WO2019235057A1 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
WO2019235057A1
WO2019235057A1 PCT/JP2019/015554 JP2019015554W WO2019235057A1 WO 2019235057 A1 WO2019235057 A1 WO 2019235057A1 JP 2019015554 W JP2019015554 W JP 2019015554W WO 2019235057 A1 WO2019235057 A1 WO 2019235057A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition
electric energy
internal combustion
combustion engine
amount
Prior art date
Application number
PCT/JP2019/015554
Other languages
French (fr)
Japanese (ja)
Inventor
英一郎 大畠
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020523543A priority Critical patent/JP6931127B2/en
Priority to DE112019002307.1T priority patent/DE112019002307T5/en
Publication of WO2019235057A1 publication Critical patent/WO2019235057A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/08Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • F02P3/0453Opening or closing the primary coil circuit with semiconductor devices
    • F02P3/0456Opening or closing the primary coil circuit with semiconductor devices using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/121Testing characteristics of the spark, ignition voltage or current by measuring spark voltage

Definitions

  • the present invention relates to a control device for an internal combustion engine.
  • control systems for internal combustion engines have been developed in order to improve vehicle fuel efficiency, including technology that operates with an air-fuel mixture that is thinner than the stoichiometric air-fuel ratio, and technology that incorporates part of the exhaust gas after combustion and reintakes the air. ing.
  • Patent Document 1 discloses an ignition plug provided in an internal combustion engine, an ignition device that generates a discharge spark from the ignition plug at an ignition timing, and multiple discharges by repeating discharge by the ignition device several times during one combustion cycle of the internal combustion engine.
  • the ignition control device including the ignition control means to be implemented, it is described that the ignition control means changes the time of each discharge in accordance with the transition of the pressure in the combustion chamber of the internal combustion engine during multiple discharge.
  • the present invention has been made paying attention to the above-mentioned problem, and aims to efficiently improve the ignitability of the fuel by the spark plug.
  • An internal combustion engine control apparatus includes an ignition control unit that controls energization of an ignition coil that supplies electric energy to an ignition plug that discharges in a cylinder of the internal combustion engine and ignites fuel.
  • the ignition control unit sets a first electric energy amount for generating a discharge between the electrodes of the spark plug and a second electric energy amount for maintaining the discharge, and the ignition control unit After starting the supply of electric energy to the ignition plug to the ignition coil, the total amount of supplied electric energy is calculated, and when the calculated total amount is equal to or greater than the first electric energy amount, the ignition The ignition control unit controls energization of the ignition coil so that the coil is recharged, and the ignition control unit recharges the ignition coil from the ignition coil to the ignition plug.
  • a control device for an internal combustion engine includes an ignition control unit that controls energization of an ignition coil that supplies electric energy to an ignition plug that discharges in a cylinder of the internal combustion engine and ignites fuel.
  • the ignition control unit sets a first electrical energy amount for generating a discharge between the electrodes of the spark plug and a second electrical energy amount for maintaining the discharge, and the ignition control unit Before starting the supply of electric energy to the ignition plug to the ignition coil, the amount of electric energy accumulated in the ignition coil is equal to or greater than the total value of the first electric energy amount and the second electric energy amount; Thus, the energization of the ignition coil is controlled.
  • the ignitability of the fuel by the spark plug can be improved efficiently.
  • control apparatus 1 which is one aspect
  • the control device 1 controls the discharge (ignition) of the spark plug 200 provided in each cylinder 150 of the four-cylinder internal combustion engine 100
  • a part or all of the configuration of the internal combustion engine 100 and a part or all of the configuration of the control device 1 are referred to as the control device 1 of the internal combustion engine 100.
  • FIG. 1 is a diagram for explaining a main configuration of an internal combustion engine 100 and an internal combustion engine ignition device.
  • FIG. 2 is a partially enlarged view for explaining the electrodes 210 and 220 of the spark plug 200.
  • air sucked from outside flows through the air cleaner 110, the intake pipe 111, and the intake manifold 112, and flows into each cylinder 150 when the intake valve 151 is opened.
  • the amount of air flowing into each cylinder 150 is adjusted by the throttle valve 113, and the amount of air adjusted by the throttle valve 113 is measured by the flow sensor 114.
  • the throttle valve 113 is provided with a throttle opening sensor 113a for detecting the throttle opening.
  • the opening information of the throttle valve 113 detected by the throttle opening sensor 113a is output to a control device (Electronic Control Unit: ECU) 1.
  • ECU Electronic Control Unit
  • the throttle valve 113 is an electronic throttle valve driven by an electric motor. However, any other system may be used as long as the air flow rate can be adjusted appropriately.
  • the temperature of the gas flowing into each cylinder 150 is detected by the intake air temperature sensor 115.
  • a crank angle sensor 121 is provided on the radially outer side of the ring gear 120 attached to the crankshaft 123.
  • the crank angle sensor 121 detects the rotation angle of the crankshaft 123.
  • the crank angle sensor 121 detects the rotation angle of the crankshaft 123 every 10 ° and every combustion cycle, for example.
  • a water temperature sensor 122 is provided in a water jacket (not shown) of the cylinder head. This water temperature sensor 122 detects the temperature of the cooling water of the internal combustion engine 100.
  • the vehicle is provided with an accelerator position sensor (APS) 126 for detecting the displacement amount (depression amount) of the accelerator pedal 125.
  • the accelerator position sensor 126 detects the driver's required torque.
  • the driver's required torque detected by the accelerator position sensor 126 is output to the control device 1 described later.
  • the control device 1 controls the throttle valve 113 based on this required torque.
  • the fuel stored in the fuel tank 130 is sucked and pressurized by the fuel pump 131, then flows through the fuel pipe 133 provided with the pressure regulator 132, and is guided to the fuel injection valve (injector) 134.
  • the fuel output from the fuel pump 131 is adjusted to a predetermined pressure by the pressure regulator 132 and is injected into each cylinder 150 from a fuel injection valve (injector) 134.
  • excess fuel is returned to the fuel tank 130 via a return pipe (not shown).
  • a cylinder pressure (not shown) of the internal combustion engine 100 is provided with a combustion pressure sensor (CPS, also called in-cylinder pressure sensor) 140.
  • the combustion pressure sensor 140 is provided in each cylinder 150 and detects the pressure (combustion pressure) in the cylinder 150.
  • the combustion pressure sensor 140 is a piezoelectric or gauge pressure sensor, and can detect the combustion pressure in the cylinder 150 (in-cylinder pressure) over a wide temperature range.
  • Each cylinder 150 is provided with an exhaust valve 152 and an exhaust manifold 160 that discharges the burned gas (exhaust gas) to the outside of the cylinder 150.
  • a three-way catalyst 161 is provided on the exhaust side of the exhaust manifold 160. When the exhaust valve 152 is opened, exhaust gas is discharged from the cylinder 150 to the exhaust manifold 160. The exhaust gas is purified by the three-way catalyst 161 through the exhaust manifold 160 and then discharged to the atmosphere.
  • An upstream air-fuel ratio sensor 162 is provided upstream of the three-way catalyst 161.
  • the upstream air-fuel ratio sensor 162 continuously detects the air-fuel ratio of the exhaust gas discharged from each cylinder 150.
  • a downstream air-fuel ratio sensor 163 is provided on the downstream side of the three-way catalyst 161. This downstream air-fuel ratio sensor 163 outputs a switch-like detection signal in the vicinity of the theoretical air-fuel ratio.
  • the downstream air-fuel ratio sensor 163 is, for example, an O2 sensor.
  • spark plugs 200 are provided at the top of each cylinder 150, respectively. Due to the discharge (ignition) of the spark plug 200, a spark is ignited in the air-fuel mixture in the cylinder 150, an explosion occurs in the cylinder 150, and the piston 170 is pushed down. When the piston 170 is pushed down, the crankshaft 123 rotates.
  • the ignition plug 200 is connected to an ignition coil 300 that generates electrical energy (voltage) supplied to the ignition plug 200. That is, one ignition coil 300 is provided for each of the plurality of cylinders 150 (four in the embodiment) of the internal combustion engine 100. Due to the voltage generated in the ignition coil 300, a discharge occurs between the center electrode 210 and the outer electrode 220 of the spark plug 200 (see FIG. 2).
  • the center electrode 210 is supported in an insulated state by an insulator 230.
  • a predetermined voltage (in the embodiment, for example, 20,000 V to 40,000 V) is applied to the center electrode 210.
  • the outer electrode 220 is grounded. When a predetermined voltage is applied to the center electrode 210, discharge (ignition) occurs between the center electrode 210 and the outer electrode 220.
  • the voltage at which discharge (ignition) occurs due to dielectric breakdown of the gas component varies depending on the state of gas (gas) existing between the center electrode 210 and the outer electrode 220 and the in-cylinder pressure. .
  • the voltage at which this discharge occurs is called the dielectric breakdown voltage.
  • the discharge control (ignition control) of the ignition plug 200 is performed by an ignition control unit 83 of the control device 1 described later.
  • output signals from various sensors such as the throttle opening sensor 113 a, the flow sensor 114, the crank angle sensor 121, the accelerator position sensor 126, the water temperature sensor 122, and the combustion pressure sensor 140 are sent to the control device 1. Is output.
  • the control device 1 detects the operating state of the internal combustion engine 100 based on output signals from these various sensors, and controls the amount of air sent into the cylinder 150, the fuel injection amount, the ignition timing of the spark plug 200, and the like. .
  • the control device 1 includes an analog input unit 10, a digital input unit 20, an A / D (Analog / Digital) conversion unit 30, a RAM (Random Access Memory) 40, an MPU (Micro- It has a processing unit (ROM) 50, a ROM (Read Only Memory) 60, an I / O (Input / Output) port 70, and an output circuit 80.
  • ROM Read Only Memory
  • I / O Input / Output
  • the analog input unit 10 includes various sensors such as a throttle opening sensor 113a, a flow sensor 114, an accelerator position sensor 126, an upstream air-fuel ratio sensor 162, a downstream air-fuel ratio sensor 163, a combustion pressure sensor 140, and a water temperature sensor 122. An analog output signal is input.
  • the A / D conversion unit 30 is connected to the analog input unit 10. Analog output signals from various sensors input to the analog input unit 10 are subjected to signal processing such as noise removal, and then converted into digital signals by the A / D conversion unit 30 and stored in the RAM 40.
  • the digital input signal from the crank angle sensor 121 is input to the digital input unit 20.
  • the I / O port 70 is connected to the digital input unit 20, and the digital output signal input to the digital input unit 20 is stored in the RAM 40 via the I / O port 70.
  • Each output signal stored in the RAM 40 is processed by the MPU 50.
  • the MPU 50 executes a control program (not shown) stored in the ROM 60, thereby processing the output signal stored in the RAM 40 according to the control program.
  • the MPU 50 calculates a control value that defines the operation amount of each actuator (for example, the throttle valve 113, the pressure regulator 132, the spark plug 200, etc.) that drives the internal combustion engine 100 according to the control program, and temporarily stores it in the RAM 40. .
  • the control value that defines the operation amount of the actuator stored in the RAM 40 is output to the output circuit 80 via the I / O port 70.
  • the output circuit 80 is provided with a function of an ignition control unit 83 (see FIG. 3) for controlling a voltage applied to the spark plug 200.
  • FIG. 3 is a functional block diagram illustrating the functional configuration of the control device 1.
  • Each function of the control device 1 is realized by the output circuit 80, for example, when the MPU 50 executes a control program stored in the ROM 60.
  • the output circuit 80 of the control device 1 includes an overall control unit 81, a fuel injection control unit 82, and an ignition control unit 83.
  • the overall control unit 81 is connected to the accelerator position sensor 126 and the combustion pressure sensor 140 (CPS).
  • the requested torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the combustion pressure sensor 140 are Accept.
  • the overall control unit 81 performs overall control of the fuel injection control unit 82 and the ignition control unit 83 based on the required torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the combustion pressure sensor 140. I do.
  • the fuel injection control unit 82 includes a cylinder discrimination unit 84 that discriminates each cylinder 150 of the internal combustion engine 100, an angle information generation unit 85 that measures the crank angle of the crankshaft 123, and a rotation speed information generation unit that measures the engine speed. 86, the cylinder discrimination information S3 from the cylinder discrimination unit 84, the crank angle information S4 from the angle information generation unit 85, and the engine rotation speed information S5 from the rotation speed information generation unit 86. Accept.
  • the fuel injection control unit 82 measures the intake air amount measurement unit 87 that measures the intake air amount of the air taken into the cylinder 150, the load information generation unit 88 that measures the engine load, and the temperature of the engine coolant.
  • the intake air amount information S6 from the intake air amount measurement unit 87, the engine load information S7 from the load information generation unit 88, and the cooling water temperature information S8 from the water temperature measurement unit 89 are connected to the water temperature measurement unit 89. , Is accepted.
  • the fuel injection control unit 82 calculates the injection amount and injection time (fuel injection valve control information S9) of the fuel injected from the fuel injection valve 134 based on each received information, and calculates the calculated fuel injection amount and injection.
  • the fuel injection valve 134 is controlled based on the time.
  • the ignition control unit 83 is connected to a cylinder determination unit 84, an angle information generation unit 85, a rotation speed information generation unit 86, a load information generation unit 88, and a water temperature measurement unit 89. And accepts each piece of information.
  • the ignition control unit 83 energizes the primary side coil (not shown) of the ignition coil 300, the energization start time, and the primary side coil.
  • the time (ignition time) for interrupting the current is calculated.
  • the ignition control unit 83 outputs the ignition signal SA to the primary side coil 310 of the ignition coil 300 in a plurality of times based on the calculated energization angle, energization start time, and ignition time, so that the ignition plug Discharge control (ignition control) by 200 is performed. Thereby, multiple discharge of the spark plug 200 is realized.
  • the ignition control unit 83 controls energization of a single ignition coil 300 for each cylinder 150 with respect to a plurality of cylinders 150 (four in the embodiment) of the internal combustion engine 100. .
  • At least the function of the ignition control unit 83 performing the ignition control of the spark plug 200 using the ignition signal SA corresponds to the control device for an internal combustion engine of the present invention.
