WO2019235429A1 - Adsorbing sheet, adsorbing sheet production method, and adsorbing element - Google Patents

Adsorbing sheet, adsorbing sheet production method, and adsorbing element Download PDF

Info

Publication number
WO2019235429A1
WO2019235429A1 PCT/JP2019/022003 JP2019022003W WO2019235429A1 WO 2019235429 A1 WO2019235429 A1 WO 2019235429A1 JP 2019022003 W JP2019022003 W JP 2019022003W WO 2019235429 A1 WO2019235429 A1 WO 2019235429A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
sheet
adsorption
adsorbing
weight
Prior art date
Application number
PCT/JP2019/022003
Other languages
French (fr)
Japanese (ja)
Inventor
晶徳 水谷
大樹 河野
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018108048A external-priority patent/JP6516047B1/en
Priority claimed from JP2018108047A external-priority patent/JP7183578B2/en
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN201980037618.6A priority Critical patent/CN112218711B/en
Priority to KR1020207037731A priority patent/KR20210015932A/en
Publication of WO2019235429A1 publication Critical patent/WO2019235429A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays

Definitions

  • the present invention relates to an adsorbent sheet for adsorbing and removing an organic solvent contained in air using an adsorbent, and an adsorbent sheet manufacturing method.
  • the present invention relates to an adsorbing element used in an exhaust gas treatment apparatus for adsorbing and removing malodorous components such as organic solvents contained in the air.
  • an adsorbing sheet formed by mixing and forming an organic binder such as PVA (polyvinyl alcohol) and organic fibers or inorganic fibers and an adsorbent is known (for example, Japanese Patent Laid-Open No. Hei 9 (1998)). No. 9-94422 (Patent Document 1)).
  • PVA polyvinyl alcohol
  • an adsorbent sheet containing an adsorbent, organic fiber, organic binder, inorganic binder, etc. is formed into a honeycomb shape by using a honeycomb forming adhesive with a honeycomb forming machine.
  • a honeycomb forming adhesive for example, see JP-A-10-352 (Patent Document 2)
  • This adsorbing sheet is described in Patent Document 1 when an adsorbent of zeolite is included.
  • Organic fibers and inorganic fibers, which are skeleton materials play a role in the flexibility and mechanical strength of the adsorption sheet.
  • it is effective to improve the content ratio of the adsorbent.
  • the content ratio of organic fibers and inorganic fibers, which are skeleton materials is decreased, there is a problem that the flexibility and strength of the adsorbing sheet are lowered as a result.
  • the adsorption element contains zeolite as an adsorbent, it is described in Patent Document 2.
  • Zeolite may be in the form of powder, particles, or pellets.
  • Adsorbents in adsorbent sheets and adsorbent elements have specific apparent densities (bulk density (loose bulk density) and tap density), including the chemical type of the adsorbent (activated carbon, zeolite species, silica gel, etc.)
  • the shape (particle diameter, fiber diameter, etc.) as a bulk is closely related. Even if the adsorbent content in the adsorbing sheet is the same, there is a difference in the number of particles calculated from the apparent density and the particle size, and the number of particles is too large and the entanglement of the skeleton material is reduced. There was a problem that practical strength could not be obtained.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an adsorption sheet having excellent mechanical strength and adsorption performance as an adsorption sheet and a method for producing the same.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an adsorbing element having both sufficient flexibility and strength as an adsorbing element and a high adsorbent content ratio.
  • the present invention is as follows.
  • the average particle number Axd is represented by the following formula 1.
  • the total average particle number of at least one kind of adsorbent (Ax) contained per 1 g of the adsorbing sheet is represented by the following formula 2.
  • the adsorbent sheet has a specific tensile strength of 2 N ⁇ m / g or more.
  • a total ratio of at least one kind of the adsorbent (Ax) contained in the adsorbing sheet is 40% by weight or more of the adsorbing sheet.
  • the adsorbent (Ax) has a tap density of 0.1 g / cm 3 or more.
  • the adsorbent (Ax) is zeolite.
  • Axa is a spherical volume calculated from the average particle diameter of adsorbent particles when the adsorbent particles are spherical
  • Axb and the weight ratio (%) of the adsorbent contained in the adsorbent sheet is Axc, per 1 g of the adsorbent sheet
  • the average particle number Axd contained in is represented by the following formula 1.
  • the total average particle number of at least one kind of adsorbent (Ax) contained per 1 g of the adsorbing sheet is represented by the following formula 2.
  • the adsorbent sheet has a specific tensile strength of 2 N ⁇ m / g or more.
  • the organic fiber is at least one polymer selected from an aramid polymer, a benzimidazole polymer, a benzoxazole polymer, and a polyimide polymer.
  • the organic component is at least one selected from polyvinyl alcohol polymers, polyacrylonitrile polymers, and polyvinylpyrrolidone polymers.
  • a honeycomb using an adsorbing sheet (adsorbing element precursor) having a large number of air passages including at least one kind of adsorbent (Ax ,: x 1, 2, 3... N).
  • An adsorbing element having a slab structure wherein the adsorbent (Ax) has a tap density of Axa, and when the adsorbent particles are assumed to be spherical, the spherical volume calculated from the average particle diameter of the adsorbent particles is Axb, and the adsorbent ( Assuming that the weight ratio (%) of Ax) contained in the adsorption sheet is Axc, the average number of particles Axd contained per 1 g of the adsorption sheet is expressed by the following formula 1.
  • the total average particle number of at least one kind of the adsorbent (Ax) contained per 1 g of the adsorbing sheet is represented by the following formula 5.
  • the plane compression strength of the adsorption element is 3 kPa or more.
  • the suction sheet has a thickness of 0.16 mm to 0.25 mm.
  • the honeycomb structure has a cell count of 30 / cm 2 to 70 / cm 2 .
  • the total ratio of at least one kind of the adsorbent (Ax) included in the adsorption element is 40% by weight or more of the adsorption element.
  • the adsorbent (Ax) has a tap density of 0.1 g / cm 3 or more.
  • the adsorbent (Ax) is zeolite.
  • the adsorbing sheet and the manufacturing method thereof enable an adsorbing sheet having excellent mechanical strength and adsorbing performance as an adsorbing sheet and a manufacturing method thereof.
  • This adsorbing element makes it possible to provide an adsorbing element having both sufficient flexibility and strength as an adsorbing element and a high adsorbent content ratio.
  • FIG. 6 is a diagram showing a honeycomb shape that is the shape of the adsorption element in the second embodiment.
  • 4 is a partial enlargement of an adsorbent that adopts a honeycomb-like shape that is the shape of the adsorbing element in the second embodiment. It is a figure which shows the various characteristics of each Example of each adsorption sheet in Embodiment 2, and each comparative example.
  • Embodiment 1 The suction sheet and the manufacturing method thereof according to Embodiment 1 based on the present invention will be described below with reference to the drawings.
  • the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified.
  • the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated. It is planned from the beginning to use the structures in the embodiments in appropriate combinations.
  • the shape of the adsorbent includes powder, granule, fiber, etc. Considering the amount contained in the adsorbent sheet, not a single powder, a single particle, and a single fiber, but a large amount of powder, particles, and fibers. Generally, it is supported. Therefore, the packing density as an aggregate of powder, particles, and fibers includes loose bulk density and tap density (also called bulk density), but an adsorbent sheet filled with an adsorbent at a high content ratio is assumed. To achieve this, the tap density representing the densely packed state is particularly important.
  • the adsorbent is preferably powdered or granular, particularly preferably powdery.
  • the tap density of the powder is preferably 0.1 g / cm 3 to 2.0 g / cm 3 , more preferably 0.2 g / cm 3 to 1.0 g / cm 3 .
  • the particle size of the adsorbent (Ax) can be evaluated by laser diffraction or the like, and the average particle size is preferably in the range of 0.001 ⁇ m to 30.0 ⁇ m, more preferably in the range of 0.01 ⁇ m to 20 ⁇ m.
  • the particle size of the adsorbent is likely to depend on the type of adsorbent, and in particular, the crystal size of zeolite is likely to vary depending on the crystal species.
  • the average value of the crystal size which is the minimum unit confirmed by image analysis such as SEM, is regarded as the average particle size.
  • the adsorbent in the embodiment is activated carbon or zeolite. Activated carbon and zeolite are excellent for adsorbing and desorbing low concentrations of organic compounds.
  • examples of the form include powder having an average particle diameter of 10 ⁇ m to 50 ⁇ m or fibers having an average fiber diameter of 10 ⁇ m to 30 ⁇ m.
  • the raw material for the activated carbon is not particularly specified, but there are insulator pattern, coal, pitch, phenol resin, polyacrylonitrile, cellulose and the like.
  • the adsorbent in the embodiment is preferably zeolite.
  • Zeolite has a high heat-resistant temperature and is less reactive with an organic solvent during adsorption than activated carbon, so it has excellent heat resistance and low risk of heat generation. Further, since zeolite has a sharper pore structure than activated carbon, it has excellent adsorption performance for organic solvents and the like.
  • the form is a powder having an average particle size of 1 ⁇ m to 20 ⁇ m.
  • Some zeolites are naturally produced, but artificial synthetic zeolites are suitable. Specific examples include beta type, ZSM-5 type, ferrierite type, mordenite type, L type, Y type, and A type.
  • the adsorbent in the embodiment is more preferably high silica zeolite having a high silica / alumina ratio. This is because high silica zeolite is less susceptible to moisture and humidity in the gas to be treated when adsorbing an organic solvent or the like from the gas to be treated.
  • the silica / alumina ratio is preferably 15 or more, and more preferably 50 or more.
  • the adsorption element in the embodiment includes at least one adsorbent.
  • One or more of the various activated carbons and zeolites described above may be selected.
  • the ratio is not particularly limited.
  • the adsorbent may be appropriately selected according to the processing conditions of the gas to be processed.
  • the tap density of the adsorbent (Ax) is [Axa]
  • the spherical volume calculated from the average particle diameter when the adsorbent particles are assumed to be spherical is [Axb]
  • the weight ratio of the adsorbent contained in the adsorbent sheet is [Axc]. ]
  • the average number of particles [Axd] contained per 1 g of the adsorbing sheet is expressed as [Equation 1] below.
  • adsorbents and skeleton materials such as organic fibers and inorganic fibers are mixed and made to obtain adsorbent sheets
  • the adsorbents reduce the entanglement points between the skeleton materials, leading to a decrease in the strength of the adsorbent sheets.
  • Cheap Therefore, in order to obtain a practical strength, it is preferable to suppress the total number of particles to a certain amount or less, and the total average number of particles of at least one kind of adsorbent Ax contained per 1 g of the adsorption sheet is expressed by the following [Equation 2]. It is preferable that it is 8.0 * 10 ⁇ 12 > or less.
  • the organic component (B) in the present embodiment is a component that supports the adsorbent (Ax) at the time of manufacturing the adsorbing sheet and acts as a carrier that is also supported after forming the adsorbing sheet, and is a pulp-like or short fiber having a fiber length of about 10 mm or less.
  • Organic fibers especially fibers having a melting point or a thermal decomposition temperature of 300 ° C. or more and excellent heat resistance. If the thermal decomposition temperature is less than 300 ° C., a significant decrease in strength is inevitable at high temperatures encountered during the adsorption / desorption operation.
  • it is a fiber made from aramid, meta-aramid, polybenzimidazole (PBI), polybenzoxazole (PBO), polyimide, polyamideimide, polyetherketone or the like.
  • the organic component (B) preferably contains a substance having a thermal decomposition temperature of less than 300 ° C. in addition to the heat-resistant organic component (B-1).
  • the low temperature decomposable organic component (B-2) has a function of a binder for supporting the adsorbent (Ax) on the adsorbing sheet at a high ratio during the production of the adsorbing sheet.
  • Examples of the low temperature decomposable organic component include PVA (polyvinyl alcohol), starch, polyacrylonitrile and the like, and PVA is preferable.
  • the adsorbent (Ax) is coated with the low temperature decomposable organic component (B-2) and the adsorption performance is extremely low, the low temperature decomposable organic component (B-2) is converted into a carbide by heat-treating the adsorbent sheet.
  • an inorganic binder (C) may be added to fix and maintain the adsorbent (Ax) and the skeleton material at a high temperature of the adsorbent sheet.
  • the binder is uniformly dispersed in the sheet, and is cured by reaction, gelation, etc. during the heat treatment, and the adsorbent and the skeleton material are firmly fixed during the curing.
  • the thermal decomposition temperature is 300 ° C or higher, reaction heat is generated by a highly reactive organic solvent, the catalytic property causing the ignition and combustion of the sheet is low, and the adsorption performance of the adsorbent (Ax) is lowered by the coating. It is preferable that it is a difficult thing.
  • phosphate binders such as sodium hexametaphosphate and silicate binders such as sodium silicate are preferred.
  • the amount of adsorbent (Ax) contained in the heat-resistant adsorbent sheet of the present embodiment is preferably 40% by weight or more. Considering adsorption performance and productivity, and dropping of adsorbent, 50% by weight or more is preferable. If the content of the adsorbent (Ax) is less than 40%, sufficient adsorption performance cannot be obtained. There is no upper limit on the weight of the adsorbent (Ax), but 80% by weight is the limit to maintain sufficient sheet strength. If it exceeds 80% by weight, the flexibility of the adsorbing sheet is insufficient and it becomes difficult to process.
  • the amount of the organic component (B) contained in the heat-resistant adsorbing sheet of the present embodiment is 5% to 60% by weight as the total amount of the organic component and its thermal oxide used at the time of manufacturing the adsorbing sheet.
  • the inorganic binder component (C) is contained in the adsorption sheet of the present embodiment, the inorganic binder component (C) is preferably 5% by weight to 30% by weight. If it is less than 5% by weight, the fixing property between the adsorbent (Ax) and the skeleton material becomes poor, and if it exceeds 30%, the flexibility is insufficient, which is not preferable.
  • the adsorbing sheet of the present embodiment can be manufactured by a wet papermaking method using, for example, an adsorbing material (Ax), an organic component (B) and an inorganic binder (C), and if necessary, glass fiber and a polymer flocculant. it can.
  • Ax adsorbing material
  • B organic component
  • C inorganic binder
  • the organic component (B) used in the production method of the adsorbing sheet of the present embodiment is low temperature decomposable that thermally decomposes at 150 ° C. to 300 ° C. in addition to the heat-resistant organic fiber (B-1) such as aramid fiber. It is desirable to use an organic component (B-2).
  • the low temperature decomposable organic component (B-2) serves as a binder for bonding the (Ax) component to the (B-1) component and the (B-1) components during wet papermaking.
  • the component (B-2) covers the adsorbent of the final adsorbing element (adsorbing element of the present embodiment) after forming a sheet-like material or honeycomb-like material. It is also possible to reduce the coating of the adsorbent of the final adsorbing element (adsorbing element of the present embodiment) by using (B-2) as a carbide or decomposing and disappearing.
  • the heat treatment temperature is equal to or lower than the melting point or decomposition temperature (T1 ° C.) of the heat-resistant organic component (B-1), preferably 5 ° C. to 20 ° C. (T 1-5 ° C. to T 1-20 ° C.), and the low temperature decomposition component (B-2).
  • T1 ° C. melting point or decomposition temperature of the heat-resistant organic component (B-1), preferably 5 ° C. to 20 ° C. (T 1-5 ° C. to T 1-20 ° C.), and the low temperature decomposition component (B-2).
  • Decomposition temperature (T2 ° C.) or higher preferably at a decomposition temperature of 100 ° C. to 200 ° C. or higher (T2 + 100 ° C. to T2 + 200 ° C.), and the treatment time is 1 minute to 60 minutes, preferably 1 minute to 30 minutes. .
  • the specific tensile strength of the adsorption sheet is preferably 2 N / m ⁇ g or more. If the strength is less than 2 N / m ⁇ g, the adsorbing sheet is likely to break or crack, which is not practical.
  • the basis weight (g / m 2 ) of the adsorption sheet is not particularly limited, but is preferably 10 g / m 2 to 200 g / m 2 .
  • the mechanical strength of the sheet becomes weak and the mechanical strength of the honeycomb structure cannot be maintained. If it exceeds 200 g / m 2 , the thickness of the sheet becomes too thick, so that the flexibility of the sheet is lost, and cracking of the sheet and dropping of the adsorbent are likely to occur.
  • Example 1 A method for measuring various characteristics of the adsorption sheet in the present embodiment is as follows. Various characteristics of each example and each comparative example are shown in FIG. 1 and FIG.
  • an aluminum silicate-water system (refractive index: 1.66-1.33) is used.
  • Measurement procedure 1. Inject a specified amount of dispersion medium into the measurement cell, perform initial adjustment of the optical system, and perform blank measurement.
  • the adsorbent is put into the cell so that the transmittance of the dispersion medium falls within the range of about 90% to 70%.
  • ultrasonic waves are applied for a specified time (5 minutes) to disperse the sample, and then the measurement is performed again.
  • the adsorbing sheet of the present invention will be described in detail based on the following examples and comparative examples.
  • ⁇ Example 1> The adsorbent A1 has a tap density of 0.54 g / cm 3 , ZSM-5 (MFI) zeolite having an average particle diameter of 3.3 ⁇ m by laser diffraction is 37.5% by weight, and the adsorbent A2 has a tap density of 0.36 g / cm 3 .
  • this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
  • the adsorbent A1 has a tap density of 0.39 g / cm 3
  • ZSM-5 (MFI) zeolite having an average particle diameter of 9.9 ⁇ m by laser analysis is 37.5% by weight
  • the adsorbent A2 has a tap density of 0.34 g / cm 3 .
  • this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
  • the adsorbent A1 has a tap density of 0.58 g / cm 3 , 37.5% by weight of ZSM-5 (MFI) zeolite having an average particle size of 4.8 ⁇ m by laser analysis, and the adsorbent A2 has a tap density of 0.34 g / cm 3 .
  • MFI ZSM-5
  • this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
  • Adsorbent A1 has a tap density of 0.54 g / cm 3
  • ZSM-5 (MFI) zeolite (MFI) having an average particle diameter of 3.2 ⁇ m by laser analysis is 60% by weight
  • adsorbent A2 has a tap density of 0.36 g.
  • Y-type (FAU) zeolite having an average particle size calculated from SEM photographic analysis of 1.2 ⁇ m / cm 3 , and pulp-like and short fibrous aramid fibers (heat-resistant organic component: B-1) 17% by weight and PVA (low-temperature thermally decomposable organic component: B-2) 8% by weight as a thermally decomposable organic binder at a weight of 100 g / m 2 basis weight.
  • FAU Y-type zeolite having an average particle size calculated from SEM photographic analysis of 1.2 ⁇ m / cm 3 , and pulp-like and short fibrous aramid fibers (heat-resistant organic component: B-1) 17% by weight and PVA (low-temperature thermally decomposable organic component: B-2) 8% by weight as a thermally decomposable organic binder at a weight of 100 g / m 2 basis weight.
  • a sheet was created using.
  • this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
  • the adsorbent A1 has a tap density of 0.39 g / cm 3 , ZSM-5 (MFI) zeolite having an average particle diameter of 9.9 ⁇ m by laser analysis of 75% by weight, and pulp and short fiber aramid fibers as heat-resistant organic components 17% by weight of (heat-resistant organic component: B-1) and 8% by weight of PVA (low-temperature thermally-decomposable organic component: B-2) as a thermally decomposable organic binder have a basis weight of 100 g / m 2. Sheet material was prepared using a wet papermaking machine by weight.
  • this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
  • adsorbent A1 ZSM-5 (MFI) zeolite having a tap density of 0.58 g / cm 3 , an average particle diameter of 4.8 ⁇ m by laser analysis is 75% by weight, and pulp-like and short-fiber aramid fibers as heat-resistant organic components 17% by weight of (heat-resistant organic component: B-1), 8% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, and a basis weight of 100 g / m 2 A sheet was prepared using a wet papermaking machine.
  • MFI MFI
  • PVA low-temperature thermally decomposable organic component
  • this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
  • Example 7 As adsorbent A1, ZSM-5 (MFI) zeolite having a tap density of 0.54 g / cm 3 , an average particle diameter of 3.2 ⁇ m by laser analysis is 75% by weight, and pulp and short fiber aramid fibers as heat-resistant organic components 17% by weight of (heat-resistant organic component: B-1) and 8% by weight of PVA (low-temperature thermally-decomposable organic component: B-2) as a thermally decomposable organic binder have a basis weight of 100 g / m 2. Sheet material was prepared using a wet papermaking machine by weight.
  • MFI MFI
  • PVA low-temperature thermally-decomposable organic component
  • this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
  • Adsorbent A1 has a tap density of 0.59 g / cm 3 , an average particle size calculated from SEM image analysis of 0.8 ⁇ m beta type ( * BEA) zeolite, 75% by weight, and heat-resistant organic pulp and short fibers 17% by weight of aramid fiber (heat-resistant organic component: B-1) and 8% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, basis weight 100 g / m
  • a sheet-like material was prepared using a wet papermaking machine with a weight of 2 .
  • this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
  • the adsorbent A1 has a tap density of 0.39 g / cm 3
  • ZSM-5 (MFI) zeolite having an average particle diameter of 10.7 ⁇ m by laser analysis is 15% by weight
  • the adsorbent A2 has a tap density of 0.34 g / cm 3.
  • Y-type (FAU) zeolite having an average particle size of 0.7 ⁇ m calculated from SEM image analysis, and 17 pulp-like and short fibrous aramid fibers (heat-resistant organic component: B-1) as heat-resistant organic components
  • PVA low-temperature thermally decomposable organic component: B-2
  • a sheet-like material is obtained. Created.
  • this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
  • Adsorbent A1 has a tap density of 0.54 g / cm 3
  • ZSM-5 (MFI) zeolite having an average particle diameter of 3.2 ⁇ m by laser analysis is 15% by weight
  • adsorbent A2 has a tap density of 0.36 g / cm 3.
  • Y-type (FAU) zeolite 60% by weight of Y-type (FAU) zeolite with an average particle size calculated from SEM image analysis of 1.3 ⁇ m, and pulp-like and short-fiber aramid fibers (heat-resistant organic component: B-1) as the heat-resistant organic component 17% by weight, 8% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, and a weight of 100 g / m 2 basis weight.
