WO2019233420A1 - 基于模板的5g端到端网络切片生成方法及装置 - Google Patents

基于模板的5g端到端网络切片生成方法及装置 Download PDF

Info

Publication number
WO2019233420A1
WO2019233420A1 PCT/CN2019/090012 CN2019090012W WO2019233420A1 WO 2019233420 A1 WO2019233420 A1 WO 2019233420A1 CN 2019090012 W CN2019090012 W CN 2019090012W WO 2019233420 A1 WO2019233420 A1 WO 2019233420A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
network slice
link
template
node
Prior art date
Application number
PCT/CN2019/090012
Other languages
English (en)
French (fr)
Inventor
张佳玮
纪越峰
韩培
Original Assignee
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京邮电大学 filed Critical 北京邮电大学
Publication of WO2019233420A1 publication Critical patent/WO2019233420A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Definitions

  • the present disclosure relates to the technical field of communication networks, and in particular, to a method and device for generating a 5G end-to-end network slice based on a template.
  • the current network slice is usually composed of a single virtual topology or a virtual network function (virtual network function (VNF)) forwarding map, and only generates network slices for a single service.
  • VNF virtual network function
  • network slices need to be generated for each service, which increases the number of network slices created and the complexity of slice mapping.
  • the present disclosure aims to solve at least one of the technical problems in the related art.
  • a first object of the present disclosure is to propose a 5G end-to-end network slice generation method based on a template.
  • the method is directed to the same type of services with the same requirements.
  • the constraint conditions in the template are generated according to the business requirements, and the network slice is further generated according to the constraint conditions in the template.
  • Slicing can meet the basic needs of the same type of services in terms of bandwidth, latency, and device connectivity, thereby avoiding the process of creating network slices for each individual service, reducing the number of network slices created, and optimizing the mapping of network slices. This reduces the cost of creating network slices of the same type.
  • a second object of the present disclosure is to propose a 5G end-to-end network slice generation device based on a template.
  • a third object of the present disclosure is to propose an electronic device.
  • a fourth object of the present disclosure is to propose a non-transitory computer-readable storage medium.
  • an embodiment of the first aspect of the present disclosure proposes a template-based 5G end-to-end network slice generation method, including the following steps:
  • the corresponding abstract topology is mapped into a physical topology through a mapping strategy to generate a network slice.
  • the template-based 5G end-to-end network slice generation method of the embodiment of the present disclosure first receives a network slice generation request, and then triggers the use of a universal template to generate an abstract topology corresponding to a network slice according to the slice generation request. Finally, the corresponding abstract topology is mapped by a mapping strategy. Map into physical topology to generate network slices. Therefore, the method is directed to the same type of services with the same requirements. After receiving the requirements of the same type of services, the constraints in the template are generated according to the business requirements, and the network slice is further generated according to the constraints in the template.
  • Network slicing can meet the basic needs of the same type of services in terms of bandwidth, latency, and device connectivity, thereby avoiding the process of creating network slices for each individual service, reducing the number of network slices created, and optimizing network slices Mapping relationship reduces the cost of creating the same type of network slice.
  • template-based 5G end-to-end network slice generation method may also have the following additional technical features:
  • the method before receiving the network slice generation request, the method further includes: determining a network function of a first layer corresponding to the 5G end-to-end network, and a network function of a corresponding second layer; and determining the determined layers
  • the network functions are divided into corresponding preset network function units, and the corresponding preset network function units obtained after the division are used as the network function units; wherein the first layer is used to instruct the 5G end-to-end A control plane of a wireless mobile network in an end network, and the second plane is used to indicate a user plane of the wireless mobile network.
  • generating a generalized topology corresponding to the network slice by using a universal template includes generating the abstract topology corresponding to the network slice by using the universal template and combining a first constraint condition and a second constraint condition, wherein The first constraint condition is used to constrain the connection relationship between the network functional units.
  • the corresponding value of each network functional unit describes the value of the parameter describing its processing capability, and the chain between the network functional units.
  • the value of the configuration parameter of the channel capacity is taken, and the second constraint condition is used to constrain the wireless protocol characteristics and the function deployment strategy of each network functional unit in the network slice.
  • the slice generation request includes: the type of service to which the network slice to be generated belongs, the wireless carrier bandwidth, the number of antennas, and the traffic used by each access node identifier when the corresponding access node transmits data. load.
