JP6516047B1 - Adsorption element - Google Patents

Adsorption element Download PDF

Info

Publication number
JP6516047B1
JP6516047B1 JP2018108048A JP2018108048A JP6516047B1 JP 6516047 B1 JP6516047 B1 JP 6516047B1 JP 2018108048 A JP2018108048 A JP 2018108048A JP 2018108048 A JP2018108048 A JP 2018108048A JP 6516047 B1 JP6516047 B1 JP 6516047B1
Authority
JP
Japan
Prior art keywords
adsorbent
sheet
adsorption
average particle
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018108048A
Other languages
Japanese (ja)
Other versions
JP2019209267A (en
Inventor
晶徳 水谷
晶徳 水谷
大樹 河野
大樹 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2018108048A priority Critical patent/JP6516047B1/en
Application granted granted Critical
Publication of JP6516047B1 publication Critical patent/JP6516047B1/en
Priority to PCT/JP2019/022003 priority patent/WO2019235429A1/en
Priority to KR1020207037731A priority patent/KR20210015932A/en
Priority to TW108119198A priority patent/TWI818996B/en
Priority to CN201980037618.6A priority patent/CN112218711B/en
Publication of JP2019209267A publication Critical patent/JP2019209267A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

【課題】吸着素子として十分な柔軟性や強度と高い吸着材含有比率を両立した吸着素子を提供する。【解決手段】吸着材(Ax,:x=1,2,3・・・n)を少なくとも1種類以上を含む、多数の空気通路を有する吸着シート(吸着素子前駆体)を用いたハニカム状構造の吸着素子であって、吸着材(Ax)のタップ密度をAxa、吸着材粒子を球状と仮定した時に吸着材粒子の平均粒径から算出した球体積をAxb、吸着材が前記吸着シートに含まれる重量比率(%)をAxcとすると、前記吸着シート1gあたりに含まれる平均粒子数Axdは次の式1で表され、Axd=(1/Axa)×(1/Axb)×(Axc/100)(個/g)・・・式1、上記吸着シート1gあたりに含まれる少なくとも1種類以上の吸着材(Ax)の総平均粒子数は、以下の式2で表され、当該吸着素子の平面圧縮強度が3kPa以上である。【選択図】なしThe present invention provides an adsorptive element which has both sufficient flexibility and strength as an adsorptive element and a high adsorbent content ratio. A honeycomb structure using an adsorption sheet (adsorption element precursor) having a large number of air passages, containing at least one or more adsorbents (Ax, x: 1, 2, 3 ... n). The adsorbing element includes a sphere volume calculated from the average particle diameter of the adsorbent particles when the tap density of the adsorbent (Ax) is assumed to be Axa and the adsorbent particles are spherical, and the adsorbent includes the adsorbent in the adsorbent sheet. Assuming that the weight ratio (%) to be produced is Axc, the average particle number Axd contained in 1 g of the adsorbing sheet is expressed by the following equation 1, and Axd = (1 / Axa) × (1 / Axb) × (Axc / 100) (Piece / g) ... Formula 1, The total average particle number of at least one or more kinds of adsorbents (Ax) contained in 1 g of the above-mentioned adsorption sheet is expressed by the following formula 2, and the plane of the adsorption element The compressive strength is 3 kPa or more. 【Selection chart】 None

Description

本発明は、例えば空気中に含まれる有機溶剤等の悪臭成分を吸着除去する排ガス処理装置等に使用される吸着素子に関するものである。   The present invention relates to an adsorption element used for an exhaust gas treatment apparatus or the like which adsorbs and removes an offensive odor component such as an organic solvent contained in air, for example.

従来、吸着素子としては、吸着材、有機繊維、有機バインダー、無機バインダー等を含む吸着シートをハニカム成形機により、ハニカム成形用接着剤を使用し、ハニカム状に成形した物が知られている(例えば特許文献1参照)。   Heretofore, as an adsorption element, there is known a honeycomb-shaped adhesive sheet containing an adsorption material, an organic fiber, an organic binder, an inorganic binder and the like, which is formed into a honeycomb shape using a honeycomb forming adhesive by a honeycomb forming machine See, for example, Patent Document 1).

特開平10−352号公報Japanese Patent Application Laid-Open No. 10-352

この吸着素子には、ゼオライトが吸着材として含まれると、特許文献1に記載されている。ゼオライトの形状には粉末状、粒子状、もしくはペレット状の形状がある。吸着素子の柔軟性や機械的強度には、骨格素材である有機繊維などが役割を担う。吸着素子として高い性能を発揮するには吸着材の含有比率を向上させることが有効であるが、反対に骨格素材である有機繊維や無機繊維の含有比率が下がるため、結果的には吸着素子の柔軟性や強度は低下するという課題があった。   Patent Document 1 describes that the adsorption element contains zeolite as an adsorbent. The shape of the zeolite may be powder, particles or pellets. Organic fibers, which are skeletal materials, play a role in the flexibility and mechanical strength of the adsorption element. It is effective to improve the content ratio of the adsorbent to exhibit high performance as an adsorption element, but conversely, since the content ratio of organic fiber and inorganic fiber which is a framework material is lowered, There is a problem that flexibility and strength decrease.

吸着材には特有の見かけ密度(ゆるめかさ密度やタップ密度)があり、それには吸着材の化学的な種類(活性炭、ゼオライト種、シリカゲルなど)と、バルクとしての形状(粒径、繊維径など)が密接に関与する。単純に吸着素子に含まれる吸着材の含有量が同じであっても、見かけ密度と粒径から計算される粒子の個数には違いがあり、粒子数が多すぎて骨格素材の絡まりが少なくなり、実用上の強度が得られないという課題があった。   The adsorbent has a specific apparent density (loose bulk density or tap density), which includes the chemical type of the adsorbent (activated carbon, zeolite, silica gel, etc.) and the shape as bulk (particle diameter, fiber diameter, etc.) ) Are closely involved. Even if the content of the adsorbent contained in the adsorption element is simply the same, there is a difference in the number of particles calculated from the apparent density and the particle diameter, the number of particles is too large, and the entanglement of the framework material decreases. There is a problem that practical strength can not be obtained.

本発明は上記課題に鑑みてなされたものであり、吸着素子として十分な柔軟性や強度と高い吸着材含有比率を両立した吸着素子を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an adsorptive element having both sufficient flexibility and strength as the adsorptive element and a high adsorbent content ratio.

本発明者らは上記課題を解決するため、鋭意研究した結果、遂に本発明を完成するに到った。すなわち、本発明は以下の通りである。   As a result of earnest studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.

この吸着素子によれば、吸着材(Ax,:x=1,2,3・・・n)を少なくとも1種類以上を含む、多数の空気通路を有する吸着シート(吸着素子前駆体)を用いたハニカム状構造の吸着素子であって、上記吸着材(Ax)のタップ密度をAxa、吸着材粒子を球状と仮定した時に吸着材粒子の平均粒径をから算出した球体積をAxb、上記吸着材が上記吸着シートに含まれる重量比率(%)をAxcとすると、上記吸着シート1gあたりに含まれる平均粒子数Axdは以下の式1で表される。   According to this adsorption element, an adsorption sheet (adsorption element precursor) having a large number of air passages containing at least one or more types of adsorption materials (Ax ,: x = 1, 2, 3... N) is used It is an adsorption element of honeycomb structure, and assuming that tap density of the adsorbent (Ax) is Axa and adsorbent particles are spherical, spherical volume calculated from average particle diameter of adsorbent particles is Axb, and the adsorbent Assuming that the weight ratio (%) contained in the adsorbing sheet is Axc, the average particle number Axd contained in 1 g of the adsorbing sheet is represented by the following formula 1.

Figure 0006516047
Figure 0006516047

上記吸着シート1gあたりに含まれる少なくとも1種類以上の上記吸着材(Ax)の総平均粒子数は、以下の式2で表される。当該吸着素子の平面圧縮強度が3kPa以上である。   The total average particle number of at least one or more of the adsorbents (Ax) contained in 1 g of the adsorption sheet is represented by the following formula 2. The planar compression strength of the adsorption element is 3 kPa or more.

Figure 0006516047
Figure 0006516047

他の形態においては、上記吸着シートは、骨格素材として繊維を有する、
他の形態においては、上記吸着シートは、厚みが0.16〜0.25mmである、
他の形態においては、上記ハニカム状構造は、セル数30〜70/cmを有する。
他の形態においては、上記吸着素子に含まれる少なくとも1種類以上の吸着材(Ax)の合計比率が、上記吸着素子の40重量%以上である。
In another form, the suction sheet comprises fibers as a framework material,
In another embodiment, the suction sheet has a thickness of 0.16 to 0.25 mm.
In another embodiment, the honeycomb structure has a cell number of 30 to 70 / cm 2 .
In another embodiment, the total ratio of the at least one or more adsorbents (Ax) contained in the adsorption element is 40% by weight or more of the adsorption element.