  • FAU Y-type zeolite with an average particle size calculated from SEM image analysis of 1.3 ⁇ m, and pulp-like and short-fiber aramid fibers (heat-resistant organic component: B-1) as the heat-resistant organic component 17% by weight, 8% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, and a weight of 100 g / m 2 basis weight.
  • this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
  • the adsorbent A1 has a tap density of 0.34 g / cm 3 , an average particle diameter calculated from SEM image analysis of 0.7 ⁇ m, 75% by weight of Y-type (FAU) zeolite, and heat-resistant organic components such as pulp and short fibers 17% by weight of aramid fiber (heat-resistant organic component: B-1), 8% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, and a basis weight of 100 g / m 2
  • a sheet-like material was prepared using a wet papermaking machine at a weight of
  • this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
  • the adsorbing sheet of the present embodiment is an adsorbing sheet manufactured by a wet papermaking method having at least one adsorbent, and the adsorbent is compatible with the strength of the adsorbing sheet and the high content weight ratio of the adsorbent.
  • An organic component having a melting point or a thermal decomposition temperature of 300 ° C. or higher and an organic component having a thermal decomposition temperature of less than 300 ° C. are appropriately set based on the total number of particles contained in the sheet calculated from the bulk density and particle size of the adsorbent.
  • an inorganic binder as a skeleton material are excellent in flexibility and strength as an adsorbing sheet, and adsorbing performance is also excellent because the adsorbent content weight ratio is extremely high.
  • the strength of the adsorbing sheet is clearly different depending on the total number of adsorbent particles contained in the adsorbing sheet, and the total number of particles is 8.0 ⁇ 10 12 or less.
  • an adsorbing element sheet having sufficient strength for practical use could be obtained.
  • Embodiment 2 The adsorption element according to Embodiment 2 based on the present invention will be described below with reference to the drawings.
  • the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified.
  • the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated. It is planned from the beginning to use the structures in the embodiments in appropriate combinations.
  • Adsorbents can be in the form of powder, granule, fiber, etc. Considering the amount contained in the adsorbent element, a large amount of powder, particles and fibers are supported instead of one powder, one particle and one fiber. It is common to be done. Therefore, there are loose bulk density and tap density (also referred to as bulk density) as the packing density of powder, particles, and fiber aggregates. The tap density representing a more densely packed state is particularly important.
  • the adsorbent is preferably powdered or granular, particularly preferably powdery.
  • the tap density of the powder is preferably 0.1 g / cm 3 to 2.0 g / cm 3 , more preferably 0.2 to 1.0 g / cm 3 .
  • the particle diameter of the adsorbent (Ax) can be evaluated by laser diffraction or the like, and the average particle diameter is preferably in the range of 0.001 ⁇ m to 30.0 ⁇ m, more preferably 0.01 ⁇ m to 20 ⁇ m.
  • the particle size of the adsorbent may depend on the type of adsorbent. In particular, the crystal size of zeolite is likely to vary depending on the crystal species. Depending on the crystal type of the zeolite, there is a crystal size of 3 ⁇ m or less, in which case it is difficult to obtain a complete dispersion state, and in laser diffraction, a particle size larger than the actual particle size (secondary particle size) may be seen. is there. In that case, the average value of the crystal size, which is the smallest unit confirmed by image analysis such as SEM (Scanning Electron Microscope), is regarded as the average particle diameter.
  • the adsorbent in the embodiment is activated carbon or zeolite. Activated carbon and zeolite are excellent for adsorbing and desorbing low concentrations of organic compounds.
  • examples of the form include powder having an average particle diameter of 10 ⁇ m to 50 ⁇ m or fibers having an average fiber diameter of 10 ⁇ m to 30 ⁇ m.
  • the raw material for the activated carbon is not particularly specified, but there are insulator pattern, coal, pitch, phenol resin, polyacrylonitrile, cellulose and the like.
  • the adsorbent in the embodiment is preferably zeolite.
  • Zeolite has a high heat-resistant temperature and is less reactive with an organic solvent during adsorption than activated carbon, so it has excellent heat resistance and low risk of heat generation. Further, since zeolite has a sharper pore structure than activated carbon, it has excellent adsorption performance for organic solvents and the like.
  • the form is a powder having an average particle size of 1 ⁇ m to 20 ⁇ m.
  • Some zeolites are naturally produced, but artificial synthetic zeolites are suitable. Specific examples include beta type, ZSM-5 type, ferrierite type, mordenite type, L type, Y type, and A type.
  • the adsorbent in the embodiment is more preferably high silica zeolite having a high silica / alumina ratio. This is because high silica zeolite is less susceptible to moisture and humidity in the gas to be treated when adsorbing an organic solvent or the like from the gas to be treated.
  • the silica / alumina ratio is preferably 15 or more, and more preferably 50 or more.
  • the adsorption element in the embodiment includes at least one adsorbent.
  • One or more of the various activated carbons and zeolites described above may be selected.
  • the ratio is not particularly limited.
  • the adsorbent may be appropriately selected according to the processing conditions of the gas to be processed.
  • the tap density of the adsorbent (Ax) is [Axa]
  • the spherical volume calculated from the average particle diameter when the adsorbent particles are assumed to be spherical is [Axb]
  • the weight ratio of the adsorbent contained in the adsorbent sheet is [Axc]. ]
  • the average number of particles [Axd] contained per 1 g of the adsorbing element is expressed as [Equation 1] below.
  • adsorbents and skeleton materials such as organic fibers and inorganic fibers are mixed and made to obtain adsorbent sheets
  • the adsorbents reduce the entanglement points between the skeleton materials, leading to a decrease in the strength of the adsorbent sheets.
  • Cheap Therefore, in order to obtain a practical strength, it is preferable to suppress the total number of particles to a certain amount or less, and the total average number of particles of at least one kind of adsorbent Ax contained per 1 g of the adsorption sheet is expressed by the following [Equation 2]. It is preferable that it is 8.0 * 10 ⁇ 12 > or less.
  • the organic component (B) in the present embodiment is a component that supports the adsorbent (Ax) at the time of manufacturing the adsorbing sheet and acts as a carrier that is also supported after forming the adsorbing sheet, and is a pulp-like or short fiber having a fiber length of about 10 mm or less.
  • Organic fibers especially fibers having a melting point or a thermal decomposition temperature of 300 ° C. or more and excellent heat resistance. If the thermal decomposition temperature is less than 300 ° C., a significant decrease in strength is inevitable at high temperatures encountered during the adsorption / desorption operation.
  • it is a fiber made from aramid, meta-aramid, polybenzimidazole (PBI), polybenzoxazole (PBO), polyimide, polyamideimide, polyetherketone or the like.
  • the organic component (B) preferably contains a substance having a thermal decomposition temperature of less than 300 ° C. in addition to the heat-resistant organic component (B-1).
  • the low temperature decomposable organic component (B-2) has a function of a binder for supporting the adsorbent (Ax) on the adsorbing sheet at a high ratio during the production of the adsorbing sheet.
  • Examples of the low temperature decomposable organic component include PVA (polyvinyl alcohol), starch, polyacrylonitrile and the like, and PVA is preferable.
  • the adsorbent (Ax) is coated with the low temperature decomposable organic component (B-2) and the adsorption performance is extremely low, the low temperature decomposable organic component (B-2) is converted into a carbide by heat-treating the adsorbent sheet.
  • the adsorbent (Ax) and the skeletal material are fixedly maintained at a high temperature in the adsorbent sheet, and the adsorbent sheet having a large number of air passages as shown in FIGS.
  • An inorganic binder (C) may be applied to fix and maintain the flute portion 2a and the liner portion 2b that constitute the structure.
  • the binder is uniformly dispersed in the sheet, and is cured by reaction, gelation, etc. during heat treatment, and the adsorbent and the skeleton material are firmly fixed during the curing.
  • the thermal decomposition temperature is 300 ° C or higher
  • reaction heat is generated by a highly reactive organic solvent
  • the catalytic property causing the ignition and combustion of the sheet is low
  • the adsorption performance of the adsorbent (Ax) is lowered by the coating.
  • phosphate binders such as sodium hexametaphosphate and silicate binders such as sodium silicate are preferred.
  • the inorganic binder (C-1) for fixing and maintaining the adsorbent (Ax) and the constituent fibers, and the inorganic binder (C-2) for fixing and maintaining the flute portion 2a and the liner portion 2b constituting the honeycomb are made of the same type of binder. There is no need to use it, and it is desirable to use a binder that is more suitable for productivity.
  • the amount of adsorbent (Ax) contained in the adsorbing element of the present embodiment is preferably 40% by weight or more. Considering adsorption performance and productivity, and dropping of adsorbent, 50% by weight or more is preferable. If the content of the adsorbent (Ax) is less than 40%, sufficient adsorption performance cannot be obtained.
  • the upper limit of the weight of the adsorbent is not limited, but 80% by weight or less is the limit for maintaining the shape of the adsorbing element. If it exceeds 80% by weight, the flexibility of the adsorbing sheet is insufficient and it becomes difficult to process.
  • the amount of the organic component (B) contained in the adsorption element of the present embodiment is the combined amount of the organic component used in the production of the adsorption element precursor (precursor element) and the thermal oxide when heat treatment is performed. As 5 to 60% by weight.
  • the content of the organic component (B) is less than 5%, the adsorbent carrying capacity is insufficient, and if it is 60% or more, the amount of adsorbent used must be reduced.
  • the amount of the inorganic binder component (C) contained in the adsorption element of the present embodiment is 5% by weight to 30% by weight. If it is less than 5% by weight, the fixing property between the adsorbent (Ax) and the skeleton material becomes poor, and if it is 30% by weight or more, the flexibility is insufficient, which is not preferable.
  • the structure of the adsorption element in the present embodiment is preferably a honeycomb structure from the viewpoint of mechanical strength and manufacturing cost, and the number of cells is preferably 30 cells / cm 2 to 70 cells / cm 2 . More preferably, the number of cells is 50 to 70 cells / cm 2 . If the number of cells is less than 30 cells / cm 2 , the adsorption performance decreases, and if it exceeds 70 cells / cm 2 , it is necessary to reduce the thickness of the sheet constituting the partition walls of the honeycomb structure. The strength becomes weak and the sheet cannot be manufactured.
  • the cell shape of the honeycomb structure is not particularly specified, but taking the cell shape shown in FIG.
  • the wave height is 1 mm to 3 mm and the wavelength is 2 mm to 4 mm. More preferably, the wave height is 1 mm to 1.6 mm and the wavelength is 2 mm to 2.6 mm.
  • the honeycomb-like structure represents a general three-dimensional structure composed of a plurality of small spaces (cell shapes) surrounded by side walls.
  • the partition wall thickness of the honeycomb structure constituting the adsorption element in the present embodiment is preferably 0.16 mm to 0.25 mm.
  • the thickness is less than 0.16 mm, it is necessary to make the thickness of the sheet constituting the partition thinner, but the mechanical strength of the sheet becomes weak and the sheet cannot be manufactured.
  • the thickness exceeds 0.25 mm, the partition wall becomes thick, and the aforementioned number of cells cannot be obtained.
  • the basis weight of the sheet constituting the adsorption element in the present embodiment is preferably 65 g / m 2 to 90 g / m 2 .
  • it is less than 65 g / m 2 , the mechanical strength of the sheet becomes weak, and the mechanical strength of the honeycomb structure after the heat treatment cannot be maintained.
  • it exceeds 90 g / m 2 the partition wall becomes thick and the aforementioned number of cells cannot be obtained.
  • the adsorbing element in the present embodiment was formed into a honeycomb shape by using a honeycomb forming machine and a sheet-shaped material with an adsorbent (Ax), an organic component (B), and an inorganic binder (C) using a honeycomb forming machine.
  • the precursor element After preparing the honeycomb-like material (precursor element), the precursor element is heated to a temperature equal to or lower than the melting point or decomposition temperature of the heat-resistant organic component of the organic component (B), and at a temperature equal to or higher than the decomposition temperature of the low-temperature decomposable organic component. It can be produced by thermally oxidizing and decomposing low temperature decomposable organic components by heat treatment for min to 60 min, and most of them are carbides or decomposed and disappeared.
  • the organic component (B) used in the production of the adsorbing element of the present embodiment is a low-temperature decomposable organic component that thermally decomposes at 150 ° C. to 300 ° C. in addition to the heat-resistant organic fiber (B-1) such as an aramid fiber. It is desirable to use (B-2).
  • the low temperature decomposable organic component (B-2) serves as a binder for bonding the (Ax) component to the (B-1) component and the (B-1) components during wet papermaking.
  • the component (B-2) covers the adsorbent of the final adsorbing element (adsorbing element of the present embodiment) after forming a sheet-like material or honeycomb-like material. It is also possible to reduce the coating of the adsorbent of the final adsorbing element (adsorbing element of the present embodiment) by using (B-2) as a carbide or by decomposing and disappearing.
  • the heat treatment temperature is lower than the melting point or decomposition temperature (T1 ° C.) of the heat-resistant organic component (B-1), preferably 5 ° C. to 20 ° C. lower (T 1-5 to T 1-20 ° C.), and the low temperature decomposition component (B-2)
  • the decomposition time (T2 ° C.) or higher preferably the decomposition temperature of 100 ° C. to 200 ° C. or higher (T2 + 100 to T2 + 200 ° C.), and the treatment time is 1 minute to 60 minutes, preferably 1 minute to 30 minutes. Usually, 350 to 450 ° C. for 1 to 10 minutes.
  • the planar compressive tensile strength of the adsorption element is preferably 3 kPa or more. If the strength is less than 3 kPa, the adsorbing element is apt to be crushed, and a large number of air passages are not crushed.
  • the basis weight (g / m 2 ) of the adsorption sheet is not particularly limited, but is preferably 10 g / m 2 to 200 g / m 2 . If it is less than 10 g / m 2 , the mechanical strength of the sheet becomes weak, and the mechanical strength of the honeycomb structure cannot be maintained. If it exceeds 200 g / m 2 , the thickness of the sheet becomes too thick, so that the flexibility of the sheet is lost, and cracking of the sheet and dropping of the adsorbent are likely to occur.
  • Example 10 A method for measuring various characteristics of the adsorption sheet in the present embodiment is as follows. Various characteristics of each example and each comparative example are shown in FIG.
  • (1) Measuring method of adsorbent tap density About 40 g of adsorbent is put into a constant-weight container and vacuum dried at 180 ° C. for 15 hours or more. After allowing to cool in a desiccator for 20 minutes, the dry mass is measured to the order of 0.1 mg. Let the mass of this dry sample be S (g). Put all of this dry sample in a 200 mL graduated cylinder and tap the bottom of the graduated cylinder for 3 minutes (tap the bottom of the graduated cylinder). Read the volume (mL) after 3 minutes to the order of 1 mL. Assuming that the filling volume is A (mL), the tap density L (g / mL) is obtained by the following equation. Since 1 mL is 1 cm 3 , the unit of the tap density L is synonymous with g / mL and g / cm 3 .
  • an aluminum silicate-water system (refractive index: 1.66-1.33) is used.
  • Measurement procedure 1. Inject a specified amount of dispersion medium into the measurement cell, perform initial adjustment of the optical system, and perform blank measurement.
  • the adsorbent is put into the cell so that the transmittance of the dispersion medium falls within the range of about 90% to 70%.
  • ultrasonic waves are applied for a specified time (5 minutes) to disperse the sample, and then the measurement is performed again.
  • the adsorption element of the present invention will be described in detail based on the following examples and comparative examples.
  • ⁇ Example 11> The adsorbent A1 has a tap density of 0.54 g / cm 3 , ZSM-5 (MFI) zeolite having an average particle diameter of 3.3 ⁇ m by laser diffraction is 37.5% by weight, and the adsorbent A2 has a tap density of 0.36 g / cm 3 .
  • this sheet-like material was impregnated with a 7% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet.
  • this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb, using a honeycomb forming machine.
  • the amount of the honeycomb forming adhesive used in this case is about 3% by weight based on the weight of the sheet after impregnation.
  • the honeycomb-shaped material was heat-treated in air at 400 ° C. for about 3 minutes to obtain an adsorbing element.
  • the adsorbent A1 has a tap density of 0.39 g / cm 3
  • ZSM-5 (MFI) zeolite having an average particle diameter of 9.9 ⁇ m by laser analysis is 37.5% by weight
  • the adsorbent A2 has a tap density of 0.34 g / cm 3 .
  • this sheet-like material was impregnated with a 7% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet.
  • this precursor sheet was formed into a honeycomb honeycomb (adsorption element precursor) having a cell number of 15 / cm 2 using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming the honeycomb using a honeycomb forming machine.
  • the amount of the honeycomb forming adhesive used in this case is about 3% by weight based on the weight of the sheet after impregnation.
  • the honeycomb-shaped material was heat-treated in air at 400 ° C. for about 3 minutes to obtain an adsorbing element.
  • Adsorbent A1 has a tap density of 0.54 g / cm 3
  • ZSM-5 (MFI) zeolite having an average particle diameter of 3.2 ⁇ m by laser analysis is 60% by weight
  • adsorbent A2 has a tap density of 0.36 g / cm 3.
  • Y-type (FAU) zeolite having an average particle diameter of 1.2 ⁇ m calculated from SEM photo analysis, pulp-like and short-fiber aramid fibers (heat-resistant organic component: B- 1) 17% by weight, PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, 8% by weight, using a wet papermaking machine with a basis weight of 75 g / m 2 A material was created.
  • this sheet-like material was impregnated with a 7% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet.
  • this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb, using a honeycomb forming machine.
  • the amount of the honeycomb forming adhesive used in this case is about 3% by weight based on the weight of the sheet after impregnation.
  • the honeycomb-shaped material was heat-treated in air at 400 ° C. for about 3 minutes to obtain an adsorbing element.
  • adsorbent A1 ZSM-5 (MFI) zeolite having a tap density of 0.39 g / cm 3 , an average particle size of 9.9 ⁇ m by laser analysis is 75% by weight, pulp-like and short-fiber aramid as heat-resistant organic components Fiber (heat-resistant organic component: B-1) is 17% by weight, PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder is 8% by weight, and the basis weight is 75 g / m 2. Sheet material was prepared using a wet papermaking machine by weight.
  • this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet.
  • this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb, using a honeycomb forming machine.
  • the amount of the honeycomb forming adhesive used in this case is about 3% by weight based on the weight of the sheet after impregnation.
  • the adsorbent A1 has a tap density of 0.39 g / cm 3
  • ZSM-5 (MFI) zeolite having an average particle diameter of 10.7 ⁇ m by laser analysis is 15% by weight
  • the adsorbent A2 has a tap density of 0.34 g / cm 3.
  • a Y-type (FAU) zeolite having an average particle size of 0.7 ⁇ m calculated from SEM image analysis was used as a 60% by weight heat-resistant organic component, and pulp-like and short fibrous aramid fibers (heat-resistant organic component: B-1) were used.
  • this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet.
  • this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb, using a honeycomb forming machine.
  • honeycomb adsorption element precursor
  • Adsorbent A1 has a tap density of 0.54 g / cm 3
  • ZSM-5 (MFI) zeolite having an average particle diameter of 3.2 ⁇ m by laser analysis is 15% by weight
  • adsorbent A2 has a tap density of 0.36 g / cm 3.
  • Y-type (FAU) zeolite having an average particle size calculated from SEM image analysis of 1.3 ⁇ m, pulp-like and short-fiber aramid fibers (heat-resistant organic component: B-1) as the heat-resistant organic component 17% by weight, 8% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, and a sheet-like material using a wet papermaking machine at a weight of 75 g / m 2 It was created.
  • FAU Y-type
  • this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb, using a honeycomb forming machine.
  • honeycomb adsorption element precursor
  • Adsorbent A1 has a tap density of 0.34 g / cm 3 , an average particle size calculated from SEM image analysis of 0.7 ⁇ m, 75% by weight of Y-type (FAU) zeolite, a pulp as a heat-resistant organic component, and short fibers 17% by weight of aramid fiber (heat-resistant organic component: B-1), 8% by weight of PVA (low-temperature thermally-decomposable organic component: B-2) as a thermally decomposable organic binder, and a basis weight of 75 g / m 2
  • a sheet-like material was prepared using a wet papermaking machine with a weight of
  • this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
  • this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb, using a honeycomb forming machine.
  • honeycomb adsorption element precursor
  • the adsorbing element of this embodiment has at least one kind of adsorbent, and the adsorbent is calculated from the bulk density and particle size of the adsorbent so that both the strength of the adsorbent and the high content weight ratio of the adsorbent are compatible.
  • an organic component having a melting point or a thermal decomposition temperature of 300 ° C. or higher, an organic component having a thermal decomposition temperature of less than 300 ° C., and an inorganic binder as a skeleton material The adsorbing element is excellent in flexibility and strength, and the adsorbent content weight ratio is extremely high, and the adsorbing performance is excellent.
  • the strength of the adsorbing element is clearly different depending on the total number of adsorbent particles contained in the adsorbing element, and by making the total number of particles not more than 8.0 ⁇ 10 12 , sufficient strength for practical use can be obtained. An adsorbing element with a large area was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Paper (AREA)