  • a method for generating a 5G end-to-end network slice based on a template determines the first constraint condition in the following manner: determining a connection relationship between the network function units according to the service type to which it belongs. , According to the wireless carrier bandwidth, the number of antennas, and the traffic load used by each access node to transmit data, determine the value of the configuration parameters of the processing capabilities of the network functional units and the link capabilities between the network units.
  • the method for generating a 5G end-to-end network slice based on a template determines the second constraint condition by: invoking a configuration file corresponding to the service type to which it belongs, where the configuration file includes A value of a configuration relationship between connection functions of each network function unit corresponding to the service type and a node link capability; and determining the second constraint condition according to the corresponding configuration file.
  • the configuration parameters of the link capability of the node include: a parameter for describing the processing capability of each network functional unit, a link bandwidth parameter between the nodes, and a link distance parameter between the nodes.
  • the multiple network function units include: an active antenna processing unit, a distributed processing unit, a centralized unit, and a mobile edge service entity
  • the inter-node link includes: connecting the active antenna processing A fronthaul link between the unit and the distributed processing unit, a midhaul link connecting the distributed processing unit and the centralized unit, and a connection between different distributed processing units, connecting the centralized unit and all
  • the backhaul links between mobile edge service entities and between different centralized units are described.
  • the slice generation request further includes: a set of access nodes covered by the network slice to be generated, and the set of access nodes includes: multiple access node identifiers, each access node identifier The wireless carrier bandwidth, number of antennas, and traffic load used by the corresponding access node when transmitting data.
  • mapping the corresponding abstract topology to a physical topology through a mapping strategy to generate the network slice includes determining a physical network topology model and physical parameters corresponding to the physical network.
  • the topology model includes: a set of data center nodes, a set of optical network nodes, a set of wireless access nodes, and a set of links between each node.
  • the corresponding physical parameters include: preset node processing capabilities, preset link distances.
  • a first network function unit in each of the set of nodes, is configured in an access node corresponding to each access node identifier to obtain a first network function unit corresponding to each access node
  • the first network function unit is an active antenna processing unit, and the first network unit runs on a dedicated processor; and the capacity required by the corresponding distributed processing unit is calculated according to the traffic of each access node, and is based on The required capacity is determined by combining the connection relationship, distance, and bandwidth of the forward link of each network functional unit.
  • the template-based 5G end-to-end network slice generation method further includes: determining the mapped data center node according to a data center node and a link capability, wherein the data center node and the chain
  • the path capacity is selected through the following parameters: parameters describing the remaining processing capacity of the data center, the length of the forward link, the remaining bandwidth, and the link distance and bandwidth between the data center and the network functional unit connected to the adjacent access node.
  • an embodiment of the second aspect of the present disclosure proposes a 5G end-to-end network slice generation device based on a template, including:
  • a receiving module configured to receive a network slice generation request, where the slice generation request is used to generate a network slice
  • a generating module configured to trigger the generation of an abstract topology corresponding to the network slice using a universal template according to the slice generation request, and the abstract topology is used to describe a connection relationship between network function units;
  • a mapping module configured to map the corresponding abstract topology to a physical topology through a mapping strategy to generate the network slice.
  • the template-based 5G end-to-end network slice generation device first receives a network slice generation request, and then triggers the use of a universal template to generate an abstract topology corresponding to a network slice according to the slice generation request, and finally maps the corresponding abstract topology through a mapping strategy. Map into physical topology to generate network slices. Therefore, after receiving the requirements of the same type of service, the device generates constraint conditions in the template according to the business requirements, and further generates network slices according to the constraint conditions in the template.
  • the network slices created by the universal template can satisfy the same type of services.
  • Basic requirements in various aspects such as bandwidth, latency, and device connectivity, thereby avoiding the process of creating network slices for each individual service, reducing the number of network slices created, and reducing the cost of creating network slices of the same type.
  • an embodiment of the third aspect of the present disclosure provides an electronic device, including: a processor and a memory; wherein the processor runs and reads the executable program code stored in the memory.
  • a program corresponding to the executable program code is used to implement the template-based 5G end-to-end network slice generation method according to the foregoing embodiment.
  • an embodiment of the fourth aspect of the present disclosure proposes a non-transitory computer-readable storage medium on which a computer program is stored, characterized in that the program is implemented as described in the foregoing embodiment when executed by a processor.