  • FIG. 4 is a diagram illustrating an electric circuit 400 including the ignition coil 300.
  • the ignition coil 300 includes a primary side coil 310 wound with a predetermined number of turns and a secondary side coil 320 wound with more turns than the primary side coil 310. Is done.
  • One end of the primary side coil 310 is connected to the DC power source 330.
  • a predetermined voltage for example, 12 V in the embodiment
  • a charge amount detection unit 350 is provided in the connection path between the DC power supply 330 and the primary coil 310. The charge amount detection unit 350 detects the voltage and current applied to the primary side coil 310 and transmits them to the ignition control unit 83.
  • the other end of the primary coil 310 is connected to the igniter 340 and is grounded via the igniter 340.
  • the igniter 340 a transistor, a field effect transistor (Field Effect Transistor: FET), or the like is used.
  • the base (B) terminal of the igniter 340 is connected to the ignition control unit 83.
  • the ignition signal SA output from the ignition control unit 83 is input to the base (B) terminal of the igniter 340.
  • the collector (C) terminal and the emitter (E) terminal of the igniter 340 are energized, and between the collector (C) terminal and the emitter (E) terminal.
  • the ignition signal SA is output from the ignition control unit 83 to the primary coil 310 of the ignition coil 300 via the igniter 340, and electric power (electric energy) is accumulated in the primary coil 310.
  • the gas component is dielectrically broken, and the center electrode 210 and the outer electrode 220 During this time, discharge occurs and ignition (ignition) of the fuel (air mixture) is performed.
  • a discharge amount detection unit 360 is provided in the connection path between the secondary coil 320 and the spark plug 200.
  • the discharge amount detection unit 360 detects the discharge voltage and current and transmits them to the ignition control unit 83.
  • the ignition control unit 83 controls energization of the ignition coil 300 using the ignition signal SA by the operation of the electric circuit 400 as described above. Thereby, the electric energy given from the ignition coil 300 to the spark plug 200 is controlled, and the ignition control for performing the multiple discharge of the spark plug 200 is performed.
  • FIG. 5 is a schematic diagram for explaining an example of the multiple discharge method according to the embodiment of the present invention.
  • the target charge amount of the ignition coil 300 is determined by the engine speed (ignition cycle) and the charging voltage.
  • the ignition control unit 83 refers to predetermined map information, sets the target charge amount of the ignition coil 300 according to the engine speed (ignition cycle) and the charge voltage,
  • the ignition signal SA is output to the ignition coil 300 (igniter 340).
  • the ignition control unit 83 continuously outputs two pulses as the ignition signal SA, so that the electrical energy for dielectric breakdown for applying the dielectric breakdown voltage between the electrodes of the spark plug 200, the ignition Electric energy for sustaining ignition for sustaining discharge (ignition) of the plug 200 is divided and supplied from the ignition coil 300 to the spark plug 200.
  • the ignition control unit 83 integrates the charging power value obtained from the voltage and current of the primary coil 310 detected by the charging amount detection unit 350 at predetermined time intervals, so that the charging amount (input energy) of the ignition coil 300 is integrated. ) Is calculated.
  • the charge amount reaches a set target charge amount (for example, 110 mJ) at time T2
  • charging of the ignition coil 300 is interrupted by switching the ignition signal SA from ON to OFF, and from the ignition coil 300 to the spark plug 200. Start supplying electric energy. This electric energy causes a first discharge between the electrodes of the spark plug 200.
  • the ignition control unit 83 detects the voltage and current of the secondary coil 320 detected by the discharge amount detection unit 360.
  • the amount of discharge (output energy) of the ignition coil 300 is calculated by integrating the discharge power value obtained from the above every predetermined time.
  • the ignition signal SA is switched from OFF to ON, thereby supplying electric energy from the ignition coil 300 to the spark plug 200. The operation is interrupted and the charging of the ignition coil 300 is resumed.
  • the ignition control unit 83 interrupts charging of the ignition coil 300 by switching the ignition signal SA from ON to OFF, and the ignition plug 300 is switched from the ignition coil 300 to the ignition plug 200. Restart the supply of electrical energy to With this electrical energy, the second discharge is performed in a state where the dielectric breakdown is maintained between the electrodes of the spark plug 200.
  • the ignition signal SA is kept OFF, so that the remaining electric energy (for example, 80 mJ) accumulated in the ignition coil 300 is supplied to the spark plug 200 as the electric energy for sustaining the ignition. Is done.
  • the multiple discharge of the spark plug 200 according to the embodiment is completed.
  • the time from the time T2 when the first discharge is started to the time T5 until the second discharge is completed is, for example, about 2 msec.
  • FIG. 6 is an example of a flowchart illustrating a method for controlling the spark plug 200 by the ignition control unit 83 according to the embodiment.
  • the ignition control unit 83 sets an electrical energy amount for dielectric breakdown for generating a discharge between the electrodes of the spark plug 200.
  • the air-fuel ratio in the cylinder 150 is estimated based on the air-fuel ratio of the exhaust gas detected by the upstream air-fuel ratio sensor 162, and the dielectric breakdown is reduced so that the smaller the air-fuel ratio (the richer the fuel), the smaller the value.
  • Set the amount of electrical energy for use is set so that the smaller the pressure, the smaller the value.
  • the setting of the electrical energy amount for dielectric breakdown according to the air-fuel ratio and pressure in the cylinder 150 is performed by referring to map information stored in the ROM 60 in the control device 1, for example.
  • step S102 the ignition control unit 83 sets the amount of electric energy for sustaining the ignition for maintaining the discharge between the electrodes of the spark plug 200.
  • the air-fuel ratio in the cylinder 150 is estimated based on the air-fuel ratio of the exhaust gas detected by the upstream air-fuel ratio sensor 162, for example, similarly to the amount of electrical energy for dielectric breakdown in step S101.
  • the amount of electric energy for sustaining ignition is set so that the smaller the value (the richer the fuel), the smaller the value.
  • the amount of electric energy for sustaining ignition is set so that the smaller the pressure, the smaller the value.
  • Such setting of the electric energy for sustaining the ignition in accordance with the air-fuel ratio and pressure in the cylinder 150 is performed by referring to map information stored in the ROM 60 in the control device 1, for example.
  • step S103 the ignition control unit 83 sets a target charge amount of the ignition coil 300.
  • the amount of electrical energy for dielectric breakdown set in step S101 and the amount of electrical energy for sustaining ignition set in step S102 are summed, and the total value is set as the target charge amount.
  • a certain margin may be allowed for the target charge amount, and the target charge amount may be set by adding this margin to the above total value. For example, 1.1 times the above total value can be set as the target charge amount.
  • the amount of electric energy accumulated in the ignition coil 300 is the electric energy for dielectric breakdown.
  • the energization of the ignition coil 300 can be controlled so as to be equal to or greater than the sum of the amount and the electric energy amount for sustaining ignition.
  • step S104 the ignition control unit 83 sets the charging start timing of the ignition coil 300 based on the target charge amount set in step S103.
  • step S105 the ignition control unit 83 determines whether to start charging the ignition coil 300 based on the charging start timing set in step S104. Until it is determined to start charging (step S105: NO), step S105 is repeated. When it is determined to start charging (step S105: YES), the process proceeds to step S106.
  • step S106 the ignition control unit 83 turns on the pulse of the ignition signal SA and starts charging the ignition coil 300.
  • electric energy is accumulated in the primary side coil 310 of the ignition coil 300.
  • step S107 the ignition control unit 83 detects the current charge amount (input energy) of the ignition coil 300 based on the voltage and current detection results of the primary coil 310 by the charge amount detection unit 350.
  • step S108 the ignition control unit 83 compares the target charge amount set in step S103 with the current charge amount detected in step S107, and determines whether or not the charge amount of the ignition coil 300 has reached the target charge amount. Determine. As a result, until it is determined that the charge amount of the ignition coil 300 has reached the target charge amount (step S108: NO), the process returns to step S107 and the detection of the charge amount is continued, and it is determined that the target charge amount has been reached. Then (step S108: YES), the process proceeds to step S109.
  • step S109 the ignition control unit 83 turns off the pulse of the ignition signal SA, and interrupts the charging of the ignition coil 300.
  • the electric energy accumulated in the ignition coil 300 is supplied from the secondary coil 320 to the spark plug 200. Accordingly, the ignition control unit 83 causes the ignition coil 300 to start supplying electric energy to the spark plug 200.
  • step S110 the ignition control unit 83 detects the current discharge amount (output energy) of the ignition coil 300 based on the detection result of the voltage and current of the secondary coil 320 by the discharge amount detection unit 360. By this processing, the ignition control unit 83 calculates the total amount of supplied electric energy after the ignition coil 300 starts supplying electric energy to the spark plug 200 in step S109.
  • step S111 the ignition control unit 83 compares the amount of electrical energy for dielectric breakdown set in step S101 with the current amount of discharge detected in step S1110. It is determined whether or not the energy amount is exceeded. As a result, until the amount of discharge of the ignition coil 300 becomes equal to or greater than the amount of electrical energy for breakdown (step S111: NO), the process returns to step S110 and the detection of the amount of discharge is continued. If it is determined that it has become (step S111: YES), the process proceeds to step S112.
  • step S112 the ignition control unit 83 turns on the pulse of the ignition signal SA and restarts charging of the ignition coil 300.
  • electrical energy is accumulated in the primary coil 310 of the ignition coil 300, and the ignition coil 300 is recharged.
  • step S113 the ignition control unit 83 determines whether or not a predetermined time (for example, about 30 ⁇ s) has elapsed since the pulse of the ignition signal SA was turned on in step S112. Until the predetermined time has elapsed (step S113: NO), step S113 is repeated. When it is determined that the predetermined time has elapsed (step S113: YES), the process proceeds to step S114.
  • a predetermined time for example, about 30 ⁇ s
  • step S114 the ignition control unit 83 turns off the pulse of the ignition signal SA and stops charging the ignition coil 300.
  • the remainder of the electric energy accumulated in the ignition coil 300 is supplied from the secondary coil 320 to the spark plug 200.
  • the remaining charge amount (remaining energy amount) of the ignition coil 300 at this time is at least larger than the electric energy amount for sustaining the ignition set in step S102.
  • the ignition control unit 83 starts recharging of the ignition coil 300 in step S112, and then supplies electric energy equal to or greater than the amount of electric energy for sustaining ignition from the ignition coil 300 to the spark plug 200.
  • the control device 1 for the internal combustion engine controls the energization of the ignition coil 300 that supplies electric energy to the spark plug 200 that discharges in the cylinder 150 of the internal combustion engine 100 and ignites the fuel.
  • the ignition control unit 83 has a dielectric breakdown electric energy amount (first electric energy amount) for generating a discharge between the electrodes of the spark plug 200 and an ignition sustaining electric energy amount (first electric energy amount) for maintaining the discharge. 2 electric energy) is set (steps S101 and S102).
  • the ignition control unit 83 causes the ignition coil 300 to start supplying electric energy to the spark plug 200 (step S109), and then calculates the total amount of supplied electric energy (step S110).
  • step S111 When the amount of electric energy is 1 or more (step S111: YES), the energization of the ignition coil 300 is controlled so that the ignition coil 300 is recharged (step S112).
  • the ignition control unit 83 controls energization of the ignition coil 300 so that electric energy equal to or larger than the second electric energy amount is supplied from the ignition coil 300 to the spark plug 200 after the ignition coil 300 is recharged (step S114). . Since it did in this way, the ignitability to the fuel by the spark plug 200 can be improved efficiently.
  • the amount of electrical energy for breakdown (first electric energy amount) and the amount of electric energy for sustaining ignition (second electric energy amount) are the air-fuel ratio in the cylinder 150 of the internal combustion engine 100.
  • the pressure is set to be smaller as the pressure in the cylinder 150 of the internal combustion engine 100 is smaller. Since it did in this way, according to the state of the air-fuel
  • the electric energy amount accumulated in the ignition coil 300 is the amount of electric energy for breakdown (first electric energy).
  • the energization of the ignition coil 300 is controlled so as to be equal to or greater than the sum of the amount of energy) and the amount of electrical energy for sustaining ignition (second amount of electrical energy) (steps S103, S106 to S109).
  • the internal combustion engine 100 has a plurality of cylinders 150, and one ignition coil 300 is provided for each of the plurality of cylinders 150.
  • the ignition control unit 83 controls energization of a single ignition coil 300 for each cylinder 150. Since it did in this way, the multiple discharge of the spark plug 200 is realizable, without increasing the ignition coil 300.
  • each functional configuration of the control device 1 described in FIG. 3 may be realized by software executed by the MPU 50 as described above, or may be an FPGA (Field-Programmable Gate Array). ) Or the like. These may be used in combination.
  • FPGA Field-Programmable Gate Array
  • the ignition control unit 83 may control the energization of the ignition coil 300 so that electric energy equal to or greater than the amount of electric energy for sustaining ignition is supplied from the ignition coil 300 to the spark plug 200 in a plurality of times.
  • the target charge amount is 110 mJ as described above, and 30 mJ is supplied from the ignition coil 300 to the spark plug 200 as the electrical energy for dielectric breakdown in the first discharge.
  • 80 mJ which is the remaining amount of electric energy accumulated in the ignition coil 300, is divided into 40 mJ twice and supplied from the ignition coil 300 to the ignition plug 200 as electric energy for sustaining the ignition.
  • the second and third discharges may be performed.
  • control device 10: analog input unit, 20: digital input unit, 30: A / D conversion unit, 40: RAM, 50: MPU, 60: ROM, 70: I / O port, 80: output circuit, 81 : Overall control unit, 82: Fuel injection control unit, 83: Ignition control unit, 84: Cylinder discrimination unit, 85: Angle information generation unit, 86: Revolution information generation unit, 87: Intake amount measurement unit, 88: Load information Generator: 89: water temperature measuring unit, 100: internal combustion engine, 110: air cleaner, 111: intake pipe, 112: intake manifold, 113: throttle valve, 113a: throttle opening sensor, 114: flow sensor, 115: intake temperature sensor , 120: ring gear, 121: crank angle sensor, 122: water temperature sensor, 123: crankshaft, 125: accelerator pedal, 126: accelerator position sensor 130: Fuel tank, 131: Fuel pump, 132: Pressure regulator, 133: Fuel piping, 134: Fuel injection valve, 140: Fuel injection