Abstract

This adsorbing sheet contains at least one or more adsorbing materials (Ax: x = 1, 2, 3···n). When Axa represents the tap density of the adsorbing material (Ax), Axb represents the spherical volume calculated from the mean particle size of an adsorbing material particle when the adsorbing material particle is assumed to be spherically shaped, and Axc represents the weight ratio (%) of the adsorbing material contained in the adsorbing sheet, this adsorbing sheet is such that the mean particle count Axd contained per 1 g of the adsorbing sheet is represented by Formula 1, the total mean particle count of the at least one adsorbing material (Ax) contained per 1 g of the adsorbing sheet is represented by Formula 2, and the specific tensile strength of the adsorbing sheet is 2N·m/g or greater. Formula 1: Axd = (1/Axa) × (1/Axb) × (Axc/100) (counts/g) ··· Formula 2

Description

吸着シート、吸着シートの製造方法、および、吸着素子Adsorption sheet, production method of adsorption sheet, and adsorption element
 本発明は、空気中に含まれる有機溶剤を、吸着材を用いて吸着除去する吸着シート、吸着シートの製造方法に関するものである。 The present invention relates to an adsorbent sheet for adsorbing and removing an organic solvent contained in air using an adsorbent, and an adsorbent sheet manufacturing method.
 本発明は、例えば空気中に含まれる有機溶剤等の悪臭成分を吸着除去する排ガス処理装置等に使用される吸着素子に関するものである。 The present invention relates to an adsorbing element used in an exhaust gas treatment apparatus for adsorbing and removing malodorous components such as organic solvents contained in the air.
 従来、吸着シートとしては、PVA(ポリビニルアルコール(polyvinyl alcohol))等の有機バインダーおよび有機繊維や無機繊維と、吸着材とを混合抄造してからなる吸着シートが知られている(例えば、特開平9-94422号公報(特許文献1)参照)。 Conventionally, as an adsorbing sheet, an adsorbing sheet formed by mixing and forming an organic binder such as PVA (polyvinyl alcohol) and organic fibers or inorganic fibers and an adsorbent is known (for example, Japanese Patent Laid-Open No. Hei 9 (1998)). No. 9-94422 (Patent Document 1)).
 また、従来、吸着素子としては、吸着材、有機繊維、有機バインダー、無機バインダー等を含む吸着シートをハニカム成形機により、ハニカム成形用接着剤を使用し、ハニカム状に成形した物が知られている(例えば、特開平10-352号公報(特許文献2)参照)。 Conventionally, as an adsorbing element, an adsorbent sheet containing an adsorbent, organic fiber, organic binder, inorganic binder, etc., is formed into a honeycomb shape by using a honeycomb forming adhesive with a honeycomb forming machine. (For example, see JP-A-10-352 (Patent Document 2)).
特開平9-94422号公報JP-A-9-94422 特開平10-352号公報Japanese Patent Laid-Open No. 10-352
 この吸着シートには、ゼオライトの吸着材が含まれると、特許文献1に記載されている。吸着シートの柔軟性や機械的強度には、骨格素材である有機繊維や無機繊維が役割を担う。吸着シートとして高い性能を発揮するには吸着材の含有比率を向上させることが有効である。しかし、反対に骨格素材である有機繊維や無機繊維の含有比率が下がるため、結果的には吸着シートの柔軟性や強度が低下するという課題があった。 This adsorbing sheet is described in Patent Document 1 when an adsorbent of zeolite is included. Organic fibers and inorganic fibers, which are skeleton materials, play a role in the flexibility and mechanical strength of the adsorption sheet. In order to exhibit high performance as an adsorption sheet, it is effective to improve the content ratio of the adsorbent. However, since the content ratio of organic fibers and inorganic fibers, which are skeleton materials, is decreased, there is a problem that the flexibility and strength of the adsorbing sheet are lowered as a result.
 吸着素子にも、ゼオライトが吸着材として含まれると、特許文献2に記載されている。ゼオライトの形状には粉末状、粒子状、もしくはペレット状の形状がある。吸着素子の柔軟性や機械的強度には、骨格素材である有機繊維などが役割を担う。吸着素子として高い性能を発揮するには吸着材の含有比率を向上させることが有効であるが、反対に骨格素材である有機繊維や無機繊維の含有比率が下がるため、結果的には吸着素子の柔軟性や強度は低下するという課題があった。 If the adsorption element contains zeolite as an adsorbent, it is described in Patent Document 2. Zeolite may be in the form of powder, particles, or pellets. Organic fiber, which is a skeleton material, plays a role in the flexibility and mechanical strength of the adsorption element. In order to demonstrate high performance as an adsorbing element, it is effective to improve the content ratio of the adsorbent, but on the contrary, the content ratio of organic fibers and inorganic fibers, which are skeleton materials, decreases. There existed a subject that a softness | flexibility and intensity | strength fell.
 吸着シートおよび吸着素子における吸着材には、特有の見かけ密度(嵩密度(ゆるめかさ密度)およびタップ密度)があり、それには吸着材の化学的な種類(活性炭、ゼオライト種、シリカゲルなど)と、バルクとしての形状(粒径、繊維径など)が密接に関係する。単純に吸着シートに含まれる吸着材の含有量が同じであっても、見かけ密度と粒径から計算される粒子の個数には違いがあり、粒子数が多すぎて骨格素材の絡まりが少なくなり、実用上の強度が得られないという課題があった。 Adsorbents in adsorbent sheets and adsorbent elements have specific apparent densities (bulk density (loose bulk density) and tap density), including the chemical type of the adsorbent (activated carbon, zeolite species, silica gel, etc.) The shape (particle diameter, fiber diameter, etc.) as a bulk is closely related. Even if the adsorbent content in the adsorbing sheet is the same, there is a difference in the number of particles calculated from the apparent density and the particle size, and the number of particles is too large and the entanglement of the skeleton material is reduced. There was a problem that practical strength could not be obtained.
 本発明は上記課題に鑑みてなされたものであり、吸着シートとして優れた機械的強度および吸着性能を備えた吸着シート及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an adsorption sheet having excellent mechanical strength and adsorption performance as an adsorption sheet and a method for producing the same.
 また、本発明は上記課題に鑑みてなされたものであり、吸着素子として十分な柔軟性や強度と高い吸着材含有比率を両立した吸着素子を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an adsorbing element having both sufficient flexibility and strength as an adsorbing element and a high adsorbent content ratio.
 本発明者らは上記課題を解決するため、鋭意研究した結果、遂に本発明を完成するに到った。すなわち、本発明は以下の通りである。 As a result of diligent research to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.
 この吸着シートにおいては、吸着材(Ax:x=1,2,3・・・n)を少なくとも1種類以上含む吸着シートであって、上記吸着材(Ax)のタップ密度をAxa、吸着材粒子を球状と仮定した時に吸着材粒子の平均粒径をから算出した球体積をAxb、上記吸着材が当該吸着シートに含まれる重量比率(%)をAxcとすると、当該吸着シート1gあたりに含まれる平均粒子数Axdは以下の式1で表される。 This adsorbing sheet is an adsorbing sheet containing at least one kind of adsorbent (Ax: x = 1, 2, 3... N), wherein the adsorbent (Ax) has a tap density of Axa and adsorbent particles. If the spherical volume calculated from the average particle diameter of the adsorbent particles is Axb and the weight ratio (%) of the adsorbent contained in the adsorbent sheet is Axc, the adsorbent sheet is included per 1 g of the adsorbent sheet. The average particle number Axd is represented by the following formula 1.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 当該吸着シート1gあたりに含まれる少なくとも1種類以上の吸着材(Ax)の総平均粒子数は、以下の式2で表される。当該吸着シートの比引張強度が2N・m/g以上である。 The total average particle number of at least one kind of adsorbent (Ax) contained per 1 g of the adsorbing sheet is represented by the following formula 2. The adsorbent sheet has a specific tensile strength of 2 N · m / g or more.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 他の形態においては、当該吸着シートに含まれる少なくとも1種類以上の上記吸着材(Ax)の合計比率が、当該吸着シートの40重量%以上である。 In another embodiment, a total ratio of at least one kind of the adsorbent (Ax) contained in the adsorbing sheet is 40% by weight or more of the adsorbing sheet.
 他の形態においては、上記吸着材(Ax)のタップ密度が、0.1g/cm以上である。 In another embodiment, the adsorbent (Ax) has a tap density of 0.1 g / cm 3 or more.
 他の形態においては、上記吸着材(Ax)が、ゼオライトである。 In another embodiment, the adsorbent (Ax) is zeolite.
 この吸着シートの製造方法においては、吸着材(Ax:x=1,2,3・・・n)を少なくとも1種類以上含む吸着シートの製造方法であって、吸着材(Ax)のタップ密度をAxa、吸着材粒子を球状と仮定した時に吸着材粒子の平均粒径をから算出した球体積をAxb、吸着材が吸着シートに含まれる重量比率(%)をAxcとすると、当該吸着シート1gあたりに含まれる平均粒子数Axdは以下の式1で表される。 In this method for manufacturing an adsorbent sheet, an adsorbent sheet manufacturing method including at least one adsorbent (Ax: x = 1, 2, 3... N), wherein the tap density of the adsorbent (Ax) is set. Assuming that Axa is a spherical volume calculated from the average particle diameter of adsorbent particles when the adsorbent particles are spherical, Axb and the weight ratio (%) of the adsorbent contained in the adsorbent sheet is Axc, per 1 g of the adsorbent sheet The average particle number Axd contained in is represented by the following formula 1.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 当該吸着シート1gあたりに含まれる少なくとも1種類以上の吸着材(Ax)の総平均粒子数は、以下の式2で表される。当該吸着シートの比引張強度が2N・m/g以上である。 The total average particle number of at least one kind of adsorbent (Ax) contained per 1 g of the adsorbing sheet is represented by the following formula 2. The adsorbent sheet has a specific tensile strength of 2 N · m / g or more.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 他の形態においては、上記吸着材(Ax)以外に、融点または熱分解温度が300℃以上の有機繊維(B-1)、および、熱分解温度が300℃未満の有機成分(B-2)を含む。 In another embodiment, in addition to the adsorbent (Ax), an organic fiber (B-1) having a melting point or a pyrolysis temperature of 300 ° C. or higher, and an organic component (B-2) having a pyrolysis temperature of less than 300 ° C. including.
 他の形態においては、上記有機繊維が、アラミド系ポリマー、ベンズイミダゾール系ポリマー、ベンゾオキサゾール系ポリマー、ポリイミド系ポリマーから選ばれた少なくとも一種のポリマーである。 In another embodiment, the organic fiber is at least one polymer selected from an aramid polymer, a benzimidazole polymer, a benzoxazole polymer, and a polyimide polymer.
 他の形態においては、上記有機成分が、ポリビニルアルコール系ポリマー、ポリアクリロニトリル系ポリマー、ポリビニルピロリドン系ポリマーから選ばれた少なくとも一種である。 In another embodiment, the organic component is at least one selected from polyvinyl alcohol polymers, polyacrylonitrile polymers, and polyvinylpyrrolidone polymers.
 この吸着素子においては、吸着材(Ax,:x=1,2,3・・・n)を少なくとも1種類以上を含む、多数の空気通路を有する吸着シート(吸着素子前駆体)を用いたハニカム状構造の吸着素子であって、上記吸着材(Ax)のタップ密度をAxa、吸着材粒子を球状と仮定した時に吸着材粒子の平均粒径をから算出した球体積をAxb、上記吸着材(Ax)が上記吸着シートに含まれる重量比率(%)をAxcとすると、上記吸着シート1gあたりに含まれる平均粒子数Axdは以下の式1で表される。 In this adsorbing element, a honeycomb using an adsorbing sheet (adsorbing element precursor) having a large number of air passages including at least one kind of adsorbent (Ax ,: x = 1, 2, 3... N). An adsorbing element having a slab structure, wherein the adsorbent (Ax) has a tap density of Axa, and when the adsorbent particles are assumed to be spherical, the spherical volume calculated from the average particle diameter of the adsorbent particles is Axb, and the adsorbent ( Assuming that the weight ratio (%) of Ax) contained in the adsorption sheet is Axc, the average number of particles Axd contained per 1 g of the adsorption sheet is expressed by the following formula 1.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 当該吸着シート1gあたりに含まれる少なくとも1種類以上の上記吸着材(Ax)の総平均粒子数は、以下の式5で表される。当該吸着素子の平面圧縮強度が3kPa以上である。 The total average particle number of at least one kind of the adsorbent (Ax) contained per 1 g of the adsorbing sheet is represented by the following formula 5. The plane compression strength of the adsorption element is 3 kPa or more.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 上記吸着シートは、骨格素材として繊維を有する、請求項9に記載の吸着素子。 The adsorption element according to claim 9, wherein the adsorption sheet has fibers as a skeleton material.
 他の形態においては、上記吸着シートは、厚みが0.16mm~0.25mmである。 In another embodiment, the suction sheet has a thickness of 0.16 mm to 0.25 mm.
 他の形態においては、上記ハニカム状構造は、セル数30/cm~70/cmを有する。 In another form, the honeycomb structure has a cell count of 30 / cm 2 to 70 / cm 2 .
 他の形態においては、上記吸着素子に含まれる少なくとも1種類以上の上記吸着材(Ax)の合計比率が、上記吸着素子の40重量%以上である、請求項9から請求項12のいずれか1項に記載の吸着素子。 In another embodiment, the total ratio of at least one kind of the adsorbent (Ax) included in the adsorption element is 40% by weight or more of the adsorption element. The adsorbing element according to item.
 他の形態においては、上記吸着材(Ax)のタップ密度が0.1g/cm以上である。 In another embodiment, the adsorbent (Ax) has a tap density of 0.1 g / cm 3 or more.
 他の形態においては、上記吸着材(Ax)が、ゼオライトである。 In another embodiment, the adsorbent (Ax) is zeolite.
 この吸着シート及びその製造方法によれば、吸着シートとして優れた機械的強度および吸着性能を備えた吸着シート及びその製造方法を可能とする。 The adsorbing sheet and the manufacturing method thereof enable an adsorbing sheet having excellent mechanical strength and adsorbing performance as an adsorbing sheet and a manufacturing method thereof.
 この吸着素子によれば、吸着素子として十分な柔軟性や強度と高い吸着材含有比率を両立した吸着素子の提供を可能とする。 This adsorbing element makes it possible to provide an adsorbing element having both sufficient flexibility and strength as an adsorbing element and a high adsorbent content ratio.
実施の形態1における吸着シートの各実施例および各比較例の各種特性を示す図である。It is a figure which shows the various characteristics of each Example of a suction sheet in Embodiment 1, and each comparative example. 実施の形態1における吸着シートの各実施例および各比較例の、焼成後のシート強度(N・m/g)と吸着シートに含まれる吸着剤粒子の総数(個/g)との関係を示す図である。The relationship between the sheet | seat intensity | strength (N * m / g) after baking of each Example and each comparative example of the adsorption sheet in Embodiment 1, and the total number (piece / g) of the adsorbent particle | grains contained in an adsorption sheet is shown. FIG. 実施の形態2における吸着素子の形状であるハニカム状の形状を示す図である。FIG. 6 is a diagram showing a honeycomb shape that is the shape of the adsorption element in the second embodiment. 実施の形態2における吸着素子の形状であるハニカム状の形状を採用した吸着剤の部分拡大である。4 is a partial enlargement of an adsorbent that adopts a honeycomb-like shape that is the shape of the adsorbing element in the second embodiment. 実施の形態2における吸着シートの各実施例および各比較例の各種特性を示す図である。It is a figure which shows the various characteristics of each Example of each adsorption sheet in Embodiment 2, and each comparative example.
 (実施の形態1)
 本発明に基づいた実施の形態1の吸着シート及びその製造方法について、以下、図面を参照しながら説明する。以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。実施の形態における構成を適宜組み合わせて用いることは当初から予定されていることである。
(Embodiment 1)
The suction sheet and the manufacturing method thereof according to Embodiment 1 based on the present invention will be described below with reference to the drawings. In the embodiments described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. The same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated. It is planned from the beginning to use the structures in the embodiments in appropriate combinations.
 [湿式製法による混合抄造(吸着材を内添して紙を作る)]
 吸着材と有機繊維/無機繊維などの骨格素材とを混合抄造して吸着シートを得る場合、吸着材は骨格素材同士の絡み合い点を減らしてしまう。そのため、吸着材の嵩密度および粒径の観点からすると、単位重量当たりの体積を表す比容積が小さい方が吸着材の占有体積が小さくなり、骨格素材同士の絡み合い点を減らしにくいため好ましい。実際には、比容積の逆数である密度が大きい吸着材が好ましいことと同義である。
[Mixed paper making by wet manufacturing method (making paper with adsorbent added internally)]
When an adsorbent and a skeleton material such as organic fiber / inorganic fiber are mixed and made to obtain an adsorbent sheet, the adsorbent reduces the entanglement points between the skeleton materials. Therefore, from the viewpoint of the bulk density and particle size of the adsorbent, it is preferable that the specific volume representing the volume per unit weight is smaller because the occupied volume of the adsorbent becomes smaller and the entanglement points between the skeleton materials are difficult to reduce. Actually, it is synonymous with that an adsorbent having a large density which is the reciprocal of the specific volume is preferable.
 吸着材の形状は、粉末状、粒状、繊維状などがあり、吸着シートに含有される量を考えると、粉体1つ、粒子1つ、繊維1本ではなく多量の粉末、粒子、繊維が担持されるのが一般的である。そのため、粉末、粒子、繊維の集合体としての充填密度としては、ゆるめかさ密度およびタップ密度(かためかさ密度とも言う)が挙げられるが、吸着材が高含有比率で充填された吸着シートを想定するには、緻密に充填された状態を表すタップ密度が特に重要となる。 The shape of the adsorbent includes powder, granule, fiber, etc. Considering the amount contained in the adsorbent sheet, not a single powder, a single particle, and a single fiber, but a large amount of powder, particles, and fibers. Generally, it is supported. Therefore, the packing density as an aggregate of powder, particles, and fibers includes loose bulk density and tap density (also called bulk density), but an adsorbent sheet filled with an adsorbent at a high content ratio is assumed. To achieve this, the tap density representing the densely packed state is particularly important.
 混合抄造が湿式抄紙の場合、吸着材は粉末または粒状が好ましく、粉末状が特に好ましい。粉末のタップ密度は、0.1g/cm~2.0g/cmが好ましく、さらに好ましくは0.2g/cm~1.0g/cmの範囲であるとよい。 When the mixed papermaking is wet papermaking, the adsorbent is preferably powdered or granular, particularly preferably powdery. The tap density of the powder is preferably 0.1 g / cm 3 to 2.0 g / cm 3 , more preferably 0.2 g / cm 3 to 1.0 g / cm 3 .
 [粒径との関係]
 吸着材(Ax)の粒径は、レーザー回折などで評価することができ、平均粒径0.001μm~30.0μmの範囲が好ましく、さらに好ましくは0.01μm~20μmの範囲であるとよい。吸着材の粒径は吸着材の種類に依存しやすく、特にゼオライトは結晶種によって結晶サイズが異なりやすい。ゼオライトの結晶種によっては3μm以下の結晶サイズがあり、その場合は完全な分散状態を得ることが難しく、レーザー回折では実際の粒径より大きな粒径(二次粒子径)を見ている場合もある。その場合は、SEMなどの画像解析で確認された最小単位である結晶サイズの平均値を平均粒径とみなす。
[Relationship with particle size]
The particle size of the adsorbent (Ax) can be evaluated by laser diffraction or the like, and the average particle size is preferably in the range of 0.001 μm to 30.0 μm, more preferably in the range of 0.01 μm to 20 μm. The particle size of the adsorbent is likely to depend on the type of adsorbent, and in particular, the crystal size of zeolite is likely to vary depending on the crystal species. Depending on the crystal type of the zeolite, there is a crystal size of 3 μm or less, in which case it is difficult to obtain a complete dispersion state, and in laser diffraction, a particle size larger than the actual particle size (secondary particle size) may be seen. is there. In that case, the average value of the crystal size, which is the minimum unit confirmed by image analysis such as SEM, is regarded as the average particle size.
 実施の形態における吸着材は、活性炭またはゼオライトである。活性炭およびゼオライトは、低濃度の有機化合物を吸着および脱着するのに優れている。 The adsorbent in the embodiment is activated carbon or zeolite. Activated carbon and zeolite are excellent for adsorbing and desorbing low concentrations of organic compounds.
 活性炭の場合は、形態は、平均粒径が10μm以上50μm以下の粉末、または平均繊維径が10μm以上30μm以下の繊維が挙げられる。活性炭の原料は特に指定しないが、椰子柄、石炭、ピッチ、フェノール樹脂、ポリアクリロニトリル、セルロースなどがある。 In the case of activated carbon, examples of the form include powder having an average particle diameter of 10 μm to 50 μm or fibers having an average fiber diameter of 10 μm to 30 μm. The raw material for the activated carbon is not particularly specified, but there are insulator pattern, coal, pitch, phenol resin, polyacrylonitrile, cellulose and the like.
 実施の形態における吸着材は、好ましくはゼオライトが良い。ゼオライトは、耐熱温度が高く、活性炭よりも吸着時の有機溶剤などとの反応性が低いので、耐熱性に優れ、発熱の危険性が低い。またゼオライトは、活性炭よりもシャープな細孔構造を有するので、有機溶剤などの吸着性能が優れている。ゼオライトの場合は、形態は平均粒径が1μm以上20μm以下の粉末である。ゼオライトは、天然に産出されるゼオライトもあるが、人工合成ゼオライトが適している。具体的には、ベータ型、ZSM-5型、フェリエライト型、モルデナイト型、L型、Y型、A型などがある。 The adsorbent in the embodiment is preferably zeolite. Zeolite has a high heat-resistant temperature and is less reactive with an organic solvent during adsorption than activated carbon, so it has excellent heat resistance and low risk of heat generation. Further, since zeolite has a sharper pore structure than activated carbon, it has excellent adsorption performance for organic solvents and the like. In the case of zeolite, the form is a powder having an average particle size of 1 μm to 20 μm. Some zeolites are naturally produced, but artificial synthetic zeolites are suitable. Specific examples include beta type, ZSM-5 type, ferrierite type, mordenite type, L type, Y type, and A type.
 実施の形態における吸着材は、更に好ましくは、シリカ/アルミナ比の高いハイシリカゼオライトが好ましい。ハイシリカゼオライトは、被処理ガス中から有機溶剤などを吸着するにあたって、被処理ガス中の水分、湿度の影響を受けにくいためである。シリカ/アルミナ比は15以上が良く、更には50以上がより良い。 The adsorbent in the embodiment is more preferably high silica zeolite having a high silica / alumina ratio. This is because high silica zeolite is less susceptible to moisture and humidity in the gas to be treated when adsorbing an organic solvent or the like from the gas to be treated. The silica / alumina ratio is preferably 15 or more, and more preferably 50 or more.
 実施の形態における吸着素子は、吸着材を少なくとも1つ含む。前述の各種の活性炭およびゼオライトのうちの1つまたは複数を選択してもよい。複数の吸着材が選択される場合、その割合は特に限定されない。吸着材は、被処理ガスの処理条件に応じて、適宜選択されればよい。 The adsorption element in the embodiment includes at least one adsorbent. One or more of the various activated carbons and zeolites described above may be selected. When a plurality of adsorbents are selected, the ratio is not particularly limited. The adsorbent may be appropriately selected according to the processing conditions of the gas to be processed.
 吸着材(Ax)のタップ密度を[Axa]、吸着材粒子を球状と仮定した時の平均粒径をから算出した球体積を[Axb]、吸着材が吸着シートに含まれる重量比率を[Axc]とすると、吸着シート1gあたりに含まれる平均粒子数[Axd]は、以下の[式1]のように表される。 The tap density of the adsorbent (Ax) is [Axa], the spherical volume calculated from the average particle diameter when the adsorbent particles are assumed to be spherical is [Axb], and the weight ratio of the adsorbent contained in the adsorbent sheet is [Axc]. ], The average number of particles [Axd] contained per 1 g of the adsorbing sheet is expressed as [Equation 1] below.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 先述したように、吸着材と有機繊維や無機繊維などの骨格素材とを混合抄造して吸着シートを得る場合、吸着材は骨格素材同士の絡み合い点を減らしてしまうため吸着シートの強度低下を招きやすい。そのため、実用的な強度を得るには一定量以下の粒子総数に抑えることが好ましく、吸着シート1gあたりに含まれる少なくとも1種類以上の吸着材Axの総平均粒子数は、以下の[式2]で表され、8.0×1012以下であることが好ましい。 As described above, when adsorbents and skeleton materials such as organic fibers and inorganic fibers are mixed and made to obtain adsorbent sheets, the adsorbents reduce the entanglement points between the skeleton materials, leading to a decrease in the strength of the adsorbent sheets. Cheap. Therefore, in order to obtain a practical strength, it is preferable to suppress the total number of particles to a certain amount or less, and the total average number of particles of at least one kind of adsorbent Ax contained per 1 g of the adsorption sheet is expressed by the following [Equation 2]. It is preferable that it is 8.0 * 10 < 12 > or less.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 [有機繊維B-1]
 本実施の形態における有機成分(B)は、吸着シート製造時に吸着材(Ax)を担持し、吸着シート成形後も担持する担体として作用する成分で、パルプ状や繊維長10mm以下程度の短繊維の有機繊維、ことに融点もしくは熱分解温度が300℃以上の耐熱性に優れた繊維である。熱分解温度が300℃未満では、吸・脱着操作中に遭遇する高温下で著しい強度低下が避けられない。具体的にはアラミド、メタアラミド、ポリベンズイミダゾール(PBI)、ポリベンゾオキサゾール(PBO)、ポリイミド、ポリアミドイミド、ポリエーテルケトン等から作られた繊維である。
[Organic fiber B-1]
The organic component (B) in the present embodiment is a component that supports the adsorbent (Ax) at the time of manufacturing the adsorbing sheet and acts as a carrier that is also supported after forming the adsorbing sheet, and is a pulp-like or short fiber having a fiber length of about 10 mm or less. Organic fibers, especially fibers having a melting point or a thermal decomposition temperature of 300 ° C. or more and excellent heat resistance. If the thermal decomposition temperature is less than 300 ° C., a significant decrease in strength is inevitable at high temperatures encountered during the adsorption / desorption operation. Specifically, it is a fiber made from aramid, meta-aramid, polybenzimidazole (PBI), polybenzoxazole (PBO), polyimide, polyamideimide, polyetherketone or the like.
 [有機バインダーB-2]
 有機成分(B)は、上記耐熱性有機成分(B-1)の他に熱分解温度が300℃未満の物質を含むのが好ましい。該低温度分解性有機成分(B-2)は吸着シートの製造時、吸着材(Ax)を吸着シートに高比率に担持させるバインダーの作用を有する。低温度分解性有機成分としては、PVA(ポリビニルアルコール(polyvinyl alcohol))、澱粉、あるいはポリアクリロニトリル等が挙げられるが、PVAが望ましい。
[Organic binder B-2]
