ring derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4′-bis (diphenylethenyl) biphenyl, perinone derivatives, coumarin derivatives, naphthalimide derivatives Quinone derivatives such as anthraquinone and diphenoquinone, phosphorus oxide derivatives, carbazole derivatives and indole derivatives.
  • metal complexes having electron-accepting nitrogen include hydroxyazole complexes such as hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, and benzoquinoline metal complexes. These materials can be used alone or in combination with different materials.
  • electron transfer compounds include pyridine derivatives, naphthalene derivatives, anthracene derivatives, phenanthroline derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinone derivatives, diphenoquinone derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazoles.
  • metal complexes having electron-accepting nitrogen can also be used, such as hydroxyazole complexes such as quinolinol-based metal complexes and hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, and benzoquinoline metal complexes. can give.
  • the above-mentioned materials can be used alone, but they may be mixed with different materials.
  • borane derivatives pyridine derivatives, fluoranthene derivatives, BO derivatives, anthracene derivatives, benzofluorene derivatives, phosphine oxide derivatives, pyrimidine derivatives, carbazole derivatives, triazine derivatives, benzimidazole derivatives, phenanthroline derivatives, and quinolinol metals Complexes are preferred.
  • the borane derivative is, for example, a compound represented by the following general formula (ETM-1), and is disclosed in detail in JP-A-2007-27587.
  • R 11 and R 12 are each independently hydrogen, alkyl, cycloalkyl, aryl that may be substituted, silyl that is substituted, or nitrogen that may be substituted It is at least one of a heterocycle or cyano
  • R 13 to R 16 are each independently an optionally substituted alkyl, an optionally substituted cycloalkyl, or an optionally substituted aryl.
  • X is an optionally substituted arylene
  • Y is an optionally substituted aryl having 16 or less carbon atoms, a substituted boryl, or an optionally substituted carbazolyl
  • n is each independently an integer of 0 to 3.
  • substituents in the case of “optionally substituted” or “substituted” include aryl, heteroaryl, alkyl, and cycloalkyl.
  • R 11 and R 12 are each independently hydrogen, alkyl, cycloalkyl, aryl which may be substituted, silyl which is substituted, nitrogen which may be substituted -Containing heterocycle, or at least one of cyano, and R 13 to R 16 each independently represents an optionally substituted alkyl, an optionally substituted cycloalkyl, or an optionally substituted aryl.
  • R 21 and R 22 are each independently hydrogen, alkyl, cycloalkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano. at least one a and, X 1 is substituted carbon atoms and optionally more than 20 arylene, n are each independently an integer of 0 to 3 And, m is an integer of 0 to 4 independently.
  • substituent in the case of “optionally substituted” or “substituted” include aryl, heteroaryl, alkyl, and cycloalkyl.
  • R 11 and R 12 are each independently hydrogen, alkyl, cycloalkyl, aryl which may be substituted, silyl which is substituted, nitrogen which may be substituted -Containing heterocycle, or at least one of cyano, and R 13 to R 16 each independently represents an optionally substituted alkyl, an optionally substituted cycloalkyl, or an optionally substituted aryl.
  • X 1 is an optionally substituted arylene having 20 or less carbon atoms, and n is each independently an integer of 0 to 3.
  • substituent in the case of “optionally substituted” or “substituted” include aryl, heteroaryl, alkyl, and cycloalkyl.
  • X 1 include divalent groups represented by any of the following formulas (X-1) to (X-9). (In each formula, each R a is independently an alkyl group, a cycloalkyl group, or an optionally substituted phenyl group.)
  • this borane derivative include the following compounds.
  • This borane derivative can be produced using a known raw material and a known synthesis method.
  • the pyridine derivative is, for example, a compound represented by the following formula (ETM-2), preferably a compound represented by the formula (ETM-2-1) or the formula (ETM-2-2).
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4 is there.
  • R 11 to R 18 are each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbons), cycloalkyl (preferably cyclohexane having 3 to 12 carbons). Alkyl) or aryl (preferably aryl having 6 to 30 carbon atoms).
  • R 11 and R 12 are each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cyclohexane having 3 to 12 carbon atoms). Alkyl) or aryl (preferably aryl having 6 to 30 carbon atoms), and R 11 and R 12 may be bonded to form a ring.
  • the “pyridine substituent” is any of the following formulas (Py-1) to (Py-15), and each pyridine substituent is independently an alkyl or carbon having 1 to 4 carbon atoms. It may be substituted with cycloalkyl of several 5-10. Further, the pyridine-based substituent may be bonded to ⁇ , anthracene ring or fluorene ring in each formula through a phenylene group or a naphthylene group.
  • the pyridine-based substituent is any one of the above formulas (Py-1) to (Py-15), and among these, any of the following formulas (Py-21) to (Py-44) It is preferable.
  • At least one hydrogen in each pyridine derivative may be substituted with deuterium, and among the two “pyridine substituents” in the above formula (ETM-2-1) and formula (ETM-2-2) One of these may be replaced by aryl.
  • Alkyl in R 11 to R 18 may be either linear or branched, and examples thereof include linear alkyl having 1 to 24 carbon atoms and branched alkyl having 3 to 24 carbon atoms.
  • Preferred “alkyl” is alkyl having 1 to 18 carbon atoms (branched alkyl having 3 to 18 carbon atoms). More preferable “alkyl” is alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons). More preferable “alkyl” is alkyl having 1 to 6 carbon atoms (branched alkyl having 3 to 6 carbon atoms). Particularly preferred “alkyl” is alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms).
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1 -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2 -Propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecy
  • alkyl having 1 to 4 carbon atoms to be substituted on the pyridine-based substituent As the above description of alkyl can be cited.
  • cycloalkyl in R 11 to R 18 examples include cycloalkyl having 3 to 12 carbon atoms. Preferred “cycloalkyl” is cycloalkyl having 3 to 10 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 8 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 6 carbon atoms. Specific examples of “cycloalkyl” include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, and dimethylcyclohexyl.
  • preferred aryl is aryl having 6 to 30 carbon atoms, more preferred aryl is aryl having 6 to 18 carbon atoms, and still more preferred is aryl having 6 to 14 carbon atoms. And particularly preferred is aryl having 6 to 12 carbon atoms.
  • aryl having 6 to 30 carbon atoms include monocyclic aryl phenyl, condensed bicyclic aryl (1-, 2-) naphthyl, condensed tricyclic aryl acenaphthylene- ( 1-, 3-, 4-, 5-) yl, fluorene- (1-, 2-, 3-, 4-, 9-) yl, phenalen- (1-, 2-) yl, (1-, 2 -, 3-, 4-, 9-) phenanthryl, condensed tetracyclic aryl triphenylene- (1-, 2-) yl, pyrene- (1-, 2-, 4-) yl, naphthacene- (1- , 2-, 5-) yl, perylene- (1-, 2-, 3-) yl which is a fused pentacyclic aryl, pentacene- (1-, 2-, 5-, 6-) yl and the like. .
  • aryl having 6 to 30 carbon atoms includes phenyl, naphthyl, phenanthryl, chrycenyl, triphenylenyl and the like, more preferably phenyl, 1-naphthyl, 2-naphthyl and phenanthryl, particularly preferably phenyl, 1 -Naphthyl or 2-naphthyl.
  • R 11 and R 12 in the above formula (ETM-2-2) may be bonded to form a ring.
  • the 5-membered ring of the fluorene skeleton includes cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, Cyclohexane, fluorene, indene and the like may be spiro-bonded.
  • pyridine derivative examples include the following compounds.
  • This pyridine derivative can be produced using a known raw material and a known synthesis method.
  • the fluoranthene derivative is, for example, a compound represented by the following general formula (ETM-3), and is disclosed in detail in International Publication No. 2010/134352.
  • X 12 to X 21 are hydrogen, halogen, linear, branched or cyclic alkyl, linear, branched or cyclic alkoxy, substituted or unsubstituted aryl, or substituted or unsubstituted Represents heteroaryl.
  • substituent when substituted include aryl, heteroaryl, alkyl, and cycloalkyl.
  • fluoranthene derivative examples include the following compounds.
  • the BO derivative is, for example, a polycyclic aromatic compound represented by the following formula (ETM-4) or a multimer of polycyclic aromatic compounds having a plurality of structures represented by the following formula (ETM-4).
  • R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, in which at least one hydrogen May be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
  • adjacent groups of R 1 to R 11 may be bonded to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring, and at least one hydrogen in the formed ring May be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, wherein at least one hydrogen is aryl, heteroaryl, alkyl or It may be substituted with cycloalkyl.
  • At least one hydrogen in the compound or structure represented by the formula (ETM-4) may be substituted with halogen or deuterium.
  • this BO derivative include the following compounds.
  • This BO derivative can be produced using a known raw material and a known synthesis method.
  • One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-1).
  • Ar is each independently divalent benzene or naphthalene, and R 1 to R 4 are each independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons or carbon number 6 to 20 aryls.
  • Ar can be independently selected as appropriate from divalent benzene or naphthalene, and the two Ar may be different or the same, but the same from the viewpoint of the ease of synthesis of the anthracene derivative. It is preferable that Ar is bonded to pyridine to form a “part consisting of Ar and pyridine”. This part is an anthracene as a group represented by any of the following formulas (Py-1) to (Py-12), for example. Is bound to.
  • a group represented by any one of the above formulas (Py-1) to (Py-9) is preferable, and any one of the above formulas (Py-1) to (Py-6) may be used. More preferred are the groups
  • the two “sites consisting of Ar and pyridine” bonded to anthracene may have the same structure or different structures, but are preferably the same structure from the viewpoint of ease of synthesis of the anthracene derivative. However, from the viewpoint of device characteristics, it is preferable that the structures of the two “sites composed of Ar and pyridine” are the same or different.
  • the alkyl having 1 to 6 carbon atoms in R 1 to R 4 may be linear or branched. That is, it is a linear alkyl having 1 to 6 carbon atoms or a branched alkyl having 3 to 6 carbon atoms. More preferred is alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms).
  • Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, Examples include 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, etc., preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, or t-butyl. More preferred are methyl, ethyl, or t-butyl.
  • cycloalkyl having 3 to 6 carbon atoms in R 1 to R 4 include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, and dimethylcyclohexyl.
  • the aryl having 6 to 20 carbon atoms in R 1 to R 4 is preferably an aryl having 6 to 16 carbon atoms, more preferably an aryl having 6 to 12 carbon atoms, and particularly preferably an aryl having 6 to 10 carbon atoms.
  • aryl having 6 to 20 carbon atoms include monocyclic aryl phenyl, (o-, m-, p-) tolyl, (2,3-, 2,4-, 2,5- , 2,6-, 3,4-, 3,5-) xylyl, mesityl (2,4,6-trimethylphenyl), (o-, m-, p-) cumenyl, bicyclic aryl (2 -, 3-, 4-) biphenylyl, (1-, 2-) naphthyl which is a condensed bicyclic aryl, terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4) which is a tricyclic aryl '-Yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o-terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2
  • aryl having 6 to 20 carbon atoms is phenyl, biphenylyl, terphenylyl or naphthyl, more preferably phenyl, biphenylyl, 1-naphthyl, 2-naphthyl or m-terphenyl-5′-yl. More preferred is phenyl, biphenylyl, 1-naphthyl or 2-naphthyl, and most preferred is phenyl.
  • One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-2).
  • Ar 1 is each independently a single bond, divalent benzene, naphthalene, anthracene, fluorene, or phenalene.
  • Ar 2 is independently an aryl having 6 to 20 carbon atoms, and the same description as “aryl having 6 to 20 carbon atoms” in the above formula (ETM-5-1) can be cited.
  • Aryl having 6 to 16 carbon atoms is preferred, aryl having 6 to 12 carbon atoms is more preferred, and aryl having 6 to 10 carbon atoms is particularly preferred.
  • Specific examples include phenyl, biphenylyl, naphthyl, terphenylyl, anthracenyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, tetracenyl, perylenyl and the like.
  • R 1 to R 4 are each independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons or aryl having 6 to 20 carbons, and the above formula (ETM-5-1) The explanation in can be cited.
  • anthracene derivatives include the following compounds.
  • anthracene derivatives can be produced using known raw materials and known synthesis methods.
  • the benzofluorene derivative is, for example, a compound represented by the following formula (ETM-6).
  • Ar 1 is independently an aryl having 6 to 20 carbon atoms, and the same description as “aryl having 6 to 20 carbon atoms” in the above formula (ETM-5-1) can be cited.
  • Aryl having 6 to 16 carbon atoms is preferred, aryl having 6 to 12 carbon atoms is more preferred, and aryl having 6 to 10 carbon atoms is particularly preferred.
  • Specific examples include phenyl, biphenylyl, naphthyl, terphenylyl, anthracenyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, tetracenyl, perylenyl and the like.
  • Ar 2 is independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) or aryl (preferably aryl having 6 to 30 carbon atoms). And two Ar 2 may be bonded to form a ring.
  • Alkyl in Ar 2 may be either linear or branched, and examples thereof include linear alkyl having 1 to 24 carbon atoms and branched alkyl having 3 to 24 carbon atoms.
  • Preferred “alkyl” is alkyl having 1 to 18 carbon atoms (branched alkyl having 3 to 18 carbon atoms). More preferable “alkyl” is alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons). More preferable “alkyl” is alkyl having 1 to 6 carbon atoms (branched alkyl having 3 to 6 carbon atoms). Particularly preferred “alkyl” is alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms).
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1 -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl and the like.
  • cycloalkyl in Ar 2 examples include cycloalkyl having 3 to 12 carbon atoms. Preferred “cycloalkyl” is cycloalkyl having 3 to 10 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 8 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 6 carbon atoms. Specific examples of “cycloalkyl” include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, and dimethylcyclohexyl.
  • aryl in Ar 2 , preferred aryl is aryl having 6 to 30 carbon atoms, more preferred aryl is aryl having 6 to 18 carbon atoms, still more preferred is aryl having 6 to 14 carbon atoms, Preferred is aryl having 6 to 12 carbon atoms.
  • aryl having 6 to 30 carbon atoms include phenyl, naphthyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, naphthacenyl, perylenyl, pentacenyl and the like.
  • Two Ar 2 may be bonded to form a ring.
  • cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, fluorene, or indene is spiro-bonded to the 5-membered ring of the fluorene skeleton. May be.
  • benzofluorene derivative examples include the following compounds.
  • This benzofluorene derivative can be produced using a known raw material and a known synthesis method.
  • the phosphine oxide derivative is, for example, a compound represented by the following formula (ETM-7-1). Details are also described in International Publication No. 2013/079217.
  • R 5 is substituted or unsubstituted alkyl having 1 to 20 carbons, cycloalkyl having 3 to 16 carbons, aryl having 6 to 20 carbons, or heteroaryl having 5 to 20 carbons;
  • R 6 is CN, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, cycloalkyl having 3 to 16 carbon atoms, heteroalkyl having 1 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, or 5 to 5 carbon atoms.
  • R 7 and R 8 are each independently substituted or unsubstituted aryl having 6 to 20 carbon atoms or heteroaryl having 5 to 20 carbon atoms;
  • R 9 is oxygen or sulfur;
  • j is 0 or 1
  • k is 0 or 1
  • r is an integer of 0 to 4, and
  • q is an integer of 1 to 3.
  • substituent when substituted include aryl, heteroaryl, alkyl, and cycloalkyl.
  • the phosphine oxide derivative may be, for example, a compound represented by the following formula (ETM-7-2).
  • R 1 to R 3 may be the same or different and are hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, cycloalkylthio group, aryl ether group , Arylthioether group, aryl group, heterocyclic group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, amino group, nitro group, silyl group, and a condensed ring formed between adjacent substituents Chosen from.
  • Ar 1 may be the same or different and is an arylene group or a heteroarylene group.
  • Ar 2 may be the same or different and is an aryl group or a heteroaryl group. However, at least one of Ar 1 and Ar 2 has a substituent, or forms a condensed ring with an adjacent substituent.
  • n is an integer of 0 to 3. When n is 0, there is no unsaturated structure, and when n is 3, R 1 does not exist.
  • the alkyl group represents, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group, or a butyl group, which may be unsubstituted or substituted.
  • the substituent in the case of being substituted is not particularly limited, and examples thereof include an alkyl group, an aryl group, and a heterocyclic group, and this point is common to the following description.
  • the number of carbon atoms of the alkyl group is not particularly limited, but is usually in the range of 1 to 20 from the viewpoint of availability and cost.
  • cycloalkyl group represents a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl and the like, which may be unsubstituted or substituted.
  • the number of carbon atoms in the alkyl group moiety is not particularly limited, but is usually in the range of 3-20.
  • the aralkyl group refers to an aromatic hydrocarbon group via an aliphatic hydrocarbon such as a benzyl group or a phenylethyl group, and both the aliphatic hydrocarbon and the aromatic hydrocarbon are unsubstituted or substituted. It doesn't matter.
  • the number of carbon atoms in the aliphatic moiety is not particularly limited, but is usually in the range of 1-20.
  • the alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may be unsubstituted or substituted.
  • the number of carbon atoms of the alkenyl group is not particularly limited, but is usually in the range of 2-20.
  • the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexene group, which may be unsubstituted or substituted. It doesn't matter.
  • the alkynyl group represents an unsaturated aliphatic hydrocarbon group containing a triple bond such as an acetylenyl group, which may be unsubstituted or substituted.
  • the number of carbon atoms of the alkynyl group is not particularly limited, but is usually in the range of 2-20.
  • the alkoxy group represents an aliphatic hydrocarbon group via an ether bond such as a methoxy group, and the aliphatic hydrocarbon group may be unsubstituted or substituted.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is usually in the range of 1-20.
  • the alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
  • the cycloalkylthio group is a group in which an oxygen atom of an ether bond of a cycloalkoxy group is substituted with a sulfur atom.
  • aryl ether group refers to an aromatic hydrocarbon group via an ether bond such as a phenoxy group, and the aromatic hydrocarbon group may be unsubstituted or substituted.
  • the number of carbon atoms of the aryl ether group is not particularly limited, but is usually in the range of 6 to 40.
  • the aryl thioether group is a group in which the oxygen atom of the ether bond of the aryl ether group is substituted with a sulfur atom.
  • the aryl group represents an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, or a pyrenyl group.
  • the aryl group may be unsubstituted or substituted.
  • the number of carbon atoms of the aryl group is not particularly limited, but is usually in the range of 6 to 40.
  • the heterocyclic group refers to, for example, a cyclic structure group having an atom other than carbon, such as a furanyl group, a thiophenyl group, an oxazolyl group, a pyridyl group, a quinolinyl group, or a carbazolyl group, which is unsubstituted or substituted It doesn't matter.
  • the number of carbon atoms of the heterocyclic group is not particularly limited, but is usually in the range of 2-30.
  • Halogen means fluorine, chlorine, bromine and iodine.
  • aldehyde group, carbonyl group, and amino group can also include groups substituted with aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, heterocyclic rings, and the like.
  • aliphatic hydrocarbon, alicyclic hydrocarbon, aromatic hydrocarbon, and heterocyclic ring may be unsubstituted or substituted.
  • the silyl group refers to, for example, a silicon compound group such as a trimethylsilyl group, which may be unsubstituted or substituted.
  • the carbon number of the silyl group is not particularly limited, but is usually in the range of 3-20.
  • the number of silicon is usually 1-6.
  • the condensed ring formed between adjacent substituents includes, for example, Ar 1 and R 2 , Ar 1 and R 3 , Ar 2 and R 2 , Ar 2 and R 3 , R 2 and R 3 , Ar 1 and A conjugated or non-conjugated fused ring formed between Ar 2 and the like.
  • n when n is 1, may be formed conjugated or non-conjugated fused ring with two of R 1 each other.
  • These condensed rings may contain a nitrogen, oxygen, or sulfur atom in the ring structure, or may be further condensed with another ring.
  • phosphine oxide derivative examples include the following compounds.
  • This phosphine oxide derivative can be produced using a known raw material and a known synthesis method.
  • the pyrimidine derivative is, for example, a compound represented by the following formula (ETM-8), and preferably a compound represented by the following formula (ETM-8-1). Details are also described in International Publication No. 2011/021689.
  • Ar is each independently an optionally substituted aryl or an optionally substituted heteroaryl.
  • n is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 2 or 3.
  • aryl in “optionally substituted aryl” include aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferred is aryl having 6 to 12 carbon atoms.
  • aryl include monocyclic aryl phenyl, bicyclic aryl (2-, 3-, 4-) biphenylyl, condensed bicyclic aryl (1-, 2-) naphthyl.
  • Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, o-terpheny
  • heteroaryl in the “optionally substituted heteroaryl” include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, and heteroaryl having 2 to 20 carbon atoms.
  • Aryl is more preferred, heteroaryl having 2 to 15 carbons is more preferred, and heteroaryl having 2 to 10 carbons is particularly preferred.
  • heteroaryl include heterocycles containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring constituent atoms.
  • heteroaryl includes, for example, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indolyl, isoindolyl, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naph
  • the aryl and heteroaryl may be substituted, and may be substituted with, for example, the aryl or heteroaryl.
  • this pyrimidine derivative include the following compounds.
  • This pyrimidine derivative can be produced using a known raw material and a known synthesis method.
  • the carbazole derivative is, for example, a compound represented by the following formula (ETM-9) or a multimer in which a plurality of such carbazole derivatives are bonded by a single bond or the like. Details are described in US Publication No. 2014/0197386.
  • Ar is each independently an optionally substituted aryl or an optionally substituted heteroaryl.
  • n is an integer of 0 to 4, preferably an integer of 0 to 3, and more preferably 0 or 1.
  • aryl in “optionally substituted aryl” include aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferred is aryl having 6 to 12 carbon atoms.
  • aryl include monocyclic aryl phenyl, bicyclic aryl (2-, 3-, 4-) biphenylyl, condensed bicyclic aryl (1-, 2-) naphthyl.
  • Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, o-terpheny
  • heteroaryl in the “optionally substituted heteroaryl” include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, and heteroaryl having 2 to 20 carbon atoms.
  • Aryl is more preferred, heteroaryl having 2 to 15 carbons is more preferred, and heteroaryl having 2 to 10 carbons is particularly preferred.
  • heteroaryl include heterocycles containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring constituent atoms.
  • heteroaryl includes, for example, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indolyl, isoindolyl, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naph
  • the aryl and heteroaryl may be substituted, and may be substituted with, for example, the aryl or heteroaryl.
  • the carbazole derivative may be a multimer in which a plurality of compounds represented by the above formula (ETM-9) are bonded by a single bond or the like.
  • an aryl ring preferably a polyvalent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring
  • an aryl ring preferably a polyvalent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring
  • carbazole derivative examples include the following compounds.
  • This carbazole derivative can be produced using a known raw material and a known synthesis method.
  • the triazine derivative is, for example, a compound represented by the following formula (ETM-10), and preferably a compound represented by the following formula (ETM-10-1). Details are described in US Publication No. 2011/0156013.
  • Ar is each independently an optionally substituted aryl or an optionally substituted heteroaryl.
  • n is an integer of 1 to 3, preferably 2 or 3.
  • aryl in “optionally substituted aryl” include aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferred is aryl having 6 to 12 carbon atoms.
  • aryl include monocyclic aryl phenyl, bicyclic aryl (2-, 3-, 4-) biphenylyl, condensed bicyclic aryl (1-, 2-) naphthyl.
  • Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, o-terpheny
  • heteroaryl in the “optionally substituted heteroaryl” include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, and heteroaryl having 2 to 20 carbon atoms.
  • Aryl is more preferred, heteroaryl having 2 to 15 carbons is more preferred, and heteroaryl having 2 to 10 carbons is particularly preferred.
  • heteroaryl include heterocycles containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring constituent atoms.
  • heteroaryl includes, for example, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indolyl, isoindolyl, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naph
  • the aryl and heteroaryl may be substituted, and may be substituted with, for example, the aryl or heteroaryl.
  • triazine derivative examples include the following compounds.
  • This triazine derivative can be produced using a known raw material and a known synthesis method.
  • the benzimidazole derivative is, for example, a compound represented by the following formula (ETM-11).
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4
  • the “benzimidazole substituent” means that the pyridyl group in the “pyridine substituent” in the above formula (ETM-2), formula (ETM-2-1) and formula (ETM-2-2) is benzo It is a substituent substituted with an imidazole group, and at least one hydrogen in the benzimidazole derivative may be substituted with deuterium.
  • R 11 in the benzimidazole group is hydrogen, alkyl having 1 to 24 carbon atoms, cycloalkyl having 3 to 12 carbon atoms or aryl having 6 to 30 carbon atoms, and the above formula (ETM-2-1) and the formula ( The description of R 11 in ETM-2-2) can be cited.
  • is preferably an anthracene ring or a fluorene ring, and the structure in this case can be referred to the description in the above formula (ETM-2-1) or formula (ETM-2-2), In the formula, R 11 to R 18 can be referred to the description of the above formula (ETM-2-1) or formula (ETM-2-2). Further, in the above formula (ETM-2-1) or formula (ETM-2-2), it is explained in a form in which two pyridine-based substituents are bonded.
  • this benzimidazole derivative include, for example, 1-phenyl-2- (4- (10-phenylanthracen-9-yl) phenyl) -1H-benzo [d] imidazole, 2- (4- (10- ( Naphthalen-2-yl) anthracen-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 2- (3- (10- (naphthalen-2-yl) anthracen-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 5- (10- (naphthalen-2-yl) anthracen-9-yl) -1,2-diphenyl-1H-benzo [d] imidazole, 1- (4 -(10- (naphthalen-2-yl) anthracen-9-yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 2- (4- (9,10 Di (naphthalen-2
  • This benzimidazole derivative can be produced using a known raw material and a known synthesis method.
  • the phenanthroline derivative is, for example, a compound represented by the following formula (ETM-12) or formula (ETM-12-1). Details are described in International Publication No. 2006/021982.
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4 is there.
  • R 11 to R 18 in each formula are independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) or aryl (preferably carbon (Aryl of formula 6 to 30).
  • alkyl preferably alkyl having 1 to 24 carbon atoms
  • cycloalkyl preferably cycloalkyl having 3 to 12 carbon atoms
  • aryl preferably carbon (Aryl of formula 6 to 30).
  • any of R 11 to R 18 is bonded to ⁇ which is an aryl ring.
  • At least one hydrogen in each phenanthroline derivative may be replaced with deuterium.
  • Alkyl in R 11 ⁇ R 18, cycloalkyl and aryl may be cited to the description of R 11 ⁇ R 18 in the formula (ETM-2).
  • includes the following structural formula, for example.
  • each R is independently hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl or terphenylyl.
  • this phenanthroline derivative include, for example, 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di (1,10- Phenanthroline-2-yl) anthracene, 2,6-di (1,10-phenanthroline-5-yl) pyridine, 1,3,5-tri (1,10-phenanthroline-5-yl) benzene, 9,9 ′ -Difluoro-bi (1,10-phenanthroline-5-yl), bathocuproin, 1,3-bis (2-phenyl-1,10-phenanthroline-9-yl) benzene and compounds represented by the following structural formula can give.
  • This phenanthroline derivative can be produced using a known raw material and a known synthesis method.
  • the quinolinol-based metal complex is, for example, a compound represented by the following general formula (ETM-13).
  • R 1 to R 6 are each independently hydrogen, fluorine, alkyl, cycloalkyl, aralkyl, alkenyl, cyano, alkoxy or aryl
  • M is Li, Al, Ga, Be or Zn
  • n is an integer of 1 to 3.
  • quinolinol metal complexes include 8-quinolinol lithium, tris (8-quinolinolato) aluminum, tris (4-methyl-8-quinolinolato) aluminum, tris (5-methyl-8-quinolinolato) aluminum, tris (3 , 4-dimethyl-8-quinolinolato) aluminum, tris (4,5-dimethyl-8-quinolinolato) aluminum, tris (4,6-dimethyl-8-quinolinolato) aluminum, bis (2-methyl-8-quinolinolato) ( Phenolate) aluminum, bis (2-methyl-8-quinolinolato) (2-methylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3-methylphenolato) aluminum, bis (2-methyl-8- Quinolinolato) (4- Tylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2-phenylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3-phenylphenolate)
  • This quinolinol-based metal complex can be produced using a known raw material and a known synthesis method.
  • the thiazole derivative is, for example, a compound represented by the following formula (ETM-14-1).
  • the benzothiazole derivative is, for example, a compound represented by the following formula (ETM-14-2).
  • ⁇ in each formula is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is 1 to 4
  • the “thiazole-based substituent” and “benzothiazole-based substituent” are “pyridine-based” in the above formula (ETM-2), formula (ETM-2-1) and formula (ETM-2-2).
  • the pyridyl group in the “substituent” is a substituent in which the following thiazole group or benzothiazole group is substituted, and at least one hydrogen in the thiazole derivative and the benzothiazole derivative may be substituted with deuterium.
  • is preferably an anthracene ring or a fluorene ring, and the structure in this case can be referred to the description in the above formula (ETM-2-1) or formula (ETM-2-2), In the formula, R 11 to R 18 can be referred to the description of the above formula (ETM-2-1) or formula (ETM-2-2). Further, in the above formula (ETM-2-1) or formula (ETM-2-2), it is described in the form of two pyridine-based substituents bonded to each other, but these are represented by thiazole-based substituents (or benzothiazole-based substituents).
  • at least one of R 11 to R 18 in the above formula (ETM-2-1) is replaced with a thiazole substituent (or benzothiazole substituent) to replace the “pyridine substituent” with R 11 to R 18. May be replaced.
  • thiazole derivatives or benzothiazole derivatives can be produced using known raw materials and known synthesis methods.
  • the electron transport layer or the electron injection layer may further contain a substance capable of reducing the material forming the electron transport layer or the electron injection layer.
  • a substance capable of reducing the material forming the electron transport layer or the electron injection layer various substances can be used as long as they have a certain reducing ability.
  • alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkalis From the group consisting of earth metal oxides, alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes At least one selected can be suitably used.
  • Preferred reducing substances include alkali metals such as Na (work function 2.36 eV), K (2.28 eV), Rb (2.16 eV) or Cs (1.95 eV), and Ca (2. 9eV), Sr (2.0 to 2.5 eV) or Ba (2.52 eV), and alkaline earth metals such as those having a work function of 2.9 eV or less are particularly preferable.
  • a more preferable reducing substance is an alkali metal of K, Rb or Cs, more preferably Rb or Cs, and most preferably Cs.
  • alkali metals have particularly high reducing ability, and by adding a relatively small amount to the material forming the electron transport layer or the electron injection layer, the luminance of the organic EL element can be improved and the lifetime can be extended.
  • a reducing substance having a work function of 2.9 eV or less a combination of two or more alkali metals is also preferable.
  • a combination containing Cs such as Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
  • Cs such as Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
  • the electron injecting layer material and the electron transport layer material described above are a polymer compound obtained by polymerizing a reactive compound substituted with a reactive substituent thereon as a monomer, or a crosslinked polymer thereof, A pendant polymer compound obtained by reacting a chain polymer with the reactive compound, or a pendant polymer crosslinked product thereof, can also be used for the electronic layer material.
  • the reactive substituent in this case, the description of the polycyclic aromatic compound represented by the formula (1) can be cited. Details of the use of such a polymer compound and polymer crosslinked product will be described later.
  • the cathode 108 plays a role of injecting electrons into the light emitting layer 105 through the electron injection layer 107 and the electron transport layer 106.
  • the material for forming the cathode 108 is not particularly limited as long as it can efficiently inject electrons into the organic layer, but the same material as the material for forming the anode 102 can be used.
  • metals such as tin, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium and magnesium or alloys thereof (magnesium-silver alloy, magnesium -Indium alloys, aluminum-lithium alloys such as lithium fluoride / aluminum, etc.) are preferred.
  • Lithium, sodium, potassium, cesium, calcium, magnesium, or alloys containing these low work function metals are effective for increasing the electron injection efficiency and improving device characteristics.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, and inorganic materials such as silica, titania and silicon nitride, polyvinyl alcohol, vinyl chloride Lamination of hydrocarbon polymer compounds and the like is a preferred example.
  • the method for producing these electrodes is not particularly limited as long as conduction can be achieved, such as resistance heating, electron beam evaporation, sputtering, ion plating, and coating.
  • the materials used for the hole injection layer, hole transport layer, light emitting layer, electron transport layer and electron injection layer can form each layer alone, but as a polymer binder, polyvinyl chloride, polycarbonate, Polystyrene, poly (N-vinylcarbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate resin, ABS resin, polyurethane resin It can also be used by dispersing it in solvent-soluble resins such as phenol resins, xylene resins, petroleum resins, urea resins, melamine resins, unsaturated polyester resins, alkyd resins, epoxy resins, silicone resins, etc. is there.
  • solvent-soluble resins such as phenol resins, xylene resins, petroleum resins, urea resins, melamine resins,
  • Each layer constituting the organic EL element is a thin film formed by a method such as vapor deposition, resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, printing method, spin coat method or cast method, coating method, etc. Thus, it can be formed.
  • the film thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm. The film thickness can usually be measured with a crystal oscillation type film thickness measuring device or the like.
  • the vapor deposition conditions vary depending on the type of material, the target crystal structure and association structure of the film, and the like.
  • Deposition conditions generally include boat heating temperature +50 to + 400 ° C., vacuum degree 10 ⁇ 6 to 10 ⁇ 3 Pa, deposition rate 0.01 to 50 nm / second, substrate temperature ⁇ 150 to + 300 ° C., film thickness 2 nm to 5 ⁇ m. It is preferable to set appropriately within the range.
  • the anode When a DC voltage is applied to the organic EL device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, a transparent or translucent electrode is applied. Luminescence can be observed from the side (anode or cathode, and both).
  • the organic EL element also emits light when a pulse current or an alternating current is applied.
  • the alternating current waveform to be applied may be arbitrary.
  • an organic EL element composed of an anode / hole injection layer / hole transport layer / a light emitting layer composed of a host material and a dopant material / electron transport layer / electron injection layer / cathode A manufacturing method of will be described.
  • a thin film of an anode material is formed on a suitable substrate by vapor deposition or the like to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode.
  • a host material and a dopant material are co-evaporated to form a thin film to form a light emitting layer.
  • An electron transport layer and an electron injection layer are formed on the light emitting layer, and a thin film made of a cathode material is formed by vapor deposition. By forming it as a cathode, a target organic EL element can be obtained.
  • the production order can be reversed, and the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be produced in this order. It is.
  • the wet film forming method is carried out by preparing a low molecular compound capable of forming each organic layer of an organic EL element as a liquid organic layer forming composition and using it. If there is no suitable organic solvent that dissolves the low molecular weight compound, the reactive compound obtained by substituting a reactive substituent on the low molecular weight compound is highly reactive along with other monomers having a solubility function and main chain type polymers.
  • a composition for forming an organic layer may be prepared from a polymerized polymer compound.
  • a coating film is formed by performing a coating process for coating the substrate with the organic layer forming composition and a drying process for removing the solvent from the coated organic layer forming composition.
  • the polymer compound has a crosslinkable substituent (also referred to as a crosslinkable polymer compound)
  • the polymer is further crosslinked by this drying step to form a polymer crosslinked product.
  • the spin coater method is the spin coat method
  • the slit coater method is the slit coat method
  • the plate method is the gravure, offset, reverse offset, flexographic printing method
  • the ink jet printer method is the ink jet method.
  • the method of spraying in a mist form is called a spray method.
  • the drying process include air drying, heating, and drying under reduced pressure.
  • the drying step may be performed only once, or may be performed a plurality of times using different methods and conditions. Further, for example, different methods may be used together, such as firing under reduced pressure.
  • the wet film forming method is a film forming method using a solution, for example, a partial printing method (ink jet method), a spin coating method or a casting method, a coating method, or the like.
  • a solution for example, a partial printing method (ink jet method), a spin coating method or a casting method, a coating method, or the like.
  • the wet film formation method does not require the use of an expensive vacuum vapor deposition apparatus and can form a film at atmospheric pressure.
  • the wet film-forming method enables large area and continuous production, leading to reduction in manufacturing cost.
  • the wet film formation method may be difficult to stack.
  • orthogonal solvent Orthogonal solvent, which dissolves each other
  • a method is employed in which only a few layers are formed using a wet film forming method, and the rest are formed using a vacuum vapor deposition method.
  • layer formation including the material for the electron transport layer and the material for the electron injection layer They can be prepared as a composition for coating, and they can be formed by a wet film forming method.
  • a laser heating drawing method can be used for forming the organic layer forming composition into a film.
  • LITI is a method in which a compound attached to a base material is heated and vapor-deposited with a laser, and an organic layer forming composition can be used as a material applied to the base material.
  • ⁇ Arbitrary process> Appropriate treatment steps, washing steps, and drying steps may be appropriately added before and after each step of film formation.
  • the treatment process include exposure treatment, plasma surface treatment, ultrasonic treatment, ozone treatment, cleaning treatment using an appropriate solvent, and heat treatment.
  • a series of steps for producing a bank is also included.
  • Photolithography technology can be used for the production of the bank.
  • a bank material that can be used for photolithography a positive resist material and a negative resist material can be used.
  • a patternable printing method such as an inkjet method, gravure offset printing, reverse offset printing, or screen printing can also be used.
  • a permanent resist material can be used.
  • Materials used for the bank include polysaccharides and derivatives thereof, homopolymers and copolymers of hydroxyl-containing ethylenic monomers, biopolymer compounds, polyacryloyl compounds, polyesters, polystyrenes, polyimides, polyamideimides, polyetherimides , Polysulfide, polysulfone, polyphenylene, polyphenyl ether, polyurethane, epoxy (meth) acrylate, melamine (meth) acrylate, polyolefin, cyclic polyolefin, acrylonitrile-butadiene-styrene copolymer (ABS), silicone resin, polyvinyl chloride, chlorine Polyethylene, chlorinated polypropylene, polyacetate, polynorbornene, synthetic rubber, polyfluorovinylidene, polytetrafluoroethylene, polyhexa Le Oro propylene fluoride such as polymers, fluoroolefin - hydrocarbonoxy ole
  • composition for forming organic layer used in wet film formation method The composition for forming an organic layer is obtained by dissolving, in an organic solvent, a low molecular compound capable of forming each organic layer of an organic EL element or a high molecular compound obtained by polymerizing the low molecular compound.
  • the composition for forming a light emitting layer includes a polycyclic aromatic compound (or a polymer compound thereof) that is at least one dopant material as a first component, at least one host material as a second component, and a third component. It contains at least one organic solvent as a component.
  • a 1st component functions as a dopant component of the light emitting layer obtained from this composition
  • a 2nd component functions as a host component of a light emitting layer.
  • the third component functions as a solvent that dissolves the first component and the second component in the composition, and gives a smooth and uniform surface shape at the time of application due to the controlled evaporation rate of the third component itself.
  • the composition for forming an organic layer contains at least one organic solvent.
  • the evaporation rate of the organic solvent at the time of film formation the film formability, the presence or absence of defects in the coating film, the surface roughness, and the smoothness can be controlled and improved.
  • the meniscus stability at the pinhole of the ink jet head can be controlled, and the discharge performance can be controlled and improved.
  • the drying speed of the film and the orientation of the derivative molecules the electrical characteristics, light emitting characteristics, efficiency, and lifetime of the organic EL device having an organic layer obtained from the organic layer forming composition are improved. Can do.
  • the boiling point of at least one organic solvent is 130 ° C to 300 ° C, more preferably 140 ° C to 270 ° C, and further preferably 150 ° C to 250 ° C.
  • the organic solvent is more preferably composed of two or more organic solvents from the viewpoints of good ink jet discharge properties, film formability, smoothness and low residual solvent.
  • the composition may be a solid state by removing the solvent from the organic layer forming composition in consideration of transportability and the like.
  • the organic solvent contains a good solvent (GS) and a poor solvent (PS) for at least one kind of solute, and the boiling point (BP GS ) of the good solvent (GS) is higher than the boiling point (BP PS ) of the poor solvent (PS).
  • a low configuration is particularly preferred.
  • the solubility difference (S GS ⁇ S PS ) is preferably 1% or more, more preferably 3% or more, and further preferably 5% or more.
  • the difference in boiling points (BP PS -BP GS ) is preferably 10 ° C. or higher, more preferably 30 ° C. or higher, and further preferably 50 ° C. or higher.
  • the organic solvent is removed from the coating film by a drying process such as vacuum, reduced pressure or heating after the film formation.
  • a drying process such as vacuum, reduced pressure or heating after the film formation.
  • Tg glass transition temperature
  • Tg glass transition point
  • organic solvents used in the organic layer forming composition include alkylbenzene solvents, phenyl ether solvents, alkyl ether solvents, cyclic ketone solvents, aliphatic ketone solvents, and monocyclic solvents. Examples include ketone solvents, solvents having a diester skeleton, and fluorine-containing solvents.
  • composition for forming an organic layer may contain an optional component as long as its properties are not impaired.
  • optional components include a binder and a surfactant.
  • Binder The composition for forming an organic layer may contain a binder.
  • the binder forms a film at the time of film formation and bonds the obtained film to the substrate. In addition, it plays a role of dissolving, dispersing and binding other components in the organic layer forming composition.
  • binder used in the organic layer forming composition examples include acrylic resin, polyethylene terephthalate, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, acrylonitrile-ethylene-styrene copolymer (AES) resin, Ionomer, chlorinated polyether, diallyl phthalate resin, unsaturated polyester resin, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, Teflon, acrylonitrile-butadiene-styrene copolymer (ABS) resin, acrylonitrile -Styrene copolymer (AS) resin, phenol resin, epoxy resin, melamine resin, urea resin, alkyd resin, polyurethane, and copolymer of the above resin and polymer, Re not limited to.
  • AES acrylonitrile-ethylene-styrene copolymer
  • the binder used in the composition for forming an organic layer may be only one kind or a mixture of plural kinds.
  • the composition for forming an organic layer contains, for example, a surfactant for controlling film surface uniformity, lyophilicity and liquid repellency of the composition for forming an organic layer. Also good.
  • Surfactants are classified into ionic and nonionic based on the structure of the hydrophilic group, and further classified into alkyl, silicon, and fluorine based on the structure of the hydrophobic group. Further, the molecular structure is classified into a monomolecular system having a relatively small molecular weight and a simple structure, and a polymer system having a large molecular weight and having a side chain and a branch.
  • surfactant for example, Polyflow No. 45, Polyflow KL-245, Polyflow No. 75, Polyflow No. 90, polyflow no. 95 (trade name, manufactured by Kyoeisha Chemical Industry Co., Ltd.), Disperbak 161, Disper Bake 162, Disper Bake 163, Disper Bake 164, Disper Bake 166, Disper Bake 170, Disper Bake 180, Disper Bake 181 and Disper Bake 182, BYK300, BYK306, BYK310, BYK320, BYK330, BYK342, BYK344, BYK346 (trade name, manufactured by Big Chemie Japan Co., Ltd.), KP-341, KP-358, KP-368, KF-96-50CS, KF -50-100CS (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), Surflon SC-101, Surflon KH-40 (trade name, manufactured by Seimi Chemical Co., Ltd.), Footent 222F, Footage 251, FTX-218 (trade name,
  • the surfactant may be used alone or in combination of two or more.
  • composition and physical properties of organic layer forming composition The content of each component in the composition for forming an organic layer is obtained from the good solubility, storage stability and film formability of each component in the composition for forming an organic layer, and the composition for forming an organic layer. Good film quality of the coating film, good dischargeability when using the ink jet method, and good electrical characteristics, light emission characteristics, efficiency, and lifetime of the organic EL device having an organic layer produced using the composition It is decided in consideration of the viewpoint.
  • the first component is 0.0001% to 2.0% by weight and the second component is for forming the light emitting layer with respect to the total weight of the composition for forming the light emitting layer.
  • the third component is 90.0 wt% to 99.9 wt% based on the total weight of the composition for forming the light emitting layer. preferable.
  • the first component is 0.005 wt% to 1.0 wt% with respect to the total weight of the light emitting layer forming composition
  • the second component is with respect to the total weight of the light emitting layer forming composition, 0.095 wt% to 4.0 wt%
  • the third component is 95.0 wt% to 99.9 wt% with respect to the total weight of the light emitting layer forming composition.
  • the first component is 0.05% by weight to 0.5% by weight relative to the total weight of the light emitting layer forming composition
  • the second component is based on the total weight of the light emitting layer forming composition.
  • the amount of the third component is 97.0% by weight to 99.7% by weight with respect to the total weight of the composition for forming a light emitting layer.
  • the composition for forming an organic layer can be produced by appropriately selecting and stirring the above-described components by a known method such as stirring, mixing, heating, cooling, dissolution, and dispersion. Further, after preparation, filtration, degassing (also referred to as degas), ion exchange treatment, inert gas replacement / encapsulation treatment, and the like may be selected as appropriate.
  • the viscosity of the composition for forming an organic layer is preferably 0.3 to 3 mPa ⁇ s, more preferably 1 to 3 mPa ⁇ s at 25 ° C.
  • the viscosity is a value measured using a conical plate type rotational viscometer (cone plate type).
  • the viscosity of the composition for forming an organic layer is preferably 20 to 40 mN / m, more preferably 20 to 30 mN / m, at a surface tension at 25 ° C.
  • the surface tension is a value measured using the hanging drop method.
  • ⁇ Crosslinkable polymer compound compound represented by general formula (XLP-1)>
  • a crosslinkable polymer compound is, for example, a compound represented by the following general formula (XLP-1).
  • MUx, ECx and k have the same definitions as MU, EC and k in the above formula (SPH-1), provided that the compound represented by the formula (XLP-1) has at least one crosslinkable substituent (XLS).
  • the content of the monovalent or divalent aromatic compound having a crosslinkable substituent is 0.1 to 80% by weight in the molecule.
  • the content of the monovalent or divalent aromatic compound having a crosslinkable substituent is preferably 0.5 to 50% by weight, and more preferably 1 to 20% by weight.
  • crosslinkable substituent is not particularly limited as long as it can further crosslink the above-described polymer compound, but a substituent having the following structure is preferable. * In each structural formula indicates a bonding position.
  • L is each independently a single bond, —O—, —S—,> C ⁇ O, —O—C ( ⁇ O) —, alkylene having 1 to 12 carbons, or oxyalkylene having 1 to 12 carbons. And polyoxyalkylene having 1 to 12 carbon atoms.
  • substituents they are represented by the formula (XLS-1), the formula (XLS-2), the formula (XLS-3), the formula (XLS-9), the formula (XLS-10), or the formula (XLS-17).
  • a group represented by the formula (XLS-1), the formula (XLS-3) or the formula (XLS-17) is more preferable.
  • divalent aromatic compound having a crosslinkable substituent examples include compounds having the following partial structure.
  • solvent used in the reaction examples include aromatic solvents, saturated / unsaturated hydrocarbon solvents, alcohol solvents, ether solvents, and the like, for example, dimethoxyethane, 2- (2-methoxyethoxy) ethane, 2- (2 -Ethoxyethoxy) ethane and the like.
  • reaction may be performed in a two-phase system.
  • a phase transfer catalyst such as a quaternary ammonium salt may be added as necessary.
  • the compound of formula (SPH-1) and the compound of (XLP-1) are produced, they may be produced in one step or may be produced through multiple steps. Moreover, it may be carried out by a batch polymerization method in which the reaction is started after all the raw materials are put in the reaction vessel, or may be carried out by a dropping polymerization method in which the raw material is dropped into the reaction vessel and the product is used for the progress of the reaction. It may be carried out by a precipitation polymerization method in which precipitation is accompanied, and they can be synthesized by appropriately combining them.
  • the target product is obtained by carrying out the reaction with the monomer unit (MU) and the end cap unit (EC) added to the reaction vessel.
  • the monomer unit (MU) is polymerized to the target molecular weight, and then the end cap unit (EC) is added and reacted. Get things. If the reaction is carried out by adding different types of monomer units (MU) in multiple stages, a polymer having a concentration gradient with respect to the structure of the monomer units can be produced.
  • a target polymer can be obtained by a post reaction.
  • the primary structure of the polymer can be controlled. For example, as shown in Synthesis Schemes 1 to 3, it is possible to synthesize polymers with random primary structures (Synthesis Scheme 1), regular primary structures (Synthesis Schemes 2 and 3), etc. And can be used in appropriate combination depending on the object. Furthermore, if a monomer unit having three or more polymerizable groups is used, a hyperbranched polymer or a dendrimer can be synthesized.
  • Examples of monomer units that can be used in the present invention include JP 2010-189630 A, International Publication No. 2012/086671, International Publication No. 2013/191088, International Publication No. 2002/045184, International Publication No. 2011/049241. No., International Publication No. 2013/146806, International Publication No. 2005/049546, International Publication No. 2015/145871, Japanese Unexamined Patent Publication No. 2010-215886, Japanese Unexamined Patent Publication No. 2008-106241, Japanese Unexamined Patent Publication No. 2010-215886, International Publication No. It can be synthesized according to the methods described in Published 2016/031639, JP 2011-174062, Published 2016/031639, Published 2016/031639, Published 2002/045184 .
  • JP 2012-036388 A International Publication No. 2015/008851, JP 2012-36381 A, JP 2012-144722 A, International Publication No. 2015/194448.
  • International Publication No. 2013/146806 International Publication No. 2015/145871, International Publication No. 2016/031639, International Publication No. 2016/125560, International Publication No. 2016/031639, International Publication No. 2016/031639, International Publication No.
  • the compound can be synthesized according to the methods described in Publication No. 2016/125560, International Publication No. 2015/145871, International Publication No. 2011/049241, and Japanese Unexamined Patent Publication No. 2012-144722.
  • the present invention can also be applied to a display device including an organic EL element or a lighting device including an organic EL element.
  • the display device or lighting device including the organic EL element can be manufactured by a known method such as connecting the organic EL element according to the present embodiment and a known driving device, such as DC driving, pulse driving, or AC driving. It can drive using a well-known drive method suitably.
  • Examples of the display device include a panel display such as a color flat panel display, and a flexible display such as a flexible color organic electroluminescence (EL) display (for example, JP-A-10-335066 and JP-A-2003-321546). Gazette, JP-A-2004-281086, etc.)
  • Examples of the display method of the display include a matrix and / or segment method. Note that the matrix display and the segment display may coexist in the same panel.
  • pixels for display are two-dimensionally arranged such as a grid or mosaic, and characters and images are displayed with a set of pixels.
  • the shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 ⁇ m or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become.
  • monochrome display pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
  • the matrix driving method may be either a line sequential driving method or an active matrix.
  • the line-sequential driving has an advantage that the structure is simple. However, the active matrix may be superior in consideration of the operation characteristics, so that it is necessary to properly use it depending on the application.
  • a pattern is formed so as to display predetermined information, and a predetermined region is caused to emit light.
  • a predetermined region is caused to emit light.
  • the time and temperature display in a digital clock or a thermometer the operation state display of an audio device or an electromagnetic cooker, the panel display of an automobile, and the like can be mentioned.
  • the illuminating device examples include an illuminating device such as indoor lighting, a backlight of a liquid crystal display device, and the like (for example, JP 2003-257621 A, JP 2003-277741 A, JP 2004-119211 A). Etc.)
  • the backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like.
  • this embodiment As a backlight for a liquid crystal display device, especially a personal computer application where thinning is an issue, considering that it is difficult to thin the conventional method because it is made of a fluorescent lamp or a light guide plate, this embodiment
  • the backlight using the light emitting element according to the present invention is thin and lightweight.
  • the polycyclic aromatic compound according to the present invention can be used for producing an organic field effect transistor or an organic thin film solar cell in addition to the above-described organic electroluminescent element.
  • An organic field effect transistor is a transistor that controls current by an electric field generated by voltage input, and a gate electrode is provided in addition to a source electrode and a drain electrode. When a voltage is applied to the gate electrode, an electric field is generated, and the current can be controlled by arbitrarily blocking the flow of electrons (or holes) flowing between the source electrode and the drain electrode.
  • Field effect transistors are easier to miniaturize than simple transistors (bipolar transistors), and are often used as elements constituting integrated circuits and the like.
  • the structure of the organic field effect transistor is usually provided with a source electrode and a drain electrode in contact with the organic semiconductor active layer formed using the polycyclic aromatic compound according to the present invention, and further in contact with the organic semiconductor active layer.
  • the gate electrode may be provided with the insulating layer (dielectric layer) interposed therebetween. Examples of the element structure include the following structures.
  • Substrate / gate electrode / insulator layer / source electrode / drain electrode / organic semiconductor active layer (2) Substrate / gate electrode / insulator layer / organic semiconductor active layer / source electrode / drain electrode (3) substrate / organic Semiconductor active layer / source electrode / drain electrode / insulator layer / gate electrode (4) substrate / source electrode / drain electrode / organic semiconductor active layer / insulator layer / gate electrode It can be applied as a pixel driving switching element for an active matrix driving type liquid crystal display or an organic electroluminescence display.
  • Organic thin-film solar cells have a structure in which an anode such as ITO, a hole transport layer, a photoelectric conversion layer, an electron transport layer, and a cathode are laminated on a transparent substrate such as glass.
  • the photoelectric conversion layer has a p-type semiconductor layer on the anode side and an n-type semiconductor layer on the cathode side.
  • the polycyclic aromatic compound according to the present invention can be used as a material for a hole transport layer, a p-type semiconductor layer, an n-type semiconductor layer, and an electron transport layer, depending on its physical properties.
  • the polycyclic aromatic compound according to the present invention can function as a hole transport material or an electron transport material in an organic thin film solar cell.
  • the organic thin film solar cell may appropriately include a hole block layer, an electron block layer, an electron injection layer, a hole injection layer, a smoothing layer, and the like.
  • known materials used for the organic thin film solar cell can be appropriately selected and used in combination.
  • intermediate (IB) (10.0 g), bis (4-t-butylphenyl) amine (18.2 g), dichlorobis [(di-t-butyl (4-dimethylaminophenyl) as a palladium catalyst ) Phosphino) palladium (Pd-132, 0.21 g), sodium t-butoxide (NaOtBu, 7.1 g) and xylene (100 ml) were placed in a flask and heated at 100 ° C. for 1 hour. After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IC) (18.0 g).
  • intermediate (ID) (15.0 g)
  • bis (4-tert-butylphenyl) amine (8.4 g)
  • Pd-132 (0.21 g) as a palladium catalyst
  • NaOtBu 4.3 g
  • xylene 60 ml
  • water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product.
  • the crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IE) (15.0 g).
  • intermediate (ID) (15.0 g)
  • bis (4-t-amylphenyl) amine 9.3 g
  • Pd-132 (0.21 g) as a palladium catalyst
  • NaOtBu 4.3 g
  • xylene 60 ml
  • water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product.
  • the crude product was purified with a silica gel short column (eluent: toluene) to obtain Intermediate (IF) (14.5 g).
  • intermediate (IB) (7.0 g), bis (4-tertamylphenyl) amine (14.0 g), Pd-132 (0.15 g) as a palladium catalyst, NaOtBu (4.9 g) And xylene (80 ml) were placed in a flask and heated at 100 ° C. for 1 hour. After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain Intermediate (IG) (9.8 g).
  • intermediate (IH) (10.0 g), bis (4-tertamylphenyl) amine (19.5 g), bis (dibenzylideneacetone) palladium (0) (Pd (dba)) as a palladium catalyst 2 , 0.33 g), 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl (Sphos, 0.59 g), NaOtBu (6.9 g) and xylene (80 ml) were placed in a flask and stirred at 100 ° C. for 1 hour. Heated.
  • intermediate (IK) (15.0 g), bis (4-t-amylphenyl) amine (8.0 g), Pd-132 (0.19 g) as a palladium catalyst, NaOtBu (3.9 g) ) And xylene (60 ml) were placed in a flask and heated at 120 ° C. for 1 hour. After the reaction, water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IL) (15.2 g).
  • intermediate (IM) (11.0 g), bis (4-t-amylphenyl) amine (6.1 g), Pd-132 (0.17 g) as a palladium catalyst, NaOtBu (3.4 g) ) And xylene (50 ml) were placed in a flask and heated at 120 ° C. for 1 hour. After the reaction, water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain Intermediate (IN) (12.5 g).
  • intermediate (IK) 8.0 g
  • bis (4-t-octylphenyl) amine 6.5 g
  • Pd-132 0.13 g
  • NaOtBu 2.6 g
  • xylene 40 ml
  • water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product.
  • the crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IO) (11.5 g).
  • intermediate (IS) (22.4 g), bis (4-tertamylphenyl) amine (28.4 g), [(t-Bu) 3 PH] BF 4 (0.53 g), palladium Pd (dba) 2 (0.84 g), NaOtBu (11.0 g) and xylene (225 ml) were placed in a flask as a catalyst and heated at 100 ° C. for 1 hour. After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IT) (31.2 g).
  • intermediate (IU) 8.0 g
  • bis (4-t-octylphenyl) amine 7.0 g
  • Pd-132 0.13 g
  • NaOtBu 2.6 g
  • xylene 40 ml
  • water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product.
  • the crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IV) (10.5 g).
  • polycyclic aromatic compounds of the present invention can be synthesized by a method according to the synthesis example described above by appropriately changing the raw material compound.
  • the quantum efficiency of a light emitting device includes an internal quantum efficiency and an external quantum efficiency.
  • the internal quantum efficiency is that the external energy injected as electrons (or holes) into the light emitting layer of the light emitting device is converted into pure photons. The ratio is shown.
  • the external quantum efficiency is calculated based on the amount of photons emitted to the outside of the light emitting device, and some of the photons generated in the light emitting layer continue to be absorbed or reflected inside the light emitting device. In other words, the external quantum efficiency is lower than the internal quantum efficiency because it is not emitted outside the light emitting element.
  • the external quantum efficiency is measured as follows.
  • a voltage / current generator R6144 manufactured by Advantest Corporation was used to apply a voltage at which the luminance of the element was 1000 cd / m 2 to cause the element to emit light.
  • a spectral radiance meter SR-3AR manufactured by TOPCON the spectral radiance in the visible light region was measured from the direction perpendicular to the light emitting surface. Assuming that the light emitting surface is a completely diffusing surface, the value obtained by dividing the measured spectral radiance value of each wavelength component by the wavelength energy and multiplying by ⁇ is the number of photons at each wavelength.
  • the value obtained by dividing the applied current value by the elementary charge is the number of carriers injected into the device, and the number obtained by dividing the total number of photons emitted from the device by the number of carriers injected into the device is the external quantum efficiency.
  • Table 1A and Table 1B below show the material configuration of each layer and EL characteristic data in the produced organic EL elements according to Example 1-1 to Example 1-8.
  • HI refers to N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4'-diamine
  • HAT-CN is 1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile
  • HT-1 is N-([1,1'-biphenyl ] -4-yl-9,9-dimethyl-N- [4- (9-phenyl-9H-carbazol-3-yl) phenyl) -9H-fluoren-2-amine [1,1′-biphenyl] -4
  • An amine, “HT-2” being N, N-bis (4- (dibenzo [b, d] furan-4-yl) phenyl)-[1,1 ′: 4 ′, 1 ′′ -terphenyl] -4-amine
  • BH 1,4 n
  • Example 1-1 A glass substrate of 26 mm ⁇ 28 mm ⁇ 0.7 mm (manufactured by Optoscience Co., Ltd.) obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Choshu Sangyo Co., Ltd.), and HI, HAT-CN, HT-1, HT-2, BH-1, compound (1-151), ET A tantalum vapor deposition boat containing -1 and ET-2, and an aluminum nitride vapor deposition boat each containing Liq, LiF, and aluminum were mounted.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, HI was heated and evaporated to a film thickness of 40 nm, then HAT-CN was heated and evaporated to a film thickness of 5 nm, Next, HT-1 is heated and evaporated to a film thickness of 45 nm, and then HT-2 is heated and evaporated to a film thickness of 10 nm to form a four-layer hole layer. did. Next, BH-1 and the compound (1-151) were heated at the same time and evaporated to a thickness of 25 nm to form a light emitting layer.
  • the deposition rate was adjusted so that the weight ratio of BH-1 to compound (1-151) was approximately 98 to 2. Further, ET-1 was heated and evaporated to a thickness of 5 nm, and then ET-2 and Liq were simultaneously heated to a thickness of 25 nm to form a two-layer electronic layer. Formed. The deposition rate was adjusted so that the weight ratio of ET-2 to Liq was approximately 50:50. The deposition rate of each layer was 0.01 to 1 nm / second. Thereafter, LiF is heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm, and then aluminum is heated to deposit to a film thickness of 100 nm to form a cathode. Thus, an organic EL element was obtained.
  • Examples 1-2 to 1-8> An organic EL device was produced by a method according to Example 1-1 (Table 1A), and EL characteristics were measured (Table 1B).
  • Example 2 a compound dissolution test was performed. After putting 1 g of the test compound in 30 ml of toluene at 100 ° C. and stirring, it was verified whether or not the test compound was dissolved. The results are shown in Table 2.
  • SPH-101 was synthesized according to the method described in International Publication No. 2015/008851. Next to M1, a copolymer having M2 or M3 bonded thereto is obtained, and each unit is estimated to be 50:26:24 (molar ratio) from the charging ratio.
  • XLP-101 was synthesized according to the method described in JP-A-2018-61028. Next to M7, a copolymer having M2 or M3 bonded thereto is obtained, and each unit is estimated to be 40:10:50 (molar ratio) from the charging ratio.
  • Examples 3 to 10 A coating solution of a material for forming each layer is prepared to prepare a coating type organic EL element.
  • Table 3 shows the material structure of each layer in the organic EL element.
  • a light emitting layer forming composition (1) is prepared by stirring the following components until a uniform solution is obtained.
  • the prepared light emitting layer forming composition is spin-coated on a glass substrate and dried by heating under reduced pressure, whereby a coating film free from film defects and excellent in smoothness can be obtained.
  • Compound (A) 0.04% by weight SPH-101 1.96 wt% Xylene 69.00 wt% Decalin 29.00 wt%
  • the compound (A) is a polycyclic aromatic compound represented by the general formula (1), a multimer thereof, the polycyclic aromatic compound or the multimer as a monomer (that is, the monomer has a reactive substituent). ), Or a crosslinked polymer obtained by further crosslinking the polymer compound.
  • the polymer compound for obtaining a crosslinked polymer has a crosslinkable substituent.
  • PEDOT PSS solution>
  • a commercially available PEDOT: PSS solution (Clevios TM PVP AI4083, PEDOT: PSS aqueous dispersion, manufactured by Heraeus Holdings) is used.
  • OTPD LT-N159, manufactured by Luminescence Technology Corp
  • IK-2 photo cation polymerization initiator, manufactured by San Apro
  • XLP-101 is dissolved in xylene at a concentration of 0.6% by weight to prepare a 0.7% by weight XLP-101 solution.
  • PCz polyvinylcarbazole
  • a PEDOT: PSS solution is spin-coated on a glass substrate on which ITO is deposited to a thickness of 150 nm, and baked on a hot plate at 200 ° C. for 1 hour to form a PEDOT: PSS film having a thickness of 40 nm. (Hole injection layer).
  • the OTPD solution is spin-coated, dried on an 80 ° C. hot plate for 10 minutes, exposed to an exposure intensity of 100 mJ / cm 2 with an exposure machine, and baked on the hot plate at 100 ° C. for 1 hour.
  • An OTPD film having a thickness of 30 nm which is insoluble in the film is formed (hole transport layer).
  • the light emitting layer forming composition (1) is spin-coated and baked on a hot plate at 120 ° C. for 1 hour to form a light emitting layer having a thickness of 20 nm.
  • the produced multilayer film is fixed to a substrate holder of a commercially available vapor deposition apparatus (made by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing ET1, a molybdenum vapor deposition boat containing LiF, and tungsten containing aluminum.
  • a vapor deposition boat is installed.
  • ET1 is heated and evaporated to a film thickness of 30 nm to form an electron transport layer.
  • the deposition rate for forming the electron transport layer is 1 nm / second.
  • LiF is heated and deposited at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • aluminum is heated and evaporated to a thickness of 100 nm to form a cathode. In this way, an organic EL element is obtained.
  • Example 4 An organic EL element is obtained in the same manner as in Example 2. Note that the hole-transporting layer is spin-coated with an XLP-101 solution and baked on a hot plate at 200 ° C. for 1 hour to form a film with a thickness of 30 nm.
  • Example 5 An organic EL element is obtained in the same manner as in Example 2. Note that the hole-transporting layer is formed by spin-coating a PCz solution and baking on a hot plate at 120 ° C. for 1 hour to form a film with a thickness of 30 nm.
  • Table 4 shows the material structure of each layer in the organic EL element.
  • the light emitting layer forming composition (2) is prepared by stirring the following components until a uniform solution is obtained.
  • Compound (A) 0.02% by weight mCBP 1.98 wt% Toluene 98.00 wt%
  • composition for light emitting layer formation (3) is prepared by stirring the following components until it becomes a uniform solution.
  • Compound (A) 0.02% by weight SPH-101 1.98 wt% Xylene 98.00 wt%
  • composition for light emitting layer formation (4) is prepared by stirring the following components until it becomes a uniform solution.
  • Compound (A) 0.02% by weight DOBNA 1.98 wt% Toluene 98.00 wt%
  • mCBP is 3,3′-bis (N-carbazolyl) -1,1′-biphenyl
  • DOBNA 3,11-di-o-tolyl-5,9-dioxa- 13b-Bolanaphtho [3,2,1-de] anthracene
  • TSPO1 diphenyl [4- (triphenylsilyl) phenyl] phosphine oxide.
  • ND-3202 (Nissan Chemical Industries) solution was spin-coated on a glass substrate on which ITO was deposited to a thickness of 45 nm, and then heated at 50 ° C. for 3 minutes in an air atmosphere, and further 230 ° C., 15 By heating for 50 minutes, an ND-3202 film having a thickness of 50 nm is formed (hole injection layer).
  • an XLP-101 solution is spin-coated and heated on a hot plate at 200 ° C. for 30 minutes in a nitrogen gas atmosphere to form an XLP-101 film having a thickness of 20 nm (hole transport layer).
  • the light emitting layer forming composition (2) is spin-coated, and heated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere to form a 20 nm light emitting layer.
  • the produced multilayer film is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing TSPO1, a molybdenum vapor deposition boat containing LiF, and tungsten containing aluminum.
  • a vapor deposition boat is installed. After depressurizing the vacuum chamber to 5 ⁇ 10 ⁇ 4 Pa, TSPO1 is heated and evaporated to a film thickness of 30 nm to form an electron transport layer.
  • the deposition rate for forming the electron transport layer is 1 nm / second.
  • LiF is heated and deposited at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • aluminum is heated and evaporated to a thickness of 100 nm to form a cathode. In this way, an organic EL element is obtained.
  • Examples 7 and 8> An organic EL device is obtained in the same manner as in Example 6 using the light emitting layer forming composition (3) or (4).
  • Table 5 shows the material structure of each layer in the organic EL element.
  • composition for light emitting layer formation is prepared by stirring the following component until it becomes a uniform solution.
  • Compound (A) 0.02% by weight 2PXZ-TAZ 0.18 wt% mCBP 1.80 wt% Toluene 98.00 wt%
  • composition for light emitting layer formation is prepared by stirring the following component until it becomes a uniform solution.
  • Compound (A) 0.02% by weight 2PXZ-TAZ 0.18 wt% SPH-101 1.80 wt% Xylene 98.00 wt%
  • composition for light emitting layer formation is prepared by stirring the following component until it becomes a uniform solution.
  • Compound (A) 0.02% by weight 2PXZ-TAZ 0.18 wt% DOBNA 1.80 wt% Toluene 98.00 wt%
  • Example 9 An ND-3202 (Nissan Chemical Industries) solution was spin-coated on a glass substrate on which ITO was deposited to a thickness of 45 nm, and then heated at 50 ° C. for 3 minutes in an air atmosphere, and further 230 ° C., 15 By heating for 50 minutes, an ND-3202 film having a thickness of 50 nm is formed (hole injection layer).
  • an XLP-101 solution is spin-coated and heated on a hot plate at 200 ° C. for 30 minutes in a nitrogen gas atmosphere to form an XLP-101 film having a thickness of 20 nm (hole transport layer).
  • the light emitting layer forming composition (5) is spin-coated, and heated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere to form a 20 nm light emitting layer.
  • the produced multilayer film is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing TSPO1, a molybdenum vapor deposition boat containing LiF, and tungsten containing aluminum.
  • a vapor deposition boat is installed. After depressurizing the vacuum chamber to 5 ⁇ 10 ⁇ 4 Pa, TSPO1 is heated and evaporated to a film thickness of 30 nm to form an electron transport layer.
  • the deposition rate for forming the electron transport layer is 1 nm / second.
  • LiF is heated and deposited at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • aluminum is heated and evaporated to a thickness of 100 nm to form a cathode. In this way, an organic EL element is obtained.
  • Example 10 and 11 An organic EL device is obtained in the same manner as in Example 9 using the light emitting layer forming composition (6) or (7).
  • a novel tertiary alkyl-substituted polycyclic aromatic compound by providing a novel tertiary alkyl-substituted polycyclic aromatic compound, it is possible to increase options for materials for organic devices such as materials for organic EL elements.
  • a novel tertiary alkyl-substituted polycyclic aromatic compound as a material for an organic EL element, for example, an organic EL element having excellent luminous efficiency, a display device including the same, a lighting device including the same, and the like are provided. can do.