  • Template-based 5G end-to-end network slice generation method
  • FIG. 1 is a schematic flowchart of a template-based 5G end-to-end network slice generation method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of dividing a network functional unit according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a network function unit configuration of a specific network slice according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a physical topology structure of a network slice according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a distributed processing unit mapping provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a centralized unit mapping provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic flowchart of a template-based 5G end-to-end network slice generation method according to an embodiment of the present disclosure. As shown in Figure 1, the template-based 5G end-to-end network slice generation method includes the following steps:
  • the network slice is a network transmission and data processing system that includes a radio access network (Radio Access Network, RAN for short) and mobile edge computing (Mobile Edge Computing, MEC) that can support virtualization technology. It can be implemented on a hardware basis. Multiple virtual end-to-end networks are divided at the facility. Each network slice is logically isolated from the device to the access network to the transmission network to the core network. These logical networks are allocated different topologies, bandwidths, and computing resources. To support different categories of services.
  • Radio Access Network Radio Access Network
  • MEC Mobile Edge Computing
  • network slices are usually composed of a single virtual topology.
  • network slices need to be created separately for each service. This approach increases the network The number of slices to be created and the cost of creation. Therefore, in the embodiments of the present disclosure, the network slices created based on a common template can meet the basic needs of the same type of business and improve the efficiency of creating network slices.
  • the universal template for creating a network slice is an abstract topology established on the basis of the foregoing network function unit and according to the constraint conditions generated by the service requirements.
  • the nodes of the general template are a set of network functional units
  • the links in the general template are a connection relationship between two types of adjacent network functional unit sets.
  • the abstract topology of the network slice formed by the universal template can be regarded as the instantiation of the template, thereby describing the connection relationship between the functional unit set and the functional unit set in the template in more detail. It can realize various network functions of the wireless mobile network, and the network slices created after mapping the abstract topology to the physical topology are logically isolated from each other, realizing different business requirements according to the different topology and bandwidth parameters of each logical network.
  • the above-mentioned network functional unit is an infrastructure structure in which the high-level logical separation of the RAN is formed by dividing wireless baseband processing functions by using RAN function segmentation and virtualization technology.
  • the network functions of the wireless mobile network control plane and user plane in the 5G end-to-end network are divided into an active antenna processing unit (AAU), a distributed processing unit (DU),
  • AAU active antenna processing unit
  • DU distributed processing unit
  • CU centralized unit
  • MESU mobile edge service entity
  • each network unit is assigned various network functions according to business needs, and various networks are assigned to each internal protocol layer of the network function unit, for example, as shown in Figure 2
  • the functions of the advanced physical layer and radio link control layer in the baseband module in the original wireless access network are divided into distributed processing units, and the control plane and user plane functions in the core network and third-party applications
  • the edge processing functions are divided into mobile edge service entities, etc., then the protocol layers of the original wireless access network are divided into each network functional unit. For example, after the distributed processing
  • the inter-node link formed by the collection of network functional units includes: a fronthaul link connecting the active antenna processing unit and the distributed processing unit, a connection between the distributed processing unit and the centralized unit, and a connection between different distributed processing units.
  • the intermediate transmission link, the backhaul link between the connection centralized unit and the mobile edge service entity, and the connection between different centralized units, each network function unit transmits data through the connected data communication link.
  • a user accessing the wireless network sends a network slice generation request according to a service requirement, wherein the slice generation request is used to generate a network slice.
  • the slice generation request includes: the type of service to which the network slice to be generated belongs, the wireless carrier bandwidth (B) and the number of antennas used by the access node corresponding to each wireless mobile network access node identifier to transmit data. (A) and traffic load (L), where the wireless carrier bandwidth is the interval between adjacent frequency points in the modulation mode in which the access point transmits data, and the traffic load is the time-frequency resource used by the access point to transmit data. Therefore, the constraint conditions of the abstract topology of the network slice can be generated according to the parameters in the slice generation request, which is convenient for the next step to generate the abstract topology by combining the constraint conditions on the basis of the infrastructure.
  • Step 102 Trigger generation of an abstract topology corresponding to a network slice using a universal template according to the slice generation request.
  • the abstract topology is used to describe a connection relationship between network function units.
  • the general template of the above-mentioned infrastructure is used in the embodiments of the present disclosure to combine the first constraint condition and the second constraint condition to generate an abstract topology corresponding to the network slice, wherein the first constraint condition is used to constrain each network functional unit.
  • the connection relationship between each network functional unit corresponds to the value of the parameter describing its processing capability and the value of the configuration parameter of the link capability between the network functional units; the second constraint is used to constrain each network in the network slice.