The organic component (B) preferably contains a substance having a thermal decomposition temperature of less than 300 ° C. in addition to the heat-resistant organic component (B-1). The low temperature decomposable organic component (B-2) has a function of a binder for supporting the adsorbent (Ax) on the adsorbing sheet at a high ratio during the production of the adsorbing sheet. Examples of the low temperature decomposable organic component include PVA (polyvinyl alcohol), starch, polyacrylonitrile and the like, and PVA is preferable.
 低温度分解性有機成分(B-2)による吸着材(Ax)の被覆が大きく吸着性能が著しく低い場合は、吸着シートを高温熱処理することにより低温度分解性有機成分(B-2)を炭化物あるいは分解消失せしめ、吸着材(Ax)の被覆を少なくすることも可能である。 If the adsorbent (Ax) is coated with the low temperature decomposable organic component (B-2) and the adsorption performance is extremely low, the low temperature decomposable organic component (B-2) is converted into a carbide by heat-treating the adsorbent sheet. Alternatively, it is possible to reduce the amount of the adsorbent (Ax) coating by dissociation and disappearance.
 [無機バインダーC]
 本実施の形態では、吸着シートの高温下での吸着材(Ax)と骨格素材とを定着維持させるのに無機バインダー(C)を付与しても構わない。例えば水に可溶であり、バインダーがシートに均一に分散され、熱処理の際、反応、ゲル化等によって硬化し、その硬化の際に吸着材と骨格素材を強固に定着せしめるものである。熱分解温度が300℃以上であり、反応性の高い有機溶剤により反応熱を生じ、シートの着火、燃焼の原因となる触媒性が低く、吸着材(Ax)の吸着性能をその被覆により低下させにくい物であることが好ましい。例えば、ヘキサメタリン酸ソーダ等のリン酸塩系バインダー、ケイ酸ソーダ等のケイ酸塩系バインダーが好ましい。
[Inorganic binder C]
In the present embodiment, an inorganic binder (C) may be added to fix and maintain the adsorbent (Ax) and the skeleton material at a high temperature of the adsorbent sheet. For example, it is soluble in water, the binder is uniformly dispersed in the sheet, and is cured by reaction, gelation, etc. during the heat treatment, and the adsorbent and the skeleton material are firmly fixed during the curing. The thermal decomposition temperature is 300 ° C or higher, reaction heat is generated by a highly reactive organic solvent, the catalytic property causing the ignition and combustion of the sheet is low, and the adsorption performance of the adsorbent (Ax) is lowered by the coating. It is preferable that it is a difficult thing. For example, phosphate binders such as sodium hexametaphosphate and silicate binders such as sodium silicate are preferred.
 [吸着剤Ax含有量]
 本実施の形態の耐熱性吸着性シートに含まれる吸着材(Ax)の量は40重量%以上がよい。吸着性能及び生産性、吸着材の脱落を考慮すると50重量%以上が好ましい。吸着材(Ax)の含有量が40%未満では充分な吸着性能が得られない。吸着剤(Ax)の重量の上限に制限はないが、十分なシート強度を維持するには80重量%が限界である。80重量%を超えると、吸着シートの柔軟性が不足し加工しにくくなる。本実施の形態の耐熱性吸着シートに含まれる有機成分(B)の量は、吸着シート製造時に用いた有機成分及びその熱酸化物を合わせた量として5重量%~60重量%である。
[Adsorbent Ax content]
The amount of adsorbent (Ax) contained in the heat-resistant adsorbent sheet of the present embodiment is preferably 40% by weight or more. Considering adsorption performance and productivity, and dropping of adsorbent, 50% by weight or more is preferable. If the content of the adsorbent (Ax) is less than 40%, sufficient adsorption performance cannot be obtained. There is no upper limit on the weight of the adsorbent (Ax), but 80% by weight is the limit to maintain sufficient sheet strength. If it exceeds 80% by weight, the flexibility of the adsorbing sheet is insufficient and it becomes difficult to process. The amount of the organic component (B) contained in the heat-resistant adsorbing sheet of the present embodiment is 5% to 60% by weight as the total amount of the organic component and its thermal oxide used at the time of manufacturing the adsorbing sheet.
 有機成分(B)の含有量が5%未満では吸着材の担持能が不足し、60%以上では吸着材の使用量を少なくしなければならない不都合が生じる。本実施の形態の吸着シートに無機バインダー成分(C)が含まれる場合は、無機バインダー成分(C)は5重量%~30重量%が好ましい。5重量%未満では吸着材(Ax)と骨格素材同士の定着性が乏しくなり、30%以上になると柔軟性が不足する為好ましくない。 If the content of the organic component (B) is less than 5%, the adsorbent carrying capacity is insufficient, and if it is 60% or more, the amount of adsorbent used must be reduced. When the inorganic binder component (C) is contained in the adsorption sheet of the present embodiment, the inorganic binder component (C) is preferably 5% by weight to 30% by weight. If it is less than 5% by weight, the fixing property between the adsorbent (Ax) and the skeleton material becomes poor, and if it exceeds 30%, the flexibility is insufficient, which is not preferable.
 [吸着シートの製造方法]
 本実施の形態の吸着シートは、例えば吸着材(Ax)、有機成分(B)及び無機バインダー(C)、必要に応じてガラス繊維、高分子凝集剤を用いて湿式抄紙法で製造することができる。
[Method of manufacturing suction sheet]
The adsorbing sheet of the present embodiment can be manufactured by a wet papermaking method using, for example, an adsorbing material (Ax), an organic component (B) and an inorganic binder (C), and if necessary, glass fiber and a polymer flocculant. it can.
 [製法におけるB-1とB-2の考え方]
 本実施の形態の吸着シートの製造方法に用いられる有機成分(B)は、上記アラミド繊維等の耐熱性有機繊維(B-1)の他に150℃~300℃で熱分解する低温度分解性有機成分(B-2)を用いる事が望ましい。低温度分解性有機成分(B-2)は湿式抄紙時の(Ax)成分を(B-1)成分に及び(B-1)成分同士を接合させるためのバインダーとして働く。
[Concept of B-1 and B-2 in manufacturing method]
The organic component (B) used in the production method of the adsorbing sheet of the present embodiment is low temperature decomposable that thermally decomposes at 150 ° C. to 300 ° C. in addition to the heat-resistant organic fiber (B-1) such as aramid fiber. It is desirable to use an organic component (B-2). The low temperature decomposable organic component (B-2) serves as a binder for bonding the (Ax) component to the (B-1) component and the (B-1) components during wet papermaking.
 (B-2)成分はシート状物、ハニカム状物成形後の最終吸着素子(本実施の形態の吸着素子)の吸着材を被覆するため、著しく吸着性能を阻害する場合は、高温熱処理を行い(B-2)を炭化物とするか、または分解消失せしめ最終吸着素子(本実施の形態の吸着素子)の吸着材を被覆を少なくすることも可能である。 The component (B-2) covers the adsorbent of the final adsorbing element (adsorbing element of the present embodiment) after forming a sheet-like material or honeycomb-like material. It is also possible to reduce the coating of the adsorbent of the final adsorbing element (adsorbing element of the present embodiment) by using (B-2) as a carbide or decomposing and disappearing.
 上記シート状物及びハニカム状物で熱処理を行う場合、加熱オーブン等を用い空気雰囲気中で実施するのが好ましい。熱処理温度は耐熱性有機成分(B-1)の融点もしくは分解温度(T1℃)以下好ましくは5℃~20℃低く(T1-5℃~T1-20℃)、低温度分解成分(B-2)の分解温度(T2℃)以上、好ましくは分解温度の100℃~200℃以上(T2+100℃~T2+200℃)の温度で処理時間は1分~60分、好ましくは1分~30分でとよい。通常350℃~450℃で、1分~10分である。 When the heat treatment is performed on the sheet-like material and the honeycomb-like material, it is preferably performed in an air atmosphere using a heating oven or the like. The heat treatment temperature is equal to or lower than the melting point or decomposition temperature (T1 ° C.) of the heat-resistant organic component (B-1), preferably 5 ° C. to 20 ° C. (T 1-5 ° C. to T 1-20 ° C.), and the low temperature decomposition component (B-2). ) Decomposition temperature (T2 ° C.) or higher, preferably at a decomposition temperature of 100 ° C. to 200 ° C. or higher (T2 + 100 ° C. to T2 + 200 ° C.), and the treatment time is 1 minute to 60 minutes, preferably 1 minute to 30 minutes. . Usually, 350 ° C. to 450 ° C. and 1 minute to 10 minutes.
 吸着シートの比引張強度は2N/m・g以上が好ましい。2N/m・gより小さい強度では吸着シートの破断や割れが生じやすく実用的ではない。 The specific tensile strength of the adsorption sheet is preferably 2 N / m · g or more. If the strength is less than 2 N / m · g, the adsorbing sheet is likely to break or crack, which is not practical.
 吸着シートの坪量(g/m)に特に制限はないが、10g/m~200g/mが好ましい。10g/m未満の場合、シートの機械強度が弱くなり、ハニカム構造体の機械強度を維持できない。200g/mを超えると、シート厚みが厚くなりすぎるためシートの柔軟性がなくなり、シートのひび割れや吸着材の脱落が生じやすい。 The basis weight (g / m 2 ) of the adsorption sheet is not particularly limited, but is preferably 10 g / m 2 to 200 g / m 2 . When it is less than 10 g / m 2 , the mechanical strength of the sheet becomes weak and the mechanical strength of the honeycomb structure cannot be maintained. If it exceeds 200 g / m 2 , the thickness of the sheet becomes too thick, so that the flexibility of the sheet is lost, and cracking of the sheet and dropping of the adsorbent are likely to occur.
 (実施例)
 本実施の形態における吸着シートの諸特性の測定法は次の通りである。各実施例および各比較例の各種特性を図1および図2に示す。
(Example)
A method for measuring various characteristics of the adsorption sheet in the present embodiment is as follows. Various characteristics of each example and each comparative example are shown in FIG. 1 and FIG.
 (1)吸着材のタップ密度の測定方法
 恒量した容器に吸着材約40gを入れ、180℃15時間以上真空乾燥させる。デシケータ内で20分放冷したのち、乾燥質量を0.1mgの桁まで測る。この乾燥試料の質量をS(g)とする。200mLメスシリンダーにこの乾燥試料を全量入れ、3分間メスシリンダーの底面をタッピング(メスシリンダー底面をたたく)する。3分後の容積(mL)を1mLの桁まで読み取る。これを充填容積をA(mL)とすると、タップ密度L(g/mL)は次の式3で求まる。また、1mLは1cmであるため、タップ密度Lの単位はg/mLとg/cmは同義である。
(1) Measuring method of adsorbent tap density About 40 g of adsorbent is put into a constant-weight container and vacuum dried at 180 ° C. for 15 hours or more. After allowing to cool in a desiccator for 20 minutes, the dry mass is measured to the order of 0.1 mg. Let the mass of this dry sample be S (g). Put all of this dry sample in a 200 mL graduated cylinder and tap the bottom of the graduated cylinder for 3 minutes (tap the bottom of the graduated cylinder). Read the volume (mL) after 3 minutes to the order of 1 mL. Assuming that the filling volume is A (mL), the tap density L (g / mL) is obtained by the following equation 3. Since 1 mL is 1 cm 3 , the unit of the tap density L is synonymous with g / mL and g / cm 3 .
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 (2)吸着材の平均粒径の測定方法および粒子を球形と仮定した時の球体積の算出方法
 吸着材は事前にSEM画像観察で結晶粒径を確認し、結晶粒径が3μm以上の場合はレーザー回折散乱式粒度分布測定装置による平均粒径の測定方法を用い、結晶粒径が3μmより小さい場合は、SEM画像解析による平均粒径の測定方法を用い、吸着材の平均粒径を算出する。
(2) Method of measuring the average particle size of the adsorbent and calculating the sphere volume when the particles are assumed to be spherical When the adsorbent is confirmed by SEM image observation in advance, the crystal particle size is 3 μm or more. Calculates the average particle size of the adsorbent using the average particle size measurement method by SEM image analysis when the crystal particle size is smaller than 3 μm. To do.
 <レーザー回折散乱式粒度分布測定装置による平均粒径の測定方法>
 測定装置に、堀場製作所のLA―950V2を使用し、測定セルには、湿式循環型セル(フローセル)を使用し、分散媒としては、ヘキサメタリン酸ナトリウム(0.1mass%水溶液)を使用し、測定対象の屈折率設定には、ケイ酸アルミニウム-水系(屈折率:1.66―1.33)を使用する。
<Measuring method of average particle diameter by laser diffraction / scattering particle size distribution analyzer>
LA-950V2 from Horiba, Ltd. is used as the measurement device, wet circulation type cell (flow cell) is used as the measurement cell, and sodium hexametaphosphate (0.1 mass% aqueous solution) is used as the dispersion medium. For setting the refractive index of an object, an aluminum silicate-water system (refractive index: 1.66-1.33) is used.
 [測定手順]
 1.測定セルに分散媒を規定量注水し,光学系の初期調整,およびブランク測定を行う。
[Measurement procedure]
1. Inject a specified amount of dispersion medium into the measurement cell, perform initial adjustment of the optical system, and perform blank measurement.
 2.ブランク測定後、分散媒の透過率がおよそ90%~70%の範囲に入るように、セルに吸着材を投入する。 2. After the blank measurement, the adsorbent is put into the cell so that the transmittance of the dispersion medium falls within the range of about 90% to 70%.
 3.脱泡のために数秒程度超音波(周波数20kHz)を印加した後、1度測定を行う。 3. After applying ultrasonic waves (frequency 20 kHz) for about several seconds for defoaming, measurement is performed once.
 4.測定後,超音波を規定時間(5分)印加してサンプルを分散させた後、再度測定を行う。 4. After the measurement, ultrasonic waves are applied for a specified time (5 minutes) to disperse the sample, and then the measurement is performed again.
 5.超音波を規定時間(5分)印加して再度測定を行ったデータから解析を行い、メジアン径(累積頻度が50%になる粒径)を平均粒径とする。 5. Analysis is performed from data obtained by applying ultrasonic waves for a specified time (5 minutes) and measuring again, and the median diameter (particle diameter at which the cumulative frequency is 50%) is defined as the average particle diameter.
 <SEM画像解析による平均粒径の測定方法>
 測定装置には、日立走査電子顕微鏡(SU1510)を用い、加速電圧は、15.0kVとする。
<Measuring method of average particle diameter by SEM image analysis>
A Hitachi scanning electron microscope (SU1510) is used as the measuring device, and the acceleration voltage is 15.0 kV.
 [測定手順]
 1.SEM観察台に両面テープを張り、吸着材を両面テープに散布し、過剰量の吸着材を取り除く。
[Measurement procedure]
1. Put double-sided tape on the SEM observation stand, spread the adsorbent on the double-sided tape, and remove the excessive amount of adsorbent.
 2.吸着材を塗布したSEM観察台に白金蒸着を行う。
 3.SEM画像観察装置に2.の観察台をセットする。
2. Platinum vapor deposition is performed on the SEM observation platform coated with the adsorbent.
3. 1. SEM image observation device Set the observation platform.
 4.上記の加速電圧で3000倍の写真を場所を変えて3枚撮影する。
 5.3000倍で撮影した写真が紙面にすべておさまる最大のサイズでA4の紙に印刷する。
4). Take 3 pictures at 3000 times with the above acceleration voltage.
5. Print on A4 paper at the maximum size that fits all the photos taken at 3000x on the paper.
 6.印刷した写真に鉛筆で対角線を2本描き、対角線上にある境界が明確な粒子を20個選定し、短径と長径の2か所を定規で測る。SEM写真のスケール(μm)の長さを定規で測り、定規で測った粒子の短径と長径をμmに換算する。 6. Draw two diagonal lines with a pencil on the printed photo, select 20 particles with a clear boundary on the diagonal line, and measure the two points of the minor axis and major axis with a ruler. The length of the SEM photograph scale (μm) is measured with a ruler, and the minor axis and major axis of the particle measured with the ruler are converted into μm.
 7.6.の作業を3000倍で撮影した3枚の写真で行い、合計60個の粒子の短径と長径を算出し、すべての値の平均値をSEM観察による平均粒径(μm)とする。 7.6. The above operation is performed with three photographs taken at 3000 times, the short diameter and long diameter of a total of 60 particles are calculated, and the average value of all values is taken as the average particle diameter (μm) by SEM observation.
 <粒子を球形と仮定した時の球体積の算出方法>
 レーザー回折またはSEM画像解析で算出した平均粒径をR(μm)とすると、粒子を球形と仮定した時の粒子1個あたりの球体積Q(cm/個)は次の式4で求める。
<Calculation method of sphere volume when particle is assumed to be spherical>
When the average particle diameter calculated by laser diffraction or SEM image analysis is R (μm), the spherical volume Q (cm 3 / piece) per particle when the particle is assumed to be spherical is obtained by the following equation 4.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 (3)比引張強さの測定方法
 JIS-P-8113「紙および板紙-引っ張り特性の試験方法」に準じて測定した。試験幅は、15mm、長さは50mmとした。
(3) Method for measuring specific tensile strength Measured according to JIS-P-8113 “Paper and paperboard—Testing method for tensile properties”. The test width was 15 mm and the length was 50 mm.
 以下の実施例および比較例に基づいて本発明の吸着シートについて詳細に説明する。
 <実施例1>
 吸着材A1としてタップ密度が0.54g/cm、レーザー回折による平均粒径が3.3μmのZSM-5(MFI)ゼオライトを37.5重量%、吸着材A2としてタップ密度が0.36g/cm、SEM画像解析から算出した平均粒径が1.2μmのY型(FAU)ゼオライトを37.5重量%、耐熱性有機成分としてパルプ状および短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、および、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%を、坪量100g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
The adsorbing sheet of the present invention will be described in detail based on the following examples and comparative examples.
<Example 1>
The adsorbent A1 has a tap density of 0.54 g / cm 3 , ZSM-5 (MFI) zeolite having an average particle diameter of 3.3 μm by laser diffraction is 37.5% by weight, and the adsorbent A2 has a tap density of 0.36 g / cm 3 . 37.5% by weight of cm 3 , Y-type (FAU) zeolite having an average particle size calculated from SEM image analysis of 1.2 μm, and pulp-like and short-fiber aramid fibers (heat-resistant organic component: B) as the heat-resistant organic component -1) and 17% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, and a weight of 100 g / m 2 basis weight. A use sheet was made.
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。その後、焼成炉にて空気中400℃で約3分間熱処理を行い、吸着シートを得た。 Next, this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
 <実施例2>
 吸着材A1としてタップ密度が0.39g/cm、レーザー解析による平均粒径が9.9μmのZSM-5(MFI)ゼオライトを37.5重量%、吸着材A2としてタップ密度が0.34g/cm、SEM写真解析から算出した平均粒径が0.7μmのY型(FAU)ゼオライトを37.5重量%、耐熱性有機成分としてパルプ状および短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、および、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%を、坪量100g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
<Example 2>
The adsorbent A1 has a tap density of 0.39 g / cm 3 , ZSM-5 (MFI) zeolite having an average particle diameter of 9.9 μm by laser analysis is 37.5% by weight, and the adsorbent A2 has a tap density of 0.34 g / cm 3 . 37.5% by weight of cm 3 , Y-type (FAU) zeolite having an average particle size of 0.7 μm calculated from SEM photographic analysis, and pulp-like and short-fiber aramid fibers (heat-resistant organic component: B) as the heat-resistant organic component -1) and 17% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, and a weight of 100 g / m 2 basis weight. A use sheet was made.
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。その後、焼成炉にて空気中400℃で約3分間熱処理を行い、吸着シートを得た。 Next, this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
 <実施例3>
 吸着材A1としてタップ密度が0.58g/cm、レーザー解析による平均粒径が4.8μmのZSM-5(MFI)ゼオライトを37.5重量%、吸着材A2としてタップ密度が0.34g/cm、SEM写真解析から算出した平均粒径が0.7μmのY型(FAU)ゼオライトを37.5重量%、耐熱性有機成分としてパルプ状および短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、および、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%を、坪量100g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
<Example 3>
The adsorbent A1 has a tap density of 0.58 g / cm 3 , 37.5% by weight of ZSM-5 (MFI) zeolite having an average particle size of 4.8 μm by laser analysis, and the adsorbent A2 has a tap density of 0.34 g / cm 3 . 37.5% by weight of cm 3 , Y-type (FAU) zeolite having an average particle size of 0.7 μm calculated from SEM photographic analysis, and pulp-like and short-fiber aramid fibers (heat-resistant organic component: B) as the heat-resistant organic component -1) and 17% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, and a weight of 100 g / m 2 basis weight. A use sheet was made.
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。その後、焼成炉にて空気中400℃で約3分間熱処理を行い、吸着シートを得た。 Next, this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
 <実施例4>
 吸着材A1としてタップ密度が0.54g/cm、レーザー解析による平均粒径が3.2μmのZSM-5(MFI)ゼオライト(MFI)を60重量%、吸着材A2としてタップ密度が0.36g/cm、SEM写真解析から算出した平均粒径が1.2μmのY型(FAU)ゼオライトを37.5重量%、耐熱性有機成分としてパルプ状および短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、および、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%を、坪量100g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
<Example 4>
Adsorbent A1 has a tap density of 0.54 g / cm 3 , ZSM-5 (MFI) zeolite (MFI) having an average particle diameter of 3.2 μm by laser analysis is 60% by weight, and adsorbent A2 has a tap density of 0.36 g. 37.5% by weight of Y-type (FAU) zeolite having an average particle size calculated from SEM photographic analysis of 1.2 μm / cm 3 , and pulp-like and short fibrous aramid fibers (heat-resistant organic component: B-1) 17% by weight and PVA (low-temperature thermally decomposable organic component: B-2) 8% by weight as a thermally decomposable organic binder at a weight of 100 g / m 2 basis weight. A sheet was created using.
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。その後、焼成炉にて空気中400℃で約3分間熱処理を行い、吸着シートを得た。 Next, this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
 <実施例5>
 吸着材A1としてタップ密度が0.39g/cm、レーザー解析による平均粒径が9.9μmのZSM-5(MFI)ゼオライトを75重量%、耐熱性有機成分としてパルプ状および短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、および、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%を、坪量100g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
<Example 5>
The adsorbent A1 has a tap density of 0.39 g / cm 3 , ZSM-5 (MFI) zeolite having an average particle diameter of 9.9 μm by laser analysis of 75% by weight, and pulp and short fiber aramid fibers as heat-resistant organic components 17% by weight of (heat-resistant organic component: B-1) and 8% by weight of PVA (low-temperature thermally-decomposable organic component: B-2) as a thermally decomposable organic binder have a basis weight of 100 g / m 2. Sheet material was prepared using a wet papermaking machine by weight.
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。その後、焼成炉にて空気中400℃で約3分間熱処理を行い、吸着シートを得た。 Next, this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
 <実施例6>
 吸着材A1としてタップ密度が0.58g/cm、レーザー解析による平均粒径が4.8μmのZSM-5(MFI)ゼオライトを75重量%、耐熱性有機成分としてパルプ状および短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%とを、坪量100g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
<Example 6>
As adsorbent A1, ZSM-5 (MFI) zeolite having a tap density of 0.58 g / cm 3 , an average particle diameter of 4.8 μm by laser analysis is 75% by weight, and pulp-like and short-fiber aramid fibers as heat-resistant organic components 17% by weight of (heat-resistant organic component: B-1), 8% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, and a basis weight of 100 g / m 2 A sheet was prepared using a wet papermaking machine.
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。その後、焼成炉にて空気中400℃で約3分間熱処理を行い、吸着シートを得た。 Next, this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
 <実施例7>
 吸着材A1としてタップ密度が0.54g/cm、レーザー解析による平均粒径が3.2μmのZSM-5(MFI)ゼオライトを75重量%、耐熱性有機成分としてパルプ状および短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、および、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%を、坪量100g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
<Example 7>
As adsorbent A1, ZSM-5 (MFI) zeolite having a tap density of 0.54 g / cm 3 , an average particle diameter of 3.2 μm by laser analysis is 75% by weight, and pulp and short fiber aramid fibers as heat-resistant organic components 17% by weight of (heat-resistant organic component: B-1) and 8% by weight of PVA (low-temperature thermally-decomposable organic component: B-2) as a thermally decomposable organic binder have a basis weight of 100 g / m 2. Sheet material was prepared using a wet papermaking machine by weight.
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。その後、焼成炉にて空気中400℃で約3分間熱処理を行い、吸着シートを得た。 Next, this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
 <実施例8>
 吸着材A1としてタップ密度が0.59g/cm、SEM画像解析から算出した平均粒径が0.8μmのベータ型(BEA)ゼオライトを75重量%、耐熱性有機成分としてパルプ状および短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、および、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%を、坪量100g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
<Example 8>
Adsorbent A1 has a tap density of 0.59 g / cm 3 , an average particle size calculated from SEM image analysis of 0.8 μm beta type ( * BEA) zeolite, 75% by weight, and heat-resistant organic pulp and short fibers 17% by weight of aramid fiber (heat-resistant organic component: B-1) and 8% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, basis weight 100 g / m A sheet-like material was prepared using a wet papermaking machine with a weight of 2 .
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。その後、焼成炉にて空気中400℃で約3分間熱処理を行い、吸着シートを得た。 Next, this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
 <比較例1>
 吸着材A1としてタップ密度が0.39g/cm、レーザー解析による平均粒径が10.7μmのZSM-5(MFI)ゼオライトを15重量%、吸着材A2としてタップ密度が0.34g/cm3、SEM画像解析から算出した平均粒径が0.7μmのY型(FAU)ゼオライトを60重量%、耐熱性有機成分としてパルプ状および短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、および、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%を、坪量100g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