Abstract

In order to efficiently improve the ignitability of a fuel by a spark plug, this control device for an internal combustion engine comprises a spark control unit 83 that controls the conduction of a spark coil 300 applying electrical energy to the spark plug, said spark plug discharging within a cylinder of the internal combustion engine to ignite the fuel. The spark control unit 83 sets a first electrical energy amount for causing a discharge between electrodes of the spark plug, and a second electrical energy amount for maintaining the discharge, and controls the conduction of the spark coil 300 such that after the supply of electrical energy from the spark coil 300 to the spark plug has been started, when the total amount of supplied electrical energy becomes greater than or equal to the first electrical energy amount, the spark coil 300 is recharged, and then electrical energy greater than or equal to the second electrical energy amount is supplied from the spark coil 300 to the spark plug.

Description

内燃機関用制御装置Control device for internal combustion engine
 本発明は、内燃機関用制御装置に関する。 The present invention relates to a control device for an internal combustion engine.
 近年、車両の燃費向上のため、理論空燃比よりも薄い混合気で運転する技術や、燃焼後の排気ガスの一部を取り入れ、再度吸気させる技術などを取り入れた内燃機関の制御装置が開発されている。 In recent years, control systems for internal combustion engines have been developed in order to improve vehicle fuel efficiency, including technology that operates with an air-fuel mixture that is thinner than the stoichiometric air-fuel ratio, and technology that incorporates part of the exhaust gas after combustion and reintakes the air. ing.
 この種の内燃機関の制御装置では、燃焼室における燃料や空気の量が理論値から乖離するため、点火プラグによる燃料への着火不良が生じやすくなる。 In this type of control device for an internal combustion engine, the amount of fuel or air in the combustion chamber deviates from the theoretical value, so that ignition failure of the fuel by the spark plug tends to occur.
 特許文献1には、内燃機関に設けられる点火プラグと、点火時期に点火プラグより放電火花を発生させる点火装置と、内燃機関の1燃焼サイクル中に点火装置による放電を複数回繰り返して多重放電を実施する点火制御手段とを備える点火制御装置において、前記点火制御手段は、多重放電に際し、内燃機関の燃焼室内の圧力の推移に従い各放電の時間を変更することが記載されている。 Patent Document 1 discloses an ignition plug provided in an internal combustion engine, an ignition device that generates a discharge spark from the ignition plug at an ignition timing, and multiple discharges by repeating discharge by the ignition device several times during one combustion cycle of the internal combustion engine. In the ignition control device including the ignition control means to be implemented, it is described that the ignition control means changes the time of each discharge in accordance with the transition of the pressure in the combustion chamber of the internal combustion engine during multiple discharge.
特開2001-153016号公報JP 2001-153016 A
 点火プラグによる燃料への着火性を改善するためには、点火プラグにより放電火花を発生させた後、その放電火花をなるべく長時間維持するように点火制御を行うことが好ましい。特許文献1に開示されている点火制御装置では、こうした点を考慮していないため、点火プラグによる燃料への着火性を効率的に改善することに関して、さらなる改良の余地がある。 In order to improve the ignitability of the fuel by the spark plug, it is preferable to perform ignition control so as to maintain the discharge spark for as long as possible after generating the spark by the spark plug. Since the ignition control device disclosed in Patent Document 1 does not consider such points, there is room for further improvement in terms of efficiently improving the ignitability of the fuel by the spark plug.
 したがって、本発明は、上記の課題に着目してなされたもので、点火プラグによる燃料への着火性を効率的に改善することを目的とする。 Therefore, the present invention has been made paying attention to the above-mentioned problem, and aims to efficiently improve the ignitability of the fuel by the spark plug.
 本発明の一態様による内燃機関用制御装置は、内燃機関の気筒内で放電して燃料への点火を行う点火プラグに対し電気エネルギーを与える点火コイルの通電を制御する点火制御部を備え、前記点火制御部は、前記点火プラグの電極間に放電を発生させるための第1電気エネルギー量と、前記放電を維持するための第2電気エネルギー量と、を設定し、前記点火制御部は、前記点火コイルに前記点火プラグへの電気エネルギーの供給を開始させた後、供給した電気エネルギーの合計量を算出し、算出した前記合計量が前記第1電気エネルギー量以上となった場合に、前記点火コイルが再充電されるように、前記点火コイルの通電を制御し、前記点火制御部は、前記点火コイルの再充電後、前記点火コイルから前記点火プラグへ前記第2電気エネルギー量以上の電気エネルギーが供給されるように、前記点火コイルの通電を制御する。
 本発明の他の一態様による内燃機関用制御装置は、内燃機関の気筒内で放電して燃料への点火を行う点火プラグに対し電気エネルギーを与える点火コイルの通電を制御する点火制御部を備え、前記点火制御部は、前記点火プラグの電極間に放電を発生させるための第1電気エネルギー量と、前記放電を維持するための第2電気エネルギー量と、を設定し、前記点火制御部は、前記点火コイルに前記点火プラグへの電気エネルギーの供給を開始させる前に、前記点火コイルに蓄積される電気エネルギー量が前記第1電気エネルギー量と前記第2電気エネルギー量との合計値以上となるように、前記点火コイルの通電を制御する。
An internal combustion engine control apparatus according to an aspect of the present invention includes an ignition control unit that controls energization of an ignition coil that supplies electric energy to an ignition plug that discharges in a cylinder of the internal combustion engine and ignites fuel. The ignition control unit sets a first electric energy amount for generating a discharge between the electrodes of the spark plug and a second electric energy amount for maintaining the discharge, and the ignition control unit After starting the supply of electric energy to the ignition plug to the ignition coil, the total amount of supplied electric energy is calculated, and when the calculated total amount is equal to or greater than the first electric energy amount, the ignition The ignition control unit controls energization of the ignition coil so that the coil is recharged, and the ignition control unit recharges the ignition coil from the ignition coil to the ignition plug. As is Ghee amount or more of the electrical energy is supplied, it controls the energization of the ignition coil.
A control device for an internal combustion engine according to another aspect of the present invention includes an ignition control unit that controls energization of an ignition coil that supplies electric energy to an ignition plug that discharges in a cylinder of the internal combustion engine and ignites fuel. The ignition control unit sets a first electrical energy amount for generating a discharge between the electrodes of the spark plug and a second electrical energy amount for maintaining the discharge, and the ignition control unit Before starting the supply of electric energy to the ignition plug to the ignition coil, the amount of electric energy accumulated in the ignition coil is equal to or greater than the total value of the first electric energy amount and the second electric energy amount; Thus, the energization of the ignition coil is controlled.
 本発明によれば、点火プラグによる燃料への着火性を効率的に改善することができる。 According to the present invention, the ignitability of the fuel by the spark plug can be improved efficiently.
実施の形態にかかる内燃機関及び内燃機機関の制御装置の要部構成を説明する図である。It is a figure explaining the principal part structure of the internal combustion engine concerning embodiment and the control apparatus of an internal combustion engine. 点火プラグを説明する部分拡大図である。It is the elements on larger scale explaining an ignition plug. 制御装置の機能構成を説明する機能ブロック図である。It is a functional block diagram explaining the functional structure of a control apparatus. 点火コイルを含む電気回路を説明する図である。It is a figure explaining the electric circuit containing an ignition coil. 実施の形態による多重放電方法の一例を説明する模式図である。It is a schematic diagram explaining an example of the multiple discharge method by embodiment. 実施の形態にかかる点火制御部による点火プラグの制御方法を説明するフローチャートの一例である。It is an example of the flowchart explaining the control method of the ignition plug by the ignition control part concerning embodiment.
 以下、本発明の実施の形態にかかる内燃機関用制御装置を説明する。 Hereinafter, a control device for an internal combustion engine according to an embodiment of the present invention will be described.
 以下、実施の形態にかかる内燃機関用制御装置の一態様である制御装置1を説明する。
この実施の形態では、制御装置1により、4気筒の内燃機関100の各気筒150に各々設けられた点火プラグ200の放電(点火)を制御する場合を例示して説明する。
 以下、実施の形態において、内燃機関100の一部の構成又は全ての構成及び制御装置1の一部の構成又は全ての構成を組み合わせたものを、内燃機関100の制御装置1と言う。
Hereinafter, the control apparatus 1 which is one aspect | mode of the control apparatus for internal combustion engines concerning embodiment is demonstrated.
In this embodiment, a case where the control device 1 controls the discharge (ignition) of the spark plug 200 provided in each cylinder 150 of the four-cylinder internal combustion engine 100 will be described as an example.
Hereinafter, in the embodiment, a part or all of the configuration of the internal combustion engine 100 and a part or all of the configuration of the control device 1 are referred to as the control device 1 of the internal combustion engine 100.
[内燃機関]
 図1は、内燃機関100及び内燃機関用点火装置の要部構成を説明する図である。
 図2は、点火プラグ200の電極210、220を説明する部分拡大図である。
[Internal combustion engine]
FIG. 1 is a diagram for explaining a main configuration of an internal combustion engine 100 and an internal combustion engine ignition device.
FIG. 2 is a partially enlarged view for explaining the electrodes 210 and 220 of the spark plug 200.
 内燃機関100では、外部から吸引した空気はエアクリーナ110、吸気管111、吸気マニホールド112を通流し、吸気弁151が開くと各気筒150に流入する。各気筒150に流入する空気量は、スロットル弁113により調整され、スロットル弁113で調整された空気量は、流量センサ114により測定される。 In the internal combustion engine 100, air sucked from outside flows through the air cleaner 110, the intake pipe 111, and the intake manifold 112, and flows into each cylinder 150 when the intake valve 151 is opened. The amount of air flowing into each cylinder 150 is adjusted by the throttle valve 113, and the amount of air adjusted by the throttle valve 113 is measured by the flow sensor 114.
 スロットル弁113には、スロットルの開度を検出するスロットル開度センサ113aが設けられている。このスロットル開度センサ113aで検出されたスロットル弁113の開度情報は、制御装置(Electronic Control Unit:ECU)1に出力される。 The throttle valve 113 is provided with a throttle opening sensor 113a for detecting the throttle opening. The opening information of the throttle valve 113 detected by the throttle opening sensor 113a is output to a control device (Electronic Control Unit: ECU) 1.
 なお、スロットル弁113は、電動機で駆動される電子スロットル弁が用いられるが、空気の流量を適切に調整できるものであれば、その他の方式によるものでもよい。 The throttle valve 113 is an electronic throttle valve driven by an electric motor. However, any other system may be used as long as the air flow rate can be adjusted appropriately.
 各気筒150に流入したガスの温度は、吸気温センサ115で検出される。 The temperature of the gas flowing into each cylinder 150 is detected by the intake air temperature sensor 115.
 クランクシャフト123に取り付けられたリングギア120の径方向外側には、クランク角センサ121が設けられている。このクランク角センサ121により、クランクシャフト123の回転角度が検出される。実施の形態では、クランク角センサ121は、例えば10°毎及び燃焼周期毎のクランクシャフト123の回転角度を検出する。 A crank angle sensor 121 is provided on the radially outer side of the ring gear 120 attached to the crankshaft 123. The crank angle sensor 121 detects the rotation angle of the crankshaft 123. In the embodiment, the crank angle sensor 121 detects the rotation angle of the crankshaft 123 every 10 ° and every combustion cycle, for example.
 シリンダヘッドのウォータジャケット(図示せず)には、水温センサ122が設けられている。この水温センサ122により、内燃機関100の冷却水の温度を検出する。 A water temperature sensor 122 is provided in a water jacket (not shown) of the cylinder head. This water temperature sensor 122 detects the temperature of the cooling water of the internal combustion engine 100.
 また、車両には、アクセルペダル125の変位量(踏み込み量)を検出するアクセルポジションセンサ(Accelerator Position Sensor:APS)126が設けられている。このアクセルポジションセンサ126により、運転者の要求トルクを検出する。このアクセルポジションセンサ126で検出された運転者の要求トルクは、後述する制御装置1に出力される。制御装置1は、この要求トルクに基づいて、スロットル弁113を制御する。 Further, the vehicle is provided with an accelerator position sensor (APS) 126 for detecting the displacement amount (depression amount) of the accelerator pedal 125. The accelerator position sensor 126 detects the driver's required torque. The driver's required torque detected by the accelerator position sensor 126 is output to the control device 1 described later. The control device 1 controls the throttle valve 113 based on this required torque.
 燃料タンク130に貯留された燃料は、燃料ポンプ131によって吸引及び加圧された後、プレッシャレギュレータ132が設けられた燃料配管133を通流し、燃料噴射弁(インジェクタ)134に誘導される。燃料ポンプ131から出力された燃料は、プレッシャレギュレータ132で所定の圧力に調整され、燃料噴射弁(インジェクタ)134から各気筒150内に噴射される。プレッシャレギュレータ132で圧力調整された結果、余分な燃料は戻り配管(図示せず)を介して燃料タンク130に戻される。 The fuel stored in the fuel tank 130 is sucked and pressurized by the fuel pump 131, then flows through the fuel pipe 133 provided with the pressure regulator 132, and is guided to the fuel injection valve (injector) 134. The fuel output from the fuel pump 131 is adjusted to a predetermined pressure by the pressure regulator 132 and is injected into each cylinder 150 from a fuel injection valve (injector) 134. As a result of the pressure adjustment by the pressure regulator 132, excess fuel is returned to the fuel tank 130 via a return pipe (not shown).
 内燃機関100のシリンダヘッド(図示せず)には、燃焼圧センサ(CylinderPressure Sensor:CPS、筒内圧センサとも言う)140が設けられている。燃焼圧センサ140は、各気筒150内に設けられており、気筒150内の圧力(燃焼圧)を検出する。 A cylinder pressure (not shown) of the internal combustion engine 100 is provided with a combustion pressure sensor (CPS, also called in-cylinder pressure sensor) 140. The combustion pressure sensor 140 is provided in each cylinder 150 and detects the pressure (combustion pressure) in the cylinder 150.
 燃焼圧センサ140は、圧電式又はゲージ式の圧力センサが用いられ、広い温度領域に渡って気筒150内の燃焼圧(筒内圧)を検出することができるようになっている。 The combustion pressure sensor 140 is a piezoelectric or gauge pressure sensor, and can detect the combustion pressure in the cylinder 150 (in-cylinder pressure) over a wide temperature range.
 各気筒150には、排気弁152と、燃焼後のガス(排気ガス)を気筒150の外側に排出する排気マニホールド160が取り付けられている。この排気マニホールド160の排気側には、三元触媒161が設けられている。排気弁152が開くと、気筒150から排気マニホールド160に排気ガスが排出される。この排気ガスは、排気マニホールド160を通って三元触媒161で浄化された後、大気に排出される。 Each cylinder 150 is provided with an exhaust valve 152 and an exhaust manifold 160 that discharges the burned gas (exhaust gas) to the outside of the cylinder 150. A three-way catalyst 161 is provided on the exhaust side of the exhaust manifold 160. When the exhaust valve 152 is opened, exhaust gas is discharged from the cylinder 150 to the exhaust manifold 160. The exhaust gas is purified by the three-way catalyst 161 through the exhaust manifold 160 and then discharged to the atmosphere.
 三元触媒161の上流側には、上流側空燃比センサ162が設けられている。この上流側空燃比センサ162は、各気筒150から排出された排気ガスの空燃比を連続的に検出する。 An upstream air-fuel ratio sensor 162 is provided upstream of the three-way catalyst 161. The upstream air-fuel ratio sensor 162 continuously detects the air-fuel ratio of the exhaust gas discharged from each cylinder 150.