  • the first constraint condition is determined by a network slice generation request.
  • the first constraint condition may be determined in the following manner.
  • connection relationship between the network functional units is determined according to the service type in the network slice generation request.
  • the nodes of the abstract topology corresponding to the network slice are a collection of network functional units.
  • the connection relationship between other elements in the collection or other elements in the collection reflects the processing functions that this abstract topology can provide. For example, when any AAU unit in the AAU set is connected to two DU units in the DU set through two forward links that do not intersect, it indicates that each AAU unit has two independent DU units to provide processing functions for it. And for each AAU unit and DU unit connection, there is a spare optical path to avoid the connection interruption caused by the failure, so the connection relationship increases the reliability of network transmission.
  • the service type in the generation request is an ultra-low-latency service
  • This service requires higher delay and reliability of network transmission, so the above connection relationship can be selected according to the service type.
  • the processing of each service requires the coordination and cooperation of each network function unit. Therefore, the connection relationship of each network function unit is more complicated.
  • a DU set is also required.
  • the medium access control layer (MAC) of each DU unit changes the transmission format and the like.
  • the network unit processing capabilities include the processing capabilities of the above-mentioned four network functional units
  • the link capabilities between the network elements include the bandwidth of the forward path, intermediate path, and return path, as well as the same network functional unit set. The bandwidth of the path between network functional units in the network.
  • X in the above formula represents the type of service
  • K is a proportionality factor
  • the value of K is related to the type of service, the type of network functional unit, and the transmission equipment of the wireless access network.
  • the disclosed embodiment specifies a wireless protocol feature and a function deployment strategy of each network functional unit in the network slice through a second constraint.
  • the wireless protocol is characterized in that when the network slice serves different types of services, the air interface control plane protocol and the air interface user plane protocol are adopted to meet business requirements, and the connection mode of each network functional unit and the function of the network functional unit are deployed according to the air interface protocol.
  • the second constraint condition is
  • the designated network slice adopts the air interface protocol that supports multi-carrier cooperative transmission, and the MAC layer in the DU unit is deployed to support multi-member carrier processing capabilities, and the packet data convergence layer in the CU unit supports split bearers capabilities.
  • the second constraint condition can be determined in the following manner. First, a configuration file corresponding to the service type to which it belongs is called.
  • the configuration file includes the connection relationship between each network function unit corresponding to the service type, and the node chain.
  • the value of the configuration parameter of the channel capacity is taken, and then the second constraint condition is determined according to the corresponding configuration file, so that the second constraint condition can retain the configuration information in the first constraint condition, and meanwhile, the wireless protocol adopted by the network slice is specified according to the service requirements.
  • the configuration parameters of node and link capabilities include parameters used to describe the processing capabilities of each network functional unit, parameters of link bandwidth between nodes, and parameters of link distance between nodes.
  • the configuration parameter may be a set of access nodes covered by a network slice to be generated in a slice generation request sent by a user.
  • the set of access nodes includes multiple access node identifiers, and each access node identifier corresponds to an access node. Determine the wireless carrier bandwidth, number of antennas, and traffic load used by the ingress node when transmitting data
  • the abstract topology corresponding to the network slice, and the allocation of its nodes and link resources are generated according to the first constraint, and the configuration information in the abstract topology corresponding to the network slice is specified through the second constraint, so that Facilitate the next step of mapping the abstract topology into the physical topology to generate network slices.
  • Step 103 Map the corresponding abstract topology to the physical topology through a mapping strategy to generate a network slice.
  • the mapping strategy is a method of mapping the nodes and links of the generated abstract topology to the physical network to generate network slices.
  • the physical network topology model of the network slice and the corresponding physical parameters are determined first, and then the nodes and links in the abstract topology are correspondingly mapped into the physical topology model.
  • the physical network topology model includes a data center node set, an optical network node set, a wireless access node set, and a link set between nodes.
  • the data center node is used to provide data access functions of the wireless mobile network.
  • the optical network node is a transmission node of the wireless network
  • the wireless access node is a node where the user accesses the wireless mobile network.
  • the physical parameters of the physical network topology model include the processing capability of a preset node, a preset link distance, and a preset link bandwidth.
  • the radio frequency capability and physical layer processing capability of the wireless access node can meet the traffic requirements of all users within the coverage area of the access node.
  • the access point assigns an active antenna processing unit.