<Comparative Example 1>
The adsorbent A1 has a tap density of 0.39 g / cm 3 , ZSM-5 (MFI) zeolite having an average particle diameter of 10.7 μm by laser analysis is 15% by weight, and the adsorbent A2 has a tap density of 0.34 g / cm 3. 60% by weight of Y-type (FAU) zeolite having an average particle size of 0.7 μm calculated from SEM image analysis, and 17 pulp-like and short fibrous aramid fibers (heat-resistant organic component: B-1) as heat-resistant organic components Using a wet papermaking machine with a weight of 8% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder and a weight of 100 g / m 2 , a sheet-like material is obtained. Created.
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。その後、焼成炉にて空気中400℃で約3分間熱処理を行い、吸着シートを得た。 Next, this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
 <比較例2>
 吸着材A1としてタップ密度が0.54g/cm、レーザー解析による平均粒径が3.2μmのZSM-5(MFI)ゼオライトを15重量%、吸着材A2としてタップ密度が0.36g/cm、SEM画像解析から算出した平均粒径が1.3μmのY型(FAU)ゼオライトを60重量%、耐熱性有機成分としてパルプ状および短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%とを、坪量100g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
<Comparative example 2>
Adsorbent A1 has a tap density of 0.54 g / cm 3 , ZSM-5 (MFI) zeolite having an average particle diameter of 3.2 μm by laser analysis is 15% by weight, and adsorbent A2 has a tap density of 0.36 g / cm 3. 60% by weight of Y-type (FAU) zeolite with an average particle size calculated from SEM image analysis of 1.3 μm, and pulp-like and short-fiber aramid fibers (heat-resistant organic component: B-1) as the heat-resistant organic component 17% by weight, 8% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, and a weight of 100 g / m 2 basis weight. Created.
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。その後、焼成炉にて空気中400℃で約3分間熱処理を行い、吸着シートを得た。 Next, this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
 <比較例3>
 吸着材A1としてタップ密度が0.34g/cm、SEM画像解析から算出した平均粒径が0.7μmのY型(FAU)ゼオライトを75重量%、耐熱性有機成分としてパルプ状および短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、および、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%を、坪量100g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
<Comparative Example 3>
The adsorbent A1 has a tap density of 0.34 g / cm 3 , an average particle diameter calculated from SEM image analysis of 0.7 μm, 75% by weight of Y-type (FAU) zeolite, and heat-resistant organic components such as pulp and short fibers 17% by weight of aramid fiber (heat-resistant organic component: B-1), 8% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, and a basis weight of 100 g / m 2 A sheet-like material was prepared using a wet papermaking machine at a weight of
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。その後、焼成炉にて空気中400℃で約3分間熱処理を行い、吸着シートを得た。 Next, this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
 本実施の形態の吸着シートは、吸着材を少なくとも1種類以上有する湿式抄紙法で製造される吸着シートであって、吸着材は吸着シートの強度と吸着材の高含有重量比率が両立するように、吸着材の嵩密度および粒径から算出されるシート中に含まれる総粒子数を適切に設定し、融点または熱分解温度が300℃以上の有機成分と熱分解温度が300℃未満の有機成分と無機バインダーを骨格素材とすることで、吸着シートとしての柔軟性や強度に優れ、また、吸着材の含有重量比率が極めて高いため吸着性能も優れている。 The adsorbing sheet of the present embodiment is an adsorbing sheet manufactured by a wet papermaking method having at least one adsorbent, and the adsorbent is compatible with the strength of the adsorbing sheet and the high content weight ratio of the adsorbent. An organic component having a melting point or a thermal decomposition temperature of 300 ° C. or higher and an organic component having a thermal decomposition temperature of less than 300 ° C. are appropriately set based on the total number of particles contained in the sheet calculated from the bulk density and particle size of the adsorbent. And an inorganic binder as a skeleton material are excellent in flexibility and strength as an adsorbing sheet, and adsorbing performance is also excellent because the adsorbent content weight ratio is extremely high.
 以上の各実施例および各比較例に示すように、吸着シートに含まれる吸着材粒子の総数によって吸着シートの強度は明確に差があり、粒子の総数を8.0×1012個以下にすることで実用性に十分な強度を持つ吸着素子シートを得ることができた。 As shown in each of the above Examples and Comparative Examples, the strength of the adsorbing sheet is clearly different depending on the total number of adsorbent particles contained in the adsorbing sheet, and the total number of particles is 8.0 × 10 12 or less. Thus, an adsorbing element sheet having sufficient strength for practical use could be obtained.
 (実施の形態2)
 本発明に基づいた実施の形態2の吸着素子について、以下、図面を参照しながら説明する。以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。実施の形態における構成を適宜組み合わせて用いることは当初から予定されていることである。
(Embodiment 2)
The adsorption element according to Embodiment 2 based on the present invention will be described below with reference to the drawings. In the embodiments described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. The same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated. It is planned from the beginning to use the structures in the embodiments in appropriate combinations.
 [湿式製法による混合抄造(吸着材を内添して紙を作る)]
 吸着材と有機繊維や無機繊維などの骨格素材とを混合抄造して吸着シートをハニカム成形機により、ハニカム成形用接着剤を使用し、ハニカム状に成形した吸着素子を得る場合、吸着材は骨格素材同士の絡み合い点を減らしてしまう。そのため、吸着材の嵩密度および粒径の観点からすると、単位重量当たりの体積を表す比容積が小さい方が吸着材の占有体積が小さくなり、骨格素材同士の絡み合い点を減らしにくいため好ましい。
[Mixed paper making by wet manufacturing method (making paper with adsorbent added internally)]
When the adsorbent and the skeleton material such as organic fiber or inorganic fiber are mixed and made, and the adsorbent sheet is obtained by using a honeycomb molding machine with a honeycomb forming adhesive to obtain an adsorbing element formed into a honeycomb shape, the adsorbent is a skeleton. It reduces the tangling points between materials. Therefore, from the viewpoint of the bulk density and particle size of the adsorbent, it is preferable that the specific volume representing the volume per unit weight is smaller because the occupied volume of the adsorbent becomes smaller and the entanglement points between the skeleton materials are difficult to reduce.
 実際には、比容積の逆数である密度が大きい吸着材が好ましいことと同義である。吸着材の形状は粉末状、粒状、繊維状などがあり、吸着素子に含有される量を考えると、粉体1つ、粒子1つ、繊維1本ではなく多量の粉末、粒子、繊維が担持されるのが一般的である。そのため、粉末、粒子、繊維の集合体としての充填密度としてはゆるめかさ密度やタップ密度(かためかさ密度とも言う)があるが、吸着素子としてより吸着材を高含有重量比率にするためにも、より緻密に充填された状態を表すタップ密度が特に重要となる。 Actually, it is synonymous with the fact that an adsorbent having a large density, which is the reciprocal of the specific volume, is preferable. Adsorbents can be in the form of powder, granule, fiber, etc. Considering the amount contained in the adsorbent element, a large amount of powder, particles and fibers are supported instead of one powder, one particle and one fiber. It is common to be done. Therefore, there are loose bulk density and tap density (also referred to as bulk density) as the packing density of powder, particles, and fiber aggregates. The tap density representing a more densely packed state is particularly important.
 混合抄造が湿式抄紙の場合、吸着材は粉末や粒状が好ましく、粉末状が特に好ましい。粉末のタップ密度は0.1g/cm~2.0g/cmが好ましく、さらに好ましくは0.2~1.0g/cmの範囲であるとよい。 When the mixed papermaking is wet papermaking, the adsorbent is preferably powdered or granular, particularly preferably powdery. The tap density of the powder is preferably 0.1 g / cm 3 to 2.0 g / cm 3 , more preferably 0.2 to 1.0 g / cm 3 .
 [粒径との関係]
 吸着材(Ax)の粒径は、レーザー回折などで評価することができ、平均粒径0.001μm~30.0μmの範囲が好ましく、さらに好ましくは0.01μm~20μmである。吸着材の粒径は吸着材の種類に依存する場合があり、特にゼオライトは結晶種によって結晶サイズが異なりやすい。ゼオライトの結晶種によっては3μm以下の結晶サイズがあり、その場合は完全な分散状態を得ることが難しく、レーザー回折では実際の粒径より大きな粒径(二次粒子径)を見ている場合もある。その場合は、SEM(走査電子顕微鏡:Scanning Electron Microscope)などの画像解析で確認された最小単位である結晶サイズの平均値を平均粒径とみなす。
[Relationship with particle size]
The particle diameter of the adsorbent (Ax) can be evaluated by laser diffraction or the like, and the average particle diameter is preferably in the range of 0.001 μm to 30.0 μm, more preferably 0.01 μm to 20 μm. The particle size of the adsorbent may depend on the type of adsorbent. In particular, the crystal size of zeolite is likely to vary depending on the crystal species. Depending on the crystal type of the zeolite, there is a crystal size of 3 μm or less, in which case it is difficult to obtain a complete dispersion state, and in laser diffraction, a particle size larger than the actual particle size (secondary particle size) may be seen. is there. In that case, the average value of the crystal size, which is the smallest unit confirmed by image analysis such as SEM (Scanning Electron Microscope), is regarded as the average particle diameter.
 実施の形態における吸着材は、活性炭またはゼオライトである。活性炭およびゼオライトは、低濃度の有機化合物を吸着および脱着するのに優れている。 The adsorbent in the embodiment is activated carbon or zeolite. Activated carbon and zeolite are excellent for adsorbing and desorbing low concentrations of organic compounds.
 活性炭の場合は、形態は、平均粒径が10μm以上50μm以下の粉末、または平均繊維径が10μm以上30μm以下の繊維が挙げられる。活性炭の原料は特に指定しないが、椰子柄、石炭、ピッチ、フェノール樹脂、ポリアクリロニトリル、セルロースなどがある。 In the case of activated carbon, examples of the form include powder having an average particle diameter of 10 μm to 50 μm or fibers having an average fiber diameter of 10 μm to 30 μm. The raw material for the activated carbon is not particularly specified, but there are insulator pattern, coal, pitch, phenol resin, polyacrylonitrile, cellulose and the like.
 実施の形態における吸着材は、好ましくはゼオライトが良い。ゼオライトは、耐熱温度が高く、活性炭よりも吸着時の有機溶剤などとの反応性が低いので、耐熱性に優れ、発熱の危険性が低い。またゼオライトは、活性炭よりもシャープな細孔構造を有するので、有機溶剤などの吸着性能が優れている。ゼオライトの場合は、形態は平均粒径が1μm以上20μm以下の粉末である。ゼオライトは、天然に産出されるゼオライトもあるが、人工合成ゼオライトが適している。具体的には、ベータ型、ZSM-5型、フェリエライト型、モルデナイト型、L型、Y型、A型などがある。 The adsorbent in the embodiment is preferably zeolite. Zeolite has a high heat-resistant temperature and is less reactive with an organic solvent during adsorption than activated carbon, so it has excellent heat resistance and low risk of heat generation. Further, since zeolite has a sharper pore structure than activated carbon, it has excellent adsorption performance for organic solvents and the like. In the case of zeolite, the form is a powder having an average particle size of 1 μm to 20 μm. Some zeolites are naturally produced, but artificial synthetic zeolites are suitable. Specific examples include beta type, ZSM-5 type, ferrierite type, mordenite type, L type, Y type, and A type.
 実施の形態における吸着材は、更に好ましくは、シリカ/アルミナ比の高いハイシリカゼオライトが好ましい。ハイシリカゼオライトは、被処理ガス中から有機溶剤などを吸着するにあたって、被処理ガス中の水分、湿度の影響を受けにくいためである。シリカ/アルミナ比は15以上が良く、更には50以上がより良い。 The adsorbent in the embodiment is more preferably high silica zeolite having a high silica / alumina ratio. This is because high silica zeolite is less susceptible to moisture and humidity in the gas to be treated when adsorbing an organic solvent or the like from the gas to be treated. The silica / alumina ratio is preferably 15 or more, and more preferably 50 or more.
 実施の形態における吸着素子は、吸着材を少なくとも1つ含む。前述の各種の活性炭およびゼオライトのうちの1つまたは複数を選択してもよい。複数の吸着材が選択される場合、その割合は特に限定されない。吸着材は、被処理ガスの処理条件に応じて、適宜選択されればよい。 The adsorption element in the embodiment includes at least one adsorbent. One or more of the various activated carbons and zeolites described above may be selected. When a plurality of adsorbents are selected, the ratio is not particularly limited. The adsorbent may be appropriately selected according to the processing conditions of the gas to be processed.
 吸着材(Ax)のタップ密度を[Axa]、吸着材粒子を球状と仮定した時の平均粒径をから算出した球体積を[Axb]、吸着材が吸着シートに含まれる重量比率を[Axc]とすると、吸着素子1gあたりに含まれる平均粒子数[Axd]は、以下の[式1]のように表される。 The tap density of the adsorbent (Ax) is [Axa], the spherical volume calculated from the average particle diameter when the adsorbent particles are assumed to be spherical is [Axb], and the weight ratio of the adsorbent contained in the adsorbent sheet is [Axc]. ], The average number of particles [Axd] contained per 1 g of the adsorbing element is expressed as [Equation 1] below.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 先述したように、吸着材と有機繊維や無機繊維などの骨格素材とを混合抄造して吸着シートを得る場合、吸着材は骨格素材同士の絡み合い点を減らしてしまうため吸着シートの強度低下を招きやすい。そのため、実用的な強度を得るには一定量以下の粒子総数に抑えることが好ましく、吸着シート1gあたりに含まれる少なくとも1種類以上の吸着材Axの総平均粒子数は、以下の[式2]で表され、8.0×1012以下であることが好ましい。 As described above, when adsorbents and skeleton materials such as organic fibers and inorganic fibers are mixed and made to obtain adsorbent sheets, the adsorbents reduce the entanglement points between the skeleton materials, leading to a decrease in the strength of the adsorbent sheets. Cheap. Therefore, in order to obtain a practical strength, it is preferable to suppress the total number of particles to a certain amount or less, and the total average number of particles of at least one kind of adsorbent Ax contained per 1 g of the adsorption sheet is expressed by the following [Equation 2]. It is preferable that it is 8.0 * 10 < 12 > or less.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 [有機繊維B-1]
 本実施の形態における有機成分(B)は、吸着シート製造時に吸着材(Ax)を担持し、吸着シート成形後も担持する担体として作用する成分で、パルプ状や繊維長10mm以下程度の短繊維の有機繊維、ことに融点もしくは熱分解温度が300℃以上の耐熱性に優れた繊維である。熱分解温度が300℃未満では、吸・脱着操作中に遭遇する高温下で著しい強度低下が避けられない。具体的にはアラミド、メタアラミド、ポリベンズイミダゾール(PBI)、ポリベンゾオキサゾール(PBO)、ポリイミド、ポリアミドイミド、ポリエーテルケトン等から作られた繊維である。
[Organic fiber B-1]
The organic component (B) in the present embodiment is a component that supports the adsorbent (Ax) at the time of manufacturing the adsorbing sheet and acts as a carrier that is also supported after forming the adsorbing sheet, and is a pulp-like or short fiber having a fiber length of about 10 mm or less. Organic fibers, especially fibers having a melting point or a thermal decomposition temperature of 300 ° C. or more and excellent heat resistance. If the thermal decomposition temperature is less than 300 ° C., a significant decrease in strength is inevitable at high temperatures encountered during the adsorption / desorption operation. Specifically, it is a fiber made from aramid, meta-aramid, polybenzimidazole (PBI), polybenzoxazole (PBO), polyimide, polyamideimide, polyetherketone or the like.
 [有機バインダーB-2]
 有機成分(B)は、上記耐熱性有機成分(B-1)の他に熱分解温度が300℃未満の物質を含むのが好ましい。該低温度分解性有機成分(B-2)は吸着シート製造時、吸着材(Ax)を吸着シートに高比率に担持させるバインダーの作用を有する。低温度分解性有機成分としては、PVA(ポリビニルアルコール(polyvinyl alcohol))、澱粉、あるいはポリアクリロニトリル等が挙げられるが、PVAが望ましい。
[Organic binder B-2]
The organic component (B) preferably contains a substance having a thermal decomposition temperature of less than 300 ° C. in addition to the heat-resistant organic component (B-1). The low temperature decomposable organic component (B-2) has a function of a binder for supporting the adsorbent (Ax) on the adsorbing sheet at a high ratio during the production of the adsorbing sheet. Examples of the low temperature decomposable organic component include PVA (polyvinyl alcohol), starch, polyacrylonitrile and the like, and PVA is preferable.
 低温度分解性有機成分(B-2)による吸着材(Ax)の被覆が大きく吸着性能が著しく低い場合は、吸着シートを高温熱処理することにより低温度分解性有機成分(B-2)を炭化物あるいは分解消失せしめ、吸着材(Ax)の被覆を少なくすることも可能である。 If the adsorbent (Ax) is coated with the low temperature decomposable organic component (B-2) and the adsorption performance is extremely low, the low temperature decomposable organic component (B-2) is converted into a carbide by heat-treating the adsorbent sheet. Alternatively, it is possible to reduce the amount of the adsorbent (Ax) coating by dissociation and disappearance.
 [無機バインダーC]
 本実施の形態では、吸着シートの高温下での吸着材(Ax)と骨格素材とを定着維持させ、また、図3および図4に示すように、多数の空気通路を有する吸着シートにおいて、ハニカムを構成するフルート部2aとライナー部2bを定着維持させるのに無機バインダー(C)を付与しても構わない。
[Inorganic binder C]
In the present embodiment, the adsorbent (Ax) and the skeletal material are fixedly maintained at a high temperature in the adsorbent sheet, and the adsorbent sheet having a large number of air passages as shown in FIGS. An inorganic binder (C) may be applied to fix and maintain the flute portion 2a and the liner portion 2b that constitute the structure.
 例えば水に可溶であり、バインダーがシートに均一に分散され、熱処理の際、反応、ゲル化等によって硬化し、その硬化の際に吸着材と骨格素材を強固に定着せしめるものである。また熱分解温度が300℃以上であり、反応性の高い有機溶剤により反応熱を生じ、シートの着火、燃焼の原因となる触媒性が低く、吸着材(Ax)の吸着性能をその被覆により低下させにくい物であることが好ましい。例えば、ヘキサメタリン酸ソーダ等のリン酸塩系バインダー、ケイ酸ソーダ等のケイ酸塩系バインダーが好ましい。 For example, it is soluble in water, the binder is uniformly dispersed in the sheet, and is cured by reaction, gelation, etc. during heat treatment, and the adsorbent and the skeleton material are firmly fixed during the curing. In addition, the thermal decomposition temperature is 300 ° C or higher, reaction heat is generated by a highly reactive organic solvent, the catalytic property causing the ignition and combustion of the sheet is low, and the adsorption performance of the adsorbent (Ax) is lowered by the coating. It is preferable that it is a thing which is hard to carry out. For example, phosphate binders such as sodium hexametaphosphate and silicate binders such as sodium silicate are preferred.
 吸着材(Ax)と構成繊維分とを定着維持させる無機バインダー(C-1)とハニカムを構成するフルート部2aとライナー部2bを定着維持させる無機バインダー(C-2)は同種類のバインダーを使用する必要は無く、生産性により適したバインダーを使用する事が望ましい。 The inorganic binder (C-1) for fixing and maintaining the adsorbent (Ax) and the constituent fibers, and the inorganic binder (C-2) for fixing and maintaining the flute portion 2a and the liner portion 2b constituting the honeycomb are made of the same type of binder. There is no need to use it, and it is desirable to use a binder that is more suitable for productivity.
 [吸着剤Ax含有量]
 本実施の形態の吸着素子に含まれる吸着材(Ax)の量は40重量%以上がよい。吸着性能及び生産性、吸着材の脱落を考慮すると50重量%以上が好ましい。吸着材(Ax)の含有量が40%未満では充分な吸着性能が得られない。吸着剤の重量の上限に制限はないが、吸着素子の形状を維持するには80重量%以下が限界である。80重量%を超えると、吸着シートの柔軟性が不足し加工しにくくなる。本実施の形態の吸着素子に含まれる有機成分(B)の量は、吸着素子前駆体(前駆体素子)製造時に用いた有機成分及び加熱処理を行った場合はその熱酸化物を合わせた量として5~60重量%である。
[Adsorbent Ax content]
The amount of adsorbent (Ax) contained in the adsorbing element of the present embodiment is preferably 40% by weight or more. Considering adsorption performance and productivity, and dropping of adsorbent, 50% by weight or more is preferable. If the content of the adsorbent (Ax) is less than 40%, sufficient adsorption performance cannot be obtained. The upper limit of the weight of the adsorbent is not limited, but 80% by weight or less is the limit for maintaining the shape of the adsorbing element. If it exceeds 80% by weight, the flexibility of the adsorbing sheet is insufficient and it becomes difficult to process. The amount of the organic component (B) contained in the adsorption element of the present embodiment is the combined amount of the organic component used in the production of the adsorption element precursor (precursor element) and the thermal oxide when heat treatment is performed. As 5 to 60% by weight.
 有機成分(B)の含有量が5%未満では吸着材の担持能が不足し、60%以上では吸着材の使用量を少なくしなければならない不都合が生じる。本実施の形態の吸着素子に含まれる無機バインダー成分(C)の量は5重量%~30重量%である。5重量%未満では吸着材(Ax)と骨格素材同士の定着性が乏しくなり、30重量%以上になると柔軟性が不足する為好ましくない。 If the content of the organic component (B) is less than 5%, the adsorbent carrying capacity is insufficient, and if it is 60% or more, the amount of adsorbent used must be reduced. The amount of the inorganic binder component (C) contained in the adsorption element of the present embodiment is 5% by weight to 30% by weight. If it is less than 5% by weight, the fixing property between the adsorbent (Ax) and the skeleton material becomes poor, and if it is 30% by weight or more, the flexibility is insufficient, which is not preferable.
 [ハニカム状構造]
 本実施の形態における吸着素子の構造は、機械強度および製造コストの観点からハニカム状構造体が良く、セル数が30個/cm~70個/cmが良い。更に好ましくは、セル数が50~70個/cmが良い。セル数が30個/cm未満であると吸着性能が低下し、70個/cmを超えると、ハニカム状構造体の隔壁を構成するシートの厚みを薄くする必要があるが、シートの機械強度が弱くなり、シートの製造ができない。ハニカム状構造体のセル形状は特に指定しないが、図1に示すセル形状を例にとると、波高が1mm~3mm、波長が2mm~4mmである。更に好ましくは、波高が1mm~1.6mm、波長が2mm~2.6mmが良い。ここで、ハニカム状構造とは、空間が側壁で囲まれた複数の小空間(セル形状)で構成される立体構造全般を表すものとする。
[Honeycomb structure]
The structure of the adsorption element in the present embodiment is preferably a honeycomb structure from the viewpoint of mechanical strength and manufacturing cost, and the number of cells is preferably 30 cells / cm 2 to 70 cells / cm 2 . More preferably, the number of cells is 50 to 70 cells / cm 2 . If the number of cells is less than 30 cells / cm 2 , the adsorption performance decreases, and if it exceeds 70 cells / cm 2 , it is necessary to reduce the thickness of the sheet constituting the partition walls of the honeycomb structure. The strength becomes weak and the sheet cannot be manufactured. The cell shape of the honeycomb structure is not particularly specified, but taking the cell shape shown in FIG. 1 as an example, the wave height is 1 mm to 3 mm and the wavelength is 2 mm to 4 mm. More preferably, the wave height is 1 mm to 1.6 mm and the wavelength is 2 mm to 2.6 mm. Here, the honeycomb-like structure represents a general three-dimensional structure composed of a plurality of small spaces (cell shapes) surrounded by side walls.
 本実施の形態における吸着素子を構成するハニカム状構造体の隔壁厚みは、0.16mm~0.25mmが良い。0.16mm未満の場合、隔壁を構成するシートの厚みをより薄くする必要があるが、シートの機械強度が弱くなり、シートの製造ができない。0.25mmを超えると、隔壁が厚くなり、前述のセル数を得られない。 The partition wall thickness of the honeycomb structure constituting the adsorption element in the present embodiment is preferably 0.16 mm to 0.25 mm. When the thickness is less than 0.16 mm, it is necessary to make the thickness of the sheet constituting the partition thinner, but the mechanical strength of the sheet becomes weak and the sheet cannot be manufactured. When the thickness exceeds 0.25 mm, the partition wall becomes thick, and the aforementioned number of cells cannot be obtained.
 本実施の形態における吸着素子を構成するシートの坪量は、65g/m~90g/mが良い。65g/m未満の場合、シートの機械強度が弱くなり、熱処理後のハニカム状構造体の機械強度を維持できない。90g/mを超えると、隔壁が厚くなり、前述のセル数を得られない。 The basis weight of the sheet constituting the adsorption element in the present embodiment is preferably 65 g / m 2 to 90 g / m 2 . When it is less than 65 g / m 2 , the mechanical strength of the sheet becomes weak, and the mechanical strength of the honeycomb structure after the heat treatment cannot be maintained. When it exceeds 90 g / m 2 , the partition wall becomes thick and the aforementioned number of cells cannot be obtained.
 [吸着素子の製造方法]
 本実施の形態における吸着素子は、吸着材(Ax)、有機成分(B)及び無機バインダー(C)でシート状物をハニカム成形機により、ハニカム成形用接着剤を使用し、ハニカム状に成形したハニカム状物(前駆体素子)を作製した後、前駆体素子を有機成分(B)の耐熱性有機成分の融点もしくは分解温度以下の温度、低温度分解性有機成分の分解温度以上の温度で1分~60分熱処理することにより低温度分解性有機成分を熱酸化分解せしめ、大部分を炭化物もしくは分解消失させることにより製造することができる。
[Method of manufacturing adsorption element]
The adsorbing element in the present embodiment was formed into a honeycomb shape by using a honeycomb forming machine and a sheet-shaped material with an adsorbent (Ax), an organic component (B), and an inorganic binder (C) using a honeycomb forming machine. After preparing the honeycomb-like material (precursor element), the precursor element is heated to a temperature equal to or lower than the melting point or decomposition temperature of the heat-resistant organic component of the organic component (B), and at a temperature equal to or higher than the decomposition temperature of the low-temperature decomposable organic component. It can be produced by thermally oxidizing and decomposing low temperature decomposable organic components by heat treatment for min to 60 min, and most of them are carbides or decomposed and disappeared.