 また、三元触媒161の下流側には、下流側空燃比センサ163が設けられている。この下流側空燃比センサ163は、理論空燃比近傍でスイッチ的な検出信号を出力する。実施の形態では、下流側空燃比センサ163は、例えばO2センサである。 Further, a downstream air-fuel ratio sensor 163 is provided on the downstream side of the three-way catalyst 161. This downstream air-fuel ratio sensor 163 outputs a switch-like detection signal in the vicinity of the theoretical air-fuel ratio. In the embodiment, the downstream air-fuel ratio sensor 163 is, for example, an O2 sensor.
 また、各気筒150の上部には、点火プラグ200が各々設けられている。点火プラグ200の放電(点火)により、気筒150内の空気と燃料との混合気に火花が着火し、気筒150内で爆発が起こり、ピストン170が押し下げられる。ピストン170が押し下げられることにより、クランクシャフト123が回転する。 Further, spark plugs 200 are provided at the top of each cylinder 150, respectively. Due to the discharge (ignition) of the spark plug 200, a spark is ignited in the air-fuel mixture in the cylinder 150, an explosion occurs in the cylinder 150, and the piston 170 is pushed down. When the piston 170 is pushed down, the crankshaft 123 rotates.
 点火プラグ200には、点火プラグ200に供給される電気エネルギー(電圧)を生成する点火コイル300が接続されている。すなわち、内燃機関100が有する複数の気筒150(実施の形態では4つ)のそれぞれに対して、点火コイル300が1つずつ設けられている。点火コイル300で発生した電圧により、点火プラグ200の中心電極210と外側電極220との間に放電が生じる(図2参照)。 The ignition plug 200 is connected to an ignition coil 300 that generates electrical energy (voltage) supplied to the ignition plug 200. That is, one ignition coil 300 is provided for each of the plurality of cylinders 150 (four in the embodiment) of the internal combustion engine 100. Due to the voltage generated in the ignition coil 300, a discharge occurs between the center electrode 210 and the outer electrode 220 of the spark plug 200 (see FIG. 2).
 図2に示すように、点火プラグ200では、中心電極210は、絶縁体230により絶縁状態で支持されている。この中心電極210に所定の電圧(実施の形態では、例えば20,000V~40,000V)が印加される。 As shown in FIG. 2, in the spark plug 200, the center electrode 210 is supported in an insulated state by an insulator 230. A predetermined voltage (in the embodiment, for example, 20,000 V to 40,000 V) is applied to the center electrode 210.
 外側電極220は接地されている。中心電極210に所定の電圧が印加されると、中心電極210と外側電極220との間で放電(点火)が生じる。 The outer electrode 220 is grounded. When a predetermined voltage is applied to the center electrode 210, discharge (ignition) occurs between the center electrode 210 and the outer electrode 220.
 なお、点火プラグ200において、中心電極210と外側電極220との間に存在する気体(ガス)の状態や筒内圧によって、ガス成分の絶縁破壊を起こして放電(点火)が発生する電圧が変動する。この放電が発生する電圧を絶縁破壊電圧と言う。 In the spark plug 200, the voltage at which discharge (ignition) occurs due to dielectric breakdown of the gas component varies depending on the state of gas (gas) existing between the center electrode 210 and the outer electrode 220 and the in-cylinder pressure. . The voltage at which this discharge occurs is called the dielectric breakdown voltage.
 点火プラグ200の放電制御(点火制御)は、後述する制御装置1の点火制御部83により行われる。 The discharge control (ignition control) of the ignition plug 200 is performed by an ignition control unit 83 of the control device 1 described later.
 図1に戻って、前述したスロットル開度センサ113a、流量センサ114、クランク角センサ121、アクセルポジションセンサ126、水温センサ122、燃焼圧センサ140等の各種センサからの出力信号は、制御装置1に出力される。制御装置1では、これら各種センサからの出力信号に基づいて、内燃機関100の運転状態を検出し、気筒150内に送出する空気量、燃料噴射量、点火プラグ200の点火タイミング等の制御を行う。 Returning to FIG. 1, output signals from various sensors such as the throttle opening sensor 113 a, the flow sensor 114, the crank angle sensor 121, the accelerator position sensor 126, the water temperature sensor 122, and the combustion pressure sensor 140 are sent to the control device 1. Is output. The control device 1 detects the operating state of the internal combustion engine 100 based on output signals from these various sensors, and controls the amount of air sent into the cylinder 150, the fuel injection amount, the ignition timing of the spark plug 200, and the like. .
[制御装置のハードウェア構成]
 次に、制御装置1のハードウェアの全体構成を説明する。
[Hardware configuration of control device]
Next, the overall hardware configuration of the control device 1 will be described.
 図1に示すように、制御装置1は、アナログ入力部10と、デジタル入力部20と、A/D(Analog/Digital)変換部30と、RAM(Random Access Memory)40と、MPU(Micro-Processing Unit)50と、ROM(Read Only Memory)60と、I/O(Input/Output)ポート70と、出力回路80と、を有する。 As shown in FIG. 1, the control device 1 includes an analog input unit 10, a digital input unit 20, an A / D (Analog / Digital) conversion unit 30, a RAM (Random Access Memory) 40, an MPU (Micro- It has a processing unit (ROM) 50, a ROM (Read Only Memory) 60, an I / O (Input / Output) port 70, and an output circuit 80.
 アナログ入力部10には、スロットル開度センサ113a、流量センサ114、アクセルポジションセンサ126、上流側空燃比センサ162、下流側空燃比センサ163、燃焼圧センサ140、水温センサ122等の各種センサからのアナログ出力信号が入力される。 The analog input unit 10 includes various sensors such as a throttle opening sensor 113a, a flow sensor 114, an accelerator position sensor 126, an upstream air-fuel ratio sensor 162, a downstream air-fuel ratio sensor 163, a combustion pressure sensor 140, and a water temperature sensor 122. An analog output signal is input.
 アナログ入力部10には、A/D変換部30が接続されている。アナログ入力部10に入力された各種センサからのアナログ出力信号は、ノイズ除去等の信号処理が行われた後、A/D変換部30でデジタル信号に変換され、RAM40に記憶される。 The A / D conversion unit 30 is connected to the analog input unit 10. Analog output signals from various sensors input to the analog input unit 10 are subjected to signal processing such as noise removal, and then converted into digital signals by the A / D conversion unit 30 and stored in the RAM 40.
 デジタル入力部20には、クランク角センサ121からのデジタル出力信号が入力される。 The digital input signal from the crank angle sensor 121 is input to the digital input unit 20.
 デジタル入力部20には、I/Oポート70が接続されており、デジタル入力部20に入力されたデジタル出力信号は、このI/Oポート70を介してRAM40に記憶される。 The I / O port 70 is connected to the digital input unit 20, and the digital output signal input to the digital input unit 20 is stored in the RAM 40 via the I / O port 70.
 RAM40に記憶された各出力信号は、MPU50で演算処理される。 Each output signal stored in the RAM 40 is processed by the MPU 50.
 MPU50は、ROM60に記憶された制御プログラム(図示せず)を実行することで、RAM40に記憶された出力信号を、制御プログラムに従って演算処理する。MPU50は、制御プログラムに従って、内燃機関100を駆動する各アクチュエータ(例えば、スロットル弁113、プレッシャレギュレータ132、点火プラグ200等)の作動量を規定する制御値を算出し、RAM40に一時的に記憶する。 The MPU 50 executes a control program (not shown) stored in the ROM 60, thereby processing the output signal stored in the RAM 40 according to the control program. The MPU 50 calculates a control value that defines the operation amount of each actuator (for example, the throttle valve 113, the pressure regulator 132, the spark plug 200, etc.) that drives the internal combustion engine 100 according to the control program, and temporarily stores it in the RAM 40. .
 RAM40に記憶されたアクチュエータの作動量を規定する制御値は、I/Oポート70を介して出力回路80に出力される。 The control value that defines the operation amount of the actuator stored in the RAM 40 is output to the output circuit 80 via the I / O port 70.
 出力回路80には、点火プラグ200に印加する電圧を制御する点火制御部83(図3参照)の機能などが設けられている。 The output circuit 80 is provided with a function of an ignition control unit 83 (see FIG. 3) for controlling a voltage applied to the spark plug 200.
[制御装置の機能ブロック]
 次に、制御装置1の機能構成を説明する。
[Function block of control device]
Next, the functional configuration of the control device 1 will be described.
 図3は、制御装置1の機能構成を説明する機能ブロック図である。この制御装置1の各機能は、例えばMPU50がROM60に記憶された制御プログラムを実行することで、出力回路80で実現される。 FIG. 3 is a functional block diagram illustrating the functional configuration of the control device 1. Each function of the control device 1 is realized by the output circuit 80, for example, when the MPU 50 executes a control program stored in the ROM 60.
 図3に示すように、制御装置1の出力回路80は、全体制御部81と、燃料噴射制御部82と、点火制御部83とを有する。 As shown in FIG. 3, the output circuit 80 of the control device 1 includes an overall control unit 81, a fuel injection control unit 82, and an ignition control unit 83.
 全体制御部81は、アクセルポジションセンサ126と、燃焼圧センサ140(CPS)に接続されており、アクセルポジションセンサ126からの要求トルク(加速信号S1)と、燃焼圧センサ140からの出力信号S2とを受け付ける。 The overall control unit 81 is connected to the accelerator position sensor 126 and the combustion pressure sensor 140 (CPS). The requested torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the combustion pressure sensor 140 are Accept.
 全体制御部81は、アクセルポジションセンサ126からの要求トルク(加速信号S1)と、燃焼圧センサ140からの出力信号S2とに基づいて、燃料噴射制御部82と点火制御部83の全体的な制御を行う。 The overall control unit 81 performs overall control of the fuel injection control unit 82 and the ignition control unit 83 based on the required torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the combustion pressure sensor 140. I do.
 燃料噴射制御部82は、内燃機関100の各気筒150を判別する気筒判別部84と、クランクシャフト123のクランク角を計測する角度情報生成部85と、エンジン回転数を計測する回転数情報生成部86と、に接続されており、気筒判別部84からの気筒判別情報S3と、角度情報生成部85からのクランク角度情報S4と、回転数情報生成部86からのエンジン回転数情報S5と、を受け付ける。 The fuel injection control unit 82 includes a cylinder discrimination unit 84 that discriminates each cylinder 150 of the internal combustion engine 100, an angle information generation unit 85 that measures the crank angle of the crankshaft 123, and a rotation speed information generation unit that measures the engine speed. 86, the cylinder discrimination information S3 from the cylinder discrimination unit 84, the crank angle information S4 from the angle information generation unit 85, and the engine rotation speed information S5 from the rotation speed information generation unit 86. Accept.
 また、燃料噴射制御部82は、気筒150内に吸気される空気の吸気量を計測する吸気量計測部87と、エンジン負荷を計測する負荷情報生成部88と、エンジン冷却水の温度を計測する水温計測部89と、に接続されており、吸気量計測部87からの吸気量情報S6と、負荷情報生成部88からのエンジン負荷情報S7と、水温計測部89からの冷却水温度情報S8と、を受け付ける。 Further, the fuel injection control unit 82 measures the intake air amount measurement unit 87 that measures the intake air amount of the air taken into the cylinder 150, the load information generation unit 88 that measures the engine load, and the temperature of the engine coolant. The intake air amount information S6 from the intake air amount measurement unit 87, the engine load information S7 from the load information generation unit 88, and the cooling water temperature information S8 from the water temperature measurement unit 89 are connected to the water temperature measurement unit 89. , Is accepted.
 燃料噴射制御部82は、受け付けた各情報に基づいて、燃料噴射弁134から噴射される燃料の噴射量と噴射時間(燃料噴射弁制御情報S9)を算出し、算出した燃料の噴射量と噴射時間とに基づいて燃料噴射弁134を制御する。 The fuel injection control unit 82 calculates the injection amount and injection time (fuel injection valve control information S9) of the fuel injected from the fuel injection valve 134 based on each received information, and calculates the calculated fuel injection amount and injection. The fuel injection valve 134 is controlled based on the time.
 点火制御部83は、全体制御部81のほか、気筒判別部84と、角度情報生成部85と、回転数情報生成部86と、負荷情報生成部88と、水温計測部89とに接続されており、これらからの各情報を受け付ける。 In addition to the overall control unit 81, the ignition control unit 83 is connected to a cylinder determination unit 84, an angle information generation unit 85, a rotation speed information generation unit 86, a load information generation unit 88, and a water temperature measurement unit 89. And accepts each piece of information.
 点火制御部83は、受け付けた各情報に基づいて、点火コイル300の1次側コイル(図示せず)に通電する電流量(通電角)と、通電開始時間と、1次側コイルに通電した電流を遮断する時間(点火時間)を算出する。 Based on the received information, the ignition control unit 83 energizes the primary side coil (not shown) of the ignition coil 300, the energization start time, and the primary side coil. The time (ignition time) for interrupting the current is calculated.
 点火制御部83は、算出した通電角と、通電開始時間と、点火時間とに基づいて、点火コイル300の1次側コイル310に点火信号SAを複数回に分けて出力することで、点火プラグ200による放電制御(点火制御)を行う。これにより、点火プラグ200の多重放電を実現する。なお、実施の形態では、点火制御部83は、内燃機関100が有する複数の気筒150(実施の形態では4つ)について、気筒150ごとに単一の点火コイル300の通電を制御するものである。 The ignition control unit 83 outputs the ignition signal SA to the primary side coil 310 of the ignition coil 300 in a plurality of times based on the calculated energization angle, energization start time, and ignition time, so that the ignition plug Discharge control (ignition control) by 200 is performed. Thereby, multiple discharge of the spark plug 200 is realized. In the embodiment, the ignition control unit 83 controls energization of a single ignition coil 300 for each cylinder 150 with respect to a plurality of cylinders 150 (four in the embodiment) of the internal combustion engine 100. .
 なお、少なくとも、点火制御部83が点火信号SAを用いて点火プラグ200の点火制御を行う機能は、本発明の内燃機関用制御装置に相当する。 Note that at least the function of the ignition control unit 83 performing the ignition control of the spark plug 200 using the ignition signal SA corresponds to the control device for an internal combustion engine of the present invention.
[点火コイルの電気回路]
 次に、点火コイル300を含む電気回路400を説明する。
[Electric circuit of ignition coil]
Next, the electric circuit 400 including the ignition coil 300 will be described.
 図4は、点火コイル300を含む電気回路400を説明する図である。電気回路400において、点火コイル300は、所定の巻き数で巻かれた1次側コイル310と、1次側コイル310よりも多い巻き数で巻かれた2次側コイル320と、を含んで構成される。 FIG. 4 is a diagram illustrating an electric circuit 400 including the ignition coil 300. In the electric circuit 400, the ignition coil 300 includes a primary side coil 310 wound with a predetermined number of turns and a secondary side coil 320 wound with more turns than the primary side coil 310. Is done.
 1次側コイル310の一端は、直流電源330に接続されている。これにより、1次側コイル310には、所定の電圧(実施の形態では、例えば12V)が印加される。直流電源330と1次側コイル310の接続経路中には、充電量検出部350が設けられている。充電量検出部350は、1次側コイル310に印加された電圧と電流を検出して、点火制御部83へ送信する。 One end of the primary side coil 310 is connected to the DC power source 330. Thus, a predetermined voltage (for example, 12 V in the embodiment) is applied to the primary coil 310. A charge amount detection unit 350 is provided in the connection path between the DC power supply 330 and the primary coil 310. The charge amount detection unit 350 detects the voltage and current applied to the primary side coil 310 and transmits them to the ignition control unit 83.
 1次側コイル310の他端は、イグナイタ340に接続されており、イグナイタ340を介して接地されている。イグナイタ340には、トランジスタや電界効果トランジスタ(Field Effect Transistor:FET)などが用いられる。 The other end of the primary coil 310 is connected to the igniter 340 and is grounded via the igniter 340. As the igniter 340, a transistor, a field effect transistor (Field Effect Transistor: FET), or the like is used.