他の形態においては、上記吸着材(Ax)のタップ密度が0.1g/cm以上である。 In another embodiment, the tap density of the adsorbent (Ax) is 0.1 g / cm 3 or more.

他の形態においては、上記吸着材(Ax)が、ゼオライトである。   In another form, the adsorbent (Ax) is a zeolite.

この吸着素子によれば、吸着素子として十分な柔軟性や強度と高い吸着材含有比率を両立した吸着素子の提供を可能とする。   According to this adsorption element, it is possible to provide an adsorption element which has both sufficient flexibility and strength as the adsorption element and a high adsorbent content ratio.

実施の形態における吸着素子の形状であるハニカム状の形状を示す図である。It is a figure which shows the shape of honeycomb shape which is a shape of the adsorption | suction element in embodiment. 実施の形態における吸着素子の形状であるハニカム状の形状を採用した吸着剤の部分拡大である。It is partial expansion of the adsorbent which employ | adopted the shape of the honey-comb shape which is a shape of the adsorption | suction element in embodiment. 実施の形態における吸着シートの各実施例および各比較例の各種特性を示す図である。It is a figure which shows the various characteristics of each Example and each comparative example of the adsorption | suction sheet in embodiment.

本発明に基づいた実施の形態の吸着素子について、以下、図面を参照しながら説明する。以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。実施の形態における構成を適宜組み合わせて用いることは当初から予定されていることである。   An adsorption element according to an embodiment based on the present invention will be described below with reference to the drawings. In the embodiments described below, when the number, the amount, and the like are mentioned, the scope of the present invention is not necessarily limited to the number, the amount, and the like unless otherwise specified. The same parts and corresponding parts are denoted by the same reference numerals, and duplicate descriptions may not be repeated. It is planned from the beginning to use appropriately combining the configurations in the embodiments.

[湿式製法による混合抄造(吸着材を内添して紙を作る)]
吸着材と有機繊維や無機繊維などの骨格素材とを混合抄造して吸着シートをハニカム成形機により、ハニカム成形用接着剤を使用し、ハニカム状に成形した吸着素子を得る場合、吸着材は骨格素材同士の絡み合い点を減らしてしまう。そのため、吸着材の嵩密度および粒径の観点からすると、単位重量当たりの体積を表す比容積が小さい方が吸着材の占有体積が小さくなり、骨格素材同士の絡み合い点を減らしにくいため好ましい。
[Mixed papermaking by wet process (adsorbent is internally added to make paper)]
When an adsorbent is mixed with a framework material such as organic fibers or inorganic fibers to form an adsorbent sheet by using a honeycomb forming adhesive with a honeycomb forming machine to obtain an adsorbent element formed into a honeycomb shape, the adsorbent is a framework It reduces the entanglement points between the materials. Therefore, from the viewpoint of the bulk density and particle diameter of the adsorbent, the smaller the specific volume representing the volume per unit weight is, the smaller the occupied volume of the adsorbent is, and the more difficult it is to reduce the entanglement points between the framework materials.

実際には、比容積の逆数である密度が大きい吸着材が好ましいことと同義である。吸着材の形状は粉末状、粒状、繊維状などがあり、吸着素子に含有される量を考えると、粉体1つ、粒子1つ、繊維1本ではなく多量の粉末、粒子、繊維が担持されるのが一般的である。そのため、粉末、粒子、繊維の集合体としての充填密度としてはゆるめかさ密度やタップ密度(かためかさ密度とも言う)があるが、吸着素子としてより吸着材を高含有重量比率にするためにも、より緻密に充填された状態を表すタップ密度が特に重要となる。   In practice, it is synonymous with the preference for adsorbents with high density, which is the reciprocal of the specific volume. The shape of the adsorbent is powdery, granular, fibrous, etc. Considering the amount contained in the adsorption element, one powder, one particle, one fiber, not a large amount of powder, particles, fibers are carried It is common to Therefore, there are loose bulk density and tap density (also referred to as bulk density) as packing density as an aggregate of powder, particles, and fibers, but it is also for increasing the content ratio of the adsorbent as the adsorption element. The tap density, which represents a more tightly packed state, is particularly important.

混合抄造が湿式抄紙の場合、吸着材は粉末や粒状が好ましく、粉末状が特に好ましい。粉末のタップ密度は0.1g/cm〜2.0g/cmが好ましく、さらに好ましくは0.2〜1.0g/cmの範囲であるとよい。 In the case of mixed papermaking in wet papermaking, the adsorbent is preferably powder or granular, and particularly preferably powdery. The tap density of the powder is preferably 0.1g / cm 3 ~2.0g / cm 3 , more preferably may be in the range of 0.2 to 1.0 g / cm 3.

[粒径との関係]
吸着材(Ax)の粒径は、レーザー回折などで評価することができ、平均粒径0.001μm〜30.0μmの範囲が好ましく、さらに好ましくは0.01μm〜20μmである。吸着材の粒径は吸着材の種類に依存する場合があり、特にゼオライトは結晶種によって結晶サイズが異なりやすい。ゼオライトの結晶種によっては3μm以下の結晶サイズがあり、その場合は完全な分散状態を得ることが難しく、レーザー回折では実際の粒径より大きな粒径(二次粒子径)を見ている場合もある。その場合は、SEM(走査電子顕微鏡:Scanning Electron Microscope)などの画像解析で確認された最小単位である結晶サイズの平均値を平均粒径とみなす。
[Relationship with particle size]
The particle size of the adsorbent (Ax) can be evaluated by laser diffraction or the like, and the average particle size is preferably in the range of 0.001 μm to 30.0 μm, and more preferably 0.01 μm to 20 μm. The particle size of the adsorbent may depend on the type of adsorbent, and in particular, the crystal size of the zeolite tends to differ depending on the crystal species. Depending on the crystal type of zeolite, there is a crystal size of 3 μm or less, in which case it is difficult to obtain a completely dispersed state, and even when the particle size (secondary particle size) larger than the actual particle size is observed in laser diffraction. is there. In that case, the average value of the crystal size which is the smallest unit confirmed by image analysis such as SEM (Scanning Electron Microscope) is regarded as the average particle diameter.

実施の形態における吸着材は、活性炭またはゼオライトである。活性炭およびゼオライトは、低濃度の有機化合物を吸着および脱着するのに優れている。   The adsorbent in the embodiment is activated carbon or zeolite. Activated carbon and zeolites are excellent for adsorbing and desorbing low concentrations of organic compounds.

活性炭の場合は、形態は、平均粒径が10μm以上50μm以下の粉末、または平均繊維径が10μm以上30μm以下の繊維が挙げられる。活性炭の原料は特に指定しないが、椰子柄、石炭、ピッチ、フェノール樹脂、ポリアクリロニトリル、セルロースなどがある。   In the case of activated carbon, the form may be a powder having an average particle diameter of 10 μm to 50 μm or a fiber having an average fiber diameter of 10 μm to 30 μm. The raw material of the activated carbon is not particularly specified, but may be coconut palm, coal, pitch, phenol resin, polyacrylonitrile, cellulose and the like.

実施の形態における吸着材は、好ましくはゼオライトが良い。ゼオライトは、耐熱温度が高く、活性炭よりも吸着時の有機溶剤などとの反応性が低いので、耐熱性に優れ、発熱の危険性が低い。またゼオライトは、活性炭よりもシャープな細孔構造を有するので、有機溶剤などの吸着性能が優れている。ゼオライトの場合は、形態は平均粒径が1μm以上20μm以下の粉末である。ゼオライトは、天然に産出されるゼオライトもあるが、人工合成ゼオライトが適している。具体的には、ベータ型、ZSM−5型、フェリエライト型、モルデナイト型、L型、Y型、A型などがある。   The adsorbent in the embodiment is preferably zeolite. Zeolite has high heat resistance temperature and lower reactivity with organic solvents at the time of adsorption than activated carbon, so it is excellent in heat resistance and has a low risk of heat generation. In addition, since zeolite has a sharper pore structure than activated carbon, the adsorption performance of organic solvents and the like is excellent. In the case of zeolite, the form is a powder having an average particle size of 1 μm to 20 μm. Zeolites are also naturally produced zeolites, but artificially synthesized zeolites are suitable. Specifically, there are beta type, ZSM-5 type, ferrierite type, mordenite type, L type, Y type, A type and the like.

