WO2019234354A1 - Dispositif pour la fermeture etanche de recipients contenant des gaz corrosifs - Google Patents

Dispositif pour la fermeture etanche de recipients contenant des gaz corrosifs Download PDF

Info

Publication number
WO2019234354A1
WO2019234354A1 PCT/FR2019/051342 FR2019051342W WO2019234354A1 WO 2019234354 A1 WO2019234354 A1 WO 2019234354A1 FR 2019051342 W FR2019051342 W FR 2019051342W WO 2019234354 A1 WO2019234354 A1 WO 2019234354A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
less
ball
metallic material
opening
Prior art date
Application number
PCT/FR2019/051342
Other languages
English (en)
Inventor
Pascal Dufour
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2019234354A1 publication Critical patent/WO2019234354A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/04Check valves with guided rigid valve members shaped as balls
    • F16K15/048Ball features
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/14Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with ball-shaped valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/30Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces specially adapted for pressure containers
    • F16K1/301Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces specially adapted for pressure containers only shut-off valves, i.e. valves without additional means
    • F16K1/303Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces specially adapted for pressure containers only shut-off valves, i.e. valves without additional means with a valve member, e.g. stem or shaft, passing through the seat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/04Check valves with guided rigid valve members shaped as balls
    • F16K15/044Check valves with guided rigid valve members shaped as balls spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/18Check valves with actuating mechanism; Combined check valves and actuated valves
    • F16K15/182Check valves with actuating mechanism; Combined check valves and actuated valves with actuating mechanism
    • F16K15/1823Check valves with actuating mechanism; Combined check valves and actuated valves with actuating mechanism for ball check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • F16K25/005Particular materials for seats or closure elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0311Closure means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0335Check-valves or non-return valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/037Containing pollutant, e.g. H2S, Cl