 イグナイタ340のベース(B)端子は、点火制御部83に接続されている。点火制御部83から出力された点火信号SAは、イグナイタ340のベース(B)端子に入力される。イグナイタ340のベース(B)端子に点火信号SAが入力されると、イグナイタ340のコレクタ(C)端子とエミッタ(E)端子間が通電状態となり、コレクタ(C)端子とエミッタ(E)端子間に電流が流れる。これにより、点火制御部83からイグナイタ340を介して点火コイル300の1次側コイル310に点火信号SAが出力され、1次側コイル310に電力(電気エネルギー)が蓄積される。 The base (B) terminal of the igniter 340 is connected to the ignition control unit 83. The ignition signal SA output from the ignition control unit 83 is input to the base (B) terminal of the igniter 340. When the ignition signal SA is input to the base (B) terminal of the igniter 340, the collector (C) terminal and the emitter (E) terminal of the igniter 340 are energized, and between the collector (C) terminal and the emitter (E) terminal. Current flows through As a result, the ignition signal SA is output from the ignition control unit 83 to the primary coil 310 of the ignition coil 300 via the igniter 340, and electric power (electric energy) is accumulated in the primary coil 310.
 点火制御部83からの点火信号SAの出力が停止して、1次側コイル310に流れる電流が遮断されると、1次側コイル310に対するコイルの巻き数比に応じた高電圧が2次側コイル320に発生する。2次側コイル320に発生した高電圧が点火プラグ200(中心電極210)に印加されることで、点火プラグ200の中心電極210と、外側電極220との間に電位差が発生する。この中心電極210と外側電極220との間に発生した電位差が、ガス(気筒150内の混合気)の絶縁破壊電圧Vm以上になると、ガス成分が絶縁破壊されて中心電極210と外側電極220との間に放電が生じ、燃料(混合気)への点火(着火)が行われる。 When the output of the ignition signal SA from the ignition control unit 83 is stopped and the current flowing through the primary side coil 310 is cut off, a high voltage corresponding to the winding ratio of the coil with respect to the primary side coil 310 is increased to the secondary side. It occurs in the coil 320. When the high voltage generated in the secondary coil 320 is applied to the spark plug 200 (center electrode 210), a potential difference is generated between the center electrode 210 of the spark plug 200 and the outer electrode 220. When the potential difference generated between the center electrode 210 and the outer electrode 220 becomes equal to or higher than the dielectric breakdown voltage Vm of the gas (air-fuel mixture in the cylinder 150), the gas component is dielectrically broken, and the center electrode 210 and the outer electrode 220 During this time, discharge occurs and ignition (ignition) of the fuel (air mixture) is performed.
 2次側コイル320と点火プラグ200の接続経路中には、放電量検出部360が設けられている。放電量検出部360は、放電電圧と電流を検出して、点火制御部83へ送信する。 A discharge amount detection unit 360 is provided in the connection path between the secondary coil 320 and the spark plug 200. The discharge amount detection unit 360 detects the discharge voltage and current and transmits them to the ignition control unit 83.
 点火制御部83は、以上説明したような電気回路400の動作により、点火信号SAを用いて点火コイル300の通電を制御する。これにより、点火コイル300から点火プラグ200へ与える電気エネルギーを制御し、点火プラグ200を多重放電させるための点火制御を実施する。 The ignition control unit 83 controls energization of the ignition coil 300 using the ignition signal SA by the operation of the electric circuit 400 as described above. Thereby, the electric energy given from the ignition coil 300 to the spark plug 200 is controlled, and the ignition control for performing the multiple discharge of the spark plug 200 is performed.
[多重放電の概要]
 次に、実施の形態にかかる点火プラグ200の多重放電の概要を説明する。
[Overview of multiple discharges]
Next, an outline of multiple discharge of the spark plug 200 according to the embodiment will be described.
 図5は、本発明の実施の形態による多重放電方法の一例を説明する模式図である。点火コイル300の目標充電量は、エンジン回転数(点火周期)や充電電圧によって定められる。 FIG. 5 is a schematic diagram for explaining an example of the multiple discharge method according to the embodiment of the present invention. The target charge amount of the ignition coil 300 is determined by the engine speed (ignition cycle) and the charging voltage.
 実施の形態による多重放電方法では、点火制御部83は、予め定められたマップ情報を参照して、エンジン回転数(点火周期)や充電電圧に応じた点火コイル300の目標充電量を設定し、点火信号SAを点火コイル300(イグナイタ340)へ出力する。このとき点火制御部83は、点火信号SAとして2つのパルスを連続して出力することで、点火プラグ200の電極間に絶縁破壊用の電圧を印加するための絶縁破壊用の電気エネルギーと、点火プラグ200の放電(点火)を持続させるための点火持続用の電気エネルギーとが、点火コイル300から点火プラグ200へ分割して供給されるようにする。 In the multiple discharge method according to the embodiment, the ignition control unit 83 refers to predetermined map information, sets the target charge amount of the ignition coil 300 according to the engine speed (ignition cycle) and the charge voltage, The ignition signal SA is output to the ignition coil 300 (igniter 340). At this time, the ignition control unit 83 continuously outputs two pulses as the ignition signal SA, so that the electrical energy for dielectric breakdown for applying the dielectric breakdown voltage between the electrodes of the spark plug 200, the ignition Electric energy for sustaining ignition for sustaining discharge (ignition) of the plug 200 is divided and supplied from the ignition coil 300 to the spark plug 200.
 具体的には、時刻T1において点火信号SAをOFFからONに切り替えると、点火コイル300の充電が開始され、点火コイル300に電気エネルギーが蓄積される。このとき点火制御部83は、充電量検出部350が検出した1次側コイル310の電圧と電流から求めた充電電力値を所定時間ごとに積分することで、点火コイル300の充電量(入力エネルギー)を演算する。そして、時刻T2において充電量が設定した目標充電量(例えば110mJ)に達すると、点火信号SAをONからOFFに切り替えることで、点火コイル300の充電を中断し、点火コイル300から点火プラグ200への電気エネルギーの供給を開始する。この電気エネルギーにより、点火プラグ200の電極間において1回目の放電が行われる。 Specifically, when the ignition signal SA is switched from OFF to ON at time T1, charging of the ignition coil 300 is started and electric energy is accumulated in the ignition coil 300. At this time, the ignition control unit 83 integrates the charging power value obtained from the voltage and current of the primary coil 310 detected by the charging amount detection unit 350 at predetermined time intervals, so that the charging amount (input energy) of the ignition coil 300 is integrated. ) Is calculated. When the charge amount reaches a set target charge amount (for example, 110 mJ) at time T2, charging of the ignition coil 300 is interrupted by switching the ignition signal SA from ON to OFF, and from the ignition coil 300 to the spark plug 200. Start supplying electric energy. This electric energy causes a first discharge between the electrodes of the spark plug 200.
 点火コイル300から点火プラグ200への電気エネルギーの供給を開始して点火プラグ200の放電が行われると、点火制御部83は、放電量検出部360が検出した2次側コイル320の電圧と電流から求めた放電電力値を所定時間ごとに積分することで、点火コイル300の放電量(出力エネルギー)を演算する。そして、時刻T3において放電量が前述の絶縁破壊用の電気エネルギー(例えば30mJ)に達すると、点火信号SAをOFFからONに切り替えることで、点火コイル300から点火プラグ200への電気エネルギーの供給を中断し、点火コイル300の充電を再開する。 When the supply of electrical energy from the ignition coil 300 to the spark plug 200 is started and the spark plug 200 is discharged, the ignition control unit 83 detects the voltage and current of the secondary coil 320 detected by the discharge amount detection unit 360. The amount of discharge (output energy) of the ignition coil 300 is calculated by integrating the discharge power value obtained from the above every predetermined time. At time T3, when the amount of discharge reaches the electric energy for dielectric breakdown (for example, 30 mJ), the ignition signal SA is switched from OFF to ON, thereby supplying electric energy from the ignition coil 300 to the spark plug 200. The operation is interrupted and the charging of the ignition coil 300 is resumed.
 その後、時刻T3から所定時間を経過して時刻T4になると、点火制御部83は、点火信号SAをONからOFFに切り替えることで、点火コイル300の充電を中断し、点火コイル300から点火プラグ200への電気エネルギーの供給を再開する。この電気エネルギーにより、点火プラグ200の電極間において絶縁破壊が維持された状態で、2回目の放電が行われる。 Thereafter, when a predetermined time elapses from time T3 and time T4 is reached, the ignition control unit 83 interrupts charging of the ignition coil 300 by switching the ignition signal SA from ON to OFF, and the ignition plug 300 is switched from the ignition coil 300 to the ignition plug 200. Restart the supply of electrical energy to With this electrical energy, the second discharge is performed in a state where the dielectric breakdown is maintained between the electrodes of the spark plug 200.
 2回目の放電後は、点火信号SAがOFFに維持されることで、点火コイル300に蓄積された残りの電気エネルギー(例えば80mJ)が、前述の点火持続用の電気エネルギーとして点火プラグ200に供給される。そして、時刻T5において点火コイル300の電気エネルギーが全て放出されると、実施の形態にかかる点火プラグ200の多重放電が終了する。このとき、1回目の放電を開始した時刻T2から2回目の放電が終了するまでの時刻T5までの時間は、例えば約2msecである。 After the second discharge, the ignition signal SA is kept OFF, so that the remaining electric energy (for example, 80 mJ) accumulated in the ignition coil 300 is supplied to the spark plug 200 as the electric energy for sustaining the ignition. Is done. When all the electric energy of the ignition coil 300 is released at time T5, the multiple discharge of the spark plug 200 according to the embodiment is completed. At this time, the time from the time T2 when the first discharge is started to the time T5 until the second discharge is completed is, for example, about 2 msec.
[点火プラグの制御方法]
 次に、点火制御部83による点火プラグ200の制御方法の一例を説明する。図6は、実施の形態にかかる点火制御部83による点火プラグ200の制御方法を説明するフローチャートの一例である。
[Control method of spark plug]
Next, an example of a method for controlling the spark plug 200 by the ignition control unit 83 will be described. FIG. 6 is an example of a flowchart illustrating a method for controlling the spark plug 200 by the ignition control unit 83 according to the embodiment.
 図6に示すように、ステップS101において、点火制御部83は、点火プラグ200の電極間に放電を発生させるための絶縁破壊用の電気エネルギー量を設定する。例えば、上流側空燃比センサ162で検出された排気ガスの空燃比に基づいて気筒150内における空燃比を推定し、この空燃比が小さい(燃料が濃い)ほど小さな値となるように、絶縁破壊用の電気エネルギー量を設定する。また、例えば、燃焼圧センサ140で検出された気筒150内の圧力に基づき、この圧力が小さいほど小さな値となるように、絶縁破壊用の電気エネルギー量を設定する。こうした気筒150内の空燃比や圧力に応じた絶縁破壊用の電気エネルギー量の設定は、例えば、制御装置1においてROM60に記憶されているマップ情報を参照することにより行われる。 As shown in FIG. 6, in step S <b> 101, the ignition control unit 83 sets an electrical energy amount for dielectric breakdown for generating a discharge between the electrodes of the spark plug 200. For example, the air-fuel ratio in the cylinder 150 is estimated based on the air-fuel ratio of the exhaust gas detected by the upstream air-fuel ratio sensor 162, and the dielectric breakdown is reduced so that the smaller the air-fuel ratio (the richer the fuel), the smaller the value. Set the amount of electrical energy for use. Further, for example, based on the pressure in the cylinder 150 detected by the combustion pressure sensor 140, the amount of electrical energy for dielectric breakdown is set so that the smaller the pressure, the smaller the value. The setting of the electrical energy amount for dielectric breakdown according to the air-fuel ratio and pressure in the cylinder 150 is performed by referring to map information stored in the ROM 60 in the control device 1, for example.
 ステップS102において、点火制御部83は、点火プラグ200の電極間における放電を維持するための点火持続用の電気エネルギー量を設定する。ここではステップS101における絶縁破壊用の電気エネルギー量と同様に、例えば、上流側空燃比センサ162で検出された排気ガスの空燃比に基づいて気筒150内における空燃比を推定し、この空燃比が小さい(燃料が濃い)ほど小さな値となるように、点火持続用の電気エネルギー量を設定する。また、例えば、燃焼圧センサ140で検出された気筒150内の圧力に基づき、この圧力が小さいほど小さな値となるように、点火持続用の電気エネルギー量を設定する。こうした気筒150内の空燃比や圧力に応じた点火持続用の電気エネルギー量の設定は、例えば、制御装置1においてROM60に記憶されているマップ情報を参照することにより行われる。 In step S102, the ignition control unit 83 sets the amount of electric energy for sustaining the ignition for maintaining the discharge between the electrodes of the spark plug 200. Here, the air-fuel ratio in the cylinder 150 is estimated based on the air-fuel ratio of the exhaust gas detected by the upstream air-fuel ratio sensor 162, for example, similarly to the amount of electrical energy for dielectric breakdown in step S101. The amount of electric energy for sustaining ignition is set so that the smaller the value (the richer the fuel), the smaller the value. Further, for example, based on the pressure in the cylinder 150 detected by the combustion pressure sensor 140, the amount of electric energy for sustaining ignition is set so that the smaller the pressure, the smaller the value. Such setting of the electric energy for sustaining the ignition in accordance with the air-fuel ratio and pressure in the cylinder 150 is performed by referring to map information stored in the ROM 60 in the control device 1, for example.
 ステップS103において、点火制御部83は、点火コイル300の目標充電量を設定する。ここでは、ステップS101で設定した絶縁破壊用の電気エネルギー量と、ステップS102で設定した点火持続用の電気エネルギー量とを合計し、これらの合計値を目標充電量として設定する。その際、点火コイル300における充電量のばらつき対策として、目標充電量にある程度のマージンを見込んでおき、上記の合計値にこのマージン分を加えて目標充電量を設定してもよい。例えば、上記の合計値の1.1倍を目標充電量として設定することができる。このようにすれば、後述するステップS106~S109において、点火コイル300に点火プラグ200への電気エネルギーの供給を開始させる前に、点火コイル300に蓄積される電気エネルギー量が絶縁破壊用の電気エネルギー量と点火持続用の電気エネルギー量との合計値以上となるように、点火コイル300の通電を制御することが可能となる。 In step S103, the ignition control unit 83 sets a target charge amount of the ignition coil 300. Here, the amount of electrical energy for dielectric breakdown set in step S101 and the amount of electrical energy for sustaining ignition set in step S102 are summed, and the total value is set as the target charge amount. At that time, as a measure against variation in the charge amount in the ignition coil 300, a certain margin may be allowed for the target charge amount, and the target charge amount may be set by adding this margin to the above total value. For example, 1.1 times the above total value can be set as the target charge amount. In this way, in steps S106 to S109, which will be described later, before the ignition coil 300 starts supplying electric energy to the spark plug 200, the amount of electric energy accumulated in the ignition coil 300 is the electric energy for dielectric breakdown. The energization of the ignition coil 300 can be controlled so as to be equal to or greater than the sum of the amount and the electric energy amount for sustaining ignition.
 ステップS104において、点火制御部83は、ステップS103で設定した目標充電量に基づき、点火コイル300の充電開始時期を設定する。 In step S104, the ignition control unit 83 sets the charging start timing of the ignition coil 300 based on the target charge amount set in step S103.
 ステップS105において、点火制御部83は、ステップS104で設定した充電開始時期に基づき、点火コイル300の充電を開始するか否かを判定する。充電を開始すると判定されるまで(ステップS105:NO)はステップS105を繰り返し、充電を開始すると判定されると(ステップS105:YES)、ステップS106に進む。 In step S105, the ignition control unit 83 determines whether to start charging the ignition coil 300 based on the charging start timing set in step S104. Until it is determined to start charging (step S105: NO), step S105 is repeated. When it is determined to start charging (step S105: YES), the process proceeds to step S106.
 ステップS106において、点火制御部83は、点火信号SAのパルスをONにし、点火コイル300への充電を開始する。この点火信号SAの出力に応じて、点火コイル300の1次側コイル310において電気エネルギーが蓄積される。 In step S106, the ignition control unit 83 turns on the pulse of the ignition signal SA and starts charging the ignition coil 300. In response to the output of the ignition signal SA, electric energy is accumulated in the primary side coil 310 of the ignition coil 300.
 ステップS107において、点火制御部83は、充電量検出部350による1次側コイル310の電圧と電流の検出結果に基づいて、点火コイル300の現在の充電量(入力エネルギー)を検出する。 In step S107, the ignition control unit 83 detects the current charge amount (input energy) of the ignition coil 300 based on the voltage and current detection results of the primary coil 310 by the charge amount detection unit 350.