Abstract

The present invention increases the options for organic device materials such as organic EL element materials by introducing a specific tertiary alkyl group into novel polycyclic aromatic compounds in which a plurality of aromatic rings are linked by boron atoms and oxygen atoms or the like. The present invention also provides an organic EL element that has, for example, excellent luminous efficiency by using a novel cycloalkyl-substituted polycyclic aromatic compound as an organic EL element material.

Description

ターシャリーアルキル置換多環芳香族化合物Tertiary alkyl substituted polycyclic aromatic compounds
 本発明は、ターシャリーアルキル置換多環芳香族化合物と、これを用いた有機電界発光素子、有機電界効果トランジスタおよび有機薄膜太陽電池、並びに、表示装置および照明装置に関する。なお、本明細書中で「有機電界発光素子」のことを「有機EL素子」または単に「素子」と表記することがある。 The present invention relates to a tertiary alkyl-substituted polycyclic aromatic compound, an organic electroluminescent element, an organic field effect transistor and an organic thin film solar cell using the same, and a display device and a lighting device. In the present specification, “organic electroluminescent device” may be referred to as “organic EL device” or simply “device”.
 従来、電界発光する発光素子を用いた表示装置は、小電力化や薄型化が可能なことから、種々研究され、さらに、有機材料から成る有機電界発光素子は、軽量化や大型化が容易なことから活発に検討されてきた。特に、光の三原色の一つである青色などの発光特性を有する有機材料の開発、および正孔、電子などの電荷輸送能(半導体や超電導体となる可能性を有する)を備えた有機材料の開発については、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。 2. Description of the Related Art Conventionally, display devices using light emitting elements that emit electroluminescence have been studied variously because they can be reduced in power and thinned. Further, organic electroluminescent elements made of organic materials can be easily reduced in weight and size. Therefore, it has been actively studied. In particular, the development of organic materials with emission characteristics such as blue, which is one of the three primary colors of light, and the organic materials with charge transporting ability (possibility of becoming semiconductors and superconductors) such as holes and electrons. Development has been actively researched regardless of whether it is a high molecular compound or a low molecular compound.
 有機EL素子は、陽極および陰極からなる一対の電極と、当該一対の電極間に配置され、有機化合物を含む一層または複数の層とからなる構造を有する。有機化合物を含む層には、発光層や、正孔、電子などの電荷を輸送または注入する電荷輸送/注入層などがあるが、これらの層に適当な種々の有機材料が開発されている。 The organic EL element has a structure composed of a pair of electrodes composed of an anode and a cathode, and one layer or a plurality of layers including an organic compound disposed between the pair of electrodes. Examples of the layer containing an organic compound include a light-emitting layer and a charge transport / injection layer that transports or injects charges such as holes and electrons. Various organic materials suitable for these layers have been developed.
 発光層用材料としては、例えばベンゾフルオレン系化合物などが開発されている(国際公開第2004/061047号公報)。また、正孔輸送材料としては、例えばトリフェニルアミン系化合物などが開発されている(特開2001-172232号公報)。また、電子輸送材料としては、例えばアントラセン系化合物などが開発されている(特開2005-170911号公報)。 As a material for the light emitting layer, for example, a benzofluorene compound has been developed (International Publication No. 2004/061047). Further, as a hole transport material, for example, a triphenylamine compound has been developed (Japanese Patent Laid-Open No. 2001-172232). As an electron transport material, for example, an anthracene compound has been developed (Japanese Patent Laid-Open No. 2005-170911).
 また、近年では有機EL素子や有機薄膜太陽電池に使用する材料としてトリフェニルアミン誘導体を改良した材料も報告されている(国際公開第2012/118164号公報)。この材料は既に実用化されていたN,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン(TPD)を参考にして、トリフェニルアミンを構成する芳香環同士を連結することでその平面性を高めたことを特徴とする材料である。この文献では例えばNO連結系化合物(63頁の化合物1)の電荷輸送特性が評価されているが、NO連結系化合物以外の材料の製造方法については記載されておらず、また、連結する元素が異なれば化合物全体の電子状態が異なるため、NO連結系化合物以外の材料から得られる特性も未だ知られていない。このような化合物の例は他にも見られる(国際公開第2011/107186号公報)。例えば、三重項励起子のエネルギー(T1)が大きい共役構造を有する化合物は、より短い波長の燐光を発することができるため、青色の発光層用材料として有益である。また、発光層を挟む電子輸送材料や正孔輸送材料としてもT1が大きい新規共役構造を有する化合物が求められている。 In recent years, a material obtained by improving a triphenylamine derivative as a material used for an organic EL device or an organic thin film solar cell has been reported (International Publication No. 2012/118164). This material is based on N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine (TPD), which has already been put into practical use. It is a material characterized in that its planarity is enhanced by linking aromatic rings constituting triphenylamine. In this document, for example, the charge transport property of a NO-linked compound (Compound 1 on page 63) is evaluated, but a method for producing a material other than the NO-linked compound is not described, and the element to be linked is not described. Since the electronic state of the entire compound is different if it is different, the characteristics obtained from materials other than NO-linked compounds are not yet known. Other examples of such compounds can be found (WO 2011/107186). For example, a compound having a conjugated structure with a large triplet exciton energy (T1) can emit phosphorescence having a shorter wavelength, and thus is useful as a blue light-emitting layer material. In addition, a compound having a novel conjugated structure having a large T1 is also required as an electron transport material or a hole transport material sandwiching the light emitting layer.
 有機EL素子のホスト材料は、一般に、ベンゼンやカルバゾールなどの既存の芳香環を単結合やリン原子やケイ素原子で複数連結した分子である。これは、比較的共役系の小さな芳香環を多数連結することで、ホスト材料に必要とされる大きなHOMO-LUMOギャップ(薄膜におけるバンドギャップEg)が担保されるからである。さらに、燐光材料や熱活性型遅延蛍光材料を用いた有機EL素子のホスト材料には、高い三重項励起エネルギー(E)も必要となるが、分子にドナーあるいはアクセプター性の芳香環や置換基を連結することで、三重項励起状態(T1)のSOMO1およびSOMO2を局在化させ、両軌道間の交換相互作用を小さくすることで、三重項励起エネルギー(E)を向上させることが可能となる。しかし、共役系の小さな芳香環はレドックス安定性が十分ではなく、既存の芳香環を連結していった分子をホスト材料として用いた素子は寿命が十分ではない。一方、拡張π共役系を有する多環芳香族化合物は、一般に、レドックス安定性は優れているが、HOMO-LUMOギャップ(薄膜におけるバンドギャップEg)や三重項励起エネルギー(E)が低いため、ホスト材料に不向きと考えられてきた。 The host material of the organic EL element is generally a molecule in which a plurality of existing aromatic rings such as benzene and carbazole are connected by a single bond, phosphorus atom or silicon atom. This is because a large HOMO-LUMO gap (band gap Eg in a thin film) required for the host material is secured by connecting a large number of relatively conjugated aromatic rings. Furthermore, a host material of an organic EL device using a phosphorescent material or a thermally activated delayed fluorescent material also requires high triplet excitation energy (E T ), but the molecule has a donor or acceptor aromatic ring or substituent. Can be combined to localize SOMO1 and SOMO2 in the triplet excited state (T1) and reduce the exchange interaction between the two orbitals, thereby improving the triplet excitation energy (E T ). It becomes. However, a small conjugated aromatic ring does not have sufficient redox stability, and a device using a molecule formed by connecting existing aromatic rings as a host material does not have a sufficient lifetime. On the other hand, polycyclic aromatic compounds having an extended π-conjugated system generally have excellent redox stability, but have a low HOMO-LUMO gap (band gap Eg in a thin film) and triplet excitation energy (E T ). It has been considered unsuitable for host materials.
国際公開第2004/061047号公報International Publication No. 2004/061047 特開2001-172232号公報JP 2001-172232 JP 特開2005-170911号公報Japanese Unexamined Patent Publication No. 2005-170911 国際公開第2012/118164号公報International Publication No.2012 / 118164 国際公開第2011/107186号公報International Publication No. 2011/107186 国際公開第2015/102118号公報International Publication No.2015 / 102118
 上述するように、有機EL素子に用いられる材料としては種々の材料が開発されているが、有機EL素子用材料の選択肢を増やすために、従来とは異なる化合物からなる材料の開発が望まれている。特に、特許文献1~4で報告されたNO連結系化合物以外の材料から得られる有機EL特性やその製造方法は未だ知られていない。 As described above, various materials have been developed as materials for use in organic EL elements, but in order to increase the choice of materials for organic EL elements, development of materials made of compounds different from conventional ones is desired. Yes. In particular, the organic EL characteristics obtained from materials other than the NO-linked compounds reported in Patent Documents 1 to 4 and the production method thereof are not yet known.
 また、特許文献6では、ホウ素を含む多環芳香族化合物とそれを用いた有機EL素子が報告されているが、更に素子特性を向上させるべく、発光効率や素子寿命を向上させることができる発光層用材料、特にドーパント材料が求められている。 Further, in Patent Document 6, a polycyclic aromatic compound containing boron and an organic EL device using the same are reported. However, in order to further improve device characteristics, light emission that can improve luminous efficiency and device lifetime. There is a need for layer materials, particularly dopant materials.
 本発明者らは、上記課題を解決するため鋭意検討した結果、特定の構造を有するターシャリーアルキル基を導入した多環芳香族化合物を含有する層を一対の電極間に配置して例えば有機EL素子を構成することにより、優れた有機EL素子が得られることを見出し、本発明を完成させた。すなわち本発明は、以下のようなターシャリーアルキル置換多環芳香族化合物またはその多量体、さらには以下のようなターシャリーアルキル置換多環芳香族化合物またはその多量体を含む有機EL素子用材料等の有機デバイス用材料を提供する。 As a result of intensive studies to solve the above problems, the present inventors have arranged a layer containing a polycyclic aromatic compound into which a tertiary alkyl group having a specific structure is introduced between a pair of electrodes, for example, organic EL It has been found that an excellent organic EL device can be obtained by configuring the device, and the present invention has been completed. That is, the present invention provides the following tertiary alkyl-substituted polycyclic aromatic compounds or multimers thereof, and further, organic EL device materials containing the following tertiary alkyl-substituted polycyclic aromatic compounds or multimers thereof, etc. The material for organic devices is provided.
 なお、本明細書において化学構造や置換基を炭素数で表すことがあるが、化学構造に置換基が置換した場合や、置換基にさらに置換基が置換した場合などにおける炭素数は、化学構造や置換基それぞれの炭素数を意味し、化学構造と置換基の合計の炭素数や、置換基と置換基の合計の炭素数を意味するものではない。例えば、「炭素数Xの置換基Aで置換された炭素数Yの置換基B」とは、「炭素数Yの置換基B」に「炭素数Xの置換基A」が置換することを意味し、炭素数Yは置換基Aおよび置換基Bの合計の炭素数ではない。また例えば、「置換基Aで置換された炭素数Yの置換基B」とは、「炭素数Yの置換基B」に「(炭素数限定がない)置換基A」が置換することを意味し、炭素数Yは置換基Aおよび置換基Bの合計の炭素数ではない。 In this specification, the chemical structure or substituent may be represented by the number of carbons. However, the number of carbons in the case where a substituent is substituted on the chemical structure or the substituent is further substituted on the chemical group is the chemical structure. And the number of carbon atoms of each substituent, and does not mean the total number of carbon atoms of the chemical structure and the substituent, or the total number of carbon atoms of the substituent and the substituent. For example, “substituent B of carbon number Y substituted by substituent A of carbon number X” means that “substituent B of carbon number Y” is substituted for “substituent B of carbon number Y”. The carbon number Y is not the total carbon number of the substituent A and the substituent B. Further, for example, “substituent B having carbon number Y substituted with substituent A” means that “substituent A having no carbon number” is substituted for “substituent B having carbon number Y”. The carbon number Y is not the total carbon number of the substituent A and the substituent B.
項1.
 下記一般式(1)で表される多環芳香族化合物、または下記一般式(1)で表される構造を複数有する多環芳香族化合物の多量体。
Figure JPOXMLDOC01-appb-C000005
(上記式(1)中、
 A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
 Yは、B、P、P=O、P=S、Al、Ga、As、Si-RまたはGe-Rであり、前記Si-RおよびGe-RのRは、アリール、アルキルまたはシクロアルキルであり、
 XおよびXは、それぞれ独立して、>O、>N-R、>C(-R)、>Sまたは>Seであり、前記>N-RのRは、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり、前記>C(-R)のRは、水素、置換されていてもよいアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり、また、前記>N-RのRおよび/または前記>C(-R)のRは連結基または単結合により前記A環、B環および/またはC環と結合していてもよく、
 式(1)で表される化合物または構造における少なくとも1つの水素は、重水素、シアノまたはハロゲンで置換されていてもよく、そして、
 式(1)で表される化合物または構造における少なくとも1つの水素は上記一般式(tR)で表される基で置換されており、
 上記式(tR)中、Rは炭素数2~24のアルキルであり、RおよびRはそれぞれ独立して炭素数1~24のアルキルであり、前記アルキルにおける任意の-CH-は-O-で置換されていてもよく、上記式(tR)で表される基は*において上記式(1)で表される化合物または構造における少なくとも1つの水素と置換する。)
Item 1.
A polycyclic aromatic compound represented by the following general formula (1) or a multimer of polycyclic aromatic compounds having a plurality of structures represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
(In the above formula (1),
A ring, B ring and C ring are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings may be substituted;
Y 1 is B, P, P═O, P═S, Al, Ga, As, Si—R or Ge—R, wherein R in Si—R and Ge—R is aryl, alkyl or cycloalkyl And
X 1 and X 2 are each independently>O,>N—R,> C (—R) 2 ,> S or> Se, and R in> N—R may be substituted A preferred aryl, an optionally substituted heteroaryl, an optionally substituted alkyl, or an optionally substituted cycloalkyl, wherein R in> C (—R) 2 is hydrogen, optionally substituted A preferred aryl, an optionally substituted alkyl or an optionally substituted cycloalkyl, and R of> N—R and / or R of> C (—R) 2 is a linking group or a single bond May be bonded to the A ring, B ring and / or C ring by
At least one hydrogen in the compound or structure represented by formula (1) may be substituted with deuterium, cyano or halogen, and
At least one hydrogen in the compound or structure represented by the formula (1) is substituted with a group represented by the general formula (tR);
In the above formula (tR), R a is alkyl having 2 to 24 carbon atoms, R b and R c are each independently alkyl having 1 to 24 carbon atoms, and any —CH 2 — in the alkyl is The group represented by the above formula (tR) which may be substituted with —O— is substituted with at least one hydrogen in the compound or structure represented by the above formula (1) in *. )
項2.
 A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は、置換または無置換のアリール、置換または無置換のヘテロアリール、置換または無置換のジアリールアミノ、置換または無置換のジヘテロアリールアミノ、置換または無置換のアリールヘテロアリールアミノ、置換または無置換のジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、置換または無置換のアルキル、置換または無置換のシクロアルキル、置換または無置換のアルコキシまたは置換または無置換のアリールオキシで置換されていてもよく、また、これらの環はY、XおよびXから構成される上記式中央の縮合2環構造と結合を共有する5員環または6員環を有し、
 Yは、B、P、P=O、P=S、Al、Ga、As、Si-RまたはGe-Rであり、前記Si-RおよびGe-RのRは、アリール、アルキルまたはシクロアルキルであり、
 XおよびXは、それぞれ独立して、>O、>N-R、>C(-R)、>Sまたは>Seであり、前記>N-RのRは、アルキルまたはシクロアルキルで置換されていてもよいアリール、アルキルまたはシクロアルキルで置換されていてもよいヘテロアリール、アルキルまたはシクロアルキルであり、前記>C(-R)のRは、水素、アルキルまたはシクロアルキルで置換されていてもよいアリール、アルキルまたはシクロアルキルであり、また、前記>N-RのRおよび/または前記>C(-R)のRは-O-、-S-、-C(-R)-または単結合により前記A環、B環および/またはC環と結合していてもよく、前記-C(-R)-のRは、水素、アルキルまたはシクロアルキルであり、
 式(1)で表される化合物または構造における少なくとも1つの水素は、重水素、シアノまたはハロゲンで置換されていてもよく、
 多量体の場合には、一般式(1)で表される構造を2または3個有する2または3量体であり、そして、
 式(1)で表される化合物または構造における少なくとも1つの水素は上記一般式(tR)で表される基で置換されており、
 上記式(tR)中、Rは炭素数2~24のアルキルであり、RおよびRはそれぞれ独立して炭素数1~24のアルキルであり、前記アルキルにおける任意の-CH-は-O-で置換されていてもよく、上記式(tR)で表される基は*において上記式(1)で表される化合物または構造における少なくとも1つの水素と置換する、
 項1に記載する多環芳香族化合物またはその多量体。
Item 2.
A ring, B ring and C ring are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings is substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted Or unsubstituted diarylamino, substituted or unsubstituted diheteroarylamino, substituted or unsubstituted arylheteroarylamino, substituted or unsubstituted diarylboryl (the two aryls are bonded via a single bond or a linking group). Optionally substituted), substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkoxy or substituted or unsubstituted aryloxy, and these rings are represented by Y 1 A 5-membered ring sharing a bond with the fused bicyclic structure in the center of the above formula, consisting of X 1 and X 2 Or a 6-membered ring
Y 1 is B, P, P═O, P═S, Al, Ga, As, Si—R or Ge—R, wherein R in Si—R and Ge—R is aryl, alkyl or cycloalkyl And
X 1 and X 2 are each independently>O,>N—R,> C (—R) 2 ,> S or> Se, wherein R in> N—R is alkyl or cycloalkyl Heteroaryl, alkyl or cycloalkyl optionally substituted with aryl, alkyl or cycloalkyl, wherein R in> C (—R) 2 is substituted with hydrogen, alkyl or cycloalkyl Aryl, alkyl or cycloalkyl, and R of> N—R and / or R of> C (—R) 2 is —O—, —S—, —C (—R) It may be bonded to the A ring, B ring and / or C ring by 2 -or a single bond, and R in -C (-R) 2- is hydrogen, alkyl or cycloalkyl,
At least one hydrogen in the compound or structure represented by formula (1) may be substituted with deuterium, cyano or halogen;
In the case of a multimer, it is a dimer or trimer having 2 or 3 structures represented by the general formula (1), and
At least one hydrogen in the compound or structure represented by the formula (1) is substituted with a group represented by the general formula (tR);
In the above formula (tR), R a is alkyl having 2 to 24 carbon atoms, R b and R c are each independently alkyl having 1 to 24 carbon atoms, and any —CH 2 — in the alkyl is The group represented by the above formula (tR) may be substituted with —O—, and the group represented by the above formula (1) in * is substituted with at least one hydrogen in the compound or structure represented by the above formula (1);
Item 9. The polycyclic aromatic compound or a multimer thereof according to Item 1.
項3.
 下記一般式(2)で表される、項1に記載する多環芳香族化合物。
Figure JPOXMLDOC01-appb-C000006
(上記式(2)中、
 R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 Yは、B、P、P=O、P=S、Al、Ga、As、Si-RまたはGe-Rであり、前記Si-RおよびGe-RのRは、炭素数6~12のアリール、炭素数1~6のアルキルまたは炭素数3~14のシクロアルキルであり、
 XおよびXは、それぞれ独立して、>O、>N-R、>C(-R)、>Sまたは>Seであり、前記>N-RのRは、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~14のシクロアルキルであり、前記>C(-R)のRは、水素、炭素数6~12のアリール、炭素数1~6のアルキルまたは炭素数3~14のシクロアルキルであり、また、前記>N-RのRおよび/または前記>C(-R)のRは-O-、-S-、-C(-R)-または単結合により前記a環、b環および/またはc環と結合していてもよく、前記-C(-R)-のRは炭素数1~6のアルキルまたは炭素数3~14のシクロアルキルであり、
 式(2)で表される化合物における少なくとも1つの水素は、重水素、シアノまたはハロゲンで置換されていてもよく、そして、
 式(2)で表される化合物における少なくとも1つの水素は上記一般式(tR)で表される基で置換されており、
 上記式(tR)中、Rは炭素数2~24のアルキルであり、RおよびRはそれぞれ独立して炭素数1~24のアルキルであり、前記アルキルにおける任意の-CH-は-O-で置換されていてもよく、上記式(tR)で表される基は*において上記式(2)で表される化合物における少なくとも1つの水素と置換する。)
Item 3.
The polycyclic aromatic compound according to item 1, represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000006
(In the above formula (2),
R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls are bonded via a single bond or a linking group). The alkyl, cycloalkyl, alkoxy or aryloxy, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, and R 1 to R 11 Adjacent groups may be bonded to form an aryl ring or a heteroaryl ring together with a ring, b ring or c ring, and at least one hydrogen in the formed ring is aryl, heteroaryl, diaryl Amino, diheteroarylamino, arylheteroary Amino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryloxy, wherein at least one hydrogen is Optionally substituted with aryl, heteroaryl, alkyl or cycloalkyl,
Y 1 is B, P, P═O, P═S, Al, Ga, As, Si—R or Ge—R, and R in the Si—R and Ge—R has 6 to 12 carbon atoms. Aryl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 14 carbons;
X 1 and X 2 are each independently>O,>N—R,> C (—R) 2 ,> S or> Se, and R in> N—R has 6 to 12 carbon atoms Aryl, C 2 -C 15 heteroaryl, C 1 -C 6 alkyl or C 3 -C 14 cycloalkyl, wherein R in> C (—R) 2 is hydrogen, C 6 -C 12 Aryl, C 1-6 alkyl or C 3-14 cycloalkyl, and R of> N—R and / or R of> C (—R) 2 is —O—, — S—, —C (—R) 2 —, or a single bond may be bonded to the a ring, b ring and / or c ring, and R in the —C (—R) 2 — may have 1 to 6 alkyl or cycloalkyl having 3 to 14 carbon atoms,
At least one hydrogen in the compound of formula (2) may be substituted with deuterium, cyano or halogen, and
At least one hydrogen in the compound represented by the formula (2) is substituted with a group represented by the general formula (tR);
In the above formula (tR), R a is alkyl having 2 to 24 carbon atoms, R b and R c are each independently alkyl having 1 to 24 carbon atoms, and any —CH 2 — in the alkyl is The group represented by the above formula (tR) may be substituted with —O—, and the group represented by the above formula (tR) is substituted with at least one hydrogen in the compound represented by the above formula (2) in *. )
項4.
 R~R11は、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジアリールボリル(ただしアリールは炭素数6~12のアリールであり、2つのアリールは単結合または連結基を介して結合していてもよい)、炭素数1~24のアルキルまたは炭素数3~24のシクロアルキルであり、また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共に炭素数9~16のアリール環または炭素数6~15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、炭素数6~10のアリール、炭素数1~12のアルキルまたは炭素数3~16のシクロアルキルで置換されていてもよく、
 Yは、B、P、P=O、P=SまたはSi-Rであり、前記Si-RのRは、炭素数6~10のアリール、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、
 XおよびXは、それぞれ独立して、>O、>N-R、>C(-R)または>Sであり、前記>N-RのRは、炭素数6~10のアリール、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、前記>C(-R)のRは、水素、炭素数6~10のアリール、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、
 式(2)で表される化合物における少なくとも1つの水素は、重水素、シアノまたはハロゲンで置換されていてもよく、そして、
 式(2)で表される化合物における少なくとも1つの水素は上記一般式(tR)で表される基で置換されており、
 上記式(tR)中、Rは炭素数2~24のアルキルであり、RおよびRはそれぞれ独立して炭素数1~24のアルキルであり、前記アルキルにおける任意の-CH-は-O-で置換されていてもよく、上記式(tR)で表される基は*において上記式(2)で表される化合物における少なくとも1つの水素と置換する、
 項3に記載する多環芳香族化合物。
Item 4.
R 1 to R 11 are each independently hydrogen, aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, diarylamino (wherein aryl is aryl having 6 to 12 carbon atoms), diarylboryl (provided that Aryl is aryl having 6 to 12 carbons, and two aryls may be bonded via a single bond or a linking group), alkyl having 1 to 24 carbons or cycloalkyl having 3 to 24 carbons In addition, adjacent groups of R 1 to R 11 are bonded to form an aryl ring having 9 to 16 carbon atoms or a heteroaryl ring having 6 to 15 carbon atoms together with the a ring, b ring or c ring. And at least one hydrogen in the ring formed may be substituted with aryl having 6 to 10 carbon atoms, alkyl having 1 to 12 carbon atoms or cycloalkyl having 3 to 16 carbon atoms. At best,
Y 1 is B, P, P═O, P═S or Si—R, wherein R in Si—R is aryl having 6 to 10 carbon atoms, alkyl having 1 to 4 carbon atoms, or 5 to 5 carbon atoms. 10 cycloalkyl,
X 1 and X 2 are each independently>O,>N—R,> C (—R) 2 or> S, where R in> N—R is aryl having 6 to 10 carbon atoms, An alkyl having 1 to 4 carbons or a cycloalkyl having 5 to 10 carbons, wherein R in> C (—R) 2 is hydrogen, aryl having 6 to 10 carbons, alkyl having 1 to 4 carbons or carbon A cycloalkyl having a number of 5 to 10,
At least one hydrogen in the compound of formula (2) may be substituted with deuterium, cyano or halogen, and
At least one hydrogen in the compound represented by the formula (2) is substituted with a group represented by the general formula (tR);
In the above formula (tR), R a is alkyl having 2 to 24 carbon atoms, R b and R c are each independently alkyl having 1 to 24 carbon atoms, and any —CH 2 — in the alkyl is -O- may be substituted, and the group represented by the above formula (tR) is substituted with at least one hydrogen in the compound represented by the above formula (2) in *.
Item 4. The polycyclic aromatic compound according to Item 3.
項5.
 R~R11は、それぞれ独立して、水素、炭素数6~16のアリール、炭素数2~20のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~10のアリール)、ジアリールボリル(ただしアリールは炭素数6~10のアリールであり、2つのアリールは単結合または連結基を介して結合していてもよい)、炭素数1~12のアルキルまたは炭素数3~16のシクロアルキルであり、
 Yは、B、P、P=OまたはP=Sであり、
 XおよびXは、それぞれ独立して、>O、>N-Rまたは>C(-R)であり、前記>N-RのRは、炭素数6~10のアリール、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、前記>C(-R)のRは、水素、炭素数6~10のアリール、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、そして、
 式(2)で表される化合物における少なくとも1つの水素は上記一般式(tR)で表される基で置換されており、
 上記式(tR)中、Rは炭素数2~24のアルキルであり、RおよびRはそれぞれ独立して炭素数1~24のアルキルであり、前記アルキルにおける任意の-CH-は-O-で置換されていてもよく、上記式(tR)で表される基は*において上記式(2)で表される化合物における少なくとも1つの水素と置換する、
 項3に記載する多環芳香族化合物。
Item 5.
R 1 to R 11 are each independently hydrogen, aryl having 6 to 16 carbon atoms, heteroaryl having 2 to 20 carbon atoms, diarylamino (wherein aryl is aryl having 6 to 10 carbon atoms), diarylboryl (provided that Aryl is an aryl having 6 to 10 carbon atoms, and two aryls may be bonded via a single bond or a linking group), an alkyl having 1 to 12 carbons or a cycloalkyl having 3 to 16 carbon atoms ,
Y 1 is B, P, P = O or P = S;
X 1 and X 2 are each independently>O,> N—R or> C (—R) 2 , wherein R in> N—R is aryl having 6 to 10 carbon atoms, 1 carbon atom Or alkyl having 5 to 10 carbon atoms or cycloalkyl having 5 to 10 carbon atoms, and R of> C (—R) 2 is hydrogen, aryl having 6 to 10 carbon atoms, alkyl having 1 to 4 carbon atoms, or 5 to 5 carbon atoms. 10 cycloalkyl, and
At least one hydrogen in the compound represented by the formula (2) is substituted with a group represented by the general formula (tR);
In the above formula (tR), R a is alkyl having 2 to 24 carbon atoms, R b and R c are each independently alkyl having 1 to 24 carbon atoms, and any —CH 2 — in the alkyl is -O- may be substituted, and the group represented by the above formula (tR) is substituted with at least one hydrogen in the compound represented by the above formula (2) in *.
Item 4. The polycyclic aromatic compound according to Item 3.
項6.
 R~R11は、それぞれ独立して、水素、炭素数6~16のアリール、ジアリールアミノ(ただしアリールは炭素数6~10のアリール)、ジアリールボリル(ただしアリールは炭素数6~10のアリールであり、2つのアリールは単結合または連結基を介して結合していてもよい)、炭素数1~12のアルキルまたは炭素数3~16のシクロアルキルであり、
 YはBであり、
 XおよびXは共に>N-Rであるか、または、Xは>N-RであってXは>Oであり、前記>N-RのRは、炭素数6~10のアリール、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、そして、
 式(2)で表される化合物における少なくとも1つの水素は上記一般式(tR)で表される基で置換されており、
 上記式(tR)中、Rは炭素数2~24のアルキルであり、RおよびRはそれぞれ独立して炭素数1~24のアルキルであり、前記アルキルにおける任意の-CH-は-O-で置換されていてもよく、上記式(tR)で表される基は*において上記式(2)で表される化合物における少なくとも1つの水素と置換する、
 項3に記載する多環芳香族化合物。
Item 6.
R 1 to R 11 are each independently hydrogen, aryl having 6 to 16 carbon atoms, diarylamino (where aryl is aryl having 6 to 10 carbon atoms), diarylboryl (where aryl is aryl having 6 to 10 carbon atoms) And two aryls may be bonded via a single bond or a linking group), alkyl having 1 to 12 carbons or cycloalkyl having 3 to 16 carbons,
Y 1 is B,
X 1 and X 2 are both> N—R, or X 1 is> N—R and X 2 is> O, and the R of> N—R has 6 to 10 carbon atoms Aryl, alkyl having 1 to 4 carbons or cycloalkyl having 5 to 10 carbons, and
At least one hydrogen in the compound represented by the formula (2) is substituted with a group represented by the general formula (tR);
In the above formula (tR), R a is alkyl having 2 to 24 carbon atoms, R b and R c are each independently alkyl having 1 to 24 carbon atoms, and any —CH 2 — in the alkyl is -O- may be substituted, and the group represented by the above formula (tR) is substituted with at least one hydrogen in the compound represented by the above formula (2) in *.
Item 4. The polycyclic aromatic compound according to Item 3.
項7.
 上記一般式(tR)で表される基で置換されたジアリールアミノ基、上記一般式(tR)で表される基で置換されたカルバゾリル基または上記一般式(tR)で表される基で置換されたベンゾカルバゾリル基で置換されている、項1~6のいずれかに記載する多環芳香族化合物またはその多量体。
Item 7.
Substituted with a diarylamino group substituted with a group represented by the general formula (tR), a carbazolyl group substituted with a group represented by the general formula (tR), or a group represented by the general formula (tR) Item 7. The polycyclic aromatic compound or the multimer thereof according to any one of Items 1 to 6, which is substituted with a selected benzocarbazolyl group.
項8.
 Rは、上記一般式(tR)で表される基で置換されたジアリールアミノ基または上記一般式(tR)で表される基で置換されたカルバゾリル基である、項3~6のいずれかに記載する多環芳香族化合物。
Item 8.
Any one of Items 3 to 6, wherein R 2 is a diarylamino group substituted with a group represented by the general formula (tR) or a carbazolyl group substituted with a group represented by the general formula (tR) The polycyclic aromatic compound described in 1.
項9.
 前記ハロゲンはフッ素である、項1~8のいずれかに記載する多環芳香族化合物またはその多量体。
Item 9.
Item 9. The polycyclic aromatic compound or the multimer thereof according to any one of Items 1 to 8, wherein the halogen is fluorine.
項10.
 下記構造式のいずれかで表される、項1に記載する多環芳香族化合物。
Figure JPOXMLDOC01-appb-C000007
(各式中の「tBu」はt-ブチル基、「tAm」はt-アミル基である。)
Item 10.
Item 9. The polycyclic aromatic compound according to Item 1, represented by any of the following structural formulas.
Figure JPOXMLDOC01-appb-C000007
(“TBu” in each formula is a t-butyl group, and “tAm” is a t-amyl group.)
項11.
 下記構造式のいずれかで表される、項1に記載する多環芳香族化合物。
Figure JPOXMLDOC01-appb-C000008
(各式中の「Me」はメチル基、「tBu」はt-ブチル基、「tAm」はt-アミル基である。)
Item 11.
Item 9. The polycyclic aromatic compound according to Item 1, represented by any of the following structural formulas.
Figure JPOXMLDOC01-appb-C000008
(In each formula, “Me” is a methyl group, “tBu” is a t-butyl group, and “tAm” is a t-amyl group.)
項12.
 項1~11のいずれかに記載する多環芳香族化合物またはその多量体に反応性置換基が置換した、反応性化合物。
Item 12.
12. A reactive compound, wherein the polycyclic aromatic compound or the multimer thereof according to any one of items 1 to 11 is substituted with a reactive substituent.
項13.
 項12に記載する反応性化合物をモノマーとして高分子化させた高分子化合物、または、当該高分子化合物をさらに架橋させた高分子架橋体。
Item 13.
Item 13. A polymer compound obtained by polymerizing the reactive compound described in Item 12 as a monomer, or a polymer crosslinked product obtained by further crosslinking the polymer compound.
項14.
 主鎖型高分子に項12に記載する反応性化合物を置換させたペンダント型高分子化合物、または、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体。
Item 14.
Item 13. A pendant polymer compound obtained by substituting the reactive compound described in Item 12 for a main chain polymer, or a pendant polymer crosslinked product obtained by further crosslinking the pendant polymer compound.
項15.
 項1~11のいずれかに記載する多環芳香族化合物またはその多量体を含有する、有機デバイス用材料。
Item 15.
Item 12. An organic device material containing the polycyclic aromatic compound or the multimer thereof according to any one of Items 1 to 11.
項16.
 項12に記載する反応性化合物を含有する、有機デバイス用材料。
Item 16.
Item 13. An organic device material comprising the reactive compound according to Item 12.
項17.
 項13に記載する高分子化合物または高分子架橋体を含有する、有機デバイス用材料。
Item 17.
Item 14. An organic device material comprising the polymer compound or polymer crosslinked product according to Item 13.
項18.
 項14に記載するペンダント型高分子化合物またはペンダント型高分子架橋体を含有する、有機デバイス用材料。
Item 18.
Item 15. An organic device material containing the pendant polymer compound or the pendant polymer crosslinked product according to Item 14.
項19.
 前記有機デバイス用材料が、有機電界発光素子用材料、有機電界効果トランジスタ用材料または有機薄膜太陽電池用材料である、項15~18のいずれかに記載する有機デバイス用材料。
Item 19.
Item 19. The organic device material according to any one of Items 15 to 18, wherein the organic device material is an organic electroluminescent element material, an organic field effect transistor material, or an organic thin film solar cell material.
項20.
 前記有機電界発光素子用材料が発光層用材料である、項19に記載する有機デバイス用材料。
Item 20.
Item 20. The organic device material according to Item 19, wherein the organic electroluminescent element material is a light emitting layer material.
項21.
 項1~11のいずれかに記載する多環芳香族化合物またはその多量体と、有機溶媒とを含む、インク組成物。
Item 21.
Item 12. An ink composition comprising the polycyclic aromatic compound or the multimer thereof according to any one of Items 1 to 11 and an organic solvent.
項22.
 項12に記載する反応性化合物と、有機溶媒とを含む、インク組成物。
Item 22.
Item 13. An ink composition comprising the reactive compound according to Item 12 and an organic solvent.
項23.
 主鎖型高分子と、項12に記載する反応性化合物と、有機溶媒とを含む、インク組成物。
Item 23.
An ink composition comprising a main chain type polymer, the reactive compound described in Item 12, and an organic solvent.
項24.
 項13に記載する高分子化合物または高分子架橋体と、有機溶媒とを含む、インク組成物。
Item 24.
Item 14. An ink composition comprising the polymer compound or polymer crosslinked product according to Item 13 and an organic solvent.
項25.
 項14に記載するペンダント型高分子化合物またはペンダント型高分子架橋体と、有機溶媒とを含む、インク組成物。
Item 25.
Item 15. An ink composition comprising the pendant polymer compound or the pendant polymer crosslinked product according to Item 14, and an organic solvent.
項26.
 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、請求項1~11のいずれかに記載する多環芳香族化合物もしくはその多量体、項12に記載する反応性化合物、項13に記載する高分子化合物もしくは高分子架橋体、または、項14に記載するペンダント型高分子化合物もしくはペンダント型高分子架橋体を含有する有機層とを有する、有機電界発光素子。
Item 26.
A pair of electrodes consisting of an anode and a cathode, a polycyclic aromatic compound or a multimer thereof according to any one of claims 1 to 11, disposed between the pair of electrodes, a reactive compound according to claim 12, 13. An organic electroluminescent device comprising the polymer compound or crosslinked polymer described in Item 13 or the organic layer containing the pendant polymer compound or pendant crosslinked polymer described in Item 14.
項27.
 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、項1~11のいずれかに記載する多環芳香族化合物もしくはその多量体、項12に記載する反応性化合物、項13に記載する高分子化合物もしくは高分子架橋体、または、項14に記載するペンダント型高分子化合物もしくはペンダント型高分子架橋体を含有する発光層とを有する、有機電界発光素子。
Item 27.
Item 11. A pair of electrodes composed of an anode and a cathode, a polycyclic aromatic compound according to any one of Items 1 to 11 or a multimer thereof disposed between the pair of electrodes, a reactive compound according to Item 12, an item 13 An organic electroluminescent device comprising the polymer compound or crosslinked polymer described in 1) or the light-emitting layer containing the pendant polymer compound or pendant crosslinked polymer described in Item 14.
項28.
 前記発光層が、ホストと、ドーパントとしての前記多環芳香族化合物、その多量体、反応性化合物、高分子化合物、高分子架橋体、ペンダント型高分子化合物またはペンダント型高分子架橋体とを含む、項27に記載する有機電界発光素子。
Item 28.
The light emitting layer includes a host and the polycyclic aromatic compound as a dopant, a multimer thereof, a reactive compound, a polymer compound, a polymer crosslinked body, a pendant polymer compound, or a pendant polymer crosslinked body. Item 27. The organic electroluminescent device according to Item 27.
項29.
 前記ホストが、アントラセン系化合物、フルオレン系化合物、ジベンゾクリセン系化合物またはピレン系化合物である、項28に記載する有機電界発光素子。
Item 29.
Item 29. The organic electroluminescence device according to Item 28, wherein the host is an anthracene compound, a fluorene compound, a dibenzochrysene compound or a pyrene compound.
項30.
 前記陰極と前記発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、カルバゾール誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体およびキノリノール系金属錯体からなる群から選択される少なくとも1つを含有する、項26~29のいずれかに記載する有機電界発光素子。
Item 30.
An electron transport layer and / or an electron injection layer disposed between the cathode and the light emitting layer, wherein at least one of the electron transport layer and the electron injection layer is a borane derivative, a pyridine derivative, a fluoranthene derivative, BO Item 26 containing at least one selected from the group consisting of a series derivative, anthracene derivative, benzofluorene derivative, phosphine oxide derivative, pyrimidine derivative, carbazole derivative, triazine derivative, benzimidazole derivative, phenanthroline derivative, and quinolinol metal complex 30. The organic electroluminescent device as described in any one of.
項31.
 前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、項30に記載の有機電界発光素子。
Item 31.
The electron transport layer and / or the electron injection layer further includes an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or an alkaline earth metal. Item 30 contains at least one selected from the group consisting of halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, and rare earth metal organic complexes. The organic electroluminescent element of description.
項32.
 正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層のうちの少なくとも1つの層が、各層を形成し得る低分子化合物をモノマーとして高分子化させた高分子化合物、もしくは、当該高分子化合物をさらに架橋させた高分子架橋体、または、各層を形成し得る低分子化合物を主鎖型高分子と反応させたペンダント型高分子化合物、もしくは、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体を含む、項26~31のいずれかに記載する有機電界発光素子。
Item 32.
A polymer compound in which at least one of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer is polymerized using a low molecular compound capable of forming each layer as a monomer, or A polymer crosslinked product obtained by further crosslinking the polymer compound, or a pendant polymer compound obtained by reacting a low molecular compound capable of forming each layer with a main chain polymer, or the pendant polymer compound. Item 32. The organic electroluminescent device according to any one of Items 26 to 31, further comprising a crosslinked pendant polymer crosslinked body.
項33.
 項26~32のいずれかに記載する有機電界発光素子を備えた表示装置または照明装置。
Item 33.
Item 33. A display device or illumination device comprising the organic electroluminescent element according to any one of Items 26 to 32.
項34.
 有機電界発光素子の発光層を塗布形成するための発光層形成用組成物であって、
 第1成分として、少なくとも1種の項1~11のいずれかに記載する多環芳香族化合物またはその多量体と、
 第2成分として、少なくとも1種のホスト材料と、
 第3成分として、少なくとも1種の有機溶媒と、
 を含む発光層形成用組成物。
Item 34.
A composition for forming a light emitting layer for coating and forming a light emitting layer of an organic electroluminescent device,
As the first component, at least one polycyclic aromatic compound or a multimer thereof according to any one of Items 1 to 11,
As a second component, at least one host material;
As a third component, at least one organic solvent;
A composition for forming a light emitting layer.
項35.
 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、項34に記載する発光層形成用組成物を塗布・乾燥して形成した発光層とを有する、有機電界発光素子。
Item 35.
35. An organic electroluminescence device comprising: a pair of electrodes composed of an anode and a cathode; and a light emitting layer disposed between the pair of electrodes and formed by applying and drying the composition for forming a light emitting layer described in Item 34.
 本発明の好ましい態様によれば、例えば有機EL素子用材料等の有機デバイス用材料として用いることができる、新規なターシャリーアルキル置換多環芳香族化合物を提供することができ、このターシャリーアルキル置換多環芳香族化合物を用いることで優れた有機EL素子等の有機デバイスを提供することができる。 According to a preferred embodiment of the present invention, a novel tertiary alkyl-substituted polycyclic aromatic compound that can be used as an organic device material such as an organic EL element material can be provided. By using a polycyclic aromatic compound, an excellent organic device such as an organic EL element can be provided.
 具体的には、本発明者らは、芳香環をホウ素、リン、酸素、窒素、硫黄などのヘテロ元素で連結した多環芳香族化合物(基本骨格部分)が、大きなHOMO-LUMOギャップ(薄膜におけるバンドギャップEg)と高い三重項励起エネルギー(E)を有することを見出した。これは、ヘテロ元素を含む6員環は芳香族性が低いため、共役系の拡張に伴うHOMO-LUMOギャップの減少が抑制されること、ヘテロ元素の電子的な摂動により三重項励起状態(T1)のSOMO1およびSOMO2が局在化することが原因となっていると考えられる。また、本発明に係るヘテロ元素を含有する多環芳香族化合物(基本骨格部分)は、三重項励起状態(T1)におけるSOMO1およびSOMO2の局在化により、両軌道間の交換相互作用が小さくなるため、三重項励起状態(T1)と一重項励起状態(S1)のエネルギー差が小さく、熱活性型遅延蛍光を示すため、有機EL素子の蛍光材料としても有用である。また、高い三重項励起エネルギー(E)を有する材料は、燐光有機EL素子や熱活性型遅延蛍光を利用した有機EL素子の電子輸送層や正孔輸送層としても有用である。更に、これらの多環芳香族化合物(基本骨格部分)は、置換基の導入により、HOMOとLUMOのエネルギーを任意に動かすことができるため、イオン化ポテンシャルや電子親和力を周辺材料に応じて最適化することが可能である。 Specifically, the present inventors have found that a polycyclic aromatic compound (basic skeleton portion) in which aromatic rings are connected with heteroelements such as boron, phosphorus, oxygen, nitrogen, and sulfur has a large HOMO-LUMO gap (in a thin film). It has been found that it has a band gap Eg) and a high triplet excitation energy (E T ). This is because a 6-membered ring containing a hetero element has low aromaticity, so that the reduction of the HOMO-LUMO gap accompanying the expansion of the conjugated system is suppressed, and the triplet excited state (T1 ) SOMO1 and SOMO2 are considered to be localized. In addition, the polycyclic aromatic compound (basic skeleton portion) containing a hetero element according to the present invention has less exchange interaction between both orbitals due to localization of SOMO1 and SOMO2 in the triplet excited state (T1). Therefore, since the energy difference between the triplet excited state (T1) and the singlet excited state (S1) is small and shows thermally activated delayed fluorescence, it is also useful as a fluorescent material for organic EL elements. A material having a high triplet excitation energy (E T ) is also useful as an electron transport layer or a hole transport layer of a phosphorescent organic EL device or an organic EL device using thermally activated delayed fluorescence. Furthermore, since these polycyclic aromatic compounds (basic skeleton parts) can move the energy of HOMO and LUMO arbitrarily by introducing substituents, the ionization potential and electron affinity are optimized according to the surrounding materials. It is possible.
 このような基本骨格部分の特性に加えて、本発明の化合物には上記一般式(tR)で表されるターシャリーアルキル基が導入されることで、以下のような効果を得ることができる。 In addition to the characteristics of the basic skeleton part, the following effects can be obtained by introducing the tertiary alkyl group represented by the general formula (tR) into the compound of the present invention.
 多環芳香族化合物の基本骨格部分は分子の平面性が高く、分子間の相互作用が大きくなるため、例えば有機EL素子の発光層のドーパント材料として使用する場合に、分子の凝集に由来して素子の発光効率が低下することがある。そのため、従来、基本骨格部分にアルキル基を導入して分子間の相互作用を低下させることで、発光効率を改善していた。 The basic skeleton part of the polycyclic aromatic compound has high molecular planarity, and the interaction between molecules is large. For example, when it is used as a dopant material for the light emitting layer of an organic EL device, it is derived from molecular aggregation. The luminous efficiency of the device may be reduced. Therefore, conventionally, the light emission efficiency has been improved by introducing an alkyl group into the basic skeleton portion to reduce the interaction between molecules.
 しかしながら、例えばt-ブチル基は、化合物の溶解性を高めるほどのアルキル鎖長ではなく、化合物の溶解性が低いと、合成や精製などの処理に莫大な有機溶剤が必要となり、作業工数や製造コストが大きくなるので、好ましくない。 However, for example, the t-butyl group is not an alkyl chain length that increases the solubility of the compound. If the solubility of the compound is low, an enormous amount of organic solvent is required for processing such as synthesis and purification, and man-hours and production are reduced. This is not preferable because the cost increases.
 これらの点を鑑み鋭意検討した結果、上記一般式(tR)で表される基を導入することで、分子の凝集が緩和されることにより高い発光効率が得られ、さらに溶解性が高くなるためより低コストで製造が可能な、多環芳香族化合物を見出した。また、上記式(tR)で表される基の導入により有機溶媒への溶解性が向上するため、塗布プロセスを利用した素子作製にも適用することが可能となる。ただし、これらの効果は、分子内に少なくとも1つの式(tR)で表される基が存在していれば得られる効果であり、分子内に、上述した、溶解性を高めるほどのアルキル鎖長ではない置換基(例えばt-ブチル基)が存在することを否定するものではない。なお、本発明は特にこれらの原理に限定されるわけではない。 As a result of intensive studies in view of these points, the introduction of the group represented by the above general formula (tR) results in high luminous efficiency and improved solubility due to relaxation of molecular aggregation. The present inventors have found a polycyclic aromatic compound that can be produced at a lower cost. In addition, since the solubility in an organic solvent is improved by introducing the group represented by the above formula (tR), it can be applied to element fabrication using a coating process. However, these effects are obtained as long as at least one group represented by the formula (tR) is present in the molecule, and the above-described alkyl chain length that increases the solubility in the molecule. There is no denying the presence of substituents that are not (eg, t-butyl groups). The present invention is not particularly limited to these principles.
本実施形態に係る有機EL素子を示す概略断面図である。It is a schematic sectional drawing which shows the organic EL element which concerns on this embodiment.
1.ターシャリーアルキル置換された多環芳香族化合物およびその多量体
 本願発明は、下記一般式(1)で表される多環芳香族化合物、または下記一般式(1)で表される構造を複数有する多環芳香族化合物の多量体であり、好ましくは、下記一般式(2)で表される多環芳香族化合物、または下記一般式(2)で表される構造を複数有する多環芳香族化合物の多量体であり、これらの化合物または構造における少なくとも1つの水素は下記一般式(tR)で表される基で置換されている。
Figure JPOXMLDOC01-appb-C000009
1. Tertiary alkyl substituted polycyclic aromatic compounds and multimers thereof The present invention has a plurality of polycyclic aromatic compounds represented by the following general formula (1) or structures represented by the following general formula (1). A polycyclic aromatic compound, preferably a polycyclic aromatic compound represented by the following general formula (2), or a polycyclic aromatic compound having a plurality of structures represented by the following general formula (2) And at least one hydrogen in these compounds or structures is substituted with a group represented by the following general formula (tR).
Figure JPOXMLDOC01-appb-C000009
 一般式(1)におけるA環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換基で置換されていてもよい。この置換基は、置換または無置換のアリール、置換または無置換のヘテロアリール、置換または無置換のジアリールアミノ、置換または無置換のジヘテロアリールアミノ、置換または無置換のアリールヘテロアリールアミノ(アリールとヘテロアリールを有するアミノ基)、置換または無置換のジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、置換または無置換のアルキル、置換または無置換のシクロアルキル、置換または無置換のアルコキシまたは置換または無置換のアリールオキシが好ましい。これらの基が置換基を有する場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルがあげられる。また、上記アリール環またはヘテロアリール環は、Y、XおよびXから構成される一般式(1)中央の縮合2環構造と結合を共有する5員環または6員環を有することが好ましい。 The A ring, B ring and C ring in the general formula (1) are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings may be substituted with a substituent. This substituent is substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted diarylamino, substituted or unsubstituted diheteroarylamino, substituted or unsubstituted arylheteroarylamino (with aryl Amino groups having heteroaryl), substituted or unsubstituted diarylboryl (two aryls may be linked via a single bond or linking group), substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl Preferred are substituted or unsubstituted alkoxy or substituted or unsubstituted aryloxy. When these groups have a substituent, examples of the substituent include aryl, heteroaryl, alkyl and cycloalkyl. The aryl ring or heteroaryl ring may have a 5-membered or 6-membered ring sharing a bond with the central condensed bicyclic structure composed of Y 1 , X 1 and X 2. preferable.
 ここで、「縮合2環構造」とは、一般式(1)の中央に示した、Y、XおよびXを含んで構成される2つの飽和炭化水素環が縮合した構造を意味する。また、「縮合2環構造と結合を共有する6員環」とは、例えば上記一般式(2)で示すように前記縮合2環構造に縮合したa環(ベンゼン環(6員環))を意味する。また、「(A環である)アリール環またはヘテロアリール環がこの6員環を有する」とは、この6員環だけでA環が形成されるか、または、この6員環を含むようにこの6員環にさらに他の環などが縮合してA環が形成されることを意味する。言い換えれば、ここで言う「6員環を有する(A環である)アリール環またはヘテロアリール環」とは、A環の全部または一部を構成する6員環が、前記縮合2環構造に縮合していることを意味する。「B環(b環)」、「C環(c環)」、また「5員環」についても同様の説明が当てはまる。 Here, the “fused bicyclic structure” means a structure in which two saturated hydrocarbon rings composed of Y 1 , X 1 and X 2 shown in the center of the general formula (1) are condensed. . The “six-membered ring sharing a bond with the condensed bicyclic structure” means, for example, an a ring (benzene ring (6-membered ring)) condensed to the condensed bicyclic structure as shown in the general formula (2). means. In addition, “the aryl ring or heteroaryl ring (which is A ring) has this 6-membered ring” means that the A ring is formed only by this 6-membered ring or includes this 6-membered ring. It means that another ring or the like is further condensed to this 6-membered ring to form A ring. In other words, the term “aryl ring or heteroaryl ring having a 6-membered ring (which is an A ring)” means that the 6-membered ring constituting all or part of the A ring is fused to the condensed bicyclic structure. Means that The same description applies to “B ring (b ring)”, “C ring (c ring)”, and “5-membered ring”.
 一般式(1)におけるA環(またはB環、C環)は、一般式(2)におけるa環とその置換基R~R(またはb環とその置換基R~R11、c環とその置換基R~R)に対応する。すなわち、一般式(2)は、一般式(1)のA~C環として「6員環を有するA~C環」が選択された構造に対応する。その意味で、一般式(2)の各環を小文字のa~cで表した。 A ring (or B ring, C ring) in the general formula (1) is a ring in the general formula (2) and its substituents R 1 to R 3 (or b ring and its substituents R 8 to R 11 , c Corresponding to the ring and its substituents R 4 to R 7 ). That is, the general formula (2) corresponds to a structure in which “A to C rings having a 6-membered ring” are selected as the A to C rings of the general formula (1). In that sense, each ring of the general formula (2) is represented by lower case letters a to c.
 一般式(2)では、a環、b環およびc環の置換基R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。したがって、一般式(2)で表される多環芳香族化合物は、a環、b環およびc環における置換基の相互の結合形態によって、下記式(2-1)および式(2-2)に示すように、化合物を構成する環構造が変化する。各式中のA’環、B’環およびC’環は、一般式(1)におけるそれぞれA環、B環およびC環に対応する。 In the general formula (2), adjacent groups of the substituents R 1 to R 11 of the a ring, b ring, and c ring are bonded to each other to form an aryl ring or a heteroaryl ring together with the a ring, b ring, or c ring. And at least one hydrogen in the formed ring is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryls are connected via a single bond or a linking group). And optionally substituted with alkyl, cycloalkyl, alkoxy or aryloxy, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl . Therefore, the polycyclic aromatic compound represented by the general formula (2) has the following formulas (2-1) and (2-2) depending on the mutual bonding form of the substituents in the a-ring, b-ring and c-ring. As shown, the ring structure constituting the compound changes. A ′ ring, B ′ ring and C ′ ring in each formula correspond to A ring, B ring and C ring in general formula (1), respectively.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式(2-1)および式(2-2)中のA’環、B’環およびC’環は、一般式(2)で説明すれば、置換基R~R11のうちの隣接する基同士が結合して、それぞれa環、b環およびc環と共に形成したアリール環またはヘテロアリール環を示す(a環、b環またはc環に他の環構造が縮合してできた縮合環ともいえる)。なお、式では示してはいないが、a環、b環およびc環の全てがA’環、B’環およびC’環に変化した化合物もある。また、上記式(2-1)および式(2-2)から分かるように、例えば、b環のRとc環のR、b環のR11とa環のR、c環のRとa環のRなどは「隣接する基同士」には該当せず、これらが結合することはない。すなわち、「隣接する基」とは同一環上で隣接する基を意味する。 In the formula (2-1) and the formula (2-2), the A ′ ring, the B ′ ring and the C ′ ring are adjacent to the substituents R 1 to R 11 in the general formula (2). The aryl ring or heteroaryl ring formed together with the a ring, b ring and c ring, respectively (the condensed ring formed by condensing another ring structure to the a ring, b ring or c ring) It can also be said). Although not shown in the formula, there are compounds in which all of the a-ring, b-ring and c-ring are changed to A′-ring, B′-ring and C′-ring. As can be seen from the above formulas (2-1) and (2-2), for example, b-ring R 8 and c-ring R 7 , b-ring R 11 and a-ring R 1 , c-ring R 1 R 4 and R 3 in the a ring do not correspond to “adjacent groups” and they are not bonded. That is, “adjacent group” means an adjacent group on the same ring.
 上記式(2-1)や式(2-2)で表される化合物は、例えばa環(またはb環またはc環)であるベンゼン環に対してベンゼン環、インドール環、ピロール環、ベンゾフラン環またはベンゾチオフェン環が縮合して形成されるA’環(またはB’環またはC’環)を有する化合物であり、形成されてできた縮合環A’(または縮合環B’または縮合環C’)はそれぞれナフタレン環、カルバゾール環、インドール環、ジベンゾフラン環またはジベンゾチオフェン環である。 The compound represented by the above formula (2-1) or formula (2-2) is, for example, a benzene ring, an indole ring, a pyrrole ring, a benzofuran ring with respect to a benzene ring which is a ring (or b ring or c ring). Or a compound having an A ′ ring (or B ′ ring or C ′ ring) formed by condensation of a benzothiophene ring, and a formed condensed ring A ′ (or condensed ring B ′ or condensed ring C ′) Are respectively a naphthalene ring, a carbazole ring, an indole ring, a dibenzofuran ring or a dibenzothiophene ring.
 一般式(1)におけるYは、B、P、P=O、P=S、Al、Ga、As、Si-RまたはGe-Rであり、前記Si-RおよびGe-RのRは、アリール、アルキルまたはシクロアルキルである。P=O、P=S、Si-RまたはGe-Rの場合には、A環、B環またはC環と結合する原子はP、SiまたはGeである。Yは、B、P、P=O、P=SまたはSi-Rが好ましく、Bが特に好ましい。この説明は一般式(2)におけるYでも同じである。 Y 1 in the general formula (1) is B, P, P═O, P═S, Al, Ga, As, Si—R or Ge—R, and R in Si—R and Ge—R is Aryl, alkyl or cycloalkyl. In the case of P═O, P═S, Si—R or Ge—R, the atom bonded to the A ring, B ring or C ring is P, Si or Ge. Y 1 is preferably B, P, P═O, P═S or Si—R, and particularly preferably B. This explanation is the same for Y 1 in the general formula (2).
 一般式(1)におけるXおよびXは、それぞれ独立して、>O、>N-R、>C(-R)、>Sまたは>Seであり、前記>N-RのRは、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり、前記>C(-R)のRは、水素、置換されていてもよいアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり、前記>N-RのRおよび/または前記>C(-R)のRは連結基または単結合により前記B環および/またはC環と結合していてもよく、連結基としては、-O-、-S-または-C(-R)-が好ましい。なお、前記「-C(-R)-」のRは水素、アルキルまたはシクロアルキルである。この説明は一般式(2)におけるXおよびXでも同じである。 X 1 and X 2 in the general formula (1) are each independently>O,>N—R,> C (—R) 2 ,> S or> Se, and R in> N—R is , An optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted alkyl or an optionally substituted cycloalkyl, wherein R in> C (—R) 2 is hydrogen , An optionally substituted aryl, an optionally substituted alkyl or an optionally substituted cycloalkyl, wherein R of> N—R and / or R of> C (—R) 2 are linked It may be bonded to the B ring and / or C ring by a group or a single bond, and the linking group is preferably —O—, —S— or —C (—R) 2 —. R in the “—C (—R) 2 —” is hydrogen, alkyl or cycloalkyl. This description is the same for X 1 and X 2 in the general formula (2).
 ここで、一般式(1)における「前記>N-RのRおよび/または前記>C(-R)のRは連結基または単結合により前記A環、B環および/またはC環と結合している」との規定は、一般式(2)では「前記>N-RのRおよび/または前記>C(-R)のRは-O-、-S-、-C(-R)-または単結合により前記a環、b環および/またはc環と結合している」との規定に対応する。 Here, in the general formula (1), “R of> N—R and / or R of> C (—R) 2 is bonded to the A ring, B ring and / or C ring by a linking group or a single bond. In general formula (2), “the R of> N—R and / or R of> C (—R) 2 is —O—, —S—, —C (—R”. 2 ) or a single bond to the ring a, b and / or c ”.
 この規定は、下記式(2-3-1)で表される、XやXが縮合環B’および縮合環C’に取り込まれた環構造を有する化合物で表現できる。すなわち、例えば一般式(2)におけるb環(またはc環)であるベンゼン環に対してX(またはX)を取り込むようにして他の環が縮合して形成されるB’環(またはC’環)を有する化合物である。形成されてできた縮合環B’(または縮合環C’)は例えばフェノキサジン環、フェノチアジン環またはアクリジン環である。 This definition can be expressed by a compound having a ring structure represented by the following formula (2-3-1) in which X 1 and X 2 are incorporated into the condensed ring B ′ and the condensed ring C ′. That is, for example, a B ′ ring (or a ring formed by condensation of another ring so as to incorporate X 1 (or X 2 ) into the benzene ring which is the b ring (or c ring) in the general formula (2) (or C ′ ring). The formed condensed ring B ′ (or condensed ring C ′) is, for example, a phenoxazine ring, a phenothiazine ring or an acridine ring.
 また、上記規定は、下記式(2-3-2)や式(2-3-3)で表される、Xおよび/またはXが縮合環A’に取り込まれた環構造を有する化合物でも表現できる。すなわち、例えば一般式(2)におけるa環であるベンゼン環に対してX(および/またはX)を取り込むようにして他の環が縮合して形成されるA’環を有する化合物である。形成されてできた縮合環A’は例えばフェノキサジン環、フェノチアジン環またはアクリジン環である。 In addition, the above definition is a compound having a ring structure in which X 1 and / or X 2 is incorporated into the condensed ring A ′, which is represented by the following formula (2-3-2) or formula (2-3-3) But it can be expressed. That is, for example, a compound having an A ′ ring formed by condensing another ring so as to incorporate X 1 (and / or X 2 ) into the benzene ring which is the a ring in the general formula (2). . The formed condensed ring A ′ is, for example, a phenoxazine ring, a phenothiazine ring or an acridine ring.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(1)のA環、B環およびC環である「アリール環」としては、例えば、炭素数6~30のアリール環があげられ、炭素数6~16のアリール環が好ましく、炭素数6~12のアリール環がより好ましく、炭素数6~10のアリール環が特に好ましい。なお、この「アリール環」は、一般式(2)で規定された「R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共に形成されたアリール環」に対応し、また、a環(またはb環、c環)がすでに炭素数6のベンゼン環で構成されているため、これに5員環が縮合した縮合環の合計炭素数9が下限の炭素数となる。 Examples of the “aryl ring” that is A ring, B ring and C ring in the general formula (1) include aryl rings having 6 to 30 carbon atoms, preferably aryl rings having 6 to 16 carbon atoms, An aryl ring having 6 to 12 carbon atoms is more preferable, and an aryl ring having 6 to 10 carbon atoms is particularly preferable. The “aryl ring” is defined as “an aryl ring formed by bonding adjacent groups of R 1 to R 11 together with a ring, b ring or c ring” defined in the general formula (2). In addition, since the a ring (or the b ring or the c ring) is already composed of a benzene ring having 6 carbon atoms, the total number of carbon atoms of the condensed ring in which a 5-membered ring is condensed is a carbon having a lower limit. Number.
 具体的な「アリール環」としては、単環系であるベンゼン環、二環系であるビフェニル環、縮合二環系であるナフタレン環、三環系であるテルフェニル環(m-テルフェニル、o-テルフェニル、p-テルフェニル)、縮合三環系である、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、縮合四環系であるトリフェニレン環、ピレン環、ナフタセン環、縮合五環系であるペリレン環、ペンタセン環などがあげられる。 Specific “aryl rings” include monocyclic benzene rings, bicyclic biphenyl rings, condensed bicyclic naphthalene rings, tricyclic terphenyl rings (m-terphenyl, o -Terphenyl, p-terphenyl), condensed tricyclic systems such as acenaphthylene ring, fluorene ring, phenalene ring, phenanthrene ring, condensed tetracyclic systems such as triphenylene ring, pyrene ring, naphthacene ring, condensed pentacyclic system Examples include a perylene ring and a pentacene ring.
 一般式(1)のA環、B環およびC環である「ヘテロアリール環」としては、例えば、炭素数2~30のヘテロアリール環があげられ、炭素数2~25のヘテロアリール環が好ましく、炭素数2~20のヘテロアリール環がより好ましく、炭素数2~15のヘテロアリール環がさらに好ましく、炭素数2~10のヘテロアリール環が特に好ましい。また、「ヘテロアリール環」としては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などがあげられる。なお、この「ヘテロアリール環」は、一般式(2)で規定された「R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共に形成されたヘテロアリール環」に対応し、また、a環(またはb環、c環)がすでに炭素数6のベンゼン環で構成されているため、これに5員環が縮合した縮合環の合計炭素数6が下限の炭素数となる。 Examples of the “heteroaryl ring” that is A ring, B ring and C ring in the general formula (1) include heteroaryl rings having 2 to 30 carbon atoms, preferably heteroaryl rings having 2 to 25 carbon atoms. A heteroaryl ring having 2 to 20 carbon atoms is more preferable, a heteroaryl ring having 2 to 15 carbon atoms is more preferable, and a heteroaryl ring having 2 to 10 carbon atoms is particularly preferable. Examples of the “heteroaryl ring” include a heterocycle containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituent atom. The “heteroaryl ring” is a heteroaryl formed together with a ring, b ring or c ring by bonding adjacent groups of “R 1 to R 11 ” defined in the general formula (2). In addition, since the a ring (or b ring, c ring) is already composed of a benzene ring having 6 carbon atoms, the total number of carbon atoms of the condensed ring in which a 5-membered ring is condensed is lower limit. The number of carbons.
 具体的な「ヘテロアリール環」としては、例えば、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、フェナザシリン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、フラザン環、チアントレン環などがあげられる。 Specific examples of the “heteroaryl ring” include pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, oxadiazole ring, thiadiazole ring, triazole ring, tetrazole ring, pyrazole ring, Pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, triazine ring, indole ring, isoindole ring, 1H-indazole ring, benzimidazole ring, benzoxazole ring, benzothiazole ring, 1H-benzotriazole ring, quinoline ring, isoquinoline ring Cinnoline ring, quinazoline ring, quinoxaline ring, phthalazine ring, naphthyridine ring, purine ring, pteridine ring, carbazole ring, acridine ring, phenoxathiin ring, phenoxazine ring, phenothiazine ring, phenazine ring, Enazashirin ring, indolizine ring, a furan ring, benzofuran ring, isobenzofuran ring, a dibenzofuran ring, a thiophene ring, benzothiophene ring, dibenzothiophene ring, furazan ring, and thianthrene ring.
 上記「アリール環」または「ヘテロアリール環」における少なくとも1つの水素は、第1の置換基である、置換または無置換の「アリール」、置換または無置換の「ヘテロアリール」、置換または無置換の「ジアリールアミノ」、置換または無置換の「ジヘテロアリールアミノ」、置換または無置換の「アリールヘテロアリールアミノ」、置換または無置換の「ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)」、置換または無置換の「アルキル」、置換または無置換の「シクロアルキル」、置換または無置換の「アルコキシ」、または、置換または無置換の「アリールオキシ」で置換されていてもよいが、この第1の置換基としての「アリール」や「ヘテロアリール」、「ジアリールアミノ」のアリール、「ジヘテロアリールアミノ」のヘテロアリール、「アリールヘテロアリールアミノ」のアリールとヘテロアリール、「ジアリールボリル」のアリール、また「アリールオキシ」のアリールとしては上述した「アリール環」または「ヘテロアリール環」の一価の基があげられる。 At least one hydrogen in the above “aryl ring” or “heteroaryl ring” is the first substituent, which is substituted or unsubstituted “aryl”, substituted or unsubstituted “heteroaryl”, substituted or unsubstituted “Diarylamino”, substituted or unsubstituted “diheteroarylamino”, substituted or unsubstituted “arylheteroarylamino”, substituted or unsubstituted “diarylboryl” (two aryls are connected via a single bond or a linking group) Optionally substituted) ", substituted or unsubstituted" alkyl ", substituted or unsubstituted" cycloalkyl ", substituted or unsubstituted" alkoxy ", or substituted or unsubstituted" aryloxy " As the first substituent, an aryl group such as “aryl”, “heteroaryl”, or “diarylamino” may be used. , "Diheteroarylamino" heteroaryl, "arylheteroarylamino" aryl and heteroaryl, "diarylboryl" aryl, and "aryloxy" aryl include the above-mentioned "aryl ring" or "hetero And a monovalent group of “aryl ring”.
 また第1の置換基としての「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルがあげられる。炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)が好ましく、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)がより好ましく、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)がさらに好ましく、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)が特に好ましい。炭素数1~4のアルキルとしては、メチル基およびt-ブチル基がより好ましいが、t-ブチル基がさらに好ましい。 The “alkyl” as the first substituent may be either linear or branched, and examples thereof include linear alkyl having 1 to 24 carbon atoms and branched alkyl having 3 to 24 carbon atoms. Alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons) is preferable, alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons) is more preferable, and alkyl having 1 to 6 carbons. (Branched alkyl having 3 to 6 carbon atoms) is more preferable, and alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms) is particularly preferable. As the alkyl having 1 to 4 carbon atoms, a methyl group and a t-butyl group are more preferable, but a t-butyl group is more preferable.
 具体的なアルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどがあげられる。 Specific examples of the alkyl include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, and 1-methyl. Pentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propyl Pentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl, n-dodecyl, n- Tridecyl, 1-hexylheptyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-hepta Sill, n- octadecyl, such as n- eicosyl, and the like.
 また第1の置換基としての「シクロアルキル」としては、炭素数3~24のシクロアルキル、炭素数3~20のシクロアルキル、炭素数3~16のシクロアルキル、炭素数3~14のシクロアルキル、炭素数5~10のシクロアルキル、炭素数5~8のシクロアルキル、炭素数5~6のシクロアルキル、炭素数5のシクロアルキルなどがあげられる。 “Cycloalkyl” as the first substituent includes cycloalkyl having 3 to 24 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, cycloalkyl having 3 to 16 carbon atoms, and cycloalkyl having 3 to 14 carbon atoms. Cycloalkyl having 5 to 10 carbon atoms, cycloalkyl having 5 to 8 carbon atoms, cycloalkyl having 5 to 6 carbon atoms, cycloalkyl having 5 carbon atoms and the like.
 具体的なシクロアルキルとしては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、およびこれらの炭素数1~4のアルキル(特にメチル)置換体や、ノルボルネニル、ビシクロ[1.0.1]ブチル、ビシクロ[1.1.1]ペンチル、ビシクロ[2.0.1]ペンチル、ビシクロ[1.2.1]ヘキシル、ビシクロ[3.0.1]ヘキシル、ビシクロ[2.1.2]ヘプチル、ビシクロ[2.2.2]オクチル、アダマンチル、ジアマンチル、デカヒドロナフタレニル、デカヒドロアズレニルなどがあげられる。 Specific examples of the cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, and alkyl (particularly methyl) substituents having 1 to 4 carbon atoms, norbornenyl, bicyclo [1 .0.1] butyl, bicyclo [1.1.1] pentyl, bicyclo [2.0.1] pentyl, bicyclo [1.2.1] hexyl, bicyclo [3.0.1] hexyl, bicyclo [2 1.2] heptyl, bicyclo [2.2.2] octyl, adamantyl, diamantyl, decahydronaphthalenyl, decahydroazulenyl and the like.
 また第1の置換基としての「アルコキシ」としては、例えば、炭素数1~24の直鎖または炭素数3~24の分岐鎖のアルコキシがあげられる。炭素数1~18のアルコキシ(炭素数3~18の分岐鎖のアルコキシ)が好ましく、炭素数1~12のアルコキシ(炭素数3~12の分岐鎖のアルコキシ)がより好ましく、炭素数1~6のアルコキシ(炭素数3~6の分岐鎖のアルコキシ)がさらに好ましく、炭素数1~4のアルコキシ(炭素数3~4の分岐鎖のアルコキシ)が特に好ましい。 The “alkoxy” as the first substituent includes, for example, straight-chain alkoxy having 1 to 24 carbon atoms or branched alkoxy having 3 to 24 carbon atoms. C1-C18 alkoxy (C3-C18 branched alkoxy) is preferred, C1-C12 alkoxy (C3-C12 branched alkoxy) is more preferred, and C1-C6 Of alkoxy (C3-C6 branched chain alkoxy) is more preferable, and C1-C4 alkoxy (C3-C4 branched chain alkoxy) is particularly preferable.
 具体的なアルコキシとしては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシなどがあげられる。 Specific examples of alkoxy include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy and the like.
 また第1の置換基の「ジアリールボリル」中の「アリール」としては、上述したアリールの説明を引用できる。また、この2つのアリールは単結合または連結基(例えば>C(-R)、>O、>Sまたは>N-R)を介して結合していてもよい。ここで、>C(-R)および>N-RのRは、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)であり、当該第1置換基にはさらにアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)が置換していてもよく、これらの基の具体例としては、上述した第1置換基としてのアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシの説明を引用できる。 As the “aryl” in the “diarylboryl” of the first substituent, the above-mentioned explanation of aryl can be cited. The two aryls may be bonded via a single bond or a linking group (eg,> C (—R) 2 ,>O,> S or> N—R). Here, R in> C (—R) 2 and> N—R is aryl, heteroaryl, diarylamino, alkyl, cycloalkyl, alkoxy, or aryloxy (hereinafter, the first substituent), and the first The substituent may be further substituted with aryl, heteroaryl, alkyl or cycloalkyl (hereinafter, the second substituent). Specific examples of these groups include aryl, hetero as the first substituent described above. References can be made to aryl, diarylamino, alkyl, cycloalkyl, alkoxy or aryloxy.