Definitions

  • the present invention relates to a device for the sealed closure of containers containing corrosive gases.
  • a tap to isolate the contents of containers from the outside, especially when the container contains a corrosive gas such as hydrogen chloride (HCl) or boron trifluoride (BF3).
  • Conventional faucets of this type are in the form of a body mounted on the container to ensure the junction between the container and the outside. This body includes a cavity that communicates with an outlet.
  • a safety valve can be mounted under the valve ensuring a first level of tightness of the container.
  • This type of valve also includes an operating rod capable of actuating the safety valve to allow the evacuation of the gas. Beyond a certain stroke, the rod exerts an opening force on the safety valve, thus releasing the passage of the gas contained in the container to the outside.
  • a manual device such as a steering wheel, or a motorized device such as a servomotor, a hydraulic or pneumatic control can move this rod along its axis.
  • the operating device of the rod is placed outside the valve body. The rod therefore extends from the operating device to the safety valve.
  • the safety valve mounted under the faucet generally comprises a ball mounted on a spring and a seat, the spring applying the ball against the seat. Examples of such safety valves and such valves are described in EP 2 816 387 and EP 2 817 940.
  • the materials used for safety valve balls are stellite alloys. Although these alloys are very hard and mechanically resistant, they are poorly resistant to corrosion caused by traces of water in corrosive gases. Thus, the ball of stellite is corrodes and then has a ribbed and rough surface that does not allow complete sealing of the ball with its seat.
  • the ball in addition to its axial displacement through the operating rod, the ball can also undergo a rotational movement, during the opening maneuver and / or closing. This rotation can cause the displacement of a corrugation groove formed for example at the junction of the ball with the seat to another position, which may affect the sealing of the ball with the seat by the creation of a passage of outlet for the gas.
  • the invention relates firstly to a safety valve device for a gas container, comprising an opening for withdrawing gas from the container, and a ball configured to seal this opening; the ball being made of a metallic material characterized by a corrosion rate of boron trifluoride dihydrate of less than 50 pm per year, at a temperature of 20 ° C.
  • the metallic material is characterized by a boron trifluoride dihydrate corrosion rate of less than 40 ⁇ m per year, preferably less than 30 ⁇ m per year, more preferably less than 20 ⁇ m per year. year, and more preferably less than 10 pm per year, at a temperature of 20 ° C.
  • the metallic material comprises less than 50% by weight of Co, preferably less than 20% by weight of Co, more preferably less than 5% by weight of Co.
  • the metallic material comprises at least 10% by weight of Ni, preferably at least 15% by weight of Ni, more preferably at least 20% by weight of Ni. In some embodiments, the metallic material comprises less than 30% by weight of Cr, preferably less than 28% by weight of Cr, more preferably less than 25% by weight of Cr.
  • the metallic material comprises: from 50 to 80% by weight of Ni, preferably from 55 to 75% by weight of Ni;
  • the metallic material comprises: from 40 to 60% by weight of Fe, preferably from 45 to 55% by weight of Fe;
  • Ni from 15 to 35% by weight of Ni, preferably from 20 to 30% by weight of Ni;
  • Cu 0.5 to 2.5% by weight of Cu, preferably 1 to 2% by weight of Cu.
  • the metallic material comprises tantalum, preferably at least 50% by weight of tantalum, preferably at least 90% by weight of tantalum, preferably at least 95% by weight of tantalum, more preferably at least less than 99% by weight of tantalum, and more preferably the metallic material is tantalum.
  • the ball has a spherical shape, or an ovoid shape, or a half-sphere shape.
  • the ball is in contact with a plastic seal as it seals the opening, the plastic preferably being polychlorotrifluoroethylene.
  • the ball is mounted on a spring that pushes the ball toward the opening to close this opening.
  • the device comprises at least one upper rod attached to the ball and oriented toward the opening and / or a lower rod attached to the ball and oriented in the opposite direction to the opening, the upper rod and / or the lower rod is preferably of non-circular section.
  • the invention also relates to a valve for a gas container, comprising a body traversed by a movable actuating member and the safety valve device presented above, wherein the actuating member is configured to move the ball of the safety valve device to release the opening therefrom.
  • the ball is movable in a translational motion in a single direction, to plug the opening or release, the ball being further blocked in rotation.
  • the upper rod cooperates with the movable actuator to provide rotational locking; and / or the lower rod cooperates with a guide disposed in a grid to ensure rotation locking.
  • the invention also relates to a container comprising the device or tap analyzed above.
  • the container is characterized in that it contains a gas selected from hydrogen chloride and boron trifluoride.
  • the invention also relates to a safety valve device for a gas container, comprising an opening for withdrawing gas from the container, and a ball configured to seal this opening; the ball being made of a metallic material characterized in that:
  • Ni comprises at least 10% by weight of Ni, preferably at least 15% by weight of Ni, more preferably at least 20% by weight of Ni; and or
  • it comprises less than 30% by mass of Cr, preferably less than 28% by weight of Cr, more preferably less than 25% by weight of Cr.
  • the metallic material comprises:
  • Ni from 50 to 80% by weight of Ni, preferably from 55 to 75% by weight of Ni; from 0.1 to 30% by weight of Cr, preferably from 0.5 to 25% by weight of Cr;
  • the metallic material comprises:
  • Ni from 15 to 35% by weight of Ni, preferably from 20 to 30% by weight of Ni;
  • Cu from 0.5 to 2.5% by weight of Cu, preferably from 1 to 2% by weight of Cu.
  • the metallic material comprises tantalum, preferably at least 50% by weight of tantalum, preferably at least 90% by weight of tantalum, more preferably at least 95% by weight of tantalum, more preferably at least 99% by weight of tantalum, and more preferably the metal material is tantalum.
  • the present invention overcomes the disadvantages of the state of the art. It provides more particularly a device that improves the sealing of containers containing corrosive gas, and reduce maintenance operations related to the maintenance or replacement of such a device, at least between two mandatory regulatory control dates.
  • a safety valve comprising a ball made of a material other than stellite alloys, more resistant to corrosion, and which improves the sealing of the containers.
  • the service life of this corrosion-resistant ball is thus increased, allowing a reduction in costs related to the maintenance and the replacement of the ball especially between the regulatory dates and advantageously beyond the regulatory dates by economy of change of the ball.
  • the invention allows in some of its embodiments, thanks to the presence of a plastic seal on the seat of the ball, the use of balls made of less hard materials than stellite alloys, which are able to cooperate with the plastic seal to provide a good seal between the ball and the seat.
  • the invention allows in some of its embodiments, thanks to the presence of rods attached to the ball, the movement of the ball along a single axis of mobility, avoiding any rotational movement of the ball on itself , which reduces the possibility of leaks between the ball and the seat.
  • Figure 1 shows a schematic sectional view of a safety valve according to one embodiment of the invention.
  • Figure 2 shows a schematic sectional view of a safety valve according to another embodiment of the invention.
  • the invention relates to a safety valve device for a container comprising a gas, in order to seal the container.
  • the device comprises an opening for withdrawing gas from the container and a ball configured to seal this opening; the ball being made of a metallic material characterized by a corrosion rate of boron trifluoride dihydrate of less than 50 pm per year, at a temperature of 20 ° C.
  • the ball is mounted on a spring and a seat is located at the opening, the spring applying the ball against the seat.
  • Figure 1 is a schematic sectional view of a safety valve 1 according to one embodiment of the invention, which is granted under a valve of a container.
  • the safety valve 1 of FIG. 1 comprises a ball 2 mounted on a spring 3.
  • the spring 3 holds the ball 2 at its seat 4 in order to seal the passage to the cavity 7 of the valve of the container.
  • the seat 4 comprises a plastic seal 5 for better contact of the ball 2 with the seat 4.
  • the movable actuating member 6 is part of the valve of the container. One end of the movable actuating member 6 is opposite the ball 2 of the safety valve 1 and the other end of the movable actuating member 6 passes through the cavity 7 of the valve and can be translated by a control device (not shown in the figure) which is outside the tap.
  • a control device not shown in the figure
  • the end of the movable actuating member 6 which is vis-à-vis the ball 2 comes into contact with the ball 2 and moves it in the direction of the arrow.
  • the ball 2 moves away from its seat 4, releasing the passage and allowing the gas contained in the container to enter the cavity 7 and exit through an outlet conduit (not shown in the figure).
  • Different control devices can be used to actuate the actuator. It is in particular known to use manual devices such as a key or a steering wheel, or motorized devices such as remotely actuated servomotors and one can also consider hydraulic, pneumatic or electric controls to fulfill this function.
  • the safety valve 1 represented in FIG. 2 also comprises an upper rod 8a connecting the ball 2 with the mobile actuating member 6 and a lower rod 8b connecting the ball 2 with a part bottom of the safety valve, which may consist of a grid 9 having in its center a guide 10.
  • the upper rod 8a can be integrally attached to the movable actuating member 6.
  • the upper rod 8a can slide in a housing provided in the movable actuating member 6.
  • the rod upper 8a is of square sectional shape, or of hexagonal sectional shape, or of decagonal sectional shape, or more generally of polygonal sectional shape, or oval sectional shape, the housing having a complementary shape.