 [製法におけるB-1とB-2の考え方]
 本実施の形態の吸着素子の製造に用いられる有機成分(B)は上記アラミド繊維等の耐熱性有機繊維(B-1)の他に150℃~300℃で熱分解する低温度分解性有機成分(B-2)を用いる事が望ましい。低温度分解性有機成分(B-2)は湿式抄紙時の(Ax)成分を(B-1)成分に及び(B-1)成分同士を接合させるためのバインダーとして働く。(B-2)成分はシート状物、ハニカム状物成形後の最終吸着素子(本実施の形態の吸着素子)の吸着材を被覆するため、著しく吸着性能を阻害する場合は、高温熱処理を行い(B-2)を炭化物とするか、または分解消失せしめて最終吸着素子(本実施の形態の吸着素子)の吸着材を被覆を少なくすることも可能である。
[Concept of B-1 and B-2 in manufacturing method]
The organic component (B) used in the production of the adsorbing element of the present embodiment is a low-temperature decomposable organic component that thermally decomposes at 150 ° C. to 300 ° C. in addition to the heat-resistant organic fiber (B-1) such as an aramid fiber. It is desirable to use (B-2). The low temperature decomposable organic component (B-2) serves as a binder for bonding the (Ax) component to the (B-1) component and the (B-1) components during wet papermaking. The component (B-2) covers the adsorbent of the final adsorbing element (adsorbing element of the present embodiment) after forming a sheet-like material or honeycomb-like material. It is also possible to reduce the coating of the adsorbent of the final adsorbing element (adsorbing element of the present embodiment) by using (B-2) as a carbide or by decomposing and disappearing.
 上記シート状物及びハニカム状物で熱処理を行う場合、加熱オーブン等を用い空気雰囲気中で実施するのが好ましい。熱処理温度は耐熱性有機成分(B-1)の融点もしくは分解温度(T1℃)以下好ましくは5℃~20℃低く(T1-5~T1-20℃)、低温度分解成分(B-2)の分解温度(T2℃)以上、好ましくは分解温度の100℃~200℃以上(T2+100~T2+200℃)の温度で処理時間は1分~60分好ましくは1分~30分である。通常350℃~450℃で1分~10分である。 When the heat treatment is performed on the sheet-like material and the honeycomb-like material, it is preferably performed in an air atmosphere using a heating oven or the like. The heat treatment temperature is lower than the melting point or decomposition temperature (T1 ° C.) of the heat-resistant organic component (B-1), preferably 5 ° C. to 20 ° C. lower (T 1-5 to T 1-20 ° C.), and the low temperature decomposition component (B-2) The decomposition time (T2 ° C.) or higher, preferably the decomposition temperature of 100 ° C. to 200 ° C. or higher (T2 + 100 to T2 + 200 ° C.), and the treatment time is 1 minute to 60 minutes, preferably 1 minute to 30 minutes. Usually, 350 to 450 ° C. for 1 to 10 minutes.
 吸着素子の平面圧縮張強度は3kPa以上が好ましい。3kPaより小さい強度では吸着素子がつぶれやすく、多数の空気通路がつぶれによってなくなることで吸着素子としての性能が出ないため実用的ではない。 The planar compressive tensile strength of the adsorption element is preferably 3 kPa or more. If the strength is less than 3 kPa, the adsorbing element is apt to be crushed, and a large number of air passages are not crushed.
 吸着シートの坪量(g/m)に特に制限はないが、10g/m~200g/mが好ましい。10g/m未満の場合、シートの機械強度が弱くなり、ハニカム状構造体の機械強度を維持できない。200g/mを超えると、シート厚みが厚くなりすぎるためシートの柔軟性がなくなり、シートのひび割れや吸着材の脱落が生じやすい。 The basis weight (g / m 2 ) of the adsorption sheet is not particularly limited, but is preferably 10 g / m 2 to 200 g / m 2 . If it is less than 10 g / m 2 , the mechanical strength of the sheet becomes weak, and the mechanical strength of the honeycomb structure cannot be maintained. If it exceeds 200 g / m 2 , the thickness of the sheet becomes too thick, so that the flexibility of the sheet is lost, and cracking of the sheet and dropping of the adsorbent are likely to occur.
 (実施例)
 本実施の形態における吸着シートの諸特性の測定法は次の通りである。各実施例および各比較例の各種特性を図5に示す。
(Example)
A method for measuring various characteristics of the adsorption sheet in the present embodiment is as follows. Various characteristics of each example and each comparative example are shown in FIG.
 (1)吸着材のタップ密度の測定方法
 恒量した容器に吸着材約40gを入れ、180℃15時間以上真空乾燥させる。デシケータ内で20分放冷したのち、乾燥質量を0.1mgの桁まで測る。この乾燥試料の質量をS(g)とする。200mLメスシリンダーにこの乾燥試料を全量入れ、3分間メスシリンダーの底面をタッピング(メスシリンダー底面をたたく)する。3分後の容積(mL)を1mLの桁まで読み取る。これを充填容積をA(mL)とすると、タップ密度L(g/mL)は次式で求める。また、1mLは1cmであるため、タップ密度Lの単位はg/mLとg/cmは同義である。
(1) Measuring method of adsorbent tap density About 40 g of adsorbent is put into a constant-weight container and vacuum dried at 180 ° C. for 15 hours or more. After allowing to cool in a desiccator for 20 minutes, the dry mass is measured to the order of 0.1 mg. Let the mass of this dry sample be S (g). Put all of this dry sample in a 200 mL graduated cylinder and tap the bottom of the graduated cylinder for 3 minutes (tap the bottom of the graduated cylinder). Read the volume (mL) after 3 minutes to the order of 1 mL. Assuming that the filling volume is A (mL), the tap density L (g / mL) is obtained by the following equation. Since 1 mL is 1 cm 3 , the unit of the tap density L is synonymous with g / mL and g / cm 3 .
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 (2)吸着材の平均粒径の測定方法および粒子を球形と仮定した時の球体積の算出方法
 吸着材は事前にSEM画像観察で結晶粒径を確認し、結晶粒径が3μm以上の場合はレーザー回折散乱式粒度分布測定装置による平均粒径の測定方法を用い、結晶粒径が3μmより小さい場合は、SEM画像解析による平均粒径の測定方法を用い、吸着材の平均粒径を算出する。
(2) Method of measuring the average particle size of the adsorbent and calculating the sphere volume when the particles are assumed to be spherical When the adsorbent is confirmed by SEM image observation in advance, the crystal particle size is 3 μm or more. Calculates the average particle size of the adsorbent using the average particle size measurement method by SEM image analysis when the crystal particle size is smaller than 3 μm. To do.
 <レーザー回折散乱式粒度分布測定装置による平均粒径の測定方法>
 測定装置に、堀場製作所のLA―950V2を使用し、測定セルには、湿式循環型セル(フローセル)を使用し、分散媒としては、ヘキサメタリン酸ナトリウム(0.1mass%水溶液)を使用し、測定対象の屈折率設定には、ケイ酸アルミニウム-水系(屈折率:1.66―1.33)を使用する。
<Measuring method of average particle diameter by laser diffraction / scattering particle size distribution analyzer>
LA-950V2 from Horiba, Ltd. is used as the measurement device, wet circulation type cell (flow cell) is used as the measurement cell, and sodium hexametaphosphate (0.1 mass% aqueous solution) is used as the dispersion medium. For setting the refractive index of an object, an aluminum silicate-water system (refractive index: 1.66-1.33) is used.
 [測定手順]
 1.測定セルに分散媒を規定量注水し,光学系の初期調整,およびブランク測定を行う。
[Measurement procedure]
1. Inject a specified amount of dispersion medium into the measurement cell, perform initial adjustment of the optical system, and perform blank measurement.
 2.ブランク測定後,分散媒の透過率がおよそ90%~70%の範囲に入るように、セルに吸着材を投入する。 2. After the blank measurement, the adsorbent is put into the cell so that the transmittance of the dispersion medium falls within the range of about 90% to 70%.
 3.脱泡のために数秒程度超音波(周波数20kHz)を印加した後、1度測定を行う。 3. After applying ultrasonic waves (frequency 20 kHz) for about several seconds for defoaming, measurement is performed once.
 4.測定後,超音波を規定時間(5分)印加してサンプルを分散させた後、再度測定を行う。 4. After the measurement, ultrasonic waves are applied for a specified time (5 minutes) to disperse the sample, and then the measurement is performed again.
 5.超音波を規定時間(5分)印加して再度測定を行ったデータから解析を行い、メジアン径(累積頻度が50%になる粒径)を平均粒径とする。 5. Analysis is performed from data obtained by applying ultrasonic waves for a specified time (5 minutes) and measuring again, and the median diameter (particle diameter at which the cumulative frequency is 50%) is defined as the average particle diameter.
 <SEM画像解析による平均粒径の測定方法>
 測定装置には、日立走査電子顕微鏡(SU1510)を用い、加速電圧は、15.0kVとする。
<Measuring method of average particle diameter by SEM image analysis>
A Hitachi scanning electron microscope (SU1510) is used as the measuring device, and the acceleration voltage is 15.0 kV.
 [測定手順]
 1.SEM観察台に両面テープを張り、吸着材を両面テープに散布し、過剰量の吸着材を取り除く。
[Measurement procedure]
1. Put double-sided tape on the SEM observation stand, spread the adsorbent on the double-sided tape, and remove the excessive amount of adsorbent.
 2.吸着材を塗布したSEM観察台に白金蒸着を行う。
 3.SEM画像観察装置に2.の観察台をセットする。
2. Platinum vapor deposition is performed on the SEM observation platform coated with the adsorbent.
3. 1. SEM image observation device Set the observation platform.
 4.上記の加速電圧で3000倍の写真を場所を変えて3枚撮影する。
 5.3000倍で撮影した写真が紙面にすべておさまる最大のサイズでA4の紙に印刷する。
4). Take 3 pictures at 3000 times with the above acceleration voltage.
5. Print on A4 paper at the maximum size that fits all the photos taken at 3000x on the paper.
 6.印刷した写真に鉛筆で対角線を2本描き、対角線上にある境界が明確な粒子を20個選定し、短径と長径の2か所を定規で測る。SEM写真のスケール(μm)の長さを定規で測り、定規で測った粒子の短径と長径をμmに換算する。 6. Draw two diagonal lines with a pencil on the printed photo, select 20 particles with a clear boundary on the diagonal line, and measure the two points of the minor axis and major axis with a ruler. The length of the SEM photograph scale (μm) is measured with a ruler, and the minor axis and major axis of the particle measured with the ruler are converted into μm.
 7.6.の作業を3000倍で撮影した3枚の写真で行い、合計60個の粒子の短径と長径を算出し、すべての値の平均値をSEM観察による平均粒径(μm)とする。 7.6. The above operation is performed with three photographs taken at 3000 times, the short diameter and long diameter of a total of 60 particles are calculated, and the average value of all values is taken as the average particle diameter (μm) by SEM observation.
 <粒子を球形と仮定した時の球体積の算出方法>
 レーザー回折またはSEM画像解析で算出した平均粒径をR(μm)とすると、粒子を球形と仮定した時の粒子1個あたりの球体積Q(cm/個)は次の式4で求める。
<Calculation method of sphere volume when particle is assumed to be spherical>
When the average particle diameter calculated by laser diffraction or SEM image analysis is R (μm), the spherical volume Q (cm 3 / piece) per particle when the particle is assumed to be spherical is obtained by the following equation 4.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 (3)比引張強さの測定方法
 JIS-P-8113「紙および板紙-引っ張り特性の試験方法」に準じて測定した。試験幅は、15mm、長さは50mmとした。
(3) Method for measuring specific tensile strength Measured according to JIS-P-8113 “Paper and paperboard—Testing method for tensile properties”. The test width was 15 mm and the length was 50 mm.
 (4)平面圧縮強度の測定方法
 JIS-Z-0403-1「段ボール-第1部:平面圧縮強さ試験方法」に準じて測定した。試験幅は30mm、長さは30mmとした。
(4) Measuring Method of Plane Compressive Strength Measured according to JIS-Z-0403-1 “Cardboard—Part 1: Plane Compressive Strength Test Method”. The test width was 30 mm and the length was 30 mm.
 以下の実施例および比較例に基づいて本発明の吸着素子について詳細に説明する。
 <実施例11>
 吸着材A1としてタップ密度が0.54g/cm、レーザー回折による平均粒径が3.3μmのZSM-5(MFI)ゼオライトを37.5重量%、吸着材A2としてタップ密度が0.36g/cm、SEM画像解析から算出した平均粒径が1.2μmのY型(FAU)ゼオライトを37.5重量%、耐熱性有機成分としてパルプ状をおよび短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%とを、坪量75g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
The adsorption element of the present invention will be described in detail based on the following examples and comparative examples.
<Example 11>
The adsorbent A1 has a tap density of 0.54 g / cm 3 , ZSM-5 (MFI) zeolite having an average particle diameter of 3.3 μm by laser diffraction is 37.5% by weight, and the adsorbent A2 has a tap density of 0.36 g / cm 3 . 37.5% by weight of cm 3 , Y-type (FAU) zeolite having an average particle size of 1.2 μm calculated from SEM image analysis, pulp-like and short-fiber aramid fibers (heat-resistant organic component: B-1) is 17% by weight, PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder is 8% by weight, and a wet paper machine with a basis weight of 75 g / m 2. A use sheet was made.
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ7重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。 Next, this sheet-like material was impregnated with a 7% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet.
 次にこの前駆体シートをハニカム成形機を用い、ハニカム成形用接着剤に固形分50%のポリ酢酸ビニールエマルジョンを使用しセル数15個/cmのハニカム(吸着素子前駆体)に成形した。その際に使用したハニカム成形用接着剤の量は含浸後シート重量に対して約3重量%である。その後、このハニカム状物を焼成炉にて空気中400℃で約3分間熱処理を行い、吸着素子を得た。 Next, this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb, using a honeycomb forming machine. The amount of the honeycomb forming adhesive used in this case is about 3% by weight based on the weight of the sheet after impregnation. Thereafter, the honeycomb-shaped material was heat-treated in air at 400 ° C. for about 3 minutes to obtain an adsorbing element.
 <実施例12>
 吸着材A1としてタップ密度が0.39g/cm、レーザー解析による平均粒径が9.9μmのZSM-5(MFI)ゼオライトを37.5重量%、吸着材A2としてタップ密度が0.34g/cm、SEM写真解析から算出した平均粒径が0.7μmのY型(FAU)ゼオライトを37.5重量%、耐熱性有機成分としてパルプ状をおよび短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%とを、坪量100g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
<Example 12>
The adsorbent A1 has a tap density of 0.39 g / cm 3 , ZSM-5 (MFI) zeolite having an average particle diameter of 9.9 μm by laser analysis is 37.5% by weight, and the adsorbent A2 has a tap density of 0.34 g / cm 3 . cm 3 , 37.5% by weight of Y-type (FAU) zeolite having an average particle size of 0.7 μm calculated from SEM photographic analysis, pulp-like and short-fiber aramid fibers (heat-resistant organic component: B-1) is 17% by weight, PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder is 8% by weight, and a wet paper machine with a basis weight of 100 g / m 2. A use sheet was made.
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ7重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。 Next, this sheet-like material was impregnated with a 7% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet.
 次にこの前駆体シートをハニカム成形機を用い、ハニカム成形用接着剤に固形分50%のポリ酢酸ビニールエマルジョンを使用しセル数15個/cmのハニカムのハニカム(吸着素子前駆体)に成形した。その際に使用したハニカム成形用接着剤の量は含浸後シート重量に対して約3重量%である。その後、このハニカム状物を焼成炉にて空気中400℃で約3分間熱処理を行い、吸着素子を得た。 Next, this precursor sheet was formed into a honeycomb honeycomb (adsorption element precursor) having a cell number of 15 / cm 2 using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming the honeycomb using a honeycomb forming machine. did. The amount of the honeycomb forming adhesive used in this case is about 3% by weight based on the weight of the sheet after impregnation. Thereafter, the honeycomb-shaped material was heat-treated in air at 400 ° C. for about 3 minutes to obtain an adsorbing element.
 <実施例13>
 吸着材A1としてタップ密度が0.54g/cm、レーザー解析による平均粒径が3.2μmのZSM-5(MFI)ゼオライトを60重量%、吸着材A2としてタップ密度が0.36g/cm、SEM写真解析から算出した平均粒径が1.2μmのY型(FAU)ゼオライトを37.5重量%、耐熱性有機成分としてパルプ状をおよび短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%とを、坪量75g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
<Example 13>
Adsorbent A1 has a tap density of 0.54 g / cm 3 , ZSM-5 (MFI) zeolite having an average particle diameter of 3.2 μm by laser analysis is 60% by weight, and adsorbent A2 has a tap density of 0.36 g / cm 3. 37.5% by weight of Y-type (FAU) zeolite having an average particle diameter of 1.2 μm calculated from SEM photo analysis, pulp-like and short-fiber aramid fibers (heat-resistant organic component: B- 1) 17% by weight, PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, 8% by weight, using a wet papermaking machine with a basis weight of 75 g / m 2 A material was created.
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ7重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。 Next, this sheet-like material was impregnated with a 7% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet.
 次にこの前駆体シートをハニカム成形機を用い、ハニカム成形用接着剤に固形分50%のポリ酢酸ビニールエマルジョンを使用しセル数15個/cmのハニカム(吸着素子前駆体)に成形した。その際に使用したハニカム成形用接着剤の量は含浸後シート重量に対して約3重量%である。その後、このハニカム状物を焼成炉にて空気中400℃で約3分間熱処理を行い、吸着素子を得た。 Next, this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb, using a honeycomb forming machine. The amount of the honeycomb forming adhesive used in this case is about 3% by weight based on the weight of the sheet after impregnation. Thereafter, the honeycomb-shaped material was heat-treated in air at 400 ° C. for about 3 minutes to obtain an adsorbing element.
 <実施例14>
 吸着材A1としてタップ密度が0.39g/cm、レーザー解析による平均粒径が9.9μmのZSM-5(MFI)ゼオライトを75重量%、耐熱性有機成分としてパルプ状をおよび短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%とを、坪量75g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
<Example 14>
As adsorbent A1, ZSM-5 (MFI) zeolite having a tap density of 0.39 g / cm 3 , an average particle size of 9.9 μm by laser analysis is 75% by weight, pulp-like and short-fiber aramid as heat-resistant organic components Fiber (heat-resistant organic component: B-1) is 17% by weight, PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder is 8% by weight, and the basis weight is 75 g / m 2. Sheet material was prepared using a wet papermaking machine by weight.
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。 Next, this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet.
 次にこの前駆体シートをハニカム成形機を用い、ハニカム成形用接着剤に固形分50%のポリ酢酸ビニールエマルジョンを使用しセル数15個/cmのハニカム(吸着素子前駆体)に成形した。その際に使用したハニカム成形用接着剤の量は含浸後シート重量に対して約3重量%である。 Next, this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb, using a honeycomb forming machine. The amount of the honeycomb forming adhesive used in this case is about 3% by weight based on the weight of the sheet after impregnation.
 <比較例11>
 吸着材A1としてタップ密度が0.39g/cm、レーザー解析による平均粒径が10.7μmのZSM-5(MFI)ゼオライトを15重量%、吸着材A2としてタップ密度が0.34g/cm、SEM画像解析から算出した平均粒径が0.7μmのY型(FAU)ゼオライトを60重量%耐熱性有機成分としてパルプ状をおよび短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%とを、坪量75g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
<Comparative Example 11>
The adsorbent A1 has a tap density of 0.39 g / cm 3 , ZSM-5 (MFI) zeolite having an average particle diameter of 10.7 μm by laser analysis is 15% by weight, and the adsorbent A2 has a tap density of 0.34 g / cm 3. In addition, a Y-type (FAU) zeolite having an average particle size of 0.7 μm calculated from SEM image analysis was used as a 60% by weight heat-resistant organic component, and pulp-like and short fibrous aramid fibers (heat-resistant organic component: B-1) were used. 17% by weight, 8% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, and a sheet-like material using a wet papermaking machine at a weight of 75 g / m 2 basis weight. Created.
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。 Next, this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet.
 次にこの前駆体シートをハニカム成形機を用い、ハニカム成形用接着剤に固形分50%のポリ酢酸ビニールエマルジョンを使用しセル数15個/cmのハニカム(吸着素子前駆体)に成形した。しかし、シートの強度が弱いため、ハニカム形成時にシートの亀裂や破断が目立ち、適正なハニカム成形ができなかった。 Next, this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb, using a honeycomb forming machine. However, since the strength of the sheet was weak, cracks and breaks of the sheet were conspicuous at the time of honeycomb formation, and proper honeycomb formation could not be performed.
 <比較例12>
 吸着材A1としてタップ密度が0.54g/cm、レーザー解析による平均粒径が3.2μmのZSM-5(MFI)ゼオライトを15重量%、吸着材A2としてタップ密度が0.36g/cm、SEM画像解析から算出した平均粒径が1.3μmのY型(FAU)ゼオライトを60重量%、耐熱性有機成分としてパルプ状をおよび短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%とを、坪量75g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
<Comparative Example 12>
Adsorbent A1 has a tap density of 0.54 g / cm 3 , ZSM-5 (MFI) zeolite having an average particle diameter of 3.2 μm by laser analysis is 15% by weight, and adsorbent A2 has a tap density of 0.36 g / cm 3. 60% by weight of Y-type (FAU) zeolite having an average particle size calculated from SEM image analysis of 1.3 μm, pulp-like and short-fiber aramid fibers (heat-resistant organic component: B-1) as the heat-resistant organic component 17% by weight, 8% by weight of PVA (low-temperature thermally decomposable organic component: B-2) as a thermally decomposable organic binder, and a sheet-like material using a wet papermaking machine at a weight of 75 g / m 2 It was created.
 次にこの前駆体シートをハニカム成形機を用い、ハニカム成形用接着剤に固形分50%のポリ酢酸ビニールエマルジョンを使用しセル数15個/cmのハニカム(吸着素子前駆体)に成形した。しかし、シートの強度が弱いため、ハニカム形成時にシートの亀裂や破断が目立ち、適正なハニカム成形ができなかった。 Next, this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb, using a honeycomb forming machine. However, since the strength of the sheet was weak, cracks and breaks of the sheet were conspicuous at the time of honeycomb formation, and proper honeycomb formation could not be performed.
 <比較例13>
 吸着材A1としてタップ密度が0.34g/cm、SEM画像解析から算出した平均粒径が0.7μmのY型(FAU)ゼオライトを75重量%、耐熱性有機成分としてパルプ状をおよび短繊維状アラミド繊維(耐熱性有機成分:B-1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B-2)を8重量%とを、坪量75g/m2となる重量にて湿式抄紙装置を使いシート状物を作成した。
<Comparative Example 13>
Adsorbent A1 has a tap density of 0.34 g / cm 3 , an average particle size calculated from SEM image analysis of 0.7 μm, 75% by weight of Y-type (FAU) zeolite, a pulp as a heat-resistant organic component, and short fibers 17% by weight of aramid fiber (heat-resistant organic component: B-1), 8% by weight of PVA (low-temperature thermally-decomposable organic component: B-2) as a thermally decomposable organic binder, and a basis weight of 75 g / m 2 A sheet-like material was prepared using a wet papermaking machine with a weight of
 次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。その後、焼成炉にて空気中400℃で約3分間熱処理を行い、吸着シートを得た。 Next, this sheet-like material was impregnated with a 20% by weight aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5% by weight sodium hexametaphosphate sheet to obtain a precursor sheet. Thereafter, heat treatment was performed in a baking furnace at 400 ° C. for about 3 minutes to obtain an adsorption sheet.
 次にこの前駆体シートをハニカム成形機を用い、ハニカム成形用接着剤に固形分50%のポリ酢酸ビニールエマルジョンを使用しセル数15個/cmのハニカム(吸着素子前駆体)に成形した。しかし、シートの強度が弱いため、ハニカム形成時にシートの亀裂や破断が目立ち、適正なハニカム成形ができなかった。 Next, this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb, using a honeycomb forming machine. However, since the strength of the sheet was weak, cracks and breaks of the sheet were conspicuous at the time of honeycomb formation, and proper honeycomb formation could not be performed.
 本実施の形態の吸着素子は、吸着材を少なくとも1種類以上有し、吸着材は吸着素子の強度と吸着材の高含有重量比率が両立するように、吸着材の嵩密度および粒径から算出される吸着素子中に含まれる総粒子数を適切に設定し、融点または熱分解温度が300℃以上の有機成分と熱分解温度が300℃未満の有機成分と無機バインダーを骨格素材とすることで、吸着素子としての柔軟性や強度に優れ、また、吸着材の含有重量比率が極めて高く吸着性能が優れている。 The adsorbing element of this embodiment has at least one kind of adsorbent, and the adsorbent is calculated from the bulk density and particle size of the adsorbent so that both the strength of the adsorbent and the high content weight ratio of the adsorbent are compatible. By appropriately setting the total number of particles contained in the adsorbing element, an organic component having a melting point or a thermal decomposition temperature of 300 ° C. or higher, an organic component having a thermal decomposition temperature of less than 300 ° C., and an inorganic binder as a skeleton material The adsorbing element is excellent in flexibility and strength, and the adsorbent content weight ratio is extremely high, and the adsorbing performance is excellent.
 以上説明したとおり、吸着素子に含まれる吸着材粒子の総数によって吸着素子の強度は明確に差があり、粒子の総数を8.0×1012個以下にすることで実用性に十分な強度を持つ吸着素子を得ることができた。 As described above, the strength of the adsorbing element is clearly different depending on the total number of adsorbent particles contained in the adsorbing element, and by making the total number of particles not more than 8.0 × 10 12 , sufficient strength for practical use can be obtained. An adsorbing element with a large area was obtained.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 2a フルート部、2b ライナー部。 2a Flute section, 2b liner section.