 ステップS108において、点火制御部83は、ステップS103で設定した目標充電量と、ステップS107で検出した現在の充電量とを比較し、点火コイル300の充電量が目標充電量に到達したか否かを判定する。その結果、点火コイル300の充電量が目標充電量に到達したと判定されるまで(ステップS108:NO)は、ステップS107に戻って充電量の検出を続け、目標充電量に到達したと判定されると(ステップS108:YES)、ステップS109に進む。 In step S108, the ignition control unit 83 compares the target charge amount set in step S103 with the current charge amount detected in step S107, and determines whether or not the charge amount of the ignition coil 300 has reached the target charge amount. Determine. As a result, until it is determined that the charge amount of the ignition coil 300 has reached the target charge amount (step S108: NO), the process returns to step S107 and the detection of the charge amount is continued, and it is determined that the target charge amount has been reached. Then (step S108: YES), the process proceeds to step S109.
 ステップS109において、点火制御部83は、点火信号SAのパルスをOFFにし、点火コイル300への充電を中断する。この点火信号SAの出力停止に応じて、点火コイル300に蓄積された電気エネルギーが2次側コイル320から点火プラグ200に供給されるようになる。これにより、点火制御部83は、点火コイル300に点火プラグ200への電気エネルギーの供給を開始させる。 In step S109, the ignition control unit 83 turns off the pulse of the ignition signal SA, and interrupts the charging of the ignition coil 300. In response to the stop of the output of the ignition signal SA, the electric energy accumulated in the ignition coil 300 is supplied from the secondary coil 320 to the spark plug 200. Accordingly, the ignition control unit 83 causes the ignition coil 300 to start supplying electric energy to the spark plug 200.
 ステップS110において、点火制御部83は、放電量検出部360による2次側コイル320の電圧と電流の検出結果に基づいて、点火コイル300の現在の放電量(出力エネルギー)を検出する。この処理により、点火制御部83は、ステップS109で点火コイル300に点火プラグ200への電気エネルギーの供給を開始させた後、供給した電気エネルギーの合計量を算出する。 In step S110, the ignition control unit 83 detects the current discharge amount (output energy) of the ignition coil 300 based on the detection result of the voltage and current of the secondary coil 320 by the discharge amount detection unit 360. By this processing, the ignition control unit 83 calculates the total amount of supplied electric energy after the ignition coil 300 starts supplying electric energy to the spark plug 200 in step S109.
 ステップS111において、点火制御部83は、ステップS101で設定した絶縁破壊用の電気エネルギー量と、ステップS1110で検出した現在の放電量とを比較し、点火コイル300の放電量が絶縁破壊用の電気エネルギー量以上となったか否かを判定する。
その結果、点火コイル300の放電量が絶縁破壊用の電気エネルギー量以上となるまで(ステップS111:NO)は、ステップS110に戻って放電量の検出を続け、絶縁破壊用の電気エネルギー量以上になったと判定されると(ステップS111:YES)、ステップS112に進む。
In step S111, the ignition control unit 83 compares the amount of electrical energy for dielectric breakdown set in step S101 with the current amount of discharge detected in step S1110. It is determined whether or not the energy amount is exceeded.
As a result, until the amount of discharge of the ignition coil 300 becomes equal to or greater than the amount of electrical energy for breakdown (step S111: NO), the process returns to step S110 and the detection of the amount of discharge is continued. If it is determined that it has become (step S111: YES), the process proceeds to step S112.
 ステップS112において、点火制御部83は、点火信号SAのパルスをONにし、点火コイル300への充電を再開する。この点火信号SAの出力に応じて、点火コイル300の1次側コイル310において電気エネルギーが蓄積され、点火コイル300が再充電される。 In step S112, the ignition control unit 83 turns on the pulse of the ignition signal SA and restarts charging of the ignition coil 300. In response to the output of the ignition signal SA, electrical energy is accumulated in the primary coil 310 of the ignition coil 300, and the ignition coil 300 is recharged.
 ステップS113において、点火制御部83は、ステップS112で点火信号SAのパルスをONにしてから所定時間(例えば約30μs)が経過したか否かを判定する。所定時間が経過するまで(ステップS113:NO)はステップS113を繰り返し、所定時間が経過したと判定されると(ステップS113:YES)、ステップS114に進む。 In step S113, the ignition control unit 83 determines whether or not a predetermined time (for example, about 30 μs) has elapsed since the pulse of the ignition signal SA was turned on in step S112. Until the predetermined time has elapsed (step S113: NO), step S113 is repeated. When it is determined that the predetermined time has elapsed (step S113: YES), the process proceeds to step S114.
 ステップS114において、点火制御部83は、点火信号SAのパルスをOFFにし、点火コイル300への充電を停止する。この点火信号SAの出力停止に応じて、点火コイル300に蓄積された電気エネルギーの残りが2次側コイル320から点火プラグ200に供給されるようになる。このときの点火コイル300の残充電量(残エネルギー量)は、少なくともステップS102で設定した点火持続用の電気エネルギー量よりも多くなっている。これにより、点火制御部83は、ステップS112で点火コイル300の再充電を開始した後、点火コイル300から点火プラグ200へ点火持続用の電気エネルギー量以上の電気エネルギーが供給されるようにする。ステップS114で点火信号SAの出力を停止したら、図6の処理フローを終了する。 In step S114, the ignition control unit 83 turns off the pulse of the ignition signal SA and stops charging the ignition coil 300. In response to the stop of the output of the ignition signal SA, the remainder of the electric energy accumulated in the ignition coil 300 is supplied from the secondary coil 320 to the spark plug 200. The remaining charge amount (remaining energy amount) of the ignition coil 300 at this time is at least larger than the electric energy amount for sustaining the ignition set in step S102. As a result, the ignition control unit 83 starts recharging of the ignition coil 300 in step S112, and then supplies electric energy equal to or greater than the amount of electric energy for sustaining ignition from the ignition coil 300 to the spark plug 200. When the output of the ignition signal SA is stopped in step S114, the processing flow of FIG. 6 is ended.
 以上説明した実施の形態によれば、以下の作用効果を奏する。 According to the embodiment described above, the following operational effects are obtained.
(1)内燃機関用の制御装置1は、内燃機関100の気筒150内で放電して燃料への点火を行う点火プラグ200に対し電気エネルギーを与える点火コイル300の通電を制御する点火制御部83を備える。点火制御部83は、点火プラグ200の電極間に放電を発生させるための絶縁破壊用の電気エネルギー量(第1電気エネルギー量)と、放電を維持するための点火持続用の電気エネルギー量(第2電気エネルギー量)とを設定する(ステップS101、S102)。点火制御部83は、点火コイル300に点火プラグ200への電気エネルギーの供給を開始させた(ステップS109)後、供給した電気エネルギーの合計量を算出し(ステップS110)、算出した合計量が第1電気エネルギー量以上となった場合(ステップS111:YES)に、点火コイル300が再充電されるように(ステップS112)、点火コイル300の通電を制御する。点火制御部83は、点火コイル300の再充電後、点火コイル300から点火プラグ200へ第2電気エネルギー量以上の電気エネルギーが供給されるように(ステップS114)、点火コイル300の通電を制御する。このようにしたので、点火プラグ200による燃料への着火性を効率的に改善することができる。 (1) The control device 1 for the internal combustion engine controls the energization of the ignition coil 300 that supplies electric energy to the spark plug 200 that discharges in the cylinder 150 of the internal combustion engine 100 and ignites the fuel. Is provided. The ignition control unit 83 has a dielectric breakdown electric energy amount (first electric energy amount) for generating a discharge between the electrodes of the spark plug 200 and an ignition sustaining electric energy amount (first electric energy amount) for maintaining the discharge. 2 electric energy) is set (steps S101 and S102). The ignition control unit 83 causes the ignition coil 300 to start supplying electric energy to the spark plug 200 (step S109), and then calculates the total amount of supplied electric energy (step S110). When the amount of electric energy is 1 or more (step S111: YES), the energization of the ignition coil 300 is controlled so that the ignition coil 300 is recharged (step S112). The ignition control unit 83 controls energization of the ignition coil 300 so that electric energy equal to or larger than the second electric energy amount is supplied from the ignition coil 300 to the spark plug 200 after the ignition coil 300 is recharged (step S114). . Since it did in this way, the ignitability to the fuel by the spark plug 200 can be improved efficiently.
(2)ステップS101、S102において、絶縁破壊用の電気エネルギー量(第1電気エネルギー量)および点火持続用の電気エネルギー量(第2電気エネルギー量)は、内燃機関100の気筒150内における空燃比が小さいほど、小さくなるように設定される。
また、内燃機関100の気筒150内の圧力が小さいほど、小さくなるように設定される。このようにしたので、内燃機関100における混合気の状態に応じて、適切な電気エネルギー量を設定することができる。
(2) In steps S101 and S102, the amount of electrical energy for breakdown (first electric energy amount) and the amount of electric energy for sustaining ignition (second electric energy amount) are the air-fuel ratio in the cylinder 150 of the internal combustion engine 100. The smaller the value is, the smaller it is set.
Further, the pressure is set to be smaller as the pressure in the cylinder 150 of the internal combustion engine 100 is smaller. Since it did in this way, according to the state of the air-fuel | gaseous mixture in the internal combustion engine 100, appropriate electric energy amount can be set.
(3)点火制御部83は、点火コイル300に点火プラグ200への電気エネルギーの供給を開始させる前に、点火コイル300に蓄積される電気エネルギー量が絶縁破壊用の電気エネルギー量(第1電気エネルギー量)と点火持続用の電気エネルギー量(第2電気エネルギー量)との合計値以上となるように、点火コイル300の通電を制御する(ステップS103、S106~S109)。このようにしたので、点火プラグ200の1回目の放電前に、点火プラグ200の多重放電を行うために十分な電気エネルギー量を点火コイル300に蓄積させておくことができる。 (3) Before the ignition control unit 83 starts supplying the electric energy to the ignition plug 200 to the ignition coil 300, the electric energy amount accumulated in the ignition coil 300 is the amount of electric energy for breakdown (first electric energy). The energization of the ignition coil 300 is controlled so as to be equal to or greater than the sum of the amount of energy) and the amount of electrical energy for sustaining ignition (second amount of electrical energy) (steps S103, S106 to S109). Thus, before the first discharge of the spark plug 200, a sufficient amount of electrical energy for performing multiple discharge of the spark plug 200 can be accumulated in the ignition coil 300.
(4)内燃機関100は複数の気筒150を有し、複数の気筒150のそれぞれに対して、点火コイル300が1つずつ設けられている。点火制御部83は、気筒150ごとに単一の点火コイル300の通電を制御する。このようにしたので、点火コイル300を増大することなく点火プラグ200の多重放電を実現できる。 (4) The internal combustion engine 100 has a plurality of cylinders 150, and one ignition coil 300 is provided for each of the plurality of cylinders 150. The ignition control unit 83 controls energization of a single ignition coil 300 for each cylinder 150. Since it did in this way, the multiple discharge of the spark plug 200 is realizable, without increasing the ignition coil 300. FIG.
 なお、以上説明した実施の形態において、図3で説明した制御装置1の各機能構成は、前述のようにMPU50で実行されるソフトウェアにより実現してもよいし、あるいはFPGA(Field-Programmable Gate Array)等のハードウェアにより実現してもよい。また、これらを混在して使用してもよい。 In the embodiment described above, each functional configuration of the control device 1 described in FIG. 3 may be realized by software executed by the MPU 50 as described above, or may be an FPGA (Field-Programmable Gate Array). ) Or the like. These may be used in combination.
 また、実施の形態では、点火プラグ200の放電回数が2回の場合について説明しているが、本発明はこれに限定されるわけではなく、放電回数が3回以上であってもよい。すなわち、点火制御部83は、点火コイル300から点火プラグ200へ点火持続用の電気エネルギー量以上の電気エネルギーが複数回に分けて供給されるように、点火コイル300の通電を制御してもよい。例えば、前述のように目標充電量が110mJであり、1回目の放電において絶縁破壊用の電気エネルギーとして30mJを点火コイル300から点火プラグ200へ供給したとする。この場合、点火コイル300に蓄積された残りの電気エネルギー量である80mJを40mJずつ2回に分けて、点火持続用の電気エネルギーとして点火コイル300から点火プラグ200へ供給し、これによって点火プラグ200が2回目と3回目の放電を行うようにしてもよい。4回目以降の放電を行う場合も同様である。このようにすれば、さらにきめ細かい放電制御が可能となる。 In the embodiment, the case where the number of discharges of the spark plug 200 is two is described, but the present invention is not limited to this, and the number of discharges may be three or more. In other words, the ignition control unit 83 may control the energization of the ignition coil 300 so that electric energy equal to or greater than the amount of electric energy for sustaining ignition is supplied from the ignition coil 300 to the spark plug 200 in a plurality of times. . For example, it is assumed that the target charge amount is 110 mJ as described above, and 30 mJ is supplied from the ignition coil 300 to the spark plug 200 as the electrical energy for dielectric breakdown in the first discharge. In this case, 80 mJ, which is the remaining amount of electric energy accumulated in the ignition coil 300, is divided into 40 mJ twice and supplied from the ignition coil 300 to the ignition plug 200 as electric energy for sustaining the ignition. However, the second and third discharges may be performed. The same applies to the fourth and subsequent discharges. In this way, finer discharge control can be performed.
 以上説明した実施の形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 The embodiment and various modifications described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired. Moreover, although various embodiment and the modification were demonstrated above, this invention is not limited to these content. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 1:制御装置、10:アナログ入力部、20:デジタル入力部、30:A/D変換部、40:RAM、50:MPU、60:ROM、70:I/Oポート、80:出力回路、81:全体制御部、82:燃料噴射制御部、83:点火制御部、84:気筒判別部、85:角度情報生成部、86:回転数情報生成部、87:吸気量計測部、88:負荷情報生成部、89:水温計測部、100:内燃機関、110:エアクリーナ、111:吸気管、112:吸気マニホールド、113:スロットル弁、113a:スロットル開度センサ、114:流量センサ、115:吸気温センサ、120:リングギア、121:クランク角センサ、122:水温センサ、123:クランクシャフト、125:アクセルペダル、126:アクセルポジションセンサ、130:燃料タンク、131:燃料ポンプ、132:プレッシャレギュレータ、133:燃料配管、134:燃料噴射弁、140:燃焼圧センサ、150:気筒、151:吸気弁、152:排気弁、160:排気マニホールド、161:三元触媒、162:上流側空燃比センサ、163:下流側空燃比センサ、170:ピストン、200:点火プラグ、210:中心電極、220:外側電極、230:絶縁体、300:点火コイル、310:1次側コイル、320:2次側コイル、330:直流電源、340:イグナイタ、350:充電量検出部、360:放電量検出部、400:電気回路 1: control device, 10: analog input unit, 20: digital input unit, 30: A / D conversion unit, 40: RAM, 50: MPU, 60: ROM, 70: I / O port, 80: output circuit, 81 : Overall control unit, 82: Fuel injection control unit, 83: Ignition control unit, 84: Cylinder discrimination unit, 85: Angle information generation unit, 86: Revolution information generation unit, 87: Intake amount measurement unit, 88: Load information Generator: 89: water temperature measuring unit, 100: internal combustion engine, 110: air cleaner, 111: intake pipe, 112: intake manifold, 113: throttle valve, 113a: throttle opening sensor, 114: flow sensor, 115: intake temperature sensor , 120: ring gear, 121: crank angle sensor, 122: water temperature sensor, 123: crankshaft, 125: accelerator pedal, 126: accelerator position sensor 130: Fuel tank, 131: Fuel pump, 132: Pressure regulator, 133: Fuel piping, 134: Fuel injection valve, 140: Combustion pressure sensor, 150: Cylinder, 151: Intake valve, 152: Exhaust valve, 160: Exhaust manifold , 161: three-way catalyst, 162: upstream air-fuel ratio sensor, 163: downstream air-fuel ratio sensor, 170: piston, 200: spark plug, 210: center electrode, 220: outer electrode, 230: insulator, 300: ignition Coil: 310: primary side coil, 320: secondary side coil, 330: DC power supply, 340: igniter, 350: charge amount detection unit, 360: discharge amount detection unit, 400: electric circuit