  • the lower rod 8b is of square sectional shape, or of hexagonal sectional shape, or of shape sectional sectional, or more generally of polygonal sectional shape, or oval sectional shape, the guide 10 having a complementary shape.
  • the safety valve 1 may comprise only an upper rod 8a fixed on the ball 2 and connecting the ball 2 with the movable actuating member 6, as described above.
  • the safety valve 1 may comprise only a lower rod 8b fixed on the ball 2 and connecting the ball 2 with the grid 9 having at its center the non-cylindrical guide 10, as described above.
  • the ball 2 is made of a metallic material preferably being characterized by a corrosion rate of boron trifluoride dihydrate of less than 50 ⁇ m per year, preferably less than 40 ⁇ m per year, preferably less than 30 ⁇ m. pm per year, more preferably less than 20 pm per year, and more preferably less than 10 pm per year, at a temperature of 20 ° C.
  • the metal material may have a corrosion rate of boron trifluoride dihydrate between 50 and 45 ⁇ m per year, or between 45 and 40 ⁇ m per year, or between 40 and 35 ⁇ m per year, or between 35 and 30 pm per year, or between 30 and 25 pm per year, or between 25 and 20 pm per year, or between 20 and 15 pm per year, or between 15 and 10 pm per year, or between 10 and 5 pm per year, or less than 5 pm per year, at a temperature of 20 ° C.
  • the corrosion rate is measured by weight loss on a specimen measuring 100x20x3 mm 3 .
  • This specimen is placed halfway up in a beaker equipped with a valve containing boron trifluoride dihydrate. Corrosion between the submerged area and the area at the edge of the liquid is often different.
  • the beaker is set up under the desired temperature conditions.
  • Weight loss after a given time is measured. This weight loss is reduced to a loss of thickness per unit time, counting as exposed surface the immersed surface. The results are expressed in mm / year.
  • the metallic material may comprise less than 50% by weight of Co, preferably less than 45% by weight of Co, preferably less than 40% by weight of Co, preferably less than 35% by weight of Co, preferably less than 30% by weight of Co, preferably less than 25% by weight of Co, preferably less than 20% by weight of Co, preferably less than 15% by weight of Co, preferably less than 10% by weight of Co, preferably less than 5% by weight of Co, more preferably less than 3% by weight of Co.
  • the metallic material may therefore comprise from 50 to 40% by weight of Co, or from 40 to 30% by weight of Co, or from 30 to 20% by weight of Co, or from 20 to 15% by weight of Co, or from 15 to 10% by weight of Co, or from 10 to 5% by weight of Co, or from 5 to 3% by weight of Co, or less than 3% by weight of Co.
  • the metallic material may also comprise at least 10% by weight of Ni, preferably at least 12% by weight of Ni, preferably at least 15% by weight of Ni, preferably at least 20% by mass of Ni, preferably still at least 23% by weight of Ni.
  • the metallic material may comprise from 10 to 20% by weight of Ni, or from 20 to 30% by weight of Ni, or from 30 to 40% by weight of Ni, or from 40 to 50% by weight of Ni, or from 50 to 60% by weight Ni, or 60 to 70% by weight Ni, or 70 to 80% by weight Ni, or 80 to 90% Ni, or more than 90% Ni.
  • the metallic material may also comprise less than 35% by weight of Cr, preferably less than 32% by weight of Cr, preferably less than 30% by weight of Cr, preferably less than 28% by weight of Cr, preferably less than 25% by weight of Cr, more preferably less than 24% by weight of Cr.
  • the metallic material may therefore comprise from 35 to 30% by weight of Cr, or from 30 to 25% by weight of Cr, or from 25 to 20% by weight of Cr, or from 20 to 15% by weight of Cr, or from 15 to 10% by weight of Cr, or from 10 to 5% by weight of Cr, or less than 5% by weight of Cr.
  • the metallic material may include:
  • Ni from 50 to 80% by weight of Ni, preferably from 55 to 75% by weight of Ni; from 0.1 to 30% by weight of Cr, preferably from 0.5 to 25% by weight of Cr;
  • the metallic material may include:
  • Ni from 15 to 35% by weight of Ni, preferably from 20 to 30% by weight of Ni;
  • the metallic material may comprise by mass, less than 1% Co, less than 1% Cr, less than
  • the metal material may comprise by mass, less than 2% Co, 20 to 25% Cr, less than
  • the metal material may comprise by weight, less than 2.5% Co, 14-18% Cr, 3-7% Fe, less than 1% Mn, less than 0, 08% Si, less than 0.01% C, 14-18% Mo, 2-6% W, less than 0.35% V, and 55.1-57% Ni.
  • the metal material may comprise by weight, less than 0.2% Co, 5 to 10% Cr, less than 5% Fe, less than 0.8% Mn, less than 1 % Si, less than 0.08% C, 14 to 18% Mo, less than 0.5% W, less than 2% Cu, less than 0.5% Al and Ti, and 68.5 to 71% of Ni.
  • the metal material may comprise by weight, less than 1% Co, 6 to 10% Cr, less than 2% Fe, less than 0.8% Mn, less than 0.8 % Si, less than 0.03% C, 23 to 27% Mo, less than 0.5% Al, less than 0.06% B, and 61, 8 to 65% Ni.
  • the metallic material may especially be a Hastelloy alloy such as B-2, B-3, C-4, C-22, C-276, C-2000, G-30, N, W, X, and 242.
  • Hastelloy B-2 alloy is characterized by a composition of less than
  • Hastelloy B-3 alloy is characterized by a composition of less than 3% Co, 1.5% Cr, 1.5% Fe, less than 3% Mn, less than 0.1% If less than 0.01% C, 28.5% Mo, less than 3% W, less than 0.5% Al; less than 0.2% Ti, and 59 to 68.5% Ni.
  • Hastelloy C-4 alloy is characterized by a composition of less than
  • Hastelloy C-22 alloy is characterized by a composition of less than 2.5% Co, 22% Cr, 3% Fe, less than 0.5% Mn, less than 0.08% If, less than 0.01% C, 13% Mo, 3% W, less than 0.35% V, and 55.6 to 59% Ni.
  • Hastelloy C-276 alloy is characterized by a composition of less than 2.5% Co, 16% Cr, 5% Fe, less than 1% Mn, less than 0.08% Si, less than 0.01% C, 16% Mo, 4% W, less than 0.35% V, and 55.1 to 59% Ni.
  • Hastelloy C-2000 alloy is characterized by a composition of less than 2% Co, 23% Cr, less than 3% Fe, less than 0.08% Si, less than 0.01% C , 16% Mo, 1.6% Cu, and 54.3 to 59.4% Ni.
  • Hastelloy G-30 alloy is characterized by a composition of less than 2% Co, 30% Cr, 15% Fe, less than 1.5% Mn, less than 1% Si, less than 0.03% C, 5.5% Mo, 2.5% W, less than 0.8% Nb, less than 2% Cu, and 39.7 to 47% Ni.
  • Hastelloy N alloy is characterized by a composition of less than 0.2% Co, 7% Cr, 5% Fe, less than 0.8% Mn, less than 1% Si, less than 0.08% C, 16% Mo, less than 0.35% Cu, less than 0.5% Al and Ti, and 68.6 to 77% Ni.
  • Hastelloy W alloy is characterized by a composition of less than 2.5% Co, 5% Cr, 6% Fe, less than 1% Si, less than 0.12% C, % Mo, 0.6% V, and 59.9 to 65% Ni.
  • Hastelloy X alloy is characterized by a composition of 1, 5% Co, 22% Cr, 18% Fe, less than 1% Mn, less than 1% Si, less than 0.1% of C, 9% Mo, less than 0.6% W, less than 0.5% Al, less than 0.15% Ti, less than 0.5% Nb, less than 0.008 B, and 45% , 6 to 48.9% of Ni.
  • Hastelloy 242 alloy is characterized by a composition of minus 1% Co, 8% Cr, less than 2% Fe, less than 0.8% Mn, less than 0.8% Si, less than 0.03% C, 25% Mo, less than 0.5% Al, less than 0.006 B, and 61.8 to 67% Ni.
  • the metallic material may comprise, by weight, from 19 to 23% Cr, from 4 to 5% Mo, from 39 to 53% Fe, from 1 to 2% Cu, from 23 to 28% by weight.
  • Such a composition generally corresponds to the alloy Uranus B-6.
  • this metallic material may comprise tantalum.
  • the metallic material comprises more than 50% by weight of tantalum, preferably more than 60% by weight of tantalum, preferably more than 70% by weight of tantalum, preferably more than 80% by weight of tantalum.
  • tantalum preferably more than 90% by weight of tantalum, preferably more than 95% by weight of tantalum, and still more preferably than 99% by weight of tantalum.
  • the metallic material is tantalum.
  • the ball 2 according to the invention may have for example a spherical shape, or an ovoid shape, or a half-sphere shape.
  • the seat 4 comprises a plastic gasket 5.
  • the plastic may in particular be a fluorinated polymer chosen from polyvinylidene fluoride (PVDF) and polychlorotrifluoroethylene.
  • PVDF polyvinylidene fluoride
  • the plastic is polychlorotrifluoroethylene.
  • the upper rod 8a and / or the lower rod 8b may have a non-circular sectional shape.
  • the upper rod 8a and / or the lower rod 8b may for example have a square sectional shape, or a hexagonal sectional shape, or a decagonal sectional shape, or more generally a polygonal sectional shape, or a sectional shape. ovoid.
  • the container on which the device analyzed above is equipped contains a corrosive gas.
  • this corrosive gas is hydrogen chloride.
  • this corrosive gas is boron trifluoride.
  • corrosion resistance parameter cited above and illustrated in the examples below is related to boron trifluoride dihydrate, it is believed that characterization using this parameter is also relevant for other gases. corrosives containing traces of water as boron trifluoride, and especially for hydrogen chloride.
  • the moisture content in the corrosive gas may be from 700 to 2000 ppm, and preferably from 1000 to 1500 ppm (by weight).
  • the humidity level can be, for example, 700 to 800 ppm, or 800 to 900 ppm, or 900 to 1000 ppm, or 1000 to 1100 ppm, or 1100 to 1200 ppm, or 1200 to 1300 ppm, or 1300 to 1400 ppm, or 1400 to 1500 ppm, or 1500 to 1600 ppm, or 1600 to 1700 ppm, or 1700 to 1800 ppm, or 1800 to 1900 ppm, or 1900 to 2000 ppm (en masse)
  • boron trifluoride (BF3) corrosion of a number of metallic materials was tested to determine whether these materials could be used as corrosion resistant beads for a safety valve according to the invention.
  • the BF3 is not completely anhydrous, the corrosive species are the hydrates of BF3, namely boron trifluoride monohydrate (BFs-FLO) and / or boron trifluoride dihydrate (BF3-2H20).
  • the test consists in soaking metal coupons in BF3-2H20 for 80 days by renewing the solution every month. The results are shown in the table below.
  • All metallic materials displayed in the table have a BF3 2H2O corrosion rate of less than 50 ⁇ m per year at a temperature of 20 ° C.
  • the corrosion rate of stellite alloys is 0.100 mm / year, 100 times more than tantalum or hastelloy C-276 or C-2000.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Taps Or Cocks (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne un dispositif de clapet de sécurité (1) pour récipient de gaz, comprenant une ouverture pour soutirer du gaz du récipient, et une bille (2) configurée pour obturer cette ouverture; la bille étant constituée d'un matériau métallique caractérisé par une vitesse de corrosion par le dihydrate de trifluorure de bore de moins de 50 μm par an à une température de 20 °C. L'invention concerne également un robinet pour récipient de gaz comprenant le dispositif de clapet de sécurité, ainsi qu'un récipient de gaz.