実施の形態における吸着材は、更に好ましくは、シリカ/アルミナ比の高いハイシリカゼオライトが好ましい。ハイシリカゼオライトは、被処理ガス中から有機溶剤などを吸着するにあたって、被処理ガス中の水分、湿度の影響を受けにくいためである。シリカ/アルミナ比は15以上が良く、更には50以上がより良い。   More preferably, the adsorbent in the embodiment is a high silica zeolite having a high silica / alumina ratio. High silica zeolite is less susceptible to the influence of moisture and humidity in the gas to be treated when adsorbing an organic solvent or the like from the gas to be treated. The silica / alumina ratio is preferably 15 or more, and more preferably 50 or more.

実施の形態における吸着素子は、吸着材を少なくとも1つ含む。前述の各種の活性炭およびゼオライトのうちの1つまたは複数を選択してもよい。複数の吸着材が選択される場合、その割合は特に限定されない。吸着材は、被処理ガスの処理条件に応じて、適宜選択されればよい。   The adsorbing element in the embodiment includes at least one adsorbing material. One or more of the various activated carbons and zeolites described above may be selected. When multiple adsorbents are selected, the ratio is not particularly limited. The adsorbent may be appropriately selected according to the treatment conditions of the gas to be treated.

吸着材(Ax)のタップ密度を[Axa]、吸着材粒子を球状と仮定した時の平均粒径をから算出した球体積を[Axb]、吸着材が吸着シートに含まれる重量比率を[Axc]とすると、吸着素子1gあたりに含まれる平均粒子数[Axd]は、以下の[式1]のように表される。   When the tap density of the adsorbent (Ax) is [Axa], assuming that the adsorbent particles are spherical, the sphere volume calculated from the average particle diameter is [Axb], and the weight ratio of the adsorbent to the adsorbent sheet is [Axc] Assuming that], the average particle number [Axd] contained per 1 g of the adsorbing element is expressed as the following [Formula 1].

Figure 0006516047
Figure 0006516047

先述したように、吸着材と有機繊維や無機繊維などの骨格素材とを混合抄造して吸着シートを得る場合、吸着材は骨格素材同士の絡み合い点を減らしてしまうため吸着シートの強度低下を招きやすい。そのため、実用的な強度を得るには一定量以下の粒子総数に抑えることが好ましく、吸着シート1gあたりに含まれる少なくとも1種類以上の吸着材Axの総平均粒子数は、以下の[式2]で表され、8.0×1012以下であることが好ましい。 As described above, in the case of forming an adsorption sheet by mixing and forming an adsorbent and a framework material such as an organic fiber or an inorganic fiber, the adsorbent reduces the entanglement points of the framework materials and causes strength reduction of the adsorption sheet. Cheap. Therefore, in order to obtain practical strength, it is preferable to keep the total number of particles not more than a fixed amount, and the total average number of particles of at least one adsorbent Ax contained in 1 g of the adsorbent sheet is the following [Formula 2] And is preferably 8.0 × 10 12 or less.

Figure 0006516047
Figure 0006516047

[有機繊維B−1]
本実施の形態における有機成分(B)は、吸着シート製造時に吸着材(Ax)を担持し、吸着シート成形後も担持する担体として作用する成分で、パルプ状や繊維長10mm以下程度の短繊維の有機繊維、ことに融点もしくは熱分解温度が300℃以上の耐熱性に優れた繊維である。熱分解温度が300℃未満では、吸・脱着操作中に遭遇する高温下で著しい強度低下が避けられない。具体的にはアラミド、メタアラミド、ポリベンズイミダゾール(PBI)、ポリベンゾオキサゾール(PBO)、ポリイミド、ポリアミドイミド、ポリエーテルケトン等から作られた繊維である。
[Organic fiber B-1]
The organic component (B) in the present embodiment is a component that supports the adsorbing material (Ax) at the time of producing the adsorptive sheet and acts as a carrier that is supported even after the adsorptive sheet is formed. Organic fibers, particularly fibers having a heat resistance of 300 ° C. or higher, having a melting point or thermal decomposition temperature of 300 ° C. If the thermal decomposition temperature is less than 300 ° C., a significant loss of strength can not be avoided at the high temperatures encountered during the adsorption and desorption operation. Specifically, they are fibers made of aramid, meta-aramid, polybenzimidazole (PBI), polybenzoxazole (PBO), polyimide, polyamide imide, polyether ketone and the like.

[有機バインダーB−2]
有機成分(B)は、上記耐熱性有機成分(B−1)の他に熱分解温度が300℃未満の物質を含むのが好ましい。該低温度分解性有機成分(B−2)は吸着シート製造時、吸着材(Ax)を吸着シートに高比率に担持させるバインダーの作用を有する。低温度分解性有機成分としては、PVA(ポリビニルアルコール(polyvinyl alcohol))、澱粉、あるいはポリアクリロニトリル等が挙げられるが、PVAが望ましい。
[Organic binder B-2]
The organic component (B) preferably contains, in addition to the heat-resistant organic component (B-1), a substance having a thermal decomposition temperature of less than 300 ° C. The low temperature decomposable organic component (B-2) has the function of a binder that causes the adsorbing sheet (Ax) to be supported on the adsorbing sheet at a high ratio at the time of producing the adsorbing sheet. As the low temperature decomposable organic component, PVA (polyvinyl alcohol), starch, polyacrylonitrile or the like can be mentioned, and PVA is preferable.

低温度分解性有機成分(B−2)による吸着材(Ax)の被覆が大きく吸着性能が著しく低い場合は、吸着シートを高温熱処理することにより低温度分解性有機成分(B−2)を炭化物あるいは分解消失せしめ、吸着材(Ax)の被覆を少なくすることも可能である。   When the coating of the adsorbent (Ax) with the low temperature decomposable organic component (B-2) is large and the adsorption performance is extremely low, the low temperature decomposable organic component (B-2) is carbided by subjecting the adsorption sheet to a high temperature heat treatment Alternatively, it is possible to cause decomposition and disappearance and reduce the coating of the adsorbent (Ax).

[無機バインダーC]
本実施の形態では、吸着シートの高温下での吸着材(Ax)と骨格素材とを定着維持させ、また、図1および図2に示すように、多数の空気通路を有する吸着シートにおいて、ハニカムを構成するフルート部2aとライナー部2bを定着維持させるのに無機バインダー(C)を付与しても構わない。
[Inorganic binder C]
In the present embodiment, the adsorption material (Ax) and the framework material at high temperature of the adsorption sheet are fixed and maintained, and as shown in FIGS. 1 and 2, the adsorption sheet having a large number of air passages is a honeycomb. An inorganic binder (C) may be applied to fix and maintain the flute portion 2a and the liner portion 2b constituting the above.

例えば水に可溶であり、バインダーがシートに均一に分散され、熱処理の際、反応、ゲル化等によって硬化し、その硬化の際に吸着材と骨格素材を強固に定着せしめるものである。また熱分解温度が300℃以上であり、反応性の高い有機溶剤により反応熱を生じ、シートの着火、燃焼の原因となる触媒性が低く、吸着材(Ax)の吸着性能をその被覆により低下させにくい物であることが好ましい。例えば、ヘキサメタリン酸ソーダ等のリン酸塩系バインダー、ケイ酸ソーダ等のケイ酸塩系バインダーが好ましい。   For example, it is soluble in water, and the binder is uniformly dispersed in the sheet, and is hardened by reaction, gelation or the like at the time of heat treatment, and the adsorbent and the framework material are firmly fixed at the time of the hardening. In addition, thermal decomposition temperature is 300 ° C or more, the reaction heat is generated by the highly reactive organic solvent, the ignition of the sheet is low, the catalytic property causing combustion is low, and the adsorption performance of the adsorbent (Ax) is lowered by the coating It is preferable that it is a thing which is hard to be made to do. For example, phosphate-based binders such as sodium hexametaphosphate and silicate-based binders such as sodium silicate are preferable.

吸着材(Ax)と構成繊維分とを定着維持させる無機バインダー(C−1)とハニカムを構成するフルート部2aとライナー部2bを定着維持させる無機バインダー(C−2)は同種類のバインダーを使用する必要は無く、生産性により適したバインダーを使用する事が望ましい。   The inorganic binder (C-1) for fixing and holding the adsorbent (Ax) and the constituent fibers and the inorganic binder (C-2) for fixing and holding the flute portion 2a and the liner portion 2b constituting the honeycomb are the same type of binder It is not necessary to use, and it is desirable to use a binder that is more suitable for productivity.