Claims (15)

  1.  吸着材(Ax:x=1,2,3・・・n)を少なくとも1種類以上含む吸着シートであって、
     前記吸着材(Ax)のタップ密度をAxa、
     吸着材粒子を球状と仮定した時に吸着材粒子の平均粒径をから算出した球体積をAxb、
     前記吸着材が当該吸着シートに含まれる重量比率(%)をAxcとすると、
     当該吸着シート1gあたりに含まれる平均粒子数Axdは以下の式1で表され、
    Figure JPOXMLDOC01-appb-M000001
     当該吸着シート1gあたりに含まれる少なくとも1種類以上の前記吸着材(Ax)の総平均粒子数は、以下の式2で表され、
    Figure JPOXMLDOC01-appb-M000002
     当該吸着シートの比引張強度が2N・m/g以上である、吸着シート。
    An adsorbent sheet containing at least one adsorbent (Ax: x = 1, 2, 3... N),
    The tap density of the adsorbent (Ax) is Axa,
    When the adsorbent particles are assumed to be spherical, the spherical volume calculated from the average particle diameter of the adsorbent particles is Axb,
    When the weight ratio (%) of the adsorbent contained in the adsorbent sheet is Axc,
    The average number of particles Axd contained per 1 g of the adsorption sheet is represented by the following formula 1.
    Figure JPOXMLDOC01-appb-M000001
    The total average particle number of at least one kind of the adsorbent (Ax) contained per 1 g of the adsorbing sheet is represented by the following formula 2.
    Figure JPOXMLDOC01-appb-M000002
    An adsorptive sheet having a specific tensile strength of 2 N · m / g or more.
  2.  当該吸着シートに含まれる少なくとも1種類以上の前記吸着材(Ax)の合計比率が、当該吸着シートの40重量%以上である、請求項1に記載の吸着シート。 The adsorbent sheet according to claim 1, wherein a total ratio of at least one kind of adsorbent (Ax) contained in the adsorbent sheet is 40% by weight or more of the adsorbent sheet.
  3.  前記吸着材(Ax)のタップ密度が、0.1g/cm以上である、請求項1または請求項2に記載の吸着シート。 The adsorption sheet according to claim 1 or 2 whose tap density of said adsorption material (Ax) is 0.1 g / cm 3 or more.
  4.  前記吸着材(Ax)が、ゼオライトである、請求項1から3のいずれか1項に記載の吸着シート。 The adsorbent sheet according to any one of claims 1 to 3, wherein the adsorbent (Ax) is zeolite.
  5.  吸着材(Ax:x=1,2,3・・・n)を少なくとも1種類以上含む吸着シートの製造方法であって、
     前記吸着材(Ax)のタップ密度をAxa、
     吸着材粒子を球状と仮定した時に吸着材粒子の平均粒径をから算出した球体積をAxb、
     前記吸着材が吸着シートに含まれる重量比率(%)をAxcとすると、
     当該吸着シート1gあたりに含まれる平均粒子数Axdは以下の式1で表され、
    Figure JPOXMLDOC01-appb-M000003
     当該吸着シート1gあたりに含まれる少なくとも1種類以上の前記吸着材(Ax)の総平均粒子数は、以下の式2で表され、
    Figure JPOXMLDOC01-appb-M000004
     当該吸着シートの比引張強度が2N・m/g以上である、吸着シートの製造方法。
    A method for producing an adsorbent sheet containing at least one adsorbent (Ax: x = 1, 2, 3... N),
    The tap density of the adsorbent (Ax) is Axa,
    When the adsorbent particles are assumed to be spherical, the spherical volume calculated from the average particle diameter of the adsorbent particles is Axb,
    When the weight ratio (%) of the adsorbent contained in the adsorbent sheet is Axc,
    The average number of particles Axd contained per 1 g of the adsorption sheet is represented by the following formula 1.
    Figure JPOXMLDOC01-appb-M000003
    The total average particle number of at least one kind of the adsorbent (Ax) contained per 1 g of the adsorbing sheet is represented by the following formula 2.
    Figure JPOXMLDOC01-appb-M000004
    The manufacturing method of an adsorption sheet whose specific tensile strength of the said adsorption sheet is 2 N * m / g or more.
  6.  前記吸着材(Ax)以外に、融点または熱分解温度が300℃以上の有機繊維(B-1)、および、熱分解温度が300℃未満の有機成分(B-2)を含む、請求項5に記載の吸着シートの製造方法。 6. In addition to the adsorbent (Ax), the organic fiber (B-1) having a melting point or a thermal decomposition temperature of 300 ° C. or higher and an organic component (B-2) having a thermal decomposition temperature of less than 300 ° C. are included. The manufacturing method of the adsorption sheet of description.
  7.  前記有機繊維が、アラミド系ポリマー、ベンズイミダゾール系ポリマー、ベンゾオキサゾール系ポリマー、ポリイミド系ポリマーから選ばれた少なくとも一種のポリマーである、請求項6に記載の吸着シートの製造方法。 The method for producing an adsorption sheet according to claim 6, wherein the organic fiber is at least one polymer selected from an aramid polymer, a benzimidazole polymer, a benzoxazole polymer, and a polyimide polymer.
  8.  前記有機成分が、ポリビニルアルコール系ポリマー、ポリアクリロニトリル系ポリマー、ポリビニルピロリドン系ポリマーから選ばれた少なくとも一種である、請求項6または請求項7に記載の吸着シートの製造方法。 The method for producing an adsorption sheet according to claim 6 or 7, wherein the organic component is at least one selected from a polyvinyl alcohol polymer, a polyacrylonitrile polymer, and a polyvinylpyrrolidone polymer.
  9.  吸着材(Ax,:x=1,2,3・・・n)を少なくとも1種類以上を含む、多数の空気通路を有する吸着シート(吸着素子前駆体)を用いたハニカム状構造の吸着素子であって、
     前記吸着材(Ax)のタップ密度をAxa、
     吸着材粒子を球状と仮定した時に吸着材粒子の平均粒径をから算出した球体積をAxb、
     前記吸着材(Ax)が前記吸着シートに含まれる重量比率(%)をAxcとすると、
     前記吸着シート1gあたりに含まれる平均粒子数Axdは以下の式1で表され、
    Figure JPOXMLDOC01-appb-M000005
     当該吸着シート1gあたりに含まれる少なくとも1種類以上の前記吸着材(Ax)の総平均粒子数は、以下の式5で表され、
    Figure JPOXMLDOC01-appb-M000006
     当該吸着素子の平面圧縮強度が3kPa以上である、吸着素子。
    An adsorbing element having a honeycomb-like structure using an adsorbing sheet (adsorbing element precursor) having at least one kind of adsorbent (Ax ,: x = 1, 2, 3... N) and having a large number of air passages. There,
    The tap density of the adsorbent (Ax) is Axa,
    When the adsorbent particles are assumed to be spherical, the spherical volume calculated from the average particle diameter of the adsorbent particles is Axb,
    When the weight ratio (%) of the adsorbent (Ax) contained in the adsorbent sheet is Axc,
    The average number of particles Axd contained per 1 g of the adsorption sheet is represented by the following formula 1.
    Figure JPOXMLDOC01-appb-M000005
    The total average particle number of at least one kind of the adsorbent (Ax) contained per 1 g of the adsorbing sheet is represented by the following formula 5.
    Figure JPOXMLDOC01-appb-M000006
    An adsorption element having a plane compressive strength of 3 kPa or more.
  10.  前記吸着シートは、骨格素材として繊維を有する、請求項9に記載の吸着素子。 The adsorption element according to claim 9, wherein the adsorption sheet has fibers as a skeleton material.
  11.  前記吸着シートは、厚みが0.16~0.25mmである、請求項9または請求項10に記載の吸着素子。 The adsorption element according to claim 9 or 10, wherein the adsorption sheet has a thickness of 0.16 to 0.25 mm.
  12.  前記ハニカム状構造は、セル数30/cm~70/cmを有する、請求項9から請求項11のいずれか1項に記載の吸着素子。 The adsorption element according to any one of claims 9 to 11, wherein the honeycomb structure has a cell number of 30 / cm 2 to 70 / cm 2 .
  13.  前記吸着素子に含まれる少なくとも1種類以上の前記吸着材(Ax)の合計比率が、前記吸着素子の40重量%以上である、請求項9から請求項12のいずれか1項に記載の吸着素子。 The adsorption element according to any one of claims 9 to 12, wherein a total ratio of at least one kind of the adsorbent (Ax) included in the adsorption element is 40% by weight or more of the adsorption element. .
  14.  前記吸着材(Ax)のタップ密度が0.1g/cm以上である、請求項9から請求項13のいずれか1項に記載の吸着素子。 The adsorption element according to any one of claims 9 to 13, wherein a tap density of the adsorbent (Ax) is 0.1 g / cm 3 or more.
  15.  前記吸着材(Ax)が、ゼオライトである、請求項9から請求項14のいずれか1項に記載の吸着素子。 The adsorption element according to any one of claims 9 to 14, wherein the adsorbent (Ax) is zeolite.
PCT/JP2019/022003 2018-06-05 2019-06-03 Adsorbing sheet, adsorbing sheet production method, and adsorbing element WO2019235429A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980037618.6A CN112218711B (en) 2018-06-05 2019-06-03 Adsorption sheet, method for producing adsorption sheet, and adsorption element
KR1020207037731A KR20210015932A (en) 2018-06-05 2019-06-03 Adsorption sheet, method of manufacturing adsorption sheet, and adsorption element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-108048 2018-06-05
JP2018108048A JP6516047B1 (en) 2018-06-05 2018-06-05 Adsorption element
JP2018-108047 2018-06-05
JP2018108047A JP7183578B2 (en) 2018-06-05 2018-06-05 Adsorption sheet and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2019235429A1 true WO2019235429A1 (en) 2019-12-12