Description

DISPOSITIF POUR LA FERMETURE ETANCHE DE RECIPIENTS
CONTENANT DES GAZ CORROSIFS
DOMAINE DE L'INVENTION
La présente invention concerne un dispositif pour la fermeture étanche de récipients contenant des gaz corrosifs.
ARRIERE-PLAN TECHNIQUE
II est connu d’utiliser un robinet pour isoler le contenu de récipients de l’extérieur, notamment lorsque le récipient contient un gaz corrosif tel que le chlorure d’hydrogène (HCl) ou le trifluorure de bore (BF3). Les robinets classiques de ce type, se présentent sous la forme d’un corps monté sur le récipient afin d’assurer la jonction entre le récipient et l’extérieur. Ce corps comprend une cavité qui communique avec une sortie. Un clapet de sécurité peut être monté sous le robinet assurant un premier niveau d’étanchéité du récipient. Ce type de robinet comprend également une tige de manoeuvre susceptible d’actionner le clapet de sécurité pour permettre l’évacuation du gaz. Au-delà d’une certaine course, la tige exerce un effort d’ouverture sur le clapet de sécurité, libérant ainsi le passage du gaz contenu dans le récipient vers l’extérieur. Un dispositif manuel tel qu’un volant, ou un dispositif motorisé tel qu’un servomoteur, une commande hydraulique ou pneumatique permet de déplacer cette tige selon son axe. Le dispositif de manoeuvre de la tige est placé à l’extérieur du corps de robinet. La tige s’étend donc du dispositif de manoeuvre jusqu’au clapet de sécurité.
Le clapet de sécurité monté sous le robinet comprend généralement une bille montée sur un ressort et un siège, le ressort appliquant la bille contre le siège. Des exemples de tels clapets de sécurité ainsi que de tels robinets sont décrits dans les documents EP 2 816 387 et EP 2 817 940.
Habituellement, les matériaux utilisés pour les billes du clapet de sécurité sont les alliages de stellite. Même si ces alliages sont très durs et résistants mécaniquement, ils résistent mal à la corrosion provoquée par des traces d’eau se trouvant dans les gaz corrosifs. Ainsi, la bille de stellite se corrode et présente alors une surface striée et rugueuse ne permettant pas l’étanchéité totale de la bille avec son siège.
De plus, outre son déplacement axial grâce à la tige de manoeuvre, la bille peut également subir un mouvement de rotation, lors de la manoeuvre d’ouverture et/ou de fermeture. Cette rotation peut provoquer le déplacement d’une strie de corrosion formée par exemple à la jonction de la bille avec le siège à une autre position, susceptible de nuire à l’étanchéité de la bille avec le siège par la création d’un passage de sortie pour le gaz.
De plus, les normes antipollution ainsi que les normes de protection des personnes devenant de plus en plus rigoureuses, ces clapets de sécurité exigent de fréquentes révisions pour limiter le nombre de fuites provoqué par le manque d’étanchéité, ce qui augmente d’autant les frais de maintenance. En outre, le remplacement de la bille de stellite par une bille neuve pendant le contrôle réglementaire des clapets, est aussi un procédé long et coûteux.
Il existe donc un besoin de fournir des dispositifs permettant d’améliorer l’étanchéité des récipients contentant des gaz corrosifs, et de réduire les opérations de maintenance liées à l’entretien ou au remplacement de tels dispositifs, au moins entre deux dates de contrôles règlementaires obligatoires.
RESUME DE L’INVENTION
L’invention concerne en premier lieu un dispositif de clapet de sécurité pour récipient de gaz, comprenant une ouverture pour soutirer du gaz du récipient, et une bille configurée pour obturer cette ouverture ; la bille étant constituée d’un matériau métallique caractérisé par une vitesse de corrosion par le dihydrate de trifluorure de bore de moins de 50 pm par an, à une température de 20 ° C.
Dans certains modes de réalisation, le matériau métallique est caractérisé par une vitesse de corrosion par le dihydrate de trifluorure de bore de moins de 40 pm par an, de préférence de moins de 30 pm par an, encore de préférence de moins de 20 pm par an, et encore de préférence de moins de 10 pm par an, à une température de 20 °C.
Dans certains modes de réalisation, le matériau métallique comprend moins de 50 % en masse de Co, de préférence moins de 20 % en masse de Co, de préférence encore moins de 5 % en masse de Co.
Dans certains modes de réalisation, le matériau métallique comprend au moins 10 % en masse de Ni, de préférence au moins 15 % en masse de Ni, de préférence encore au moins 20 % en masse de Ni. Dans certains modes de réalisation, le matériau métallique comprend moins de 30 % en masse de Cr, de préférence moins de 28 % en masse de Cr, de préférence encore moins de 25 % en masse de Cr.
Dans certains modes de réalisation, le matériau métallique comprend : de 50 à 80 % en masse de Ni, de préférence de 55 à 75 % en masse de Ni ;
de 0,1 à 30 % en masse de Cr, de préférence de 0,5 à 25 % en masse de Cr ;
de 4 à 40 % en masse de Mo, de préférence de 8 à 30 % en masse de Mo ;
moins de 8 % en masse de Co, de préférence moins de 5 % en masse de Co ; et
moins de 10 % en masse de Fe, de préférence moins de 6 % en masse de Fe.
Dans certains modes de réalisation, le matériau métallique comprend : de 40 à 60 % en masse de Fe, de préférence de 45 à 55 % en masse de Fe ;
de 15 à 35 % en masse de Ni, de préférence de 20 à 30 % en masse de Ni ;
de 10 à 30 % en masse de Cr, de préférence de 15 à 25 % en masse de Cr ;
de 1 à 10 % en masse de Mo, de préférence de 3 à 7 % en masse de Mo ; et
de 0,5 à 2,5 % en masse de Cu, de préférence de 1 à 2 % en masse de Cu.
Dans certains modes de réalisation, le matériau métallique comprend du tantale, de préférence au moins 50 % en masse de tantale, de préférence au moins 90 % en masse de tantale, de préférence au moins 95 % en masse de tantale, encore de préférence au moins 99 % en masse de tantale, et de manière plus particulièrement préférée le matériau métallique consiste en du tantale.
Dans certains modes de réalisation, la bille a une forme sphérique, ou une forme ovoïde, ou une forme de demi-sphère.
Dans certains modes de réalisation, la bille est en contact avec un joint en matière plastique lorsqu’elle obture l’ouverture, la matière plastique étant de préférence du polychlorotrifluoroéthylène.
Dans certains modes de réalisation, la bille est montée sur un ressort qui pousse la bille vers l’ouverture pour obturer cette ouverture. Dans certains modes de réalisation, le dispositif comprend au moins une tige supérieure fixée à la bille et orientée vers l’ouverture et/ou une tige inférieure fixée à la bille et orientée dans la direction opposée à l’ouverture, la tige supérieure et/ou la tige inférieure étant de préférence de section non circulaire.
L’invention concerne également un robinet pour récipient de gaz, comprenant un corps traversé par un organe d’actionnement mobile et le dispositif de clapet de sécurité présenté ci-dessus, dans lequel l’organe d’actionnement est configuré pour déplacer la bille du dispositif de clapet de sécurité de sorte à libérer l’ouverture de celui-ci.
Dans certains modes de réalisation, la bille est susceptible de se déplacer selon un mouvement de translation dans une unique direction, pour obturer l’ouverture ou la libérer, la bille étant de plus bloquée en rotation.
Dans certains modes de réalisation, la tige supérieure coopère avec l’organe d’actionnement mobile pour assurer un blocage en rotation ; et/ou la tige inférieure coopère avec un guide disposé dans une grille pour assurer un blocage de rotation.
L’invention concerne également un récipient comprenant le dispositif ou le robinet analysés ci-dessus.
Dans certains modes de réalisation, le récipient est caractérisé en ce qu’il contient un gaz choisi parmi le chlorure d’hydrogène et le trifluorure de bore.
L’invention concerne par ailleurs un dispositif de clapet de sécurité pour récipient de gaz, comprenant une ouverture pour soutirer du gaz du récipient, et une bille configurée pour obturer cette ouverture ; la bille étant constituée d’un matériau métallique caractérisé en ce que :
- il comprend moins de 50 % en masse de Co, de préférence moins de 20 % en masse de Co, de préférence encore moins de 5 % en masse de Co ; et/ou
- il comprend au moins 10 % en masse de Ni, de préférence au moins 15 % en masse de Ni, de préférence encore au moins 20 % en masse de Ni ; et/ou
- il comprend moins de 30 % en masse de Cr, de préférence moins de 28 % en masse de Cr, de préférence encore moins de 25 % en masse de Cr.
Dans certains modes de réalisation, le matériau métallique comprend :
- de 50 à 80 % en masse de Ni, de préférence de 55 à 75 % en masse de Ni ; - de 0,1 à 30 % en masse de Cr, de préférence de 0,5 à 25 % en masse de Cr ;
- de 4 à 40 % en masse de Mo, de préférence de 8 à 30 % en masse de Mo ;
- moins de 8 % en masse de Co, de préférence moins de 5 % en masse de Co ; et
- moins de 10 % en masse de Fe, de préférence moins de 6 % en masse de Fe.
Dans certains modes de réalisation, le matériau métallique comprend :
- de 40 à 60 % en masse de Fe, de préférence de 45 à 55 % en masse de Fe ;
- de 15 à 35 % en masse de Ni, de préférence de 20 à 30 % en masse de Ni ;
- de 10 à 30 % en masse de Cr, de préférence de 15 à 25 % en masse de Cr ;
- de 1 à 10 % en masse de Mo, de préférence de 3 à 7 % en masse de Mo ; et
- de 0,5 à 2,5 % en masse de Cu, de préférence de 1 à 2 % en masse de Cu.
Dans certains modes de réalisation, le matériau métallique comprend du tantale, de préférence au moins 50 % en masse de tantale, de préférence au moins 90 % en masse de tantale, encore de préférence au moins 95 % en masse de tantale, encore de préférence au moins 99 % en masse de tantale, et de manière plus particulièrement préférée le matériau métallique consiste en du tantale.