Claims (7)

  1.  内燃機関の気筒内で放電して燃料への点火を行う点火プラグに対し電気エネルギーを与える点火コイルの通電を制御する点火制御部を備え、
     前記点火制御部は、前記点火プラグの電極間に放電を発生させるための第1電気エネルギー量と、前記放電を維持するための第2電気エネルギー量と、を設定し、
     前記点火制御部は、前記点火コイルに前記点火プラグへの電気エネルギーの供給を開始させた後、供給した電気エネルギーの合計量を算出し、算出した前記合計量が前記第1電気エネルギー量以上となった場合に、前記点火コイルが再充電されるように、前記点火コイルの通電を制御し、
     前記点火制御部は、前記点火コイルの再充電後、前記点火コイルから前記点火プラグへ前記第2電気エネルギー量以上の電気エネルギーが供給されるように、前記点火コイルの通電を制御する内燃機関用制御装置。
    An ignition control unit that controls energization of an ignition coil that supplies electric energy to an ignition plug that discharges in a cylinder of an internal combustion engine and ignites fuel;
    The ignition control unit sets a first electrical energy amount for generating a discharge between the electrodes of the spark plug and a second electrical energy amount for maintaining the discharge,
    The ignition control unit calculates a total amount of supplied electric energy after causing the ignition coil to start supplying electric energy to the ignition plug, and the calculated total amount is equal to or greater than the first electric energy amount. If so, the energization of the ignition coil is controlled so that the ignition coil is recharged,
    The ignition control unit is for an internal combustion engine that controls energization of the ignition coil so that electric energy equal to or greater than the second electric energy amount is supplied from the ignition coil to the ignition plug after recharging the ignition coil. Control device.
  2.  請求項1に記載の内燃機関用制御装置において、
     前記第1電気エネルギー量および前記第2電気エネルギー量は、前記内燃機関の気筒内における空燃比が小さいほど、小さくなるように設定される内燃機関用制御装置。
    The control device for an internal combustion engine according to claim 1,
    The control apparatus for an internal combustion engine, wherein the first electric energy amount and the second electric energy amount are set to be smaller as the air-fuel ratio in the cylinder of the internal combustion engine is smaller.
  3.  請求項1に記載の内燃機関用制御装置において、
     前記第1電気エネルギー量および前記第2電気エネルギー量は、前記内燃機関の気筒内の圧力が小さいほど、小さくなるように設定される内燃機関用制御装置。
    The control device for an internal combustion engine according to claim 1,
    The control apparatus for an internal combustion engine, wherein the first electric energy amount and the second electric energy amount are set to be smaller as the pressure in the cylinder of the internal combustion engine is smaller.
  4.  請求項1に記載の内燃機関用制御装置において、
     前記点火制御部は、前記点火コイルに前記点火プラグへの電気エネルギーの供給を開始させる前に、前記点火コイルに蓄積される電気エネルギー量が前記第1電気エネルギー量と前記第2電気エネルギー量との合計値以上となるように、前記点火コイルの通電を制御する内燃機関用制御装置。
    The control device for an internal combustion engine according to claim 1,
    The ignition control unit determines that the amount of electric energy accumulated in the ignition coil is the first electric energy amount and the second electric energy amount before causing the ignition coil to start supplying electric energy to the ignition plug. A control device for an internal combustion engine that controls energization of the ignition coil so as to be equal to or greater than the total value of the above.
  5.  請求項1に記載の内燃機関用制御装置において、
     前記内燃機関は複数の気筒を有し、
     前記複数の気筒のそれぞれに対して、前記点火コイルが1つずつ設けられており、
     前記点火制御部は、前記気筒ごとに単一の前記点火コイルの通電を制御する内燃機関用制御装置。
    The control device for an internal combustion engine according to claim 1,
    The internal combustion engine has a plurality of cylinders;
    One ignition coil is provided for each of the plurality of cylinders,
    The ignition control unit is a control device for an internal combustion engine that controls energization of a single ignition coil for each cylinder.
  6.  請求項1に記載の内燃機関用制御装置において、
     前記点火制御部は、前記点火コイルの再充電後、前記点火コイルから前記点火プラグへ前記第2電気エネルギー量以上の電気エネルギーが複数回に分けて供給されるように、前記点火コイルの通電を制御する内燃機関用制御装置。
    The control device for an internal combustion engine according to claim 1,
    The ignition control unit energizes the ignition coil so that after the recharging of the ignition coil, electric energy equal to or greater than the second electric energy amount is supplied in multiple times from the ignition coil to the ignition plug. A control device for an internal combustion engine to be controlled.
  7.  内燃機関の気筒内で放電して燃料への点火を行う点火プラグに対し電気エネルギーを与える点火コイルの通電を制御する点火制御部を備え、
     前記点火制御部は、前記点火プラグの電極間に放電を発生させるための第1電気エネルギー量と、前記放電を維持するための第2電気エネルギー量と、を設定し、
     前記点火制御部は、前記点火コイルに前記点火プラグへの電気エネルギーの供給を開始させる前に、前記点火コイルに蓄積される電気エネルギー量が前記第1電気エネルギー量と前記第2電気エネルギー量との合計値以上となるように、前記点火コイルの通電を制御する内燃機関用制御装置。
    An ignition control unit that controls energization of an ignition coil that supplies electric energy to an ignition plug that discharges in a cylinder of an internal combustion engine and ignites fuel;
    The ignition control unit sets a first electrical energy amount for generating a discharge between the electrodes of the spark plug and a second electrical energy amount for maintaining the discharge,
    The ignition control unit determines that the amount of electric energy accumulated in the ignition coil is the first electric energy amount and the second electric energy amount before causing the ignition coil to start supplying electric energy to the ignition plug. A control device for an internal combustion engine that controls energization of the ignition coil so as to be equal to or greater than the total value of the above.
PCT/JP2019/015554 2018-06-08 2019-04-10 Control device for internal combustion engine WO2019235057A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020523543A JP6931127B2 (en) 2018-06-08 2019-04-10 Control device for internal combustion engine
DE112019002307.1T DE112019002307T5 (en) 2018-06-08 2019-04-10 CONTROL DEVICE FOR COMBUSTION ENGINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018110405 2018-06-08
JP2018-110405 2018-06-08