[吸着剤Ax含有量]
本実施の形態の吸着素子に含まれる吸着材(Ax)の量は40重量%以上がよい。吸着性能及び生産性、吸着材の脱落を考慮すると50重量%以上が好ましい。吸着材(Ax)の含有量が40%未満では充分な吸着性能が得られない。吸着剤の重量の上限に制限はないが、吸着素子の形状を維持するには80重量%以下が限界である。80重量%を超えると、吸着シートの柔軟性が不足し加工しにくくなる。本実施の形態の吸着素子に含まれる有機成分(B)の量は、吸着素子前駆体(前駆体素子)製造時に用いた有機成分及び加熱処理を行った場合はその熱酸化物を合わせた量として5〜60重量%である。
[Adsorbent Ax Content]
The amount of the adsorbent (Ax) contained in the adsorption element of the present embodiment is preferably 40% by weight or more. In view of adsorption performance and productivity, removal of the adsorbent, 50% by weight or more is preferable. If the content of the adsorbent (Ax) is less than 40%, sufficient adsorption performance can not be obtained. The upper limit of the weight of the adsorbent is not limited, but the upper limit is 80% by weight or less to maintain the shape of the adsorption element. If it exceeds 80% by weight, the flexibility of the suction sheet is insufficient and it becomes difficult to process. The amount of the organic component (B) contained in the adsorption element of the present embodiment is the total amount of the organic component used when producing the adsorption element precursor (precursor element) and the thermal oxide when heat treatment is performed. As 5 to 60% by weight.

有機成分(B)の含有量が5%未満では吸着材の担持能が不足し、60%以上では吸着材の使用量を少なくしなければならない不都合が生じる。本実施の形態の吸着素子に含まれる無機バインダー成分(C)の量は5重量%〜30重量%である。5重量%未満では吸着材(Ax)と骨格素材同士の定着性が乏しくなり、30重量%以上になると柔軟性が不足する為好ましくない。   If the content of the organic component (B) is less than 5%, the ability to support the adsorbent is insufficient, and if it is 60% or more, the amount of the adsorbent used must be reduced. The amount of the inorganic binder component (C) contained in the adsorption element of the present embodiment is 5% by weight to 30% by weight. If it is less than 5% by weight, the fixability of the adsorbent (Ax) and the framework material becomes poor, and if it is 30% by weight or more, the flexibility is insufficient, which is not preferable.

[ハニカム状構造]
本実施の形態における吸着素子の構造は、機械強度および製造コストの観点からハニカム状構造体が良く、セル数が30個/cm〜70個/cmが良い。更に好ましくは、セル数が50〜70個/cmが良い。セル数が30個/cm未満であると吸着性能が低下し、70個/cmを超えると、ハニカム状構造体の隔壁を構成するシートの厚みを薄くする必要があるが、シートの機械強度が弱くなり、シートの製造ができない。ハニカム状構造体のセル形状は特に指定しないが、図1に示すセル形状を例にとると、波高が1mm〜3mm、波長が2mm〜4mmである。更に好ましくは、波高が1mm〜1.6mm、波長が2mm〜2.6mmが良い。ここで、ハニカム状構造とは、空間が側壁で囲まれた複数の小空間(セル形状)で構成される立体構造全般を表すものとする。
[Honeycomb-like structure]
The structure of the adsorption element in the present embodiment is preferably a honeycomb structure from the viewpoint of mechanical strength and manufacturing cost, and the number of cells is preferably 30 / cm 2 to 70 / cm 2 . More preferably, the number of cells is 50 to 70 cells / cm 2 . When the number of cells is less than 30 cells / cm 2 , the adsorption performance is lowered, and when it exceeds 70 pieces / cm 2 , it is necessary to reduce the thickness of the sheet constituting the partition wall of the honeycomb structure. The strength is weak and the sheet can not be manufactured. The cell shape of the honeycomb structure is not particularly specified, but taking the cell shape shown in FIG. 1 as an example, the wave height is 1 mm to 3 mm, and the wavelength is 2 mm to 4 mm. More preferably, the wave height is 1 mm to 1.6 mm, and the wavelength is 2 mm to 2.6 mm. Here, the honeycomb structure represents a whole three-dimensional structure including a plurality of small spaces (cell shapes) in which the space is surrounded by the side walls.

本実施の形態における吸着素子を構成するハニカム状構造体の隔壁厚みは、0.16mm〜0.25mmが良い。0.16mm未満の場合、隔壁を構成するシートの厚みをより薄くする必要があるが、シートの機械強度が弱くなり、シートの製造ができない。0.25mmを超えると、隔壁が厚くなり、前述のセル数を得られない。   The partition wall thickness of the honeycomb structure constituting the adsorption element in the present embodiment is preferably 0.16 mm to 0.25 mm. If it is less than 0.16 mm, it is necessary to make the thickness of the sheet constituting the partition thinner, but the mechanical strength of the sheet is weakened and the sheet can not be manufactured. If it exceeds 0.25 mm, the partition becomes thick and the above-mentioned number of cells can not be obtained.

本実施の形態における吸着素子を構成するシートの坪量は、65g/m〜90g/mが良い。65g/m未満の場合、シートの機械強度が弱くなり、熱処理後のハニカム状構造体の機械強度を維持できない。90g/mを超えると、隔壁が厚くなり、前述のセル数を得られない。 The basis weight of the sheet constituting the adsorption element of this embodiment, 65g / m 2 ~90g / m 2 is good. If it is less than 65 g / m 2 , the mechanical strength of the sheet is weak, and the mechanical strength of the heat treated honeycomb structure can not be maintained. If it exceeds 90 g / m 2 , the partition wall becomes thick and the above-mentioned number of cells can not be obtained.

[吸着素子の製造方法]
本実施の形態における吸着素子は、吸着材(Ax)、有機成分(B)及び無機バインダー(C)でシート状物をハニカム成形機により、ハニカム成形用接着剤を使用し、ハニカム状に成形したハニカム状物(前駆体素子)を作製した後、前駆体素子を有機成分(B)の耐熱性有機成分の融点もしくは分解温度以下の温度、低温度分解性有機成分の分解温度以上の温度で1分〜60分熱処理することにより低温度分解性有機成分を熱酸化分解せしめ、大部分を炭化物もしくは分解消失させることにより製造することができる。
[Method of manufacturing adsorption element]
The adsorbing element in the present embodiment was formed into a honeycomb shape by using an adhesive for honeycomb forming by using a honeycomb forming machine with a sheet material made of an adsorbent (Ax), an organic component (B) and an inorganic binder (C). After preparing the honeycomb (precursor element), the precursor element is heated to a temperature below the melting point or decomposition temperature of the heat-resistant organic component of the organic component (B), 1 at a temperature above the decomposition temperature to the low temperature decomposable organic component By heat treatment for 60 minutes, the low temperature decomposable organic component can be thermally oxidized and decomposed, and the major part can be produced by carbide or decomposition loss.

[製法におけるB−1とB−2の考え方]
本実施の形態の吸着素子の製造に用いられる有機成分(B)は上記アラミド繊維等の耐熱性有機繊維(B−1)の他に150℃〜300℃で熱分解する低温度分解性有機成分(B−2)を用いる事が望ましい。低温度分解性有機成分(B−2)は湿式抄紙時の(Ax)成分を(B−1)成分に及び(B−1)成分同士を接合させるためのバインダーとして働く。(B−2)成分はシート状物、ハニカム状物成形後の最終吸着素子(本実施の形態の吸着素子)の吸着材を被覆するため、著しく吸着性能を阻害する場合は、高温熱処理を行い(B−2)を炭化物とするか、または分解消失せしめて最終吸着素子(本実施の形態の吸着素子)の吸着材を被覆を少なくすることも可能である。
[Consideration of B-1 and B-2 in the manufacturing method]
The organic component (B) used in the production of the adsorption element of the present embodiment is a low temperature decomposable organic component which is thermally decomposed at 150 ° C. to 300 ° C. in addition to the heat resistant organic fiber (B-1) such as the aramid fiber It is desirable to use (B-2). The low temperature decomposable organic component (B-2) works as a binder for bonding the (A-1) component to the (B-1) component and the (B-1) component at the time of wet papermaking. The component (B-2) covers the adsorbent of the sheet-like material and the final adsorption element (the adsorption element of this embodiment) after the formation of the honeycomb-like material. It is also possible to make (B-2) a carbide or cause decomposition and disappearance to reduce the coating of the adsorbent of the final adsorption element (the adsorption element of the present embodiment).