  • the AAU unit in the abstract topology is mapped to a wireless access point in a physical topology.
  • a first network function unit is configured in an access node corresponding to each access node identifier to obtain a first network function unit corresponding to each access node, and the first network function unit is active An antenna processing unit.
  • the first network unit runs on a dedicated processor of a wireless network access node.
  • the required capacity of the corresponding distributed processing unit is calculated according to the traffic of each access node, and based on the required capacity, combined with the connection relationship, distance, and bandwidth of the forward link of each network functional unit, it is determined Data center node to which each distributed processing unit is mapped.
  • the data center node mapped by each distributed processing unit may be determined according to different access points and the mappable data center nodes of each distributed processing unit, where the data center node and the link capability are determined by the following formula :
  • ⁇ , ⁇ , and ⁇ represent the remaining processing capacity of the data center, the available bandwidth between the access point and the data center point, and the weight of the three points of the distance between the access point and the data point center in the selected mapping data center. value.
  • the corresponding processing capabilities are sorted, and the data center nodes are mapped to the distributed processing unit with the largest processing capability first.
  • the distributed processing units corresponding to the active antenna processing unit 1 and the active antenna processing unit 2 are mapped to the data center point 1, and the distributed processing units corresponding to the active antenna processing unit 3 are mapped to the data center Click on 2.
  • the mapping of each distributed processing unit is completed, the corresponding fronthaul link mapping is triggered.
  • the newly added solid line is a mapped forward link, which is used for data communication between the active antenna processing unit and the distributed processing unit.
  • the newly added dashed line is the data communication link between distributed processing units, which is part of the intermediate transmission link.
  • the required capacity of the corresponding centralized unit is calculated, and the connection relationship, distance and bandwidth of the intermediate transmission link of each network functional unit are determined to determine each The data center node to which the centralized processing unit is mapped.
  • the centralized unit corresponding to the distributed processing unit 1 is mapped to the data center processing unit 2 (this case belongs to the co-site deployment of DU and CU).
  • the corresponding intermediate transmission link mapping is completed.
  • a solid line is added as part of the mapped mid-haul link for data communication between the distributed processing unit and the centralized processing unit.
  • the capacity of the corresponding mobile edge service entity is calculated according to the traffic of the access node connected to each centralized processing unit, and the connection relationship, distance, and bandwidth of the backhaul link of each network functional unit are determined to determine each As shown in FIG. 8, the data center node to which the mobile edge service entity is mapped is mapped to the data center processing unit 3. After completing the mapping of each mobile edge service entity, the corresponding backhaul link mapping is completed. In FIG. 8, a new solid line is part of the mapped backhaul link, and is used for data communication between the centralized processing unit and the mobile edge service entity.
  • the template-based 5G end-to-end network slice generation method in the embodiment of the present disclosure first receives a network slice generation request, and then triggers the generation of an abstract topology corresponding to a network slice using a universal template according to the slice generation request, and finally through a mapping strategy The corresponding abstract topology is mapped into the physical topology to generate network slices. Therefore, the method is directed to the same type of services with the same requirements. After receiving the requirements of the same type of services, the constraints in the template are generated according to the business requirements, and the network slice is further generated according to the constraints in the template.
  • the created network slices can meet the basic needs of the same type of services in terms of bandwidth, latency, and device connectivity, thereby avoiding the process of creating network slices for each individual service, reducing the number of network slices created, and optimizing the network.
  • the mapping relationship of slices reduces the creation cost of the same type of network slices.
  • FIG. 9 is a schematic structural diagram of a template-based 5G end-to-end network slice generation device according to an embodiment of the present disclosure.
  • the template-based 5G end-to-end network slice generation device includes a receiving module 110, a generating module 120, and a mapping module 130.
  • the receiving module 110 is configured to receive a network slice generation request, and the slice generation request is used to generate a network slice.
  • the slice generation request includes the type of service to which the network slice to be generated belongs, the wireless carrier bandwidth, the number of antennas, and the traffic load used by each access node to identify the corresponding access node when transmitting data.
  • the generating module 120 is configured to trigger the generation of an abstract topology corresponding to a network slice using a universal template according to a slice generation request, and the abstract topology is used to describe a connection relationship between network function units.
  • the generating module 120 uses a universal template and combines the first constraint condition and the second constraint condition to generate an abstract topology corresponding to the network slice.
  • the first constraint condition is used to constrain the connection relationship between the network functional units.