La présente invention permet de surmonter les inconvénients de l’état de la technique. Elle fournit plus particulièrement un dispositif qui permet d’améliorer l’étanchéité des récipients contentant des gaz corrosifs, et de réduire les opérations de maintenance liés à l’entretien ou le remplacement de tel dispositif, au moins entre deux dates de contrôles règlementaires obligatoires.
Cela est accompli grâce à l’utilisation d’un clapet de sécurité comprenant une bille constituée d’un matériau autre que les alliages de stellite, plus résistant à la corrosion, et qui améliore l’étanchéité des récipients. Naturellement, la durée de vie de cette bille résistante à la corrosion est donc augmentée, permettant une diminution des coûts liés à l’entretien et au remplacement de la bille surtout entre les dates règlementaires et avantageusement au-delà des dates réglementaires par économie de changement de la bille.
Avantageusement, l’invention permet dans certains de ses modes de réalisation, grâce à la présence d’un joint en matière plastique sur le siège de la bille, l’utilisation de billes constituées des matériaux moins durs que les alliages de stellite, qui sont capables de coopérer avec le joint en plastique pour offrir une bonne étanchéité entre la bille et le siège.
Avantageusement encore, l’invention permet dans certains de ses modes de réalisation, grâce à la présence des tiges fixées sur la bille, le déplacement de la bille suivant un seul axe de mobilité, évitant tout mouvement de rotation de la bille sur elle-même, ce qui diminue la possibilité de fuites entre la bille et le siège.
BREVE DESCRIPTION DES FIGURES
La figure 1 représente une vue schématique en coupe d’un clapet de sécurité selon un mode de réalisation de l’invention.
La figure 2 représente une vue schématique en coupe d’un clapet de sécurité selon un autre mode de réalisation de l’invention.
DESCRIPTION DE MODES DE REALISATION DE L’INVENTION
L’invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit.
Dispositif
L’invention concerne un dispositif de clapet de sécurité pour un récipient comprenant un gaz, afin d’assurer la fermeture étanche du récipient. Selon l’invention, le dispositif comprend une ouverture pour soutirer du gaz du récipient et une bille configurée pour obturer cette ouverture ; la bille étant constituée d’un matériau métallique caractérisé par une vitesse de corrosion par le dihydrate de trifluorure de bore de moins de 50 pm par an, à une température de 20 ° C. La bille est montée sur un ressort et un siège se trouve au niveau de l’ouverture, le ressort appliquant la bille contre le siège.
L’exemple qui suit détaille un mode de réalisation d’un clapet de sécurité 1 selon l’invention. La figure 1 est une vue schématique en coupe d’un clapet de sécurité 1 selon un mode de réalisation de l’invention, qui est accordé sous un robinet d’un récipient. Le clapet de sécurité 1 de la figure 1 comprend une bille 2 montée sur un ressort 3. Le ressort 3 maintient la bille 2 à son siège 4 afin d’obturer le passage à la cavité 7 du robinet du récipient. Le siège 4 comprend un joint en matière plastique 5 pour un meilleur contact de la bille 2 avec le siège 4.
L’organe d’actionnement mobile 6 fait partie du robinet du récipient. Une des extrémités de l’organe d’actionnement mobile 6 se trouve en vis-à-vis de la bille 2 du clapet de sécurité 1 et l’autre extrémité de l’organe d’actionnement mobile 6 traverse la cavité 7 du robinet et peut être translatée par un dispositif de commande (non représenté sur la figure) qui se trouve en dehors du robinet. Ainsi, lorsque l’organe d’actionnement mobile 6 est déplacé dans le sens de la flèche représentée à la figure 1 , l’extrémité de l’organe d’actionnement mobile 6 qui se trouve en vis-à-vis de la bille 2 vient au contact de la bille 2 et la déplace dans la direction de la flèche. La bille 2 s’éloigne donc de son siège 4, libérant le passage et permettant au gaz contenu dans le récipient de pénétrer dans la cavité 7 et sortir par un conduit de sortie (non représenté sur la figure). Lorsque l’organe d’actionnement mobile 6 reprend sa position initiale, le contact entre l’organe d’actionnement mobile 6 et la bille 2 est perdu, le ressort 3 pousse donc la bille 2 vers le siège 4 de sorte à provoquer l’obstruction du passage à la cavité 7 et donc la fermeture étanche du récipient.
Différents dispositifs de commandes peuvent être utilisés pour actionner l’organe d’actionnement. Il est notamment connu d’utiliser des dispositifs manuels tels qu’une clé ou un volant, ou des dispositifs motorisés tels que des servomoteurs actionnés à distance et on peut aussi envisager des commandes hydrauliques, pneumatiques ou électriques pour remplir cette fonction.
Selon un autre mode de réalisation, le clapet de sécurité 1 représenté sur la figure 2 comprend également une tige supérieure 8a reliant la bille 2 avec l’organe d’actionnement mobile 6 ainsi qu’une tige inférieure 8b reliant la bille 2 avec une partie inférieure du clapet de sécurité, qui peut être constituée d’une grille 9 ayant en son centre un guide 10.
La tige supérieure 8a peut être solidairement fixée à l’organe d’actionnement mobile 6. Alternativement, la tige supérieure 8a peut coulisser dans un logement prévu dans l’organe d’actionnement mobile 6. Dans ce cas, il est souhaitable que la tige supérieure 8a soit de forme sectionnelle carrée, ou de forme sectionnelle hexagonale, ou de forme sectionnelle décagonale, ou plus généralement de forme sectionnelle polygonale, ou de forme sectionnelle ovoïde, le logement ayant une forme complémentaire.
De même, il est souhaitable que la tige inférieure 8b soit de forme sectionnelle carrée, ou de forme sectionnelle hexagonale, ou de forme sectionnelle décagonale, ou plus généralement de forme sectionnelle polygonale, ou de forme sectionnelle ovoïde, le guide 10 ayant une forme complémentaire.
L’avantage de ces modes de réalisation est que pendant le guidage axial de la bille 2 par l’organe d’actionnement mobile 6, la bille 2 peut se déplacer uniquement dans le sens axial, la bille 2 n’étant plus capable d’effectuer un mouvement de rotation sur elle-même grâce à la présence des tiges supérieure 8a et inférieure 8b fixées sur la bille 2.
Alternativement selon un mode de réalisation particulier (non-illustré sur les figures), le clapet de sécurité 1 peut comprendre uniquement une tige supérieure 8a fixée sur la bille 2 et reliant la bille 2 avec l’organe d’actionnement mobile 6, comme décrit ci-dessus.
Alternativement selon un mode de réalisation particulier (non-illustré sur les figures), le clapet de sécurité 1 peut comprendre uniquement une tige inférieure 8b fixée sur la bille 2 et reliant la bille 2 avec la grille 9 ayant en son centre le guide non cylindrique 10, comme décrit ci-dessus.
La bille 2 est constituée d’un matériau métallique étant de préférence caractérisé par une vitesse de corrosion par le dihydrate de trifluorure de bore de moins de 50 pm par an, de préférence de moins de 40 pm par an, de préférence de moins de 30 pm par an, encore de préférence de moins de 20 pm par an, et encore de préférence de moins de 1 0 pm par an, à une température de 20 ° C.
Dans certains modes de réalisation, le matériau métallique peut avoir une vitesse de corrosion par le dihydrate de trifluorure de bore entre 50 et 45 pm par an, ou entre 45 et 40 pm par an, ou entre 40 et 35 pm par an, ou entre 35 et 30 pm par an, ou entre 30 et 25 pm par an, ou entre 25 et 20 pm par an, ou entre 20 et 15 pm par an, ou entre 15 et 10 pm par an, ou entre 10 et 5 pm par an, ou inférieure à 5 pm par an, à une température de 20 ° C.
La vitesse de corrosion est mesurée par perte de poids sur une éprouvette de dimensions 100x20x3 mm3.
Cette éprouvette est placée jusqu’à mi-hauteur dans un bêcher muni d’une soupape contenant du dihydrate de trifluorure de bore. La corrosion entre la zone immergée et la zone située en limite du liquide est souvent différente.
Le bêcher est mis en place dans les conditions de température souhaitées.
La perte de poids après un temps donné est mesurée. Cette perte de poids est ramenée à une perte d’épaisseur par unité de temps, en comptant comme surface exposée la surface immergée. Les résultats sont exprimés en mm/an.
Le matériau métallique peut comprendre moins de 50 % en masse de Co, de préférence moins de 45 % en masse de Co, de préférence moins de 40 % en masse de Co, de préférence moins de 35 % en masse de Co, de préférence moins de 30 % en masse de Co, de préférence moins de 25 % en masse de Co, de préférence moins de 20 % en masse de Co, de préférence moins de 15 % en masse de Co, de préférence moins de 10 % en masse de Co, de préférence moins de 5 % en masse de Co, de préférence encore moins de 3 % en masse de Co.
Le matériau métallique peut donc comprendre de 50 à 40 % en masse de Co, ou de 40 à 30 % en masse de Co, ou de 30 à 20 % en masse de Co, ou de 20 à 15 % en masse de Co, ou de 15 à 10 % en masse de Co, ou de 10 à 5 % en masse de Co, ou de 5 à 3 % en masse de Co, ou moins de 3 % en masse de Co.
Le matériau métallique peut également comprendre au moins 10 % en masse de Ni, de préférence au moins 12 % en masse de Ni, de préférence au moins 15 % en masse de Ni, de préférence au moins 20 % en masse de Ni, de préférence encore au moins 23 % en masse de Ni.
Ainsi, le matériau métallique peut comprendre de 10 à 20 % en masse de Ni, ou de 20 à 30 % en masse de Ni, ou de 30 à 40 % en masse de Ni, ou de 40 à 50 % en masse de Ni, ou de 50 à 60 % en masse de Ni, ou de 60 à 70 % en masse de Ni, ou de 70 à 80 % en masse de Ni, ou de 80 à 90% de Ni, ou plus de 90% de Ni.
Le matériau métallique peut également comprendre moins de 35 % en masse de Cr, de préférence moins de 32 % en masse de Cr, de préférence moins de 30 % en masse de Cr, de préférence moins de 28 % en masse de Cr, de préférence moins de 25 % en masse de Cr, de préférence encore moins de 24 % en masse de Cr.