Publications (1)

Publication Number Publication Date
WO2019235057A1 true WO2019235057A1 (en) 2019-12-12

Family

ID=68769287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015554 WO2019235057A1 (en) 2018-06-08 2019-04-10 Control device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP6931127B2 (en)
DE (1) DE112019002307T5 (en)
WO (1) WO2019235057A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230146A1 (en) * 2021-04-28 2022-11-03 日立Astemo株式会社 Internal combustion engine control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032758A (en) * 1999-07-22 2001-02-06 Ngk Spark Plug Co Ltd Ignition device for internal combustion engine
JP2014154529A (en) * 2013-02-14 2014-08-25 Ngk Spark Plug Co Ltd Ignition system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032758A (en) * 1999-07-22 2001-02-06 Ngk Spark Plug Co Ltd Ignition device for internal combustion engine
JP2014154529A (en) * 2013-02-14 2014-08-25 Ngk Spark Plug Co Ltd Ignition system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230146A1 (en) * 2021-04-28 2022-11-03 日立Astemo株式会社 Internal combustion engine control device

Also Published As

Publication number Publication date
JP6931127B2 (en) 2021-09-01
JPWO2019235057A1 (en) 2021-04-22
DE112019002307T5 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2019087748A1 (en) Ignition device for internal combustion engines, and control device for vehicles
CN113825900B (en) Control device for internal combustion engine
JP2019210827A (en) Controller for internal combustion engine
US11359594B2 (en) Internal combustion engine control device
JP6931127B2 (en) Control device for internal combustion engine
JP6906106B2 (en) Control device for internal combustion engine
JP7077420B2 (en) Control device for internal combustion engine
JP7260664B2 (en) Control device for internal combustion engine
US11067052B2 (en) Device for controlling internal combustion engine and method for controlling internal combustion engine
JP7247364B2 (en) Control device for internal combustion engine
JP7412599B2 (en) Internal combustion engine control device
CN113950578B (en) Control device for internal combustion engine
JP7330383B2 (en) electronic controller
JP2019065734A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523543

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19815391

Country of ref document: EP

Kind code of ref document: A1