  • the parameter value describing its processing capability, the configuration parameter value of the link capability between the network function units, the second constraint condition is used to restrict the wireless protocol characteristics and Feature deployment strategy.
  • the mapping module 130 is configured to map a corresponding abstract topology to a physical topology through a mapping strategy to generate a network slice.
  • the mapping module 130 first determines a physical network topology model and corresponding physical parameters, and then configures a first network function unit in each node set and an access node corresponding to each access node identifier, A first network function unit corresponding to each access node is obtained, the first network function unit is an active antenna processing unit, and the first network unit runs on a dedicated processor.
  • the required capacity of the corresponding centralized unit is calculated, and the connection relationship, distance and bandwidth of the intermediate transmission link of each network functional unit are determined to determine each The data center node mapped by the centralized processing unit, and after completing the mapping of each centralized processing unit, the corresponding intermediate transmission link mapping is completed.
  • the capacity of the corresponding mobile edge service entity is calculated according to the traffic of the access node connected to each centralized processing unit, and the connection relationship, distance, and bandwidth of the backhaul link of each network functional unit are determined to determine each The data center node mapped by the mobile edge service entity, and after completing the mapping of each mobile edge service entity, complete the corresponding backhaul link mapping.
  • the template-based 5G end-to-end network slice generation device first receives a network slice generation request, and then triggers the use of a universal template to generate an abstract topology corresponding to a network slice according to the slice generation request, and finally maps the corresponding abstract topology through a mapping strategy. Map into physical topology to generate network slices. Therefore, after receiving the requirements of the same type of service, the device generates constraint conditions in the template according to the business requirements, and further generates network slices according to the constraint conditions in the template.
  • the network slices created by the universal template can meet the requirements of the same type of business.
  • the basic requirements in terms of bandwidth, latency, and device connectivity prevent the creation of network slices for each individual service, reduce the number of network slices created, and reduce the cost of creating network slices of the same type.
  • the present disclosure also proposes an electronic device.
  • FIG. 10 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • the electronic device 120 includes a housing 121, a processor 122, a memory 123, a circuit board 124, and a power circuit 125.
  • the circuit board 124 is disposed in a space surrounded by the housing 121 and the processor 122.
  • the memory 123 are provided on the circuit board; the power supply circuit 125 is used to supply power to the above circuits or devices of the electronic device 120; the memory 123 is used to store executable program code; the processor 122 reads the executable programs stored in the memory 123
  • the program code is used to run a program corresponding to the executable program code, and is used to implement the template-based 5G end-to-end network slice generation method described in the foregoing embodiment.
  • the present disclosure also proposes a non-transitory computer-readable storage medium having stored thereon a computer program that, when executed by a processor, implements a template-based 5G end-to-end as described in the above embodiments.
  • Network slice generation method
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present disclosure, the meaning of "plurality” is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise.
  • any process or method description in a flowchart or otherwise described herein can be understood as representing a module, fragment, or portion of code that includes one or more executable instructions for implementing steps of a custom logic function or process
  • the scope of the preferred embodiments of the present disclosure includes additional implementations in which the functions may be performed out of the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order according to the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present disclosure belong.
  • a sequenced list of executable instructions that can be considered to implement a logical function can be embodied in any computer-readable medium,
  • the instruction execution system, device, or device such as a computer-based system, a system including a processor, or other system that can fetch and execute instructions from the instruction execution system, device, or device), or combine these instruction execution systems, devices, or devices Or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
  • portions of the present disclosure may be implemented in hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • Discrete logic circuits with logic gates for implementing logic functions on data signals Logic circuits, ASICs with suitable combinational logic gate circuits, programmable gate arrays (PGA), field programmable gate arrays (FPGAs), etc.
  • a person of ordinary skill in the art can understand that all or part of the steps carried by the methods in the foregoing embodiments may be implemented by a program instructing related hardware.
  • the program may be stored in a computer-readable storage medium.