 第1の置換基である、置換または無置換の「アリール」、置換または無置換の「ヘテロアリール」、置換または無置換の「ジアリールアミノ」、置換または無置換の「ジヘテロアリールアミノ」、置換または無置換の「アリールヘテロアリールアミノ」、置換または無置換の「ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)」、置換または無置換の「アルキル」、置換または無置換の「シクロアルキル」、置換または無置換の「アルコキシ」、または、置換または無置換の「アリールオキシ」は、置換または無置換と説明されているとおり、それらにおける少なくとも1つの水素が第2の置換基で置換されていてもよい。この第2の置換基としては、例えば、アリール、ヘテロアリール、アルキルまたはシクロアルキルがあげられ、それらの具体例は、上述した「アリール環」または「ヘテロアリール環」の一価の基、また第1の置換基としての「アルキル」または「シクロアルキル」の説明を参照することができる。また、第2の置換基としてのアリールやヘテロアリールには、それらにおける少なくとも1つの水素がフェニルなどのアリール(具体例は上述した基)やメチルなどのアルキル(具体例は上述した基)またはシクロヘキシルなどのシクロアルキル(具体例は上述した基)で置換された構造も第2の置換基としてのアリールやヘテロアリールに含まれる。その一例としては、第2の置換基がカルバゾリル基の場合には、9位における少なくとも1つの水素がフェニルなどのアリール、メチルなどのアルキルまたはシクロヘキシルなどのシクロアルキルで置換されたカルバゾリル基も第2の置換基としてのヘテロアリールに含まれる。 The first substituent, substituted or unsubstituted “aryl”, substituted or unsubstituted “heteroaryl”, substituted or unsubstituted “diarylamino”, substituted or unsubstituted “diheteroarylamino”, substituted Or unsubstituted “arylheteroarylamino”, substituted or unsubstituted “diarylboryl (two aryls may be bonded via a single bond or a linking group)”, substituted or unsubstituted “alkyl”, Substituted or unsubstituted “cycloalkyl”, substituted or unsubstituted “alkoxy”, or substituted or unsubstituted “aryloxy” means that at least one hydrogen in them is as described as substituted or unsubstituted. It may be substituted with a second substituent. Examples of the second substituent include aryl, heteroaryl, alkyl, and cycloalkyl. Specific examples thereof include the above-described monovalent group of “aryl ring” or “heteroaryl ring”, and Reference may be made to the description of “alkyl” or “cycloalkyl” as one substituent. In addition, in the aryl and heteroaryl as the second substituent, at least one hydrogen in them is aryl such as phenyl (specific examples are the groups described above), alkyl such as methyl (specific examples are the groups described above) or cyclohexyl. A structure substituted with cycloalkyl (specific examples are the groups described above) is also included in the aryl and heteroaryl as the second substituent. For example, when the second substituent is a carbazolyl group, a carbazolyl group in which at least one hydrogen at the 9-position is substituted with an aryl such as phenyl, an alkyl such as methyl, or a cycloalkyl such as cyclohexyl is also used. Is included in the heteroaryl as a substituent.
 一般式(2)のR~R11におけるアリール、ヘテロアリール、ジアリールアミノのアリール、ジヘテロアリールアミノのヘテロアリール、アリールヘテロアリールアミノのアリールとヘテロアリール、ジアリールボリルのアリール、またはアリールオキシのアリールとしては、一般式(1)で説明した「アリール環」または「ヘテロアリール環」の一価の基があげられる。また、R~R11におけるアルキル、シクロアルキルまたはアルコキシとしては、上述した一般式(1)の説明における第1の置換基としての「アルキル」、「シクロアルキル」または「アルコキシ」の説明を参照することができる。さらに、これらの基への置換基としてのアリール、ヘテロアリール、アルキルまたはシクロアルキルも同様である。また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成した場合の、これらの環への置換基であるヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ、および、さらなる置換基であるアリール、ヘテロアリール、アルキルまたはシクロアルキルについても同様である。 Aryl, heteroaryl, diarylamino aryl, diheteroarylamino heteroaryl, arylheteroarylamino aryl and heteroaryl, diarylboryl aryl, or aryloxy aryl in R 1 to R 11 of general formula (2) The monovalent group of “aryl ring” or “heteroaryl ring” described in the general formula (1). For the alkyl, cycloalkyl or alkoxy in R 1 to R 11 , see the description of “alkyl”, “cycloalkyl” or “alkoxy” as the first substituent in the description of the general formula (1). can do. The same applies to aryl, heteroaryl, alkyl or cycloalkyl as a substituent for these groups. In addition, when adjacent groups of R 1 to R 11 are bonded to form an aryl ring or a heteroaryl ring together with a ring, b ring or c ring, heteroaryl which is a substituent for these rings , Diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (two aryls may be linked via a single bond or linking group), alkyl, cycloalkyl, alkoxy or aryloxy, and further The same applies to the substituents aryl, heteroaryl, alkyl or cycloalkyl.
 具体的には、第1置換基の構造の立体障害性、電子供与性および電子吸引性により発光波長を調整することができ、好ましくは以下の構造式で表される基であり、より好ましくは、メチル、t-ブチル、フェニル、o-トリル、p-トリル、2,4-キシリル、2,5-キシリル、2,6-キシリル、2,4,6-メシチル、ジフェニルアミノ、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、カルバゾリル、3,6-ジメチルカルバゾリル、3,6-ジ-t-ブチルカルバゾリルおよびフェノキシであり、さらに好ましくは、メチル、t-ブチル、フェニル、o-トリル、2,6-キシリル、2,4,6-メシチル、ジフェニルアミノ、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、カルバゾリル、3,6-ジメチルカルバゾリルおよび3,6-ジ-t-ブチルカルバゾリルである。合成の容易さの観点からは、立体障害が大きい方が選択的な合成のために好ましく、具体的には、t-ブチル、o-トリル、p-トリル、2,4-キシリル、2,5-キシリル、2,6-キシリル、2,4,6-メシチル、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、3,6-ジメチルカルバゾリルおよび3,6-ジ-t-ブチルカルバゾリルが好ましい。 Specifically, the emission wavelength can be adjusted by the steric hindrance, electron donating property, and electron withdrawing property of the structure of the first substituent, preferably a group represented by the following structural formula, more preferably , Methyl, t-butyl, phenyl, o-tolyl, p-tolyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 2,4,6-mesityl, diphenylamino, di-p- Tolylamino, bis (p- (t-butyl) phenyl) amino, carbazolyl, 3,6-dimethylcarbazolyl, 3,6-di-t-butylcarbazolyl and phenoxy, more preferably methyl, t -Butyl, phenyl, o-tolyl, 2,6-xylyl, 2,4,6-mesityl, diphenylamino, di-p-tolylamino, bis (p- (t-butyl) phenyl) amino, carba Lil, a 3,6-dimethyl-carbazolyl and 3,6-di -t- butyl-carbazolyl. From the viewpoint of ease of synthesis, a larger steric hindrance is preferable for selective synthesis. Specifically, t-butyl, o-tolyl, p-tolyl, 2,4-xylyl, 2,5 -Xylyl, 2,6-xylyl, 2,4,6-mesityl, di-p-tolylamino, bis (p- (t-butyl) phenyl) amino, 3,6-dimethylcarbazolyl and 3,6-di- -T-Butylcarbazolyl is preferred.
 下記構造式において、「Me」はメチル、「tBu」はt-ブチルを表す。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
In the following structural formula, “Me” represents methyl, and “tBu” represents t-butyl.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 一般式(1)のYにおけるSi-RおよびGe-RのRは、アリール、アルキルまたはシクロアルキルであるが、このアリール、アルキルまたはシクロアルキルとしては上述する基があげられる。特に炭素数6~10のアリール(例えばフェニル、ナフチルなど)、炭素数1~4のアルキル(例えばメチル、エチル、t-ブチルなど、特にt-ブチル)または炭素数5~10のシクロアルキル(好ましくはシクロヘキシルやアダマンチル)が好ましい。この説明は一般式(2)におけるYでも同じである。 R in Si—R and Ge—R in Y 1 in the general formula (1) is aryl, alkyl or cycloalkyl, and examples of the aryl, alkyl or cycloalkyl include the groups described above. In particular, aryl having 6 to 10 carbon atoms (for example, phenyl, naphthyl, etc.), alkyl having 1 to 4 carbon atoms (for example, methyl, ethyl, t-butyl, etc., especially t-butyl) or cycloalkyl having 5 to 10 carbon atoms (preferably Is preferably cyclohexyl or adamantyl). This explanation is the same for Y 1 in the general formula (2).
 一般式(1)のXおよびXにおける>N-RのRは、上述した第2の置換基で置換されていてもよい、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、アリールやヘテロアリールにおける少なくとも1つの水素は例えばアルキルまたはシクロアルキルで置換されていてもよい。このアリール、ヘテロアリール、アルキルまたはシクロアルキルとしては上述する基があげられる。特に炭素数6~10のアリール(例えばフェニル、ナフチルなど)、炭素数2~15のヘテロアリール(例えばカルバゾリルなど)、炭素数1~4のアルキル(例えばメチル、エチル、t-ブチルなど、特にt-ブチル)または炭素数5~10のシクロアルキル(好ましくはシクロヘキシルやアダマンチル)が好ましい。この説明は一般式(2)におけるXおよびXでも同じである。 R in> N—R in X 1 and X 2 in the general formula (1) is aryl, heteroaryl, alkyl or cycloalkyl, which may be substituted with the second substituent described above. At least one hydrogen in aryl may be substituted, for example with alkyl or cycloalkyl. Examples of the aryl, heteroaryl, alkyl or cycloalkyl include the groups described above. In particular, aryl having 6 to 10 carbon atoms (eg, phenyl, naphthyl, etc.), heteroaryl having 2 to 15 carbon atoms (eg, carbazolyl, etc.), alkyl having 1 to 4 carbon atoms (eg, methyl, ethyl, t-butyl, etc.) -Butyl) or cycloalkyl having 5 to 10 carbon atoms (preferably cyclohexyl or adamantyl). This description is the same for X 1 and X 2 in the general formula (2).
 一般式(1)のXおよびXにおける>C(-R)のRは、水素、上述した第2の置換基で置換されていてもよい、アリール、アルキルまたはシクロアルキルであり、アリールにおける少なくとも1つの水素は例えばアルキルまたはシクロアルキルで置換されていてもよい。このアリール、アルキルまたはシクロアルキルとしては上述する基があげられる。特に炭素数6~10のアリール(例えばフェニル、ナフチルなど)、炭素数1~4のアルキル(例えばメチル、エチル、t-ブチルなど、特にt-ブチル)または炭素数5~10のシクロアルキル(好ましくはシクロヘキシルやアダマンチル)が好ましい。この説明は一般式(2)におけるXおよびXでも同じである。 > C (-R) 2 of R in X 1 and X 2 in the general formula (1) is hydrogen, may be substituted with a second substituent described above, aryl, alkyl or cycloalkyl, aryl At least one hydrogen in may be substituted, for example with alkyl or cycloalkyl. Examples of the aryl, alkyl or cycloalkyl include the groups described above. In particular, aryl having 6 to 10 carbon atoms (for example, phenyl, naphthyl, etc.), alkyl having 1 to 4 carbon atoms (for example, methyl, ethyl, t-butyl, etc., especially t-butyl) or cycloalkyl having 5 to 10 carbon atoms (preferably Is preferably cyclohexyl or adamantyl). This description is the same for X 1 and X 2 in the general formula (2).
 一般式(1)における連結基である「-C(-R)-」のRは、水素、アルキルまたはシクロアルキルであるが、このアルキルまたはシクロアルキルとしては上述する基があげられる。特に炭素数1~4のアルキル(例えばメチル、エチル、t-ブチルなど、特にt-ブチル)または炭素数5~10のシクロアルキル(好ましくはシクロヘキシルやアダマンチル)が好ましい。この説明は一般式(2)における連結基である「-C(-R)-」でも同じである。 R in “—C (—R) 2 —” which is the linking group in the general formula (1) is hydrogen, alkyl or cycloalkyl, and examples of the alkyl or cycloalkyl include the groups described above. In particular, alkyl having 1 to 4 carbon atoms (for example, methyl, ethyl, t-butyl, etc., especially t-butyl) or cycloalkyl having 5 to 10 carbon atoms (preferably cyclohexyl or adamantyl) is preferable. This explanation is the same for “—C (—R) 2 —” which is a linking group in the general formula (2).
 また、本願発明は、一般式(1)で表される単位構造を複数有する多環芳香族化合物の多量体、好ましくは、一般式(2)で表される単位構造を複数有する多環芳香族化合物の多量体である。多量体は、2~6量体が好ましく、2~3量体がより好ましく、2量体が特に好ましい。多量体は、一つの化合物の中に上記単位構造を複数有する形態であればよく、例えば、上記単位構造が単結合、炭素数1~3のアルキレン基、フェニレン基、ナフチレン基などの連結基で複数結合した形態(連結型多量体)に加えて、上記単位構造に含まれる任意の環(A環、B環またはC環、a環、b環またはc環)を複数の単位構造で共有するようにして結合した形態(環共有型多量体)であってもよく、また、上記単位構造に含まれる任意の環(A環、B環またはC環、a環、b環またはc環)同士が縮合するようにして結合した形態(環縮合型多量体)であってもよいが、環共有型多量体および環縮合型多量体が好ましく、環共有型多量体がより好ましい。 The present invention also provides a multimer of polycyclic aromatic compounds having a plurality of unit structures represented by the general formula (1), preferably a polycyclic aromatic having a plurality of unit structures represented by the general formula (2). A multimer of compounds. The multimer is preferably a dimer to hexamer, more preferably a dimer to trimer, and particularly preferably a dimer. The multimer may be in a form having a plurality of the above unit structures in one compound. For example, the unit structure is a single bond, a linking group such as an alkylene group having 1 to 3 carbon atoms, a phenylene group, or a naphthylene group. In addition to the multiple bonded form (linked multimer), any ring (A ring, B ring or C ring, a ring, b ring or c ring) contained in the unit structure is shared by the multiple unit structures In this way, the bonded form (ring-shared multimer) may be used, and any ring (A ring, B ring or C ring, a ring, b ring or c ring) included in the unit structure may be May be combined in a condensed form (ring-condensed multimer), but a ring-shared multimer and a ring-condensed multimer are preferable, and a ring-shared multimer is more preferable.
 このような多量体としては、例えば、下記式(2-4)、式(2-4-1)、式(2-4-2)、式(2-5-1)~式(2-5-4)または式(2-6)で表される多量体化合物が挙げられる。下記式(2-4)で表される多量体化合物は、一般式(2)で説明すれば、a環であるベンゼン環を共有するようにして、複数の一般式(2)で表される単位構造を一つの化合物中に有する多量体化合物(環共有型多量体)である。また、下記式(2-4-1)で表される多量体化合物は、一般式(2)で説明すれば、a環であるベンゼン環を共有するようにして、二つの一般式(2)で表される単位構造を一つの化合物中に有する多量体化合物(環共有型多量体)である。また、下記式(2-4-2)で表される多量体化合物は、一般式(2)で説明すれば、a環であるベンゼン環を共有するようにして、三つの一般式(2)で表される単位構造を一つの化合物中に有する多量体化合物(環共有型多量体)である。また、下記式(2-5-1)~式(2-5-4)で表される多量体化合物は、一般式(2)で説明すれば、b環(またはc環)であるベンゼン環を共有するようにして、複数の一般式(2)で表される単位構造を一つの化合物中に有する多量体化合物(環共有型多量体)である。また、下記式(2-6)で表される多量体化合物は、一般式(2)で説明すれば、例えばある単位構造のb環(またはa環、c環)であるベンゼン環とある単位構造のb環(またはa環、c環)であるベンゼン環とが縮合するようにして、複数の一般式(2)で表される単位構造を一つの化合物中に有する多量体化合物(環縮合型多量体)である。 Examples of such multimers include the following formula (2-4), formula (2-4-1), formula (2-4-2), formula (2-5-1) to formula (2-5). -4) or a multimeric compound represented by formula (2-6). The multimeric compound represented by the following formula (2-4) can be represented by a plurality of general formulas (2) so as to share a benzene ring which is a ring, as explained by the general formula (2). It is a multimeric compound (ring-shared multimer) having a unit structure in one compound. In addition, the multimeric compound represented by the following formula (2-4-1) can be expressed by two general formulas (2) such that a benzene ring which is a ring is shared, as explained by the general formula (2). A multimeric compound (ring-shared multimer) having a unit structure represented by: Further, the multimeric compound represented by the following formula (2-4-2) can be described by the general formula (2), so that the benzene ring which is the a ring is shared, so that the three general formulas (2) A multimeric compound (ring-shared multimer) having a unit structure represented by: In addition, the multimeric compound represented by the following formulas (2-5-1) to (2-5-4) can be represented by the general formula (2) as a benzene ring which is a b ring (or a c ring). Is a multimeric compound (ring-sharing multimer) having a plurality of unit structures represented by the general formula (2) in one compound. Further, the multimeric compound represented by the following formula (2-6) can be represented by the general formula (2), for example, a benzene ring which is a b ring (or a ring or c ring) having a certain unit structure and a certain unit. A multimeric compound (ring condensation) having a unit structure represented by the general formula (2) in one compound so that a benzene ring which is a ring b (or a ring or c ring) of the structure is condensed. Type multimer).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 多量体化合物は、式(2-4)、式(2-4-1)または式(2-4-2)で表現される多量化形態と、式(2-5-1)~式(2-5-4)のいずれかまたは式(2-6)で表現される多量化形態とが組み合わさった多量体であってもよく、式(2-5-1)~式(2-5-4)のいずれかで表現される多量化形態と、式(2-6)で表現される多量化形態とが組み合わさった多量体であってもよく、式(2-4)、式(2-4-1)または式(2-4-2)で表現される多量化形態と式(2-5-1)~式(2-5-4)のいずれかで表現される多量化形態と式(2-6)で表現される多量化形態とが組み合わさった多量体であってもよい。 The multimeric compound includes a multimerized form represented by formula (2-4), formula (2-4-1) or formula (2-4-2), and formulas (2-5-1) to (2) -5-4) or a multimer in combination with a multimerized form represented by formula (2-6) may be used, and may be represented by formula (2-5-1) to formula (2-5) 4) may be a multimer in which the multimerized form represented by any one of 4) and the multimerized form represented by formula (2-6) are combined. Formula (2-4) and formula (2) -4-1) or the multimerized form represented by formula (2-4-2) and the multimerized form represented by any of formulas (2-5-1) to (2-5-4) A multimer combined with the multimerized form represented by the formula (2-6) may be used.
 また、一般式(1)または(2)で表される多環芳香族化合物およびその多量体の化学構造中の水素は、その全てまたは一部が重水素、シアノまたはハロゲンであってもよい。例えば、式(1)においては、A環、B環、C環(A~C環はアリール環またはヘテロアリール環)、A~C環への置換基、YがSi-RまたはGe-RであるときのR(=アルキル、シクロアルキル、アリール)、ならびに、XおよびXが>N-Rや>C(-R)であるときのR(=アルキル、シクロアルキル、アリール)における水素が重水素、シアノまたはハロゲンで置換されうるが、これらの中でもアリールやヘテロアリールにおける全てまたは一部の水素が重水素、シアノまたはハロゲンで置換された態様が挙げられる。ハロゲンは、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくはフッ素または塩素である。 In addition, all or part of the polycyclic aromatic compounds represented by the general formula (1) or (2) and the chemical structures of the multimers thereof may be deuterium, cyano, or halogen. For example, in the formula (1), A ring, B ring, C ring (A to C rings are aryl rings or heteroaryl rings), a substituent to the A to C rings, Y 1 is Si—R or Ge—R In R (= alkyl, cycloalkyl, aryl) and R when X 1 and X 2 are> N—R or> C (—R) 2 (= alkyl, cycloalkyl, aryl) Hydrogen may be substituted with deuterium, cyano or halogen, and among these, an embodiment in which all or part of hydrogen in aryl or heteroaryl is substituted with deuterium, cyano or halogen can be mentioned. Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably fluorine or chlorine.
 また、本発明に係る多環芳香族化合物およびその多量体は、有機デバイス用材料として用いることができる。有機デバイスとしては、例えば、有機電界発光素子、有機電界効果トランジスタまたは有機薄膜太陽電池などがあげられる。特に、有機電界発光素子においては、発光層のドーパント材料として、YがB、XおよびXが>N-Rである化合物、YがB、Xが>O、Xが>N-Rである化合物、YがB、XおよびXが>Oである化合物が好ましく、発光層のホスト材料として、YがB、Xが>O、Xが>N-Rである化合物、YがB、XおよびXが>Oである化合物が好ましく、電子輸送材料として、YがB、XおよびXが>Oである化合物、YがP=O、XおよびXが>Oである化合物が好ましく用いられる。 Moreover, the polycyclic aromatic compound and its multimer according to the present invention can be used as a material for organic devices. As an organic device, an organic electroluminescent element, an organic field effect transistor, an organic thin film solar cell, etc. are mention | raise | lifted, for example. In particular, in an organic electroluminescent device, as a dopant material for the light emitting layer, a compound in which Y 1 is B, X 1 and X 2 are> N—R, Y 1 is B, X 1 is> O, and X 2 is> A compound in which N—R and a compound in which Y 1 is B, X 1 and X 2 are> O are preferable, and Y 1 is B, X 1 is> O, and X 2 is> N— as the host material of the light-emitting layer. compound is R, Y 1 is B, X 1 and X 2> O compounds wherein preferably, as an electron transport material, compound Y 1 is B, X 1 and X 2 is> O, Y 1 is P Compounds in which ═O, X 1 and X 2 are> O are preferably used.
 また、一般式(1)または(2)で表される多環芳香族化合物およびその多量体の化学構造中の少なくとも1つの水素は下記一般式(tR)で表される基で置換されており、全ての水素または一部の水素が下記式(tR)で表される基であってもよい。
Figure JPOXMLDOC01-appb-C000020
In addition, at least one hydrogen in the chemical structure of the polycyclic aromatic compound represented by the general formula (1) or (2) and the multimer thereof is substituted with a group represented by the following general formula (tR). In addition, all hydrogen or part of hydrogen may be a group represented by the following formula (tR).
Figure JPOXMLDOC01-appb-C000020
 上記式(tR)中、Rは炭素数2~24のアルキルであり、RおよびRはそれぞれ独立して炭素数1~24のアルキルであり、前記アルキルにおける任意の-CH-は-O-で置換されていてもよく、上記式(tR)で表される基は*において上記式(1)または式(2)で表される化合物または構造における少なくとも1つの水素と置換する。 In the above formula (tR), R a is alkyl having 2 to 24 carbon atoms, R b and R c are each independently alkyl having 1 to 24 carbon atoms, and any —CH 2 — in the alkyl is The group represented by the above formula (tR) may be substituted with —O—, and is substituted with at least one hydrogen in the compound or structure represented by the above formula (1) or (2) in *.
 Rの「炭素数2~24のアルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数2~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキル、炭素数2~18のアルキル(炭素数3~18の分岐鎖アルキル)、炭素数2~12のアルキル(炭素数3~12の分岐鎖アルキル)、炭素数2~6のアルキル(炭素数3~6の分岐鎖アルキル)、炭素数2~4のアルキル(炭素数3~4の分岐鎖アルキル)があげられる。 The “alkyl having 2 to 24 carbon atoms” for R a may be either a straight chain or branched chain, for example, a straight chain alkyl having 2 to 24 carbon atoms, a branched alkyl having 3 to 24 carbon atoms, or a carbon number of 2 Alkyl having 18 to 18 carbons (branched alkyl having 3 to 18 carbon atoms), alkyl having 2 to 12 carbon atoms (branched alkyl having 3 to 12 carbon atoms), alkyl having 2 to 6 carbon atoms (branching having 3 to 6 carbon atoms) Chain alkyl) and alkyl having 2 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms).
 RおよびRの「炭素数1~24のアルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキル、炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)があげられる。 The “alkyl having 1 to 24 carbon atoms” for R b and R c may be either linear or branched, for example, linear alkyl having 1 to 24 carbons or branched alkyl having 3 to 24 carbons, C1-C18 alkyl (C3-C18 branched alkyl), C1-C12 alkyl (C3-C12 branched alkyl), C1-C6 alkyl (C3-C3) 6 branched-chain alkyl) and alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms).
 一般式(1)の式(tR)におけるR、RおよびRの炭素数の合計は炭素数4~20が好ましく、炭素数4~10が特に好ましい。 The total number of carbon atoms of R a , R b and R c in the formula (tR) of the general formula (1) is preferably 4 to 20 carbon atoms, and particularly preferably 4 to 10 carbon atoms.
 R、RおよびRの具体的なアルキルとしては、メチル(Rは除く)、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどがあげられる。 Specific alkyl for R a , R b and R c includes methyl (excluding R a ), ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, Isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t -Octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl , N-undecyl, 1-methyldecyl, n-dodecyl, n-tridecyl, 1-hexylheptyl, n-tetradecyl, n-pen Decyl, n- hexadecyl, n- heptadecyl, n- octadecyl, such as n- eicosyl, and the like.
 式(tR)で表される基としては、例えば、t-アミル基、1-エチル-1-メチルプロピル基、1,1-ジエチルプロピル基、1,1-ジメチルブチル基、1-エチル-1-メチルブチル基、1,1,3,3-テトラメチルブチル基、1,1,4-トリメチルペンチル基、1,1,2-トリメチルプロピル基、1,1-ジメチルオクチル基、1,1-ジメチルペンチル基、1,1-ジメチルヘプチル基、1,1,5-トリメチルヘキシル基、1-エチル-1-メチルヘキシル基、1-エチル-1,3-ジメチルブチル基、1,1,2,2-テトラメチルプロピル基、1-ブチル-1-メチルペンチル基、1,1-ジエチルブチル基、1-エチル-1-メチルペンチル基、1,1,3-トリメチルブチル基、1-プロピル-1-メチルペンチル基、1,1,2-トリメチルプロピル基、1-エチル-1,2,2-トリメチルプロピル基、1-プロピル-1-メチルブチル基、1,1-ジメチルヘキシル基などがあげられる。 Examples of the group represented by the formula (tR) include a t-amyl group, 1-ethyl-1-methylpropyl group, 1,1-diethylpropyl group, 1,1-dimethylbutyl group, 1-ethyl-1 -Methylbutyl, 1,1,3,3-tetramethylbutyl, 1,1,4-trimethylpentyl, 1,1,2-trimethylpropyl, 1,1-dimethyloctyl, 1,1-dimethyl Pentyl group, 1,1-dimethylheptyl group, 1,1,5-trimethylhexyl group, 1-ethyl-1-methylhexyl group, 1-ethyl-1,3-dimethylbutyl group, 1,1,2,2 -Tetramethylpropyl group, 1-butyl-1-methylpentyl group, 1,1-diethylbutyl group, 1-ethyl-1-methylpentyl group, 1,1,3-trimethylbutyl group, 1-propyl-1- Methyl pen Group, 1,1,2-trimethyl propyl group, 1-ethyl-1,2,2-trimethyl propyl group, 1-propyl-1-methylbutyl group, 1,1-dimethyl hexyl group.
 本発明のターシャリーアルキル置換の他の形態としては、一般式(1)または(2)で表される多環芳香族化合物およびその多量体が、例えば、式(tR)の基で置換されたジアリールアミノ基、式(tR)の基で置換されたカルバゾリル基または式(tR)の基で置換されたベンゾカルバゾリル基で置換された例が挙げられる。「ジアリールアミノ基」については上記「第1の置換基」として説明した基があげられる。ジアリールアミノ基、カルバゾリル基およびベンゾカルバゾリル基への式(tR)の基の置換形態としては、これらの基におけるアリール環またはベンゼン環の一部または全ての水素が式(tR)の基で置換された例が挙げられる。 As another form of the tertiary alkyl substitution of the present invention, the polycyclic aromatic compound represented by the general formula (1) or (2) and a multimer thereof are substituted with, for example, a group of the formula (tR) Examples are substituted with a diarylamino group, a carbazolyl group substituted with a group of formula (tR), or a benzocarbazolyl group substituted with a group of formula (tR). Examples of the “diarylamino group” include the groups described above as the “first substituent”. Examples of the substitution form of the group of the formula (tR) for the diarylamino group, carbazolyl group and benzocarbazolyl group include a part or all of the aryl ring or benzene ring in these groups as the group of the formula (tR). A substituted example is given.
 また、さらに具体的な例としては、一般式(2)で表される多環芳香族化合物およびその多量体におけるRが、式(tR)の基で置換されたジアリールアミノ基または式(tR)の基で置換されたカルバゾリル基である例が挙げられる。 As a more specific example, R 2 in the polycyclic aromatic compound represented by the general formula (2) and its multimer is a diarylamino group substituted with a group of the formula (tR) or a formula (tR ) Is a carbazolyl group substituted with a group.
 この一例として、下記一般式(2-A)で表される多環芳香族化合物、または下記一般式(2-A)で表される構造を複数有する多環芳香族化合物の多量体が挙げられる。tRは式(tR)の基、nそれぞれ独立しては1~5(好ましくは1)の整数であり、構造式中の各符号の定義は一般式(2)中の各符号の定義と同じである。
Figure JPOXMLDOC01-appb-C000021
An example of this is a polycyclic aromatic compound represented by the following general formula (2-A) or a multimer of polycyclic aromatic compounds having a plurality of structures represented by the following general formula (2-A). . tR is a group of the formula (tR), each n is independently an integer of 1 to 5 (preferably 1), and the definition of each symbol in the structural formula is the same as the definition of each symbol in the general formula (2) It is.
Figure JPOXMLDOC01-appb-C000021
 また、本発明のターシャリーアルキル置換された多環芳香族化合物およびその多量体の具体的な例としては、化合物中の1個または複数個の芳香環における少なくとも1つの水素が1個または複数個の式(tR)の基で置換された化合物が挙げられ、例えば1~2個の式(tR)の基で置換された化合物が挙げられる。 Further, specific examples of the tertiary alkyl-substituted polycyclic aromatic compounds and multimers thereof according to the present invention include one or more hydrogen atoms in one or more aromatic rings in the compound. And a compound substituted with 1 to 2 groups of the formula (tR).
 具体的には、以下の式(1-1-tR)~式(1-4401-tR)で表される化合物が挙げられる。下記式中のnはそれぞれ独立して0~2(ただしすべてのnが0になることはない)、好ましくは1である。なお、下記構造式中の「tR」は式(tR)で表される基、「OPh」はフェノキシ基、「Me」はメチル基を示す。 Specific examples include compounds represented by the following formulas (1-1-tR) to (1-4401-tR). N in the following formulas are each independently 0 to 2 (however, all n are not 0), preferably 1. In the structural formula below, “tR” represents a group represented by the formula (tR), “OPh” represents a phenoxy group, and “Me” represents a methyl group.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 本発明のターシャリーアルキル置換された多環芳香族化合物のさらに具体的な例としては、以下の構造式で表される化合物が挙げられる。なお、下記構造式中の「D」は重水素、「Me」はメチル基、「Et」はエチル基、「Pr」はプロピル基、「Hep」はヘプチル基、「tBu」はt-ブチル基、「tAm」はt-アミル基を示す。 More specific examples of the tertiary alkyl-substituted polycyclic aromatic compound of the present invention include compounds represented by the following structural formula. In the structural formulas below, “D” is deuterium, “Me” is a methyl group, “Et” is an ethyl group, “Pr” is a propyl group, “Hep” is a heptyl group, and “tBu” is a t-butyl group. , “TAm” represents a t-amyl group.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
 本発明に係る一般式(1)で表される多環芳香族化合物およびその多量体は、これらに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物(この高分子化合物を得るための前記モノマーは重合性置換基を有する)、もしくは当該高分子化合物をさらに架橋させた高分子架橋体(この高分子架橋体を得るための前記高分子化合物は架橋性置換基を有する)、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物(このペンダント型高分子化合物を得るための前記反応性化合物は反応性置換基を有する)、もしくは当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体(このペンダント型高分子架橋体を得るための前記ペンダント型高分子化合物は架橋性置換基を有する)としても、有機デバイス用材料、例えば、有機電界発光素子用材料、有機電界効果トランジスタ用材料または有機薄膜太陽電池用材料に用いることができる。 The polycyclic aromatic compound represented by the general formula (1) and the multimer thereof according to the present invention are a polymer compound obtained by polymerizing a reactive compound having a reactive substituent substituted thereon as a monomer (this polymer The monomer for obtaining a molecular compound has a polymerizable substituent), or a polymer crosslinked product obtained by further crosslinking the polymer compound (the polymer compound for obtaining the polymer crosslinked product is a crosslinking substituent) Or a pendant polymer compound obtained by reacting a main chain polymer and the reactive compound (the reactive compound for obtaining the pendant polymer compound has a reactive substituent), Alternatively, a pendant polymer crosslinked product obtained by further crosslinking the pendant polymer compound (the pendant polymer compound for obtaining this pendant polymer crosslinked product is a crosslinkable compound). Even the having) substituent, an organic device material, for example, can be used a material for an organic electroluminescence device, an organic field effect transistor materials or organic thin film solar cell material.
 上述した反応性置換基(前記重合性置換基、前記架橋性置換基、および、ペンダント型高分子を得るための反応性置換基を含み、以下、単に「反応性置換基」とも言う)としては、上記多環芳香族化合物またはその多量体を高分子量化できる置換基、そのようにして得られた高分子化合物をさらに架橋化できる置換基、また、主鎖型高分子にペンダント反応し得る置換基であれば特に限定されないが、以下の構造の置換基が好ましい。各構造式中の*は結合位置を示す。
Figure JPOXMLDOC01-appb-C000117
As the above-mentioned reactive substituent (including the polymerizable substituent, the crosslinkable substituent, and the reactive substituent for obtaining a pendant polymer, hereinafter, also simply referred to as “reactive substituent”) A substituent capable of increasing the molecular weight of the polycyclic aromatic compound or a multimer thereof, a substituent capable of further crosslinking the polymer compound thus obtained, and a substituent capable of pendant reaction with a main chain polymer Although it will not specifically limit if it is group, the substituent of the following structures is preferable. * In each structural formula indicates a bonding position.
Figure JPOXMLDOC01-appb-C000117
 Lは、それぞれ独立して、単結合、-O-、-S-、>C=O、-O-C(=O)-、炭素数1~12のアルキレン、炭素数1~12のオキシアルキレンおよび炭素数1~12のポリオキシアルキレンである。上記置換基の中でも、式(XLS-1)、式(XLS-2)、式(XLS-3)、式(XLS-9)、式(XLS-10)または式(XLS-17)で表される基が好ましく、式(XLS-1)、式(XLS-3)または式(XLS-17)で表される基がより好ましい。 L is each independently a single bond, —O—, —S—,> C═O, —O—C (═O) —, alkylene having 1 to 12 carbons, or oxyalkylene having 1 to 12 carbons. And polyoxyalkylene having 1 to 12 carbon atoms. Among the above substituents, they are represented by the formula (XLS-1), the formula (XLS-2), the formula (XLS-3), the formula (XLS-9), the formula (XLS-10), or the formula (XLS-17). And a group represented by the formula (XLS-1), the formula (XLS-3) or the formula (XLS-17) is more preferable.
 このような高分子化合物、高分子架橋体、ペンダント型高分子化合物およびペンダント型高分子架橋体(以下、単に「高分子化合物および高分子架橋体」とも言う)の用途の詳細については後述する。 Details of the uses of such a polymer compound, polymer crosslinked product, pendant polymer compound and pendant polymer crosslinked product (hereinafter also simply referred to as “polymer compound and polymer crosslinked product”) will be described later.
2.ターシャリーアルキル置換された多環芳香族化合物およびその多量体の製造方法
 一般式(1)や(2)で表される多環芳香族化合物およびその多量体は、例えば国際公開第2015/102118号公報で開示されている方法を応用することで合成することができる。基本的には、まずA環(a環)とB環(b環)およびC環(c環)とを結合基(XやXを含む基)で結合させることで中間体を製造し(第1反応)、その後に、A環(a環)、B環(b環)およびC環(c環)を結合基(Yを含む基)で結合させることで最終生成物を製造することができる(第2反応)。また、これらの反応工程のどこかで、式(tR)で表されるターシャリーアルキル基で置換された原料を用いたり、式(tR)で表されるターシャリーアルキル基を導入する工程を追加したりすることで、所望の位置がターシャリーアルキル置換された本発明の化合物を製造することができる。
2. Process for producing tertiary alkyl-substituted polycyclic aromatic compounds and multimers thereof Polycyclic aromatic compounds represented by general formulas (1) and (2) and multimers thereof are disclosed, for example, in International Publication No. 2015/102118 It can be synthesized by applying the method disclosed in the publication. Basically, an intermediate is first prepared by bonding A ring (a ring), B ring (b ring) and C ring (c ring) with a linking group (a group including X 1 and X 2 ). (First reaction), and then the final product is produced by bonding the A ring (a ring), the B ring (b ring) and the C ring (c ring) with a linking group (a group including Y 1 ). (Second reaction). Also, somewhere in these reaction steps, a step of using a raw material substituted with a tertiary alkyl group represented by the formula (tR) or introducing a tertiary alkyl group represented by the formula (tR) is added. By doing so, the compound of the present invention in which the desired position is tertiary alkyl substituted can be produced.
 第1反応では、例えばエーテル化反応であれば、求核置換反応、ウルマン反応といった一般的反応が利用でき、アミノ化反応で有ればブッフバルト-ハートウィッグ反応といった一般的反応が利用できる。また、第2反応では、タンデムヘテロフリーデルクラフツ反応(連続的な芳香族求電子置換反応、以下同様)が利用できる。 In the first reaction, for example, a general reaction such as a nucleophilic substitution reaction and an Ullmann reaction can be used for an etherification reaction, and a general reaction such as a Buchwald-Hartwig reaction can be used for an amination reaction. In the second reaction, a tandem hetero Friedel-Crafts reaction (continuous aromatic electrophilic substitution reaction, the same applies hereinafter) can be used.
 第2反応は、下記スキーム(1)や(2)に示すように、A環(a環)、B環(b環)およびC環(c環)を結合するYを導入する反応であり、例としてYがホウ素原子、XおよびXが酸素原子の場合を以下に示す。まず、XとXの間の水素原子をn-ブチルリチウム、sec-ブチルリチウムまたはt-ブチルリチウム等でオルトメタル化する。次いで、三塩化ホウ素や三臭化ホウ素等を加え、リチウム-ホウ素の金属交換を行った後、N,N-ジイソプロピルエチルアミン等のブレンステッド塩基を加えることで、タンデムボラフリーデルクラフツ反応させ、目的物を得ることができる。第2反応においては反応を促進させるために三塩化アルミニウム等のルイス酸を加えてもよい。なお、下記スキーム(1)および(2)中、さらにその後のスキーム(3)~(5)中の各構造式における符号の定義は上述した定義と同じである。 As shown in the following schemes (1) and (2), the second reaction is a reaction for introducing Y 1 that connects the A ring (a ring), the B ring (b ring), and the C ring (c ring). As an example, the case where Y 1 is a boron atom and X 1 and X 2 are oxygen atoms is shown below. First, a hydrogen atom and n- butyllithium between X 1 and X 2, ortho-metalated with sec- butyllithium or t- butyl lithium, and the like. Next, boron trichloride, boron tribromide, etc. are added, and after lithium-boron metal exchange is performed, Bronsted base such as N, N-diisopropylethylamine is added to cause tandem Bora Friedel-Crafts reaction. You can get things. In the second reaction, a Lewis acid such as aluminum trichloride may be added to accelerate the reaction. In the following schemes (1) and (2), the definitions of symbols in the structural formulas in the subsequent schemes (3) to (5) are the same as those described above.
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
 なお、上記スキーム(1)や(2)は、一般式(1)や(2)で表される多環芳香族化合物の製造方法を主に示しているが、その多量体については、複数のA環(a環)、B環(b環)およびC環(c環)を有する中間体を用いることで製造することができる。詳細には下記スキーム(3)~(5)で説明する。この場合、使用するブチルリチウム等の試薬の量を2倍量、3倍量とすることで目的物を得ることができる。 In addition, although the said scheme (1) and (2) mainly show the manufacturing method of the polycyclic aromatic compound represented by General formula (1) or (2), about the multimer, about several It can manufacture by using the intermediate body which has A ring (a ring), B ring (b ring), and C ring (c ring). Details will be described in the following schemes (3) to (5). In this case, the target product can be obtained by setting the amount of the reagent such as butyl lithium to be doubled or tripled.
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
 上記スキームにおいては、オルトメタル化により所望の位置へリチウムを導入したが、リチウムを導入したい位置に臭素原子等のハロゲンを導入し、ハロゲン-メタル交換によっても所望の位置へリチウムを導入することができる。 In the above scheme, lithium is introduced to a desired position by orthometalation. However, it is possible to introduce a halogen such as a bromine atom at a position where lithium is to be introduced and introduce lithium to the desired position by halogen-metal exchange. it can.
 その他、一般式(2-A)で表される多環芳香族化合物については、下記スキーム(6)のように、式(tR)で表されるターシャリーアルキル基で置換された中間体を合成し、それを環化させることで所望の位置がターシャリーアルキル置換された多環芳香族化合物を合成できる。スキーム(6)中、Xはハロゲンまたは水素を表し、その他の符号の定義は一般式(2)中の符号の定義と同じである。 In addition, for the polycyclic aromatic compound represented by the general formula (2-A), an intermediate substituted with a tertiary alkyl group represented by the formula (tR) is synthesized as shown in the following scheme (6). Then, by cyclizing it, a polycyclic aromatic compound in which the desired position is tertiary alkyl substituted can be synthesized. In scheme (6), X represents halogen or hydrogen, and the definitions of other symbols are the same as the definitions of symbols in general formula (2).
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
 スキーム(6)中の環化前の中間体も、スキーム(1)等に示されている方法で合成することができる。すなわちBuchwald-Hartwig反応や鈴木カップリング反応、または求核置換反応やUllmann反応などによるエーテル化反応などを適宜組み合わせることで、所望の置換基を有する中間体を合成することができる。これらの反応において、ターシャリーアルキル置換された前駆体となる原料は市販品を利用することもできる。 The intermediate before cyclization in Scheme (6) can also be synthesized by the method shown in Scheme (1) and the like. That is, an intermediate having a desired substituent can be synthesized by appropriately combining Buchwald-Hartwig reaction, Suzuki coupling reaction, or etherification reaction such as nucleophilic substitution reaction or Ullmann reaction. In these reactions, a commercially available product can be used as a raw material to become a tertiary alkyl-substituted precursor.
 ターシャリーアルキル置換されたジフェニルアミノ基を有する一般式(2-A)の化合物は、例えば次のような方法でも合成できる。すなわち、ターシャリーアルキル置換ブロモベンゼンとトリハロゲン化アニリンとをBuchwald-Hartwig反応のようなアミノ化反応によってターシャリーアルキル置換されたジフェニルアミノ基を導入した後、X、XがN-Rである場合にはBuchwald-Hartwig反応のようなアミノ化反応にて、X、XがOである場合にはフェノールを用いたエーテル化によって中間体(M-3)へと誘導し、その後、例えばブチルリチウムのようなメタル化試薬を作用させトランスメタル化した後、三臭化ホウ素のようなハロゲン化ホウ素を作用させた後、ジエチルイソプロピルアミンのようなブレンステッド塩基を作用させることによるタンデムボラフリーデルクラフツ反応によって、一般式(2-A)の化合物を合成することができる。これらの反応は、その他のターシャリーアルキル置換された化合物にも応用することができる。 The compound of the general formula (2-A) having a tertiary alkyl-substituted diphenylamino group can also be synthesized, for example, by the following method. That is, after introducing a tertiary alkyl-substituted diphenylamino group by amination reaction such as Buchwald-Hartwig reaction between tertiary alkyl-substituted bromobenzene and trihalogenated aniline, X 1 and X 2 are N—R. In some cases, in an amination reaction such as Buchwald-Hartwig reaction, when X 1 and X 2 are O, they are induced to an intermediate (M-3) by etherification with phenol, and then For example, tandem volatilization can be achieved by applying a metalation reagent such as butyllithium to transmetallate, then applying a boron halide such as boron tribromide, and then using a Bronsted base such as diethylisopropylamine. Compound of general formula (2-A) by Friedel-Crafts reaction It can be synthesized. These reactions can also be applied to other tertiary alkyl substituted compounds.
3.有機デバイス
 本発明に係るターシャリーアルキル置換された多環芳香族化合物は、有機デバイス用材料として用いることができる。有機デバイスとしては、例えば、有機電界発光素子、有機電界効果トランジスタまたは有機薄膜太陽電池などがあげられる。
3. Organic Device The tertiary alkyl-substituted polycyclic aromatic compound according to the present invention can be used as a material for an organic device. As an organic device, an organic electroluminescent element, an organic field effect transistor, an organic thin film solar cell, etc. are mention | raise | lifted, for example.
3-1.有機電界発光素子
 以下に、本実施形態に係る有機EL素子について図面に基づいて詳細に説明する。図1は、本実施形態に係る有機EL素子を示す概略断面図である。
3-1. Organic electroluminescent element Below, the organic EL element which concerns on this embodiment is demonstrated in detail based on drawing. FIG. 1 is a schematic cross-sectional view showing an organic EL element according to this embodiment.
<有機電界発光素子の構造>
 図1に示された有機EL素子100は、基板101と、基板101上に設けられた陽極102と、陽極102の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた発光層105と、発光層105の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた電子注入層107と、電子注入層107の上に設けられた陰極108とを有する。
<Structure of organic electroluminescence device>
An organic EL element 100 shown in FIG. 1 includes a substrate 101, an anode 102 provided on the substrate 101, a hole injection layer 103 provided on the anode 102, and a hole injection layer 103. The hole transport layer 104 provided, the light emitting layer 105 provided on the hole transport layer 104, the electron transport layer 106 provided on the light emitting layer 105, and the electron transport layer 106 are provided. The electron injection layer 107 and the cathode 108 provided on the electron injection layer 107 are provided.
 なお、有機EL素子100は、作製順序を逆にして、例えば、基板101と、基板101上に設けられた陰極108と、陰極108の上に設けられた電子注入層107と、電子注入層107の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた発光層105と、発光層105の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた陽極102とを有する構成としてもよい。 The organic EL element 100 is manufactured in the reverse order, for example, the substrate 101, the cathode 108 provided on the substrate 101, the electron injection layer 107 provided on the cathode 108, and the electron injection layer 107. An electron transport layer 106 provided on the light emitting layer 105, a light emitting layer 105 provided on the electron transport layer 106, a hole transport layer 104 provided on the light emitting layer 105, and a hole transport layer 104. The hole injection layer 103 provided on the hole injection layer 103 and the anode 102 provided on the hole injection layer 103 may be used.
 上記各層すべてがなくてはならないわけではなく、最小構成単位を陽極102と発光層105と陰極108とからなる構成として、正孔注入層103、正孔輸送層104、電子輸送層106、電子注入層107は任意に設けられる層である。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。 Not all of the above layers are necessary, and the minimum structural unit is composed of the anode 102, the light emitting layer 105, and the cathode 108, and the hole injection layer 103, the hole transport layer 104, the electron transport layer 106, and the electron injection. The layer 107 is an arbitrarily provided layer. Moreover, each said layer may consist of a single layer, respectively, and may consist of multiple layers.
 有機EL素子を構成する層の態様としては、上述する「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」の構成態様の他に、「基板/陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子注入層/陰極」の構成態様であってもよい。 As an aspect of the layer constituting the organic EL element, in addition to the above-described configuration aspect of “substrate / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode”, “Substrate / anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode”, “substrate / anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode”, “substrate / Anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode ”,“ substrate / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ”,“ substrate / Anode / light emitting layer / electron transport layer / electron injection layer / cathode ”,“ substrate / anode / hole transport layer / light emitting layer / electron injection layer / cathode ”,“ substrate / anode / hole transport layer / light emitting layer / electron ” "Transport layer / cathode", "substrate / anode / hole injection layer / emission layer / electron injection layer / cathode", "substrate / anode / hole injection layer / emission layer / electron transport" / Cathode "," substrate / anode / light emitting layer / electron transporting layer / cathode "may be configured aspect of the" substrate / anode / light emitting layer / electron injection layer / cathode ".
<有機電界発光素子における基板>
 基板101は、有機EL素子100の支持体であり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状、またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルム、プラスチックシートなどが用いられる。なかでも、ガラス板、および、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよいので、例えば、0.2mm以上あればよい。厚さの上限値としては、例えば、2mm以下、好ましくは1mm以下である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
<Substrate in organic electroluminescence device>
The substrate 101 is a support for the organic EL element 100, and quartz, glass, metal, plastic, or the like is usually used. The substrate 101 is formed into a plate shape, a film shape, or a sheet shape according to the purpose. For example, a glass plate, a metal plate, a metal foil, a plastic film, a plastic sheet, or the like is used. Of these, glass plates and transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate, polysulfone and the like are preferable. In the case of a glass substrate, soda lime glass, non-alkali glass, or the like is used, and the thickness only needs to be sufficient to maintain the mechanical strength. The upper limit value of the thickness is, for example, 2 mm or less, preferably 1 mm or less. The glass material is preferably alkali-free glass because it is better to have less ions eluted from the glass. However, soda lime glass with a barrier coat such as SiO 2 is also commercially available, so it can be used. it can. Further, the substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one surface in order to improve the gas barrier property, and a synthetic resin plate, film or sheet having a low gas barrier property is used as the substrate 101. When used, it is preferable to provide a gas barrier film.
<有機電界発光素子における陽極>
 陽極102は、発光層105へ正孔を注入する役割を果たす。なお、陽極102と発光層105との間に正孔注入層103および/または正孔輸送層104が設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
<Anode in organic electroluminescence device>
The anode 102 serves to inject holes into the light emitting layer 105. When the hole injection layer 103 and / or the hole transport layer 104 are provided between the anode 102 and the light emitting layer 105, holes are injected into the light emitting layer 105 through these layers. .
 陽極102を形成する材料としては、無機化合物および有機化合物があげられる。無機化合物としては、例えば、金属(アルミニウム、金、銀、ニッケル、パラジウム、クロムなど)、金属酸化物(インジウムの酸化物、スズの酸化物、インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)など)、ハロゲン化金属(ヨウ化銅など)、硫化銅、カーボンブラック、ITOガラスやネサガラスなどがあげられる。有機化合物としては、例えば、ポリ(3-メチルチオフェン)などのポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどがあげられる。その他、有機EL素子の陽極として用いられている物質の中から適宜選択して用いることができる。 Examples of the material for forming the anode 102 include inorganic compounds and organic compounds. Examples of inorganic compounds include metals (aluminum, gold, silver, nickel, palladium, chromium, etc.), metal oxides (indium oxide, tin oxide, indium-tin oxide (ITO), indium-zinc oxide) Products (IZO), metal halides (copper iodide, etc.), copper sulfide, carbon black, ITO glass, Nesa glass, and the like. Examples of the organic compound include polythiophene such as poly (3-methylthiophene), conductive polymer such as polypyrrole and polyaniline, and the like. In addition, it can select suitably from the substances used as an anode of an organic EL element.
 透明電極の抵抗は、発光素子の発光に十分な電流が供給できればよいので限定されないが、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、例えば100~5Ω/□、好ましくは50~5Ω/□の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常50~300nmの間で用いられることが多い。 The resistance of the transparent electrode is not limited as long as it can supply a sufficient current for light emission of the light emitting element, but is preferably low resistance from the viewpoint of power consumption of the light emitting element. For example, an ITO substrate of 300Ω / □ or less functions as an element electrode, but at present, since it is possible to supply a substrate of about 10Ω / □, for example, 100 to 5Ω / □, preferably 50 to 5Ω. It is particularly desirable to use a low resistance product of / □. The thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 50 to 300 nm.
<有機電界発光素子における正孔注入層、正孔輸送層>
 正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たす。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たす。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の一種または二種以上を積層、混合するか、正孔注入・輸送材料と高分子結着剤の混合物により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
<Hole injection layer and hole transport layer in organic electroluminescence device>
The hole injection layer 103 plays a role of efficiently injecting holes moving from the anode 102 into the light emitting layer 105 or the hole transport layer 104. The hole transport layer 104 serves to efficiently transport holes injected from the anode 102 or holes injected from the anode 102 via the hole injection layer 103 to the light emitting layer 105. The hole injection layer 103 and the hole transport layer 104 are each formed by laminating and mixing one kind or two or more kinds of hole injection / transport materials or a mixture of the hole injection / transport material and the polymer binder. Is done. In addition, an inorganic salt such as iron (III) chloride may be added to the hole injection / transport material to form a layer.
 正孔注入・輸送性物質としては電界を与えられた電極間において正極からの正孔を効率よく注入・輸送することが必要で、正孔注入効率が高く、注入された正孔を効率よく輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。 As a hole injection / transport material, it is necessary to efficiently inject and transport holes from the positive electrode between electrodes to which an electric field is applied. The hole injection efficiency is high, and the injected holes are transported efficiently. It is desirable to do. For this purpose, it is preferable to use a substance that has a low ionization potential, a high hole mobility, excellent stability, and is less likely to generate trapping impurities during production and use.
 正孔注入層103および正孔輸送層104を形成する材料としては、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物、p型半導体、有機EL素子の正孔注入層および正孔輸送層に使用されている公知の化合物の中から任意の化合物を選択して用いることができる。それらの具体例は、カルバゾール誘導体(N-フェニルカルバゾール、ポリビニルカルバゾールなど)、ビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、トリアリールアミン誘導体(芳香族第3級アミノを主鎖または側鎖に持つポリマー、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミン、N,N4’-ジフェニル-N,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、N,N,N4’,N4’-テトラ[1,1’-ビフェニル]-4-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、スターバーストアミン誘導体など)、スチルベン誘導体、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ピラゾリン誘導体、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、キノキサリン誘導体(例えば、1,4,5,8,9,12-ヘキサアザトリフェニレン-2,3,6,7,10,11-ヘキサカルボニトリルなど)、ポルフィリン誘導体などの複素環化合物、ポリシランなどである。ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されない。 As a material for forming the hole injection layer 103 and the hole transport layer 104, a compound conventionally used as a charge transport material for holes in a photoconductive material, a p-type semiconductor, and a hole injection layer of an organic EL element are used. And any compound can be selected and used from known compounds used in the hole transport layer. Specific examples thereof include carbazole derivatives (N-phenylcarbazole, polyvinylcarbazole, etc.), biscarbazole derivatives such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), triarylamine derivatives (aromatic tertiary class). Polymer having amino as main chain or side chain, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N′-diphenyl-N, N′-di (3-methylphenyl) -4 , 4′-diaminobiphenyl, N, N′-diphenyl-N, N′-dinaphthyl-4,4′-diaminobiphenyl, N, N′-diphenyl-N, N′-di (3-methylphenyl) -4 , 4'-diphenyl-1,1'-diamine, N, N'-dinaphthyl -N, N'-diphenyl-4,4'-diphenyl-1,1'-diamine, N , N 4 '- diphenyl -N 4, N 4' - bis (9-phenyl -9H- carbazol-3-yl) - [1,1'-biphenyl] -4,4'-diamine, N 4, N 4 , N 4 ′ , N 4 ′ -tetra [1,1′-biphenyl] -4-yl)-[1,1′-biphenyl] -4,4′-diamine, 4,4 ′, 4 ″ -tris ( Triphenylamine derivatives such as 3-methylphenyl (phenyl) amino) triphenylamine, starburstamine derivatives, etc.), stilbene derivatives, phthalocyanine derivatives (metal-free, copper phthalocyanine, etc.), pyrazoline derivatives, hydrazone compounds, benzofuran derivatives, Thiophene derivatives, oxadiazole derivatives, quinoxaline derivatives (eg, 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,1 , 11-hexacarbonitrile, etc.), heterocyclic compounds such as porphyrin derivatives, polysilanes, etc. In the polymer system, polycarbonates, styrene derivatives, polyvinylcarbazole, polysilanes, etc. having the aforementioned monomers in the side chain are preferred, but light emitting devices There is no particular limitation as long as it is a compound that can form a thin film necessary for the fabrication, inject holes from the anode, and further transport holes.
 また、有機半導体の導電性は、そのドーピングにより、強い影響を受けることも知られている。このような有機半導体マトリックス物質は、電子供与性の良好な化合物、または、電子受容性の良好な化合物から構成されている。電子供与物質のドーピングのために、テトラシアノキノンジメタン(TCNQ)または2,3,5,6-テトラフルオロテトラシアノ-1,4-ベンゾキノンジメタン(F4TCNQ)などの強い電子受容体が知られている(例えば、文献「M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(22),3202-3204(1998)」および文献「J.Blochwitz,M.Pheiffer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(6),729-731(1998)」を参照)。これらは、電子供与型ベース物質(正孔輸送物質)における電子移動プロセスによって、いわゆる正孔を生成する。正孔の数および移動度によって、ベース物質の伝導性が、かなり大きく変化する。正孔輸送特性を有するマトリックス物質としては、例えばベンジジン誘導体(TPDなど)またはスターバーストアミン誘導体(TDATAなど)、または、特定の金属フタロシアニン(特に、亜鉛フタロシアニン(ZnPc)など)が知られている(特開2005-167175号公報)。 It is also known that the conductivity of organic semiconductors is strongly influenced by the doping. Such an organic semiconductor matrix material is composed of a compound having a good electron donating property or a compound having a good electron accepting property. Strong electron acceptors such as tetracyanoquinone dimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane (F4TCNQ) are known for doping of electron donor materials. (For example, the document “M. Pfeiffer, A. Beyer, T. Fritz, K. Leo, Appl. Phys. Lett., 73 (22), 3202-3204 (1998)”) and the document “J. Blochwitz, M Pheiffer, T. Fritz, K. Leo, Appl. Phys. Lett., 73 (6), 729-731 (1998)). These generate so-called holes by an electron transfer process in an electron donating base material (hole transport material). Depending on the number and mobility of holes, the conductivity of the base material varies considerably. Known matrix substances having hole transporting properties include, for example, benzidine derivatives (TPD and the like), starburst amine derivatives (TDATA and the like), and specific metal phthalocyanines (particularly zinc phthalocyanine (ZnPc) and the like) ( JP-A-2005-167175).
 上述した正孔注入層用材料および正孔輸送層用材料は、これらに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物、もしくはその高分子架橋体、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物、もしくはそのペンダント型高分子架橋体としても、正孔層用材料に用いることができる。この場合の反応性置換基としては、式(1)で表される多環芳香族化合物での説明を引用できる。
 このような高分子化合物および高分子架橋体の用途の詳細については後述する。
The hole injection layer material and the hole transport layer material described above are a polymer compound obtained by polymerizing a reactive compound substituted with a reactive substituent on the monomer as a monomer, or a crosslinked polymer thereof, or A pendant polymer compound obtained by reacting a main chain polymer and the reactive compound, or a pendant polymer crosslinked product thereof, can also be used for the material for the hole layer. As the reactive substituent in this case, the description of the polycyclic aromatic compound represented by the formula (1) can be cited.
Details of the use of such a polymer compound and polymer crosslinked product will be described later.
<有機電界発光素子における発光層>
 発光層105は、電界を与えられた電極間において、陽極102から注入された正孔と、陰極108から注入された電子とを再結合させることにより発光する層である。発光層105を形成する材料としては、正孔と電子との再結合によって励起されて発光する化合物(発光性化合物)であればよく、安定な薄膜形状を形成することができ、かつ、固体状態で強い発光(蛍光)効率を示す化合物であるのが好ましい。本発明では、発光層用の材料として、ホスト材料と、例えばドーパント材料としての上記一般式(1)で表される多環芳香族化合物とを用いることができる。
<Light emitting layer in organic electroluminescent element>
The light-emitting layer 105 is a layer that emits light by recombining holes injected from the anode 102 and electrons injected from the cathode 108 between electrodes to which an electric field is applied. The material for forming the light-emitting layer 105 may be a compound that emits light by being excited by recombination of holes and electrons (a light-emitting compound), can form a stable thin film shape, and is in a solid state It is preferable that the compound exhibits a strong light emission (fluorescence) efficiency. In the present invention, a host material and, for example, a polycyclic aromatic compound represented by the general formula (1) as a dopant material can be used as the material for the light emitting layer.
 発光層は単一層でも複数層からなってもどちらでもよく、それぞれ発光層用材料(ホスト材料、ドーパント材料)により形成される。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着したり、有機溶媒と共にホスト材料と予め混合してから湿式成膜法により製膜したりしてもよい。 The light emitting layer may be either a single layer or a plurality of layers, each formed of a light emitting layer material (host material, dopant material). Each of the host material and the dopant material may be one kind or a plurality of combinations. The dopant material may be included in the host material as a whole, or may be included partially. As a doping method, it can be formed by a co-evaporation method with a host material. However, it can be formed by a wet film formation method after being pre-mixed with a host material and simultaneously vapor-depositing or pre-mixed with an organic solvent and a host material. A film may be formed.
 ホスト材料の使用量はホスト材料の種類によって異なり、そのホスト材料の特性に合わせて決めればよい。ホスト材料の使用量の目安は、好ましくは発光層用材料全体の50~99.999重量%であり、より好ましくは80~99.95重量%であり、さらに好ましくは90~99.9重量%である。 ∙ The amount of host material used depends on the type of host material and can be determined according to the characteristics of the host material. The standard of the amount of the host material used is preferably 50 to 99.999% by weight of the entire light emitting layer material, more preferably 80 to 99.95% by weight, and still more preferably 90 to 99.9% by weight. It is.
 ドーパント材料の使用量はドーパント材料の種類によって異なり、そのドーパント材料の特性に合わせて決めればよい。ドーパントの使用量の目安は、好ましくは発光層用材料全体の0.001~50重量%であり、より好ましくは0.05~20重量%であり、さらに好ましくは0.1~10重量%である。上記の範囲であれば、例えば、濃度消光現象を防止できるという点で好ましい。 The amount of dopant material used depends on the type of dopant material, and can be determined according to the characteristics of the dopant material. The standard of the amount of dopant used is preferably 0.001 to 50% by weight, more preferably 0.05 to 20% by weight, and further preferably 0.1 to 10% by weight of the entire material for the light emitting layer. is there. The above range is preferable in that, for example, the concentration quenching phenomenon can be prevented.
 ホスト材料としては、以前から発光体として知られていたアントラセン、ピレン、ジベンゾクリセンまたはフルオレンなどの縮合環誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体などがあげられる。特に、アントラセン系化合物、フルオレン系化合物またはジベンゾクリセン系化合物が好ましい。 Host materials include fused ring derivatives such as anthracene, pyrene, dibenzochrysene or fluorene that have been known as light emitters, bisstyryl derivatives such as bisstyrylanthracene derivatives and distyrylbenzene derivatives, tetraphenylbutadiene derivatives, and cyclopentadiene derivatives. Etc. In particular, an anthracene compound, a fluorene compound, or a dibenzochrysene compound is preferable.
<アントラセン系化合物>
 ホストとしてのアントラセン系化合物は、例えば下記一般式(3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000124
<Anthracene compounds>
An anthracene compound as a host is, for example, a compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000124
 式(3)中、
 XおよびArは、それぞれ独立して、水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいジアリールアミノ、置換されていてもよいジヘテロアリールアミノ、置換されていてもよいアリールヘテロアリールアミノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアルケニル、置換されていてもよいアルコキシ、置換されていてもよいアリールオキシ、置換されていてもよいアリールチオまたは置換されていてもよいシリルであり、全てのXおよびArは同時に水素になることはなく、
 式(3)で表される化合物における少なくとも1つの水素はハロゲン、シアノ、重水素または置換されていてもよいヘテロアリールで置換されていてもよい。
In formula (3),
X and Ar 4 are each independently hydrogen, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted diarylamino, optionally substituted diheteroarylamino, Arylheteroarylamino which may be substituted, alkyl which may be substituted, cycloalkyl which may be substituted, alkenyl which may be substituted, alkoxy which may be substituted, which may be substituted Aryloxy, optionally substituted arylthio or optionally substituted silyl, and all X and Ar 4 are not simultaneously hydrogen;
At least one hydrogen in the compound represented by the formula (3) may be substituted with halogen, cyano, deuterium or an optionally substituted heteroaryl.
 また、式(3)で表される構造を単位構造として多量体(好ましくは二量体)を形成してもよい。この場合、例えば式(3)で表される単位構造同士がXを介して結合する形態が挙げられ、このXとしては単結合、アリーレン(フェニレン、ビフェニレンおよびナフチレン等)およびヘテロアリーレン(ピリジン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、ベンゾカルバゾール環およびフェニル置換カルバゾール環などが二価の結合価を有する基)等が挙げられる。 Further, a multimer (preferably a dimer) may be formed with the structure represented by the formula (3) as a unit structure. In this case, for example, a form in which the unit structures represented by the formula (3) are bonded to each other via X. Examples of X include a single bond, arylene (such as phenylene, biphenylene, and naphthylene), and heteroarylene (a pyridine ring, A group having a divalent valence such as a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring, a benzocarbazole ring and a phenyl-substituted carbazole ring).
 上記アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルコキシ、アリールオキシ、アリールチオまたはシリルの詳細は、以下の好ましい態様の欄で説明する。また、これらへの置換基としては、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルコキシ、アリールオキシ、アリールチオまたはシリルなどが挙げられ、これらの詳細も以下の好ましい態様の欄で説明する。 Details of the aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkoxy, aryloxy, arylthio or silyl will be described in the following preferred embodiments. Examples of the substituent to these include aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkoxy, aryloxy, arylthio or silyl. Details will also be described in the preferred embodiments below.
 上記アントラセン系化合物の好ましい態様を以下に説明する。下記構造における符号の定義は上述する定義と同じである。
Figure JPOXMLDOC01-appb-C000125
The preferable aspect of the said anthracene type compound is demonstrated below. The definition of the code | symbol in the following structure is the same as the definition mentioned above.
Figure JPOXMLDOC01-appb-C000125
 一般式(3)では、Xはそれぞれ独立して上記式(3-X1)、式(3-X2)または式(3-X3)で表される基であり、式(3-X1)、式(3-X2)または式(3-X3)で表される基は*において式(3)のアントラセン環と結合する。好ましくは、2つのXが同時に式(3-X3)で表される基になることはない。より好ましくは2つのXが同時に式(3-X2)で表される基になることもない。 In the general formula (3), each X is independently a group represented by the above formula (3-X1), formula (3-X2) or formula (3-X3), and the formula (3-X1), formula (3) The group represented by (3-X2) or formula (3-X3) is bonded to the anthracene ring of formula (3) at *. Preferably, two Xs do not become a group represented by the formula (3-X3) at the same time. More preferably, two Xs do not simultaneously become a group represented by the formula (3-X2).
 また、式(3)で表される構造を単位構造として多量体(好ましくは二量体)を形成してもよい。この場合、例えば式(3)で表される単位構造同士がXを介して結合する形態が挙げられ、このXとしては単結合、アリーレン(フェニレン、ビフェニレンおよびナフチレン等)およびヘテロアリーレン(ピリジン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、ベンゾカルバゾール環およびフェニル置換カルバゾール環などが二価の結合価を有する基)等が挙げられる。 Further, a multimer (preferably a dimer) may be formed with the structure represented by the formula (3) as a unit structure. In this case, for example, a form in which the unit structures represented by the formula (3) are bonded to each other via X. Examples of X include a single bond, arylene (such as phenylene, biphenylene, and naphthylene), and heteroarylene (a pyridine ring, A group having a divalent valence such as a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring, a benzocarbazole ring and a phenyl-substituted carbazole ring).
 式(3-X1)および式(3-X2)におけるナフチレン部位は1つのベンゼン環で縮合されていてもよい。このようにして縮合した構造は以下のとおりである。
Figure JPOXMLDOC01-appb-C000126
The naphthylene moiety in formula (3-X1) and formula (3-X2) may be condensed with one benzene ring. The structure thus condensed is as follows.
Figure JPOXMLDOC01-appb-C000126
 ArおよびArは、それぞれ独立して、水素、フェニル、ビフェニリル、テルフェニリル、クアテルフェニリル、ナフチル、フェナントリル、フルオレニル、ベンゾフルオレニル、クリセニル、トリフェニレニル、ピレニリル、または、上記式(A)で表される基(カルバゾリル基、ベンゾカルバゾリル基およびフェニル置換カルバゾリル基も含む)である。なお、ArまたはArが式(A)で表される基である場合は、式(A)で表される基はその*において式(3-X1)または式(3-X2)中のナフタレン環と結合する。 Ar 1 and Ar 2 are each independently hydrogen, phenyl, biphenylyl, terphenylyl, quaterphenylyl, naphthyl, phenanthryl, fluorenyl, benzofluorenyl, chrycenyl, triphenylenyl, pyrenylyl, or the above formula (A) Represented groups (including carbazolyl, benzocarbazolyl and phenyl-substituted carbazolyl groups). In the case where Ar 1 or Ar 2 is a group represented by the formula (A), the group represented by the formula (A) is the same as that in the formula (3-X1) or (3-X2) Bonds with the naphthalene ring.
 Arは、フェニル、ビフェニリル、テルフェニリル、クアテルフェニリル、ナフチル、フェナントリル、フルオレニル、ベンゾフルオレニル、クリセニル、トリフェニレニル、ピレニリル、または、上記式(A)で表される基(カルバゾリル基、ベンゾカルバゾリル基およびフェニル置換カルバゾリル基も含む)である。なお、Arが式(A)で表される基である場合は、式(A)で表される基はその*において式(3-X3)中の直線で表される単結合と結合する。すなわち、式(3)のアントラセン環と式(A)で表される基が直接結合する。 Ar 3 is phenyl, biphenylyl, terphenylyl, quaterphenylyl, naphthyl, phenanthryl, fluorenyl, benzofluorenyl, chrysenyl, triphenylenyl, pyrenylyl, or a group represented by the above formula (A) (carbazolyl group, benzocarbyl group) A zolyl group and a phenyl-substituted carbazolyl group). In addition, when Ar 3 is a group represented by the formula (A), the group represented by the formula (A) is bonded to a single bond represented by a straight line in the formula (3-X3) at *. . That is, the anthracene ring of formula (3) and the group represented by formula (A) are directly bonded.
 また、Arは置換基を有していてもよく、Arにおける少なくとも1つの水素はさらに炭素数1~4のアルキル、炭素数5~10のシクロアルキル、フェニル、ビフェニリル、テルフェニリル、ナフチル、フェナントリル、フルオレニル、クリセニル、トリフェニレニル、ピレニリル、または、上記式(A)で表される基(カルバゾリル基およびフェニル置換カルバゾリル基も含む)で置換されていてもよい。なお、Arが有する置換基が式(A)で表される基である場合は、式(A)で表される基はその*において式(3-X3)中のArと結合する。 Ar 3 may have a substituent, and at least one hydrogen in Ar 3 is further alkyl having 1 to 4 carbons, cycloalkyl having 5 to 10 carbons, phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl. , Fluorenyl, chrycenyl, triphenylenyl, pyrenylyl, or a group represented by the above formula (A) (including a carbazolyl group and a phenyl-substituted carbazolyl group). Note that when the substituent that Ar 3 has is a group represented by the formula (A), the group represented by the formula (A) is bonded to Ar 3 in the formula (3-X3) at *.
 Arは、それぞれ独立して、水素、フェニル、ビフェニリル、ターフェニリル、ナフチル、または炭素数1~4のアルキル(メチル、エチル、t-ブチルなど)および/もしくは炭素数5~10のシクロアルキルで置換されているシリルである。 Ar 4 is each independently substituted with hydrogen, phenyl, biphenylyl, terphenylyl, naphthyl, or alkyl having 1 to 4 carbon atoms (methyl, ethyl, t-butyl, etc.) and / or cycloalkyl having 5 to 10 carbon atoms. Has been silyl.
 シリルに置換する炭素数1~4のアルキルは、メチル、エチル、プロピル、i-プロピル、ブチル、sec-ブチル、t-ブチル、シクロブチルなどがあげられ、シリルにおける3つの水素が、それぞれ独立して、これらのアルキルで置換されている。 Examples of the alkyl having 1 to 4 carbon atoms to be substituted with silyl include methyl, ethyl, propyl, i-propyl, butyl, sec-butyl, t-butyl, cyclobutyl and the like. Are substituted with these alkyls.