Le matériau métallique peut donc comprendre de 35 à 30 % en masse de Cr, ou de 30 à 25 % en masse de Cr, ou de 25 à 20 % en masse de Cr, ou de 20 à 15 % en masse de Cr, ou de 15 à 10 % en masse de Cr, ou de 10 à 5 % en masse de Cr, ou moins de 5 % en masse de Cr.
Dans certains modes de réalisation, le matériau métallique peut comprendre :
- de 50 à 80 % en masse de Ni, de préférence de 55 à 75 % en masse de Ni ; - de 0,1 à 30 % en masse de Cr, de préférence de 0,5 à 25 % en masse de Cr ;
- de 4 à 40 % en masse de Mo, de préférence de 8 à 30 % en masse de Mo ;
- moins de 8 % en masse de Co, de préférence moins de 5 % en masse de Co ;
- moins de 10 % en masse de Fe, de préférence moins de 6 % en masse de Fe ;
- moins de 10 % en masse de W, de préférence moins de 5 % en masse de W ;
- moins de 3 % en masse de Si, de préférence moins de 1 ,5 % en masse de Si ;
- moins de 5 % en masse de Mn, de préférence moins de 4 % en masse de Mn ; et
- moins de 0,5 % en masse de C, de préférence moins de 0,2 % en masse de Si.
Dans certains modes de réalisation, le matériau métallique peut comprendre :
- de 40 à 60 % en masse de Fe, de préférence de 45 à 55 % en masse de Fe ;
- de 15 à 35 % en masse de Ni, de préférence de 20 à 30 % en masse de Ni ;
- de 10 à 30 % en masse de Cr, de préférence de 15 à 25 % en masse de Cr ;
- de 1 à 10 % en masse de Mo, de préférence de 3 à 7 % en masse de Mo ; et
- de 0,5 à 2,5 % en masse de Cu, de préférence de 1 à 2 % en masse de Cu ; et
- moins de 0,05 % en masse de C, de préférence moins de 0,02 % en masse de C.
Dans certains modes de réalisation, le matériau métallique peut comprendre en masse, moins de 1 % de Co, moins de 1 % de Cr, moins de
2 % de Fe, moins de 1 % en Mn, moins de 0,1 % de Si, moins de 0,01 % de C, de 26 à 30 % de Mo, et de 67,9 à 69 % de Ni.
Dans certains modes de réalisation, le matériau métallique peut comprendre en masse, moins de 2 % de Co, de 20 à 25 % de Cr, moins de
3 % de Fe, moins de 0,08 % de Si, moins de 0,01 % de C, de 14 à 18 % de Mo, de 1 à 2 % de Cu, et de 54,3 à 59 % de Ni. Dans certains modes de réalisation, le matériau métallique peut comprendre en masse, moins de 2,5 % de Co, de 14 à 18 % de Cr, de 3 à 7 % de Fe, moins de 1 % en Mn, moins de 0,08 % de Si, moins de 0,01 % de C, de 14 à 18 % de Mo, de 2 à 6 % de W, moins de 0,35 % de V, et de 55,1 à 57 % de Ni.
Dans certains modes de réalisation, le matériau métallique peut comprendre en masse, moins de 0,2 % de Co, de 5 à 10 % de Cr, moins de 5 % de Fe, moins de 0,8 % en Mn, moins de 1 % de Si, moins de 0,08 % de C, de 14 à 18 % de Mo, moins de 0,5 % de W, moins de 2 % de Cu, moins de 0,5 % de Al et de Ti et de 68.5 à 71 % de Ni.
Dans certains modes de réalisation, le matériau métallique peut comprendre en masse, moins de 1 % de Co, de 6 à 10 % de Cr, moins de 2 % de Fe, moins de 0,8 % en Mn, moins de 0,8 % de Si, moins de 0,03 % de C, de 23 à 27 % de Mo, moins de 0,5 % de Al, moins de 0,06 % de B, et de 61 ,8 à 65 % de Ni.
Le matériau métallique peut notamment être un alliage Hastelloy tel que le B-2, le B-3, le C-4, le C-22, le C-276, le C-2000, le G-30, le N, le W, le X, et le 242.
L’alliage Hastelloy B-2 est caractérisé par une composition de moins de
1 % de Co, moins de 1 % de Cr, moins de 2 % de Fe, moins de 1 % en Mn, moins de 0,1 % de Si, moins de 0,01 % de C, de 28 % de Mo, et de 66,9 à 72 % de Ni.
L’alliage Hastelloy B-3 est caractérisé par une composition de moins de 3 % de Co, de 1 ,5 % de Cr, de 1 ,5 % de Fe, moins de 3 % en Mn, moins de 0,1 % de Si, moins de 0,01 % de C, de 28,5 % de Mo, moins de 3 % de W, moins de 0,5 % de Al ; moins de 0,2 % de Ti, et de 59 à 68,5 % de Ni.
L’alliage Hastelloy C-4 est caractérisé par une composition de moins de
2 % de Co, de 16 % de Cr, moins de 3 % de Fe, moins de 1 % en Mn, moins de 0,08 % de Si, moins de 0,01 % de C, de 16 % de Mo, moins de 0,7 % de Ti, et de 61 ,2 à 68 % de Ni.
L’alliage Hastelloy C-22 est caractérisé par une composition de moins de 2,5 % de Co, de 22 % de Cr, de 3 % de Fe, moins de 0,5 % en Mn, moins de 0,08 % de Si, moins de 0,01 % de C, de 13 % de Mo, de 3 % de W, moins de 0,35 % de V, et de 55,6 à 59 % de Ni.
L’alliage Hastelloy C-276 est caractérisé par une composition de moins de 2,5 % de Co, de 16 % de Cr, de 5 % de Fe, moins de 1 % en Mn, moins de 0,08 % de Si, moins de 0,01 % de C, de 16 % de Mo, de 4 % de W, moins de 0,35 % de V, et de 55,1 à 59 % de Ni. L’alliage Hastelloy C-2000 est caractérisé par une composition de moins de 2 % de Co, de 23 % de Cr, moins de 3 % de Fe, moins de 0,08 % de Si, moins de 0,01 % de C, de 16 % de Mo, de 1 ,6 % de Cu, et de 54,3 à 59,4 % de Ni.
L’alliage Hastelloy G-30 est caractérisé par une composition de moins de 2 % de Co, de 30 % de Cr, de 15 % de Fe, moins de 1 ,5 % en Mn, moins de 1 % de Si, moins de 0,03 % de C, de 5,5 % de Mo, de 2,5 % de W, moins de 0,8 % de Nb, moins de 2 % de Cu, et de 39,7 à 47 % de Ni.
L’alliage Hastelloy N est caractérisé par une composition de moins de 0,2 % de Co, de 7 % de Cr, de 5 % de Fe, moins de 0,8 % en Mn, moins de 1 % de Si, moins de 0,08 % de C, de 16 % de Mo, moins de 0,35 % de Cu, moins de 0,5 % de Al et de Ti, et de 68,6 à 77 % de Ni.
L’alliage Hastelloy W est caractérisé par une composition de moins de 2,5 % de Co, de 5 % de Cr, de 6 % de Fe, moins de 1 % de Si, moins de 0,12 % de C, de 24 % de Mo, de 0,6 % de V, et de 59,9 à 65 % de Ni.
L’alliage Hastelloy X est caractérisé par une composition de 1 ,5 % de Co, de 22 % de Cr, de 18 % de Fe, moins de 1 % en Mn, moins de 1 % de Si, moins de 0,1 % de C, de 9 % de Mo, moins de 0,6 % de W, moins de 0,5 % Al, moins de 0,15 % Ti, moins de 0,5 % Nb, moins de 0,008 B, et de 45,6 à 48,9 % de Ni.
L’alliage Hastelloy 242 est caractérisé par une composition de moins 1 % de Co, de 8 % de Cr, moins de 2 % de Fe, moins de 0,8 % en Mn, moins de 0,8 % de Si, moins de 0,03 % de C, de 25 % de Mo, moins de 0,5 % Al, moins de 0,006 B, et de 61 ,8 à 67 % de Ni.
Dans certains modes de réalisation, le matériau métallique peut comprendre en masse, de 19 à 23 % de Cr, de 4 à 5 % de Mo, de 39 à 53 % de Fe, de 1 à 2 % de Cu, de 23 à 28 % de Ni, moins de 0,02 % de C, moins de 2 % de Mn, moins de 1 % de Si ; moins de 0,045 % de P et moins de 0,035 % de S. Une telle composition correspond généralement à l’alliage Uranus B- 6.
Alternativement, ce matériau métallique peut comprendre du tantale.
Dans certains modes de réalisation, le matériau métallique comprend plus que 50 % en masse de tantale, de préférence plus que 60 % en masse de tantale, de préférence plus que 70 % en masse de tantale, de préférence plus que 80 % en masse de tantale, de préférence plus que 90 % en masse de tantale, de préférence plus que 95 % en masse de tantale, et encore de préférence plus que 99 % en masse de tantale. Dans certains modes de réalisation, le matériau métallique consiste en du tantale.
La bille 2 selon l’invention peut avoir par exemple une forme sphérique, ou une forme ovoïde, ou une forme de demi-sphère.
Le siège 4 comprend un joint en matière plastique 5. Le plastique peut être notamment un polymère fluoré choisi parmi le polyfluorure de vinylidène (PVDF) et le polychlorotrifluoroéthylène. De préférence, la matière plastique est du polychlorotrifluoroéthylène.
Dans certains modes de réalisation, la tige supérieure 8a et/ou la tige inférieure 8b peuvent avoir une forme sectionnelle non-circulaire.
Dans certains modes de réalisation, la tige supérieure 8a et/ou la tige inférieure 8b peuvent par exemple avoir une forme sectionnelle carrée, ou une forme sectionnelle hexagonale, ou une forme sectionnelle décagonale, ou plus généralement une forme sectionnelle polygonale, ou une forme sectionnelle ovoïde.
Le récipient sur lequel le dispositif analysé ci-dessus est équipé contient un gaz corrosif.
Dans certains modes de réalisation, ce gaz corrosif est le chlorure d’hydrogène.
Dans d’autres modes de réalisation, ce gaz corrosif est le trifluorure de bore.
Bien que le paramètre de résistance à la corrosion cité ci-dessus et illustré dans les exemples ci-dessous soit en lien avec le dihydrate de trifluorure de bore, on estime que la caractérisation au moyen de ce paramètre est également pertinente pour d’autres gaz corrosifs contenant des traces d’eau que le trifluorure de bore, et notamment pour le chlorure d’hydrogène.
Dans certains modes de réalisation, le taux d’humidité dans le gaz corrosif peut être de 700 à 2000 ppm, et de préférence de 1000 à 1500 ppm (en masse).
Le taux d’humidité peut être par exemple de 700 à 800 ppm, ou de 800 à 900 ppm, ou de 900 à 1000 ppm, ou de 1000 à 1 100 ppm, ou de 1 100 à 1200 ppm, ou de 1200 à 1300 ppm, ou de 1300 à 1400 ppm, ou de 1400 à 1500 ppm, ou de 1500 à 1600 ppm, ou de 1600 à 1700 ppm, ou de 1700 à 1800 ppm, ou de 1800 à 1900 ppm, ou de 1900 à 2000 ppm (en masse).
EXEMPLES
L’exemple suivant illustre l'invention sans la limiter. La vitesse de corrosion par le trifluorure de bore (BF3) d’un certain nombre de matériaux métalliques a été testée afin de déterminer si ces matériaux pourraient être utilisés comme billes résistantes à la corrosion, pour un clapet de sécurité selon l’invention. Dans ce cas, le BF3 n’étant pas totalement anhydre, les espèces corrosives sont les hydrates de BF3, à savoir le monohydrate de trifluorure de bore (BFs-FLO) et/ou le dihydrate de trifluorure de bore (BF3-2H20).
Le test consiste à tremper des coupons métalliques dans du BF3-2H20 pendant 80 jours en renouvelant la solution tous les mois. Les résultats sont affichés sur le tableau ci-dessous.
Figure imgf000016_0001
Tous les matériaux métalliques affichés sur le tableau présentent une vitesse de corrosion par le BF3 2H2O de moins de 50 pm par an à une température de 20 °C.
Dans les mêmes conditions, la vitesse de corrosion des alliages de stellite est de 0,100 mm/an, soit 100 fois plus que le tantale ou l’hastelloy C-276 ou C-2000.