  • the program is When executed, one or a combination of the steps of the method embodiment is included.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing module, or each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种基于模板的5G端到端网络切片生成方法及装置,其中,方法包括:接收网络切片生成请求,所述切片生成请求用于生成网络切片;根据所述切片生成请求触发采用通用模板生成所述网络切片对应的抽象拓扑,所述抽象拓扑用于描述各网络功能单元之间的连接关系;通过映射策略将所述对应的抽象拓扑映射至物理拓扑中,以生成所述网络切片。该方法针对具有相同需求的同一类型业务,采用通用模板建立网络切片的抽象拓扑并通过映射方法生成网络切片,由此减少了网络切片的创建数量,优化了网络切片的映射关系,降低了网络切片的创建成本。

Description

基于模板的5G端到端网络切片生成方法及装置
相关申请的交叉引用
本公开要求:
北京邮电大学BEIJING UNIVERSITY OF POSTS&TELECOMMUNICATIONS,于2018年6月4日提交中国专利局、申请号为201810564658.3、发明名称为“基于模板的5G端到端网络切片生成方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信网络技术领域,尤其涉及一种基于模板的5G端到端网络切片生成方法及装置。
背景技术
随着通信网络技术的发展,第五代移动通信网络(5G)已经诞生,在提高传输速率的同时基于移动网络的应用也越来越丰富,为满足众多应用的差异化需求,网络切片技术成为第五代移动通信网络中理想的网络架构。网络切片技术可以实现通信网络的逻辑隔离,允许在每个网络切片中配置和重用网络元件及功能以满足特定的应用需求。
然而,目前网络切片通常是由单个虚拟拓扑或虚拟网络功能(virtual network function,简称VNF)转发图组成,仅针对单个业务生成网络切片。当具有同类型的业务需求时,需要针对每个业务生成网络切片,增加了网络切片的创建数量和切片映射的复杂程度。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的第一个目的在于提出一种基于模板的5G端到端网络切片生成方法。该方法针对具有相同需求的同一类型业务,在接收到同类型业务的需求后,根据业务需求生成模板中的约束条件,进一步根据模板中的约束条件生成网络切片,由此通过通用模板创建的网络切片可以满足同类型业务在带宽、时延及设备连接度等各方面的基本需求,从而避免了为每个单独业务创建网络切片的过程,减少了网络切片的创建数量,优化了网络切片的映射 关系,降低了同类型网络切片的创建成本。
本公开的第二个目的在于提出一种基于模板的5G端到端网络切片生成装置。
本公开的第三个目的在于提出一种电子设备。
本公开的第四个目的在于提出一种非临时性计算机可读存储介质。
为了实现上述目的,本公开第一方面实施例提出了一种基于模板的5G端到端网络切片生成方法,包括以下步骤:
接收网络切片生成请求,所述切片生成请求用于生成网络切片;
根据切片生成请求触发采用通用模板生成网络切片对应的抽象拓扑,所述抽象拓扑用于描述各网络功能单元之间的连接关系;
通过映射策略将所述对应的抽象拓扑映射至物理拓扑中,以生成网络切片。
本公开实施例的基于模板的5G端到端网络切片生成方法,首先接收网络切片生成请求,然后根据切片生成请求触发采用通用模板生成网络切片对应的抽象拓扑,最后通过映射策略将对应的抽象拓扑映射至物理拓扑中,以生成网络切片。由此该方法针对具有相同需求的同一类型业务,在接收到同类型业务的需求后,根据业务需求生成模板中的约束条件,进一步根据模板中的约束条件生成网络切片,由此通过通用模板创建的网络切片可以满足同类型业务在带宽、时延及设备连接度等各方面的基本需求,从而避免了为每个单独业务创建网络切片的过程,减少了网络切片的创建数量,优化了网络切片的映射关系,降低了同类型网络切片的创建成本。
另外,根据本公开上述实施例的基于模板的5G端到端网络切片生成方法,还可以具有如下附加的技术特征:
在本公开一个实施例中,接收网络切片生成请求之前,还包括:确定5G端到端网络所对应第一层面的网络功能,以及所对应的第二层面的网络功能;将所确定的各层面的网络功能划分至各对应预设网络功能单元中,并将划分后得到的各对应预设网络功能单元作为所述各网络功能单元;其中,所述第一层面用于指示所述5G端到端网络中无线移动网络的控制层面,所述第二层面用于指示所述无线移动网络的用户层面。