 具体的な「炭素数1~4のアルキルで置換されているシリル」としては、トリメチルシリル、トリエチルシリル、トリプロピルシリル、トリi-プロピルシリル、トリブチルシリル、トリsec-ブチルシリル、トリt-ブチルシリル、エチルジメチルシリル、プロピルジメチルシリル、i-プロピルジメチルシリル、ブチルジメチルシリル、sec-ブチルジメチルシリル、t-ブチルジメチルシリル、メチルジエチルシリル、プロピルジエチルシリル、i-プロピルジエチルシリル、ブチルジエチルシリル、sec-ブチルジエチルシリル、t-ブチルジエチルシリル、メチルジプロピルシリル、エチルジプロピルシリル、ブチルジプロピルシリル、sec-ブチルジプロピルシリル、t-ブチルジプロピルシリル、メチルジi-プロピルシリル、エチルジi-プロピルシリル、ブチルジi-プロピルシリル、sec-ブチルジi-プロピルシリル、t-ブチルジi-プロピルシリルなどがあげられる。 Specific examples of “silyl substituted with alkyl having 1 to 4 carbon atoms” include trimethylsilyl, triethylsilyl, tripropylsilyl, trii-propylsilyl, tributylsilyl, trisec-butylsilyl, tri-t-butylsilyl, ethyl Dimethylsilyl, propyldimethylsilyl, i-propyldimethylsilyl, butyldimethylsilyl, sec-butyldimethylsilyl, t-butyldimethylsilyl, methyldiethylsilyl, propyldiethylsilyl, i-propyldiethylsilyl, butyldiethylsilyl, sec-butyl Diethylsilyl, t-butyldiethylsilyl, methyldipropylsilyl, ethyldipropylsilyl, butyldipropylsilyl, sec-butyldipropylsilyl, t-butyldipropylsilyl, methyldii-pro Rushiriru, ethyldi i- propyl silyl, butyl di i- propyl silyl, sec- butyl di i- propyl silyl, such as t- butyl di i- propyl silyl, and the like.
 シリルに置換する炭素数5~10のシクロアルキルは、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、ノルボルネニル、ビシクロ[1.1.1]ペンチル、ビシクロ[2.0.1]ペンチル、ビシクロ[1.2.1]ヘキシル、ビシクロ[3.0.1]ヘキシル、ビシクロ[2.1.2]ヘプチル、ビシクロ[2.2.2]オクチル、アダマンチル、デカヒドロナフタレニル、デカヒドロアズレニルなどがあげられ、シリルにおける3つの水素が、それぞれ独立して、これらのシクロアルキルで置換されている。 Cycloalkyl having 5 to 10 carbon atoms to be substituted with silyl is cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, norbornenyl, bicyclo [1.1.1] pentyl, bicyclo [2.0.1] pentyl, Bicyclo [1.2.1] hexyl, bicyclo [3.0.1] hexyl, bicyclo [2.1.2] heptyl, bicyclo [2.2.2] octyl, adamantyl, decahydronaphthalenyl, decahydro Azulenyl and the like, and the three hydrogens in silyl are each independently substituted with these cycloalkyls.
 具体的な「炭素数5~10のシクロアルキルで置換されているシリル」としては、トリシクロペンチルシリル、トリシクロヘキシルシリルなどがあげられる。 Specific examples of “silyl substituted with a cycloalkyl having 5 to 10 carbon atoms” include tricyclopentylsilyl, tricyclohexylsilyl and the like.
 置換されているシリルとしては、2つのアルキルと1つのシクロアルキルが置換したジアルキルシクロアルキルシリルと、1つのアルキルと2つのシクロアルキルが置換したアルキルジシクロアルキルシリルもあり、置換するアルキルおよびシクロアルキルの具体例としては上述した基があげられる。 Substituted silyls include dialkylcycloalkylsilyl substituted with two alkyls and one cycloalkyl, and alkyldicycloalkylsilyl substituted with one alkyl and two cycloalkyls. Substituted alkyls and cycloalkyls Specific examples of these include the groups described above.
 また、一般式(3)で表されるアントラセン系化合物の化学構造中の水素は上記式(A)で表される基で置換されていてもよい。式(A)で表される基で置換される場合は、式(A)で表される基はその*において式(3)で表される化合物における少なくとも1つの水素と置換する。 Further, hydrogen in the chemical structure of the anthracene compound represented by the general formula (3) may be substituted with a group represented by the above formula (A). When substituted with a group represented by formula (A), the group represented by formula (A) substitutes at least one hydrogen in the compound represented by formula (3) at *.
 式(A)で表される基は、式(3)で表されるアントラセン系化合物が有しうる置換基の1つである。
Figure JPOXMLDOC01-appb-C000127
The group represented by the formula (A) is one of the substituents that the anthracene compound represented by the formula (3) may have.
Figure JPOXMLDOC01-appb-C000127
 上記式(A)中、Yは-O-、-S-または>N-R29であり、R21~R28はそれぞれ独立して水素、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルコキシ、置換されていてもよいアリールオキシ、置換されていてもよいアリールチオ、トリアルキルシリル、トリシクロアルキルシリル、ジアルキルシクロアルキルシリル、アルキルジシクロアルキルシリル、置換されていてもよいアミノ、ハロゲン、ヒドロキシまたはシアノであり、R21~R28のうち隣接する基は互いに結合して炭化水素環、アリール環またはヘテロアリール環を形成していてもよく、R29は水素または置換されていてもよいアリールである。 In the above formula (A), Y is —O—, —S— or> N—R 29 , and R 21 to R 28 are each independently hydrogen, optionally substituted alkyl, or optionally substituted. Good cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted arylthio, trialkylsilyl, Tricycloalkylsilyl, dialkylcycloalkylsilyl, alkyldicycloalkylsilyl, optionally substituted amino, halogen, hydroxy or cyano, and adjacent groups of R 21 to R 28 are bonded to each other to form a hydrocarbon ring. , may form an aryl or heteroaryl ring, R 29 may be hydrogen or substituted A reel.
 R21~R28における「置換されていてもよいアルキル」の「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルがあげられる。炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)が好ましく、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)がより好ましく、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)がさらに好ましく、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)が特に好ましい。 The “alkyl” of “optionally substituted alkyl” in R 21 to R 28 may be either linear or branched, for example, linear alkyl having 1 to 24 carbon atoms or having 3 to 24 carbon atoms. A branched alkyl. Alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons) is preferable, alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons) is more preferable, and alkyl having 1 to 6 carbons. (Branched alkyl having 3 to 6 carbon atoms) is more preferable, and alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms) is particularly preferable.
 具体的な「アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどがあげられる。 Specific examples of “alkyl” include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1 -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2 -Propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl, n-dodecyl, n-tridecyl, 1-hexylheptyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-he Tadeshiru, n- octadecyl, such as n- eicosyl, and the like.
 R21~R28における「置換されていてもよいシクロアルキル」の「シクロアルキル」としては、炭素数3~24のシクロアルキル、炭素数3~20のシクロアルキル、炭素数3~16のシクロアルキル、炭素数3~14のシクロアルキル、炭素数5~10のシクロアルキル、炭素数5~8のシクロアルキル、炭素数5~6のシクロアルキル、炭素数5のシクロアルキルなどがあげられる。 “Cycloalkyl” of “optionally substituted cycloalkyl” for R 21 to R 28 is cycloalkyl having 3 to 24 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, or cycloalkyl having 3 to 16 carbon atoms. Cycloalkyl having 3 to 14 carbon atoms, cycloalkyl having 5 to 10 carbon atoms, cycloalkyl having 5 to 8 carbon atoms, cycloalkyl having 5 to 6 carbon atoms, cycloalkyl having 5 carbon atoms, and the like.
 具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、およびこれらの炭素数1~4のアルキル(特にメチル)置換体や、ノルボルネニル、ビシクロ[1.0.1]ブチル、ビシクロ[1.1.1]ペンチル、ビシクロ[2.0.1]ペンチル、ビシクロ[1.2.1]ヘキシル、ビシクロ[3.0.1]ヘキシル、ビシクロ[2.1.2]ヘプチル、ビシクロ[2.2.2]オクチル、アダマンチル、ジアマンチル、デカヒドロナフタレニル、デカヒドロアズレニルなどがあげられる。 Specific examples of “cycloalkyl” include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, and alkyl (especially methyl) substituents thereof having 1 to 4 carbon atoms, norbornenyl, bicyclo [1.0.1] butyl, bicyclo [1.1.1] pentyl, bicyclo [2.0.1] pentyl, bicyclo [1.2.1] hexyl, bicyclo [3.0.1] hexyl, bicyclo [2.1.2] heptyl, bicyclo [2.2.2] octyl, adamantyl, diamantyl, decahydronaphthalenyl, decahydroazurenyl and the like.
 R21~R28における「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールがあげられ、炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。 Examples of the “aryl” of “optionally substituted aryl” in R 21 to R 28 include aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 16 carbon atoms, and 6 to 12 carbon atoms. Are more preferable, and aryl having 6 to 10 carbon atoms is particularly preferable.
 具体的な「アリール」としては、単環系であるフェニル、二環系であるビフェニリル、縮合二環系であるナフチル、三環系であるテルフェニリル(m-テルフェニリル、o-テルフェニリル、p-テルフェニリル)、縮合三環系である、アセナフチレニル、フルオレニル、フェナレニル、フェナントレニル、縮合四環系であるトリフェニレニル、ピレニル、ナフタセニル、縮合五環系であるペリレニル、ペンタセニルなどがあげられる。 Specific “aryl” includes monocyclic phenyl, bicyclic biphenylyl, fused bicyclic naphthyl, tricyclic terphenylyl (m-terphenylyl, o-terphenylyl, p-terphenylyl) And condensed tricyclic systems such as acenaphthylenyl, fluorenyl, phenalenyl, phenanthrenyl, condensed tetracyclic systems such as triphenylenyl, pyrenyl, naphthacenyl, and condensed pentacyclic systems such as perylenyl and pentacenyl.
 R21~R28における「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールがあげられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1~5個含有する複素環などがあげられる。 Examples of the “heteroaryl” in the “optionally substituted heteroaryl” in R 21 to R 28 include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, A heteroaryl having 2 to 20 carbon atoms is more preferred, a heteroaryl having 2 to 15 carbon atoms is more preferred, and a heteroaryl having 2 to 10 carbon atoms is particularly preferred. Examples of the heteroaryl include heterocycles containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring-constituting atoms.
 具体的な「ヘテロアリール」としては、例えば、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサチイニル、フェノキサジニル、フェノチアジニル、フェナジニル、インドリジニル、フリル、ベンゾフラニル、イソベンゾフラニル、ジベンゾフラニル、チエニル、ベンゾ[b]チエニル、ジベンゾチエニル、フラザニル、オキサジアゾリル、チアントレニル、ナフトベンゾフラニル、ナフトベンゾチエニルなどがあげられる。 Specific examples of “heteroaryl” include pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, isoindolyl, 1H— Indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthyridinyl, purinyl, pteridinyl, carbazolyl, acridinyl, phenoxazinyl, phenoxazinyl, phenoxazinyl, Phenazinyl, indolizinyl, furyl, benzofuranyl, isobenzo Ranil, dibenzofuranyl, thienyl, benzo [b] thienyl, dibenzothienyl, furazanyl, oxadiazolyl, thianthrenyl, naphthaldehyde benzofuranyl, such as naphthaldehyde benzothienyl and the like.
 R21~R28における「置換されていてもよいアルコキシ」の「アルコキシ」としては、例えば、炭素数1~24の直鎖または炭素数3~24の分岐鎖のアルコキシがあげられる。炭素数1~18のアルコキシ(炭素数3~18の分岐鎖のアルコキシ)が好ましく、炭素数1~12のアルコキシ(炭素数3~12の分岐鎖のアルコキシ)がより好ましく、炭素数1~6のアルコキシ(炭素数3~6の分岐鎖のアルコキシ)がさらに好ましく、炭素数1~4のアルコキシ(炭素数3~4の分岐鎖のアルコキシ)が特に好ましい。 Examples of “alkoxy” of “optionally substituted alkoxy” in R 21 to R 28 include straight-chain alkoxy having 1 to 24 carbon atoms or branched alkoxy having 3 to 24 carbon atoms. C1-C18 alkoxy (C3-C18 branched alkoxy) is preferred, C1-C12 alkoxy (C3-C12 branched alkoxy) is more preferred, and C1-C6 Of alkoxy (C3-C6 branched chain alkoxy) is more preferable, and C1-C4 alkoxy (C3-C4 branched chain alkoxy) is particularly preferable.
 具体的な「アルコキシ」としては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシなどがあげられる。 Specific examples of “alkoxy” include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy and the like.
 R21~R28における「置換されていてもよいアリールオキシ」の「アリールオキシ」としては、-OH基の水素がアリールで置換された基であり、このアリールは上述したR21~R28における「アリール」として説明した基を引用することができる。 “Aryloxy” of “optionally substituted aryloxy” in R 21 to R 28 is a group in which hydrogen of —OH group is substituted with aryl, and this aryl is the above-mentioned R 21 to R 28 . Reference may be made to groups described as “aryl”.
 R21~R28における「置換されていてもよいアリールチオ」の「アリールチオ」としては、-SH基の水素がアリールで置換された基であり、このアリールは上述したR21~R28における「アリール」として説明した基を引用することができる。 The “arylthio” of the “optionally substituted arylthio” in R 21 to R 28 is a group in which the hydrogen of the —SH group is substituted with aryl, and this aryl is the “aryl” in R 21 to R 28 described above. Can be cited.
 R21~R28における「トリアルキルシリル」としては、シリル基における3つの水素がそれぞれ独立してアルキルで置換された基があげられ、このアルキルは上述したR21~R28における「アルキル」として説明した基を引用することができる。置換するのに好ましいアルキルは、炭素数1~4のアルキルであり、具体的にはメチル、エチル、プロピル、i-プロピル、ブチル、sec-ブチル、t-ブチル、シクロブチルなどがあげられる。 Examples of “trialkylsilyl” in R 21 to R 28 include groups in which three hydrogens in the silyl group are each independently substituted with alkyl, and this alkyl is referred to as “alkyl” in R 21 to R 28 described above. The groups described can be cited. Preferable alkyl for substitution is alkyl having 1 to 4 carbon atoms, and specific examples include methyl, ethyl, propyl, i-propyl, butyl, sec-butyl, t-butyl, cyclobutyl and the like.
 具体的な「トリアルキルシリル」としては、トリメチルシリル、トリエチルシリル、トリプロピルシリル、トリi-プロピルシリル、トリブチルシリル、トリsec-ブチルシリル、トリt-ブチルシリル、エチルジメチルシリル、プロピルジメチルシリル、i-プロピルジメチルシリル、ブチルジメチルシリル、sec-ブチルジメチルシリル、t-ブチルジメチルシリル、メチルジエチルシリル、プロピルジエチルシリル、i-プロピルジエチルシリル、ブチルジエチルシリル、sec-ブチルジエチルシリル、t-ブチルジエチルシリル、メチルジプロピルシリル、エチルジプロピルシリル、ブチルジプロピルシリル、sec-ブチルジプロピルシリル、t-ブチルジプロピルシリル、メチルジi-プロピルシリル、エチルジi-プロピルシリル、ブチルジi-プロピルシリル、sec-ブチルジi-プロピルシリル、t-ブチルジi-プロピルシリルなどがあげられる。 Specific examples of “trialkylsilyl” include trimethylsilyl, triethylsilyl, tripropylsilyl, tri-i-propylsilyl, tributylsilyl, trisec-butylsilyl, tri-t-butylsilyl, ethyldimethylsilyl, propyldimethylsilyl, i-propyl Dimethylsilyl, butyldimethylsilyl, sec-butyldimethylsilyl, t-butyldimethylsilyl, methyldiethylsilyl, propyldiethylsilyl, i-propyldiethylsilyl, butyldiethylsilyl, sec-butyldiethylsilyl, t-butyldiethylsilyl, methyl Dipropylsilyl, ethyldipropylsilyl, butyldipropylsilyl, sec-butyldipropylsilyl, t-butyldipropylsilyl, methyldii-propylsilyl, ethyldi-ip Pirushiriru, butyl di i- propyl silyl, sec- butyl di i- propyl silyl, such as t- butyl di i- propyl silyl, and the like.
 R21~R28における「トリシクロアルキルシリル」としては、シリル基における3つの水素がそれぞれ独立してシクロアルキルで置換された基があげられ、このシクロアルキルは上述したR21~R28における「シクロアルキル」として説明した基を引用することができる。置換するのに好ましいシクロアルキルは、炭素数5~10のシクロアルキルであり、具体的にはシクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、ビシクロ[1.1.1]ペンチル、ビシクロ[2.0.1]ペンチル、ビシクロ[1.2.1]ヘキシル、ビシクロ[3.0.1]ヘキシル、ビシクロ[2.1.2]ヘプチル、ビシクロ[2.2.2]オクチル、アダマンチル、デカヒドロナフタレニル、デカヒドロアズレニルなどがあげられる。 The "tricycloalkyl silyl" in R 21 ~ R 28, have been substituted with a cycloalkyl mentioned three hydrogen in the silyl group is independently, in R 21 ~ R 28 The cycloalkyl mentioned above " Reference may be made to the groups described as “cycloalkyl”. Preferred cycloalkyl for substitution is cycloalkyl having 5 to 10 carbon atoms, specifically, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, bicyclo [1.1.1] pentyl, bicyclo [ 2.0.1] pentyl, bicyclo [1.2.1] hexyl, bicyclo [3.0.1] hexyl, bicyclo [2.1.2] heptyl, bicyclo [2.2.2] octyl, adamantyl, Decahydronaphthalenyl, decahydroazulenyl and the like can be mentioned.
 具体的な「トリシクロアルキルシリル」としては、トリシクロペンチルシリル、トリシクロヘキシルシリルなどがあげられる。 Specific “tricycloalkylsilyl” includes tricyclopentylsilyl, tricyclohexylsilyl and the like.
 2つのアルキルと1つのシクロアルキルが置換したジアルキルシクロアルキルシリルと、1つのアルキルと2つのシクロアルキルが置換したアルキルジシクロアルキルシリルの具体例としては、上述した具体的なアルキルおよびシクロアルキルから選択される基が置換したシリルがあげられる。 Specific examples of dialkylcycloalkylsilyl substituted with two alkyls and one cycloalkyl and alkyldicycloalkylsilyl substituted with one alkyl and two cycloalkyls are selected from the specific alkyls and cycloalkyls described above And silyl substituted with the above group.
 R21~R28における「置換されていてもよいアミノ」の「置換されたアミノ」としては、例えば2つの水素がアリールやヘテロアリールで置換されたアミノ基があげられる。2つの水素がアリールで置換されたアミノがジアリール置換アミノであり、2つの水素がヘテロアリールで置換されたアミノがジヘテロアリール置換アミノであり、2つの水素がアリールとヘテロアリールで置換されたアミノがアリールヘテロアリール置換アミノである。このアリールやヘテロアリールは上述したR21~R28における「アリール」や「ヘテロアリール」として説明した基を引用することができる。 Examples of the “substituted amino” of the “optionally substituted amino” in R 21 to R 28 include an amino group in which two hydrogens are substituted with aryl or heteroaryl. An amino in which two hydrogens are substituted with aryl is a diaryl-substituted amino, an amino in which two hydrogens are substituted with a heteroaryl is a diheteroaryl-substituted amino, and an amino in which two hydrogens are substituted with aryl and heteroaryl Is an arylheteroaryl-substituted amino. As the aryl and heteroaryl, the groups described as “aryl” and “heteroaryl” in R 21 to R 28 described above can be cited.
 具体的な「置換されたアミノ」としては、ジフェニルアミノ、ジナフチルアミノ、フェニルナフチルアミノ、ジピリジルアミノ、フェニルピリジルアミノ、ナフチルピリジルアミノなどがあげられる。 Specific examples of “substituted amino” include diphenylamino, dinaphthylamino, phenylnaphthylamino, dipyridylamino, phenylpyridylamino, naphthylpyridylamino, and the like.
 R21~R28における「ハロゲン」としては、フッ素、塩素、臭素、ヨウ素があげられる。 Examples of “halogen” in R 21 to R 28 include fluorine, chlorine, bromine and iodine.
 R21~R28として説明した基のうち、いくつかは上述するように置換されてもよく、この場合の置換基としてはアルキル、シクロアルキル、アリールまたはヘテロアリールがあげられる。このアルキル、シクロアルキル、アリールまたはヘテロアリールは上述したR21~R28における「アルキル」、「シクロアルキル」、「アリール」または「ヘテロアリール」として説明した基を引用することができる。 Of the groups described as R 21 to R 28 , some may be substituted as described above, and examples of the substituent in this case include alkyl, cycloalkyl, aryl, and heteroaryl. This alkyl, cycloalkyl, aryl or heteroaryl can refer to the groups described as “alkyl”, “cycloalkyl”, “aryl” or “heteroaryl” in R 21 to R 28 described above.
 Yとしての「>N-R29」におけるR29は水素または置換されていてもよいアリールであり、このアリールとしては上述したR21~R28における「アリール」として説明した基を引用することができ、またその置換基としてはR21~R28に対する置換基として説明した基を引用することができる。 R 29 in the "> N-R 29" as Y is hydrogen or aryl which may be substituted, be cited a group described as the "aryl" in R 21 ~ R 28 described above as the aryl Further, as the substituent, the groups described as the substituents for R 21 to R 28 can be cited.
 R21~R28のうち隣接する基は互いに結合して炭化水素環、アリール環またはヘテロアリール環を形成していてもよい。環を形成しない場合が下記式(A-1)で表される基であり、環を形成した場合としては例えば下記式(A-2)~式(A-14)で表される基があげられる。なお、式(A-1)~式(A-14)のいずれかで表される基における少なくとも1つの水素はアルキル、シクロアルキル、アリール、ヘテロアリール、アルコキシ、アリールオキシ、アリールチオ、トリアルキルシリル、トリシクロアルキルシリル、ジアルキルシクロアルキルシリル、アルキルジシクロアルキルシリル、ジアリール置換アミノ、ジヘテロアリール置換アミノ、アリールヘテロアリール置換アミノ、ハロゲン、ヒドロキシまたはシアノで置換されていてもよい。
Figure JPOXMLDOC01-appb-C000128
Adjacent groups of R 21 to R 28 may be bonded to each other to form a hydrocarbon ring, an aryl ring or a heteroaryl ring. The case where no ring is formed is a group represented by the following formula (A-1), and the case where a ring is formed includes, for example, groups represented by the following formulas (A-2) to (A-14): It is done. Note that at least one hydrogen in the group represented by any of formulas (A-1) to (A-14) is alkyl, cycloalkyl, aryl, heteroaryl, alkoxy, aryloxy, arylthio, trialkylsilyl, It may be substituted with tricycloalkylsilyl, dialkylcycloalkylsilyl, alkyldicycloalkylsilyl, diaryl-substituted amino, diheteroaryl-substituted amino, arylheteroaryl-substituted amino, halogen, hydroxy or cyano.
Figure JPOXMLDOC01-appb-C000128
 隣接する基が互いに結合してできた環としては、炭化水素環であれば例えばシクロヘキサン環があげられ、アリール環やヘテロアリール環としては上述したR21~R28における「アリール」や「ヘテロアリール」で説明した環構造があげられ、これらの環は上記式(A-1)における1つまたは2つのベンゼン環と縮合するように形成される。 Examples of the ring formed by bonding adjacent groups to each other include a cyclohexane ring as long as it is a hydrocarbon ring, and examples of the aryl ring and heteroaryl ring include “aryl” and “heteroaryl” in R 21 to R 28 described above. And the ring is formed so as to be condensed with one or two benzene rings in the above formula (A-1).
 式(A)で表される基としては、例えば上記式(A-1)~式(A-14)のいずれかで表される基があげられ、上記式(A-1)~式(A-5)および式(A-12)~式(A-14)のいずれかで表される基が好ましく、上記式(A-1)~式(A-4)のいずれかで表される基がより好ましく、上記式(A-1)、式(A-3)および式(A-4)のいずれかで表される基がさらに好ましく、上記式(A-1)で表される基が特に好ましい。 Examples of the group represented by the formula (A) include groups represented by any of the above formulas (A-1) to (A-14), and the above formulas (A-1) to (A −5) and a group represented by any of formulas (A-12) to (A-14) are preferred, and a group represented by any of the above formulas (A-1) to (A-4) Is more preferable, a group represented by any one of the above formulas (A-1), (A-3) and (A-4) is more preferable, and a group represented by the above formula (A-1) is more preferable. Particularly preferred.
 式(A)で表される基は、式(A)中の*において、式(3-X1)または式(3-X2)中のナフタレン環、式(3-X3)中の単結合、式(3-X3)中のArと結合し、また式(3)で表される化合物における少なくとも1つの水素と置換することは上述したとおりだが、これらの結合形態の中でも式(3-X1)または式(3-X2)中のナフタレン環、式(3-X3)中の単結合および/または式(3-X3)中のArと結合した形態が好ましい。 The group represented by the formula (A) is represented by * in the formula (A), a naphthalene ring in the formula (3-X1) or the formula (3-X2), a single bond in the formula (3-X3), a formula As described above, it binds to Ar 3 in (3-X3) and substitutes at least one hydrogen in the compound represented by formula (3). Among these bonding forms, formula (3-X1) Alternatively, a form in which the naphthalene ring in the formula (3-X2), the single bond in the formula (3-X3) and / or Ar 3 in the formula (3-X3) is bonded is preferable.
 また、式(A)で表される基の構造中で、式(3-X1)または式(3-X2)中のナフタレン環、式(3-X3)中の単結合、式(3-X3)中のArが結合する位置、また、式(A)で表される基の構造中で、式(3)で表される化合物における少なくとも1つの水素と置換する位置は、式(A)の構造中のいずれの位置であってもよく、例えば式(A)の構造中の2つのベンゼン環のいずれかや、式(A)の構造中のR21~R28のうち隣接する基が互いに結合して形成されたいずれかの環や、式(A)の構造中のYとしての「>N-R29」におけるR29中のいずれかの位置で結合することができる。 In the structure of the group represented by the formula (A), a naphthalene ring in the formula (3-X1) or the formula (3-X2), a single bond in the formula (3-X3), a formula (3-X3 In the structure of the group represented by the formula (A), the position at which Ar 3 is bonded to at least one hydrogen in the compound represented by the formula (3) is Any one of the two benzene rings in the structure of the formula (A) or an adjacent group among R 21 to R 28 in the structure of the formula (A) Any ring formed by bonding to each other, or any position in R 29 in “> NR 29 ” as Y in the structure of formula (A) can be bonded.
 式(A)で表される基としては、例えば以下の基があげられる。式中のYおよび*は上記と同じ定義である。
Figure JPOXMLDOC01-appb-C000129
Examples of the group represented by the formula (A) include the following groups. Y and * in the formula are as defined above.
Figure JPOXMLDOC01-appb-C000129
 また、一般式(3)で表されるアントラセン系化合物の化学構造中の水素は、その全てまたは一部が重水素であってもよい。 Further, all or part of the hydrogen in the chemical structure of the anthracene compound represented by the general formula (3) may be deuterium.
 アントラセン系化合物の具体的な例としては、例えば、下記式(3-1)~式(3-72)で表される化合物があげられる。なお、下記構造式中の「Me」はメチル基、「D」は重水素、「tBu」はt-ブチル基を示す。 Specific examples of the anthracene compound include compounds represented by the following formulas (3-1) to (3-72). In the structural formulas below, “Me” represents a methyl group, “D” represents deuterium, and “tBu” represents a t-butyl group.
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000133
 式(3)で表されるアントラセン系化合物は、アントラセン骨格の所望の位置に反応性基を有する化合物と、X、Arおよび式(A)の構造などの部分構造に反応性基を有する化合物を出発原料として、鈴木カップリング、根岸カップリング、その他の公知のカップリング反応を応用して製造することができる。これらの反応性化合物の反応性基としては、ハロゲンやボロン酸などがあげられる。具体的な製造方法としては、例えば国際公開第2014/141725号公報の段落[0089]~[0175]における合成法を参考にすることができる。 The anthracene compound represented by the formula (3) includes a compound having a reactive group at a desired position of the anthracene skeleton and a compound having a reactive group in a partial structure such as the structure of X, Ar 4 and the formula (A) Can be produced by applying Suzuki coupling, Negishi coupling, and other known coupling reactions. Examples of the reactive group of these reactive compounds include halogen and boronic acid. As a specific production method, for example, the synthesis method in paragraphs [0089] to [0175] of International Publication No. 2014/141725 can be referred to.
<フルオレン系化合物>
 一般式(4)で表される化合物は基本的にはホストとして機能する。
Figure JPOXMLDOC01-appb-C000134
<Fluorene compounds>
The compound represented by the general formula (4) basically functions as a host.
Figure JPOXMLDOC01-appb-C000134
 上記式(4)中、
 R1からR10は、それぞれ独立して、水素、アリール、ヘテロアリール(当該ヘテロアリールは連結基を介して上記式(4)におけるフルオレン骨格と結合していてもよい)、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 また、RとR、RとR、RとR、RとR、RとR、RとRまたはRとR10がそれぞれ独立して結合して縮合環またはスピロ環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール(当該ヘテロアリールは連結基を介して当該形成された環と結合していてもよい)、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、そして、
 式(4)で表される化合物における少なくとも1つの水素がハロゲン、シアノまたは重水素で置換されていてもよい。
In the above formula (4),
R 1 to R 10 are each independently hydrogen, aryl, heteroaryl (the heteroaryl may be bonded to the fluorene skeleton in the above formula (4) via a linking group), diarylamino, dihetero Arylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkoxy or aryloxy, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl;
R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 or R 9 and R 10 are bonded independently. May form a condensed ring or a spiro ring, and at least one hydrogen in the formed ring is aryl or heteroaryl (the heteroaryl may be bonded to the formed ring through a linking group). ), Diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkoxy or aryloxy, wherein at least one hydrogen is aryl, heteroaryl, alkyl or cycloalkyl And may be substituted with
At least one hydrogen in the compound represented by the formula (4) may be substituted with halogen, cyano or deuterium.
 上記式(4)の定義における各基の詳細は、上述した、式(1)の多環芳香族化合物における説明を引用することができる。 The details of each group in the definition of the above formula (4) can be referred to the description of the polycyclic aromatic compound of the formula (1) described above.
 R1からR10におけるアルケニルとしては、例えば、炭素数2~30のアルケニルがあげられ、炭素数2~20のアルケニルが好ましく、炭素数2~10のアルケニルがより好ましく、炭素数2~6のアルケニルがさらに好ましく、炭素数2~4のアルケニルが特に好ましい。好ましいアルケニルは、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、または5-ヘキセニルである。 Examples of the alkenyl in R 1 to R 10 include alkenyl having 2 to 30 carbon atoms, preferably alkenyl having 2 to 20 carbon atoms, more preferably alkenyl having 2 to 10 carbon atoms, and 2 to 6 carbon atoms. Alkenyl is more preferable, and alkenyl having 2 to 4 carbon atoms is particularly preferable. Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl.
 なお、ヘテロアリールの具体例として、下記式(4-Ar1)、式(4-Ar2)、式(4-Ar3)、式(4-Ar4)または式(4-Ar5)の化合物から任意の1つの水素原子を除いて表される1価の基もあげられる。
Figure JPOXMLDOC01-appb-C000135
 式(4-Ar1)から式(4-Ar5)中、Yは、それぞれ独立して、O、SまたはN-Rであり、Rはフェニル、ビフェニリル、ナフチル、アントラセニルまたは水素であり、
 上記式(4-Ar1)から式(4-Ar5)の構造における少なくとも1つの水素はフェニル、ビフェニリル、ナフチル、アントラセニル、フェナントレニル、メチル、エチル、プロピル、または、ブチルで置換されていてもよい。
As specific examples of heteroaryl, any one of the compounds of the following formula (4-Ar1), formula (4-Ar2), formula (4-Ar3), formula (4-Ar4) or formula (4-Ar5) may be used. Also included are monovalent groups represented by removing one hydrogen atom.
Figure JPOXMLDOC01-appb-C000135
In formulas (4-Ar1) to (4-Ar5), Y 1 is each independently O, S or N—R, R is phenyl, biphenylyl, naphthyl, anthracenyl or hydrogen;
At least one hydrogen in the structures of the above formulas (4-Ar1) to (4-Ar5) may be substituted with phenyl, biphenylyl, naphthyl, anthracenyl, phenanthrenyl, methyl, ethyl, propyl, or butyl.
 これらのヘテロアリールは、連結基を介して、上記式(4)におけるフルオレン骨格と結合していてもよい。すなわち、式(4)におけるフルオレン骨格と上記ヘテロアリールとが直接結合するだけでなく、それらの間に連結基を介して結合してもよい。この連結基としては、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、メチレン、エチレン、-OCHCH-、-CHCHO-、または、-OCHCHO-などがあげられる。 These heteroaryls may be bonded to the fluorene skeleton in the above formula (4) via a linking group. That is, not only the fluorene skeleton in the formula (4) and the heteroaryl are directly bonded but also a bond between them may be bonded. Examples of this linking group include phenylene, biphenylene, naphthylene, anthracenylene, methylene, ethylene, —OCH 2 CH 2 —, —CH 2 CH 2 O—, or —OCH 2 CH 2 O—.
 また、式(4)中のRとR、RとR、RとR、RとR、RとRまたはRとRがそれぞれ独立して結合して縮合環を、RとR10が結合してスピロ環を形成していてもよい。RからRにより形成された縮合環は、式(4)におけるベンゼン環に縮合する環であり、脂肪族環または芳香族環である。好ましくは芳香族環であり、式(4)におけるベンゼン環を含めた構造としてはナフタレン環やフェナントレン環などがあげられる。RとR10により形成されたスピロ環は、式(4)における5員環にスピロ結合する環であり、脂肪族環または芳香族環である。好ましくは芳香族環であり、フルオレン環などがあげられる。 In the formula (4), R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 or R 7 and R 8 are bonded independently. R 9 and R 10 may be combined to form a spiro ring. The condensed ring formed by R 1 to R 8 is a ring condensed with the benzene ring in the formula (4), and is an aliphatic ring or an aromatic ring. An aromatic ring is preferred, and examples of the structure including the benzene ring in formula (4) include a naphthalene ring and a phenanthrene ring. The spiro ring formed by R 9 and R 10 is a ring that is spiro-bonded to the 5-membered ring in formula (4), and is an aliphatic ring or an aromatic ring. Preferred is an aromatic ring, such as a fluorene ring.
 一般式(4)で表される化合物は、好ましくは、下記式(4-1)、式(4-2)または式(4-3)で表される化合物であり、それぞれ、一般式(4)においてRとRが結合して形成されたベンゼン環が縮合した化合物、一般式(4)においてRとRが結合して形成されたベンゼン環が縮合した化合物、一般式(4)においてRからRのいずれもが結合していない化合物である。
Figure JPOXMLDOC01-appb-C000136
The compound represented by the general formula (4) is preferably a compound represented by the following formula (4-1), formula (4-2), or formula (4-3). ) In which R 1 and R 2 are combined to form a condensed benzene ring, in general formula (4), a compound in which R 3 and R 4 are combined to form a condensed benzene ring, general formula (4 ) In which none of R 1 to R 8 is bonded.
Figure JPOXMLDOC01-appb-C000136
 式(4-1)、式(4-2)および式(4-3)におけるRからR10の定義は式(4)において対応するRからR10と同じであり、式(4-1)および式(4-2)におけるR11からR14の定義も式(4)におけるRからR10と同じである。 The definitions of R 1 to R 10 in Formula (4-1), Formula (4-2), and Formula (4-3) are the same as the corresponding R 1 to R 10 in Formula (4). The definitions of R 11 to R 14 in 1) and formula (4-2) are the same as R 1 to R 10 in formula (4).
 一般式(4)で表される化合物は、さらに好ましくは、下記式(4-1A)、式(4-2A)または式(4-3A)で表される化合物であり、それぞれ、式(4-1)、式(4-1)または式(4-3)においてRとR10が結合してスピロ-フルオレン環が形成された化合物である。
Figure JPOXMLDOC01-appb-C000137
The compound represented by the general formula (4) is more preferably a compound represented by the following formula (4-1A), formula (4-2A), or formula (4-3A). -1), a compound having a spiro-fluorene ring formed by combining R 9 and R 10 in formula (4-1) or formula (4-3).
Figure JPOXMLDOC01-appb-C000137
 式(4-1A)、式(4-2A)および式(4-3A)におけるRからRの定義は式(4-1)、式(4-2)および式(4-3)において対応するRからRと同じであり、式(4-1A)および式(4-2A)におけるR11からR14の定義も式(4-1)および式(4-2)におけるR11からR14と同じである。 The definitions of R 2 to R 7 in formula (4-1A), formula (4-2A), and formula (4-3A) are defined in formula (4-1), formula (4-2), and formula (4-3). corresponding the same from R 2 and R 7, R in the formula also defined formula (4-1) of the R 14 from R 11 in (4-1A) and (4-2A) and (4-2) 11 from is the same as R 14.
 また、式(4)で表される化合物における水素は、その全てまたは一部がハロゲン、シアノまたは重水素で置換されていてもよい。 Further, all or part of the hydrogen in the compound represented by the formula (4) may be substituted with halogen, cyano or deuterium.
<ジベンゾクリセン系化合物>
 ホストとしてのジベンゾクリセン系化合物は、例えば下記一般式(5)で表される化合物である。
Figure JPOXMLDOC01-appb-C000138
<Dibenzochrysene compounds>
The dibenzochrysene-type compound as a host is a compound represented, for example by following General formula (5).
Figure JPOXMLDOC01-appb-C000138
 上記式(5)中、
 R1からR16は、それぞれ独立して、水素、アリール、ヘテロアリール(当該ヘテロアリールは連結基を介して上記式(5)におけるジベンゾクリセン骨格と結合していてもよい)、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
 また、RからR16のうち隣接する基同士が結合して縮合環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール(当該ヘテロアリールは連結基を介して当該形成された環と結合していてもよい)、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、そして、
 式(5)で表される化合物における少なくとも1つの水素がハロゲン、シアノまたは重水素で置換されていてもよい。
In the above formula (5),
R 1 to R 16 are each independently hydrogen, aryl, heteroaryl (the heteroaryl may be bonded to the dibenzochrysene skeleton in the above formula (5) via a linking group), diarylamino, diaryl Heteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkoxy or aryloxy, in which at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl;
Further, adjacent groups of R 1 to R 16 may be bonded to form a condensed ring, and at least one hydrogen in the formed ring is aryl or heteroaryl (the heteroaryl is connected via a linking group). Which may be bonded to the ring formed), diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkenyl, alkoxy or aryloxy, at least of which One hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, and
At least one hydrogen in the compound represented by the formula (5) may be substituted with halogen, cyano or deuterium.
 上記式(5)の定義における各基の詳細は、上述した、式(1)の多環芳香族化合物における説明を引用することができる。 The details of each group in the definition of the above formula (5) can be referred to the description of the polycyclic aromatic compound of the formula (1) described above.
 上記式(5)の定義におけるアルケニルとしては、例えば、炭素数2~30のアルケニルがあげられ、炭素数2~20のアルケニルが好ましく、炭素数2~10のアルケニルがより好ましく、炭素数2~6のアルケニルがさらに好ましく、炭素数2~4のアルケニルが特に好ましい。好ましいアルケニルは、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、または5-ヘキセニルである。 Examples of alkenyl in the definition of the above formula (5) include alkenyl having 2 to 30 carbon atoms, preferably alkenyl having 2 to 20 carbon atoms, more preferably alkenyl having 2 to 10 carbon atoms, and 2 to 2 carbon atoms. More preferred is alkenyl having 6 carbon atoms, and particularly preferred is alkenyl having 2 to 4 carbon atoms. Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl.
 なお、ヘテロアリールの具体例として、下記式(5-Ar1)、式(5-Ar2)、式(5-Ar3)、式(5-Ar4)または式(5-Ar5)の化合物から任意の1つの水素原子を除いて表される1価の基もあげられる。
Figure JPOXMLDOC01-appb-C000139
 式(5-Ar1)から式(5-Ar5)中、Yは、それぞれ独立して、O、SまたはN-Rであり、Rはフェニル、ビフェニリル、ナフチル、アントラセニルまたは水素であり、
 上記式(5-Ar1)から式(5-Ar5)の構造における少なくとも1つの水素はフェニル、ビフェニリル、ナフチル、アントラセニル、フェナントレニル、メチル、エチル、プロピル、または、ブチルで置換されていてもよい。
As specific examples of heteroaryl, any one of the compounds of the following formula (5-Ar1), formula (5-Ar2), formula (5-Ar3), formula (5-Ar4) or formula (5-Ar5) may be used. Also included are monovalent groups represented by removing one hydrogen atom.
Figure JPOXMLDOC01-appb-C000139
In formulas (5-Ar1) to (5-Ar5), Y 1 is each independently O, S or N—R, R is phenyl, biphenylyl, naphthyl, anthracenyl or hydrogen;
At least one hydrogen in the structures of the above formulas (5-Ar1) to (5-Ar5) may be substituted with phenyl, biphenylyl, naphthyl, anthracenyl, phenanthrenyl, methyl, ethyl, propyl, or butyl.
 これらのヘテロアリールは、連結基を介して、上記式(5)におけるジベンゾクリセン骨格と結合していてもよい。すなわち、式(5)におけるジベンゾクリセン骨格と上記ヘテロアリールとが直接結合するだけでなく、それらの間に連結基を介して結合してもよい。この連結基としては、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、メチレン、エチレン、-OCHCH-、-CHCHO-、または、-OCHCHO-などがあげられる。 These heteroaryls may be bonded to the dibenzochrysene skeleton in the above formula (5) via a linking group. That is, not only the dibenzochrysene skeleton in the formula (5) and the heteroaryl are directly bonded, but may be bonded via a linking group between them. Examples of this linking group include phenylene, biphenylene, naphthylene, anthracenylene, methylene, ethylene, —OCH 2 CH 2 —, —CH 2 CH 2 O—, or —OCH 2 CH 2 O—.
 一般式(5)で表される化合物は、好ましくは、R、R、R、R、R、R12、R13およびR16は水素である。この場合、式(5)中のR、R、R、R、R10、R11、R14およびR15は、それぞれ独立して、水素、フェニル、ビフェニリル、ナフチル、アントラセニル、フェナントレニル、上記式(5-Ar1)、式(5-Ar2)、式(5-Ar3)、式(5-Ar4)もしくは式(5-Ar5)の構造を有する1価の基(当該構造を有する1価の基は、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、メチレン、エチレン、-OCHCH-、-CHCHO-、または、-OCHCHO-を介して、上記式(5)におけるジベンゾクリセン骨格と結合していてもよい)、メチル、エチル、プロピル、または、ブチルであることが好ましい。 In the compound represented by the general formula (5), R 1 , R 4 , R 5 , R 8 , R 9 , R 12 , R 13 and R 16 are preferably hydrogen. In this case, R 2 , R 3 , R 6 , R 7 , R 10 , R 11 , R 14 and R 15 in formula (5) are each independently hydrogen, phenyl, biphenylyl, naphthyl, anthracenyl, phenanthrenyl. A monovalent group having the structure of the above formula (5-Ar1), formula (5-Ar2), formula (5-Ar3), formula (5-Ar4) or formula (5-Ar5) (1 having the structure) The valent group is represented by the above formula (5) via phenylene, biphenylene, naphthylene, anthracenylene, methylene, ethylene, —OCH 2 CH 2 —, —CH 2 CH 2 O—, or —OCH 2 CH 2 O—. And may be bonded to the dibenzochrysene skeleton), methyl, ethyl, propyl, or butyl.
 一般式(5)で表される化合物は、より好ましくは、R、R、R、R、R、R、R、R10、R12、R13、R15およびR16は水素である。この場合、式(5)中のR、R、R11およびR14の少なくとも1つ(好ましくは1つまたは2つ、より好ましくは1つ)は、単結合、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、メチレン、エチレン、-OCHCH-、-CHCHO-、または、-OCHCHO-を介した、上記式(5-Ar1)、式(5-Ar2)、式(5-Ar3)、式(5-Ar4)または式(5-Ar5)の構造を有する1価の基であり、
 前記少なくとも1つ以外(すなわち、前記構造を有する1価の基が置換した位置以外)は水素、フェニル、ビフェニリル、ナフチル、アントラセニル、メチル、エチル、プロピル、または、ブチルであり、これらにおける少なくとも1つの水素は、フェニル、ビフェニリル、ナフチル、アントラセニル、メチル、エチル、プロピル、あるいは、ブチルで置換されていてもよい。
The compound represented by the general formula (5) is more preferably R 1 , R 2 , R 4 , R 5 , R 7 , R 8 , R 9 , R 10 , R 12 , R 13 , R 15 and R. 16 is hydrogen. In this case, at least one (preferably one or two, more preferably one) of R 3 , R 6 , R 11 and R 14 in formula (5) is a single bond, phenylene, biphenylene, naphthylene, Via the anthracenylene, methylene, ethylene, —OCH 2 CH 2 —, —CH 2 CH 2 O—, or —OCH 2 CH 2 O—, the above formula (5-Ar1), formula (5-Ar2), formula A monovalent group having a structure of (5-Ar3), formula (5-Ar4) or formula (5-Ar5);
Other than the at least one (that is, other than the position where the monovalent group having the structure is substituted) is hydrogen, phenyl, biphenylyl, naphthyl, anthracenyl, methyl, ethyl, propyl, or butyl, and at least one of these Hydrogen may be substituted with phenyl, biphenylyl, naphthyl, anthracenyl, methyl, ethyl, propyl, or butyl.
 また、式(5)中のR、R、R、R、R10、R11、R14およびR15として、上記式(5-Ar1)から式(5-Ar5)で表される構造を有する1価の基が選択された場合には、当該構造における少なくとも1つの水素は式(5)中のRからR16のいずれかと結合して単結合を形成していてもよい。 Further, R 2 , R 3 , R 6 , R 7 , R 10 , R 11 , R 14 and R 15 in the formula (5) are represented by the above formulas (5-Ar1) to (5-Ar5). When a monovalent group having a structure is selected, at least one hydrogen in the structure may be bonded to any one of R 1 to R 16 in formula (5) to form a single bond. .
<ピレン系化合物>
 ホストとしてのピレン系化合物は、例えば下記一般式(6)で表される化合物である。
Figure JPOXMLDOC01-appb-C000140
<Pyrene compounds>
The pyrene compound as the host is, for example, a compound represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000140
 上記式(6)中、
 s個のピレン部分とp個のAr部分とがピレン部分の*のいずれかの位置とAr部分のいずれかの位置とで結合し、
 ピレン部分の少なくとも1つの水素は、それぞれ独立して、炭素数6~10のアリール、炭素数2~11のヘテロアリール、炭素数1~30のアルキル、炭素数3~24のシクロアルキル、炭素数2~30のアルケニル、炭素数1~30のアルコキシまたは炭素数6~30のアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、それぞれ独立して、炭素数6~10のアリール、炭素数2~11のヘテロアリール、炭素数1~30のアルキル、炭素数3~24のシクロアルキル、炭素数2~30のアルケニル、炭素数1~30のアルコキシまたは炭素数6~30のアリールオキシで置換されていてもよく、
 Arは、それぞれ独立して、炭素数14~40のアリールまたは炭素数12~40のヘテロアリールであり、これらにおける少なくとも1つの水素は、それぞれ独立して、炭素数6~10のアリール、炭素数2~11のヘテロアリール、炭素数1~30のアルキル、炭素数3~24のシクロアルキル、炭素数2~30のアルケニル、炭素数1~30のアルコキシまたは炭素数6~30のアリールオキシで置換されていてもよく、
 sおよびpはそれぞれ独立して1または2の整数であり、sおよびpは同時に2になることはなく、sが2である場合は2個のピレン部分は置換基を含めて構造的に同一であっても異なっていてもよく、pが2である場合は2個のAr部分は置換基を含めて構造的に同一であっても異なっていてもよく、そして、
 式(6)で表される化合物における少なくとも1つの水素は、それぞれ独立して、ハロゲン、シアノまたは重水素で置換されていてもよい。
In the above formula (6),
s pyrene moieties and p Ar moieties are bonded at any position of * of the pyrene moiety and any position of the Ar moiety;
At least one hydrogen of the pyrene moiety is independently an aryl having 6 to 10 carbon atoms, a heteroaryl having 2 to 11 carbon atoms, an alkyl having 1 to 30 carbon atoms, a cycloalkyl having 3 to 24 carbon atoms, or a carbon number. Optionally substituted with 2 to 30 alkenyl, C 1 to C 30 alkoxy or C 6 to C 30 aryloxy, wherein at least one hydrogen is independently aryl having 6 to 10 carbons. , Heteroaryl having 2 to 11 carbon atoms, alkyl having 1 to 30 carbon atoms, cycloalkyl having 3 to 24 carbon atoms, alkenyl having 2 to 30 carbon atoms, alkoxy having 1 to 30 carbon atoms or aryl having 6 to 30 carbon atoms May be substituted with oxy,
Ar is each independently an aryl having 14 to 40 carbon atoms or a heteroaryl having 12 to 40 carbon atoms, and at least one hydrogen in these is each independently an aryl having 6 to 10 carbon atoms, Substituted with 2-11 heteroaryl, alkyl with 1-30 carbons, cycloalkyl with 3-24 carbons, alkenyl with 2-30 carbons, alkoxy with 1-30 carbons or aryloxy with 6-30 carbons May have been
s and p are each independently an integer of 1 or 2, and s and p are not simultaneously 2; when s is 2, the two pyrene moieties are structurally identical including the substituent And when p is 2, the two Ar moieties may be structurally identical or different, including substituents, and
At least one hydrogen in the compound represented by formula (6) may be independently substituted with halogen, cyano or deuterium.
 上記式(6)の定義における各基の詳細は、上述した、式(1)の多環芳香族化合物における説明を引用することができる。 The details of each group in the definition of the above formula (6) can be referred to the description of the polycyclic aromatic compound of the above formula (1).
 なお、アルケニルとしては、例えば、炭素数2~30のアルケニルがあげられ、炭素数2~20のアルケニルが好ましく、炭素数2~10のアルケニルがより好ましく、炭素数2~6のアルケニルがさらに好ましく、炭素数2~4のアルケニルが特に好ましい。好ましいアルケニルは、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、または5-ヘキセニルである。 Examples of the alkenyl include alkenyl having 2 to 30 carbon atoms, preferably alkenyl having 2 to 20 carbon atoms, more preferably alkenyl having 2 to 10 carbon atoms, and further preferably alkenyl having 2 to 6 carbon atoms. Particularly preferred is alkenyl having 2 to 4 carbon atoms. Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl.
 なお、ヘテロアリールの具体例として、下記式(6-Ar1)、式(6-Ar2)、式(6-Ar3)、式(6-Ar4)または式(6-Ar5)の構造を有する1価の基もあげられる。
Figure JPOXMLDOC01-appb-C000141
 式(6-Ar1)から式(6-Ar5)中、Yは、それぞれ独立して、>O、>Sまたは>N-Rであり、当該Rはフェニル、ビフェニリル、ナフチル、アントラセニルまたは水素であり、
 上記式(6-Ar1)から式(6-Ar5)の構造における少なくとも1つの水素はフェニル、ビフェニリル、ナフチル、アントラセニル、フェナントレニル、メチル、エチル、プロピル、または、ブチルで置換されていてもよい。
As specific examples of heteroaryl, a monovalent having a structure of the following formula (6-Ar1), formula (6-Ar2), formula (6-Ar3), formula (6-Ar4) or formula (6-Ar5) The group of
Figure JPOXMLDOC01-appb-C000141
In formulas (6-Ar1) to (6-Ar5), Y 1 is each independently>O,> S or> N—R, where R is phenyl, biphenylyl, naphthyl, anthracenyl or hydrogen. Yes,
At least one hydrogen in the structures of the above formulas (6-Ar1) to (6-Ar5) may be substituted with phenyl, biphenylyl, naphthyl, anthracenyl, phenanthrenyl, methyl, ethyl, propyl, or butyl.
 これらのヘテロアリールは、連結基を介して、上記式(6)におけるピレン部分と結合していてもよい。すなわち、式(6)におけるピレン部分と上記ヘテロアリールとが直接結合するだけでなく、それらの間に連結基を介して結合してもよい。この連結基としては、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、メチレン、エチレン、-OCHCH-、-CHCHO-、または、-OCHCHO-などがあげられる。 These heteroaryls may be bonded to the pyrene moiety in the above formula (6) through a linking group. That is, not only the pyrene moiety in the formula (6) and the heteroaryl are directly bonded, but also a bond may be bonded between them. Examples of this linking group include phenylene, biphenylene, naphthylene, anthracenylene, methylene, ethylene, —OCH 2 CH 2 —, —CH 2 CH 2 O—, or —OCH 2 CH 2 O—.
 上述した発光層用材料(ホスト材料およびドーパント材料)は、これらに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物、もしくはその高分子架橋体、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物、もしくはそのペンダント型高分子架橋体としても、発光層用材料に用いることができる。この場合の反応性置換基としては、式(1)で表される多環芳香族化合物での説明を引用できる。
 このような高分子化合物および高分子架橋体の用途の詳細については後述する。
The light emitting layer material (host material and dopant material) described above is a polymer compound obtained by polymerizing a reactive compound substituted with a reactive substituent thereon as a monomer, or a crosslinked polymer thereof, or a main chain. A pendant polymer compound obtained by reacting a reactive polymer with the reactive polymer, or a pendant polymer crosslinked product thereof, can also be used for the light emitting layer material. As the reactive substituent in this case, the description of the polycyclic aromatic compound represented by the formula (1) can be cited.
Details of the use of such a polymer compound and polymer crosslinked product will be described later.
<高分子ホスト材料の一例>
Figure JPOXMLDOC01-appb-C000142
<Example of polymer host material>
Figure JPOXMLDOC01-appb-C000142
 式(SPH-1)において、
 MUはそれぞれ独立して2価の芳香族化合物、ECはそれぞれ独立して1価の芳香族化合物であり、MU中の2つの水素がECまたはMUと置換され、kは2~50000の整数である。
In the formula (SPH-1),
MU is each independently a divalent aromatic compound, EC is each independently a monovalent aromatic compound, two hydrogens in MU are replaced with EC or MU, and k is an integer of 2 to 50000 is there.
 より具体的には、
 MUは、それぞれ独立して、アリーレン、ヘテロアリーレン、ジアリーレンアリールアミノ、ジアリーレンアリールボリル、オキサボリン-ジイル、アザボリン-ジイルであり、
 ECは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノまたはアリールオキシであり、
 MUおよびECにおける少なくとも1つの水素はさらに、アリール、ヘテロアリール、ジアリールアミノ、アルキルおよびシクロアルキルで置換されていてもよく、
 kは2~50000の整数である。
 kは20~50000の整数であることが好ましく、100~50000の整数であることがより好ましい。
More specifically,
MUs are each independently arylene, heteroarylene, diarylene arylamino, diarylene arylboryl, oxaborin-diyl, azaborin-diyl,
Each EC is independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino or aryloxy;
At least one hydrogen in MU and EC may be further substituted with aryl, heteroaryl, diarylamino, alkyl and cycloalkyl;
k is an integer of 2 to 50,000.
k is preferably an integer of 20 to 50,000, more preferably an integer of 100 to 50,000.
 式(SPH-1)中のMUおよびECにおける少なくとも1つの水素は、炭素数1~24のアルキル、炭素数3~24のシクロアルキル、ハロゲンまたは重水素で置換されていてもよく、さらに、前記アルキルにおける任意の-CH-は-O-または-Si(CH-で置換されていてもよく、前記アルキルにおける式(SPH-1)中のECに直結している-CH-を除く任意の-CH-は炭素数6~24のアリーレンで置換されていてもよく、前記アルキルにおける任意の水素はフッ素で置換されていてもよい。 At least one hydrogen in MU and EC in the formula (SPH-1) may be substituted with alkyl having 1 to 24 carbons, cycloalkyl having 3 to 24 carbons, halogen or deuterium, and Any —CH 2 — in the alkyl may be substituted with —O— or —Si (CH 3 ) 2 —, and —CH 2 — directly connected to EC in the formula (SPH-1) in the alkyl Any —CH 2 — except for may be substituted with arylene having 6 to 24 carbon atoms, and any hydrogen in the alkyl may be substituted with fluorine.
 MUとしては、例えば、以下のいずれかの化合物から任意の2つの水素原子を除いて表される2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000143
Examples of MU include a divalent group represented by removing any two hydrogen atoms from any of the following compounds.
Figure JPOXMLDOC01-appb-C000143
 より具体的には、以下のいずれかの構造で表される2価の基が挙げられる。これらにおいて、MUは*において他のMUまたはECと結合する。 More specifically, a divalent group represented by any of the following structures can be mentioned. In these, the MU binds to other MUs or ECs in *.
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000152
 また、ECとしては、例えば以下のいずれかの構造で表される1価の基が挙げられる。これらにおいて、ECは*においてMUと結合する。 Further, examples of EC include monovalent groups represented by any of the following structures. In these, EC binds to MU at *.
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000154
 式(SPH-1)で表される化合物は、溶解性および塗布成膜性の観点から、分子中のMU総数(k)の10~100%のMUが炭素数1~24のアルキルを有することが好ましく、分子中のMU総数(k)の30~100%のMUが炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)を有することがより好ましく、分子内のMU総数(k)の50~100%のMUが炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)を有することがさらに好ましい。一方、面内配向性および電荷輸送の観点からは、分子中のMU総数(k)の10~100%のMUが炭素数7~24のアルキルを有することが好ましく、分子中のMU総数(k)の30~100%のMUが炭素数7~24のアルキル(炭素数7~24の分岐鎖アルキル)を有することがより好ましい。 In the compound represented by the formula (SPH-1), from the viewpoint of solubility and coating film formability, 10 to 100% of the MU total number (k) in the molecule has 1 to 24 carbon atoms alkyl. More preferably, 30 to 100% of the MU total number (k) in the molecule has alkyl having 1 to 18 carbon atoms (branched alkyl having 3 to 18 carbon atoms), and the total number of MUs in the molecule ( More preferably, 50 to 100% of MU of k) has alkyl having 1 to 12 carbon atoms (branched alkyl having 3 to 12 carbon atoms). On the other hand, from the viewpoints of in-plane orientation and charge transport, it is preferable that 10 to 100% of the MU total number (k) in the molecule has alkyl having 7 to 24 carbon atoms, and the MU total number (k It is more preferable that 30 to 100% of MU of the compound has an alkyl having 7 to 24 carbon atoms (branched alkyl having 7 to 24 carbon atoms).
 このような高分子化合物および高分子架橋体の用途の詳細については後述する。 Details of the use of such a polymer compound and polymer crosslinked product will be described later.
 一般式(1)で表される多環芳香族化合物は、有機溶媒と共に発光層形成用組成物として使用することもできる。該組成物は、第1成分として少なくとも1種の多環芳香族化合物と、第2成分として少なくとも1種のホスト材料と、第3成分として少なくとも1種の有機溶媒とを含有する。第1成分は、該組成物から得られる発光層のドーパント成分として機能し、第2成分は発光層のホスト成分として機能する。第3成分は、組成物中の第1成分と第2成分を溶解する溶媒として機能し、塗布時には第3成分自身の制御された蒸発速度により平滑で均一な表面形状を与える。 The polycyclic aromatic compound represented by the general formula (1) can also be used as a composition for forming a light emitting layer together with an organic solvent. The composition contains at least one polycyclic aromatic compound as a first component, at least one host material as a second component, and at least one organic solvent as a third component. A 1st component functions as a dopant component of the light emitting layer obtained from this composition, and a 2nd component functions as a host component of a light emitting layer. The third component functions as a solvent that dissolves the first component and the second component in the composition, and gives a smooth and uniform surface shape at the time of application due to the controlled evaporation rate of the third component itself.
<有機溶媒>
 上記発光層形成用組成物は、第3成分として、少なくとも一種の有機溶媒を含む。成膜時に有機溶媒の蒸発速度を制御することで、成膜性および塗膜の欠陥の有無、表面粗さ、平滑性を制御および改善することができる。また、インクジェット法を用いた成膜時は、インクジェットヘッドのピンホールでのメニスカス安定性を制御し、吐出性を制御・改善することができる。加えて、膜の乾燥速度および誘導体分子の配向を制御することで、該発光層形成用組成物より得られる発光層を有する有機EL素子の電気特性、発光特性、効率、および寿命を改善することができる。
<Organic solvent>
The composition for forming a light emitting layer contains at least one organic solvent as a third component. By controlling the evaporation rate of the organic solvent at the time of film formation, the film formability, the presence or absence of defects in the coating film, the surface roughness, and the smoothness can be controlled and improved. Further, during film formation using the ink jet method, the meniscus stability at the pinhole of the ink jet head can be controlled, and the discharge performance can be controlled and improved. In addition, by controlling the drying speed of the film and the orientation of the derivative molecules, the electrical characteristics, light emitting characteristics, efficiency, and lifetime of the organic EL device having a light emitting layer obtained from the composition for forming a light emitting layer are improved. Can do.
(1)有機溶媒の物性
 第3成分において、少なくとも1種の有機溶媒の沸点は、130℃~300℃であり、140℃~270℃がより好ましく、150℃~250℃がさらに好ましい。沸点が130℃より高い場合、インクジェットの吐出性の観点から好ましい。また、沸点が300℃より低い場合、塗膜の欠陥、表面粗さ、残留溶媒および平滑性の観点から好ましい。第3成分は、良好なインクジェットの吐出性、製膜性、平滑性および低い残留溶媒の観点から、2種以上の有機溶媒を含む構成がより好ましい。一方で、場合によっては、運搬性などを考慮し、発光層形成用組成物中から溶媒を除去することで固形状態とした組成物であってもよい。
(1) Physical properties of organic solvent In the third component, the boiling point of at least one organic solvent is 130 ° C to 300 ° C, more preferably 140 ° C to 270 ° C, and further preferably 150 ° C to 250 ° C. When the boiling point is higher than 130 ° C., it is preferable from the viewpoint of ink jetting properties. Moreover, when a boiling point is lower than 300 degreeC, it is preferable from a viewpoint of the defect of a coating film, surface roughness, a residual solvent, and smoothness. The third component is more preferably composed of two or more organic solvents from the viewpoints of good ink jet discharge properties, film-forming properties, smoothness and low residual solvent. On the other hand, in some cases, the composition may be a solid state by removing the solvent from the composition for forming the light emitting layer in consideration of transportability and the like.
 さらに、第3成分が第2成分のホスト材料に対する良溶媒(GS)と貧溶媒(PS)とを含み、良溶媒(GS)の沸点(BPGS)が貧溶媒(PS)の沸点(BPPS)よりも低い、構成が特に好ましい。
 高沸点の貧溶媒を加えることで成膜時に低沸点の良溶媒が先に揮発し、組成物中の含有物の濃度と貧溶媒の濃度が増加し速やかな成膜が促される。これにより、欠陥が少なく、表面粗さが小さい、平滑性の高い塗膜が得られる。
Further, the third component comprises a good solvent (GS) and poor solvent (PS) for the host material of the second component, the good boiling (BP PS solvent boiling (GS) (BP GS) is a poor solvent (PS) ) Is particularly preferred.
By adding a poor solvent having a high boiling point, a good solvent having a low boiling point is volatilized first at the time of film formation, and the concentration of inclusions in the composition and the concentration of the poor solvent are increased, thereby promptly forming a film. Thereby, a coating film with few defects, a small surface roughness, and high smoothness is obtained.
 溶解度の差(SGS-SPS)は、1%以上であることが好ましく、3%以上であることがより好ましく、5%以上であることがさらに好ましい。沸点の差(BPPS-BPGS)は、10℃以上であることが好ましく、30℃以上であることがより好ましく、50℃以上であることがさらに好ましい。 The solubility difference (S GS −S PS ) is preferably 1% or more, more preferably 3% or more, and further preferably 5% or more. The difference in boiling points (BP PS -BP GS ) is preferably 10 ° C. or higher, more preferably 30 ° C. or higher, and further preferably 50 ° C. or higher.
 有機溶媒は、成膜後に、真空、減圧、加熱などの乾燥工程により塗膜より取り除かれる。加熱を行う場合、塗布製膜性改善の観点からは、第1成分のガラス転移温度(Tg)+30℃以下で行うことが好ましい。また、残留溶媒の削減の観点からは、第1成分のガラス転移点(Tg)-30℃以上で加熱することが好ましい。加熱温度が有機溶媒の沸点より低くても膜が薄いために、有機溶媒は十分に取り除かれる。また、異なる温度で複数回乾燥を行ってもよく、複数の乾燥方法を併用してもよい。 The organic solvent is removed from the coating film by a drying process such as vacuum, reduced pressure or heating after the film formation. When heating, it is preferable to carry out at the glass transition temperature (Tg) +30 degreeC or less of a 1st component from a viewpoint of coating film forming property improvement. From the viewpoint of reducing the residual solvent, it is preferable to heat at a glass transition point (Tg) of the first component of −30 ° C. or higher. Even if the heating temperature is lower than the boiling point of the organic solvent, the organic solvent is sufficiently removed because the film is thin. Moreover, drying may be performed a plurality of times at different temperatures, or a plurality of drying methods may be used in combination.
(2)有機溶媒の具体例
 発光層形成用組成物に用いられる有機溶媒としては、アルキルベンゼン系溶媒、フェニルエーテル系溶媒、アルキルエーテル系溶媒、環状ケトン系溶媒、脂肪族ケトン系溶媒、単環性ケトン系溶媒、ジエステル骨格を有する溶媒および含フッ素系溶媒などがあげられ、具体例として、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、テトラデカノール、ヘキサン-2-オール、ヘプタン-2-オール、オクタン-2-オール、デカン-2-オール、ドデカン-2-オール、シクロヘキサノール、α-テルピネオール、β-テルピネオール、γ-テルピネオール、δ-テルピネオール、テルピネオール(混合物)、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールブチルメチルエーテル、ポリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、p-キシレン、m-キシレン、o-キシレン、2,6-ルチジン、2-フルオロ-m-キシレン、3-フルオロ-o-キシレン、2-クロロベンゾ三フッ化物、クメン、トルエン、2-クロロ-6-フルオロトルエン、2-フルオロアニソール、アニソール、2,3-ジメチルピラジン、ブロモベンゼン、4-フルオロアニソール、3-フルオロアニソール、3-トリフルオロメチルアニソール、メシチレン、1,2,4-トリメチルベンゼン、t-ブチルベンゼン、2-メチルアニソール、フェネトール、ベンゾジオキソール、4-メチルアニソール、s-ブチルベンゼン、3-メチルアニソール、4-フルオロ-3-メチルアニソール、シメン、1,2,3-トリメチルベンゼン、1,2-ジクロロベンゼン、2-フルオロベンゾニトリル、4-フルオロベラトロール、2,6-ジメチルアニソール、n-ブチルベンゼン、3-フルオロベンゾニトリル、デカリン(デカヒドロナフタレン)、ネオペンチルベンゼン、2,5-ジメチルアニソール、2,4-ジメチルアニソール、ベンゾニトリル、3,5-ジメチルアニソール、ジフェニルエーテル、1-フルオロ-3,5-ジメトキシベンゼン、安息香酸メチル、イソペンチルベンゼン、3,4-ジメチルアニソール、o-トルニトリル、n-アミルベンゼン、ベラトロール、1,2,3,4-テトラヒドロナフタレン、安息香酸エチル、n-ヘキシルベンゼン、安息香酸プロピル、シクロヘキシルベンゼン、1-メチルナフタレン、安息香酸ブチル、2-メチルビフェニル、3-フェノキシトルエン、2,2’-ビトリル、ドデシルベンゼン、ジペンチルベンゼン、テトラメチルベンゼン、トリメトキシベンゼン、トリメトキシトルエン、2,3-ジヒドロベンゾフラン、1-メチル-4-(プロポキシメチル)ベンゼン、1-メチル-4-(ブチルオキシメチル)ベンゼン、1-メチル-4-(ペンチルオキシメチル)ベンゼン、1-メチル-4-(ヘキシルオキシメチル)ベンゼン、1-メチル-4-(ヘプチルオキシメチル)ベンゼンベンジルブチルエーテル、ベンジルペンチルエーテル、ベンジルヘキシルエーテル、ベンジルヘプチルエーテル、ベンジルオクチルエーテルなどが挙げられるが、それだけに限定されない。また、溶媒は単一で用いてもよく、混合してもよい。
(2) Specific examples of organic solvents The organic solvents used in the composition for forming a light emitting layer include alkylbenzene solvents, phenyl ether solvents, alkyl ether solvents, cyclic ketone solvents, aliphatic ketone solvents, monocyclic Examples include ketone solvents, solvents having a diester skeleton, and fluorine-containing solvents. Specific examples include pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tetradecanol, hexane-2-ol, Heptan-2-ol, octan-2-ol, decan-2-ol, dodecan-2-ol, cyclohexanol, α-terpineol, β-terpineol, γ-terpineol, δ-terpineol, terpineol (mixture), ethylene glycol Monomethyl ester Teracetate, propylene glycol monomethyl ether acetate, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol isopropyl methyl ether, dipropylene glycol monomethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether , Triethylene glycol dimethyl ether, diethylene glycol monobutyl ether, ethylene glycol monophenyl ether, triethylene glycol monomethyl ether, diethylene glycol dibutyl ether, triethylene glycol buty Methyl ether, polyethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, p-xylene, m-xylene, o-xylene, 2,6-lutidine, 2-fluoro-m-xylene, 3-fluoro-o-xylene, 2-chlorobenzo Fluoride, cumene, toluene, 2-chloro-6-fluorotoluene, 2-fluoroanisole, anisole, 2,3-dimethylpyrazine, bromobenzene, 4-fluoroanisole, 3-fluoroanisole, 3-trifluoromethylanisole, Mesitylene, 1,2,4-trimethylbenzene, t-butylbenzene, 2-methylanisole, phenetole, benzodioxole, 4-methylanisole, s-butylbenzene, 3-methylanisole, 4-fluoro-3-methylanis Sole, cymene, 1,2,3-trimethylbenzene, 1,2-dichlorobenzene, 2-fluorobenzonitrile, 4-fluoroveratrol, 2,6-dimethylanisole, n-butylbenzene, 3-fluorobenzonitrile, Decalin (decahydronaphthalene), neopentylbenzene, 2,5-dimethylanisole, 2,4-dimethylanisole, benzonitrile, 3,5-dimethylanisole, diphenyl ether, 1-fluoro-3,5-dimethoxybenzene, benzoic acid Methyl, isopentylbenzene, 3,4-dimethylanisole, o-tolunitrile, n-amylbenzene, veratrol, 1,2,3,4-tetrahydronaphthalene, ethyl benzoate, n-hexylbenzene, propyl benzoate, cyclohexylbenzene , 1-me Lunaphthalene, butyl benzoate, 2-methylbiphenyl, 3-phenoxytoluene, 2,2′-vitryl, dodecylbenzene, dipentylbenzene, tetramethylbenzene, trimethoxybenzene, trimethoxytoluene, 2,3-dihydrobenzofuran, 1 -Methyl-4- (propoxymethyl) benzene, 1-methyl-4- (butyloxymethyl) benzene, 1-methyl-4- (pentyloxymethyl) benzene, 1-methyl-4- (hexyloxymethyl) benzene, Examples include, but are not limited to, 1-methyl-4- (heptyloxymethyl) benzene benzyl butyl ether, benzyl pentyl ether, benzyl hexyl ether, benzyl heptyl ether, benzyl octyl ether, and the like. Moreover, a solvent may be used alone or may be mixed.
<任意成分>
 発光層形成用組成物は、その性質を損なわない範囲で、任意成分を含んでいてもよい。任意成分としては、バインダーおよび界面活性剤等が挙げられる。
<Optional component>
The composition for light emitting layer formation may contain arbitrary components in the range which does not impair the property. Examples of optional components include a binder and a surfactant.
(1)バインダー
 発光層形成用組成物は、バインダーを含有していてもよい。バインダーは、成膜時には膜を形成するとともに、得られた膜を基板と接合する。また、該発光層形成用組成物中で他の成分を溶解および分散および結着させる役割を果たす。
(1) Binder The composition for light emitting layer formation may contain the binder. The binder forms a film at the time of film formation and bonds the obtained film to the substrate. In addition, it plays a role of dissolving, dispersing and binding other components in the composition for forming a light emitting layer.
 発光層形成用組成物に用いられるバインダーとしては、例えば、アクリル樹脂、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、アクリロニトリル-エチレン-スチレン共重合体(AES)樹脂、アイオノマー、塩素化ポリエーテル、ジアリルフタレート樹脂、不飽和ポリエステル樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、テフロン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、アクリロニトリル-スチレン共重合体(AS)樹脂、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、ポリウレタン、および、上記樹脂およびポリマーの共重合体、が挙げられるが、それだけに限定されない。 Examples of the binder used in the composition for forming a light emitting layer include acrylic resin, polyethylene terephthalate, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, acrylonitrile-ethylene-styrene copolymer (AES) resin, Ionomer, chlorinated polyether, diallyl phthalate resin, unsaturated polyester resin, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, Teflon, acrylonitrile-butadiene-styrene copolymer (ABS) resin, acrylonitrile -Styrene copolymer (AS) resin, phenol resin, epoxy resin, melamine resin, urea resin, alkyd resin, polyurethane, and copolymer of the above resin and polymer, Re not limited to.
 発光層形成用組成物に用いられるバインダーは、1種のみであってもよく複数種を混合して用いてもよい。 The binder used in the composition for forming a light emitting layer may be only one kind or a mixture of plural kinds.
(2)界面活性剤
 発光層形成用組成物は、例えば、発光層形成用組成物の膜面均一性、膜表面の親溶媒性および撥液性の制御のために界面活性剤を含有してもよい。界面活性剤は、親水性基の構造からイオン性および非イオン性に分類され、さらに、疎水性基の構造からアルキル系およびシリコン系およびフッ素系に分類される。また、分子の構造から、分子量が比較的小さく単純な構造を有する単分子系および分子量が大きく側鎖や枝分かれを有する高分子系に分類される。また、組成から、単一系、二種以上の界面活性剤および基材を混合した混合系に分類される。該発光層形成用組成物に用いることのできる界面活性剤としては、全ての種類の界面活性剤を用いることができる。
(2) Surfactant The composition for forming a light emitting layer contains, for example, a surfactant for controlling the film surface uniformity, solvophilicity and liquid repellency of the film forming composition. Also good. Surfactants are classified into ionic and nonionic based on the structure of the hydrophilic group, and further classified into alkyl, silicon, and fluorine based on the structure of the hydrophobic group. Further, the molecular structure is classified into a monomolecular system having a relatively small molecular weight and a simple structure, and a polymer system having a large molecular weight and having a side chain and a branch. Moreover, it classify | categorizes into the mixed system which mixed the single system and 2 or more types of surfactant and the base material from a composition. As the surfactant that can be used in the composition for forming a light emitting layer, all kinds of surfactants can be used.
 界面活性剤としては、例えば、ポリフローNo.45、ポリフローKL-245、ポリフローNo.75、ポリフローNo.90、ポリフローNo.95(商品名、共栄社化学工業(株)製)、ディスパーベイク(Disperbyk)161、ディスパーベイク162、ディスパーベイク163、ディスパーベイク164、ディスパーベイク166、ディスパーベイク170、ディスパーベイク180、ディスパーベイク181、ディスパーベイク182、BYK300、BYK306、BYK310、BYK320、BYK330、BYK342、BYK344、BYK346(商品名、ビックケミー・ジャパン(株)製)、KP-341、KP-358、KP-368、KF-96-50CS、KF-50-100CS(商品名、信越化学工業(株)製)、サーフロンSC-101、サーフロンKH-40(商品名、セイミケミカル(株)製)、フタージェント222F、フタージェント251、FTX-218(商品名、(株)ネオス製)、EFTOP EF-351、EFTOP EF-352、EFTOP EF-601、EFTOP EF-801、EFTOP EF-802(商品名、三菱マテリアル(株)製)、メガファックF-470、メガファックF-471、メガファックF-475、メガファックR-08、メガファックF-477、メガファックF-479、メガファックF-553、メガファックF-554(商品名、DIC(株)製)、フルオロアルキルベンゼンスルホン酸塩、フルオルアルキルカルボン酸塩、フルオロアルキルポリオキシエチレンエーテル、フルオロアルキルアンモニウムヨージド、フルオロアルキルベタイン、フルオロアルキルスルホン酸塩、ジグリセリンテトラキス(フルオロアルキルポリオキシエチレンエーテル)、フルオロアルキルトリメチルアンモニウム塩、フルオロアルキルアミノスルホン酸塩、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンラウレート、ポリオキシエチレンオレエート、ポリオキシエチレンステアレート、ポリオキシエチレンラウリルアミン、ソルビタンラウレート、ソルビタンパルミテート、ソルビタンステアレート、ソルビタンオレエート、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタンラウレート、ポリオキシエチレンソルビタンパルミテート、ポリオキシエチレンソルビタンステアレート、ポリオキシエチレンソルビタンオレエート、ポリオキシエチレンナフチルエーテル、アルキルベンゼンスルホン酸塩およびアルキルジフェニルエーテルジスルホン酸塩を挙げることができる。 As the surfactant, for example, Polyflow No. 45, Polyflow KL-245, Polyflow No. 75, Polyflow No. 90, polyflow no. 95 (trade name, manufactured by Kyoeisha Chemical Industry Co., Ltd.), Disperbak 161, Disper Bake 162, Disper Bake 163, Disper Bake 164, Disper Bake 166, Disper Bake 170, Disper Bake 180, Disper Bake 181 and Disper Bake 182, BYK300, BYK306, BYK310, BYK320, BYK330, BYK342, BYK344, BYK346 (trade name, manufactured by Big Chemie Japan Co., Ltd.), KP-341, KP-358, KP-368, KF-96-50CS, KF -50-100CS (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), Surflon SC-101, Surflon KH-40 (trade name, manufactured by Seimi Chemical Co., Ltd.), Footent 222F, Footage 251, FTX-218 (trade name, manufactured by Neos Co., Ltd.), EFTOP EF-351, EFTOP EF-352, EFTOP EF-601, EFTOP EF-801, EFTOP EF-802 (trade name, Mitsubishi Materials Corporation) ), Megafuck F-470, Megafuck F-471, Megafuck F-475, Megafuck R-08, Megafuck F-477, Megafuck F-479, Megafuck F-553, Megafuck F-554 (Trade name, manufactured by DIC Corporation), fluoroalkyl benzene sulfonate, fluoroalkyl carboxylate, fluoroalkyl polyoxyethylene ether, fluoroalkyl ammonium iodide, fluoroalkyl betaine, fluoroalkyl sulfonate, diglycerin tetrakis (F Oroalkyl polyoxyethylene ether), fluoroalkyltrimethylammonium salt, fluoroalkylaminosulfonate, polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene laurate, polyoxyethylene Oleate, polyoxyethylene stearate, polyoxyethylene laurylamine, sorbitan laurate, sorbitan palmitate, sorbitan stearate, sorbitan oleate, sorbitan fatty acid ester, polyoxyethylene sorbitan laurate, polyoxyethylene sorbitan palmitate, poly Oxyethylene sorbitan stearate, polyoxyethylene sorbitan oleate, polyoxyethylene Mention may be made of nonnaphthyl ethers, alkylbenzene sulfonates and alkyl diphenyl ether disulfonates.
 また、界面活性剤は1種で用いてもよく、2種以上を併用してもよい。 Further, the surfactant may be used alone or in combination of two or more.
<発光層形成用組成物の組成および物性>
 発光層形成用組成物における各成分の含有量は、発光層形成用組成物中の各成分の良好な溶解性、保存安定性および成膜性、ならびに、該発光層形成用組成物から得られる塗膜の良質な膜質、また、インクジェット法を用いた場合の良好な吐出性、該組成物を用いて作製された発光層を有する有機EL素子の、良好な電気特性、発光特性、効率、寿命の観点から、第1成分が発光層形成用組成物の全重量に対して、0.0001重量%~2.0重量%、第2成分が発光層形成用組成物の全重量に対して、0.0999重量%~8.0重量%、第3成分が発光層形成用組成物の全重量に対して、90.0重量%~99.9重量%が好ましい。
<Composition and physical properties of composition for forming light emitting layer>
The content of each component in the composition for forming a light emitting layer is obtained from the good solubility, storage stability and film formability of each component in the composition for forming a light emitting layer, and the composition for forming a light emitting layer. Good film quality of the coating film, good dischargeability when using the ink jet method, and good electrical characteristics, light emission characteristics, efficiency, and lifetime of the organic EL device having a light emitting layer manufactured using the composition In view of the above, the first component is 0.0001% by weight to 2.0% by weight relative to the total weight of the light emitting layer forming composition, and the second component is based on the total weight of the light emitting layer forming composition. The amount is preferably 0.0999 wt% to 8.0 wt%, and the third component is preferably 90.0 wt% to 99.9 wt% with respect to the total weight of the light emitting layer forming composition.