上記シート状物及びハニカム状物で熱処理を行う場合、加熱オーブン等を用い空気雰囲気中で実施するのが好ましい。熱処理温度は耐熱性有機成分(B−1)の融点もしくは分解温度(T1℃)以下好ましくは5℃〜20℃低く(T1−5〜T1−20℃)、低温度分解成分(B−2)の分解温度(T2℃)以上、好ましくは分解温度の100℃〜200℃以上(T2+100〜T2+200℃)の温度で処理時間は1分〜60分好ましくは1分〜30分である。通常350℃〜450℃で1分〜10分である。   When heat treatment is performed on the above-mentioned sheet-like material and honeycomb-like material, it is preferable to carry out in an air atmosphere using a heating oven or the like. The heat treatment temperature is lower than the melting point or decomposition temperature (T1 ° C.) of the heat resistant organic component (B-1), preferably 5 ° C. to 20 ° C. lower (T1-5 to T1-20 ° C.), and the low temperature decomposition component (B-2) The treatment time is 1 minute to 60 minutes, preferably 1 minute to 30 minutes, at a decomposition temperature (T2 ° C.) or higher, preferably at a temperature of 100 ° C. to 200 ° C. or higher (T2 + 100 to T2 + 200 ° C.). Usually, it is 1 minute to 10 minutes at 350 ° C to 450 ° C.

吸着素子の平面圧縮張強度は3kPa以上が好ましい。3kPaより小さい強度では吸着素子がつぶれやすく、多数の空気通路がつぶれによってなくなることで吸着素子としての性能が出ないため実用的ではない。   The planar compressive strength of the adsorption element is preferably 3 kPa or more. If the strength is less than 3 kPa, the adsorptive element is liable to be crushed, and the large number of air passages are eliminated by collapsing, so that the performance as the adsorptive element can not be obtained, which is not practical.

吸着シートの坪量(g/m)に特に制限はないが、10g/m〜200g/mが好ましい。10g/m未満の場合、シートの機械強度が弱くなり、ハニカム状構造体の機械強度を維持できない。200g/mを超えると、シート厚みが厚くなりすぎるためシートの柔軟性がなくなり、シートのひび割れや吸着材の脱落が生じやすい。 The basis weight (g / m 2 ) of the suction sheet is not particularly limited, but 10 g / m 2 to 200 g / m 2 is preferable. If it is less than 10 g / m 2 , the mechanical strength of the sheet is weak and the mechanical strength of the honeycomb structure can not be maintained. When it exceeds 200 g / m 2 , the thickness of the sheet becomes too thick, so that the flexibility of the sheet is lost, and the sheet is likely to be cracked or the adsorbent falls off.

(実施例)
本実施の形態における吸着シートの諸特性の測定法は次の通りである。各実施例および各比較例の各種特性を図3に示す。
(Example)
The measuring method of the various characteristics of the adsorption sheet | seat in this Embodiment is as follows. Various characteristics of each example and each comparative example are shown in FIG.

(1)吸着材のタップ密度の測定方法
恒量した容器に吸着材約40gを入れ、180℃15時間以上真空乾燥させる。デシケータ内で20分放冷したのち、乾燥質量を0.1mgの桁まで測る。この乾燥試料の質量をS(g)とする。200mLメスシリンダーにこの乾燥試料を全量入れ、3分間メスシリンダーの底面をタッピング(メスシリンダー底面をたたく)する。3分後の容積(mL)を1mLの桁まで読み取る。これを充填容積をA(mL)とすると、タップ密度L(g/mL)は次式で求める。また、1mLは1cmであるため、タップ密度Lの単位はg/mLとg/cmは同義である。
(1) Measurement Method of Tap Density of Adsorbent About 40 g of adsorbent is put in a container having a constant mass, and vacuum dried at 180 ° C. for 15 hours or more. After cooling for 20 minutes in the desiccator, the dry mass is measured to the nearest 0.1 mg. The mass of this dried sample is S (g). Put all of the dried sample into a 200 mL graduated cylinder and tap the bottom of the graduated cylinder for 3 minutes (tap the graduated cylinder bottom). Read the volume after 3 minutes (mL) to the 1 mL digit. Assuming that the filling volume is A (mL), the tap density L (g / mL) is obtained by the following equation. Moreover, since 1 mL is 1 cm 3 , the unit of the tap density L is the same in g / mL and g / cm 3 .

Figure 0006516047
Figure 0006516047

(2)吸着材の平均粒径の測定方法および粒子を球形と仮定した時の球体積の算出方法
吸着材は事前にSEM画像観察で結晶粒径を確認し、結晶粒径が3μm以上の場合はレーザー回折散乱式粒度分布測定装置による平均粒径の測定方法を用い、結晶粒径が3μmより小さい場合は、SEM画像解析による平均粒径の測定方法を用い、吸着材の平均粒径を算出する。
(2) Measurement method of average particle diameter of adsorbent and calculation method of sphere volume when assuming particles to be spherical The adsorbent confirms the crystal grain diameter by SEM image observation in advance, and the crystal grain diameter is 3 μm or more The average particle diameter of the adsorbent is calculated using the method of measuring the average particle diameter by SEM image analysis when the crystal particle diameter is smaller than 3 μm using the method of measuring the average particle diameter by a laser diffraction scattering type particle size distribution measuring device. Do.

<レーザー回折散乱式粒度分布測定装置による平均粒径の測定方法>
測定装置に、堀場製作所のLA―950V2を使用し、測定セルには、湿式循環型セル(フローセル)を使用し、分散媒としては、ヘキサメタリン酸ナトリウム(0.1mass%水溶液)を使用し、測定対象の屈折率設定には、ケイ酸アルミニウム−水系(屈折率:1.66―1.33)を使用する。
<Method of Measuring Average Particle Size by Laser Diffraction-Scattering Particle Size Distribution Measuring Device>
Measurement equipment uses LA-950V2 manufactured by Horiba Ltd., measurement cell uses a wet circulation cell (flow cell), and dispersion medium is sodium hexametaphosphate (0.1 mass% aqueous solution). For the target refractive index setting, an aluminum silicate-water system (refractive index: 1.66 to 1.33) is used.

[測定手順]
1.測定セルに分散媒を規定量注水し,光学系の初期調整,およびブランク測定を行う。
[Measurement procedure]
1. A specified amount of dispersion medium is injected into the measurement cell, and initial adjustment of the optical system and blank measurement are performed.

2.ブランク測定後,分散媒の透過率がおよそ90%〜70%の範囲に入るように、セルに吸着材を投入する。   2. After blank measurement, the adsorbent is charged into the cell so that the permeability of the dispersion medium falls within the range of approximately 90% to 70%.

3.脱泡のために数秒程度超音波(周波数20kHz)を印加した後、1度測定を行う。   3. After applying an ultrasonic wave (frequency of 20 kHz) for several seconds for degassing, measurement is performed once.

4.測定後,超音波を規定時間(5分)印加してサンプルを分散させた後、再度測定を行う。   4. After measurement, ultrasonic waves are applied for a specified time (5 minutes) to disperse the sample, and then measurement is performed again.

5.超音波を規定時間(5分)印加して再度測定を行ったデータから解析を行い、メジアン径(累積頻度が50%になる粒径)を平均粒径とする。   5. Analysis is performed from the data measured again by applying ultrasonic waves for a prescribed time (5 minutes), and the median diameter (the particle diameter at which the cumulative frequency becomes 50%) is taken as the average particle diameter.

<SEM画像解析による平均粒径の測定方法>
測定装置には、日立走査電子顕微鏡(SU1510)を用い、加速電圧は、15.0kVとする。
<Method of measuring average particle diameter by SEM image analysis>
A Hitachi scanning electron microscope (SU1510) is used as the measurement apparatus, and the acceleration voltage is 15.0 kV.

[測定手順]
1.SEM観察台に両面テープを張り、吸着材を両面テープに散布し、過剰量の吸着材を取り除く。
[Measurement procedure]
1. The double-sided tape is put on the SEM observation table, and the adsorbing material is spread on the double-sided tape to remove an excessive amount of the adsorbing material.

2.吸着材を塗布したSEM観察台に白金蒸着を行う。
3.SEM画像観察装置に2.の観察台をセットする。
2. Platinum deposition is performed on the SEM observation table coated with the adsorbent.
3. 1. SEM image observation apparatus Set the observation platform of

4.上記の加速電圧で3000倍の写真を場所を変えて3枚撮影する。
5.3000倍で撮影した写真が紙面にすべておさまる最大のサイズでA4の紙に印刷する。
4. Take three photos of 3000 times with the above acceleration voltage, changing the location.
5. Print on A4 paper in the largest size that photos taken at 3000x will fit on the paper.