Claims

REVENDICATIONS
1. Dispositif de clapet de sécurité (1 ) pour récipient de gaz, comprenant une ouverture pour soutirer du gaz du récipient, et une bille (2) configurée pour obturer cette ouverture ; la bille (2) étant constituée d’un matériau métallique caractérisé par une vitesse de corrosion par le dihydrate de trifluorure de bore de moins de 50 pm par an, à une température de 20 °C.
2. Dispositif selon la revendication 1 , dans lequel le matériau métallique est caractérisé par une vitesse de corrosion par le dihydrate de trifluorure de bore de moins de 40 pm par an, de préférence de moins de 30 pm par an, encore de préférence de moins de 20 pm par an, et encore de préférence de moins de 10 pm par an, à une température de 20 °C.
3. Dispositif selon l’une des revendications 1 ou 2, dans lequel le matériau métallique comprend moins de 50 % en masse de Co, de préférence moins de 20 % en masse de Co, de préférence encore moins de 5 % en masse de Co.
4. Dispositif selon l’une des revendications 1 à 3, dans lequel le matériau métallique comprend au moins 10 % en masse de Ni, de préférence au moins 15 % en masse de Ni, de préférence encore au moins 20 % en masse de Ni.
5. Dispositif selon l’une des revendications 1 à 4, dans lequel le matériau métallique comprend moins de 30 % en masse de Cr, de préférence moins de 28 % en masse de Cr, de préférence encore moins de 25 % en masse de Cr.
6. Dispositif selon l’une des revendications 1 à 5, dans lequel le matériau métallique comprend :
- de 50 à 80 % en masse de Ni, de préférence de 55 à 75 % en masse de Ni ;
- de 0,1 à 30 % en masse de Cr, de préférence de 0,5 à
25 % en masse de Cr ; - de 4 à 40 % en masse de Mo, de préférence de 8 à 30 % en masse de Mo ;
- moins de 8 % en masse de Co, de préférence moins de
5 % en masse de Co ; et
- moins de 10 % en masse de Fe, de préférence moins de
6 % en masse de Fe.
7. Dispositif selon l’une des revendications 1 à 5, dans lequel le matériau métallique comprend :
- de 40 à 60 % en masse de Fe, de préférence de 45 à 55 % en masse de Fe ;
- de 15 à 35 % en masse de Ni, de préférence de 20 à 30 % en masse de Ni ;
- de 10 à 30 % en masse de Cr, de préférence de 15 à 25 % en masse de Cr ;
- de 1 à 10 % en masse de Mo, de préférence de 3 à 7 % en masse de Mo ; et
- de 0,5 à 2,5 % en masse de Cu, de préférence de 1 à 2 % en masse de Cu.
8. Dispositif selon l’une des revendications 1 à 5, dans lequel le matériau métallique comprend du tantale, de préférence au moins 50 % en masse de tantale, de préférence au moins 90 % en masse de tantale, de préférence au moins 95 % en masse de tantale, encore de préférence au moins 99 % en masse de tantale, et de manière plus particulièrement préférée le matériau métallique consiste en du tantale.
9. Dispositif selon l’une des revendications 1 à 8, dans lequel la bille (2) a une forme sphérique, ou une forme ovoïde, ou une forme de demi-sphère.
10. Dispositif selon l’une des revendications 1 à 9, dans lequel la bille (2) est en contact avec un joint en matière plastique (5) lorsqu’elle obture l’ouverture, la matière plastique étant de préférence du polychlorotrifluoroéthylène.
11. Dispositif selon l’une des revendications 1 à 10, dans lequel la bille (2) est montée sur un ressort (3) qui pousse la bille (2) vers l’ouverture pour obturer cette ouverture.
12. Dispositif selon l’une des revendications 1 à 1 1 , comprenant au moins une tige supérieure (8a) fixée à la bille (2) et orientée vers l’ouverture et/ou une tige inférieure (8b) fixée à la bille (2) et orientée dans la direction opposée à l’ouverture, la tige supérieure (8a) et/ou la tige inférieure (8b) étant de préférence de section non circulaire.
13. Robinet pour récipient de gaz, comprenant un corps traversé par un organe d’actionnement mobile (6) et le dispositif de clapet de sécurité (1 ) de l’une des revendications 1 à 12, dans lequel l’organe d’actionnement mobile (6) est configuré pour déplacer la bille (2) du dispositif de clapet de sécurité (1 ) de sorte à libérer l’ouverture de celui-ci.
14. Robinet selon la revendication 13, dans lequel la bille (2) est susceptible de se déplacer selon un mouvement de translation dans une unique direction, pour obturer l’ouverture ou la libérer, la bille (2) étant de plus bloquée en rotation.
15. Robinet selon l’une des revendications 13 ou 14, dans lequel le dispositif de clapet de sécurité (1 ) est selon la revendication 12, la tige supérieure (8a) coopérant avec l’organe d’actionnement mobile (6) pour assurer un blocage en rotation ; et/ou la tige inférieure (8b) coopérant avec un guide (10) disposé dans une grille (9) pour assurer un blocage de rotation.
16. Récipient comprenant le dispositif selon l’une des revendications 1 à 12 ou le robinet selon les revendications 13 à 15.
17. Récipient selon la revendication 16, caractérisé en ce qu’il contient un gaz choisi parmi le chlorure d’hydrogène et le trifluorure de bore.
PCT/FR2019/051342 2018-06-05 2019-06-05 Dispositif pour la fermeture etanche de recipients contenant des gaz corrosifs WO2019234354A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1854875 2018-06-05
FR1854875A FR3081844B1 (fr) 2018-06-05 2018-06-05 Dispositif pour la fermeture etanche de recipients contenant des gaz corrosifs