 より好ましくは、第1成分が発光層形成用組成物の全重量に対して、0.005重量%~1.0重量%、第2成分が発光層形成用組成物の全重量に対して、0.095重量%~4.0重量%、第3成分が発光層形成用組成物の全重量に対して、95.0重量%~99.9重量%である。さらに好ましくは、第1成分が発光層形成用組成物の全重量に対して、0.05重量%~0.5重量%、第2成分が発光層形成用組成物の全重量に対して、0.25重量%~2.5重量%、第3成分が発光層形成用組成物の全重量に対して、97.0重量%~99.7重量%である。 More preferably, the first component is 0.005 wt% to 1.0 wt% with respect to the total weight of the light emitting layer forming composition, and the second component is with respect to the total weight of the light emitting layer forming composition, 0.095 wt% to 4.0 wt%, and the third component is 95.0 wt% to 99.9 wt% with respect to the total weight of the light emitting layer forming composition. More preferably, the first component is 0.05% by weight to 0.5% by weight relative to the total weight of the light emitting layer forming composition, and the second component is based on the total weight of the light emitting layer forming composition. The amount of the third component is 97.0% by weight to 99.7% by weight with respect to the total weight of the composition for forming a light emitting layer.
 発光層形成用組成物は、上述した成分を、公知の方法で攪拌、混合、加熱、冷却、溶解、分散等を適宜選択して行うことによって製造できる。また、調製後に、ろ過、脱ガス(デガスとも言う)、イオン交換処理および不活性ガス置換・封入処理等を適宜選択して行ってもよい。 The composition for forming a light emitting layer can be produced by appropriately selecting the above-mentioned components by stirring, mixing, heating, cooling, dissolution, dispersion, and the like by a known method. Further, after preparation, filtration, degassing (also referred to as degas), ion exchange treatment, inert gas replacement / encapsulation treatment, and the like may be selected as appropriate.
 発光層形成用組成物の粘度としては、高粘度である方が、良好な成膜性とインクジェット法を用いた場合の良好な吐出性が得られる。一方、低粘度である方が薄い膜を作りやすい。このことから、該発光層形成用組成物の粘度は、25℃における粘度が0.3mPa・s~3mPa・sであることが好ましく、1mPa・s~3mPa・sであることがより好ましい。本発明において、粘度は円錐平板型回転粘度計(コーンプレートタイプ)を用いて測定した値である。 As the viscosity of the composition for forming a light emitting layer, a higher viscosity can provide better film formability and good dischargeability when an ink jet method is used. On the other hand, it is easier to make a thin film with a low viscosity. Accordingly, the viscosity of the composition for forming a light emitting layer is preferably 0.3 mPa · s to 3 mPa · s at 25 ° C., more preferably 1 mPa · s to 3 mPa · s. In the present invention, the viscosity is a value measured using a conical plate type rotational viscometer (cone plate type).
 発光層形成用組成物の表面張力としては、低い方が良好な成膜性および欠陥のない塗膜が得られる。一方、高い方が良好なインクジェット吐出性を得られる。このことから、該発光層形成用組成物の粘度は、25℃における表面張力が20mN/m~40mN/mであることが好ましく、20mN/m~30mN/mであることがより好ましい。本発明において、表面張力は懸滴法を用いて測定した値である。 When the surface tension of the composition for forming a light emitting layer is low, a good film formability and a coating film having no defects can be obtained. On the other hand, higher ink jetting properties can be obtained. From this, the viscosity of the composition for forming a light emitting layer is preferably 20 mN / m to 40 mN / m, more preferably 20 mN / m to 30 mN / m, at 25 ° C. In the present invention, the surface tension is a value measured using the hanging drop method.
<有機電界発光素子における電子注入層、電子輸送層>
 電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たす。電子輸送層106は、陰極108から注入された電子または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たす。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合するか、電子輸送・注入材料と高分子結着剤の混合物により形成される。
<Electron injection layer and electron transport layer in organic electroluminescence device>
The electron injection layer 107 plays a role of efficiently injecting electrons moving from the cathode 108 into the light emitting layer 105 or the electron transport layer 106. The electron transport layer 106 plays a role of efficiently transporting electrons injected from the cathode 108 or electrons injected from the cathode 108 through the electron injection layer 107 to the light emitting layer 105. The electron transport layer 106 and the electron injection layer 107 are each formed by laminating and mixing one or more electron transport / injection materials or a mixture of the electron transport / injection material and the polymer binder.
 電子注入・輸送層とは、陰極から電子が注入され、さらに電子を輸送することをつかさどる層であり、電子注入効率が高く、注入された電子を効率よく輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本実施形態における電子注入・輸送層は、正孔の移動を効率よく阻止できる層の機能も含まれてもよい。 The electron injection / transport layer is a layer that is responsible for injecting electrons from the cathode and further transporting the electrons. It is desirable that the electron injection efficiency is high and the injected electrons are transported efficiently. For this purpose, it is preferable to use a substance that has a high electron affinity, a high electron mobility, excellent stability, and is unlikely to generate trapping impurities during production and use. However, considering the transport balance between holes and electrons, if the role of effectively preventing the holes from the anode from flowing to the cathode side without recombination is mainly played, the electron transport capability is much higher. Even if it is not high, the effect of improving the luminous efficiency is equivalent to that of a material having a high electron transport capability. Therefore, the electron injection / transport layer in this embodiment may include a function of a layer that can efficiently block the movement of holes.
 電子輸送層106または電子注入層107を形成する材料(電子輸送材料)としては、光導電材料において電子伝達化合物として従来から慣用されている化合物、有機EL素子の電子注入層および電子輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。 As a material (electron transport material) for forming the electron transport layer 106 or the electron injection layer 107, a compound conventionally used as an electron transport compound in a photoconductive material, used for an electron injection layer and an electron transport layer of an organic EL element It can be used by arbitrarily selecting from known compounds.
 電子輸送層または電子注入層に用いられる材料としては、炭素、水素、酸素、硫黄、ケイ素およびリンの中から選ばれる一種以上の原子で構成される芳香族環または複素芳香族環からなる化合物、ピロール誘導体およびその縮合環誘導体および電子受容性窒素を有する金属錯体の中から選ばれる少なくとも一種を含有することが好ましい。具体的には、ナフタレン、アントラセンなどの縮合環系芳香族環誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香族環誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体およびインドール誘導体などがあげられる。電子受容性窒素を有する金属錯体としては、例えば、ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。 As a material used for the electron transport layer or the electron injection layer, a compound composed of an aromatic ring or a heteroaromatic ring composed of one or more atoms selected from carbon, hydrogen, oxygen, sulfur, silicon and phosphorus, It is preferable to contain at least one selected from pyrrole derivatives, condensed ring derivatives thereof, and metal complexes having electron-accepting nitrogen. Specifically, condensed ring aromatic ring derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4′-bis (diphenylethenyl) biphenyl, perinone derivatives, coumarin derivatives, naphthalimide derivatives Quinone derivatives such as anthraquinone and diphenoquinone, phosphorus oxide derivatives, carbazole derivatives and indole derivatives. Examples of metal complexes having electron-accepting nitrogen include hydroxyazole complexes such as hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, and benzoquinoline metal complexes. These materials can be used alone or in combination with different materials.
 また、他の電子伝達化合物の具体例として、ピリジン誘導体、ナフタレン誘導体、アントラセン誘導体、フェナントロリン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン誘導体、ジフェノキノン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体(1,3-ビス[(4-t-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなど)、チオフェン誘導体、トリアゾール誘導体(N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなど)、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノリノール系金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パーフルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体(2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなど)、イミダゾピリジン誘導体、ボラン誘導体、ベンゾイミダゾール誘導体(トリス(N-フェニルベンゾイミダゾール-2-イル)ベンゼンなど)、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、テルピリジンなどのオリゴピリジン誘導体、ビピリジン誘導体、テルピリジン誘導体(1,3-ビス(4’-(2,2’:6’2”-テルピリジニル))ベンゼンなど)、ナフチリジン誘導体(ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなど)、アルダジン誘導体、カルバゾール誘導体、インドール誘導体、リンオキサイド誘導体、ビススチリル誘導体などがあげられる。 Specific examples of other electron transfer compounds include pyridine derivatives, naphthalene derivatives, anthracene derivatives, phenanthroline derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinone derivatives, diphenoquinone derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazoles. Derivatives (1,3-bis [(4-t-butylphenyl) 1,3,4-oxadiazolyl] phenylene, etc.), thiophene derivatives, triazole derivatives (N-naphthyl-2,5-diphenyl-1,3,4- Triazole, etc.), thiadiazole derivatives, metal complexes of oxine derivatives, quinolinol metal complexes, quinoxaline derivatives, polymers of quinoxaline derivatives, benzazole compounds, gallium complexes, pyrazole derivatives, perfluorinated compounds Nylene derivatives, triazine derivatives, pyrazine derivatives, benzoquinoline derivatives (2,2'-bis (benzo [h] quinolin-2-yl) -9,9'-spirobifluorene, etc.), imidazopyridine derivatives, borane derivatives, benzo Imidazole derivatives (such as tris (N-phenylbenzimidazol-2-yl) benzene), benzoxazole derivatives, benzothiazole derivatives, quinoline derivatives, oligopyridine derivatives such as terpyridine, bipyridine derivatives, terpyridine derivatives (1,3-bis (4 ′-(2,2 ′: 6′2 ″ -terpyridinyl)) benzene), naphthyridine derivatives (bis (1-naphthyl) -4- (1,8-naphthyridin-2-yl) phenylphosphine oxide), aldazine Derivative, carbazole derivative, in Lumpur derivatives, phosphorus oxide derivatives, such as bis-styryl derivatives.
 また、電子受容性窒素を有する金属錯体を用いることもでき、例えば、キノリノール系金属錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。 In addition, metal complexes having electron-accepting nitrogen can also be used, such as hydroxyazole complexes such as quinolinol-based metal complexes and hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, and benzoquinoline metal complexes. can give.
 上述した材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。 The above-mentioned materials can be used alone, but they may be mixed with different materials.
 上述した材料の中でも、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、カルバゾール誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体、およびキノリノール系金属錯体が好ましい。 Among the materials described above, borane derivatives, pyridine derivatives, fluoranthene derivatives, BO derivatives, anthracene derivatives, benzofluorene derivatives, phosphine oxide derivatives, pyrimidine derivatives, carbazole derivatives, triazine derivatives, benzimidazole derivatives, phenanthroline derivatives, and quinolinol metals Complexes are preferred.
<ボラン誘導体>
 ボラン誘導体は、例えば下記一般式(ETM-1)で表される化合物であり、詳細には特開2007-27587号公報に開示されている。
Figure JPOXMLDOC01-appb-C000155
 上記式(ETM-1)中、R11およびR12は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよいアリーレンであり、Yは、置換されていてもよい炭素数16以下のアリール、置換されているボリル、または置換されていてもよいカルバゾリルであり、そして、nはそれぞれ独立して0~3の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。
<Borane derivative>
The borane derivative is, for example, a compound represented by the following general formula (ETM-1), and is disclosed in detail in JP-A-2007-27587.
Figure JPOXMLDOC01-appb-C000155
In the above formula (ETM-1), R 11 and R 12 are each independently hydrogen, alkyl, cycloalkyl, aryl that may be substituted, silyl that is substituted, or nitrogen that may be substituted It is at least one of a heterocycle or cyano, and R 13 to R 16 are each independently an optionally substituted alkyl, an optionally substituted cycloalkyl, or an optionally substituted aryl. And X is an optionally substituted arylene, Y is an optionally substituted aryl having 16 or less carbon atoms, a substituted boryl, or an optionally substituted carbazolyl; and n is each independently an integer of 0 to 3. In addition, examples of the substituent in the case of “optionally substituted” or “substituted” include aryl, heteroaryl, alkyl, and cycloalkyl.
 上記一般式(ETM-1)で表される化合物の中でも、下記一般式(ETM-1-1)で表される化合物や下記一般式(ETM-1-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000156
 式(ETM-1-1)中、R11およびR12は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、または置換されていてもよいアリールであり、R21およびR22は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、nはそれぞれ独立して0~3の整数であり、そして、mはそれぞれ独立して0~4の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。
Figure JPOXMLDOC01-appb-C000157
 式(ETM-1-2)中、R11およびR12は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、そして、nはそれぞれ独立して0~3の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。
Among the compounds represented by the general formula (ETM-1), compounds represented by the following general formula (ETM-1-1) and compounds represented by the following general formula (ETM-1-2) are preferable.
Figure JPOXMLDOC01-appb-C000156
In the formula (ETM-1-1), R 11 and R 12 are each independently hydrogen, alkyl, cycloalkyl, aryl which may be substituted, silyl which is substituted, nitrogen which may be substituted -Containing heterocycle, or at least one of cyano, and R 13 to R 16 each independently represents an optionally substituted alkyl, an optionally substituted cycloalkyl, or an optionally substituted aryl. R 21 and R 22 are each independently hydrogen, alkyl, cycloalkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano. at least one a and, X 1 is substituted carbon atoms and optionally more than 20 arylene, n are each independently an integer of 0 to 3 And, m is an integer of 0 to 4 independently. In addition, examples of the substituent in the case of “optionally substituted” or “substituted” include aryl, heteroaryl, alkyl, and cycloalkyl.
Figure JPOXMLDOC01-appb-C000157
In the formula (ETM-1-2), R 11 and R 12 are each independently hydrogen, alkyl, cycloalkyl, aryl which may be substituted, silyl which is substituted, nitrogen which may be substituted -Containing heterocycle, or at least one of cyano, and R 13 to R 16 each independently represents an optionally substituted alkyl, an optionally substituted cycloalkyl, or an optionally substituted aryl. X 1 is an optionally substituted arylene having 20 or less carbon atoms, and n is each independently an integer of 0 to 3. In addition, examples of the substituent in the case of “optionally substituted” or “substituted” include aryl, heteroaryl, alkyl, and cycloalkyl.
 Xの具体的な例としては、下記式(X-1)~式(X-9)のいずれかで表される2価の基があげられる。
Figure JPOXMLDOC01-appb-C000158
(各式中、Rは、それぞれ独立してアルキル基、シクロアルキル基または置換されていてもよいフェニル基である。)
Specific examples of X 1 include divalent groups represented by any of the following formulas (X-1) to (X-9).
Figure JPOXMLDOC01-appb-C000158
(In each formula, each R a is independently an alkyl group, a cycloalkyl group, or an optionally substituted phenyl group.)
 このボラン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000159
Specific examples of this borane derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000159
 このボラン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This borane derivative can be produced using a known raw material and a known synthesis method.
<ピリジン誘導体>
 ピリジン誘導体は、例えば下記式(ETM-2)で表される化合物であり、好ましくは式(ETM-2-1)または式(ETM-2-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000160
<Pyridine derivative>
The pyridine derivative is, for example, a compound represented by the following formula (ETM-2), preferably a compound represented by the formula (ETM-2-1) or the formula (ETM-2-2).
Figure JPOXMLDOC01-appb-C000160
 φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数である。 φ is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4 is there.
 上記式(ETM-2-1)において、R11~R18は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)である。 In the above formula (ETM-2-1), R 11 to R 18 are each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbons), cycloalkyl (preferably cyclohexane having 3 to 12 carbons). Alkyl) or aryl (preferably aryl having 6 to 30 carbon atoms).
 上記式(ETM-2-2)において、R11およびR12は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)であり、R11およびR12は結合して環を形成していてもよい。 In the above formula (ETM-2-2), R 11 and R 12 are each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cyclohexane having 3 to 12 carbon atoms). Alkyl) or aryl (preferably aryl having 6 to 30 carbon atoms), and R 11 and R 12 may be bonded to form a ring.
 各式において、「ピリジン系置換基」は、下記式(Py-1)~式(Py-15)のいずれかであり、ピリジン系置換基はそれぞれ独立して炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルで置換されていてもよい。また、ピリジン系置換基はフェニレン基やナフチレン基を介して各式におけるφ、アントラセン環またはフルオレン環に結合していてもよい。 In each formula, the “pyridine substituent” is any of the following formulas (Py-1) to (Py-15), and each pyridine substituent is independently an alkyl or carbon having 1 to 4 carbon atoms. It may be substituted with cycloalkyl of several 5-10. Further, the pyridine-based substituent may be bonded to φ, anthracene ring or fluorene ring in each formula through a phenylene group or a naphthylene group.
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000161
 ピリジン系置換基は、上記式(Py-1)~式(Py-15)のいずれかであるが、これらの中でも、下記式(Py-21)~式(Py-44)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000162
The pyridine-based substituent is any one of the above formulas (Py-1) to (Py-15), and among these, any of the following formulas (Py-21) to (Py-44) It is preferable.
Figure JPOXMLDOC01-appb-C000162
 各ピリジン誘導体における少なくとも1つの水素が重水素で置換されていてもよく、また、上記式(ETM-2-1)および式(ETM-2-2)における2つの「ピリジン系置換基」のうちの一方はアリールで置き換えられていてもよい。 At least one hydrogen in each pyridine derivative may be substituted with deuterium, and among the two “pyridine substituents” in the above formula (ETM-2-1) and formula (ETM-2-2) One of these may be replaced by aryl.
 R11~R18における「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルがあげられる。好ましい「アルキル」は、炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)である。より好ましい「アルキル」は、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)である。特に好ましい「アルキル」は、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)である。 “Alkyl” in R 11 to R 18 may be either linear or branched, and examples thereof include linear alkyl having 1 to 24 carbon atoms and branched alkyl having 3 to 24 carbon atoms. Preferred “alkyl” is alkyl having 1 to 18 carbon atoms (branched alkyl having 3 to 18 carbon atoms). More preferable “alkyl” is alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons). More preferable “alkyl” is alkyl having 1 to 6 carbon atoms (branched alkyl having 3 to 6 carbon atoms). Particularly preferred “alkyl” is alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms).
 具体的な「アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどがあげられる。 Specific examples of “alkyl” include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1 -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2 -Propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl, n-dodecyl, n-tridecyl, 1-hexylheptyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-he Tadeshiru, n- octadecyl, such as n- eicosyl, and the like.
 ピリジン系置換基に置換する炭素数1~4のアルキルとしては、上記アルキルの説明を引用することができる。 As the alkyl having 1 to 4 carbon atoms to be substituted on the pyridine-based substituent, the above description of alkyl can be cited.
 R11~R18における「シクロアルキル」としては、例えば、炭素数3~12のシクロアルキルがあげられる。好ましい「シクロアルキル」は、炭素数3~10のシクロアルキルである。より好ましい「シクロアルキル」は、炭素数3~8のシクロアルキルである。さらに好ましい「シクロアルキル」は、炭素数3~6のシクロアルキルである。
 具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。
Examples of “cycloalkyl” in R 11 to R 18 include cycloalkyl having 3 to 12 carbon atoms. Preferred “cycloalkyl” is cycloalkyl having 3 to 10 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 8 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 6 carbon atoms.
Specific examples of “cycloalkyl” include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, and dimethylcyclohexyl.
 R11~R18における「アリール」としては、好ましいアリールは炭素数6~30のアリールであり、より好ましいアリールは炭素数6~18のアリールであり、さらに好ましくは炭素数6~14のアリールであり、特に好ましくは炭素数6~12のアリールである。 As the “aryl” in R 11 to R 18 , preferred aryl is aryl having 6 to 30 carbon atoms, more preferred aryl is aryl having 6 to 18 carbon atoms, and still more preferred is aryl having 6 to 14 carbon atoms. And particularly preferred is aryl having 6 to 12 carbon atoms.
 具体的な「炭素数6~30のアリール」としては、単環系アリールであるフェニル、縮合二環系アリールである(1-,2-)ナフチル、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどがあげられる。 Specific examples of the “aryl having 6 to 30 carbon atoms” include monocyclic aryl phenyl, condensed bicyclic aryl (1-, 2-) naphthyl, condensed tricyclic aryl acenaphthylene- ( 1-, 3-, 4-, 5-) yl, fluorene- (1-, 2-, 3-, 4-, 9-) yl, phenalen- (1-, 2-) yl, (1-, 2 -, 3-, 4-, 9-) phenanthryl, condensed tetracyclic aryl triphenylene- (1-, 2-) yl, pyrene- (1-, 2-, 4-) yl, naphthacene- (1- , 2-, 5-) yl, perylene- (1-, 2-, 3-) yl which is a fused pentacyclic aryl, pentacene- (1-, 2-, 5-, 6-) yl and the like. .
 好ましい「炭素数6~30のアリール」は、フェニル、ナフチル、フェナントリル、クリセニルまたはトリフェニレニルなどがあげられ、さらに好ましくはフェニル、1-ナフチル、2-ナフチルまたはフェナントリルがあげられ、特に好ましくはフェニル、1-ナフチルまたは2-ナフチルがあげられる。 Preferable “aryl having 6 to 30 carbon atoms” includes phenyl, naphthyl, phenanthryl, chrycenyl, triphenylenyl and the like, more preferably phenyl, 1-naphthyl, 2-naphthyl and phenanthryl, particularly preferably phenyl, 1 -Naphthyl or 2-naphthyl.
 上記式(ETM-2-2)におけるR11およびR12は結合して環を形成していてもよく、この結果、フルオレン骨格の5員環には、シクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、フルオレンまたはインデンなどがスピロ結合していてもよい。 R 11 and R 12 in the above formula (ETM-2-2) may be bonded to form a ring. As a result, the 5-membered ring of the fluorene skeleton includes cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, Cyclohexane, fluorene, indene and the like may be spiro-bonded.
 このピリジン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000163
Specific examples of the pyridine derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000163
 このピリジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This pyridine derivative can be produced using a known raw material and a known synthesis method.
<フルオランテン誘導体>
 フルオランテン誘導体は、例えば下記一般式(ETM-3)で表される化合物であり、詳細には国際公開第2010/134352号公報に開示されている。
Figure JPOXMLDOC01-appb-C000164
<Fluoranthene derivative>
The fluoranthene derivative is, for example, a compound represented by the following general formula (ETM-3), and is disclosed in detail in International Publication No. 2010/134352.
Figure JPOXMLDOC01-appb-C000164
 上記式(ETM-3)中、X12~X21は水素、ハロゲン、直鎖、分岐もしくは環状のアルキル、直鎖、分岐もしくは環状のアルコキシ、置換もしくは無置換のアリール、または置換もしくは無置換のヘテロアリールを表す。ここで、置換されている場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。 In the above formula (ETM-3), X 12 to X 21 are hydrogen, halogen, linear, branched or cyclic alkyl, linear, branched or cyclic alkoxy, substituted or unsubstituted aryl, or substituted or unsubstituted Represents heteroaryl. Here, examples of the substituent when substituted include aryl, heteroaryl, alkyl, and cycloalkyl.
 このフルオランテン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000165
Specific examples of the fluoranthene derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000165
<BO系誘導体>
 BO系誘導体は、例えば下記式(ETM-4)で表される多環芳香族化合物、または下記式(ETM-4)で表される構造を複数有する多環芳香族化合物の多量体である。
Figure JPOXMLDOC01-appb-C000166
<BO derivatives>
The BO derivative is, for example, a polycyclic aromatic compound represented by the following formula (ETM-4) or a multimer of polycyclic aromatic compounds having a plurality of structures represented by the following formula (ETM-4).
Figure JPOXMLDOC01-appb-C000166
 R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。 R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, in which at least one hydrogen May be substituted with aryl, heteroaryl, alkyl or cycloalkyl.
 また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。 Further, adjacent groups of R 1 to R 11 may be bonded to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring, and at least one hydrogen in the formed ring May be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, cycloalkyl, alkoxy or aryloxy, wherein at least one hydrogen is aryl, heteroaryl, alkyl or It may be substituted with cycloalkyl.
 また、式(ETM-4)で表される化合物または構造における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよい。 In addition, at least one hydrogen in the compound or structure represented by the formula (ETM-4) may be substituted with halogen or deuterium.
 式(ETM-4)における置換基や環形成の形態の説明については、上記一般式(1)で表される多環芳香族化合物およびその多量体の説明を引用することができる。 For the explanation of the substituent and ring formation mode in the formula (ETM-4), the explanation of the polycyclic aromatic compound represented by the general formula (1) and the multimer thereof can be cited.
 このBO系誘導体の具体例としては、例えば以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000167
Specific examples of this BO derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000167
 このBO系誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This BO derivative can be produced using a known raw material and a known synthesis method.
<アントラセン誘導体>
 アントラセン誘導体の一つは、例えば下記式(ETM-5-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000168
<Anthracene derivative>
One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-1).
Figure JPOXMLDOC01-appb-C000168
 Arは、それぞれ独立して、2価のベンゼンまたはナフタレンであり、R~Rは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3から6のシクロアルキルまたは炭素数6~20のアリールである。 Ar is each independently divalent benzene or naphthalene, and R 1 to R 4 are each independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons or carbon number 6 to 20 aryls.
 Arは、それぞれ独立して、2価のベンゼンまたはナフタレンから適宜選択することができ、2つのArが異なっていても同じであってもよいが、アントラセン誘導体の合成の容易さの観点からは同じであることが好ましい。Arはピリジンと結合して、「Arおよびピリジンからなる部位」を形成しており、この部位は例えば下記式(Py-1)~式(Py-12)のいずれかで表される基としてアントラセンに結合している。 Ar can be independently selected as appropriate from divalent benzene or naphthalene, and the two Ar may be different or the same, but the same from the viewpoint of the ease of synthesis of the anthracene derivative. It is preferable that Ar is bonded to pyridine to form a “part consisting of Ar and pyridine”. This part is an anthracene as a group represented by any of the following formulas (Py-1) to (Py-12), for example. Is bound to.
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000169
 これらの基の中でも、上記式(Py-1)~式(Py-9)のいずれかで表される基が好ましく、上記式(Py-1)~式(Py-6)のいずれかで表される基がより好ましい。アントラセンに結合する2つの「Arおよびピリジンからなる部位」は、その構造が同じであっても異なっていてもよいが、アントラセン誘導体の合成の容易さの観点からは同じ構造であることが好ましい。ただし、素子特性の観点からは、2つの「Arおよびピリジンからなる部位」の構造が同じであっても異なっていても好ましい。 Among these groups, a group represented by any one of the above formulas (Py-1) to (Py-9) is preferable, and any one of the above formulas (Py-1) to (Py-6) may be used. More preferred are the groups The two “sites consisting of Ar and pyridine” bonded to anthracene may have the same structure or different structures, but are preferably the same structure from the viewpoint of ease of synthesis of the anthracene derivative. However, from the viewpoint of device characteristics, it is preferable that the structures of the two “sites composed of Ar and pyridine” are the same or different.
 R~Rにおける炭素数1~6のアルキルについては直鎖および分岐鎖のいずれでもよい。すなわち、炭素数1~6の直鎖アルキルまたは炭素数3~6の分岐鎖アルキルである。より好ましくは、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)である。具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、または2-エチルブチルなどがあげられ、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、またはt-ブチルが好ましく、メチル、エチル、またはt-ブチルがより好ましい。 The alkyl having 1 to 6 carbon atoms in R 1 to R 4 may be linear or branched. That is, it is a linear alkyl having 1 to 6 carbon atoms or a branched alkyl having 3 to 6 carbon atoms. More preferred is alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms). Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, Examples include 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, etc., preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, or t-butyl. More preferred are methyl, ethyl, or t-butyl.
 R~Rにおける炭素数3~6のシクロアルキルの具体例としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。 Specific examples of the cycloalkyl having 3 to 6 carbon atoms in R 1 to R 4 include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, and dimethylcyclohexyl.
 R~Rにおける炭素数6~20のアリールについては、炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。 The aryl having 6 to 20 carbon atoms in R 1 to R 4 is preferably an aryl having 6 to 16 carbon atoms, more preferably an aryl having 6 to 12 carbon atoms, and particularly preferably an aryl having 6 to 10 carbon atoms.
 「炭素数6~20のアリール」の具体例としては、単環系アリールであるフェニル、(o-,m-,p-)トリル、(2,3-,2,4-,2,5-,2,6-,3,4-,3,5-)キシリル、メシチル(2,4,6-トリメチルフェニル)、(o-,m-,p-)クメニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アントラセン-(1-,2-,9-)イル、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、テトラセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イルなどがあげられる。 Specific examples of “aryl having 6 to 20 carbon atoms” include monocyclic aryl phenyl, (o-, m-, p-) tolyl, (2,3-, 2,4-, 2,5- , 2,6-, 3,4-, 3,5-) xylyl, mesityl (2,4,6-trimethylphenyl), (o-, m-, p-) cumenyl, bicyclic aryl (2 -, 3-, 4-) biphenylyl, (1-, 2-) naphthyl which is a condensed bicyclic aryl, terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4) which is a tricyclic aryl '-Yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o-terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2 -Yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphe Lu-2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl ), Condensed tricyclic aryl, anthracene- (1-, 2-, 9-) yl, acenaphthylene- (1-, 3-, 4-, 5-) yl, fluorene- (1-, 2-, 3-, 4-, 9-) yl, phenalen- (1-, 2-) yl, (1-, 2-, 3-, 4-, 9-) phenanthryl, and triphenylene- (4), a condensed tetracyclic aryl. 1-, 2-) yl, pyrene- (1-, 2-, 4-) yl, tetracene- (1-, 2-, 5-) yl, perylene- (1-, 2) which is a fused pentacyclic aryl -, 3-) Ill and the like.
 好ましい「炭素数6~20のアリール」は、フェニル、ビフェニリル、テルフェニリルまたはナフチルであり、より好ましくは、フェニル、ビフェニリル、1-ナフチル、2-ナフチルまたはm-テルフェニル-5’-イルであり、さらに好ましくは、フェニル、ビフェニリル、1-ナフチルまたは2-ナフチルであり、最も好ましくはフェニルである。 Preferred “aryl having 6 to 20 carbon atoms” is phenyl, biphenylyl, terphenylyl or naphthyl, more preferably phenyl, biphenylyl, 1-naphthyl, 2-naphthyl or m-terphenyl-5′-yl. More preferred is phenyl, biphenylyl, 1-naphthyl or 2-naphthyl, and most preferred is phenyl.
 アントラセン誘導体の一つは、例えば下記式(ETM-5-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000170
One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-2).
Figure JPOXMLDOC01-appb-C000170
 Arは、それぞれ独立して、単結合、2価のベンゼン、ナフタレン、アントラセン、フルオレン、またはフェナレンである。 Ar 1 is each independently a single bond, divalent benzene, naphthalene, anthracene, fluorene, or phenalene.
 Arは、それぞれ独立して、炭素数6~20のアリールであり、上記式(ETM-5-1)における「炭素数6~20のアリール」と同じ説明を引用することができる。炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。具体例としては、フェニル、ビフェニリル、ナフチル、テルフェニリル、アントラセニル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、テトラセニル、ペリレニルなどがあげられる。 Ar 2 is independently an aryl having 6 to 20 carbon atoms, and the same description as “aryl having 6 to 20 carbon atoms” in the above formula (ETM-5-1) can be cited. Aryl having 6 to 16 carbon atoms is preferred, aryl having 6 to 12 carbon atoms is more preferred, and aryl having 6 to 10 carbon atoms is particularly preferred. Specific examples include phenyl, biphenylyl, naphthyl, terphenylyl, anthracenyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, tetracenyl, perylenyl and the like.
 R~Rは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3から6のシクロアルキルまたは炭素数6~20のアリールであり、上記式(ETM-5-1)における説明を引用することができる。 R 1 to R 4 are each independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons or aryl having 6 to 20 carbons, and the above formula (ETM-5-1) The explanation in can be cited.
 これらのアントラセン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000171
Specific examples of these anthracene derivatives include the following compounds.
Figure JPOXMLDOC01-appb-C000171
 これらのアントラセン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 These anthracene derivatives can be produced using known raw materials and known synthesis methods.
<ベンゾフルオレン誘導体>
 ベンゾフルオレン誘導体は、例えば下記式(ETM-6)で表される化合物である。
Figure JPOXMLDOC01-appb-C000172
<Benzofluorene derivative>
The benzofluorene derivative is, for example, a compound represented by the following formula (ETM-6).
Figure JPOXMLDOC01-appb-C000172
 Arは、それぞれ独立して、炭素数6~20のアリールであり、上記式(ETM-5-1)における「炭素数6~20のアリール」と同じ説明を引用することができる。炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。具体例としては、フェニル、ビフェニリル、ナフチル、テルフェニリル、アントラセニル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、テトラセニル、ペリレニルなどがあげられる。 Ar 1 is independently an aryl having 6 to 20 carbon atoms, and the same description as “aryl having 6 to 20 carbon atoms” in the above formula (ETM-5-1) can be cited. Aryl having 6 to 16 carbon atoms is preferred, aryl having 6 to 12 carbon atoms is more preferred, and aryl having 6 to 10 carbon atoms is particularly preferred. Specific examples include phenyl, biphenylyl, naphthyl, terphenylyl, anthracenyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, tetracenyl, perylenyl and the like.
 Arは、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)であり、2つのArは結合して環を形成していてもよい。 Ar 2 is independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) or aryl (preferably aryl having 6 to 30 carbon atoms). And two Ar 2 may be bonded to form a ring.
 Arにおける「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルがあげられる。好ましい「アルキル」は、炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)である。より好ましい「アルキル」は、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)である。特に好ましい「アルキル」は、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)である。具体的な「アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシルなどがあげられる。 “Alkyl” in Ar 2 may be either linear or branched, and examples thereof include linear alkyl having 1 to 24 carbon atoms and branched alkyl having 3 to 24 carbon atoms. Preferred “alkyl” is alkyl having 1 to 18 carbon atoms (branched alkyl having 3 to 18 carbon atoms). More preferable “alkyl” is alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons). More preferable “alkyl” is alkyl having 1 to 6 carbon atoms (branched alkyl having 3 to 6 carbon atoms). Particularly preferred “alkyl” is alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms). Specific examples of “alkyl” include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1 -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl and the like.
 Arにおける「シクロアルキル」としては、例えば、炭素数3~12のシクロアルキルがあげられる。好ましい「シクロアルキル」は、炭素数3~10のシクロアルキルである。より好ましい「シクロアルキル」は、炭素数3~8のシクロアルキルである。さらに好ましい「シクロアルキル」は、炭素数3~6のシクロアルキルである。具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。 Examples of “cycloalkyl” in Ar 2 include cycloalkyl having 3 to 12 carbon atoms. Preferred “cycloalkyl” is cycloalkyl having 3 to 10 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 8 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 6 carbon atoms. Specific examples of “cycloalkyl” include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, and dimethylcyclohexyl.
 Arにおける「アリール」としては、好ましいアリールは炭素数6~30のアリールであり、より好ましいアリールは炭素数6~18のアリールであり、さらに好ましくは炭素数6~14のアリールであり、特に好ましくは炭素数6~12のアリールである。 As “aryl” in Ar 2 , preferred aryl is aryl having 6 to 30 carbon atoms, more preferred aryl is aryl having 6 to 18 carbon atoms, still more preferred is aryl having 6 to 14 carbon atoms, Preferred is aryl having 6 to 12 carbon atoms.
 具体的な「炭素数6~30のアリール」としては、フェニル、ナフチル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、ナフタセニル、ペリレニル、ペンタセニルなどがあげられる。 Specific examples of “aryl having 6 to 30 carbon atoms” include phenyl, naphthyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, naphthacenyl, perylenyl, pentacenyl and the like.
 2つのArは結合して環を形成していてもよく、この結果、フルオレン骨格の5員環には、シクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、フルオレンまたはインデンなどがスピロ結合していてもよい。 Two Ar 2 may be bonded to form a ring. As a result, cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, fluorene, or indene is spiro-bonded to the 5-membered ring of the fluorene skeleton. May be.
 このベンゾフルオレン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000173
Specific examples of the benzofluorene derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000173
 このベンゾフルオレン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This benzofluorene derivative can be produced using a known raw material and a known synthesis method.
<ホスフィンオキサイド誘導体>
 ホスフィンオキサイド誘導体は、例えば下記式(ETM-7-1)で表される化合物である。詳細は国際公開第2013/079217号公報にも記載されている。
Figure JPOXMLDOC01-appb-C000174
 Rは、置換または無置換の、炭素数1~20のアルキル、炭素数3~16のシクロアルキル、炭素数6~20のアリールまたは炭素数5~20のヘテロアリールであり、
 Rは、CN、置換または無置換の、炭素数1~20のアルキル、炭素数3~16のシクロアルキル、炭素数1~20のヘテロアルキル、炭素数6~20のアリール、炭素数5~20のヘテロアリール、炭素数1~20のアルコキシまたは炭素数6~20のアリールオキシであり、
 RおよびRは、それぞれ独立して、置換または無置換の、炭素数6~20のアリールまたは炭素数5~20のヘテロアリールであり、
 Rは酸素または硫黄であり、
 jは0または1であり、kは0または1であり、rは0~4の整数であり、qは1~3の整数である。
 ここで、置換されている場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。
<Phosphine oxide derivative>
The phosphine oxide derivative is, for example, a compound represented by the following formula (ETM-7-1). Details are also described in International Publication No. 2013/079217.
Figure JPOXMLDOC01-appb-C000174
R 5 is substituted or unsubstituted alkyl having 1 to 20 carbons, cycloalkyl having 3 to 16 carbons, aryl having 6 to 20 carbons, or heteroaryl having 5 to 20 carbons;
R 6 is CN, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, cycloalkyl having 3 to 16 carbon atoms, heteroalkyl having 1 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, or 5 to 5 carbon atoms. 20 heteroaryl, alkoxy having 1 to 20 carbons or aryloxy having 6 to 20 carbons;
R 7 and R 8 are each independently substituted or unsubstituted aryl having 6 to 20 carbon atoms or heteroaryl having 5 to 20 carbon atoms;
R 9 is oxygen or sulfur;
j is 0 or 1, k is 0 or 1, r is an integer of 0 to 4, and q is an integer of 1 to 3.
Here, examples of the substituent when substituted include aryl, heteroaryl, alkyl, and cycloalkyl.
 ホスフィンオキサイド誘導体は、例えば下記式(ETM-7-2)で表される化合物でもよい。
Figure JPOXMLDOC01-appb-C000175
The phosphine oxide derivative may be, for example, a compound represented by the following formula (ETM-7-2).
Figure JPOXMLDOC01-appb-C000175
 R~Rは、同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、シクロアルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、アミノ基、ニトロ基、シリル基、および隣接置換基との間に形成される縮合環の中から選ばれる。 R 1 to R 3 may be the same or different and are hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, cycloalkylthio group, aryl ether group , Arylthioether group, aryl group, heterocyclic group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, amino group, nitro group, silyl group, and a condensed ring formed between adjacent substituents Chosen from.
 Arは、同じでも異なっていてもよく、アリーレン基またはヘテロアリーレン基である。Arは、同じでも異なっていてもよく、アリール基またはヘテロアリール基である。ただし、ArおよびArのうち少なくとも一方は置換基を有しているか、または隣接置換基との間に縮合環を形成している。nは0~3の整数であり、nが0のとき不飽和構造部分は存在せず、nが3のときR1は存在しない。 Ar 1 may be the same or different and is an arylene group or a heteroarylene group. Ar 2 may be the same or different and is an aryl group or a heteroaryl group. However, at least one of Ar 1 and Ar 2 has a substituent, or forms a condensed ring with an adjacent substituent. n is an integer of 0 to 3. When n is 0, there is no unsaturated structure, and when n is 3, R 1 does not exist.
 これらの置換基の内、アルキル基とは、例えば、メチル基、エチル基、プロピル基、ブチル基などの飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。置換されている場合の置換基には特に制限は無く、例えば、アルキル基、アリール基、複素環基等をあげることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、通常、1~20の範囲である。 Of these substituents, the alkyl group represents, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group, or a butyl group, which may be unsubstituted or substituted. The substituent in the case of being substituted is not particularly limited, and examples thereof include an alkyl group, an aryl group, and a heterocyclic group, and this point is common to the following description. The number of carbon atoms of the alkyl group is not particularly limited, but is usually in the range of 1 to 20 from the viewpoint of availability and cost.
 また、シクロアルキル基とは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキル基部分の炭素数は特に限定されないが、通常、3~20の範囲である。 Further, the cycloalkyl group represents a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl and the like, which may be unsubstituted or substituted. The number of carbon atoms in the alkyl group moiety is not particularly limited, but is usually in the range of 3-20.
 また、アラルキル基とは、例えば、ベンジル基、フェニルエチル基などの脂肪族炭化水素を介した芳香族炭化水素基を示し、脂肪族炭化水素と芳香族炭化水素はいずれも無置換でも置換されていてもかまわない。脂肪族部分の炭素数は特に限定されないが、通常、1~20の範囲である。 The aralkyl group refers to an aromatic hydrocarbon group via an aliphatic hydrocarbon such as a benzyl group or a phenylethyl group, and both the aliphatic hydrocarbon and the aromatic hydrocarbon are unsubstituted or substituted. It doesn't matter. The number of carbon atoms in the aliphatic moiety is not particularly limited, but is usually in the range of 1-20.
 また、アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルケニル基の炭素数は特に限定されないが、通常、2~20の範囲である。 The alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may be unsubstituted or substituted. The number of carbon atoms of the alkenyl group is not particularly limited, but is usually in the range of 2-20.
 また、シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセン基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。 The cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexene group, which may be unsubstituted or substituted. It doesn't matter.
 また、アルキニル基とは、例えば、アセチレニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキニル基の炭素数は特に限定されないが、通常、2~20の範囲である。 Further, the alkynyl group represents an unsaturated aliphatic hydrocarbon group containing a triple bond such as an acetylenyl group, which may be unsubstituted or substituted. The number of carbon atoms of the alkynyl group is not particularly limited, but is usually in the range of 2-20.
 また、アルコキシ基とは、例えば、メトキシ基などのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。アルコキシ基の炭素数は特に限定されないが、通常、1~20の範囲である。 In addition, the alkoxy group represents an aliphatic hydrocarbon group via an ether bond such as a methoxy group, and the aliphatic hydrocarbon group may be unsubstituted or substituted. The number of carbon atoms of the alkoxy group is not particularly limited, but is usually in the range of 1-20.
 また、アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換された基である。 The alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
 また、シクロアルキルチオ基とは、シクロアルコキシ基のエーテル結合の酸素原子が硫黄原子に置換された基である。 The cycloalkylthio group is a group in which an oxygen atom of an ether bond of a cycloalkoxy group is substituted with a sulfur atom.
 また、アリールエーテル基とは、例えば、フェノキシ基などのエーテル結合を介した芳香族炭化水素基を示し、芳香族炭化水素基は無置換でも置換されていてもかまわない。アリールエーテル基の炭素数は特に限定されないが、通常、6~40の範囲である。 In addition, the aryl ether group refers to an aromatic hydrocarbon group via an ether bond such as a phenoxy group, and the aromatic hydrocarbon group may be unsubstituted or substituted. The number of carbon atoms of the aryl ether group is not particularly limited, but is usually in the range of 6 to 40.
 また、アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換された基である。 Also, the aryl thioether group is a group in which the oxygen atom of the ether bond of the aryl ether group is substituted with a sulfur atom.
 また、アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基、ピレニル基などの芳香族炭化水素基を示す。アリール基は、無置換でも置換されていてもかまわない。アリール基の炭素数は特に限定されないが、通常、6~40の範囲である。 In addition, the aryl group represents an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, or a pyrenyl group. The aryl group may be unsubstituted or substituted. The number of carbon atoms of the aryl group is not particularly limited, but is usually in the range of 6 to 40.
 また、複素環基とは、例えば、フラニル基、チオフェニル基、オキサゾリル基、ピリジル基、キノリニル基、カルバゾリル基などの炭素以外の原子を有する環状構造基を示し、これは無置換でも置換されていてもかまわない。複素環基の炭素数は特に限定されないが、通常、2~30の範囲である。 The heterocyclic group refers to, for example, a cyclic structure group having an atom other than carbon, such as a furanyl group, a thiophenyl group, an oxazolyl group, a pyridyl group, a quinolinyl group, or a carbazolyl group, which is unsubstituted or substituted It doesn't matter. The number of carbon atoms of the heterocyclic group is not particularly limited, but is usually in the range of 2-30.
 ハロゲンとは、フッ素、塩素、臭素、ヨウ素を示す。 Halogen means fluorine, chlorine, bromine and iodine.
 アルデヒド基、カルボニル基、アミノ基には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環などで置換された基も含むことができる。 The aldehyde group, carbonyl group, and amino group can also include groups substituted with aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, heterocyclic rings, and the like.
 また、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環は無置換でも置換されていてもかまわない。 In addition, the aliphatic hydrocarbon, alicyclic hydrocarbon, aromatic hydrocarbon, and heterocyclic ring may be unsubstituted or substituted.
 シリル基とは、例えば、トリメチルシリル基などのケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。シリル基の炭素数は特に限定されないが、通常、3~20の範囲である。また、ケイ素数は、通常、1~6である。 The silyl group refers to, for example, a silicon compound group such as a trimethylsilyl group, which may be unsubstituted or substituted. The carbon number of the silyl group is not particularly limited, but is usually in the range of 3-20. The number of silicon is usually 1-6.
 隣接置換基との間に形成される縮合環とは、例えば、ArとR、ArとR、ArとR、ArとR、RとR、ArとAr等の間で形成された共役または非共役の縮合環である。ここで、nが1の場合、2つのR同士で共役または非共役の縮合環を形成してもよい。これら縮合環は、環内構造に窒素、酸素、硫黄原子を含んでいてもよいし、さらに別の環と縮合してもよい。 The condensed ring formed between adjacent substituents includes, for example, Ar 1 and R 2 , Ar 1 and R 3 , Ar 2 and R 2 , Ar 2 and R 3 , R 2 and R 3 , Ar 1 and A conjugated or non-conjugated fused ring formed between Ar 2 and the like. Here, when n is 1, may be formed conjugated or non-conjugated fused ring with two of R 1 each other. These condensed rings may contain a nitrogen, oxygen, or sulfur atom in the ring structure, or may be further condensed with another ring.
 このホスフィンオキサイド誘導体の具体例としては、例えば以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000176
Specific examples of the phosphine oxide derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000176
 このホスフィンオキサイド誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This phosphine oxide derivative can be produced using a known raw material and a known synthesis method.
<ピリミジン誘導体>
 ピリミジン誘導体は、例えば下記式(ETM-8)で表される化合物であり、好ましくは下記式(ETM-8-1)で表される化合物である。詳細は国際公開第2011/021689号公報にも記載されている。
Figure JPOXMLDOC01-appb-C000177
<Pyrimidine derivative>
The pyrimidine derivative is, for example, a compound represented by the following formula (ETM-8), and preferably a compound represented by the following formula (ETM-8-1). Details are also described in International Publication No. 2011/021689.
Figure JPOXMLDOC01-appb-C000177
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは1~4の整数であり、好ましくは1~3の整数であり、より好ましくは2または3である。 Ar is each independently an optionally substituted aryl or an optionally substituted heteroaryl. n is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 2 or 3.
 「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールがあげられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。 Examples of “aryl” in “optionally substituted aryl” include aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferred is aryl having 6 to 12 carbon atoms.
 具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどがあげられる。 Specific examples of “aryl” include monocyclic aryl phenyl, bicyclic aryl (2-, 3-, 4-) biphenylyl, condensed bicyclic aryl (1-, 2-) naphthyl. Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) Asena, which is a fused tricyclic aryl Tylene- (1-, 3-, 4-, 5-) yl, fluorene- (1-, 2-, 3-, 4-, 9-) yl, phenalen- (1-, 2-) yl, (1 -, 2-, 3-, 4-, 9-) phenanthryl, quaterphenylyl which is a tetracyclic aryl (5'-phenyl-m-terphenyl-2-yl, 5'-phenyl-m-terphenyl) -3-yl, 5′-phenyl-m-terphenyl-4-yl, m-quaterphenylyl), condensed tetracyclic aryl triphenylene- (1-, 2-) yl, pyrene- (1- , 2-, 4-) yl, naphthacene- (1-, 2-, 5-) yl, condensed pentacyclic aryl perylene- (1-, 2-, 3-) yl, pentacene- (1-, 2-, 5-, 6-) yl and the like.
 「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールがあげられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などがあげられる。 Examples of the “heteroaryl” in the “optionally substituted heteroaryl” include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, and heteroaryl having 2 to 20 carbon atoms. Aryl is more preferred, heteroaryl having 2 to 15 carbons is more preferred, and heteroaryl having 2 to 10 carbons is particularly preferred. Examples of the heteroaryl include heterocycles containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring constituent atoms.
 具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどがあげられる。 Specific heteroaryl includes, for example, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indolyl, isoindolyl, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthyridinyl, purinyl , Pteridinyl, carbazolyl, acridinyl, phenoxazinyl, phenothiazinyl, Enajiniru, phenoxathiinyl, thianthrenyl, etc. indolizinyl the like.
 また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。 The aryl and heteroaryl may be substituted, and may be substituted with, for example, the aryl or heteroaryl.
 このピリミジン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000178
Specific examples of this pyrimidine derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000178
 このピリミジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This pyrimidine derivative can be produced using a known raw material and a known synthesis method.
<カルバゾール誘導体>
 カルバゾール誘導体は、例えば下記式(ETM-9)で表される化合物、またはそれが単結合などで複数結合した多量体である。詳細は米国公開公報2014/0197386号公報に記載されている。
Figure JPOXMLDOC01-appb-C000179
<Carbazole derivative>
The carbazole derivative is, for example, a compound represented by the following formula (ETM-9) or a multimer in which a plurality of such carbazole derivatives are bonded by a single bond or the like. Details are described in US Publication No. 2014/0197386.
Figure JPOXMLDOC01-appb-C000179
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは0~4の整数であり、好ましくは0~3の整数であり、より好ましくは0または1である。 Ar is each independently an optionally substituted aryl or an optionally substituted heteroaryl. n is an integer of 0 to 4, preferably an integer of 0 to 3, and more preferably 0 or 1.
 「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールがあげられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。 Examples of “aryl” in “optionally substituted aryl” include aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferred is aryl having 6 to 12 carbon atoms.
 具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどがあげられる。 Specific examples of “aryl” include monocyclic aryl phenyl, bicyclic aryl (2-, 3-, 4-) biphenylyl, condensed bicyclic aryl (1-, 2-) naphthyl. Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) Asena, which is a fused tricyclic aryl Tylene- (1-, 3-, 4-, 5-) yl, fluorene- (1-, 2-, 3-, 4-, 9-) yl, phenalen- (1-, 2-) yl, (1 -, 2-, 3-, 4-, 9-) phenanthryl, quaterphenylyl which is a tetracyclic aryl (5'-phenyl-m-terphenyl-2-yl, 5'-phenyl-m-terphenyl) -3-yl, 5′-phenyl-m-terphenyl-4-yl, m-quaterphenylyl), condensed tetracyclic aryl triphenylene- (1-, 2-) yl, pyrene- (1- , 2-, 4-) yl, naphthacene- (1-, 2-, 5-) yl, condensed pentacyclic aryl perylene- (1-, 2-, 3-) yl, pentacene- (1-, 2-, 5-, 6-) yl and the like.
 「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールがあげられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などがあげられる。 Examples of the “heteroaryl” in the “optionally substituted heteroaryl” include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, and heteroaryl having 2 to 20 carbon atoms. Aryl is more preferred, heteroaryl having 2 to 15 carbons is more preferred, and heteroaryl having 2 to 10 carbons is particularly preferred. Examples of the heteroaryl include heterocycles containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring constituent atoms.
 具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどがあげられる。 Specific heteroaryl includes, for example, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indolyl, isoindolyl, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthyridinyl, purinyl , Pteridinyl, carbazolyl, acridinyl, phenoxazinyl, phenothiazinyl, Enajiniru, phenoxathiinyl, thianthrenyl, etc. indolizinyl the like.
 また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。 The aryl and heteroaryl may be substituted, and may be substituted with, for example, the aryl or heteroaryl.
 カルバゾール誘導体は、上記式(ETM-9)で表される化合物が単結合などで複数結合した多量体であってもよい。この場合、単結合以外に、アリール環(好ましくは多価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)で結合されていてもよい。 The carbazole derivative may be a multimer in which a plurality of compounds represented by the above formula (ETM-9) are bonded by a single bond or the like. In this case, in addition to a single bond, an aryl ring (preferably a polyvalent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring) may be used.
 このカルバゾール誘導体の具体例としては、例えば以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000180
Specific examples of the carbazole derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000180
 このカルバゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This carbazole derivative can be produced using a known raw material and a known synthesis method.
<トリアジン誘導体>
 トリアジン誘導体は、例えば下記式(ETM-10)で表される化合物であり、好ましくは下記式(ETM-10-1)で表される化合物である。詳細は米国公開公報2011/0156013号公報に記載されている。
Figure JPOXMLDOC01-appb-C000181
<Triazine derivative>
The triazine derivative is, for example, a compound represented by the following formula (ETM-10), and preferably a compound represented by the following formula (ETM-10-1). Details are described in US Publication No. 2011/0156013.
Figure JPOXMLDOC01-appb-C000181
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは1~3の整数であり、好ましくは2または3である。 Ar is each independently an optionally substituted aryl or an optionally substituted heteroaryl. n is an integer of 1 to 3, preferably 2 or 3.
 「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールがあげられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。 Examples of “aryl” in “optionally substituted aryl” include aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferred is aryl having 6 to 12 carbon atoms.
 具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどがあげられる。 Specific examples of “aryl” include monocyclic aryl phenyl, bicyclic aryl (2-, 3-, 4-) biphenylyl, condensed bicyclic aryl (1-, 2-) naphthyl. Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) Asena, which is a fused tricyclic aryl Tylene- (1-, 3-, 4-, 5-) yl, fluorene- (1-, 2-, 3-, 4-, 9-) yl, phenalen- (1-, 2-) yl, (1 -, 2-, 3-, 4-, 9-) phenanthryl, quaterphenylyl which is a tetracyclic aryl (5'-phenyl-m-terphenyl-2-yl, 5'-phenyl-m-terphenyl) -3-yl, 5′-phenyl-m-terphenyl-4-yl, m-quaterphenylyl), condensed tetracyclic aryl triphenylene- (1-, 2-) yl, pyrene- (1- , 2-, 4-) yl, naphthacene- (1-, 2-, 5-) yl, condensed pentacyclic aryl perylene- (1-, 2-, 3-) yl, pentacene- (1-, 2-, 5-, 6-) yl and the like.
 「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールがあげられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などがあげられる。 Examples of the “heteroaryl” in the “optionally substituted heteroaryl” include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, and heteroaryl having 2 to 20 carbon atoms. Aryl is more preferred, heteroaryl having 2 to 15 carbons is more preferred, and heteroaryl having 2 to 10 carbons is particularly preferred. Examples of the heteroaryl include heterocycles containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as ring constituent atoms.
 具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどがあげられる。 Specific heteroaryl includes, for example, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indolyl, isoindolyl, 1H-indazolyl, benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthyridinyl, purinyl , Pteridinyl, carbazolyl, acridinyl, phenoxazinyl, phenothiazinyl, Enajiniru, phenoxathiinyl, thianthrenyl, etc. indolizinyl the like.
 また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。 The aryl and heteroaryl may be substituted, and may be substituted with, for example, the aryl or heteroaryl.
 このトリアジン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000182
Specific examples of the triazine derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000182
 このトリアジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This triazine derivative can be produced using a known raw material and a known synthesis method.
<ベンゾイミダゾール誘導体>
 ベンゾイミダゾール誘導体は、例えば下記式(ETM-11)で表される化合物である。
Figure JPOXMLDOC01-appb-C000183
<Benzimidazole derivative>
The benzimidazole derivative is, for example, a compound represented by the following formula (ETM-11).
Figure JPOXMLDOC01-appb-C000183
 φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数であり、「ベンゾイミダゾール系置換基」は、上記式(ETM-2)、式(ETM-2-1)および式(ETM-2-2)における「ピリジン系置換基」の中のピリジル基がベンゾイミダゾール基に置き換わった置換基であり、ベンゾイミダゾール誘導体における少なくとも1つの水素は重水素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000184
φ is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4 The “benzimidazole substituent” means that the pyridyl group in the “pyridine substituent” in the above formula (ETM-2), formula (ETM-2-1) and formula (ETM-2-2) is benzo It is a substituent substituted with an imidazole group, and at least one hydrogen in the benzimidazole derivative may be substituted with deuterium.
Figure JPOXMLDOC01-appb-C000184
 上記ベンゾイミダゾール基におけるR11は、水素、炭素数1~24のアルキル、炭素数3~12のシクロアルキルまたは炭素数6~30のアリールであり、上記式(ETM-2-1)および式(ETM-2-2)におけるR11の説明を引用することができる。 R 11 in the benzimidazole group is hydrogen, alkyl having 1 to 24 carbon atoms, cycloalkyl having 3 to 12 carbon atoms or aryl having 6 to 30 carbon atoms, and the above formula (ETM-2-1) and the formula ( The description of R 11 in ETM-2-2) can be cited.
 φは、さらに、アントラセン環またはフルオレン環であることが好ましく、この場合の構造は上記式(ETM-2-1)または式(ETM-2-2)での説明を引用することができ、各式中のR11~R18は上記式(ETM-2-1)または式(ETM-2-2)での説明を引用することができる。また、上記式(ETM-2-1)または式(ETM-2-2)では2つのピリジン系置換基が結合した形態で説明されているが、これらをベンゾイミダゾール系置換基に置き換えるときには、両方のピリジン系置換基をベンゾイミダゾール系置換基で置き換えてもよいし(すなわちn=2)、いずれか1つのピリジン系置換基をベンゾイミダゾール系置換基で置き換えて他方のピリジン系置換基をR11~R18で置き換えてもよい(すなわちn=1)。さらに、例えば上記式(ETM-2-1)におけるR11~R18の少なくとも1つをベンゾイミダゾール系置換基で置き換えて「ピリジン系置換基」をR11~R18で置き換えてもよい。 φ is preferably an anthracene ring or a fluorene ring, and the structure in this case can be referred to the description in the above formula (ETM-2-1) or formula (ETM-2-2), In the formula, R 11 to R 18 can be referred to the description of the above formula (ETM-2-1) or formula (ETM-2-2). Further, in the above formula (ETM-2-1) or formula (ETM-2-2), it is explained in a form in which two pyridine-based substituents are bonded. However, when these are replaced with benzimidazole-based substituents, May be replaced with a benzimidazole substituent (ie, n = 2), or any one pyridine substituent may be replaced with a benzimidazole substituent and the other pyridine substituent may be replaced with R 11. May be replaced by ~ R 18 (ie n = 1). Further, for example, at least one of R 11 to R 18 in the above formula (ETM-2-1) may be replaced with a benzimidazole substituent, and the “pyridine substituent” may be replaced with R 11 to R 18 .
 このベンゾイミダゾール誘導体の具体例としては、例えば1-フェニル-2-(4-(10-フェニルアントラセン-9-イル)フェニル)-1H-ベンゾ[d]イミダゾール、2-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、5-(10-(ナフタレン-2-イル)アントラセン-9-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾール、1-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、2-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、1-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、5-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾールなどがあげられる。
Figure JPOXMLDOC01-appb-C000185
Specific examples of this benzimidazole derivative include, for example, 1-phenyl-2- (4- (10-phenylanthracen-9-yl) phenyl) -1H-benzo [d] imidazole, 2- (4- (10- ( Naphthalen-2-yl) anthracen-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 2- (3- (10- (naphthalen-2-yl) anthracen-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 5- (10- (naphthalen-2-yl) anthracen-9-yl) -1,2-diphenyl-1H-benzo [d] imidazole, 1- (4 -(10- (naphthalen-2-yl) anthracen-9-yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 2- (4- (9,10 Di (naphthalen-2-yl) anthracen-2-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 1- (4- (9,10-di (naphthalen-2-yl) anthracene-2) -Yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 5- (9,10-di (naphthalen-2-yl) anthracen-2-yl) -1,2-diphenyl-1H-benzo [ d] and imidazole.
Figure JPOXMLDOC01-appb-C000185
 このベンゾイミダゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This benzimidazole derivative can be produced using a known raw material and a known synthesis method.
<フェナントロリン誘導体>
 フェナントロリン誘導体は、例えば下記式(ETM-12)または式(ETM-12-1)で表される化合物である。詳細は国際公開2006/021982号公報に記載されている。
Figure JPOXMLDOC01-appb-C000186
<Phenanthroline derivative>
The phenanthroline derivative is, for example, a compound represented by the following formula (ETM-12) or formula (ETM-12-1). Details are described in International Publication No. 2006/021982.
Figure JPOXMLDOC01-appb-C000186
 φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数である。 φ is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4 is there.
 各式のR11~R18は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)である。また、上記式(ETM-12-1)においてはR11~R18のいずれかがアリール環であるφと結合する。 R 11 to R 18 in each formula are independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) or aryl (preferably carbon (Aryl of formula 6 to 30). In the above formula (ETM-12-1), any of R 11 to R 18 is bonded to φ which is an aryl ring.
 各フェナントロリン誘導体における少なくとも1つの水素が重水素で置換されていてもよい。 At least one hydrogen in each phenanthroline derivative may be replaced with deuterium.
 R11~R18におけるアルキル、シクロアルキルおよびアリールとしては、上記式(ETM-2)におけるR11~R18の説明を引用することができる。また、φは上記した例のほかに、例えば、以下の構造式があげられる。なお、下記構造式中のRは、それぞれ独立して、水素、メチル、エチル、イソプロピル、シクロヘキシル、フェニル、1-ナフチル、2-ナフチル、ビフェニリルまたはテルフェニリルである。
Figure JPOXMLDOC01-appb-C000187
Alkyl in R 11 ~ R 18, cycloalkyl and aryl may be cited to the description of R 11 ~ R 18 in the formula (ETM-2). In addition to the above example, φ includes the following structural formula, for example. In the following structural formulas, each R is independently hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl or terphenylyl.
Figure JPOXMLDOC01-appb-C000187
 このフェナントロリン誘導体の具体例としては、例えば4,7-ジフェニル-1,10-フェナントロリン、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、9,10-ジ(1,10-フェナントロリン-2-イル)アントラセン、2,6-ジ(1,10-フェナントロリン-5-イル)ピリジン、1,3,5-トリ(1,10-フェナントロリン-5-イル)ベンゼン、9,9’-ジフルオロ-ビ(1,10-フェナントロリン-5-イル)、バソクプロイン、1,3-ビス(2-フェニル-1,10-フェナントロリン-9-イル)ベンゼンや下記構造式で表される化合物などがあげられる。
Figure JPOXMLDOC01-appb-C000188
Specific examples of this phenanthroline derivative include, for example, 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di (1,10- Phenanthroline-2-yl) anthracene, 2,6-di (1,10-phenanthroline-5-yl) pyridine, 1,3,5-tri (1,10-phenanthroline-5-yl) benzene, 9,9 ′ -Difluoro-bi (1,10-phenanthroline-5-yl), bathocuproin, 1,3-bis (2-phenyl-1,10-phenanthroline-9-yl) benzene and compounds represented by the following structural formula can give.
Figure JPOXMLDOC01-appb-C000188
 このフェナントロリン誘導体は公知の原料と公知の合成方法を用いて製造することができる。 This phenanthroline derivative can be produced using a known raw material and a known synthesis method.
<キノリノール系金属錯体>
 キノリノール系金属錯体は、例えば下記一般式(ETM-13)で表される化合物である。
Figure JPOXMLDOC01-appb-C000189
 式中、R~Rは、それぞれ独立して、水素、フッ素、アルキル、シクロアルキル、アラルキル、アルケニル、シアノ、アルコキシまたはアリールであり、MはLi、Al、Ga、BeまたはZnであり、nは1~3の整数である。
<Quinolinol metal complex>
The quinolinol-based metal complex is, for example, a compound represented by the following general formula (ETM-13).
Figure JPOXMLDOC01-appb-C000189
Wherein R 1 to R 6 are each independently hydrogen, fluorine, alkyl, cycloalkyl, aralkyl, alkenyl, cyano, alkoxy or aryl, M is Li, Al, Ga, Be or Zn, n is an integer of 1 to 3.