Family

ID=68770880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022003 WO2019235429A1 (en) 2018-06-05 2019-06-03 Adsorbing sheet, adsorbing sheet production method, and adsorbing element

Country Status (4)

Country Link
KR (1) KR20210015932A (en)
CN (1) CN112218711B (en)
TW (1) TWI818996B (en)
WO (1) WO2019235429A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210260573A1 (en) * 2020-02-21 2021-08-26 Johnson Matthey Public Limited Company Particulate filters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824637A (en) * 1994-07-13 1996-01-30 Toho Rayon Co Ltd Adsorbing material
JPH10352A (en) * 1996-06-19 1998-01-06 Toyobo Co Ltd Heat-resistant adsorption element and its production
JP2003154261A (en) * 2001-11-20 2003-05-27 Mitsui Mining Co Ltd Formed adsorbent and production method thereof

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1207736A (en) * 1983-06-17 1986-07-15 James K. Dix Paper containing activated carbon
DE69117471T2 (en) * 1990-12-25 1996-09-12 Seibu Giken Kk Gas adsorption element, its production method and use
JPH05345609A (en) * 1992-06-12 1993-12-27 Ngk Insulators Ltd Production of zeolite honeycomb form
JP4203605B2 (en) * 1995-09-29 2009-01-07 東洋紡績株式会社 Heat-resistant adsorption sheet and method for producing the same
US6051096A (en) * 1996-07-11 2000-04-18 Nagle; Dennis C. Carbonized wood and materials formed therefrom
EP0955087B1 (en) * 1998-05-08 2008-12-24 Toyobo Co., Ltd. Gas adsorption sheet and air-purifying filter
JP2000317243A (en) * 1999-05-10 2000-11-21 Toray Ind Inc Chemical filter
US7989388B2 (en) * 2005-01-21 2011-08-02 Multisorb Technologies, Inc. Resin bonded sorbent
JP4618308B2 (en) * 2007-04-04 2011-01-26 ソニー株式会社 Porous carbon material and method for producing the same, adsorbent, mask, adsorbing sheet, and carrier
KR101577840B1 (en) * 2007-09-28 2015-12-15 도레이 카부시키가이샤 Filter element and filter unit
CN101310825B (en) * 2008-02-18 2011-03-23 马军 Organic gas reclamation processing technique and device thereof
CN101628229A (en) * 2008-07-15 2010-01-20 周奇迪 Filter medium for removing polychlorobiphenyl in water and preparation method thereof
CN201581304U (en) * 2009-09-22 2010-09-15 李延军 Adsorption paper
CN102858432B (en) * 2010-04-22 2016-08-03 三菱树脂株式会社 Absorbent member and the device of this absorbent member of use
CN101905149B (en) * 2010-07-01 2011-11-23 傅桂云 Composite material for absorbing harmful substances in water
EP2660268B1 (en) * 2010-12-28 2019-08-07 Shanghai Genius Advanced Material (Group) Co. Ltd Nano particle/polyamide composite material, preparation method therefor, and use thereof
CN102389773B (en) * 2011-08-20 2013-06-05 佛山市环保技术与装备研发专业中心 Manufacture method of molecular sieve honeycomb body for absorbing volatile organic compounds
CN103768862A (en) * 2012-10-17 2014-05-07 单建民 Preparation method of filtering adsorption paper
CN103418250B (en) * 2013-07-05 2015-12-02 烟台绿水赋膜材料有限公司 A kind of method at separation membrane surface in-situ preparation nano particle
CN104492165B (en) * 2014-12-19 2016-04-27 四川创越炭材料有限公司 A kind of preparation method of spherical activated charcoal compound fabric
JP6085336B2 (en) * 2015-06-18 2017-02-22 関西熱化学株式会社 Activated carbon molded body, method for producing the activated carbon molded body, adsorbent using the activated carbon molded body, and occlusion material
CN106149470B (en) * 2016-08-15 2017-10-27 浙江通源环保科技有限公司 A kind of extrusion coating paper adsorbed for VOCs industrial waste gases and its manufacture method
CN106892438A (en) * 2017-02-10 2017-06-27 山东鲁北企业集团总公司 A kind of preparation method of 4A zeolites

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824637A (en) * 1994-07-13 1996-01-30 Toho Rayon Co Ltd Adsorbing material
JPH10352A (en) * 1996-06-19 1998-01-06 Toyobo Co Ltd Heat-resistant adsorption element and its production
JP2003154261A (en) * 2001-11-20 2003-05-27 Mitsui Mining Co Ltd Formed adsorbent and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210260573A1 (en) * 2020-02-21 2021-08-26 Johnson Matthey Public Limited Company Particulate filters

Also Published As

Publication number Publication date
KR20210015932A (en) 2021-02-10
TWI818996B (en) 2023-10-21
CN112218711B (en) 2024-04-05
CN112218711A (en) 2021-01-12
TW202003103A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6516047B1 (en) Adsorption element
US11298675B2 (en) 3D printed zeolite monoliths for CO2 removal
JP5690325B2 (en) Zeolite membrane and method for producing zeolite membrane
KR102496287B1 (en) Mesoporous carbon and manufacturing method of the same, and polymer electrolyte fuel cell
US9452936B2 (en) Zeolite structure and manufacturing method thereof
JPWO2014115814A1 (en) Alumina fiber and alumina fiber aggregate
JP7273483B2 (en) Acid gas absorbent and method for producing the same
US20110236271A1 (en) Zeolite structure and manufacturing method thereof
CN109647328A (en) A kind of glass fibre molecule of the skeleton sieve paper and preparation method thereof with porous structure
JP7183578B2 (en) Adsorption sheet and manufacturing method thereof
JP6918064B2 (en) Hydrogen separation device and hydrogen separation method
WO2019235429A1 (en) Adsorbing sheet, adsorbing sheet production method, and adsorbing element
JP7352769B2 (en) Insulating materials, their manufacturing methods, and electronic devices and automobiles using them
Dong et al. 3D Electrospinning of Al2O3/ZrO2 fibrous aerogels for multipurpose thermal insulation
JP3707573B2 (en) Heat-resistant adsorption element and manufacturing method thereof
JP5232517B2 (en) Silcagel, production method thereof, silica gel-supported paper and silica gel element
JP4635751B2 (en) Adsorption element manufacturing method
Zhou et al. Functional Mesoporous Material Derived from 3D Net‐Linked SBA‐15
JP3323787B2 (en) Air purification filter, method of manufacturing the same, and advanced cleaning device
JPH0362672B2 (en)
JP2009011943A (en) Adsorption sheet and adsorption element
JP4203605B2 (en) Heat-resistant adsorption sheet and method for producing the same
JPH08281054A (en) Rotor for rotary type organic solvent vapor adsorption device
JP2007268442A (en) Adsorption sheet, adsorption element, and method for preparing the same
JP2002079045A (en) Dehumidifying material and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19816083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207037731

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19816083

Country of ref document: EP

Kind code of ref document: A1