Publications (1)

Publication Number Publication Date
WO2019234354A1 true WO2019234354A1 (fr) 2019-12-12

Family

ID=65494168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/051342 WO2019234354A1 (fr) 2018-06-05 2019-06-05 Dispositif pour la fermeture etanche de recipients contenant des gaz corrosifs

Country Status (2)

Country Link
FR (1) FR3081844B1 (fr)
WO (1) WO2019234354A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3113935A1 (fr) 2020-09-09 2022-03-11 Arkema France Robinet pour récipient de gaz avec double vanne

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3525358A (en) * 1964-07-16 1970-08-25 California Research Corp Relief valve system for vessels undergoing intermittent explosions
FR2349084A1 (fr) * 1976-04-22 1977-11-18 Proengin Perfectionnements apportes aux regulateurs de debit a membrane
US20020017623A1 (en) * 2000-08-08 2002-02-14 Noyes Douglas B. Control valves
FR2816387A1 (fr) * 2000-11-07 2002-05-10 Atofina Robinet etanche pour recipient de transport de fluides toxiques
FR2817940A1 (fr) * 2000-12-08 2002-06-14 Atofina Robinet a commande par servomoteur pour recipient de fluides toxiques
EP2816387A1 (fr) 2013-06-20 2014-12-24 Ability Opto-Electronics Technology Co., Ltd. Ensemble de lentille d'imagerie à grand angle avec deux lentilles
EP2817940A1 (fr) 2012-02-24 2014-12-31 Wyse Technology L.L.C. Partage d'informations à l'aide d'un jeton reçu par le biais d'une communication de proximité immédiate
US20170211708A1 (en) * 2014-07-23 2017-07-27 George Kim Protective composite surfaces

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3525358A (en) * 1964-07-16 1970-08-25 California Research Corp Relief valve system for vessels undergoing intermittent explosions
FR2349084A1 (fr) * 1976-04-22 1977-11-18 Proengin Perfectionnements apportes aux regulateurs de debit a membrane
US20020017623A1 (en) * 2000-08-08 2002-02-14 Noyes Douglas B. Control valves
FR2816387A1 (fr) * 2000-11-07 2002-05-10 Atofina Robinet etanche pour recipient de transport de fluides toxiques
FR2817940A1 (fr) * 2000-12-08 2002-06-14 Atofina Robinet a commande par servomoteur pour recipient de fluides toxiques
EP2817940A1 (fr) 2012-02-24 2014-12-31 Wyse Technology L.L.C. Partage d'informations à l'aide d'un jeton reçu par le biais d'une communication de proximité immédiate
EP2816387A1 (fr) 2013-06-20 2014-12-24 Ability Opto-Electronics Technology Co., Ltd. Ensemble de lentille d'imagerie à grand angle avec deux lentilles
US20170211708A1 (en) * 2014-07-23 2017-07-27 George Kim Protective composite surfaces

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GRUPO COMPAS: "Grupo Compás - The Alloy Valve Stockist Alloy Valves from stock", 6 May 2013 (2013-05-06), XP055582356, Retrieved from the Internet <URL:http://alloy-valves.com/Catalogues/The-Alloy-Valve-Stockist-catalogue.pdf> [retrieved on 20190418] *
TRIFLUORIDE: "Technical Information - Honeywell Boron Trifluoride", 1 June 2006 (2006-06-01), XP055582287, Retrieved from the Internet <URL:https://www.honeywell-bf3.com/document/bf3-technical-information/?download=1> [retrieved on 20190418] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3113935A1 (fr) 2020-09-09 2022-03-11 Arkema France Robinet pour récipient de gaz avec double vanne

Also Published As

Publication number Publication date
FR3081844A1 (fr) 2019-12-06
FR3081844B1 (fr) 2021-04-16

Similar Documents

Publication Publication Date Title
US8074528B2 (en) In-line valve sampling system
WO2012004482A1 (fr) Raccord de remplissage, récipient et procédé de remplissage correspondants
US7350536B2 (en) Vacuumized receptacle for sample collection
WO2019234354A1 (fr) Dispositif pour la fermeture etanche de recipients contenant des gaz corrosifs
EP1445024A1 (fr) Dispositif de désembouage magnétique
FR2896565A1 (fr) Structure de vanne et dispositif de vanne ayant cette structure.
WO2016185146A1 (fr) Électrovanne de purge pour dispositif d&#39;évacuation de vapeurs
EP1342028B1 (fr) Robinet a commande par servomoteur pour recipient de fluides toxiques
EP0617788B1 (fr) Dispositif de prelevement d&#39;echantillons d&#39;un liquide dans un tank ou dans un reacteur chimique
EP2813834A1 (fr) Dispositif d&#39;échantillonnage de solide à partir d&#39;une enceinte fermée et procédé pour utiliser un tel dispositif
EP3712475B1 (fr) Dispositif de mise en mouvement d&#39;un obturateur d&#39;une vanne guillotine
FR2835817A1 (fr) Recipient de securite, en particulier pour substances organometalliques
WO1998001735A1 (fr) Detecteur de liquide dans un element d&#39;une installation et son utilisation pour la detection des fuites
EP0701078B1 (fr) Vanne à clapet et membrane
WO2014191387A1 (fr) Système de régulation d&#39;un liquide dans un circuit
EP0060789B1 (fr) Vanne à passage direct en tout ou rien
DE19600265A1 (de) Flaschenventil
FR2796699A1 (fr) Distributeur rotatif de poudre
FR2754282A1 (fr) Dispositif de manoeuvre fonctionnant grace a la variation de volume d&#39;un liquide lors de son changement d&#39;etat
FR3113935A1 (fr) Robinet pour récipient de gaz avec double vanne
CN206560852U (zh) 一种拆卸式的格氏反应引发剂的储液加料装置
BE846103A (fr) Purgeur automatique de gaz
BE735760A (fr)
EP0462139A1 (fr) Vannes a passage direct avec manchon caoutchouc et obturateur hemispherique.
FR2870460A1 (fr) Declencheur thermique telecommande par air pour extincteur polyvalent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19735613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19735613

Country of ref document: EP

Kind code of ref document: A1