 キノリノール系金属錯体の具体例としては、8-キノリノールリチウム、トリス(8-キノリノラート)アルミニウム、トリス(4-メチル-8-キノリノラート)アルミニウム、トリス(5-メチル-8-キノリノラート)アルミニウム、トリス(3,4-ジメチル-8-キノリノラート)アルミニウム、トリス(4,5-ジメチル-8-キノリノラート)アルミニウム、トリス(4,6-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(フェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,3-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,4-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,5,6-テトラメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(1-ナフトラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-ナフトラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-8-キノリノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2,4-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム、ビス(10-ヒドロキシベンゾ[h]キノリン)ベリリウムなどがあげられる。 Specific examples of quinolinol metal complexes include 8-quinolinol lithium, tris (8-quinolinolato) aluminum, tris (4-methyl-8-quinolinolato) aluminum, tris (5-methyl-8-quinolinolato) aluminum, tris (3 , 4-dimethyl-8-quinolinolato) aluminum, tris (4,5-dimethyl-8-quinolinolato) aluminum, tris (4,6-dimethyl-8-quinolinolato) aluminum, bis (2-methyl-8-quinolinolato) ( Phenolate) aluminum, bis (2-methyl-8-quinolinolato) (2-methylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3-methylphenolato) aluminum, bis (2-methyl-8- Quinolinolato) (4- Tylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2-phenylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3-phenylphenolate) aluminum, bis (2-methyl- 8-quinolinolato) (4-phenylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (2,3-dimethylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (2,6-dimethyl) Phenolate) aluminum, bis (2-methyl-8-quinolinolato) (3,4-dimethylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3,5-dimethylphenolate) aluminum, bis (2 -Methyl-8-quinolinolate) (3,5-di-t- Tylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2,6-diphenylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2,4,6-triphenylphenolate) aluminum Bis (2-methyl-8-quinolinolate) (2,4,6-trimethylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2,4,5,6-tetramethylphenolate) aluminum, Bis (2-methyl-8-quinolinolato) (1-naphtholato) aluminum, bis (2-methyl-8-quinolinolato) (2-naphtholato) aluminum, bis (2,4-dimethyl-8-quinolinolato) (2-phenyl) Phenolate) aluminum, bis (2,4-dimethyl-8-quinolinola) G) (3-phenylphenolate) aluminum, bis (2,4-dimethyl-8-quinolinolato) (4-phenylphenolate) aluminum, bis (2,4-dimethyl-8-quinolinolato) (3,5-dimethyl) Phenolate) aluminum, bis (2,4-dimethyl-8-quinolinolato) (3,5-di-t-butylphenolate) aluminum, bis (2-methyl-8-quinolinolato) aluminum-μ-oxo-bis ( 2-methyl-8-quinolinolato) aluminum, bis (2,4-dimethyl-8-quinolinolato) aluminum-μ-oxo-bis (2,4-dimethyl-8-quinolinolato) aluminum, bis (2-methyl-4- Ethyl-8-quinolinolato) aluminum-μ-oxo-bis (2-methyl-4-ethyl-) -Quinolinolato) aluminum, bis (2-methyl-4-methoxy-8-quinolinolato) aluminum-μ-oxo-bis (2-methyl-4-methoxy-8-quinolinolato) aluminum, bis (2-methyl-5-cyano -8-quinolinolato) aluminum-μ-oxo-bis (2-methyl-5-cyano-8-quinolinolato) aluminum, bis (2-methyl-5-trifluoromethyl-8-quinolinolato) aluminum-μ-oxo-bis (2-methyl-5-trifluoromethyl-8-quinolinolato) aluminum, bis (10-hydroxybenzo [h] quinoline) beryllium and the like.
 このキノリノール系金属錯体は公知の原料と公知の合成方法を用いて製造することができる。 This quinolinol-based metal complex can be produced using a known raw material and a known synthesis method.
<チアゾール誘導体およびベンゾチアゾール誘導体>
 チアゾール誘導体は、例えば下記式(ETM-14-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000190
 ベンゾチアゾール誘導体は、例えば下記式(ETM-14-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000191
<Thiazole derivatives and benzothiazole derivatives>
The thiazole derivative is, for example, a compound represented by the following formula (ETM-14-1).
Figure JPOXMLDOC01-appb-C000190
The benzothiazole derivative is, for example, a compound represented by the following formula (ETM-14-2).
Figure JPOXMLDOC01-appb-C000191
 各式のφは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数であり、「チアゾール系置換基」や「ベンゾチアゾール系置換基」は、上記式(ETM-2)、式(ETM-2-1)および式(ETM-2-2)における「ピリジン系置換基」の中のピリジル基が下記のチアゾール基やベンゾチアゾール基に置き換わった置換基であり、チアゾール誘導体およびベンゾチアゾール誘導体における少なくとも1つの水素が重水素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000192
Φ in each formula is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is 1 to 4 The “thiazole-based substituent” and “benzothiazole-based substituent” are “pyridine-based” in the above formula (ETM-2), formula (ETM-2-1) and formula (ETM-2-2). The pyridyl group in the “substituent” is a substituent in which the following thiazole group or benzothiazole group is substituted, and at least one hydrogen in the thiazole derivative and the benzothiazole derivative may be substituted with deuterium.
Figure JPOXMLDOC01-appb-C000192
 φは、さらに、アントラセン環またはフルオレン環であることが好ましく、この場合の構造は上記式(ETM-2-1)または式(ETM-2-2)での説明を引用することができ、各式中のR11~R18は上記式(ETM-2-1)または式(ETM-2-2)での説明を引用することができる。また、上記式(ETM-2-1)または式(ETM-2-2)では2つのピリジン系置換基が結合した形態で説明されているが、これらをチアゾール系置換基(またはベンゾチアゾール系置換基)に置き換えるときには、両方のピリジン系置換基をチアゾール系置換基(またはベンゾチアゾール系置換基)で置き換えてもよいし(すなわちn=2)、いずれか1つのピリジン系置換基をチアゾール系置換基(またはベンゾチアゾール系置換基)で置き換えて他方のピリジン系置換基をR11~R18で置き換えてもよい(すなわちn=1)。さらに、例えば上記式(ETM-2-1)におけるR11~R18の少なくとも1つをチアゾール系置換基(またはベンゾチアゾール系置換基)で置き換えて「ピリジン系置換基」をR11~R18で置き換えてもよい。 φ is preferably an anthracene ring or a fluorene ring, and the structure in this case can be referred to the description in the above formula (ETM-2-1) or formula (ETM-2-2), In the formula, R 11 to R 18 can be referred to the description of the above formula (ETM-2-1) or formula (ETM-2-2). Further, in the above formula (ETM-2-1) or formula (ETM-2-2), it is described in the form of two pyridine-based substituents bonded to each other, but these are represented by thiazole-based substituents (or benzothiazole-based substituents). Group), both pyridine-based substituents may be replaced with thiazole-based substituents (or benzothiazole-based substituents) (ie, n = 2), and any one pyridine-based substituent may be replaced with thiazole-based substituents. A group (or a benzothiazole substituent) may be substituted, and the other pyridine substituent may be substituted with R 11 to R 18 (ie, n = 1). Further, for example, at least one of R 11 to R 18 in the above formula (ETM-2-1) is replaced with a thiazole substituent (or benzothiazole substituent) to replace the “pyridine substituent” with R 11 to R 18. May be replaced.
 これらのチアゾール誘導体またはベンゾチアゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。 These thiazole derivatives or benzothiazole derivatives can be produced using known raw materials and known synthesis methods.
 電子輸送層または電子注入層には、さらに、電子輸送層または電子注入層を形成する材料を還元できる物質を含んでいてもよい。この還元性物質は、一定の還元性を有する物質であれば、様々な物質が用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを好適に使用することができる。 The electron transport layer or the electron injection layer may further contain a substance capable of reducing the material forming the electron transport layer or the electron injection layer. As this reducing substance, various substances can be used as long as they have a certain reducing ability. For example, alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkalis. From the group consisting of earth metal oxides, alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes At least one selected can be suitably used.
 好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0~2.5eV)またはBa(同2.52eV)などのアルカリ土類金属があげられ、仕事関数が2.9eV以下の物質が特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。 Preferred reducing substances include alkali metals such as Na (work function 2.36 eV), K (2.28 eV), Rb (2.16 eV) or Cs (1.95 eV), and Ca (2. 9eV), Sr (2.0 to 2.5 eV) or Ba (2.52 eV), and alkaline earth metals such as those having a work function of 2.9 eV or less are particularly preferable. Among these, a more preferable reducing substance is an alkali metal of K, Rb or Cs, more preferably Rb or Cs, and most preferably Cs. These alkali metals have particularly high reducing ability, and by adding a relatively small amount to the material forming the electron transport layer or the electron injection layer, the luminance of the organic EL element can be improved and the lifetime can be extended. Further, as a reducing substance having a work function of 2.9 eV or less, a combination of two or more alkali metals is also preferable. Particularly, a combination containing Cs, such as Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred. By containing Cs, the reducing ability can be efficiently exhibited, and by adding to the material for forming the electron transport layer or the electron injection layer, the luminance of the organic EL element can be improved and the lifetime can be extended.
 上述した電子輸注入層用材料および電子輸送層用材料は、これらに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物、もしくはその高分子架橋体、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物、もしくはそのペンダント型高分子架橋体としても、電子層用材料に用いることができる。この場合の反応性置換基としては、式(1)で表される多環芳香族化合物での説明を引用できる。
 このような高分子化合物および高分子架橋体の用途の詳細については後述する。
The electron injecting layer material and the electron transport layer material described above are a polymer compound obtained by polymerizing a reactive compound substituted with a reactive substituent thereon as a monomer, or a crosslinked polymer thereof, A pendant polymer compound obtained by reacting a chain polymer with the reactive compound, or a pendant polymer crosslinked product thereof, can also be used for the electronic layer material. As the reactive substituent in this case, the description of the polycyclic aromatic compound represented by the formula (1) can be cited.
Details of the use of such a polymer compound and polymer crosslinked product will be described later.
<有機電界発光素子における陰極>
 陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たす。
<Cathode in organic electroluminescence device>
The cathode 108 plays a role of injecting electrons into the light emitting layer 105 through the electron injection layer 107 and the electron transport layer 106.
 陰極108を形成する材料としては、電子を有機層に効率よく注入できる物質であれば特に限定されないが、陽極102を形成する材料と同様の材料を用いることができる。なかでも、スズ、インジウム、カルシウム、アルミニウム、銀、銅、ニッケル、クロム、金、白金、鉄、亜鉛、リチウム、ナトリウム、カリウム、セシウムおよびマグネシウムなどの金属またはそれらの合金(マグネシウム-銀合金、マグネシウム-インジウム合金、フッ化リチウム/アルミニウムなどのアルミニウム-リチウム合金など)などが好ましい。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は一般に大気中で不安定であることが多い。この点を改善するために、例えば、有機層に微量のリチウム、セシウムやマグネシウムをドーピングして、安定性の高い電極を使用する方法が知られている。その他のドーパントとしては、フッ化リチウム、フッ化セシウム、酸化リチウムおよび酸化セシウムのような無機塩も使用することができる。ただし、これらに限定されない。 The material for forming the cathode 108 is not particularly limited as long as it can efficiently inject electrons into the organic layer, but the same material as the material for forming the anode 102 can be used. Among them, metals such as tin, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium and magnesium or alloys thereof (magnesium-silver alloy, magnesium -Indium alloys, aluminum-lithium alloys such as lithium fluoride / aluminum, etc.) are preferred. Lithium, sodium, potassium, cesium, calcium, magnesium, or alloys containing these low work function metals are effective for increasing the electron injection efficiency and improving device characteristics. However, these low work function metals are often often unstable in the atmosphere. In order to improve this point, for example, a method is known in which an organic layer is doped with a small amount of lithium, cesium or magnesium and a highly stable electrode is used. As other dopants, inorganic salts such as lithium fluoride, cesium fluoride, lithium oxide, and cesium oxide can also be used. However, it is not limited to these.
 さらに、電極保護のために白金、金、銀、銅、鉄、スズ、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例としてあげられる。これらの電極の作製法も、抵抗加熱、電子ビーム蒸着、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。 Furthermore, for electrode protection, metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, and inorganic materials such as silica, titania and silicon nitride, polyvinyl alcohol, vinyl chloride Lamination of hydrocarbon polymer compounds and the like is a preferred example. The method for producing these electrodes is not particularly limited as long as conduction can be achieved, such as resistance heating, electron beam evaporation, sputtering, ion plating, and coating.
<各層で用いてもよい結着剤>
 以上の正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層に用いられる材料は単独で各層を形成することができるが、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N-ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル樹脂、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
<Binder that may be used in each layer>
The materials used for the hole injection layer, hole transport layer, light emitting layer, electron transport layer and electron injection layer can form each layer alone, but as a polymer binder, polyvinyl chloride, polycarbonate, Polystyrene, poly (N-vinylcarbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate resin, ABS resin, polyurethane resin It can also be used by dispersing it in solvent-soluble resins such as phenol resins, xylene resins, petroleum resins, urea resins, melamine resins, unsaturated polyester resins, alkyd resins, epoxy resins, silicone resins, etc. is there.
<有機電界発光素子の作製方法>
 有機EL素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、スピンコート法またはキャスト法、コーティング法などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、ボート加熱温度+50~+400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚2nm~5μmの範囲で適宜設定することが好ましい。
<Method for producing organic electroluminescent element>
Each layer constituting the organic EL element is a thin film formed by a method such as vapor deposition, resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, printing method, spin coat method or cast method, coating method, etc. Thus, it can be formed. The film thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm. The film thickness can usually be measured with a crystal oscillation type film thickness measuring device or the like. When a thin film is formed using a vapor deposition method, the vapor deposition conditions vary depending on the type of material, the target crystal structure and association structure of the film, and the like. Deposition conditions generally include boat heating temperature +50 to + 400 ° C., vacuum degree 10 −6 to 10 −3 Pa, deposition rate 0.01 to 50 nm / second, substrate temperature −150 to + 300 ° C., film thickness 2 nm to 5 μm. It is preferable to set appropriately within the range.
 このようにして得られた有機EL素子に直流電圧を印加する場合には、陽極を+、陰極を-の極性として印加すればよく、電圧2~40V程度を印加すると、透明または半透明の電極側(陽極または陰極、および両方)より発光が観測できる。また、この有機EL素子は、パルス電流や交流電流を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the organic EL device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, a transparent or translucent electrode is applied. Luminescence can be observed from the side (anode or cathode, and both). The organic EL element also emits light when a pulse current or an alternating current is applied. The alternating current waveform to be applied may be arbitrary.
 次に、有機EL素子を作製する方法の一例として、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法について説明する。 Next, as an example of a method for producing an organic EL element, an organic EL element composed of an anode / hole injection layer / hole transport layer / a light emitting layer composed of a host material and a dopant material / electron transport layer / electron injection layer / cathode A manufacturing method of will be described.
<蒸着法>
 適当な基板上に、陽極材料の薄膜を蒸着法などにより形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上にホスト材料とドーパント材料を共蒸着し薄膜を形成させて発光層とし、この発光層の上に電子輸送層、電子注入層を形成させ、さらに陰極用物質からなる薄膜を蒸着法などにより形成させて陰極とすることにより、目的の有機EL素子が得られる。なお、上述の有機EL素子の作製においては、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
<Vapor deposition method>
A thin film of an anode material is formed on a suitable substrate by vapor deposition or the like to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode. A host material and a dopant material are co-evaporated to form a thin film to form a light emitting layer. An electron transport layer and an electron injection layer are formed on the light emitting layer, and a thin film made of a cathode material is formed by vapor deposition. By forming it as a cathode, a target organic EL element can be obtained. In the production of the above-mentioned organic EL device, the production order can be reversed, and the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be produced in this order. It is.
<湿式成膜法>
 湿式成膜法は、有機EL素子の各有機層を形成し得る低分子化合物を液状の有機層形成用組成物として準備し、これを用いることによって実施される。この低分子化合物を溶解する適当な有機溶媒がない場合には、当該低分子化合物に反応性置換基を置換させた反応性化合物として溶解性機能を有する他のモノマーや主鎖型高分子と共に高分子化させた高分子化合物などから有機層形成用組成物を準備してもよい。
<Wet deposition method>
The wet film forming method is carried out by preparing a low molecular compound capable of forming each organic layer of an organic EL element as a liquid organic layer forming composition and using it. If there is no suitable organic solvent that dissolves the low molecular weight compound, the reactive compound obtained by substituting a reactive substituent on the low molecular weight compound is highly reactive along with other monomers having a solubility function and main chain type polymers. A composition for forming an organic layer may be prepared from a polymerized polymer compound.
 湿式成膜法は、一般的には、基板に有機層形成用組成物を塗布する塗布工程および塗布された有機層形成用組成物から溶媒を取り除く乾燥工程を経ることで塗膜を形成する。上記高分子化合物が架橋性置換基を有する場合(これを架橋性高分子化合物ともいう)には、この乾燥工程によりさらに架橋して高分子架橋体が形成される。塗布工程の違いにより、スピンコーターを用いる方法をスピンコート法、スリットコーターを用いる方法をスリットコート法、版を用いる方法をグラビア、オフセット、リバースオフセット、フレキソ印刷法、インクジェットプリンタを用いる方法をインクジェット法、霧状に吹付ける方法をスプレー法と呼ぶ。乾燥工程には、風乾、加熱、減圧乾燥などの方法がある。乾燥工程は1回のみ行なってもよく、異なる方法や条件を用いて複数回行なってもよい。また、例えば、減圧下での焼成のように、異なる方法を併用してもよい。 In the wet film forming method, generally, a coating film is formed by performing a coating process for coating the substrate with the organic layer forming composition and a drying process for removing the solvent from the coated organic layer forming composition. When the polymer compound has a crosslinkable substituent (also referred to as a crosslinkable polymer compound), the polymer is further crosslinked by this drying step to form a polymer crosslinked product. Depending on the coating process, the spin coater method is the spin coat method, the slit coater method is the slit coat method, the plate method is the gravure, offset, reverse offset, flexographic printing method, and the ink jet printer method is the ink jet method. The method of spraying in a mist form is called a spray method. Examples of the drying process include air drying, heating, and drying under reduced pressure. The drying step may be performed only once, or may be performed a plurality of times using different methods and conditions. Further, for example, different methods may be used together, such as firing under reduced pressure.
 湿式成膜法とは溶液を用いた成膜法であり、例えば、一部の印刷法(インクジェット法)、スピンコート法またはキャスト法、コーティング法などである。湿式成膜法は真空蒸着法と異なり高価な真空蒸着装置を用いる必要が無く、大気圧下で成膜することができる。加えて、湿式成膜法は大面積化や連続生産が可能であり、製造コストの低減につながる。 The wet film forming method is a film forming method using a solution, for example, a partial printing method (ink jet method), a spin coating method or a casting method, a coating method, or the like. Unlike the vacuum vapor deposition method, the wet film formation method does not require the use of an expensive vacuum vapor deposition apparatus and can form a film at atmospheric pressure. In addition, the wet film-forming method enables large area and continuous production, leading to reduction in manufacturing cost.
 一方で、真空蒸着法と比較した場合には、湿式成膜法は積層化が難しい場合がある。湿式成膜法を用いて積層膜を作製する場合、上層の組成物による下層の溶解を防ぐ必要があり、溶解性を制御した組成物、下層の架橋および直交溶媒(Orthogonal solvent、互いに溶解し合わない溶媒)などが駆使される。しかしながら、それらの技術を用いても、全ての膜の塗布に湿式成膜法を用いるのは難しい場合がある。 On the other hand, when compared with the vacuum deposition method, the wet film formation method may be difficult to stack. When making a laminated film using the wet film formation method, it is necessary to prevent dissolution of the lower layer by the upper layer composition. The composition with controlled solubility, the lower layer cross-linking and the orthogonal solvent (Orthogonalentsolvent, which dissolves each other) Not a solvent). However, even if these techniques are used, it may be difficult to use a wet film formation method for coating all films.
 そこで、一般的には、幾つかの層だけを湿式成膜法を用い、残りを真空蒸着法で有機EL素子を作製するという方法が採用される。 Therefore, generally, a method is employed in which only a few layers are formed using a wet film forming method, and the rest are formed using a vacuum vapor deposition method.
 例えば、湿式成膜法を一部適用し有機EL素子を作製する手順を以下に示す。
(手順1)陽極の真空蒸着法による成膜
(手順2)正孔注入層用材料を含む正孔注入層形成用組成物の湿式成膜法による成膜
(手順3)正孔輸送層用材料を含む正孔輸送層形成用組成物の湿式成膜法による成膜
(手順4)ホスト材料とドーパント材料を含む発光層形成用組成物の湿式成膜法による成膜
(手順5)電子輸送層の真空蒸着法による成膜
(手順6)電子注入層の真空蒸着法による成膜
(手順7)陰極の真空蒸着法による成膜
 この手順を経ることで、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機EL素子が得られる。
 もちろん、下層の発光層の溶解を防ぐ手段があったり、また上記手順とは逆に陰極側から成膜する手段などを用いることで、電子輸送層用材料や電子注入層用材料を含む層形成用組成物として準備して、それらを湿式成膜法により成膜できる。
For example, a procedure for manufacturing an organic EL element by partially applying a wet film forming method is shown below.
(Procedure 1) Film formation by vacuum deposition of anode (Procedure 2) Film formation by wet film-forming method of composition for forming hole injection layer containing material for hole injection layer (Procedure 3) Material for hole transport layer Formation of a composition for forming a hole transport layer containing a liquid by a wet film formation method (Procedure 4) Film formation by a wet film formation method of a composition for forming a light-emitting layer containing a host material and a dopant material (Procedure 5) Film formation by vacuum deposition method (Procedure 6) Film formation by electron vapor deposition layer (Procedure 7) Film formation by cathode vacuum deposition method Through this procedure, anode / hole injection layer / hole transport An organic EL device comprising a light emitting layer / electron transport layer / electron injection layer / cathode composed of layer / host material and dopant material is obtained.
Of course, there is a means for preventing dissolution of the lower light-emitting layer, and by using a means for forming a film from the cathode side contrary to the above procedure, layer formation including the material for the electron transport layer and the material for the electron injection layer They can be prepared as a composition for coating, and they can be formed by a wet film forming method.
<その他の成膜法>
 有機層形成用組成物の成膜化には、レーザー加熱描画法(LITI)を用いることができる。LITIとは基材に付着させた化合物をレーザーで加熱蒸着する方法で、基材へ塗布される材料に有機層形成用組成物を用いることができる。
<Other deposition methods>
A laser heating drawing method (LITI) can be used for forming the organic layer forming composition into a film. LITI is a method in which a compound attached to a base material is heated and vapor-deposited with a laser, and an organic layer forming composition can be used as a material applied to the base material.
<任意の工程>
 成膜の各工程の前後に、適切な処理工程、洗浄工程および乾燥工程を適宜入れてもよい。処理工程としては、例えば、露光処理、プラズマ表面処理、超音波処理、オゾン処理、適切な溶媒を用いた洗浄処理および加熱処理等が挙げられる。さらには、バンクを作製する一連の工程も挙げられる。
<Arbitrary process>
Appropriate treatment steps, washing steps, and drying steps may be appropriately added before and after each step of film formation. Examples of the treatment process include exposure treatment, plasma surface treatment, ultrasonic treatment, ozone treatment, cleaning treatment using an appropriate solvent, and heat treatment. Furthermore, a series of steps for producing a bank is also included.
 バンクの作製にはフォトリソグラフィ技術を用いることができる。フォトリソグラフィの利用可能なバンク材としては、ポジ型レジスト材料およびネガ型レジスト材料を用いることができる。また、インクジェット法、グラビアオフセット印刷、リバースオフセット印刷、スクリーン印刷などのパターン可能な印刷法も用いることができる。その際には永久レジスト材料を用いることもできる。 Photolithography technology can be used for the production of the bank. As a bank material that can be used for photolithography, a positive resist material and a negative resist material can be used. In addition, a patternable printing method such as an inkjet method, gravure offset printing, reverse offset printing, or screen printing can also be used. In this case, a permanent resist material can be used.
 バンクに用いられる材料としては、多糖類およびその誘導体、ヒドロキシルを有するエチレン性モノマーの単独重合体および共重合体、生体高分子化合物、ポリアクリロイル化合物、ポリエステル、ポリスチレン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルフィド、ポリスルホン、ポリフェニレン、ポリフェニルエーテル、ポリウレタン、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、ポリオレフィン、環状ポリオレフィン、アクリロニトリル-ブタジエン-スチレン共重合ポリマー(ABS)、シリコーン樹脂、ポリ塩化ビニル、塩素化ポリエチレン、塩素化ポリプロピレン、ポリアセテート、ポリノルボルネン、合成ゴム、ポリフルオロビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン等のフッ化ポリマー、フルオロオレフィン-ヒドロカーボンオレフィンの共重合ポリマー、フルオロカーボンポリマーが挙げられるが、それだけに限定されない。 Materials used for the bank include polysaccharides and derivatives thereof, homopolymers and copolymers of hydroxyl-containing ethylenic monomers, biopolymer compounds, polyacryloyl compounds, polyesters, polystyrenes, polyimides, polyamideimides, polyetherimides , Polysulfide, polysulfone, polyphenylene, polyphenyl ether, polyurethane, epoxy (meth) acrylate, melamine (meth) acrylate, polyolefin, cyclic polyolefin, acrylonitrile-butadiene-styrene copolymer (ABS), silicone resin, polyvinyl chloride, chlorine Polyethylene, chlorinated polypropylene, polyacetate, polynorbornene, synthetic rubber, polyfluorovinylidene, polytetrafluoroethylene, polyhexa Le Oro propylene fluoride such as polymers, fluoroolefin - hydrocarbonoxy olefin copolymer, but fluorocarbon polymers include, but are not limited to.
<湿式成膜法に使用される有機層形成用組成物>
 有機層形成用組成物は、有機EL素子の各有機層を形成し得る低分子化合物、または当該低分子化合物を高分子化させた高分子化合物を有機溶媒に溶解させて得られる。例えば、発光層形成用組成物は、第1成分として少なくとも1種のドーパント材料である多環芳香族化合物(またはその高分子化合物)と、第2成分として少なくとも1種のホスト材料と、第3成分として少なくとも1種の有機溶媒とを含有する。第1成分は、該組成物から得られる発光層のドーパント成分として機能し、第2成分は発光層のホスト成分として機能する。第3成分は、組成物中の第1成分と第2成分を溶解する溶媒として機能し、塗布時には第3成分自身の制御された蒸発速度により平滑で均一な表面形状を与える。
<Composition for forming organic layer used in wet film formation method>
The composition for forming an organic layer is obtained by dissolving, in an organic solvent, a low molecular compound capable of forming each organic layer of an organic EL element or a high molecular compound obtained by polymerizing the low molecular compound. For example, the composition for forming a light emitting layer includes a polycyclic aromatic compound (or a polymer compound thereof) that is at least one dopant material as a first component, at least one host material as a second component, and a third component. It contains at least one organic solvent as a component. A 1st component functions as a dopant component of the light emitting layer obtained from this composition, and a 2nd component functions as a host component of a light emitting layer. The third component functions as a solvent that dissolves the first component and the second component in the composition, and gives a smooth and uniform surface shape at the time of application due to the controlled evaporation rate of the third component itself.
<有機溶媒>
 有機層形成用組成物は少なくとも一種の有機溶媒を含む。成膜時に有機溶媒の蒸発速度を制御することで、成膜性および塗膜の欠陥の有無、表面粗さ、平滑性を制御および改善することができる。また、インクジェット法を用いた成膜時は、インクジェットヘッドのピンホールでのメニスカス安定性を制御し、吐出性を制御・改善することができる。加えて、膜の乾燥速度および誘導体分子の配向を制御することで、該有機層形成用組成物より得られる有機層を有する有機EL素子の電気特性、発光特性、効率、および寿命を改善することができる。
<Organic solvent>
The composition for forming an organic layer contains at least one organic solvent. By controlling the evaporation rate of the organic solvent at the time of film formation, the film formability, the presence or absence of defects in the coating film, the surface roughness, and the smoothness can be controlled and improved. Further, during film formation using the ink jet method, the meniscus stability at the pinhole of the ink jet head can be controlled, and the discharge performance can be controlled and improved. In addition, by controlling the drying speed of the film and the orientation of the derivative molecules, the electrical characteristics, light emitting characteristics, efficiency, and lifetime of the organic EL device having an organic layer obtained from the organic layer forming composition are improved. Can do.
(1)有機溶媒の物性
 少なくとも1種の有機溶媒の沸点は、130℃~300℃であり、140℃~270℃がより好ましく、150℃~250℃がさらに好ましい。沸点が130℃より高い場合、インクジェットの吐出性の観点から好ましい。また、沸点が300℃より低い場合、塗膜の欠陥、表面粗さ、残留溶媒および平滑性の観点から好ましい。有機溶媒は、良好なインクジェットの吐出性、成膜性、平滑性および低い残留溶媒の観点から、2種以上の有機溶媒を含む構成がより好ましい。一方で、場合によっては、運搬性などを考慮し、有機層形成用組成物中から溶媒を除去することで固形状態とした組成物であってもよい。
(1) Physical properties of organic solvent The boiling point of at least one organic solvent is 130 ° C to 300 ° C, more preferably 140 ° C to 270 ° C, and further preferably 150 ° C to 250 ° C. When the boiling point is higher than 130 ° C., it is preferable from the viewpoint of ink jetting properties. Moreover, when a boiling point is lower than 300 degreeC, it is preferable from a viewpoint of the defect of a coating film, surface roughness, a residual solvent, and smoothness. The organic solvent is more preferably composed of two or more organic solvents from the viewpoints of good ink jet discharge properties, film formability, smoothness and low residual solvent. On the other hand, depending on the case, the composition may be a solid state by removing the solvent from the organic layer forming composition in consideration of transportability and the like.
 さらに、有機溶媒が溶質の少なくとも1種に対する良溶媒(GS)と貧溶媒(PS)とを含み、良溶媒(GS)の沸点(BPGS)が貧溶媒(PS)の沸点(BPPS)よりも低い、構成が特に好ましい。
 高沸点の貧溶媒を加えることで成膜時に低沸点の良溶媒が先に揮発し、組成物中の含有物の濃度と貧溶媒の濃度が増加し速やかな成膜が促される。これにより、欠陥が少なく、表面粗さが小さい、平滑性の高い塗膜が得られる。
Furthermore, the organic solvent contains a good solvent (GS) and a poor solvent (PS) for at least one kind of solute, and the boiling point (BP GS ) of the good solvent (GS) is higher than the boiling point (BP PS ) of the poor solvent (PS). A low configuration is particularly preferred.
By adding a poor solvent having a high boiling point, a good solvent having a low boiling point is volatilized first at the time of film formation, and the concentration of inclusions in the composition and the concentration of the poor solvent are increased, thereby promptly forming a film. Thereby, a coating film with few defects, a small surface roughness, and high smoothness is obtained.
 溶解度の差(SGS-SPS)は、1%以上であることが好ましく、3%以上であることがより好ましく、5%以上であることがさらに好ましい。沸点の差(BPPS-BPGS)は、10℃以上であることが好ましく、30℃以上であることがより好ましく、50℃以上であることがさらに好ましい。 The solubility difference (S GS −S PS ) is preferably 1% or more, more preferably 3% or more, and further preferably 5% or more. The difference in boiling points (BP PS -BP GS ) is preferably 10 ° C. or higher, more preferably 30 ° C. or higher, and further preferably 50 ° C. or higher.
 有機溶媒は、成膜後に、真空、減圧、加熱などの乾燥工程により塗膜より取り除かれる。加熱を行う場合、塗布成膜性改善の観点からは、溶質の少なくとも1種のガラス転移温度(Tg)+30℃以下で行うことが好ましい。また、残留溶媒の削減の観点からは、溶質の少なくとも1種のガラス転移点(Tg)-30℃以上で加熱することが好ましい。加熱温度が有機溶媒の沸点より低くても膜が薄いために、有機溶媒は十分に取り除かれる。また、異なる温度で複数回乾燥を行ってもよく、複数の乾燥方法を併用してもよい。 The organic solvent is removed from the coating film by a drying process such as vacuum, reduced pressure or heating after the film formation. When heating, from the viewpoint of improving the coating film formability, it is preferable to carry out at least one glass transition temperature (Tg) of the solute + 30 ° C. or less. From the viewpoint of reducing the residual solvent, it is preferable to heat at least one glass transition point (Tg) of the solute at −30 ° C. or higher. Even if the heating temperature is lower than the boiling point of the organic solvent, the organic solvent is sufficiently removed because the film is thin. Moreover, drying may be performed a plurality of times at different temperatures, or a plurality of drying methods may be used in combination.
(2)有機溶媒の具体例
 有機層形成用組成物に用いられる有機溶媒としては、アルキルベンゼン系溶媒、フェニルエーテル系溶媒、アルキルエーテル系溶媒、環状ケトン系溶媒、脂肪族ケトン系溶媒、単環性ケトン系溶媒、ジエステル骨格を有する溶媒および含フッ素系溶媒などがあげられ、具体例として、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、テトラデカノール、ヘキサン-2-オール、ヘプタン-2-オール、オクタン-2-オール、デカン-2-オール、ドデカン-2-オール、シクロヘキサノール、α-テルピネオール、β-テルピネオール、γ-テルピネオール、δ-テルピネオール、テルピネオール(混合物)、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールブチルメチルエーテル、ポリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、p-キシレン、m-キシレン、o-キシレン、2,6-ルチジン、2-フルオロ-m-キシレン、3-フルオロ-o-キシレン、2-クロロベンゾ三フッ化物、クメン、トルエン、2-クロロ-6-フルオロトルエン、2-フルオロアニソール、アニソール、2,3-ジメチルピラジン、ブロモベンゼン、4-フルオロアニソール、3-フルオロアニソール、3-トリフルオロメチルアニソール、メシチレン、1,2,4-トリメチルベンゼン、t-ブチルベンゼン、2-メチルアニソール、フェネトール、ベンゾジオキソール、4-メチルアニソール、s-ブチルベンゼン、3-メチルアニソール、4-フルオロ-3-メチルアニソール、シメン、1,2,3-トリメチルベンゼン、1,2-ジクロロベンゼン、2-フルオロベンゾニトリル、4-フルオロベラトロール、2,6-ジメチルアニソール、n-ブチルベンゼン、3-フルオロベンゾニトリル、デカリン(デカヒドロナフタレン)、ネオペンチルベンゼン、2,5-ジメチルアニソール、2,4-ジメチルアニソール、ベンゾニトリル、3,5-ジメチルアニソール、ジフェニルエーテル、1-フルオロ-3,5-ジメトキシベンゼン、安息香酸メチル、イソペンチルベンゼン、3,4-ジメチルアニソール、o-トルニトリル、n-アミルベンゼン、ベラトロール、1,2,3,4-テトラヒドロナフタレン、安息香酸エチル、n-ヘキシルベンゼン、安息香酸プロピル、シクロヘキシルベンゼン、1-メチルナフタレン、安息香酸ブチル、2-メチルビフェニル、3-フェノキシトルエン、2,2’-ビトリル、ドデシルベンゼン、ジペンチルベンゼン、テトラメチルベンゼン、トリメトキシベンゼン、トリメトキシトルエン、2,3-ジヒドロベンゾフラン、1-メチル-4-(プロポキシメチル)ベンゼン、1-メチル-4-(ブチルオキシメチル)ベンゼン、1-メチル-4-(ペンチルオキシメチル)ベンゼン、1-メチル-4-(ヘキシルオキシメチル)ベンゼン、1-メチル-4-(ヘプチルオキシメチル)ベンゼンベンジルブチルエーテル、ベンジルペンチルエーテル、ベンジルヘキシルエーテル、ベンジルヘプチルエーテル、ベンジルオクチルエーテルなどが挙げられるが、それだけに限定されない。また、溶媒は単一で用いてもよく、混合してもよい。
(2) Specific examples of organic solvents Examples of organic solvents used in the organic layer forming composition include alkylbenzene solvents, phenyl ether solvents, alkyl ether solvents, cyclic ketone solvents, aliphatic ketone solvents, and monocyclic solvents. Examples include ketone solvents, solvents having a diester skeleton, and fluorine-containing solvents. Specific examples include pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tetradecanol, hexane-2-ol, Heptan-2-ol, octan-2-ol, decan-2-ol, dodecan-2-ol, cyclohexanol, α-terpineol, β-terpineol, γ-terpineol, δ-terpineol, terpineol (mixture), ethylene glycol Monomethyl ester Teracetate, propylene glycol monomethyl ether acetate, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol isopropyl methyl ether, dipropylene glycol monomethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether , Triethylene glycol dimethyl ether, diethylene glycol monobutyl ether, ethylene glycol monophenyl ether, triethylene glycol monomethyl ether, diethylene glycol dibutyl ether, triethylene glycol buty Methyl ether, polyethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, p-xylene, m-xylene, o-xylene, 2,6-lutidine, 2-fluoro-m-xylene, 3-fluoro-o-xylene, 2-chlorobenzo Fluoride, cumene, toluene, 2-chloro-6-fluorotoluene, 2-fluoroanisole, anisole, 2,3-dimethylpyrazine, bromobenzene, 4-fluoroanisole, 3-fluoroanisole, 3-trifluoromethylanisole, Mesitylene, 1,2,4-trimethylbenzene, t-butylbenzene, 2-methylanisole, phenetole, benzodioxole, 4-methylanisole, s-butylbenzene, 3-methylanisole, 4-fluoro-3-methylanis Sole, cymene, 1,2,3-trimethylbenzene, 1,2-dichlorobenzene, 2-fluorobenzonitrile, 4-fluoroveratrol, 2,6-dimethylanisole, n-butylbenzene, 3-fluorobenzonitrile, Decalin (decahydronaphthalene), neopentylbenzene, 2,5-dimethylanisole, 2,4-dimethylanisole, benzonitrile, 3,5-dimethylanisole, diphenyl ether, 1-fluoro-3,5-dimethoxybenzene, benzoic acid Methyl, isopentylbenzene, 3,4-dimethylanisole, o-tolunitrile, n-amylbenzene, veratrol, 1,2,3,4-tetrahydronaphthalene, ethyl benzoate, n-hexylbenzene, propyl benzoate, cyclohexylbenzene , 1-me Lunaphthalene, butyl benzoate, 2-methylbiphenyl, 3-phenoxytoluene, 2,2′-vitryl, dodecylbenzene, dipentylbenzene, tetramethylbenzene, trimethoxybenzene, trimethoxytoluene, 2,3-dihydrobenzofuran, 1 -Methyl-4- (propoxymethyl) benzene, 1-methyl-4- (butyloxymethyl) benzene, 1-methyl-4- (pentyloxymethyl) benzene, 1-methyl-4- (hexyloxymethyl) benzene, Examples include, but are not limited to, 1-methyl-4- (heptyloxymethyl) benzenebenzyl butyl ether, benzyl pentyl ether, benzyl hexyl ether, benzyl heptyl ether, benzyl octyl ether, and the like. Moreover, a solvent may be used alone or may be mixed.
<任意成分>
 有機層形成用組成物は、その性質を損なわない範囲で、任意成分を含んでいてもよい。任意成分としては、バインダーおよび界面活性剤等が挙げられる。
<Optional component>
The composition for forming an organic layer may contain an optional component as long as its properties are not impaired. Examples of optional components include a binder and a surfactant.
(1)バインダー
 有機層形成用組成物は、バインダーを含有していてもよい。バインダーは、成膜時には膜を形成するとともに、得られた膜を基板と接合する。また、該有機層形成用組成物中で他の成分を溶解および分散および結着させる役割を果たす。
(1) Binder The composition for forming an organic layer may contain a binder. The binder forms a film at the time of film formation and bonds the obtained film to the substrate. In addition, it plays a role of dissolving, dispersing and binding other components in the organic layer forming composition.
 有機層形成用組成物に用いられるバインダーとしては、例えば、アクリル樹脂、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、アクリロニトリル-エチレン-スチレン共重合体(AES)樹脂、アイオノマー、塩素化ポリエーテル、ジアリルフタレート樹脂、不飽和ポリエステル樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、テフロン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、アクリロニトリル-スチレン共重合体(AS)樹脂、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、ポリウレタン、および、上記樹脂およびポリマーの共重合体、が挙げられるが、それだけに限定されない。 Examples of the binder used in the organic layer forming composition include acrylic resin, polyethylene terephthalate, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, acrylonitrile-ethylene-styrene copolymer (AES) resin, Ionomer, chlorinated polyether, diallyl phthalate resin, unsaturated polyester resin, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, Teflon, acrylonitrile-butadiene-styrene copolymer (ABS) resin, acrylonitrile -Styrene copolymer (AS) resin, phenol resin, epoxy resin, melamine resin, urea resin, alkyd resin, polyurethane, and copolymer of the above resin and polymer, Re not limited to.
 有機層形成用組成物に用いられるバインダーは、1種のみであってもよく複数種を混合して用いてもよい。 The binder used in the composition for forming an organic layer may be only one kind or a mixture of plural kinds.
(2)界面活性剤
 有機層形成用組成物は、例えば、有機層形成用組成物の膜面均一性、膜表面の親溶媒性および撥液性の制御のために界面活性剤を含有してもよい。界面活性剤は、親水性基の構造からイオン性および非イオン性に分類され、さらに、疎水性基の構造からアルキル系およびシリコン系およびフッ素系に分類される。また、分子の構造から、分子量が比較的小さく単純な構造を有する単分子系および分子量が大きく側鎖や枝分かれを有する高分子系に分類される。また、組成から、単一系、二種以上の界面活性剤および基材を混合した混合系に分類される。該有機層形成用組成物に用いることのできる界面活性剤としては、全ての種類の界面活性剤を用いることができる。
(2) Surfactant The composition for forming an organic layer contains, for example, a surfactant for controlling film surface uniformity, lyophilicity and liquid repellency of the composition for forming an organic layer. Also good. Surfactants are classified into ionic and nonionic based on the structure of the hydrophilic group, and further classified into alkyl, silicon, and fluorine based on the structure of the hydrophobic group. Further, the molecular structure is classified into a monomolecular system having a relatively small molecular weight and a simple structure, and a polymer system having a large molecular weight and having a side chain and a branch. Moreover, it classify | categorizes into the mixed system which mixed the single system and 2 or more types of surfactant and the base material from a composition. As the surfactant that can be used in the composition for forming an organic layer, all kinds of surfactants can be used.
 界面活性剤としては、例えば、ポリフローNo.45、ポリフローKL-245、ポリフローNo.75、ポリフローNo.90、ポリフローNo.95(商品名、共栄社化学工業(株)製)、ディスパーベイク(Disperbyk)161、ディスパーベイク162、ディスパーベイク163、ディスパーベイク164、ディスパーベイク166、ディスパーベイク170、ディスパーベイク180、ディスパーベイク181、ディスパーベイク182、BYK300、BYK306、BYK310、BYK320、BYK330、BYK342、BYK344、BYK346(商品名、ビックケミー・ジャパン(株)製)、KP-341、KP-358、KP-368、KF-96-50CS、KF-50-100CS(商品名、信越化学工業(株)製)、サーフロンSC-101、サーフロンKH-40(商品名、セイミケミカル(株)製)、フタージェント222F、フタージェント251、FTX-218(商品名、(株)ネオス製)、EFTOP EF-351、EFTOP EF-352、EFTOP EF-601、EFTOP EF-801、EFTOP EF-802(商品名、三菱マテリアル(株)製)、メガファックF-470、メガファックF-471、メガファックF-475、メガファックR-08、メガファックF-477、メガファックF-479、メガファックF-553、メガファックF-554(商品名、DIC(株)製)、フルオロアルキルベンゼンスルホン酸塩、フルオルアルキルカルボン酸塩、フルオロアルキルポリオキシエチレンエーテル、フルオロアルキルアンモニウムヨージド、フルオロアルキルベタイン、フルオロアルキルスルホン酸塩、ジグリセリンテトラキス(フルオロアルキルポリオキシエチレンエーテル)、フルオロアルキルトリメチルアンモニウム塩、フルオロアルキルアミノスルホン酸塩、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンラウレート、ポリオキシエチレンオレエート、ポリオキシエチレンステアレート、ポリオキシエチレンラウリルアミン、ソルビタンラウレート、ソルビタンパルミテート、ソルビタンステアレート、ソルビタンオレエート、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタンラウレート、ポリオキシエチレンソルビタンパルミテート、ポリオキシエチレンソルビタンステアレート、ポリオキシエチレンソルビタンオレエート、ポリオキシエチレンナフチルエーテル、アルキルベンゼンスルホン酸塩およびアルキルジフェニルエーテルジスルホン酸塩を挙げることができる。 As the surfactant, for example, Polyflow No. 45, Polyflow KL-245, Polyflow No. 75, Polyflow No. 90, polyflow no. 95 (trade name, manufactured by Kyoeisha Chemical Industry Co., Ltd.), Disperbak 161, Disper Bake 162, Disper Bake 163, Disper Bake 164, Disper Bake 166, Disper Bake 170, Disper Bake 180, Disper Bake 181 and Disper Bake 182, BYK300, BYK306, BYK310, BYK320, BYK330, BYK342, BYK344, BYK346 (trade name, manufactured by Big Chemie Japan Co., Ltd.), KP-341, KP-358, KP-368, KF-96-50CS, KF -50-100CS (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), Surflon SC-101, Surflon KH-40 (trade name, manufactured by Seimi Chemical Co., Ltd.), Footent 222F, Footage 251, FTX-218 (trade name, manufactured by Neos Co., Ltd.), EFTOP EF-351, EFTOP EF-352, EFTOP EF-601, EFTOP EF-801, EFTOP EF-802 (trade name, Mitsubishi Materials Corporation) ), Megafuck F-470, Megafuck F-471, Megafuck F-475, Megafuck R-08, Megafuck F-477, Megafuck F-479, Megafuck F-553, Megafuck F-554 (Trade name, manufactured by DIC Corporation), fluoroalkyl benzene sulfonate, fluoroalkyl carboxylate, fluoroalkyl polyoxyethylene ether, fluoroalkyl ammonium iodide, fluoroalkyl betaine, fluoroalkyl sulfonate, diglycerin tetrakis (F Oroalkyl polyoxyethylene ether), fluoroalkyltrimethylammonium salt, fluoroalkylaminosulfonate, polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene laurate, polyoxyethylene Oleate, polyoxyethylene stearate, polyoxyethylene laurylamine, sorbitan laurate, sorbitan palmitate, sorbitan stearate, sorbitan oleate, sorbitan fatty acid ester, polyoxyethylene sorbitan laurate, polyoxyethylene sorbitan palmitate, poly Oxyethylene sorbitan stearate, polyoxyethylene sorbitan oleate, polyoxyethylene Mention may be made of nonnaphthyl ethers, alkylbenzene sulfonates and alkyl diphenyl ether disulfonates.
 また、界面活性剤は1種で用いてもよく、2種以上を併用してもよい。 Further, the surfactant may be used alone or in combination of two or more.
<有機層形成用組成物の組成および物性>
 有機層形成用組成物における各成分の含有量は、有機層形成用組成物中の各成分の良好な溶解性、保存安定性および成膜性、ならびに、該有機層形成用組成物から得られる塗膜の良質な膜質、また、インクジェット法を用いた場合の良好な吐出性、該組成物を用いて作製された有機層を有する有機EL素子の、良好な電気特性、発光特性、効率、寿命の観点を考慮して決定される。例えば、発光層形成用組成物の場合には、第1成分が発光層形成用組成物の全重量に対して、0.0001重量%~2.0重量%、第2成分が発光層形成用組成物の全重量に対して、0.0999重量%~8.0重量%、第3成分が発光層形成用組成物の全重量に対して、90.0重量%~99.9重量%が好ましい。
<Composition and physical properties of organic layer forming composition>
The content of each component in the composition for forming an organic layer is obtained from the good solubility, storage stability and film formability of each component in the composition for forming an organic layer, and the composition for forming an organic layer. Good film quality of the coating film, good dischargeability when using the ink jet method, and good electrical characteristics, light emission characteristics, efficiency, and lifetime of the organic EL device having an organic layer produced using the composition It is decided in consideration of the viewpoint. For example, in the case of the composition for forming a light emitting layer, the first component is 0.0001% to 2.0% by weight and the second component is for forming the light emitting layer with respect to the total weight of the composition for forming the light emitting layer. 0.0999 wt% to 8.0 wt% based on the total weight of the composition, and the third component is 90.0 wt% to 99.9 wt% based on the total weight of the composition for forming the light emitting layer. preferable.
 より好ましくは、第1成分が発光層形成用組成物の全重量に対して、0.005重量%~1.0重量%、第2成分が発光層形成用組成物の全重量に対して、0.095重量%~4.0重量%、第3成分が発光層形成用組成物の全重量に対して、95.0重量%~99.9重量%である。さらに好ましくは、第1成分が発光層形成用組成物の全重量に対して、0.05重量%~0.5重量%、第2成分が発光層形成用組成物の全重量に対して、0.25重量%~2.5重量%、第3成分が発光層形成用組成物の全重量に対して、97.0重量%~99.7重量%である。 More preferably, the first component is 0.005 wt% to 1.0 wt% with respect to the total weight of the light emitting layer forming composition, and the second component is with respect to the total weight of the light emitting layer forming composition, 0.095 wt% to 4.0 wt%, and the third component is 95.0 wt% to 99.9 wt% with respect to the total weight of the light emitting layer forming composition. More preferably, the first component is 0.05% by weight to 0.5% by weight relative to the total weight of the light emitting layer forming composition, and the second component is based on the total weight of the light emitting layer forming composition. The amount of the third component is 97.0% by weight to 99.7% by weight with respect to the total weight of the composition for forming a light emitting layer.
 有機層形成用組成物は、上述した成分を、公知の方法で攪拌、混合、加熱、冷却、溶解、分散等を適宜選択して行うことによって製造できる。また、調製後に、ろ過、脱ガス(デガスとも言う)、イオン交換処理および不活性ガス置換・封入処理等を適宜選択して行ってもよい。 The composition for forming an organic layer can be produced by appropriately selecting and stirring the above-described components by a known method such as stirring, mixing, heating, cooling, dissolution, and dispersion. Further, after preparation, filtration, degassing (also referred to as degas), ion exchange treatment, inert gas replacement / encapsulation treatment, and the like may be selected as appropriate.
 有機層形成用組成物の粘度としては、高粘度である方が、良好な成膜性とインクジェット法を用いた場合の良好な吐出性が得られる。一方、低粘度である方が薄い膜を作りやすい。このことから、該有機層形成用組成物の粘度は、25℃における粘度が0.3~3mPa・sであることが好ましく、1~3mPa・sであることがより好ましい。本発明において、粘度は円錐平板型回転粘度計(コーンプレートタイプ)を用いて測定した値である。 As the viscosity of the composition for forming an organic layer, the higher the viscosity, the better the film formability and the better the discharge property when using the ink jet method. On the other hand, it is easier to make a thin film with a low viscosity. From this, the viscosity of the composition for forming an organic layer is preferably 0.3 to 3 mPa · s, more preferably 1 to 3 mPa · s at 25 ° C. In the present invention, the viscosity is a value measured using a conical plate type rotational viscometer (cone plate type).
 有機層形成用組成物の表面張力としては、低い方が良好な成膜性および欠陥のない塗膜が得られる。一方、高い方が良好なインクジェット吐出性を得られる。このことから、該有機層形成用組成物の粘度は、25℃における表面張力が20~40mN/mであることが好ましく、20~30mN/mであることがより好ましい。本発明において、表面張力は懸滴法を用いて測定した値である。 The lower the surface tension of the organic layer forming composition, the better the film formability and the coating film without defects. On the other hand, higher ink jetting properties can be obtained. Accordingly, the viscosity of the composition for forming an organic layer is preferably 20 to 40 mN / m, more preferably 20 to 30 mN / m, at a surface tension at 25 ° C. In the present invention, the surface tension is a value measured using the hanging drop method.
<架橋性高分子化合物:一般式(XLP-1)で表される化合物>
 次に、上述した高分子化合物が架橋性置換基を有する場合について説明する。このような架橋性高分子化合物は例えば下記一般式(XLP-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000193
 式(XLP-1)において、
 MUx、ECxおよびkは上記式(SPH-1)におけるMU、ECおよびkと同定義であり、ただし、式(XLP-1)で表される化合物は少なくとも1つの架橋性置換基(XLS)を有し、好ましくは架橋性置換基を有する1価または2価の芳香族化合物の含有量は、分子中0.1~80重量%である。
<Crosslinkable polymer compound: compound represented by general formula (XLP-1)>
Next, the case where the above-described polymer compound has a crosslinkable substituent will be described. Such a crosslinkable polymer compound is, for example, a compound represented by the following general formula (XLP-1).
Figure JPOXMLDOC01-appb-C000193
In the formula (XLP-1),
MUx, ECx and k have the same definitions as MU, EC and k in the above formula (SPH-1), provided that the compound represented by the formula (XLP-1) has at least one crosslinkable substituent (XLS). Preferably, the content of the monovalent or divalent aromatic compound having a crosslinkable substituent is 0.1 to 80% by weight in the molecule.
 架橋性置換基を有する1価または2価の芳香族化合物の含有量は、0.5~50重量%が好ましく、1~20重量%がより好ましい。 The content of the monovalent or divalent aromatic compound having a crosslinkable substituent is preferably 0.5 to 50% by weight, and more preferably 1 to 20% by weight.
 架橋性置換基(XLS)としては、上述した高分子化合物をさらに架橋化できる基であれば特に限定されないが、以下の構造の置換基が好ましい。各構造式中の*は結合位置を示す。
Figure JPOXMLDOC01-appb-C000194
The crosslinkable substituent (XLS) is not particularly limited as long as it can further crosslink the above-described polymer compound, but a substituent having the following structure is preferable. * In each structural formula indicates a bonding position.
Figure JPOXMLDOC01-appb-C000194
 Lは、それぞれ独立して、単結合、-O-、-S-、>C=O、-O-C(=O)-、炭素数1~12のアルキレン、炭素数1~12のオキシアルキレンおよび炭素数1~12のポリオキシアルキレンである。上記置換基の中でも、式(XLS-1)、式(XLS-2)、式(XLS-3)、式(XLS-9)、式(XLS-10)または式(XLS-17)で表される基が好ましく、式(XLS-1)、式(XLS-3)または式(XLS-17)で表される基がより好ましい。 L is each independently a single bond, —O—, —S—,> C═O, —O—C (═O) —, alkylene having 1 to 12 carbons, or oxyalkylene having 1 to 12 carbons. And polyoxyalkylene having 1 to 12 carbon atoms. Among the above substituents, they are represented by the formula (XLS-1), the formula (XLS-2), the formula (XLS-3), the formula (XLS-9), the formula (XLS-10), or the formula (XLS-17). And a group represented by the formula (XLS-1), the formula (XLS-3) or the formula (XLS-17) is more preferable.
 架橋性置換基を有する2価の芳香族化合物としては、例えば下記部分構造を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Examples of the divalent aromatic compound having a crosslinkable substituent include compounds having the following partial structure.
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
<高分子化合物および架橋性高分子化合物の製造方法>
 高分子化合物および架橋性高分子化合物の製造方法について、上述した式(SPH-1)で表される化合物および(XLP-1)で表される化合物を例にして説明する。これらの化合物は、公知の製造方法を適宜組み合わせて合成することができる。
<Method for producing polymer compound and crosslinkable polymer compound>
The production method of the polymer compound and the crosslinkable polymer compound will be described using the compound represented by the formula (SPH-1) and the compound represented by (XLP-1) as examples. These compounds can be synthesized by appropriately combining known production methods.
 反応で用いられる溶媒としては、芳香族溶媒、飽和/不飽和炭化水素溶媒、アルコール溶媒、エーテル系溶媒などがあげられ、例えば、ジメトキシエタン、2-(2-メトキシエトキシ)エタン、2-(2-エトキシエトキシ)エタン等があげられる。 Examples of the solvent used in the reaction include aromatic solvents, saturated / unsaturated hydrocarbon solvents, alcohol solvents, ether solvents, and the like, for example, dimethoxyethane, 2- (2-methoxyethoxy) ethane, 2- (2 -Ethoxyethoxy) ethane and the like.
 また、反応は2相系で行ってもよい。2相系で反応させる場合は、必要に応じて、第4級アンモニウム塩等の相間移動触媒を加えてもよい。 Also, the reaction may be performed in a two-phase system. When reacting in a two-phase system, a phase transfer catalyst such as a quaternary ammonium salt may be added as necessary.
 式(SPH-1)の化合物および(XLP-1)の化合物を製造する際、一段階で製造してもよいし、多段階を経て製造してもよい。また、原料を反応容器に全て入れてから反応を開始する一括重合法により行ってもよいし、原料を反応容器に滴下し加える滴下重合法により行ってもよいし、生成物が反応の進行に伴い沈殿する沈殿重合法により行ってもよく、これらを適宜組み合わせて合成することができる。例えば、式(SPH-1)で表される化合物を一段階で合成する際、モノマーユニット(MU)およびエンドキャップユニット(EC)を反応容器に加えた状態で反応を行うことで目的物を得る。また、一般式(SPH-1)で表される化合物を多段階で合成する際、モノマーユニット(MU)を目的の分子量まで重合した後、エンドキャップユニット(EC)を加えて反応させることで目的物を得る。多段階で異なる種類のモノマーユニット(MU)を加え反応を行えば、モノマーユニットの構造について濃度勾配を有するポリマーを作ることができる。また、前駆体ポリマーを調製した後、あと反応により目的物ポリマーを得ることができる。 When the compound of formula (SPH-1) and the compound of (XLP-1) are produced, they may be produced in one step or may be produced through multiple steps. Moreover, it may be carried out by a batch polymerization method in which the reaction is started after all the raw materials are put in the reaction vessel, or may be carried out by a dropping polymerization method in which the raw material is dropped into the reaction vessel and the product is used for the progress of the reaction. It may be carried out by a precipitation polymerization method in which precipitation is accompanied, and they can be synthesized by appropriately combining them. For example, when the compound represented by the formula (SPH-1) is synthesized in one step, the target product is obtained by carrying out the reaction with the monomer unit (MU) and the end cap unit (EC) added to the reaction vessel. . In addition, when the compound represented by the general formula (SPH-1) is synthesized in multiple stages, the monomer unit (MU) is polymerized to the target molecular weight, and then the end cap unit (EC) is added and reacted. Get things. If the reaction is carried out by adding different types of monomer units (MU) in multiple stages, a polymer having a concentration gradient with respect to the structure of the monomer units can be produced. Moreover, after preparing a precursor polymer, a target polymer can be obtained by a post reaction.
 また、モノマーユニット(MU)の重合性基を選べばポリマーの一次構造を制御することができる。例えば、合成スキームの1~3に示すように、ランダムな一次構造を有するポリマー(合成スキームの1)、規則的な一次構造を有するポリマー(合成スキームの2および3)などを合成することが可能であり、目的物に応じて適宜組み合わせて用いることができる。さらには、重合性基を3つ以上有するモノマーユニットを用いれば、ハイパーブランチポリマーやデンドリマーを合成することができる。 Also, if the polymerizable group of the monomer unit (MU) is selected, the primary structure of the polymer can be controlled. For example, as shown in Synthesis Schemes 1 to 3, it is possible to synthesize polymers with random primary structures (Synthesis Scheme 1), regular primary structures (Synthesis Schemes 2 and 3), etc. And can be used in appropriate combination depending on the object. Furthermore, if a monomer unit having three or more polymerizable groups is used, a hyperbranched polymer or a dendrimer can be synthesized.
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000199
 本発明で用いることのできるモノマーユニットとしては、特開2010-189630号公報、国際公報第2012/086671号、国際公開第2013/191088号、国際公開第2002/045184号、国際公開第2011/049241号、国際公開第2013/146806号、国際公開第2005/049546号、国際公開第2015/145871号、特開2010-215886号、特開2008-106241号公報、特開2010-215886号公報、国際公開第2016/031639号、特開2011-174062号公報、国際公開第2016/031639号、国際公開第2016/031639号、国際公開第2002/045184号に記載の方法に準じて合成することができる。 Examples of monomer units that can be used in the present invention include JP 2010-189630 A, International Publication No. 2012/086671, International Publication No. 2013/191088, International Publication No. 2002/045184, International Publication No. 2011/049241. No., International Publication No. 2013/146806, International Publication No. 2005/049546, International Publication No. 2015/145871, Japanese Unexamined Patent Publication No. 2010-215886, Japanese Unexamined Patent Publication No. 2008-106241, Japanese Unexamined Patent Publication No. 2010-215886, International Publication No. It can be synthesized according to the methods described in Published 2016/031639, JP 2011-174062, Published 2016/031639, Published 2016/031639, Published 2002/045184 .
 また、具体的なポリマー合成手順については、特開2012-036388号公報、国際公開第2015/008851号、特開2012-36381号公報、特開2012-144722号公報、国際公開第2015/194448号、国際公開第2013/146806号、国際公開第2015/145871号、国際公開第2016/031639号、国際公開第2016/125560号、国際公開第2016/031639号、国際公開第2016/031639号、国際公開第2016/125560号、国際公開第2015/145871号、国際公開第2011/049241号、特開2012-144722号公報に記載の方法に準じて合成することができる。 For specific polymer synthesis procedures, JP 2012-036388 A, International Publication No. 2015/008851, JP 2012-36381 A, JP 2012-144722 A, International Publication No. 2015/194448. , International Publication No. 2013/146806, International Publication No. 2015/145871, International Publication No. 2016/031639, International Publication No. 2016/125560, International Publication No. 2016/031639, International Publication No. 2016/031639, International Publication No. The compound can be synthesized according to the methods described in Publication No. 2016/125560, International Publication No. 2015/145871, International Publication No. 2011/049241, and Japanese Unexamined Patent Publication No. 2012-144722.
<有機電界発光素子の応用例>
 また、本発明は、有機EL素子を備えた表示装置または有機EL素子を備えた照明装置などにも応用することができる。
 有機EL素子を備えた表示装置または照明装置は、本実施形態にかかる有機EL素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
<Application examples of organic electroluminescent devices>
The present invention can also be applied to a display device including an organic EL element or a lighting device including an organic EL element.
The display device or lighting device including the organic EL element can be manufactured by a known method such as connecting the organic EL element according to the present embodiment and a known driving device, such as DC driving, pulse driving, or AC driving. It can drive using a well-known drive method suitably.
 表示装置としては、例えば、カラーフラットパネルディスプレイなどのパネルディスプレイ、フレキシブルカラー有機電界発光(EL)ディスプレイなどのフレキシブルディスプレイなどがあげられる(例えば、特開平10-335066号公報、特開2003-321546号公報、特開2004-281086号公報など参照)。また、ディスプレイの表示方式としては、例えば、マトリクスおよび/またはセグメント方式などがあげられる。なお、マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。 Examples of the display device include a panel display such as a color flat panel display, and a flexible display such as a flexible color organic electroluminescence (EL) display (for example, JP-A-10-335066 and JP-A-2003-321546). Gazette, JP-A-2004-281086, etc.) Examples of the display method of the display include a matrix and / or segment method. Note that the matrix display and the segment display may coexist in the same panel.
 マトリクスでは、表示のための画素が格子状やモザイク状など二次元的に配置されており、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。 In the matrix, pixels for display are two-dimensionally arranged such as a grid or mosaic, and characters and images are displayed with a set of pixels. The shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 μm or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become. In monochrome display, pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type. The matrix driving method may be either a line sequential driving method or an active matrix. The line-sequential driving has an advantage that the structure is simple. However, the active matrix may be superior in consideration of the operation characteristics, so that it is necessary to properly use it depending on the application.
 セグメント方式(タイプ)では、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などがあげられる。 In the segment method (type), a pattern is formed so as to display predetermined information, and a predetermined region is caused to emit light. For example, the time and temperature display in a digital clock or a thermometer, the operation state display of an audio device or an electromagnetic cooker, the panel display of an automobile, and the like can be mentioned.
 照明装置としては、例えば、室内照明などの照明装置、液晶表示装置のバックライトなどがあげられる(例えば、特開2003-257621号公報、特開2003-277741号公報、特開2004-119211号公報など参照)。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式が蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本実施形態に係る発光素子を用いたバックライトは薄型で軽量が特徴になる。 Examples of the illuminating device include an illuminating device such as indoor lighting, a backlight of a liquid crystal display device, and the like (for example, JP 2003-257621 A, JP 2003-277741 A, JP 2004-119211 A). Etc.) The backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like. In particular, as a backlight for a liquid crystal display device, especially a personal computer application where thinning is an issue, considering that it is difficult to thin the conventional method because it is made of a fluorescent lamp or a light guide plate, this embodiment The backlight using the light emitting element according to the present invention is thin and lightweight.
3-2.その他の有機デバイス
 本発明に係る多環芳香族化合物は、上述した有機電界発光素子の他に、有機電界効果トランジスタまたは有機薄膜太陽電池などの作製に用いることができる。
3-2. Other Organic Devices The polycyclic aromatic compound according to the present invention can be used for producing an organic field effect transistor or an organic thin film solar cell in addition to the above-described organic electroluminescent element.
 有機電界効果トランジスタは、電圧入力によって発生させた電界により電流を制御するトランジスタのことであり、ソース電極とドレイン電極の他にゲート電極が設けられている。ゲート電極に電圧を印加すると電界が生じ、ソース電極とドレイン電極間を流れる電子(あるいはホール)の流れを任意にせき止めて電流を制御することができるトランジスタである。電界効果トランジスタは、単なるトランジスタ(バイポーラトランジスタ)に比べて小型化が容易であり、集積回路などを構成する素子としてよく用いられている。 An organic field effect transistor is a transistor that controls current by an electric field generated by voltage input, and a gate electrode is provided in addition to a source electrode and a drain electrode. When a voltage is applied to the gate electrode, an electric field is generated, and the current can be controlled by arbitrarily blocking the flow of electrons (or holes) flowing between the source electrode and the drain electrode. Field effect transistors are easier to miniaturize than simple transistors (bipolar transistors), and are often used as elements constituting integrated circuits and the like.
 有機電界効果トランジスタの構造は、通常、本発明に係る多環芳香族化合物を用いて形成される有機半導体活性層に接してソース電極およびドレイン電極が設けられており、さらに有機半導体活性層に接した絶縁層(誘電体層)を挟んでゲート電極が設けられていればよい。その素子構造としては、例えば以下の構造があげられる。
(1)基板/ゲート電極/絶縁体層/ソース電極・ドレイン電極/有機半導体活性層
(2)基板/ゲート電極/絶縁体層/有機半導体活性層/ソース電極・ドレイン電極
(3)基板/有機半導体活性層/ソース電極・ドレイン電極/絶縁体層/ゲート電極
(4)基板/ソース電極・ドレイン電極/有機半導体活性層/絶縁体層/ゲート電極
 このように構成された有機電界効果トランジスタは、アクティブマトリックス駆動方式の液晶ディスプレイや有機エレクトロルミネッセンスディスプレイの画素駆動スイッチング素子などとして適用できる。
The structure of the organic field effect transistor is usually provided with a source electrode and a drain electrode in contact with the organic semiconductor active layer formed using the polycyclic aromatic compound according to the present invention, and further in contact with the organic semiconductor active layer. The gate electrode may be provided with the insulating layer (dielectric layer) interposed therebetween. Examples of the element structure include the following structures.
(1) Substrate / gate electrode / insulator layer / source electrode / drain electrode / organic semiconductor active layer (2) Substrate / gate electrode / insulator layer / organic semiconductor active layer / source electrode / drain electrode (3) substrate / organic Semiconductor active layer / source electrode / drain electrode / insulator layer / gate electrode (4) substrate / source electrode / drain electrode / organic semiconductor active layer / insulator layer / gate electrode It can be applied as a pixel driving switching element for an active matrix driving type liquid crystal display or an organic electroluminescence display.
 有機薄膜太陽電池は、ガラスなどの透明基板上にITOなどの陽極、ホール輸送層、光電変換層、電子輸送層、陰極が積層された構造を有する。光電変換層は陽極側にp型半導体層を有し、陰極側にn型半導体層を有している。本発明に係る多環芳香族化合物は、その物性に応じて、ホール輸送層、p型半導体層、n型半導体層、電子輸送層の材料として用いることが可能である。本発明に係る多環芳香族化合物は、有機薄膜太陽電池においてホール輸送材料や電子輸送材料として機能しうる。有機薄膜太陽電池は、上記の他にホールブロック層、電子ブロック層、電子注入層、ホール注入層、平滑化層などを適宜備えていてもよい。有機薄膜太陽電池には、有機薄膜太陽電池に用いられる既知の材料を適宜選択して組み合わせて用いることができる。 Organic thin-film solar cells have a structure in which an anode such as ITO, a hole transport layer, a photoelectric conversion layer, an electron transport layer, and a cathode are laminated on a transparent substrate such as glass. The photoelectric conversion layer has a p-type semiconductor layer on the anode side and an n-type semiconductor layer on the cathode side. The polycyclic aromatic compound according to the present invention can be used as a material for a hole transport layer, a p-type semiconductor layer, an n-type semiconductor layer, and an electron transport layer, depending on its physical properties. The polycyclic aromatic compound according to the present invention can function as a hole transport material or an electron transport material in an organic thin film solar cell. In addition to the above, the organic thin film solar cell may appropriately include a hole block layer, an electron block layer, an electron injection layer, a hole injection layer, a smoothing layer, and the like. For the organic thin film solar cell, known materials used for the organic thin film solar cell can be appropriately selected and used in combination.
 以下、実施例により本発明をさらに具体的に説明していくが、本発明はこれらに限定されるものではない。まず、多環芳香族化合物の合成例について、以下に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. First, the synthesis example of a polycyclic aromatic compound is demonstrated below.
 合成例(1):化合物(1-151)の合成
Figure JPOXMLDOC01-appb-C000200
Synthesis Example (1): Synthesis of Compound (1-151)
Figure JPOXMLDOC01-appb-C000200
 窒素雰囲気下、4-(t-アミル)アニリン(15.0g)をアセトニトリル(150ml)へ溶解させ、そこに氷冷下、臭素(22.5g)を滴下し、0.5時間撹拌した。反応後、反応液に水と酢酸エチルを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-A)を得た(20.0g)。
Figure JPOXMLDOC01-appb-C000201
Under a nitrogen atmosphere, 4- (t-amyl) aniline (15.0 g) was dissolved in acetonitrile (150 ml), and bromine (22.5 g) was added dropwise thereto under ice cooling, followed by stirring for 0.5 hours. After the reaction, water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IA) (20.0 g).
Figure JPOXMLDOC01-appb-C000201
 窒素雰囲気下、塩化銅(10.1g)、中間体(I-A)(20.0g)をアセトニトリル(100ml)へ溶解させ、そこへ、アセトニトリル(50ml)へ溶解させた亜硝酸t-ブチル(9.6g)を60℃にて滴下し、同温にて0.5時間撹拌した。反応後、反応液に希塩酸と酢酸エチルを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン/ヘプタン=1/4(容量比))で精製することで、中間体(I-B)を得た(19.0g)。