6.印刷した写真に鉛筆で対角線を2本描き、対角線上にある境界が明確な粒子を20個選定し、短径と長径の2か所を定規で測る。SEM写真のスケール(μm)の長さを定規で測り、定規で測った粒子の短径と長径をμmに換算する。   6. Draw two diagonal lines with a pencil on the printed picture, select 20 particles whose boundaries are clear on the diagonal lines, and measure two points of the minor axis and major axis with a ruler. Measure the length of the scale (μm) of the SEM photograph with a ruler, and convert the minor axis and major axis of the particle measured with a ruler to μm.

7.6.の作業を3000倍で撮影した3枚の写真で行い、合計60個の粒子の短径と長径を算出し、すべての値の平均値をSEM観察による平均粒径(μm)とする。   7.6. The work of (1) is carried out with three photographs taken at a magnification of 3000. The short diameter and the long diameter of a total of 60 particles are calculated, and the average value of all the values is taken as the average particle diameter (μm) by SEM observation.

<粒子を球形と仮定した時の球体積の算出方法>
レーザー回折またはSEM画像解析で算出した平均粒径をR(μm)とすると、粒子を球形と仮定した時の粒子1個あたりの球体積Q(cm/個)は次の式4で求める。
<Calculation method of sphere volume when assuming particles to be spherical>
Assuming that the average particle diameter calculated by laser diffraction or SEM image analysis is R (μm), the spherical volume Q (cm 3 / particles) per particle when particles are assumed to be spherical is determined by the following Equation 4.

Figure 0006516047
Figure 0006516047

(3)比引張強さの測定方法
JIS−P−8113「紙および板紙−引っ張り特性の試験方法」に準じて測定した。
試験幅は、15mm、長さは50mmとした。
(3) Measuring method of specific tensile strength It measured according to JIS-P-8113 "paper and paper board-test method of tensile property".
The test width was 15 mm and the length was 50 mm.

(4)平面圧縮強度の測定方法
JIS−Z−0403−1「段ボール−第1部:平面圧縮強さ試験方法」に準じて測定した。試験幅は30mm、長さは30mmとした。
(4) Measurement Method of Plane Compressive Strength Measured according to JIS-Z-0403-1 "Cardboard-Part 1: Test Method of Plane Compressive Strength". The test width was 30 mm and the length was 30 mm.

以下の実施例および比較例に基づいて本発明の吸着素子について詳細に説明する。
<実施例1>
吸着材A1としてタップ密度が0.54g/cm、レーザー回折による平均粒径が3.3μmのZSM−5(MFI)ゼオライトを37.5重量%、吸着材A2としてタップ密度が0.36g/cm、SEM画像解析から算出した平均粒径が1.2μmのY型(FAU)ゼオライトを37.5重量%、耐熱性有機成分としてパルプ状をおよび短繊維状アラミド繊維(耐熱性有機成分:B−1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B−2)を8重量%とを、坪量75g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
The adsorbing element of the present invention will be described in detail based on the following examples and comparative examples.
Example 1
37.5% by weight of ZSM-5 (MFI) zeolite having a tap density of 0.54 g / cm 3 and an average particle diameter of 3.3 μm by laser diffraction as the adsorbent A1; and a tap density of 0.36 g / cm as the adsorbent A2 cm 3, SEM image average particle size 1.2μm in Y-type calculated from the analysis (FAU) zeolite 37.5 wt%, the pulp-like the and the short fibrous aramid fibers as a heat-resistant organic components (heat-resistant organic ingredients: A wet papermaking apparatus was used at a weight of 17 g% B-1) and 8 wt% PVA (low-temperature heat-degradable organic component: B-2) as a heat-decomposable organic binder at a basis weight of 75 g / m 2 I made a sheet-like material.

次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ7重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。   Next, the sheet was impregnated with a 7 wt% aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5 wt% sheet of hexametaphosphate sodium to obtain a precursor sheet.

次にこの前駆体シートをハニカム成形機を用い、ハニカム成形用接着剤に固形分50%のポリ酢酸ビニールエマルジョンを使用しセル数15個/cmのハニカム(吸着素子前駆体)に成形した。その際に使用したハニカム成形用接着剤の量は含浸後シート重量に対して約3重量%である。その後、このハニカム状物を焼成炉にて空気中400℃で約3分間熱処理を行い、吸着素子を得た。 Next, this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 by using a honeycomb forming machine and using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb. The amount of honeycomb forming adhesive used at that time is about 3% by weight based on the sheet weight after impregnation. Thereafter, the honeycomb-like material was heat-treated at 400 ° C. for about 3 minutes in air in a firing furnace to obtain an adsorption element.

<実施例2>
吸着材A1としてタップ密度が0.39g/cm、レーザー解析による平均粒径が9.9μmのZSM−5(MFI)ゼオライトを37.5重量%、吸着材A2としてタップ密度が0.34g/cm、SEM写真解析から算出した平均粒径が0.7μmのY型(FAU)ゼオライトを37.5重量%、耐熱性有機成分としてパルプ状をおよび短繊維状アラミド繊維(耐熱性有機成分:B−1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B−2)を8重量%とを、坪量100g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
Example 2
37.5 wt% of ZSM-5 (MFI) zeolite with a tap density of 0.39 g / cm 3 and an average particle size of 9.9 μm by laser analysis as the adsorbent A1 and a tap density of 0.34 g / m 3 as the adsorbent A2 cm 3, SEM photographs average particle size 0.7μm in Y-type calculated from the analysis (FAU) zeolite 37.5 wt%, the pulp-like the and the short fibrous aramid fibers as a heat-resistant organic components (heat-resistant organic ingredients: A wet papermaking apparatus was used at a weight of 17% by weight of B-1) and 8% by weight of PVA (low-temperature heat-degradable organic component: B-2) as a heat-decomposable organic binder at a basis weight of 100 g / m 2 I made a sheet-like material.

次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ7重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。   Next, the sheet was impregnated with a 7 wt% aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5 wt% sheet of hexametaphosphate sodium to obtain a precursor sheet.

次にこの前駆体シートをハニカム成形機を用い、ハニカム成形用接着剤に固形分50%のポリ酢酸ビニールエマルジョンを使用しセル数15個/cmのハニカムのハニカム(吸着素子前駆体)に成形した。その際に使用したハニカム成形用接着剤の量は含浸後シート重量に対して約3重量%である。その後、このハニカム状物を焼成炉にて空気中400℃で約3分間熱処理を行い、吸着素子を得た。 Next, this precursor sheet is formed into a honeycomb (adsorption element precursor) of a honeycomb having 15 cells / cm 2 by using a polyvinyl acetate emulsion having a solid content of 50% as a honeycomb forming adhesive using a honeycomb forming machine did. The amount of honeycomb forming adhesive used at that time is about 3% by weight based on the sheet weight after impregnation. Thereafter, the honeycomb-like material was heat-treated at 400 ° C. for about 3 minutes in air in a firing furnace to obtain an adsorption element.

<実施例3>
吸着材A1としてタップ密度が0.54g/cm、レーザー解析による平均粒径が3.2μmのZSM−5(MFI)ゼオライトを60重量%、吸着材A2としてタップ密度が0.36g/cm、SEM写真解析から算出した平均粒径が1.2μmのY型(FAU)ゼオライトを37.5重量%、耐熱性有機成分としてパルプ状をおよび短繊維状アラミド繊維(耐熱性有機成分:B−1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B−2)を8重量%とを、坪量75g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
Example 3
60% by weight of ZSM-5 (MFI) zeolite having a tap density of 0.54 g / cm 3 and an average particle diameter of 3.2 μm by laser analysis as the adsorbent A1 and a tap density of 0.36 g / cm 3 as the adsorbent A2 37.5% by weight of Y-type (FAU) zeolite having an average particle diameter of 1.2 μm calculated from SEM photograph analysis, a pulp-like as a heat-resistant organic component and short fibrous aramid fibers (heat-resistant organic component: B- 1) 17% by weight, PVA (low-temperature thermally-degradable organic component: B-2) as thermally-degradable organic binder 8% by weight, sheet using a wet paper making apparatus with a basis weight of 75 g / m 2 A rod was made.

次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ7重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。   Next, the sheet was impregnated with a 7 wt% aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., and fixed to a 5 wt% sheet of hexametaphosphate sodium to obtain a precursor sheet.

次にこの前駆体シートをハニカム成形機を用い、ハニカム成形用接着剤に固形分50% のポリ酢酸ビニールエマルジョンを使用しセル数15個/cmのハニカム(吸着素子前駆体)に成形した。その際に使用したハニカム成形用接着剤の量は含浸後シート重量に対して約3重量%である。その後、このハニカム状物を焼成炉にて空気中400℃で約3分間熱処理を行い、吸着素子を得た。 Next, this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 by using a honeycomb forming machine and a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb. The amount of honeycomb forming adhesive used at that time is about 3% by weight based on the sheet weight after impregnation. Thereafter, the honeycomb-like material was heat-treated at 400 ° C. for about 3 minutes in air in a firing furnace to obtain an adsorption element.

<実施例4>
吸着材A1としてタップ密度が0.39g/cm、レーザー解析による平均粒径が9.9μmのZSM−5(MFI)ゼオライトを75重量%、耐熱性有機成分としてパルプ状をおよび短繊維状アラミド繊維(耐熱性有機成分:B−1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B−2)を8重量%とを、坪量75g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
Example 4
75% by weight of ZSM-5 (MFI) zeolite having a tap density of 0.39 g / cm 3 and an average particle diameter of 9.9 μm by laser analysis as the adsorbent A1, pulp-like as a heat resistant organic component and short fibrous aramid 17 weight% of fiber (heat-resistant organic component: B-1) and 8 weight% of PVA (low-temperature heat-degradable organic component: B-2) as a thermally-degradable organic binder, basis weight 75 g / m 2 Sheets were prepared using a wet papermaking machine by weight.

次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。   Next, the sheet was impregnated with 20 wt% aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., fixed to a 5 wt% sheet of sodium hexametaphosphate to obtain a precursor sheet.

次にこの前駆体シートをハニカム成形機を用い、ハニカム成形用接着剤に固形分50%のポリ酢酸ビニールエマルジョンを使用しセル数15個/cmのハニカム(吸着素子前駆体)に成形した。その際に使用したハニカム成形用接着剤の量は含浸後シート重量に対して約3重量%である。 Next, this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 by using a honeycomb forming machine and using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb. The amount of honeycomb forming adhesive used at that time is about 3% by weight based on the sheet weight after impregnation.

<比較例1>
吸着材A1としてタップ密度が0.39g/cm、レーザー解析による平均粒径が10.7μmのZSM−5(MFI)ゼオライトを15重量%、吸着材A2としてタップ密度が0.34g/cm、SEM画像解析から算出した平均粒径が0.7μmのY型(FAU)ゼオライトを60重量%耐熱性有機成分としてパルプ状をおよび短繊維状アラミド繊維(耐熱性有機成分:B−1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B−2)を8重量%とを、坪量75g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
Comparative Example 1
15% by weight of ZSM-5 (MFI) zeolite with a tap density of 0.39 g / cm 3 and an average particle diameter of 10.7 μm by laser analysis as the adsorbent A1 and a tap density of 0.34 g / cm 3 as the adsorbent A2 60% by weight of Y type (FAU) zeolite having an average particle diameter of 0.7 μm calculated from SEM image analysis as a 60% by weight heat resistant organic component and pulp-like short aramid fibers (heat resistant organic component: B-1) 17% by weight, 8% by weight of PVA (low-temperature heat-degradable organic component: B-2) as a heat-degradable organic binder, using a wet paper-making apparatus with a weight of 75 g / m 2 as basis weight Created.

次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。   Next, the sheet was impregnated with 20 wt% aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., fixed to a 5 wt% sheet of sodium hexametaphosphate to obtain a precursor sheet.

次にこの前駆体シートをハニカム成形機を用い、ハニカム成形用接着剤に固形分50%のポリ酢酸ビニールエマルジョンを使用しセル数15個/cmのハニカム(吸着素子前駆体)に成形した。しかし、シートの強度が弱いため、ハニカム形成時にシートの亀裂や破断が目立ち、適正なハニカム成形ができなかった。 Next, this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 by using a honeycomb forming machine and using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb. However, since the strength of the sheet is weak, cracks and breakage of the sheet are noticeable at the time of honeycomb formation, and proper honeycomb forming can not be performed.

<比較例2>
吸着材A1としてタップ密度が0.54g/cm、レーザー解析による平均粒径が3.2μmのZSM−5(MFI)ゼオライトを15重量%、吸着材A2としてタップ密度が0.36g/cm、SEM画像解析から算出した平均粒径が1.3μmのY型(FAU)ゼオライトを60重量%、耐熱性有機成分としてパルプ状をおよび短繊維状アラミド繊維(耐熱性有機成分:B−1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B−2)を8重量%とを、坪量75g/mとなる重量にて湿式抄紙装置を使いシート状物を作成した。
Comparative Example 2
15% by weight of ZSM-5 (MFI) zeolite with a tap density of 0.54 g / cm 3 and an average particle size of 3.2 μm by laser analysis as the adsorbent A1 and a tap density of 0.36 g / cm 3 as the adsorbent A2 60% by weight of Y-type (FAU) zeolite having an average particle diameter of 1.3 μm calculated from SEM image analysis, pulp-like as heat-resistant organic component and short fibrous aramid fibers (heat-resistant organic component: B-1) 17% by weight, PVA (low-temperature heat-degradable organic component: B-2) as heat-degradable organic binder and 8% by weight, using a wet paper-making apparatus at a weight of 75 g / m 2 basis weight It was created.

次にこの前駆体シートをハニカム成形機を用い、ハニカム成形用接着剤に固形分50%のポリ酢酸ビニールエマルジョンを使用しセル数15個/cmのハニカム(吸着素子前駆体)に成形した。しかし、シートの強度が弱いため、ハニカム形成時にシートの亀裂や破断が目立ち、適正なハニカム成形ができなかった。 Next, this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 by using a honeycomb forming machine and using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb. However, since the strength of the sheet is weak, cracks and breakage of the sheet are noticeable at the time of honeycomb formation, and proper honeycomb forming can not be performed.

<比較例3>
吸着材A1としてタップ密度が0.34g/cm、SEM画像解析から算出した平均粒径が0.7μmのY型(FAU)ゼオライトを75重量%、耐熱性有機成分としてパルプ状をおよび短繊維状アラミド繊維(耐熱性有機成分:B−1)を17重量%、熱分解性有機バインダーとしてPVA(低温熱分解性有機成分:B−2)を8重量%とを、坪量75g/m2となる重量にて湿式抄紙装置を使いシート状物を作成した。
Comparative Example 3
Adsorbent A1: 75% by weight of Y-type (FAU) zeolite having a tap density of 0.34 g / cm 3 and an average particle diameter of 0.7 μm calculated from SEM image analysis; pulp-like and short fibers as heat-resistant organic component 17% by weight of aramid fibers (heat-resistant organic component: B-1), 8% by weight of PVA (low-temperature thermally-degradable organic component: B-2) as a thermally-degradable organic binder, and a basis weight of 75 g / m 2 A sheet-like material was produced using a wet paper making apparatus at a weight of

次にこのシート状物を無機バインダーとしてヘキサメタリン酸ソーダ20重量%水溶液に含浸し、100℃のエアーにて乾燥させ、ヘキサメタリン酸ソーダを5重量%シートに定着させ前駆体シートを得た。その後、焼成炉にて空気中400℃で約3分間熱処理を行い、吸着シートを得た。   Next, the sheet was impregnated with 20 wt% aqueous solution of sodium hexametaphosphate as an inorganic binder, dried with air at 100 ° C., fixed to a 5 wt% sheet of sodium hexametaphosphate to obtain a precursor sheet. Thereafter, heat treatment was carried out at 400 ° C. for about 3 minutes in air in a baking furnace to obtain an adsorption sheet.

次にこの前駆体シートをハニカム成形機を用い、ハニカム成形用接着剤に固形分50%のポリ酢酸ビニールエマルジョンを使用しセル数15個/cmのハニカム(吸着素子前駆体)に成形した。しかし、シートの強度が弱いため、ハニカム形成時にシートの亀裂や破断が目立ち、適正なハニカム成形ができなかった。 Next, this precursor sheet was formed into a honeycomb (adsorption element precursor) having 15 cells / cm 2 by using a honeycomb forming machine and using a polyvinyl acetate emulsion having a solid content of 50% as an adhesive for forming a honeycomb. However, since the strength of the sheet is weak, cracks and breakage of the sheet are noticeable at the time of honeycomb formation, and proper honeycomb forming can not be performed.

本実施の形態の吸着素子は、吸着材を少なくとも1種類以上有し、吸着材は吸着素子の強度と吸着材の高含有重量比率が両立するように、吸着材の嵩密度および粒径から算出される吸着素子中に含まれる総粒子数を適切に設定し、融点または熱分解温度が300℃以上の有機成分と熱分解温度が300℃未満の有機成分と無機バインダーを骨格素材とすることで、吸着素子としての柔軟性や強度に優れ、また、吸着材の含有重量比率が極めて高く吸着性能が優れている。   The adsorption element of the present embodiment has at least one kind of adsorbent, and the adsorbent is calculated from the bulk density and particle diameter of the adsorbent so that the strength of the adsorption element and the high content weight ratio of the adsorbent are compatible. By appropriately setting the total number of particles contained in the adsorbing element to be used, and using an organic component having a melting point or thermal decomposition temperature of 300.degree. C. or more, an organic component having a thermal decomposition temperature of less than 300.degree. C., and an inorganic binder. It is excellent in flexibility and strength as an adsorption element, and the content ratio by weight of the adsorbent is extremely high, and the adsorption performance is excellent.