Figure JPOXMLDOC01-appb-C000202
Under a nitrogen atmosphere, copper chloride (10.1 g) and intermediate (IA) (20.0 g) were dissolved in acetonitrile (100 ml), and then to t-butyl nitrite (50 ml) dissolved in acetonitrile (50 ml). 9.6 g) was added dropwise at 60 ° C., and the mixture was stirred at the same temperature for 0.5 hour. After the reaction, diluted hydrochloric acid and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified by a silica gel short column (eluent: toluene / heptane = 1/4 (volume ratio)) to obtain intermediate (IB) (19.0 g).
Figure JPOXMLDOC01-appb-C000202
 窒素雰囲気下、中間体(I-B)(10.0g)、ビス(4-t-ブチルフェニル)アミン(18.2g)、パラジウム触媒としてジクロロビス[(ジ-t-ブチル(4-ジメチルアミノフェニル)ホスフィノ)パラジウム(Pd-132、0.21g)、ナトリウム-t-ブトキシド(NaOtBu、7.1g)およびキシレン(100ml)をフラスコに入れ、100℃で1時間加熱した。反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-C)を得た(18.0g)。
Figure JPOXMLDOC01-appb-C000203
Under a nitrogen atmosphere, intermediate (IB) (10.0 g), bis (4-t-butylphenyl) amine (18.2 g), dichlorobis [(di-t-butyl (4-dimethylaminophenyl) as a palladium catalyst ) Phosphino) palladium (Pd-132, 0.21 g), sodium t-butoxide (NaOtBu, 7.1 g) and xylene (100 ml) were placed in a flask and heated at 100 ° C. for 1 hour. After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IC) (18.0 g).
Figure JPOXMLDOC01-appb-C000203
 中間体(I-C)(18.0g)およびt-ブチルベンゼン(500ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.56Mのt-ブチルリチウムペンタン溶液(28.9ml)を加えた。滴下終了後、70℃まで昇温して0.5時間撹拌した後、t-ブチルベンゼンより低沸点の成分を減圧留去した。-50℃まで冷却して三臭化ホウ素(11.3g)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N-ジイソプロピルエチルアミン(5.8g)を加え、発熱が収まるまで室温で撹拌した後、100℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をクロロベンゼンで再結晶させることで、化合物(1-151)を得た(7.1g)。
Figure JPOXMLDOC01-appb-C000204
To a flask containing intermediate (IC) (18.0 g) and t-butylbenzene (500 ml) was added 1.56 M t-butyllithium pentane solution (28.9 ml) at 0 ° C. under a nitrogen atmosphere. added. After completion of the dropwise addition, the temperature was raised to 70 ° C. and stirred for 0.5 hour, and then components having a lower boiling point than t-butylbenzene were distilled off under reduced pressure. After cooling to −50 ° C., boron tribromide (11.3 g) was added, and the mixture was warmed to room temperature and stirred for 0.5 hour. Thereafter, the mixture was cooled again to 0 ° C., N, N-diisopropylethylamine (5.8 g) was added, and the mixture was stirred at room temperature until the exotherm subsided, then heated to 100 ° C. and heated and stirred for 1 hour. The reaction solution was cooled to room temperature, and an aqueous sodium acetate solution cooled in an ice bath and then ethyl acetate were added to separate the layers. The organic layer was concentrated and then purified with a silica gel short column (eluent: toluene). The obtained crude product was recrystallized from chlorobenzene to obtain Compound (1-151) (7.1 g).
Figure JPOXMLDOC01-appb-C000204
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl): δ=0.49(t,3H)、0.92(s,6H)、1.28(q,2H)、1.46(s,18H)、1.47(s,18H)、6.05(s,2H)、6.77(d,2H)、7.28(m,4H)、7.50(m,2H)、7.67(m,4H)、8.97(d,2H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 0.49 (t, 3H), 0.92 (s, 6H), 1.28 (q, 2H), 1.46 (s, 18H), 1.47 (S, 18H), 6.05 (s, 2H), 6.77 (d, 2H), 7.28 (m, 4H), 7.50 (m, 2H), 7.67 (m, 4H) 8.97 (d, 2H).
 合成例(2):化合物(1-147)の合成
Figure JPOXMLDOC01-appb-C000205
Synthesis Example (2): Synthesis of Compound (1-147)
Figure JPOXMLDOC01-appb-C000205
 窒素雰囲気下、2,3-ジクロロアニリン(15.0g)、1-ブロモ-4-t-アミルベンゼン(52.6g)、パラジウム触媒としてPd-132(1.32g)、NaOtBu(22.0g)およびキシレン(150ml)をフラスコに入れ、130℃で4時間加熱した。反応後、反応液に水と酢酸エチルを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン/ヘプタン=1/1(容量比))で精製することで、中間体(I-D)を得た(38.0g)。
Figure JPOXMLDOC01-appb-C000206
Under a nitrogen atmosphere, 2,3-dichloroaniline (15.0 g), 1-bromo-4-t-amylbenzene (52.6 g), Pd-132 (1.32 g) as a palladium catalyst, NaOtBu (22.0 g) And xylene (150 ml) were placed in a flask and heated at 130 ° C. for 4 hours. After the reaction, water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified by a silica gel short column (eluent: toluene / heptane = 1/1 (volume ratio)) to obtain intermediate (ID) (38.0 g).
Figure JPOXMLDOC01-appb-C000206
 窒素雰囲気下、中間体(I-D)(15.0g)、ビス(4-t-ブチルフェニル)アミン(8.4g)、パラジウム触媒としてPd-132(0.21g)、NaOtBu(4.3g)およびキシレン(60ml)をフラスコに入れ、120℃で1時間加熱した。反応後、反応液に水と酢酸エチルを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-E)を得た(15.0g)。
Figure JPOXMLDOC01-appb-C000207
Under a nitrogen atmosphere, intermediate (ID) (15.0 g), bis (4-tert-butylphenyl) amine (8.4 g), Pd-132 (0.21 g) as a palladium catalyst, NaOtBu (4.3 g) ) And xylene (60 ml) were placed in a flask and heated at 120 ° C. for 1 hour. After the reaction, water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IE) (15.0 g).
Figure JPOXMLDOC01-appb-C000207
 中間体(I-E)(15.0g)およびt-ブチルベンゼン(120ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.56Mのt-ブチルリチウムペンタン溶液(27.5ml)を加えた。滴下終了後、70℃まで昇温して0.5時間撹拌した後、t-ブチルベンゼンより低沸点の成分を減圧留去した。-50℃まで冷却して三臭化ホウ素(10.7g)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N-ジイソプロピルエチルアミン(5.5g)を加え、発熱が収まるまで室温で撹拌した後、100℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をヘプタンで再沈殿させることで、化合物(1-147)を得た(6.5g)。
Figure JPOXMLDOC01-appb-C000208
To a flask containing intermediate (IE) (15.0 g) and t-butylbenzene (120 ml) was added 1.56 M t-butyllithium pentane solution (27.5 ml) at 0 ° C. under a nitrogen atmosphere. added. After completion of the dropwise addition, the temperature was raised to 70 ° C. and stirred for 0.5 hour, and then components having a lower boiling point than t-butylbenzene were distilled off under reduced pressure. After cooling to −50 ° C., boron tribromide (10.7 g) was added, and the mixture was warmed to room temperature and stirred for 0.5 hour. Thereafter, the mixture was cooled again to 0 ° C., N, N-diisopropylethylamine (5.5 g) was added, and the mixture was stirred at room temperature until the heat generation stopped, and then heated to 100 ° C. and heated and stirred for 1 hour. The reaction solution was cooled to room temperature, and an aqueous sodium acetate solution cooled in an ice bath and then ethyl acetate were added to separate the layers. The organic layer was concentrated and then purified with a silica gel short column (eluent: toluene). The obtained crude product was reprecipitated with heptane to obtain compound (1-147) (6.5 g).
Figure JPOXMLDOC01-appb-C000208
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl): δ=0.76(t,3H)、0.82(t,3H)、1.41(s,6H)、1.44(s,6H)、1.46(s,9H)、1.47(s,9H)、1.76(q,4H)、6.13(dd,2H)、6.73(d,1H)、6.75(d,1H)、7.28(m,5H)、7.45(dd,1H)、7.52(dd,1H)、7.61(d,2H)、7.67(d,2H)、8.91(d,1H)、8.97(d,1H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 0.76 (t, 3H), 0.82 (t, 3H), 1.41 (s, 6H), 1.44 (s, 6H), 1.46 (S, 9H), 1.47 (s, 9H), 1.76 (q, 4H), 6.13 (dd, 2H), 6.73 (d, 1H), 6.75 (d, 1H) 7.28 (m, 5H), 7.45 (dd, 1H), 7.52 (dd, 1H), 7.61 (d, 2H), 7.67 (d, 2H), 8.91 ( d, 1H), 8.97 (d, 1H).
 合成例(3):化合物(1-142)の合成
Figure JPOXMLDOC01-appb-C000209
Synthesis Example (3): Synthesis of Compound (1-142)
Figure JPOXMLDOC01-appb-C000209
 窒素雰囲気下、中間体(I-D)(15.0g)、ビス(4-t-アミルフェニル)アミン(9.3g)、パラジウム触媒としてPd-132(0.21g)、NaOtBu(4.3g)およびキシレン(60ml)をフラスコに入れ、120℃で1.5時間加熱した。反応後、反応液に水と酢酸エチルを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-F)を得た(14.5g)。
Figure JPOXMLDOC01-appb-C000210
In a nitrogen atmosphere, intermediate (ID) (15.0 g), bis (4-t-amylphenyl) amine (9.3 g), Pd-132 (0.21 g) as a palladium catalyst, NaOtBu (4.3 g) ) And xylene (60 ml) were placed in a flask and heated at 120 ° C. for 1.5 hours. After the reaction, water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain Intermediate (IF) (14.5 g).
Figure JPOXMLDOC01-appb-C000210
 中間体(I-F)(14.5g)およびt-ブチルベンゼン(120ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.56Mのt-ブチルリチウムペンタン溶液(25.6ml)を加えた。滴下終了後、70℃まで昇温して0.5時間撹拌した後、t-ブチルベンゼンより低沸点の成分を減圧留去した。-50℃まで冷却して三臭化ホウ素(10.0g)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N-ジイソプロピルエチルアミン(5.1g)を加え、発熱が収まるまで室温で撹拌した後、100℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をヘプタンで再沈殿させることで、化合物(1-142)を得た(5.7g)。
Figure JPOXMLDOC01-appb-C000211
A flask containing Intermediate (IF) (14.5 g) and t-butylbenzene (120 ml) was charged with 1.56 M t-butyllithium pentane solution (25.6 ml) at 0 ° C. under a nitrogen atmosphere. added. After completion of the dropwise addition, the temperature was raised to 70 ° C. and stirred for 0.5 hour, and then components having a lower boiling point than t-butylbenzene were distilled off under reduced pressure. After cooling to −50 ° C., boron tribromide (10.0 g) was added, and the mixture was warmed to room temperature and stirred for 0.5 hour. Thereafter, the mixture was cooled again to 0 ° C., N, N-diisopropylethylamine (5.1 g) was added, and the mixture was stirred at room temperature until the exotherm subsided, then heated to 100 ° C. and stirred for 1 hour with heating. The reaction solution was cooled to room temperature, and an aqueous sodium acetate solution cooled in an ice bath and then ethyl acetate were added to separate the layers. The organic layer was concentrated and then purified with a silica gel short column (eluent: toluene). The obtained crude product was reprecipitated with heptane to obtain compound (1-142) (5.7 g).
Figure JPOXMLDOC01-appb-C000211
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl): δ=0.76(t,6H)、0.82(t,6H)、1.42(s,12H)、1.44(s,12H)、1.76(m,8H)、6.12(d,2H)、6.73(d,2H)、7.23(t,1H)、7.30(d,4H)、7.44(dd,2H)、7.61(d,4H)、8.89(d,2H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 0.76 (t, 6H), 0.82 (t, 6H), 1.42 (s, 12H), 1.44 (s, 12H), 1.76 (M, 8H), 6.12 (d, 2H), 6.73 (d, 2H), 7.23 (t, 1H), 7.30 (d, 4H), 7.44 (dd, 2H) , 7.61 (d, 4H), 8.89 (d, 2H).
 合成例(4):化合物(1-401)の合成
Figure JPOXMLDOC01-appb-C000212
Synthesis Example (4): Synthesis of Compound (1-401)
Figure JPOXMLDOC01-appb-C000212
 窒素雰囲気下、中間体(I-B)(7.0g)、ビス(4-tertアミルフェニル)アミン(14.0g)、パラジウム触媒としてPd-132(0.15g)、NaOtBu(4.9g)およびキシレン(80ml)をフラスコに入れ、100℃で1時間加熱した。反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-G)を得た(9.8g)。
Figure JPOXMLDOC01-appb-C000213
Under nitrogen atmosphere, intermediate (IB) (7.0 g), bis (4-tertamylphenyl) amine (14.0 g), Pd-132 (0.15 g) as a palladium catalyst, NaOtBu (4.9 g) And xylene (80 ml) were placed in a flask and heated at 100 ° C. for 1 hour. After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain Intermediate (IG) (9.8 g).
Figure JPOXMLDOC01-appb-C000213
 中間体(I-G)(9.8g)およびt-ブチルベンゼン(80ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.56Mのt-ブチルリチウムペンタン溶液(15.8ml)を加えた。滴下終了後、70℃まで昇温して0.5時間撹拌した後、t-ブチルベンゼンより低沸点の成分を減圧留去した。-50℃まで冷却して三臭化ホウ素(6.2g)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N-ジイソプロピルエチルアミン(3.2g)を加え、発熱が収まるまで室温で撹拌した後、100℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をヘプタンで再沈殿させることで、化合物(1-401)を得た(4.9g)。
Figure JPOXMLDOC01-appb-C000214
A flask containing Intermediate (IG) (9.8 g) and t-butylbenzene (80 ml) was charged with 1.56 M t-butyllithium pentane solution (15.8 ml) at 0 ° C. under a nitrogen atmosphere. added. After completion of the dropwise addition, the temperature was raised to 70 ° C. and stirred for 0.5 hour, and then components having a lower boiling point than t-butylbenzene were distilled off under reduced pressure. After cooling to −50 ° C., boron tribromide (6.2 g) was added, and the mixture was warmed to room temperature and stirred for 0.5 hour. Thereafter, the mixture was cooled again to 0 ° C., N, N-diisopropylethylamine (3.2 g) was added, and the mixture was stirred at room temperature until the exotherm subsided, and then heated to 100 ° C. and heated and stirred for 1 hour. The reaction solution was cooled to room temperature, and an aqueous sodium acetate solution cooled in an ice bath and then ethyl acetate were added to separate the layers. The organic layer was concentrated and then purified with a silica gel short column (eluent: toluene). The obtained crude product was reprecipitated with heptane to obtain compound (1-401) (4.9 g).
Figure JPOXMLDOC01-appb-C000214
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl): δ=0.48(t,3H)、0.75(m,12H)、0.90(s,6H)、1.27(q,2H)、1.42(s,12H)、1.44(s,12H)、1.76(m,8H)、6.03(s,2H)、6.80(d,2H)、7.29(d,4H)、7.43(dd,2H)、7.61(d,4H)、8.88(d,2H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 0.48 (t, 3H), 0.75 (m, 12H), 0.90 (s, 6H), 1.27 (q, 2H), 1.42 (S, 12H), 1.44 (s, 12H), 1.76 (m, 8H), 6.03 (s, 2H), 6.80 (d, 2H), 7.29 (d, 4H) 7.43 (dd, 2H), 7.61 (d, 4H), 8.88 (d, 2H).
 合成例(5):化合物(1-171)の合成
Figure JPOXMLDOC01-appb-C000215
Synthesis Example (5): Synthesis of Compound (1-171)
Figure JPOXMLDOC01-appb-C000215
 窒素雰囲気下、3,4,5-トリクロロアニリン(15.0g)、ヨードベンゼン(46.7g)、パラジウム触媒としてPd-132(0.54g)、NaOtBu(18.3g)およびキシレン(150ml)をフラスコに入れ、120℃で2時間加熱した。反応後、反応液に水と酢酸エチルを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-H)を得た(49.7g)。
Figure JPOXMLDOC01-appb-C000216
Under a nitrogen atmosphere, 3,4,5-trichloroaniline (15.0 g), iodobenzene (46.7 g), Pd-132 (0.54 g), NaOtBu (18.3 g) and xylene (150 ml) as a palladium catalyst. Placed in flask and heated at 120 ° C. for 2 hours. After the reaction, water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IH) (49.7 g).
Figure JPOXMLDOC01-appb-C000216
 窒素雰囲気下、中間体(I-H)(10.0g)、ビス(4-tertアミルフェニル)アミン(19.5g)、パラジウム触媒としてビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)、0.33g)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(Sphos、0.59g)、NaOtBu(6.9g)およびキシレン(80ml)をフラスコに入れ、100℃で1時間加熱した。反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-I)を得た(16.0g)。
Figure JPOXMLDOC01-appb-C000217
Under a nitrogen atmosphere, intermediate (IH) (10.0 g), bis (4-tertamylphenyl) amine (19.5 g), bis (dibenzylideneacetone) palladium (0) (Pd (dba)) as a palladium catalyst 2 , 0.33 g), 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl (Sphos, 0.59 g), NaOtBu (6.9 g) and xylene (80 ml) were placed in a flask and stirred at 100 ° C. for 1 hour. Heated. After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (II) (16.0 g).
Figure JPOXMLDOC01-appb-C000217
 中間体(I-I)(16.0g)およびt-ブチルベンゼン(100ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.56Mのt-ブチルリチウムペンタン溶液(22.1ml)を加えた。滴下終了後、70℃まで昇温して0.5時間撹拌した後、t-ブチルベンゼンより低沸点の成分を減圧留去した。-50℃まで冷却して三臭化ホウ素(9.0g)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N-ジイソプロピルエチルアミン(4.6g)を加え、発熱が収まるまで室温で撹拌した後、100℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をヘプタンで再沈殿させることで、化合物(1-171)を得た(8.5g)。
Figure JPOXMLDOC01-appb-C000218
A flask containing Intermediate (II) (16.0 g) and t-butylbenzene (100 ml) was charged with 1.56 M t-butyllithium pentane solution (22.1 ml) at 0 ° C. under a nitrogen atmosphere. added. After completion of the dropwise addition, the temperature was raised to 70 ° C. and stirred for 0.5 hour, and then components having a lower boiling point than t-butylbenzene were distilled off under reduced pressure. After cooling to −50 ° C., boron tribromide (9.0 g) was added, and the mixture was warmed to room temperature and stirred for 0.5 hour. Thereafter, the mixture was again cooled to 0 ° C., N, N-diisopropylethylamine (4.6 g) was added, and the mixture was stirred at room temperature until the exotherm subsided. The reaction solution was cooled to room temperature, and an aqueous sodium acetate solution cooled in an ice bath and then ethyl acetate were added to separate the layers. The organic layer was concentrated and then purified with a silica gel short column (eluent: toluene). The obtained crude product was reprecipitated with heptane to obtain compound (1-171) (8.5 g).
Figure JPOXMLDOC01-appb-C000218
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl): δ=0.62(t,6H)、0.75(t,6H)、1.29(s,12H)、1.43(s,12H)、1.62(q,4H)、1.75(q,4H)、5.63(s,2H)、6.70(d,2H)、6.86(m,2H)、6.92(d,4H)、7.05(m,4H)、7.14(d,4H)、7.38(m,6H)、8.85(d,2H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 0.62 (t, 6H), 0.75 (t, 6H), 1.29 (s, 12H), 1.43 (s, 12H), 1.62 (Q, 4H), 1.75 (q, 4H), 5.63 (s, 2H), 6.70 (d, 2H), 6.86 (m, 2H), 6.92 (d, 4H) 7.05 (m, 4H), 7.14 (d, 4H), 7.38 (m, 6H), 8.85 (d, 2H).
 合成例(6):化合物(1-141)の合成
Figure JPOXMLDOC01-appb-C000219
Synthesis Example (6): Synthesis of Compound (1-141)
Figure JPOXMLDOC01-appb-C000219
 窒素雰囲気下、1,3-ジブロモ-5-t-ブチル-2-クロロベンゼン(10.0g)、ビス(4-tertアミルフェニル)アミン(20.9g)、パラジウム触媒としてPd-132(0.22g)、NaOtBu(7.4g)およびキシレン(100ml)をフラスコに入れ、100℃で1時間加熱した。反応後、反応液に水と酢酸エチルを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-J)を得た(20.0g)。
Figure JPOXMLDOC01-appb-C000220
Under a nitrogen atmosphere, 1,3-dibromo-5-tert-butyl-2-chlorobenzene (10.0 g), bis (4-tertamylphenyl) amine (20.9 g), Pd-132 (0.22 g) as a palladium catalyst ), NaOtBu (7.4 g) and xylene (100 ml) were placed in a flask and heated at 100 ° C. for 1 hour. After the reaction, water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IJ) (20.0 g).
Figure JPOXMLDOC01-appb-C000220
 中間体(I-J)(20.0g)およびt-ブチルベンゼン(100ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.56Mのt-ブチルリチウムペンタン溶液(32.7ml)を加えた。滴下終了後、70℃まで昇温して0.5時間撹拌した後、t-ブチルベンゼンより低沸点の成分を減圧留去した。-50℃まで冷却して三臭化ホウ素(12.8g)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N-ジイソプロピルエチルアミン(6.6g)を加え、発熱が収まるまで室温で撹拌した後、100℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をヘプタンで再沈殿させることで、化合物(1-141)を得た(9.1g)。
Figure JPOXMLDOC01-appb-C000221
A flask containing Intermediate (IJ) (20.0 g) and t-butylbenzene (100 ml) was charged with 1.56 M t-butyllithium pentane solution (32.7 ml) at 0 ° C. under a nitrogen atmosphere. added. After completion of the dropwise addition, the temperature was raised to 70 ° C. and stirred for 0.5 hour, and then components having a lower boiling point than t-butylbenzene were distilled off under reduced pressure. After cooling to −50 ° C., boron tribromide (12.8 g) was added, and the mixture was warmed to room temperature and stirred for 0.5 hour. Thereafter, the mixture was again cooled to 0 ° C., N, N-diisopropylethylamine (6.6 g) was added, and the mixture was stirred at room temperature until the exotherm subsided, then heated to 100 ° C. and stirred for 1 hour with heating. The reaction solution was cooled to room temperature, and an aqueous sodium acetate solution cooled in an ice bath and then ethyl acetate were added to separate the layers. The organic layer was concentrated and then purified with a silica gel short column (eluent: toluene). The obtained crude product was reprecipitated with heptane to obtain compound (1-141) (9.1 g).
Figure JPOXMLDOC01-appb-C000221
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl): δ=0.75(m,12H)、0.96(s,9H)、1.42(s,12H)、1.44(s,12H)、1.75(m,8H)、6.08(s,2H)、6.78(d,2H)、7.29(d,4H)、7.43(dd,2H)、7.61(d,4H)、8.88(d,2H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 0.75 (m, 12H), 0.96 (s, 9H), 1.42 (s, 12H), 1.44 (s, 12H), 1.75 (M, 8H), 6.08 (s, 2H), 6.78 (d, 2H), 7.29 (d, 4H), 7.43 (dd, 2H), 7.61 (d, 4H) , 8.88 (d, 2H).
 合成例(7):化合物(1-406)の合成
Figure JPOXMLDOC01-appb-C000222
Synthesis Example (7): Synthesis of Compound (1-406)
Figure JPOXMLDOC01-appb-C000222
 窒素雰囲気下、中間体(I-K)(15.0g)、ビス(4-t-アミルフェニル)アミン(8.0g)、パラジウム触媒としてPd-132(0.19g)、NaOtBu(3.9g)およびキシレン(60ml)をフラスコに入れ、120℃で1時間加熱した。反応後、反応液に水と酢酸エチルを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-L)を得た(15.2g)。
Figure JPOXMLDOC01-appb-C000223
Under a nitrogen atmosphere, intermediate (IK) (15.0 g), bis (4-t-amylphenyl) amine (8.0 g), Pd-132 (0.19 g) as a palladium catalyst, NaOtBu (3.9 g) ) And xylene (60 ml) were placed in a flask and heated at 120 ° C. for 1 hour. After the reaction, water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IL) (15.2 g).
Figure JPOXMLDOC01-appb-C000223
 中間体(I-L)(15.0g)およびt-ブチルベンゼン(120ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.56Mのt-ブチルリチウムペンタン溶液(27.0ml)を加えた。滴下終了後、70℃まで昇温して0.5時間撹拌した後、t-ブチルベンゼンより低沸点の成分を減圧留去した。-50℃まで冷却して三臭化ホウ素(10.5g)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N-ジイソプロピルエチルアミン(5.4g)を加え、発熱が収まるまで室温で撹拌した後、100℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をヘプタンで再沈殿させることで、化合物(1-406)を得た(6.9g)。
Figure JPOXMLDOC01-appb-C000224
A flask containing Intermediate (IL) (15.0 g) and t-butylbenzene (120 ml) was charged with 1.56 M t-butyllithium pentane solution (27.0 ml) at 0 ° C. under a nitrogen atmosphere. added. After completion of the dropwise addition, the temperature was raised to 70 ° C. and stirred for 0.5 hour, and then components having a lower boiling point than t-butylbenzene were distilled off under reduced pressure. After cooling to −50 ° C., boron tribromide (10.5 g) was added, and the mixture was warmed to room temperature and stirred for 0.5 hour. Thereafter, the mixture was cooled again to 0 ° C., N, N-diisopropylethylamine (5.4 g) was added, and the mixture was stirred at room temperature until the exotherm subsided, then heated to 100 ° C. and heated and stirred for 1 hour. The reaction solution was cooled to room temperature, and an aqueous sodium acetate solution cooled in an ice bath and then ethyl acetate were added to separate the layers. The organic layer was concentrated and then purified with a silica gel short column (eluent: toluene). The obtained crude product was reprecipitated with heptane to obtain compound (1-406) (6.9 g).
Figure JPOXMLDOC01-appb-C000224
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl): δ=0.75(t,3H)、0.81(t,3H)、1.43(s,12H)、1.47(s,18H)、1.76(quin,4H)、2.16(s,3H)、5.95(d,2H)、6.68(d,2H)、7.28(m,4H)、7.42(dd,1H)、7.49(dd,1H)、7.61(d,2H)、7.67(d,2H)、8.89(d,1H)、8.95(d,1H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 0.75 (t, 3H), 0.81 (t, 3H), 1.43 (s, 12H), 1.47 (s, 18H), 1.76 (Quin, 4H), 2.16 (s, 3H), 5.95 (d, 2H), 6.68 (d, 2H), 7.28 (m, 4H), 7.42 (dd, 1H) 7.49 (dd, 1H), 7.61 (d, 2H), 7.67 (d, 2H), 8.89 (d, 1H), 8.95 (d, 1H).
 合成例(8):化合物(1-146)の合成
Figure JPOXMLDOC01-appb-C000225
Synthesis Example (8): Synthesis of Compound (1-146)
Figure JPOXMLDOC01-appb-C000225
 窒素雰囲気下、2,3-ジクロロ-5-メチルアニリン(7.0g)、1-ブロモ-4-t-アミルベンゼン(19.9g)、パラジウム触媒としてPd-132(0.28g)、NaOtBu(9.6g)およびキシレン(70ml)をフラスコに入れ、120℃で3時間加熱した。反応後、反応液に水と酢酸エチルを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-M)を得た(12.0g)。
Figure JPOXMLDOC01-appb-C000226
Under a nitrogen atmosphere, 2,3-dichloro-5-methylaniline (7.0 g), 1-bromo-4-t-amylbenzene (19.9 g), Pd-132 (0.28 g) as a palladium catalyst, NaOtBu ( 9.6 g) and xylene (70 ml) were placed in a flask and heated at 120 ° C. for 3 hours. After the reaction, water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IM) (12.0 g).
Figure JPOXMLDOC01-appb-C000226
 窒素雰囲気下、中間体(I-M)(11.0g)、ビス(4-t-アミルフェニル)アミン(6.1g)、パラジウム触媒としてPd-132(0.17g)、NaOtBu(3.4g)およびキシレン(50ml)をフラスコに入れ、120℃で1時間加熱した。反応後、反応液に水と酢酸エチルを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-N)を得た(12.5g)。
Figure JPOXMLDOC01-appb-C000227
In a nitrogen atmosphere, intermediate (IM) (11.0 g), bis (4-t-amylphenyl) amine (6.1 g), Pd-132 (0.17 g) as a palladium catalyst, NaOtBu (3.4 g) ) And xylene (50 ml) were placed in a flask and heated at 120 ° C. for 1 hour. After the reaction, water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain Intermediate (IN) (12.5 g).
Figure JPOXMLDOC01-appb-C000227
 中間体(I-N)(12.5g)およびt-ブチルベンゼン(100ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.56Mのt-ブチルリチウムペンタン溶液(21.6ml)を加えた。滴下終了後、70℃まで昇温して0.5時間撹拌した後、t-ブチルベンゼンより低沸点の成分を減圧留去した。-50℃まで冷却して三臭化ホウ素(8.4g)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N-ジイソプロピルエチルアミン(4.4g)を加え、発熱が収まるまで室温で撹拌した後、100℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をヘプタンで再沈殿させることで、化合物(1-146)を得た(6.9g)。
Figure JPOXMLDOC01-appb-C000228
To a flask containing intermediate (IN) (12.5 g) and t-butylbenzene (100 ml) was added 1.56 M t-butyllithium pentane solution (21.6 ml) at 0 ° C. under a nitrogen atmosphere. added. After completion of the dropwise addition, the temperature was raised to 70 ° C. and stirred for 0.5 hour, and then components having a lower boiling point than t-butylbenzene were distilled off under reduced pressure. After cooling to −50 ° C., boron tribromide (8.4 g) was added, and the mixture was warmed to room temperature and stirred for 0.5 hour. Thereafter, the mixture was cooled again to 0 ° C., N, N-diisopropylethylamine (4.4 g) was added, and the mixture was stirred at room temperature until the heat generation stopped, and then heated to 100 ° C. and heated and stirred for 1 hour. The reaction solution was cooled to room temperature, and an aqueous sodium acetate solution cooled in an ice bath and then ethyl acetate were added to separate the layers. The organic layer was concentrated and then purified with a silica gel short column (eluent: toluene). The obtained crude product was reprecipitated with heptane to obtain Compound (1-146) (6.9 g).
Figure JPOXMLDOC01-appb-C000228
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl): δ=0.75(t,6H)、0.81(t,6H)、1.42(s,12H)、1.43(s,12H)、1.76(quin,8H)、2.15(s,3H)、5.93(s,2H)、6.68(d,2H)、7.28(m,4H)、7.42(dd,2H)、7.61(d,4H)、8.88(d,2H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 0.75 (t, 6H), 0.81 (t, 6H), 1.42 (s, 12H), 1.43 (s, 12H), 1.76 (Quin, 8H), 2.15 (s, 3H), 5.93 (s, 2H), 6.68 (d, 2H), 7.28 (m, 4H), 7.42 (dd, 2H) 7.61 (d, 4H), 8.88 (d, 2H).
 合成例(9):化合物(1-403)の合成
Figure JPOXMLDOC01-appb-C000229
Synthesis Example (9): Synthesis of Compound (1-403)
Figure JPOXMLDOC01-appb-C000229
 窒素雰囲気下、中間体(I-K)(8.0g)、ビス(4-t-オクチルフェニル)アミン(6.5g)、パラジウム触媒としてPd-132(0.13g)、NaOtBu(2.6g)およびキシレン(40ml)をフラスコに入れ、120℃で1時間加熱した。反応後、反応液に水と酢酸エチルを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-O)を得た(11.5g)。
Figure JPOXMLDOC01-appb-C000230
Under a nitrogen atmosphere, intermediate (IK) (8.0 g), bis (4-t-octylphenyl) amine (6.5 g), Pd-132 (0.13 g) as a palladium catalyst, NaOtBu (2.6 g) ) And xylene (40 ml) were placed in a flask and heated at 120 ° C. for 1 hour. After the reaction, water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IO) (11.5 g).
Figure JPOXMLDOC01-appb-C000230
 中間体(I-O)(11.5g)およびt-ブチルベンゼン(90ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.56Mのt-ブチルリチウムペンタン溶液(18.5ml)を加えた。滴下終了後、70℃まで昇温して0.5時間撹拌した後、t-ブチルベンゼンより低沸点の成分を減圧留去した。-50℃まで冷却して三臭化ホウ素(7.2g)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N-ジイソプロピルエチルアミン(3.7g)を加え、発熱が収まるまで室温で撹拌した後、100℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をヘプタンで再沈殿させることで、化合物(1-403)を得た(4.6g)。
Figure JPOXMLDOC01-appb-C000231
To a flask containing intermediate (IO) (11.5 g) and t-butylbenzene (90 ml) was added 1.56 M t-butyllithium pentane solution (18.5 ml) at 0 ° C. under a nitrogen atmosphere. added. After completion of the dropwise addition, the temperature was raised to 70 ° C. and stirred for 0.5 hour, and then components having a lower boiling point than t-butylbenzene were distilled off under reduced pressure. After cooling to −50 ° C., boron tribromide (7.2 g) was added, and the mixture was warmed to room temperature and stirred for 0.5 hour. Thereafter, the mixture was cooled again to 0 ° C., N, N-diisopropylethylamine (3.7 g) was added, and the mixture was stirred at room temperature until the exotherm subsided. The reaction solution was cooled to room temperature, and an aqueous sodium acetate solution cooled in an ice bath and then ethyl acetate were added to separate the layers. The organic layer was concentrated and then purified with a silica gel short column (eluent: toluene). The obtained crude product was reprecipitated with heptane to obtain compound (1-403) (4.6 g).
Figure JPOXMLDOC01-appb-C000231
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl): δ=0.74(s,9H)、0.84(s,9H)、1.46(s,9H)、1.47(s,9H)、1.51(s,6H)、1.54(s,6H)、1.82(s,2H)、1.86(s,2H)、2.12(s,3H)、5.94(d,2H)、6.68(d,1H)、6.74(d,1H)、7.28(m,4H)、7.45(dd,1H)、7.49(dd,1H)、7.68(m,4H)、8.93(d,1H)、8.97(d,1H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 0.74 (s, 9H), 0.84 (s, 9H), 1.46 (s, 9H), 1.47 (s, 9H), 1.51 (S, 6H), 1.54 (s, 6H), 1.82 (s, 2H), 1.86 (s, 2H), 2.12 (s, 3H), 5.94 (d, 2H) 6.68 (d, 1H), 6.74 (d, 1H), 7.28 (m, 4H), 7.45 (dd, 1H), 7.49 (dd, 1H), 7.68 ( m, 4H), 8.93 (d, 1H), 8.97 (d, 1H).
 合成例(10):化合物(1-502)の合成
Figure JPOXMLDOC01-appb-C000232
Synthesis Example (10): Synthesis of Compound (1-502)
Figure JPOXMLDOC01-appb-C000232
 窒素雰囲気下、4-(t-アミル)フェノール(24.3g)、2-ブロモ-5-クロロ-1,3-ジフルオロベンゼン(16.0g)、炭酸カリウム(29.2g)およびN-メチル-2-ピロリドン(NMP、80ml)をフラスコに入れ、180℃で4時間加熱した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いでトルエンを加えて分液した。反応後、反応液に水とヘプタンを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン/ヘプタン=1/2(容量比))で精製することで、中間体(I-P)を得た(27g)。
Figure JPOXMLDOC01-appb-C000233
Under a nitrogen atmosphere, 4- (t-amyl) phenol (24.3 g), 2-bromo-5-chloro-1,3-difluorobenzene (16.0 g), potassium carbonate (29.2 g) and N-methyl- 2-Pyrrolidone (NMP, 80 ml) was placed in a flask and heated at 180 ° C. for 4 hours. The reaction solution was cooled to room temperature, and an aqueous sodium acetate solution cooled in an ice bath and then toluene were added to separate the layers. After the reaction, water and heptane were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified by a silica gel short column (eluent: toluene / heptane = 1/2 (volume ratio)) to obtain an intermediate (IP) (27 g).
Figure JPOXMLDOC01-appb-C000233
 窒素雰囲気下、1.3Mイソプロピルマグネシウムクロリド-塩化リチウム錯体溶液(33ml)およびテトラヒドロフラン(THF、50ml)の入ったフラスコに、0℃で、中間体(I-P)(17.5g)のテトラヒドロフラン溶液(70ml)を加えた。滴下終了後、室温まで昇温して2時間撹拌した。0℃まで冷却して2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(8.8g)のテトラヒドロフラン溶液(15ml)を加え、室温まで昇温して2時間撹拌した。反応液にトルエンと飽和塩化アンモニウム水溶液を加え攪拌した後、有機層を分離して水洗した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-Q)を得た(17.1g)。
Figure JPOXMLDOC01-appb-C000234
Under nitrogen atmosphere, in a flask containing 1.3 M isopropylmagnesium chloride-lithium chloride complex solution (33 ml) and tetrahydrofuran (THF, 50 ml) at 0 ° C., a solution of intermediate (IP) (17.5 g) in tetrahydrofuran (70 ml) was added. After completion of dropping, the temperature was raised to room temperature and stirred for 2 hours. After cooling to 0 ° C., a solution of 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (8.8 g) in tetrahydrofuran (15 ml) was added, and the temperature was raised to room temperature. Stir for hours. Toluene and saturated aqueous ammonium chloride solution were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. The organic layer was concentrated and purified by a silica gel short column (eluent: toluene) to obtain Intermediate (IQ) (17.1 g).
Figure JPOXMLDOC01-appb-C000234
 窒素雰囲気下、三臭化ほう素(25g)およびトルエン(25ml)の入ったフラスコにN,N-ジイソプロピルエチルアミン(3.9g)を加えた。その後、中間体(I-Q)(5.6g)のトルエン溶液(35ml)を加え、加熱還流下で6時間撹拌した。反応後、反応液に水とヘプタンを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。得られた粗生成物をヘプタンで再沈殿させることで、中間体(I-R)を得た(3.0g)。
Figure JPOXMLDOC01-appb-C000235
Under a nitrogen atmosphere, N, N-diisopropylethylamine (3.9 g) was added to a flask containing boron tribromide (25 g) and toluene (25 ml). Thereafter, a toluene solution (35 ml) of intermediate (IQ) (5.6 g) was added, and the mixture was stirred for 6 hours with heating under reflux. After the reaction, water and heptane were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The obtained crude product was reprecipitated with heptane to obtain intermediate (IR) (3.0 g).
Figure JPOXMLDOC01-appb-C000235
 窒素雰囲気下、中間体(I-R)(11.0g)、9,10-ジヒドロ-9,9-ジメチルアクリジン(1.0g)、トリ-t-ブチルホスホニウムテトラフルオロボラート([(t-Bu)PH]BF、0.1g)、パラジウム触媒としてPd(dba)(0.05g)、NaOtBu(0.65g)およびトルエン(40ml)をフラスコに入れ、加熱還流下で2時間加熱した。反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン/ヘプタン=1/1(容量比))で精製した。得られた粗生成物をヘプタンで再沈殿させることで、化合物(1-502)を得た(2.2g)。
Figure JPOXMLDOC01-appb-C000236
Under a nitrogen atmosphere, intermediate (IR) (11.0 g), 9,10-dihydro-9,9-dimethylacridine (1.0 g), tri-t-butylphosphonium tetrafluoroborate ([(t- Bu) 3 PH] BF 4 , 0.1 g), Pd (dba) 2 (0.05 g), NaOtBu (0.65 g) and toluene (40 ml) as a palladium catalyst were placed in a flask and heated at reflux for 2 hours. did. After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene / heptane = 1/1 (volume ratio)). The obtained crude product was reprecipitated with heptane to obtain compound (1-502) (2.2 g).
Figure JPOXMLDOC01-appb-C000236
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl): δ=0.79(t,6H)、1.48(s,12H)、1.72(s,6H)、1.80(quin,4H)、6.49(d,2H)、6.94-7.01(m,4H)、7.22(s,2H)、7.48-7.50(m,4H)、7.73(dd,2H)、8.71(d,2H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 0.79 (t, 6H), 1.48 (s, 12H), 1.72 (s, 6H), 1.80 (quin, 4H), 6.49 (D, 2H), 6.94-7.01 (m, 4H), 7.22 (s, 2H), 7.48-7.50 (m, 4H), 7.73 (dd, 2H), 8.71 (d, 2H).
 合成例(11):化合物(1-163)の合成
Figure JPOXMLDOC01-appb-C000237
Synthesis Example (11): Synthesis of Compound (1-163)
Figure JPOXMLDOC01-appb-C000237
 窒素雰囲気下、3,4,5-トリクロロアニリン(20.0g)、1-ブロモ-4-t-アミルベンゼン(48.6g)、パラジウム触媒としてPd-132(2.88g)、NaOtBu(24.5g)およびキシレン(200ml)をフラスコに入れ、120℃で2時間加熱した。反応後、反応液に水と酢酸エチルを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-S)を得た(49.7g)。
Figure JPOXMLDOC01-appb-C000238
Under a nitrogen atmosphere, 3,4,5-trichloroaniline (20.0 g), 1-bromo-4-t-amylbenzene (48.6 g), Pd-132 (2.88 g) as a palladium catalyst, NaOtBu (24. 5 g) and xylene (200 ml) were placed in a flask and heated at 120 ° C. for 2 hours. After the reaction, water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain Intermediate (IS) (49.7 g).
Figure JPOXMLDOC01-appb-C000238
 窒素雰囲気下、中間体(I-S)(22.4g)、ビス(4-tertアミルフェニル)アミン(28.4g)、[(t-Bu)PH]BF(0.53g)、パラジウム触媒としてPd(dba)(0.84g)、NaOtBu(11.0g)およびキシレン(225ml)をフラスコに入れ、100℃で1時間加熱した。反応後、反応液に水とトルエンを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-T)を得た(31.2g)。
Figure JPOXMLDOC01-appb-C000239
Under a nitrogen atmosphere, intermediate (IS) (22.4 g), bis (4-tertamylphenyl) amine (28.4 g), [(t-Bu) 3 PH] BF 4 (0.53 g), palladium Pd (dba) 2 (0.84 g), NaOtBu (11.0 g) and xylene (225 ml) were placed in a flask as a catalyst and heated at 100 ° C. for 1 hour. After the reaction, water and toluene were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IT) (31.2 g).
Figure JPOXMLDOC01-appb-C000239
 中間体(I-T)(22.0g)およびt-ブチルベンゼン(100ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.56Mのt-ブチルリチウムペンタン溶液(25.0ml)を加えた。滴下終了後、70℃まで昇温して0.5時間撹拌した後、t-ブチルベンゼンより低沸点の成分を減圧留去した。-50℃まで冷却して三臭化ホウ素(10.1g)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N-ジイソプロピルエチルアミン(5.2g)を加え、発熱が収まるまで室温で撹拌した後、100℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗成生物をヘプタンで再沈殿させることで、化合物(1-163)を得た(8.5g)。
Figure JPOXMLDOC01-appb-C000240
To a flask containing intermediate (IT) (22.0 g) and t-butylbenzene (100 ml) was added 1.56 M t-butyllithium pentane solution (25.0 ml) at 0 ° C. under a nitrogen atmosphere. added. After completion of the dropwise addition, the temperature was raised to 70 ° C. and stirred for 0.5 hour, and then components having a lower boiling point than t-butylbenzene were distilled off under reduced pressure. After cooling to −50 ° C., boron tribromide (10.1 g) was added, and the mixture was warmed to room temperature and stirred for 0.5 hour. Thereafter, the mixture was cooled again to 0 ° C., N, N-diisopropylethylamine (5.2 g) was added, and the mixture was stirred at room temperature until the exotherm subsided, then heated to 100 ° C. and stirred with heating for 1 hour. The reaction solution was cooled to room temperature, and an aqueous sodium acetate solution cooled in an ice bath and then ethyl acetate were added to separate the layers. The organic layer was concentrated and then purified with a silica gel short column (eluent: toluene). The obtained crude product was reprecipitated with heptane to obtain compound (1-163) (8.5 g).
Figure JPOXMLDOC01-appb-C000240
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl): δ=0.63(t,6H)、0.69(t,6H)、0.74(t,6H)、1.22(s,12H)、1.28(s,12H)、1.43(s,12H)、1.56(q,4H)、1.62(q,4H)、1.74(q,4H)、5.84(br,2H)、6.63(d,2H)、6.79(d,4H)、6.99(d,4H)、7.14(d,4H)、7.37(m,6H)、8.83(d,2H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 0.63 (t, 6H), 0.69 (t, 6H), 0.74 (t, 6H), 1.22 (s, 12H), 1.28 (S, 12H), 1.43 (s, 12H), 1.56 (q, 4H), 1.62 (q, 4H), 1.74 (q, 4H), 5.84 (br, 2H) , 6.63 (d, 2H), 6.79 (d, 4H), 6.99 (d, 4H), 7.14 (d, 4H), 7.37 (m, 6H), 8.83 ( d, 2H).
 合成例(12):化合物(1-412)の合成
Figure JPOXMLDOC01-appb-C000241
Synthesis Example (12): Synthesis of Compound (1-412)
Figure JPOXMLDOC01-appb-C000241
 窒素雰囲気下、中間体(I-U)(8.0g)、ビス(4-t-オクチルフェニル)アミン(7.0g)、パラジウム触媒としてPd-132(0.13g)、NaOtBu(2.6g)およびキシレン(40ml)をフラスコに入れ、120℃で1時間加熱した。反応後、反応液に水と酢酸エチルを加え攪拌した後、有機層を分離して水洗した。その後、有機層を濃縮して粗生成物を得た。粗生成物をシリカゲルショートカラム(溶離液:トルエン)で精製することで、中間体(I-V)を得た(10.5g)。
Figure JPOXMLDOC01-appb-C000242
Under a nitrogen atmosphere, intermediate (IU) (8.0 g), bis (4-t-octylphenyl) amine (7.0 g), Pd-132 (0.13 g) as a palladium catalyst, NaOtBu (2.6 g) ) And xylene (40 ml) were placed in a flask and heated at 120 ° C. for 1 hour. After the reaction, water and ethyl acetate were added to the reaction solution and stirred, and then the organic layer was separated and washed with water. Thereafter, the organic layer was concentrated to obtain a crude product. The crude product was purified with a silica gel short column (eluent: toluene) to obtain intermediate (IV) (10.5 g).
Figure JPOXMLDOC01-appb-C000242
 中間体(I-V)(10.5g)およびt-ブチルベンゼン(80ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.56Mのt-ブチルリチウムペンタン溶液(17.5ml)を加えた。滴下終了後、70℃まで昇温して0.5時間撹拌した後、t-ブチルベンゼンより低沸点の成分を減圧留去した。-50℃まで冷却して三臭化ホウ素(6.7g)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N-ジイソプロピルエチルアミン(3.5g)を加え、発熱が収まるまで室温で撹拌した後、100℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。有機層を濃縮後に、シリカゲルショートカラム(溶離液:トルエン)で精製した。得られた粗生成物をヘプタンで再沈殿させることで、化合物(1-412)を得た(4.2g)。
Figure JPOXMLDOC01-appb-C000243
A flask containing Intermediate (IV) (10.5 g) and t-butylbenzene (80 ml) was charged with 1.56 M t-butyllithium pentane solution (17.5 ml) at 0 ° C. under a nitrogen atmosphere. added. After completion of the dropwise addition, the temperature was raised to 70 ° C. and stirred for 0.5 hour, and then components having a lower boiling point than t-butylbenzene were distilled off under reduced pressure. After cooling to −50 ° C., boron tribromide (6.7 g) was added, and the mixture was warmed to room temperature and stirred for 0.5 hour. Thereafter, the mixture was cooled again to 0 ° C., N, N-diisopropylethylamine (3.5 g) was added, and the mixture was stirred at room temperature until the exotherm subsided, and then heated to 100 ° C. and heated and stirred for 1 hour. The reaction solution was cooled to room temperature, and an aqueous sodium acetate solution cooled in an ice bath and then ethyl acetate were added to separate the layers. The organic layer was concentrated and then purified with a silica gel short column (eluent: toluene). The obtained crude product was reprecipitated with heptane to obtain Compound (1-412) (4.2 g).
Figure JPOXMLDOC01-appb-C000243
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl): δ=0.75(s,9H)、0.86(s,9H)、1.45(s,9H)、1.48(s,9H)、1.50(s,6H)、1.54(s,6H)、1.83(s,2H)、1.87(s,2H)、6.13(t,2H)、6.72(d,1H)、6.74(d,1H)、7.22(t,1H)、7.28(m,4H)、7.45(dd,1H)、7.52(dd,1H)、7.68(m,4H)、8.94(d,1H)、8.98(d,1H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 0.75 (s, 9H), 0.86 (s, 9H), 1.45 (s, 9H), 1.48 (s, 9H), 1.50 (S, 6H), 1.54 (s, 6H), 1.83 (s, 2H), 1.87 (s, 2H), 6.13 (t, 2H), 6.72 (d, 1H) 6.74 (d, 1H), 7.22 (t, 1H), 7.28 (m, 4H), 7.45 (dd, 1H), 7.52 (dd, 1H), 7.68 ( m, 4H), 8.94 (d, 1H), 8.98 (d, 1H).
 原料の化合物を適宜変更することにより、上述した合成例に準じた方法で、本発明の他の多環芳香族化合物を合成することができる。 Other polycyclic aromatic compounds of the present invention can be synthesized by a method according to the synthesis example described above by appropriately changing the raw material compound.
 次に、本発明をさらに詳細に説明するために、本発明の化合物を用いた有機EL素子の実施例を示すが、本発明はこれらに限定されない。 Next, in order to describe the present invention in more detail, examples of the organic EL device using the compound of the present invention will be shown, but the present invention is not limited thereto.
<有機EL素子の評価>
 実施例1-1~実施例1-8に係る有機EL素子を作製し、1000cd/m発光時の特性である電圧(V)、発光波長(nm)、外部量子効率(%)を測定した。
<Evaluation of organic EL element>
The organic EL elements according to Examples 1-1 to 1-8 were manufactured, and the voltage (V), emission wavelength (nm), and external quantum efficiency (%), which are characteristics at the time of 1000 cd / m 2 emission, were measured. .
 発光素子の量子効率には、内部量子効率と外部量子効率とがあるが、内部量子効率は、発光素子の発光層に電子(または正孔)として注入される外部エネルギーが純粋に光子に変換される割合を示している。一方、外部量子効率は、この光子が発光素子の外部にまで放出された量に基づいて算出され、発光層において発生した光子は、その一部が発光素子の内部で吸収されたりまたは反射され続けたりして、発光素子の外部に放出されないため、外部量子効率は内部量子効率よりも低くなる。 The quantum efficiency of a light emitting device includes an internal quantum efficiency and an external quantum efficiency. The internal quantum efficiency is that the external energy injected as electrons (or holes) into the light emitting layer of the light emitting device is converted into pure photons. The ratio is shown. On the other hand, the external quantum efficiency is calculated based on the amount of photons emitted to the outside of the light emitting device, and some of the photons generated in the light emitting layer continue to be absorbed or reflected inside the light emitting device. In other words, the external quantum efficiency is lower than the internal quantum efficiency because it is not emitted outside the light emitting element.
 外部量子効率の測定方法は次の通りである。アドバンテスト社製電圧/電流発生器R6144を用いて、素子の輝度が1000cd/mになる電圧を印加して素子を発光させた。TOPCON社製分光放射輝度計SR-3ARを用いて、発光面に対して垂直方向から可視光領域の分光放射輝度を測定した。発光面が完全拡散面であると仮定して、測定した各波長成分の分光放射輝度の値を波長エネルギーで割ってπを掛けた数値が各波長におけるフォトン数である。次いで、観測した全波長領域でフォトン数を積算し、素子から放出された全フォトン数とした。印加電流値を素電荷で割った数値を素子へ注入したキャリア数として、素子から放出された全フォトン数を素子へ注入したキャリア数で割った数値が外部量子効率である。 The external quantum efficiency is measured as follows. A voltage / current generator R6144 manufactured by Advantest Corporation was used to apply a voltage at which the luminance of the element was 1000 cd / m 2 to cause the element to emit light. Using a spectral radiance meter SR-3AR manufactured by TOPCON, the spectral radiance in the visible light region was measured from the direction perpendicular to the light emitting surface. Assuming that the light emitting surface is a completely diffusing surface, the value obtained by dividing the measured spectral radiance value of each wavelength component by the wavelength energy and multiplying by π is the number of photons at each wavelength. Next, the number of photons in the entire wavelength region observed was integrated to obtain the total number of photons emitted from the device. The value obtained by dividing the applied current value by the elementary charge is the number of carriers injected into the device, and the number obtained by dividing the total number of photons emitted from the device by the number of carriers injected into the device is the external quantum efficiency.
 作製した実施例1-1~実施例1-8に係る有機EL素子における各層の材料構成、およびEL特性データを下記表1Aおよび表1Bに示す。 Table 1A and Table 1B below show the material configuration of each layer and EL characteristic data in the produced organic EL elements according to Example 1-1 to Example 1-8.
Figure JPOXMLDOC01-appb-T000244
Figure JPOXMLDOC01-appb-T000244
Figure JPOXMLDOC01-appb-T000245
Figure JPOXMLDOC01-appb-T000245
 表1Aにおいて、「HI」はN,N4’-ジフェニル-N,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミンであり、「HAT-CN」は1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリルであり、「HT-1」はN-([1,1’-ビフェニル]-4-イル-9,9-ジメチル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル)-9H-フルオレン-2-アミン[1,1’-ビフェニル]-4-アミンであり、「HT-2」はN,N-ビス(4-(ジベンゾ[b,d]フラン-4-イル)フェニル)-[1,1’:4’,1”-テルフェニル]-4-アミンであり、「BH-1」は2-(10-フェニルアントラセン-9-イル)ナフト[2,3-b]ベンゾフランであり、「ET-1」は4,6,8,10-テトラフェニル[1,4]ベンゾキサボリニノ[2,3,4-kl]フェノキサボリニンであり、「ET-2」は3,3’-((2-フェニルアントラセン-9,10-ジイル)ビス(4,1-フェニレン))ビス(4-メチルピリジン)である。「Liq」と共に以下に化学構造を示す。 In Table 1A, “HI” refers to N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4'-diamine, "HAT-CN" is 1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile, and "HT-1" is N-([1,1'-biphenyl ] -4-yl-9,9-dimethyl-N- [4- (9-phenyl-9H-carbazol-3-yl) phenyl) -9H-fluoren-2-amine [1,1′-biphenyl] -4 An amine, “HT-2” being N, N-bis (4- (dibenzo [b, d] furan-4-yl) phenyl)-[1,1 ′: 4 ′, 1 ″ -terphenyl] -4-amine, “BH-1” is 2- (10-phenylanthracene-9- Yl) naphtho [2,3-b] benzofuran, “ET-1” is 4,6,8,10-tetraphenyl [1,4] benzoxabolinino [2,3,4-kl] phenoxaboli “ET-2” is 3,3 ′-((2-phenylanthracene-9,10-diyl) bis (4,1-phenylene)) bis (4-methylpyridine). The chemical structure is shown below together with “Liq”.
Figure JPOXMLDOC01-appb-C000246
Figure JPOXMLDOC01-appb-C000246
<実施例1-1>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、HI、HAT-CN、HT-1、HT-2、BH-1、化合物(1-151)、ET-1およびET-2をそれぞれ入れたタンタル製蒸着用ボート、Liq、LiFおよびアルミニウムをぞれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
<Example 1-1>
A glass substrate of 26 mm × 28 mm × 0.7 mm (manufactured by Optoscience Co., Ltd.) obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Choshu Sangyo Co., Ltd.), and HI, HAT-CN, HT-1, HT-2, BH-1, compound (1-151), ET A tantalum vapor deposition boat containing -1 and ET-2, and an aluminum nitride vapor deposition boat each containing Liq, LiF, and aluminum were mounted.
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIを加熱して膜厚40nmになるように蒸着し、次に、HAT-CNを加熱して膜厚5nmになるように蒸着し、次に、HT-1を加熱して膜厚45nmになるように蒸着し、次に、HT-2を加熱して膜厚10nmになるように蒸着して、4層からなる正孔層を形成した。次に、BH-1と化合物(1-151)を同時に加熱して膜厚25nmになるように蒸着して発光層を形成した。BH-1と化合物(1-151)の重量比がおよそ98対2になるように蒸着速度を調節した。さらに、ET-1を加熱して膜厚5nmになるように蒸着し、次に、ET-2とLiqを同時に加熱して膜厚25nmになるように蒸着して、2層からなる電子層を形成した。ET-2とLiqの重量比がおよそ50対50になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber was depressurized to 5 × 10 −4 Pa, first, HI was heated and evaporated to a film thickness of 40 nm, then HAT-CN was heated and evaporated to a film thickness of 5 nm, Next, HT-1 is heated and evaporated to a film thickness of 45 nm, and then HT-2 is heated and evaporated to a film thickness of 10 nm to form a four-layer hole layer. did. Next, BH-1 and the compound (1-151) were heated at the same time and evaporated to a thickness of 25 nm to form a light emitting layer. The deposition rate was adjusted so that the weight ratio of BH-1 to compound (1-151) was approximately 98 to 2. Further, ET-1 was heated and evaporated to a thickness of 5 nm, and then ET-2 and Liq were simultaneously heated to a thickness of 25 nm to form a two-layer electronic layer. Formed. The deposition rate was adjusted so that the weight ratio of ET-2 to Liq was approximately 50:50. The deposition rate of each layer was 0.01 to 1 nm / second. Thereafter, LiF is heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm, and then aluminum is heated to deposit to a film thickness of 100 nm to form a cathode. Thus, an organic EL element was obtained.
 ITO電極を陽極、LiF/アルミニウム電極を陰極として直流電圧を印加し、1000cd/m発光時の特性を測定したところ、波長465nmの青色発光が得られ、駆動電圧は3.66V、外部量子効率は8.73%であった。 When a direct current voltage was applied using an ITO electrode as an anode and a LiF / aluminum electrode as a cathode and characteristics at 1000 cd / m 2 emission were measured, blue emission with a wavelength of 465 nm was obtained, a drive voltage was 3.66 V, and external quantum efficiency Was 8.73%.
<実施例1-2~1-8>
 実施例1-1に準じた方法で有機EL素子を作製し(表1A)、EL特性を測定した(表1B)。
<Examples 1-2 to 1-8>
An organic EL device was produced by a method according to Example 1-1 (Table 1A), and EL characteristics were measured (Table 1B).
<実施例2>
 次に、化合物の溶解試験を行った。試験化合物1gを100℃のトルエン30mlに入れて攪拌した後、試験化合物が溶解しているか否か検証した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000247
<Example 2>
Next, a compound dissolution test was performed. After putting 1 g of the test compound in 30 ml of toluene at 100 ° C. and stirring, it was verified whether or not the test compound was dissolved. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000247
<塗布型有機EL素子の評価>
 次に、有機層を塗布形成して得られる有機EL素子について説明する。
<Evaluation of coating type organic EL element>
Next, an organic EL element obtained by applying and forming an organic layer will be described.
<高分子ホスト化合物:SPH-101の合成>
 国際公開第2015/008851号に記載の方法に従い、SPH-101を合成した。M1の隣にはM2またはM3が結合した共重合体が得られ、仕込み比より各ユニットは50:26:24(モル比)であると推測される。
Figure JPOXMLDOC01-appb-C000248
<Synthesis of polymer host compound: SPH-101>
SPH-101 was synthesized according to the method described in International Publication No. 2015/008851. Next to M1, a copolymer having M2 or M3 bonded thereto is obtained, and each unit is estimated to be 50:26:24 (molar ratio) from the charging ratio.
Figure JPOXMLDOC01-appb-C000248
<高分子正孔輸送化合物:XLP-101の合成>
 特開2018-61028号公報に記載の方法に従い、XLP-101を合成した。M7の隣にはM2またはM3が結合した共重合体が得られ、仕込み比より各ユニットは40:10:50(モル比)であると推測される。
Figure JPOXMLDOC01-appb-C000249
<Polymer Hole Transport Compound: Synthesis of XLP-101>
XLP-101 was synthesized according to the method described in JP-A-2018-61028. Next to M7, a copolymer having M2 or M3 bonded thereto is obtained, and each unit is estimated to be 40:10:50 (molar ratio) from the charging ratio.
Figure JPOXMLDOC01-appb-C000249
<実施例3~10>
 各層を形成する材料の塗布用溶液を調製して塗布型有機EL素子を作製する。
<Examples 3 to 10>
A coating solution of a material for forming each layer is prepared to prepare a coating type organic EL element.
<実施例3~5の有機EL素子の作製>
 有機EL素子における、各層の材料構成を表3に示す。
Figure JPOXMLDOC01-appb-T000250
<Preparation of organic EL elements of Examples 3 to 5>
Table 3 shows the material structure of each layer in the organic EL element.
Figure JPOXMLDOC01-appb-T000250
 表3における、「ET1」の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000251
The structure of “ET1” in Table 3 is shown below.
Figure JPOXMLDOC01-appb-C000251
<発光層形成用組成物(1)の調製>
 下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(1)を調製する。調製した発光層形成用組成物をガラス基板にスピンコートし、減圧下で加熱乾燥することによって、膜欠陥がなく平滑性に優れた塗布膜が得られる。
 化合物(A)           0.04 重量%
 SPH-101          1.96 重量%
 キシレン            69.00 重量%
 デカリン            29.00 重量%
<Preparation of light emitting layer forming composition (1)>
A light emitting layer forming composition (1) is prepared by stirring the following components until a uniform solution is obtained. The prepared light emitting layer forming composition is spin-coated on a glass substrate and dried by heating under reduced pressure, whereby a coating film free from film defects and excellent in smoothness can be obtained.
Compound (A) 0.04% by weight
SPH-101 1.96 wt%
Xylene 69.00 wt%
Decalin 29.00 wt%
 なお、化合物(A)は、一般式(1)で表される多環芳香族化合物、その多量体、前記多環芳香族化合物もしくはその多量体をモノマー(すなわち当該モノマーは反応性置換基を有する)として高分子化させた高分子化合物、または当該高分子化合物をさらに架橋させた高分子架橋体である。高分子架橋体を得るための高分子化合物は架橋性置換基を有する。 The compound (A) is a polycyclic aromatic compound represented by the general formula (1), a multimer thereof, the polycyclic aromatic compound or the multimer as a monomer (that is, the monomer has a reactive substituent). ), Or a crosslinked polymer obtained by further crosslinking the polymer compound. The polymer compound for obtaining a crosslinked polymer has a crosslinkable substituent.
<PEDOT:PSS溶液>
 市販のPEDOT:PSS溶液(Clevios(TM) P VP AI4083、PEDOT:PSSの水分散液、Heraeus Holdings社製)を用いる。
Figure JPOXMLDOC01-appb-C000252
<PEDOT: PSS solution>
A commercially available PEDOT: PSS solution (Clevios ™ PVP AI4083, PEDOT: PSS aqueous dispersion, manufactured by Heraeus Holdings) is used.
Figure JPOXMLDOC01-appb-C000252
<OTPD溶液の調製>
 OTPD(LT-N159、Luminescence Technology Corp社製)およびIK-2(光カチオン重合開始剤、サンアプロ社製)をトルエンに溶解させ、OTPD濃度0.7重量%、IK-2濃度0.007重量%のOTPD溶液を調製する。
Figure JPOXMLDOC01-appb-C000253
<Preparation of OTPD solution>
OTPD (LT-N159, manufactured by Luminescence Technology Corp) and IK-2 (photo cation polymerization initiator, manufactured by San Apro) were dissolved in toluene to give an OTPD concentration of 0.7% by weight and an IK-2 concentration of 0.007% by weight. Prepare a solution of OTPD.
Figure JPOXMLDOC01-appb-C000253
<XLP-101溶液の調製>
 キシレンにXLP-101を0.6重量%の濃度で溶解させ、0.7重量%XLP-101溶液を調製する。
<Preparation of XLP-101 solution>
XLP-101 is dissolved in xylene at a concentration of 0.6% by weight to prepare a 0.7% by weight XLP-101 solution.
<PCz溶液の調製>
 PCz(ポリビニルカルバゾール)をジクロロベンゼンに溶解させ、0.7重量%PCz溶液を調製する。
Figure JPOXMLDOC01-appb-C000254
<Preparation of PCz solution>
PCz (polyvinylcarbazole) is dissolved in dichlorobenzene to prepare a 0.7 wt% PCz solution.
Figure JPOXMLDOC01-appb-C000254
<実施例3>
 ITOが150nmの厚さに蒸着されたガラス基板上に、PEDOT:PSS溶液をスピンコートし、200℃のホットプレート上で1時間焼成することで、膜厚40nmのPEDOT:PSS膜を成膜する(正孔注入層)。次いで、OTPD溶液をスピンコートし、80℃のホットプレート上で10分間乾燥した後、露光機で露光強度100mJ/cmで露光し、100℃のホットプレート上で1時間焼成することで、溶液に不溶な膜厚30nmのOTPD膜を成膜する(正孔輸送層)。次いで、発光層形成用組成物(1)をスピンコートし、120℃のホットプレート上で1時間焼成することで、膜厚20nmの発光層を成膜する。
<Example 3>
A PEDOT: PSS solution is spin-coated on a glass substrate on which ITO is deposited to a thickness of 150 nm, and baked on a hot plate at 200 ° C. for 1 hour to form a PEDOT: PSS film having a thickness of 40 nm. (Hole injection layer). Next, the OTPD solution is spin-coated, dried on an 80 ° C. hot plate for 10 minutes, exposed to an exposure intensity of 100 mJ / cm 2 with an exposure machine, and baked on the hot plate at 100 ° C. for 1 hour. An OTPD film having a thickness of 30 nm which is insoluble in the film is formed (hole transport layer). Next, the light emitting layer forming composition (1) is spin-coated and baked on a hot plate at 120 ° C. for 1 hour to form a light emitting layer having a thickness of 20 nm.
 作製した多層膜を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、ET1を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボート、アルミニウムを入れたタングステン製蒸着用ボートを装着する。真空槽を5×10-4Paまで減圧した後、ET1を加熱して膜厚30nmになるように蒸着して電子輸送層を形成する。電子輸送層を形成する際の蒸着速度は1nm/秒とする。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着する。次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成する。このようにして有機EL素子を得る。 The produced multilayer film is fixed to a substrate holder of a commercially available vapor deposition apparatus (made by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing ET1, a molybdenum vapor deposition boat containing LiF, and tungsten containing aluminum. A vapor deposition boat is installed. After depressurizing the vacuum chamber to 5 × 10 −4 Pa, ET1 is heated and evaporated to a film thickness of 30 nm to form an electron transport layer. The deposition rate for forming the electron transport layer is 1 nm / second. Thereafter, LiF is heated and deposited at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, aluminum is heated and evaporated to a thickness of 100 nm to form a cathode. In this way, an organic EL element is obtained.
<実施例4>
 実施例2と同様の方法で有機EL素子を得る。なお、正孔輸送層は、XLP-101溶液をスピンコートし、200℃のホットプレート上で1時間焼成することで、膜厚30nmの膜を成膜する。
<Example 4>
An organic EL element is obtained in the same manner as in Example 2. Note that the hole-transporting layer is spin-coated with an XLP-101 solution and baked on a hot plate at 200 ° C. for 1 hour to form a film with a thickness of 30 nm.
<実施例5>
 実施例2と同様の方法で有機EL素子を得る。なお、正孔輸送層は、PCz溶液をスピンコートし、120℃のホットプレート上で1時間焼成することで、膜厚30nmの膜を成膜する。
<Example 5>
An organic EL element is obtained in the same manner as in Example 2. Note that the hole-transporting layer is formed by spin-coating a PCz solution and baking on a hot plate at 120 ° C. for 1 hour to form a film with a thickness of 30 nm.
<実施例6~8の有機EL素子の作製>
 有機EL素子における、各層の材料構成を表4に示す。
Figure JPOXMLDOC01-appb-T000255
<Preparation of organic EL elements of Examples 6 to 8>
Table 4 shows the material structure of each layer in the organic EL element.
Figure JPOXMLDOC01-appb-T000255
<発光層形成用組成物(2)~(4)の調製>
 下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(2)を調製する。
 化合物(A)           0.02 重量%
 mCBP             1.98 重量%
 トルエン            98.00 重量%
<Preparation of light emitting layer forming compositions (2) to (4)>
The light emitting layer forming composition (2) is prepared by stirring the following components until a uniform solution is obtained.
Compound (A) 0.02% by weight
mCBP 1.98 wt%
Toluene 98.00 wt%
 下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(3)を調製する。
 化合物(A)           0.02 重量%
 SPH-101          1.98 重量%
 キシレン            98.00 重量%
The composition for light emitting layer formation (3) is prepared by stirring the following components until it becomes a uniform solution.
Compound (A) 0.02% by weight
SPH-101 1.98 wt%
Xylene 98.00 wt%
 下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(4)を調製する。
 化合物(A)           0.02 重量%
 DOBNA            1.98 重量%
 トルエン            98.00 重量%
The composition for light emitting layer formation (4) is prepared by stirring the following components until it becomes a uniform solution.
Compound (A) 0.02% by weight
DOBNA 1.98 wt%
Toluene 98.00 wt%
 表4おいて、「mCBP」は3,3’-ビス(N-カルバゾリル)-1,1’-ビフェニルであり、「DOBNA」は3,11-ジ-o-トリル-5,9-ジオキサ-13b-ボラナフト[3,2,1-de]アントラセンであり、「TSPO1」はジフェニル[4-(トリフェニルシリル)フェニル]ホスフィンオキシドである。以下に化学構造を示す。
Figure JPOXMLDOC01-appb-C000256
In Table 4, “mCBP” is 3,3′-bis (N-carbazolyl) -1,1′-biphenyl, and “DOBNA” is 3,11-di-o-tolyl-5,9-dioxa- 13b-Bolanaphtho [3,2,1-de] anthracene and “TSPO1” is diphenyl [4- (triphenylsilyl) phenyl] phosphine oxide. The chemical structure is shown below.
Figure JPOXMLDOC01-appb-C000256
<実施例6>
 ITOが45nmの厚さに成膜されたガラス基板上に、ND-3202(日産化学工業製)溶液をスピンコートした後、大気雰囲気下において、50℃、3分間加熱し、更に230℃、15分間加熱することで、膜厚50nmのND-3202膜を成膜する(正孔注入層)。次いで、XLP-101溶液をスピンコートし、窒素ガス雰囲気下において、ホットプレート上で200℃、30分間加熱させることで、膜厚20nmのXLP-101膜を成膜する(正孔輸送層)。次いで、発光層形成用組成物(2)をスピンコートし、窒素ガス雰囲気下において、130℃、10分間加熱させることで、20nmの発光層を成膜する。
<Example 6>
An ND-3202 (Nissan Chemical Industries) solution was spin-coated on a glass substrate on which ITO was deposited to a thickness of 45 nm, and then heated at 50 ° C. for 3 minutes in an air atmosphere, and further 230 ° C., 15 By heating for 50 minutes, an ND-3202 film having a thickness of 50 nm is formed (hole injection layer). Next, an XLP-101 solution is spin-coated and heated on a hot plate at 200 ° C. for 30 minutes in a nitrogen gas atmosphere to form an XLP-101 film having a thickness of 20 nm (hole transport layer). Next, the light emitting layer forming composition (2) is spin-coated, and heated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere to form a 20 nm light emitting layer.
 作製した多層膜を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、TSPO1を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボート、アルミニウムを入れたタングステン製蒸着用ボートを装着する。真空槽を5×10-4Paまで減圧した後、TSPO1を加熱して膜厚30nmになるように蒸着して電子輸送層を形成する。電子輸送層を形成する際の蒸着速度は1nm/秒とする。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着する。次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成する。このようにして有機EL素子を得る。 The produced multilayer film is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing TSPO1, a molybdenum vapor deposition boat containing LiF, and tungsten containing aluminum. A vapor deposition boat is installed. After depressurizing the vacuum chamber to 5 × 10 −4 Pa, TSPO1 is heated and evaporated to a film thickness of 30 nm to form an electron transport layer. The deposition rate for forming the electron transport layer is 1 nm / second. Thereafter, LiF is heated and deposited at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, aluminum is heated and evaporated to a thickness of 100 nm to form a cathode. In this way, an organic EL element is obtained.
<実施例7および8>
 発光層形成用組成物(3)または(4)を用いて、実施例6と同様の方法で有機EL素子を得る。
<Examples 7 and 8>
An organic EL device is obtained in the same manner as in Example 6 using the light emitting layer forming composition (3) or (4).
<実施例9~11の有機EL素子の作製>
 有機EL素子における、各層の材料構成を表5に示す。
Figure JPOXMLDOC01-appb-T000257
<Production of organic EL elements of Examples 9 to 11>
Table 5 shows the material structure of each layer in the organic EL element.
Figure JPOXMLDOC01-appb-T000257
<発光層形成用組成物(5)~(7)の調製>
 下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物を調製する。
 化合物(A)           0.02 重量%
 2PXZ-TAZ         0.18 重量%
 mCBP             1.80 重量%
 トルエン            98.00 重量%
<Preparation of light emitting layer forming compositions (5) to (7)>
The composition for light emitting layer formation is prepared by stirring the following component until it becomes a uniform solution.
Compound (A) 0.02% by weight
2PXZ-TAZ 0.18 wt%
mCBP 1.80 wt%
Toluene 98.00 wt%
 下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物を調製する。
 化合物(A)           0.02 重量%
 2PXZ-TAZ         0.18 重量%
 SPH-101          1.80 重量%
 キシレン            98.00 重量%
The composition for light emitting layer formation is prepared by stirring the following component until it becomes a uniform solution.
Compound (A) 0.02% by weight
2PXZ-TAZ 0.18 wt%
SPH-101 1.80 wt%
Xylene 98.00 wt%
 下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物を調製する。
 化合物(A)           0.02 重量%
 2PXZ-TAZ         0.18 重量%
 DOBNA            1.80 重量%
 トルエン            98.00 重量%
The composition for light emitting layer formation is prepared by stirring the following component until it becomes a uniform solution.
Compound (A) 0.02% by weight
2PXZ-TAZ 0.18 wt%
DOBNA 1.80 wt%
Toluene 98.00 wt%
 表5おいて、「2PXZ-TAZ」は10,10’-((4-フェニル-4H-1,2,4-トリアゾール-3,5-ジイル)ビス(4,1-フェニルの))ビス(10H-フェノキサジン)である。以下に化学構造を示す。
Figure JPOXMLDOC01-appb-C000258
In Table 5, “2PXZ-TAZ” is 10,10 ′-((4-phenyl-4H-1,2,4-triazole-3,5-diyl) bis (4,1-phenyl)) bis ( 10H-phenoxazine). The chemical structure is shown below.
Figure JPOXMLDOC01-appb-C000258
<実施例9>
 ITOが45nmの厚さに成膜されたガラス基板上に、ND-3202(日産化学工業製)溶液をスピンコートした後、大気雰囲気下において、50℃、3分間加熱し、更に230℃、15分間加熱することで、膜厚50nmのND-3202膜を成膜する(正孔注入層)。次いで、XLP-101溶液をスピンコートし、窒素ガス雰囲気下において、ホットプレート上で200℃、30分間加熱させることで、膜厚20nmのXLP-101膜を成膜する(正孔輸送層)。次いで、発光層形成用組成物(5)をスピンコートし、窒素ガス雰囲気下において、130℃、10分間加熱させることで、20nmの発光層を成膜する。
<Example 9>
An ND-3202 (Nissan Chemical Industries) solution was spin-coated on a glass substrate on which ITO was deposited to a thickness of 45 nm, and then heated at 50 ° C. for 3 minutes in an air atmosphere, and further 230 ° C., 15 By heating for 50 minutes, an ND-3202 film having a thickness of 50 nm is formed (hole injection layer). Next, an XLP-101 solution is spin-coated and heated on a hot plate at 200 ° C. for 30 minutes in a nitrogen gas atmosphere to form an XLP-101 film having a thickness of 20 nm (hole transport layer). Next, the light emitting layer forming composition (5) is spin-coated, and heated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere to form a 20 nm light emitting layer.
 作製した多層膜を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、TSPO1を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボート、アルミニウムを入れたタングステン製蒸着用ボートを装着する。真空槽を5×10-4Paまで減圧した後、TSPO1を加熱して膜厚30nmになるように蒸着して電子輸送層を形成する。電子輸送層を形成する際の蒸着速度は1nm/秒とする。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着する。次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成する。このようにして有機EL素子を得る。 The produced multilayer film is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing TSPO1, a molybdenum vapor deposition boat containing LiF, and tungsten containing aluminum. A vapor deposition boat is installed. After depressurizing the vacuum chamber to 5 × 10 −4 Pa, TSPO1 is heated and evaporated to a film thickness of 30 nm to form an electron transport layer. The deposition rate for forming the electron transport layer is 1 nm / second. Thereafter, LiF is heated and deposited at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, aluminum is heated and evaporated to a thickness of 100 nm to form a cathode. In this way, an organic EL element is obtained.
<実施例10および11>
 発光層形成用組成物(6)または(7)を用いて、実施例9と同様の方法で有機EL素子を得る。
<Examples 10 and 11>
An organic EL device is obtained in the same manner as in Example 9 using the light emitting layer forming composition (6) or (7).
 本発明では、新規なターシャリーアルキル置換多環芳香族化合物を提供することで、例えば有機EL素子用材料などの有機デバイス用材料の選択肢を増やすことができる。また、新規なターシャリーアルキル置換多環芳香族化合物を有機EL素子用材料として用いることで、例えば発光効率に優れた有機EL素子、それを備えた表示装置およびそれを備えた照明装置などを提供することができる。 In the present invention, by providing a novel tertiary alkyl-substituted polycyclic aromatic compound, it is possible to increase options for materials for organic devices such as materials for organic EL elements. In addition, by using a novel tertiary alkyl-substituted polycyclic aromatic compound as a material for an organic EL element, for example, an organic EL element having excellent luminous efficiency, a display device including the same, a lighting device including the same, and the like are provided. can do.
 100  有機電界発光素子
 101  基板
 102  陽極
 103  正孔注入層
 104  正孔輸送層
 105  発光層
 106  電子輸送層
 107  電子注入層
 108  陰極
 