以上説明したとおり、吸着素子に含まれる吸着材粒子の総数によって吸着素子の強度は明確に差があり、粒子の総数を8.0×1012個以下にすることで実用性に十分な強度を持つ吸着素子を得ることができた。 As described above, the strength of the adsorption element clearly differs depending on the total number of adsorbent particles contained in the adsorption element, and by setting the total number of particles to 8.0 × 10 12 or less, the strength sufficient for practical use It was possible to obtain an adsorption element having.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is indicated not by the above description but by the claims, and is intended to include all the modifications within the meaning and scope equivalent to the claims.

2a フルート部、2b ライナー部。   2a flute section, 2b liner section.

Claims (7)

吸着材(Ax,:x=1,2,3・・・n)を少なくとも1種類以上を含む、多数の空気通路を有する吸着シート(吸着素子前駆体)を用いたハニカム状構造の吸着素子であって、
前記吸着材(Ax)のタップ密度をAxa、
吸着材粒子を球状と仮定した時に吸着材粒子の平均粒径をから算出した球体積をAxb、
前記吸着材(Ax)が前記吸着シートに含まれる重量比率(%)をAxcとすると、
前記吸着シート1gあたりに含まれる平均粒子数Axdは以下の式1で表され、
Figure 0006516047

当該吸着シート1gあたりに含まれる少なくとも1種類以上の前記吸着材(Ax)の総平均粒子数は、以下の式2で表され、
Figure 0006516047

当該吸着素子の平面圧縮強度が3kPa以上である、吸着素子。
Adsorbent element having a honeycomb structure using an adsorptive sheet (adsorbent element precursor) having a large number of air passages, containing at least one or more adsorbents (Ax, x: 1, 2, 3 ... n) There,
The tap density of the adsorbent (Ax) is Axa,
Assuming that the adsorbent particles are spherical, the sphere volume calculated from the average particle diameter of the adsorbent particles is Axb,
Assuming that the weight ratio (%) in which the adsorbent (Ax) is contained in the adsorption sheet is Axc,
The average particle number Axd contained in 1 g of the adsorbing sheet is represented by the following formula 1:
Figure 0006516047

The total average particle number of at least one or more of the adsorbents (Ax) contained in 1 g of the adsorbent sheet is represented by the following formula 2.
Figure 0006516047

An adsorption element in which a plane compression strength of the adsorption element is 3 kPa or more.
前記吸着シートは、骨格素材として繊維を有する、請求項1に記載の吸着素子。   The adsorptive element according to claim 1, wherein the adsorptive sheet has fibers as a framework material. 前記吸着シートは、厚みが0.16〜0.25mmである、請求項1または請求項2に記載の吸着素子。   The adsorptive element according to claim 1 or 2, wherein the adsorptive sheet has a thickness of 0.16 to 0.25 mm. 前記ハニカム状構造は、セル数30/cm〜70/cmを有する、請求項1から請求項3のいずれか1項に記載の吸着素子。 The adsorptive element according to any one of claims 1 to 3, wherein the honeycomb structure has a cell number of 30 / cm 2 to 70 / cm 2 . 前記吸着素子に含まれる少なくとも1種類以上の前記吸着材(Ax)の合計比率が、前記吸着素子の40重量%以上である、請求項1から請求項4のいずれか1項に記載の吸着素子。   The adsorptive element according to any one of claims 1 to 4, wherein a total ratio of at least one or more of the adsorbents (Ax) contained in the adsorptive element is 40% by weight or more of the adsorptive element. . 前記吸着材(Ax)のタップ密度が0.1g/cm以上である、請求項1から請求項5のいずれか1項に記載の吸着素子。 Wherein is the tap density of the adsorbent (Ax) is 0.1 g / cm 3 or more, the adsorption device as claimed in any one of claims 5. 前記吸着材(Ax)が、ゼオライトである、請求項1から請求項6のいずれか1項に記載の吸着素子。   The adsorption element according to any one of claims 1 to 6, wherein the adsorbent (Ax) is a zeolite.
JP2018108048A 2018-06-05 2018-06-05 Adsorption element Active JP6516047B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018108048A JP6516047B1 (en) 2018-06-05 2018-06-05 Adsorption element
PCT/JP2019/022003 WO2019235429A1 (en) 2018-06-05 2019-06-03 Adsorbing sheet, adsorbing sheet production method, and adsorbing element
KR1020207037731A KR20210015932A (en) 2018-06-05 2019-06-03 Adsorption sheet, method of manufacturing adsorption sheet, and adsorption element
TW108119198A TWI818996B (en) 2018-06-05 2019-06-03 Adsorption sheets and adsorption components
CN201980037618.6A CN112218711B (en) 2018-06-05 2019-06-03 Adsorption sheet, method for producing adsorption sheet, and adsorption element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018108048A JP6516047B1 (en) 2018-06-05 2018-06-05 Adsorption element

Publications (2)

Publication Number Publication Date
JP6516047B1 true JP6516047B1 (en) 2019-05-22
JP2019209267A JP2019209267A (en) 2019-12-12

Family

ID=66625472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018108048A Active JP6516047B1 (en) 2018-06-05 2018-06-05 Adsorption element

Country Status (1)

Country Link
JP (1) JP6516047B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111773883A (en) * 2020-05-28 2020-10-16 刘媛媛 Paper mill exhaust treatment device that treatment effect is good

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7335791B2 (en) * 2019-11-20 2023-08-30 株式会社三共 game machine
JP7335793B2 (en) * 2019-11-20 2023-08-30 株式会社三共 game machine
CN115666762A (en) 2020-05-29 2023-01-31 东洋纺株式会社 Adsorption unit, adsorption treatment device, and treatment system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3707573B2 (en) * 1996-06-19 2005-10-19 東洋紡績株式会社 Heat-resistant adsorption element and manufacturing method thereof
JP2003154261A (en) * 2001-11-20 2003-05-27 Mitsui Mining Co Ltd Formed adsorbent and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111773883A (en) * 2020-05-28 2020-10-16 刘媛媛 Paper mill exhaust treatment device that treatment effect is good

Also Published As

Publication number Publication date
JP2019209267A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP6516047B1 (en) Adsorption element
RU2401698C2 (en) Carbon-bearing material combustion catalyst, method of preparing said catalyst, catalyst support and preparation method thereof
KR102496287B1 (en) Mesoporous carbon and manufacturing method of the same, and polymer electrolyte fuel cell
US9452936B2 (en) Zeolite structure and manufacturing method thereof
US20110236271A1 (en) Zeolite structure and manufacturing method thereof
JPWO2009141878A1 (en) Honeycomb structure
JPWO2014115814A1 (en) Alumina fiber and alumina fiber aggregate
RU2395451C1 (en) Method of producing type a zeolite as adsorbent
KR20110066917A (en) Method for making porous mullite-containing composites
CN104884690A (en) Alumina-based fibrous mass, process for producing same, and use
JP7183578B2 (en) Adsorption sheet and manufacturing method thereof
WO2019065798A1 (en) Honeycomb catalyst
WO2019065802A1 (en) Honeycomb catalyst
WO2019065799A1 (en) Honeycomb catalyst
JP6670153B2 (en) Heat storage material
WO2019065797A1 (en) Honeycomb catalyst
WO2019235429A1 (en) Adsorbing sheet, adsorbing sheet production method, and adsorbing element
NO792455L (en) PROCEDURE FOR THE PREPARATION OF A MONOLYTIC CARRIER FOR CATALYSTS SUITABLE FOR USE TO LIMIT CARBON MONOXYD EMISSIONS
JP2019058874A (en) Honeycomb catalyst
WO2002044105A1 (en) Porous sound absorbing material and method of manufacturing the material
KR101102799B1 (en) Honeycomb structure
JP5232517B2 (en) Silcagel, production method thereof, silica gel-supported paper and silica gel element
RU2474558C2 (en) Method of producing ceramic block-cellular filter-sorbents for trapping gaseous radioactive and harmful substances
JP3707573B2 (en) Heat-resistant adsorption element and manufacturing method thereof
JP2008018387A (en) Method for applying seed crystal to porous base material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180613

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180613

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190212

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190219

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R151 Written notification of patent or utility model registration

Ref document number: 6516047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250