DESCRIPTION OF SYMBOLS 100 Organic electroluminescent element 101 Substrate 102 Anode 103 Hole injection layer 104 Hole transport layer 105 Light emitting layer 106 Electron transport layer 107 Electron injection layer 108 Cathode

Claims (35)

  1.  下記一般式(1)で表される多環芳香族化合物、または下記一般式(1)で表される構造を複数有する多環芳香族化合物の多量体。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)中、
     A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
     Yは、B、P、P=O、P=S、Al、Ga、As、Si-RまたはGe-Rであり、前記Si-RおよびGe-RのRは、アリール、アルキルまたはシクロアルキルであり、
     XおよびXは、それぞれ独立して、>O、>N-R、>C(-R)、>Sまたは>Seであり、前記>N-RのRは、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり、前記>C(-R)のRは、水素、置換されていてもよいアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり、また、前記>N-RのRおよび/または前記>C(-R)のRは連結基または単結合により前記A環、B環および/またはC環と結合していてもよく、
     式(1)で表される化合物または構造における少なくとも1つの水素は、重水素、シアノまたはハロゲンで置換されていてもよく、そして、
     式(1)で表される化合物または構造における少なくとも1つの水素は上記一般式(tR)で表される基で置換されており、
     上記式(tR)中、Rは炭素数2~24のアルキルであり、RおよびRはそれぞれ独立して炭素数1~24のアルキルであり、前記アルキルにおける任意の-CH-は-O-で置換されていてもよく、上記式(tR)で表される基は*において上記式(1)で表される化合物または構造における少なくとも1つの水素と置換する。)
    A polycyclic aromatic compound represented by the following general formula (1) or a multimer of polycyclic aromatic compounds having a plurality of structures represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the above formula (1),
    A ring, B ring and C ring are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings may be substituted;
    Y 1 is B, P, P═O, P═S, Al, Ga, As, Si—R or Ge—R, wherein R in Si—R and Ge—R is aryl, alkyl or cycloalkyl And
    X 1 and X 2 are each independently>O,>N—R,> C (—R) 2 ,> S or> Se, and R in> N—R may be substituted A preferred aryl, an optionally substituted heteroaryl, an optionally substituted alkyl, or an optionally substituted cycloalkyl, wherein R in> C (—R) 2 is hydrogen, optionally substituted A preferred aryl, an optionally substituted alkyl or an optionally substituted cycloalkyl, and R of> N—R and / or R of> C (—R) 2 is a linking group or a single bond May be bonded to the A ring, B ring and / or C ring by
    At least one hydrogen in the compound or structure represented by formula (1) may be substituted with deuterium, cyano or halogen, and
    At least one hydrogen in the compound or structure represented by the formula (1) is substituted with a group represented by the general formula (tR);
    In the above formula (tR), R a is alkyl having 2 to 24 carbon atoms, R b and R c are each independently alkyl having 1 to 24 carbon atoms, and any —CH 2 — in the alkyl is The group represented by the above formula (tR) which may be substituted with —O— is substituted with at least one hydrogen in the compound or structure represented by the above formula (1) in *. )
  2.  A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は、置換または無置換のアリール、置換または無置換のヘテロアリール、置換または無置換のジアリールアミノ、置換または無置換のジヘテロアリールアミノ、置換または無置換のアリールヘテロアリールアミノ、置換または無置換のジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、置換または無置換のアルキル、置換または無置換のシクロアルキル、置換または無置換のアルコキシまたは置換または無置換のアリールオキシで置換されていてもよく、また、これらの環はY、XおよびXから構成される上記式中央の縮合2環構造と結合を共有する5員環または6員環を有し、
     Yは、B、P、P=O、P=S、Al、Ga、As、Si-RまたはGe-Rであり、前記Si-RおよびGe-RのRは、アリール、アルキルまたはシクロアルキルであり、
     XおよびXは、それぞれ独立して、>O、>N-R、>C(-R)、>Sまたは>Seであり、前記>N-RのRは、アルキルまたはシクロアルキルで置換されていてもよいアリール、アルキルまたはシクロアルキルで置換されていてもよいヘテロアリール、アルキルまたはシクロアルキルであり、前記>C(-R)のRは、水素、アルキルまたはシクロアルキルで置換されていてもよいアリール、アルキルまたはシクロアルキルであり、また、前記>N-RのRおよび/または前記>C(-R)のRは-O-、-S-、-C(-R)-または単結合により前記A環、B環および/またはC環と結合していてもよく、前記-C(-R)-のRは、水素、アルキルまたはシクロアルキルであり、
     式(1)で表される化合物または構造における少なくとも1つの水素は、重水素、シアノまたはハロゲンで置換されていてもよく、
     多量体の場合には、一般式(1)で表される構造を2または3個有する2または3量体であり、そして、
     式(1)で表される化合物または構造における少なくとも1つの水素は上記一般式(tR)で表される基で置換されており、
     上記式(tR)中、Rは炭素数2~24のアルキルであり、RおよびRはそれぞれ独立して炭素数1~24のアルキルであり、前記アルキルにおける任意の-CH-は-O-で置換されていてもよく、上記式(tR)で表される基は*において上記式(1)で表される化合物または構造における少なくとも1つの水素と置換する、
     請求項1に記載する多環芳香族化合物またはその多量体。
    A ring, B ring and C ring are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings is substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted Or unsubstituted diarylamino, substituted or unsubstituted diheteroarylamino, substituted or unsubstituted arylheteroarylamino, substituted or unsubstituted diarylboryl (the two aryls are bonded via a single bond or a linking group). Optionally substituted), substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkoxy or substituted or unsubstituted aryloxy, and these rings are represented by Y 1 A 5-membered ring sharing a bond with the fused bicyclic structure in the center of the above formula, consisting of X 1 and X 2 Or a 6-membered ring
    Y 1 is B, P, P═O, P═S, Al, Ga, As, Si—R or Ge—R, wherein R in Si—R and Ge—R is aryl, alkyl or cycloalkyl And
    X 1 and X 2 are each independently>O,>N—R,> C (—R) 2 ,> S or> Se, wherein R in> N—R is alkyl or cycloalkyl Heteroaryl, alkyl or cycloalkyl optionally substituted with aryl, alkyl or cycloalkyl, wherein R in> C (—R) 2 is substituted with hydrogen, alkyl or cycloalkyl Aryl, alkyl or cycloalkyl, and R of> N—R and / or R of> C (—R) 2 is —O—, —S—, —C (—R) It may be bonded to the A ring, B ring and / or C ring by 2 -or a single bond, and R in -C (-R) 2- is hydrogen, alkyl or cycloalkyl,
    At least one hydrogen in the compound or structure represented by formula (1) may be substituted with deuterium, cyano or halogen;
    In the case of a multimer, it is a dimer or trimer having 2 or 3 structures represented by the general formula (1), and
    At least one hydrogen in the compound or structure represented by the formula (1) is substituted with a group represented by the general formula (tR);
    In the above formula (tR), R a is alkyl having 2 to 24 carbon atoms, R b and R c are each independently alkyl having 1 to 24 carbon atoms, and any —CH 2 — in the alkyl is The group represented by the above formula (tR) may be substituted with —O—, and the group represented by the above formula (1) in * is substituted with at least one hydrogen in the compound or structure represented by the above formula (1);
    The polycyclic aromatic compound or multimer thereof according to claim 1.
  3.  下記一般式(2)で表される、請求項1に記載する多環芳香族化合物。
    Figure JPOXMLDOC01-appb-C000002
    (上記式(2)中、
     R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
     Yは、B、P、P=O、P=S、Al、Ga、As、Si-RまたはGe-Rであり、前記Si-RおよびGe-RのRは、炭素数6~12のアリール、炭素数1~6のアルキルまたは炭素数3~14のシクロアルキルであり、
     XおよびXは、それぞれ独立して、>O、>N-R、>C(-R)、>Sまたは>Seであり、前記>N-RのRは、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキルまたは炭素数3~14のシクロアルキルであり、前記>C(-R)のRは、水素、炭素数6~12のアリール、炭素数1~6のアルキルまたは炭素数3~14のシクロアルキルであり、また、前記>N-RのRおよび/または前記>C(-R)のRは-O-、-S-、-C(-R)-または単結合により前記a環、b環および/またはc環と結合していてもよく、前記-C(-R)-のRは炭素数1~6のアルキルまたは炭素数3~14のシクロアルキルであり、
     式(2)で表される化合物における少なくとも1つの水素は、重水素、シアノまたはハロゲンで置換されていてもよく、そして、
     式(2)で表される化合物における少なくとも1つの水素は上記一般式(tR)で表される基で置換されており、
     上記式(tR)中、Rは炭素数2~24のアルキルであり、RおよびRはそれぞれ独立して炭素数1~24のアルキルであり、前記アルキルにおける任意の-CH-は-O-で置換されていてもよく、上記式(tR)で表される基は*において上記式(2)で表される化合物における少なくとも1つの水素と置換する。)
    The polycyclic aromatic compound represented by the following general formula (2) according to claim 1.
    Figure JPOXMLDOC01-appb-C000002
    (In the above formula (2),
    R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, diarylboryl (the two aryls are bonded via a single bond or a linking group). The alkyl, cycloalkyl, alkoxy or aryloxy, wherein at least one hydrogen may be substituted with aryl, heteroaryl, alkyl or cycloalkyl, and R 1 to R 11 Adjacent groups may be bonded to form an aryl ring or a heteroaryl ring together with a ring, b ring or c ring, and at least one hydrogen in the formed ring is aryl, heteroaryl, diaryl Amino, diheteroarylamino, arylheteroary Amino, diarylboryl (two aryls may be bonded via a single bond or a linking group), alkyl, cycloalkyl, alkoxy or aryloxy, wherein at least one hydrogen is Optionally substituted with aryl, heteroaryl, alkyl or cycloalkyl,
    Y 1 is B, P, P═O, P═S, Al, Ga, As, Si—R or Ge—R, and R in the Si—R and Ge—R has 6 to 12 carbon atoms. Aryl, alkyl having 1 to 6 carbons or cycloalkyl having 3 to 14 carbons;
    X 1 and X 2 are each independently>O,>N—R,> C (—R) 2 ,> S or> Se, and R in> N—R has 6 to 12 carbon atoms Aryl, C 2 -C 15 heteroaryl, C 1 -C 6 alkyl or C 3 -C 14 cycloalkyl, wherein R in> C (—R) 2 is hydrogen, C 6 -C 12 Aryl, C 1-6 alkyl or C 3-14 cycloalkyl, and R of> N—R and / or R of> C (—R) 2 is —O—, — S—, —C (—R) 2 —, or a single bond may be bonded to the a ring, b ring and / or c ring, and R in the —C (—R) 2 — may have 1 to 6 alkyl or cycloalkyl having 3 to 14 carbon atoms,
    At least one hydrogen in the compound of formula (2) may be substituted with deuterium, cyano or halogen, and
    At least one hydrogen in the compound represented by the formula (2) is substituted with a group represented by the general formula (tR);
    In the above formula (tR), R a is alkyl having 2 to 24 carbon atoms, R b and R c are each independently alkyl having 1 to 24 carbon atoms, and any —CH 2 — in the alkyl is The group represented by the above formula (tR) may be substituted with —O—, and the group represented by the above formula (tR) is substituted with at least one hydrogen in the compound represented by the above formula (2) in *. )
  4.  R~R11は、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、ジアリールボリル(ただしアリールは炭素数6~12のアリールであり、2つのアリールは単結合または連結基を介して結合していてもよい)、炭素数1~24のアルキルまたは炭素数3~24のシクロアルキルであり、また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共に炭素数9~16のアリール環または炭素数6~15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、炭素数6~10のアリール、炭素数1~12のアルキルまたは炭素数3~16のシクロアルキルで置換されていてもよく、
     Yは、B、P、P=O、P=SまたはSi-Rであり、前記Si-RのRは、炭素数6~10のアリール、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、
     XおよびXは、それぞれ独立して、>O、>N-R、>C(-R)または>Sであり、前記>N-RのRは、炭素数6~10のアリール、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、前記>C(-R)のRは、水素、炭素数6~10のアリール、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、
     式(2)で表される化合物における少なくとも1つの水素は、重水素、シアノまたはハロゲンで置換されていてもよく、そして、
     式(2)で表される化合物における少なくとも1つの水素は上記一般式(tR)で表される基で置換されており、
     上記式(tR)中、Rは炭素数2~24のアルキルであり、RおよびRはそれぞれ独立して炭素数1~24のアルキルであり、前記アルキルにおける任意の-CH-は-O-で置換されていてもよく、上記式(tR)で表される基は*において上記式(2)で表される化合物における少なくとも1つの水素と置換する、
     請求項3に記載する多環芳香族化合物。
    R 1 to R 11 are each independently hydrogen, aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, diarylamino (wherein aryl is aryl having 6 to 12 carbon atoms), diarylboryl (provided that Aryl is aryl having 6 to 12 carbons, and two aryls may be bonded via a single bond or a linking group), alkyl having 1 to 24 carbons or cycloalkyl having 3 to 24 carbons In addition, adjacent groups of R 1 to R 11 are bonded to form an aryl ring having 9 to 16 carbon atoms or a heteroaryl ring having 6 to 15 carbon atoms together with the a ring, b ring or c ring. And at least one hydrogen in the ring formed may be substituted with aryl having 6 to 10 carbon atoms, alkyl having 1 to 12 carbon atoms or cycloalkyl having 3 to 16 carbon atoms. At best,
    Y 1 is B, P, P═O, P═S or Si—R, wherein R in Si—R is aryl having 6 to 10 carbon atoms, alkyl having 1 to 4 carbon atoms, or 5 to 5 carbon atoms. 10 cycloalkyl,
    X 1 and X 2 are each independently>O,>N—R,> C (—R) 2 or> S, where R in> N—R is aryl having 6 to 10 carbon atoms, An alkyl having 1 to 4 carbons or a cycloalkyl having 5 to 10 carbons, wherein R in> C (—R) 2 is hydrogen, aryl having 6 to 10 carbons, alkyl having 1 to 4 carbons or carbon A cycloalkyl having a number of 5 to 10,
    At least one hydrogen in the compound of formula (2) may be substituted with deuterium, cyano or halogen, and
    At least one hydrogen in the compound represented by the formula (2) is substituted with a group represented by the general formula (tR);
    In the above formula (tR), R a is alkyl having 2 to 24 carbon atoms, R b and R c are each independently alkyl having 1 to 24 carbon atoms, and any —CH 2 — in the alkyl is -O- may be substituted, and the group represented by the above formula (tR) is substituted with at least one hydrogen in the compound represented by the above formula (2) in *.
    The polycyclic aromatic compound according to claim 3.
  5.  R~R11は、それぞれ独立して、水素、炭素数6~16のアリール、炭素数2~20のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~10のアリール)、ジアリールボリル(ただしアリールは炭素数6~10のアリールであり、2つのアリールは単結合または連結基を介して結合していてもよい)、炭素数1~12のアルキルまたは炭素数3~16のシクロアルキルであり、
     Yは、B、P、P=OまたはP=Sであり、
     XおよびXは、それぞれ独立して、>O、>N-Rまたは>C(-R)であり、前記>N-RのRは、炭素数6~10のアリール、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、前記>C(-R)のRは、水素、炭素数6~10のアリール、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、そして、
     式(2)で表される化合物における少なくとも1つの水素は上記一般式(tR)で表される基で置換されており、
     上記式(tR)中、Rは炭素数2~24のアルキルであり、RおよびRはそれぞれ独立して炭素数1~24のアルキルであり、前記アルキルにおける任意の-CH-は-O-で置換されていてもよく、上記式(tR)で表される基は*において上記式(2)で表される化合物における少なくとも1つの水素と置換する、
     請求項3に記載する多環芳香族化合物。
    R 1 to R 11 are each independently hydrogen, aryl having 6 to 16 carbon atoms, heteroaryl having 2 to 20 carbon atoms, diarylamino (wherein aryl is aryl having 6 to 10 carbon atoms), diarylboryl (provided that Aryl is an aryl having 6 to 10 carbon atoms, and two aryls may be bonded via a single bond or a linking group), an alkyl having 1 to 12 carbons or a cycloalkyl having 3 to 16 carbon atoms ,
    Y 1 is B, P, P = O or P = S;
    X 1 and X 2 are each independently>O,> N—R or> C (—R) 2 , wherein R in> N—R is aryl having 6 to 10 carbon atoms, 1 carbon atom Or alkyl having 5 to 10 carbon atoms or cycloalkyl having 5 to 10 carbon atoms, and R of> C (—R) 2 is hydrogen, aryl having 6 to 10 carbon atoms, alkyl having 1 to 4 carbon atoms, or 5 to 5 carbon atoms. 10 cycloalkyl, and
    At least one hydrogen in the compound represented by the formula (2) is substituted with a group represented by the general formula (tR);
    In the above formula (tR), R a is alkyl having 2 to 24 carbon atoms, R b and R c are each independently alkyl having 1 to 24 carbon atoms, and any —CH 2 — in the alkyl is -O- may be substituted, and the group represented by the above formula (tR) is substituted with at least one hydrogen in the compound represented by the above formula (2) in *.
    The polycyclic aromatic compound according to claim 3.
  6.  R~R11は、それぞれ独立して、水素、炭素数6~16のアリール、ジアリールアミノ(ただしアリールは炭素数6~10のアリール)、ジアリールボリル(ただしアリールは炭素数6~10のアリールであり、2つのアリールは単結合または連結基を介して結合していてもよい)、炭素数1~12のアルキルまたは炭素数3~16のシクロアルキルであり、
     YはBであり、
     XおよびXは共に>N-Rであるか、または、Xは>N-RであってXは>Oであり、前記>N-RのRは、炭素数6~10のアリール、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、そして、
     式(2)で表される化合物における少なくとも1つの水素は上記一般式(tR)で表される基で置換されており、
     上記式(tR)中、Rは炭素数2~24のアルキルであり、RおよびRはそれぞれ独立して炭素数1~24のアルキルであり、前記アルキルにおける任意の-CH-は-O-で置換されていてもよく、上記式(tR)で表される基は*において上記式(2)で表される化合物における少なくとも1つの水素と置換する、
     請求項3に記載する多環芳香族化合物。
    R 1 to R 11 are each independently hydrogen, aryl having 6 to 16 carbon atoms, diarylamino (where aryl is aryl having 6 to 10 carbon atoms), diarylboryl (where aryl is aryl having 6 to 10 carbon atoms) And two aryls may be bonded via a single bond or a linking group), alkyl having 1 to 12 carbons or cycloalkyl having 3 to 16 carbons,
    Y 1 is B,
    X 1 and X 2 are both> N—R, or X 1 is> N—R and X 2 is> O, and the R of> N—R has 6 to 10 carbon atoms Aryl, alkyl having 1 to 4 carbons or cycloalkyl having 5 to 10 carbons, and
    At least one hydrogen in the compound represented by the formula (2) is substituted with a group represented by the general formula (tR);
    In the above formula (tR), R a is alkyl having 2 to 24 carbon atoms, R b and R c are each independently alkyl having 1 to 24 carbon atoms, and any —CH 2 — in the alkyl is -O- may be substituted, and the group represented by the above formula (tR) is substituted with at least one hydrogen in the compound represented by the above formula (2) in *.
    The polycyclic aromatic compound according to claim 3.
  7.  上記一般式(tR)で表される基で置換されたジアリールアミノ基、上記一般式(tR)で表される基で置換されたカルバゾリル基または上記一般式(tR)で表される基で置換されたベンゾカルバゾリル基で置換されている、請求項1~6のいずれかに記載する多環芳香族化合物またはその多量体。 Substituted with a diarylamino group substituted with a group represented by the general formula (tR), a carbazolyl group substituted with a group represented by the general formula (tR), or a group represented by the general formula (tR) The polycyclic aromatic compound or multimer thereof according to any one of claims 1 to 6, which is substituted with a substituted benzocarbazolyl group.
  8.  Rは、上記一般式(tR)で表される基で置換されたジアリールアミノ基または上記一般式(tR)で表される基で置換されたカルバゾリル基である、請求項3~6のいずれかに記載する多環芳香族化合物。 R 2 is a diarylamino group substituted with a group represented by the general formula (tR) or a carbazolyl group substituted with a group represented by the general formula (tR). A polycyclic aromatic compound as described above.
  9.  前記ハロゲンはフッ素である、請求項1~8のいずれかに記載する多環芳香族化合物またはその多量体。 The polycyclic aromatic compound or multimer thereof according to any one of claims 1 to 8, wherein the halogen is fluorine.
  10.  下記構造式のいずれかで表される、請求項1に記載する多環芳香族化合物。
    Figure JPOXMLDOC01-appb-C000003
    (各式中の「tBu」はt-ブチル基、「tAm」はt-アミル基である。)
    The polycyclic aromatic compound according to claim 1 represented by any one of the following structural formulas.
    Figure JPOXMLDOC01-appb-C000003
    (“TBu” in each formula is a t-butyl group, and “tAm” is a t-amyl group.)
  11.  下記構造式のいずれかで表される、請求項1に記載する多環芳香族化合物。
    Figure JPOXMLDOC01-appb-C000004
    (各式中の「Me」はメチル基、「tBu」はt-ブチル基、「tAm」はt-アミル基である。)
    The polycyclic aromatic compound according to claim 1 represented by any one of the following structural formulas.
    Figure JPOXMLDOC01-appb-C000004
    (In each formula, “Me” is a methyl group, “tBu” is a t-butyl group, and “tAm” is a t-amyl group.)
  12.  請求項1~11のいずれかに記載する多環芳香族化合物またはその多量体に反応性置換基が置換した、反応性化合物。 A reactive compound obtained by substituting a reactive substituent on the polycyclic aromatic compound or multimer thereof according to any one of claims 1 to 11.
  13.  請求項12に記載する反応性化合物をモノマーとして高分子化させた高分子化合物、または、当該高分子化合物をさらに架橋させた高分子架橋体。 A polymer compound obtained by polymerizing the reactive compound according to claim 12 as a monomer, or a polymer crosslinked product obtained by further crosslinking the polymer compound.
  14.  主鎖型高分子に請求項12に記載する反応性化合物を置換させたペンダント型高分子化合物、または、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体。 A pendant polymer compound obtained by substituting the reactive compound according to claim 12 to a main chain polymer, or a pendant polymer crosslinked material obtained by further crosslinking the pendant polymer compound.
  15.  請求項1~11のいずれかに記載する多環芳香族化合物またはその多量体を含有する、有機デバイス用材料。 An organic device material comprising the polycyclic aromatic compound according to any one of claims 1 to 11 or a multimer thereof.
  16.  請求項12に記載する反応性化合物を含有する、有機デバイス用材料。 An organic device material containing the reactive compound according to claim 12.
  17.  請求項13に記載する高分子化合物または高分子架橋体を含有する、有機デバイス用材料。 An organic device material containing the polymer compound or polymer crosslinked product according to claim 13.
  18.  請求項14に記載するペンダント型高分子化合物またはペンダント型高分子架橋体を含有する、有機デバイス用材料。 An organic device material containing the pendant polymer compound or the pendant polymer crosslinked product according to claim 14.
  19.  前記有機デバイス用材料が、有機電界発光素子用材料、有機電界効果トランジスタ用材料または有機薄膜太陽電池用材料である、請求項15~18のいずれかに記載する有機デバイス用材料。 The organic device material according to any one of claims 15 to 18, wherein the organic device material is an organic electroluminescent element material, an organic field effect transistor material, or an organic thin film solar cell material.
  20.  前記有機電界発光素子用材料が発光層用材料である、請求項19に記載する有機デバイス用材料。 The organic device material according to claim 19, wherein the organic electroluminescent element material is a light emitting layer material.
  21.  請求項1~11のいずれかに記載する多環芳香族化合物またはその多量体と、有機溶媒とを含む、インク組成物。 An ink composition comprising the polycyclic aromatic compound or multimer thereof according to any one of claims 1 to 11 and an organic solvent.
  22.  請求項12に記載する反応性化合物と、有機溶媒とを含む、インク組成物。 An ink composition comprising the reactive compound according to claim 12 and an organic solvent.
  23.  主鎖型高分子と、請求項12に記載する反応性化合物と、有機溶媒とを含む、インク組成物。 An ink composition comprising a main chain polymer, the reactive compound according to claim 12, and an organic solvent.
  24.  請求項13に記載する高分子化合物または高分子架橋体と、有機溶媒とを含む、インク組成物。 An ink composition comprising the polymer compound or crosslinked polymer according to claim 13 and an organic solvent.
  25.  請求項14に記載するペンダント型高分子化合物またはペンダント型高分子架橋体と、有機溶媒とを含む、インク組成物。 An ink composition comprising the pendant polymer compound or pendant polymer cross-linked product according to claim 14 and an organic solvent.
  26.  陽極および陰極からなる一対の電極と、該一対の電極間に配置され、請求項1~11のいずれかに記載する多環芳香族化合物もしくはその多量体、請求項12に記載する反応性化合物、請求項13に記載する高分子化合物もしくは高分子架橋体、または、請求項14に記載するペンダント型高分子化合物もしくはペンダント型高分子架橋体を含有する有機層とを有する、有機電界発光素子。 A pair of electrodes consisting of an anode and a cathode, a polycyclic aromatic compound or a multimer thereof according to any one of claims 1 to 11 disposed between the pair of electrodes, a reactive compound according to claim 12, An organic electroluminescent device comprising the polymer compound or crosslinked polymer according to claim 13, or the organic layer containing the pendant polymer compound or pendant crosslinked polymer according to claim 14.
  27.  陽極および陰極からなる一対の電極と、該一対の電極間に配置され、請求項1~11のいずれかに記載する多環芳香族化合物もしくはその多量体、請求項12に記載する反応性化合物、請求項13に記載する高分子化合物もしくは高分子架橋体、または、請求項14に記載するペンダント型高分子化合物もしくはペンダント型高分子架橋体を含有する発光層とを有する、有機電界発光素子。 A pair of electrodes consisting of an anode and a cathode, a polycyclic aromatic compound or a multimer thereof according to any one of claims 1 to 11 disposed between the pair of electrodes, a reactive compound according to claim 12, An organic electroluminescent device comprising the polymer compound or crosslinked polymer according to claim 13, or a light-emitting layer containing the pendant polymer compound or pendant crosslinked polymer according to claim 14.
  28.  前記発光層が、ホストと、ドーパントとしての前記多環芳香族化合物、その多量体、反応性化合物、高分子化合物、高分子架橋体、ペンダント型高分子化合物またはペンダント型高分子架橋体とを含む、請求項27に記載する有機電界発光素子。 The light emitting layer includes a host and the polycyclic aromatic compound as a dopant, a multimer thereof, a reactive compound, a polymer compound, a polymer crosslinked body, a pendant polymer compound, or a pendant polymer crosslinked body. The organic electroluminescent element according to claim 27.
  29.  前記ホストが、アントラセン系化合物、フルオレン系化合物、ジベンゾクリセン系化合物またはピレン系化合物である、請求項28に記載する有機電界発光素子。 The organic electroluminescence device according to claim 28, wherein the host is an anthracene compound, a fluorene compound, a dibenzochrysene compound or a pyrene compound.
  30.  前記陰極と前記発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、カルバゾール誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体およびキノリノール系金属錯体からなる群から選択される少なくとも1つを含有する、請求項26~29のいずれかに記載する有機電界発光素子。 An electron transport layer and / or an electron injection layer disposed between the cathode and the light emitting layer, wherein at least one of the electron transport layer and the electron injection layer is a borane derivative, a pyridine derivative, a fluoranthene derivative, BO And at least one selected from the group consisting of a series derivative, anthracene derivative, benzofluorene derivative, phosphine oxide derivative, pyrimidine derivative, carbazole derivative, triazine derivative, benzimidazole derivative, phenanthroline derivative, and quinolinol metal complex. 26. The organic electroluminescence device according to any one of 26 to 29.
  31.  前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項30に記載の有機電界発光素子。 The electron transport layer and / or the electron injection layer further includes an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or an alkaline earth metal. The material contains at least one selected from the group consisting of halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes. 30. The organic electroluminescent device according to 30.
  32.  正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層のうちの少なくとも1つの層が、各層を形成し得る低分子化合物をモノマーとして高分子化させた高分子化合物、もしくは、当該高分子化合物をさらに架橋させた高分子架橋体、または、各層を形成し得る低分子化合物を主鎖型高分子と反応させたペンダント型高分子化合物、もしくは、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体を含む、請求項26~31のいずれかに記載する有機電界発光素子。 A polymer compound in which at least one of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer is polymerized using a low molecular compound capable of forming each layer as a monomer, or A polymer crosslinked product obtained by further crosslinking the polymer compound, or a pendant polymer compound obtained by reacting a low molecular compound capable of forming each layer with a main chain polymer, or the pendant polymer compound. The organic electroluminescence device according to any one of claims 26 to 31, further comprising a crosslinked pendant polymer crosslinked body.
  33.  請求項26~32のいずれかに記載する有機電界発光素子を備えた表示装置または照明装置。 A display device or lighting device comprising the organic electroluminescent element according to any one of claims 26 to 32.
  34.  有機電界発光素子の発光層を塗布形成するための発光層形成用組成物であって、
     第1成分として、少なくとも1種の請求項1~11のいずれかに記載する多環芳香族化合物またはその多量体と、
     第2成分として、少なくとも1種のホスト材料と、
     第3成分として、少なくとも1種の有機溶媒と、
     を含む発光層形成用組成物。
    A composition for forming a light emitting layer for coating and forming a light emitting layer of an organic electroluminescent device,
    As the first component, at least one polycyclic aromatic compound or multimer thereof according to any one of claims 1 to 11,
    As a second component, at least one host material;
    As a third component, at least one organic solvent;
    A composition for forming a light emitting layer.
  35.  陽極および陰極からなる一対の電極と、該一対の電極間に配置され、請求項34に記載する発光層形成用組成物を塗布・乾燥して形成した発光層とを有する、有機電界発光素子。 An organic electroluminescent device comprising: a pair of electrodes composed of an anode and a cathode; and a light emitting layer disposed between the pair of electrodes and formed by applying and drying the composition for forming a light emitting layer according to claim 34.
PCT/JP2019/022071 2018-06-06 2019-06-04 Tertiary-alkyl-substituted polycyclic aromatic compounds WO2019235452A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980024838.5A CN111936505A (en) 2018-06-06 2019-06-04 Tertiary alkyl substituted polycyclic aromatic compound
KR1020207035722A KR102661365B1 (en) 2018-06-06 2019-06-04 Tertiary alkyl substituted polycyclic aromatic compounds
JP2020523107A JP7445923B2 (en) 2018-06-06 2019-06-04 Tertiary alkyl-substituted polycyclic aromatic compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-108363 2018-06-06
JP2018108363 2018-06-06

Publications (1)

Publication Number Publication Date
WO2019235452A1 true WO2019235452A1 (en) 2019-12-12

Family

ID=68770844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022071 WO2019235452A1 (en) 2018-06-06 2019-06-04 Tertiary-alkyl-substituted polycyclic aromatic compounds

Country Status (4)

Country Link
JP (1) JP7445923B2 (en)
CN (1) CN111936505A (en)
TW (1) TW202000675A (en)
WO (1) WO2019235452A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112500298A (en) * 2019-12-27 2021-03-16 陕西莱特光电材料股份有限公司 Arylamine compound and organic electroluminescent device
WO2021120450A1 (en) * 2019-12-18 2021-06-24 武汉华星光电半导体显示技术有限公司 Thermally-activated delayed fluorescence green light polymer material and preparation method therefor
WO2021230133A1 (en) * 2020-05-13 2021-11-18 学校法人関西学院 Polycyclic aromatic compound
US20220093878A1 (en) * 2020-09-21 2022-03-24 Samsung Electronics Co., Ltd. Organic light-emitting device
WO2022138822A1 (en) * 2020-12-23 2022-06-30 三菱ケミカル株式会社 Organic electroluminescent element, organic el display device, organic el lighting, and organic electroluminescent element production method
EP4023652A1 (en) * 2020-12-29 2022-07-06 LG Display Co., Ltd. Organic light emitting diode and organic light emitting device including the same
KR20230093426A (en) 2020-10-26 2023-06-27 미쯔비시 케미컬 주식회사 Organic electroluminescence device, organic EL display device and organic EL lighting
KR20230124575A (en) 2020-12-24 2023-08-25 미쯔비시 케미컬 주식회사 Composition, organic electroluminescent device and manufacturing method thereof, organic electroluminescent display device and manufacturing method thereof, organic electroluminescent lighting and manufacturing method thereof
US11882757B2 (en) 2019-12-18 2024-01-23 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Thermally activated delayed fluorescence green polymer material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112614952B (en) * 2020-12-15 2022-09-16 昆山国显光电有限公司 Organic light-emitting device and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059137A (en) * 2013-09-17 2015-03-30 富士フイルム株式会社 Coloring composition, photosensitive coloring composition, color filter and method of producing the same, liquid crystal display device, organic electroluminescent element, and solid state image sensor
WO2016152418A1 (en) * 2015-03-25 2016-09-29 学校法人関西学院 Polycyclic aromatic compound and light emission layer-forming composition
WO2017138526A1 (en) * 2016-02-10 2017-08-17 学校法人関西学院 Delayed fluorescent organic electric field light-emitting element
WO2017188111A1 (en) * 2016-04-26 2017-11-02 学校法人関西学院 Organic electroluminescent element
WO2019009052A1 (en) * 2017-07-07 2019-01-10 学校法人関西学院 Polycyclic aromatic compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636056B (en) 2014-02-18 2018-09-21 學校法人關西學院 Polycyclic aromatic compound and method for production the same, material for organic device and application thereof
JP6012889B2 (en) 2014-09-19 2016-10-25 出光興産株式会社 New compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059137A (en) * 2013-09-17 2015-03-30 富士フイルム株式会社 Coloring composition, photosensitive coloring composition, color filter and method of producing the same, liquid crystal display device, organic electroluminescent element, and solid state image sensor
WO2016152418A1 (en) * 2015-03-25 2016-09-29 学校法人関西学院 Polycyclic aromatic compound and light emission layer-forming composition
WO2017138526A1 (en) * 2016-02-10 2017-08-17 学校法人関西学院 Delayed fluorescent organic electric field light-emitting element
WO2017188111A1 (en) * 2016-04-26 2017-11-02 学校法人関西学院 Organic electroluminescent element
WO2019009052A1 (en) * 2017-07-07 2019-01-10 学校法人関西学院 Polycyclic aromatic compound

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021120450A1 (en) * 2019-12-18 2021-06-24 武汉华星光电半导体显示技术有限公司 Thermally-activated delayed fluorescence green light polymer material and preparation method therefor
US11882757B2 (en) 2019-12-18 2024-01-23 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Thermally activated delayed fluorescence green polymer material and preparation method thereof
EP4079736A4 (en) * 2019-12-18 2024-02-28 Wuhan China Star Optoelectronics Semiconductor Display Tech Co Ltd Thermally-activated delayed fluorescence green light polymer material and preparation method therefor
CN112500298A (en) * 2019-12-27 2021-03-16 陕西莱特光电材料股份有限公司 Arylamine compound and organic electroluminescent device
CN112500298B (en) * 2019-12-27 2022-03-04 陕西莱特光电材料股份有限公司 Arylamine compound and organic electroluminescent device
WO2021230133A1 (en) * 2020-05-13 2021-11-18 学校法人関西学院 Polycyclic aromatic compound
US20220093878A1 (en) * 2020-09-21 2022-03-24 Samsung Electronics Co., Ltd. Organic light-emitting device
KR20230093426A (en) 2020-10-26 2023-06-27 미쯔비시 케미컬 주식회사 Organic electroluminescence device, organic EL display device and organic EL lighting
WO2022138822A1 (en) * 2020-12-23 2022-06-30 三菱ケミカル株式会社 Organic electroluminescent element, organic el display device, organic el lighting, and organic electroluminescent element production method
KR20230123948A (en) 2020-12-23 2023-08-24 미쯔비시 케미컬 주식회사 Organic electroluminescent device, organic EL display device, organic EL lighting and manufacturing method of organic electroluminescent device
KR20230124575A (en) 2020-12-24 2023-08-25 미쯔비시 케미컬 주식회사 Composition, organic electroluminescent device and manufacturing method thereof, organic electroluminescent display device and manufacturing method thereof, organic electroluminescent lighting and manufacturing method thereof
EP4023652A1 (en) * 2020-12-29 2022-07-06 LG Display Co., Ltd. Organic light emitting diode and organic light emitting device including the same

Also Published As

Publication number Publication date
JP7445923B2 (en) 2024-03-08
TW202000675A (en) 2020-01-01
JPWO2019235452A1 (en) 2021-07-26
CN111936505A (en) 2020-11-13
KR20210018290A (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2019198699A1 (en) Cycloalkyl-substituted polycyclic aromatic compound
WO2020218079A1 (en) Cycloalkane-condensed polycyclic aromatic compound
JP7445923B2 (en) Tertiary alkyl-substituted polycyclic aromatic compound
JP6738063B2 (en) Cycloalkyl-substituted polycyclic aromatic compound
JP2020147563A (en) Polycyclic aromatic compound and polymer thereof
JP2021014446A (en) Amino-substituted polycyclic aromatic compound
JP2021038206A (en) Polycyclic aromatic compound
JP7445927B2 (en) Polycyclic aromatic compounds
WO2020250700A1 (en) Polycyclic aromatic compound
KR20230010039A (en) polycyclic aromatic compounds
JP2022074041A (en) Polycyclic aromatic compound
JP2021095342A (en) Polycyclic aromatic compound
KR20210045339A (en) Cyano-substituted polycyclic compounds
KR102661365B1 (en) Tertiary alkyl substituted polycyclic aromatic compounds
KR20240047307A (en) Polycyclic Aromatic Compound
JP2022179317A (en) Polycyclic aromatic compound
JP2023138328A (en) Polycyclic aromatic compound
JP2022191159A (en) polycyclic aromatic compound
JP2023095774A (en) polycyclic aromatic compound
JP2023095770A (en) Polycyclic aromatic compound
JP2023044631A (en) polycyclic aromatic compound
JP2023085205A (en) Organic electroluminescence element using polycyclic aromatic compound having triazinyl group
JP2023093330A (en) Polycyclic aromatic compound
JP2023148087A (en) metal complex
JP2023114978A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523107

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814683

Country of ref document: EP

Kind code of ref document: A1