在本公开一个实施例中,采用通用模板生成所述网络切片对应的抽象拓扑,包括:采用所述通用模板,结合第一约束条件和第二约束条件生成所述网络切片对应的抽象拓扑,其中,所述第一约束条件用于约束所述各网络功能单元之间的连接关系,所述各网络功能单元对应的,描述其处理能力的参数取值,所述各网络功能单元之间的链路能力的配置参数取值,所述第二约束条件用于约束所述网络切片中各网络功能单元的无线协议特征和功能部署策略。
在本公开一个实施例中,切片生成请求中包括:待生成的网络切片所属的业务类型,每个接入节点标识对应的接入节点传输数据时所使用的无线载波带宽、天线数量,以及流量负载。
在本公开一个实施例中,基于模板的5G端到端网络切片生成方法,通过以下方式确定所述第一约束条件:根据所述所属的业务类型确定所述各网络功能单元之间的连接关系,根据每个接入节点传输数据时所使用的无线载波带宽、天线数量,以及流量负载,确定所述各网络功能单元的处理能力和各网络单元之间的链路能力的配置参数取值。
在本公开一个实施例中,基于模板的5G端到端网络切片生成方法,通过以下方式确定所述第二约束条件:调用与所述所属的业务类型对应的配置文件,所述配置文件中包括:与所述业务类型对应的各个网络功能单元之间的连接关系、节点链路能力的配置参数取值;根据所述对应的配置文件确定所述第二约束条件。
在本公开一个实施例中,节点链路能力的配置参数包括:用于描述各网络功能单元处理能力的参数、节点间链路带宽参数,以及节点间链路距离参数。
在本公开一个实施例中,多个网络功能单元包括:有源天线处理单元、分布式处理单元、集中单元,以及移动边缘服务实体,所述节点间链路包括:连接所述有源天线处理单元和所述分布式处理单元的前传链路、连接所述分布式处理单元和所述集中单元之间以及连接不同的分布式处理单元之间的中传链路、连接所述集中单元和所述移动边缘服务实体之间以及连接不同的集中单元之间的回传链路。
在本公开一个实施例中,切片生成请求中还包括:待生成的网络切片所覆盖的接入节点集合,所述接入节点集合中包括:多个接入节点标识,每个接入节点标识对应的接入节点在传输数据时所使用的无线载波带宽,天线数量,流量负载。
在本公开一个实施例中,通过映射策略将所述对应的抽象拓扑映射至物理拓扑中,以生成所述网络切片,包括:确定物理网络拓扑模型,以及与其对应的物理参数,所述物理网络拓扑模型包括:数据中心节点集合、光网络节点集合,无线接入节点集合,以及各节点之间的链路集合,所述对应的物理参数包括:预设节点的处理能力、预设链路距离和预设链路带宽;在各所述节点集合中,与每个接入节点标识对应的接入节点中,配置第一网络功能单元,得到与每个接入节点对应的第一网络功能单元,所述第一网络功能单元为有源天线处理单元,第一网络单元运行在专用处理器上;根据每个接入节点的流量计算得出对应的分布式处理单元所需要的容量,并基于所述所需要的容量,结合各网络功能单元的前传链路的连接关系、距离、带宽,确定各分布式处理单元所映射的数据中心节点,并在完成所述各分布式处 理单元映射后,触发对对应的前传链路映射;根据各分布式处理单元所连接的接入节点的流量,计算得到对应的集中单元所需要的容量,结合各网络功能单元的中传链路的连接关系、距离、带宽,确定各集中式处理单元所映射的数据中心节点,并在完成所述各集中式处理单元映射后,完成对应的中传链路映射;根据各集中式处理单元所连接的接入节点的流量,计算得到对应的移动边缘服务实体的容量,结合各网络功能单元的回传链路的连接关系、距离、带宽,确定各移动边缘服务实体所映射的数据中心节点,并在完成所述各移动边缘服务实体的映射后,完成对应的回传链路映射。
在本公开一个实施例中,基于模板的5G端到端网络切片生成方法,还包括:根据数据中心节点和链路能力确定所述所映射的数据中心节点,其中,所述数据中心节点和链路能力经由以下参数选定:描述数据中心剩余处理能力的参数、前传链路的长度、剩余带宽,以及数据中心与相邻的接入节点所连接网络功能单元之间的链路距离和带宽。
为达上述目的,本公开第二方面实施例提出了一种基于模板的5G端到端网络切片生成装置,包括:
接收模块,用于接收网络切片生成请求,所述切片生成请求用于生成网络切片;
生成模块,用于根据所述切片生成请求触发采用通用模板生成所述网络切片对应的抽象拓扑,所述抽象拓扑用于描述各网络功能单元之间的连接关系;
映射模块,用于通过映射策略将所述对应的抽象拓扑映射至物理拓扑中,以生成所述网络切片。
本公开实施例的基于模板的5G端到端网络切片生成装置,首先接收网络切片生成请求,然后根据切片生成请求触发采用通用模板生成网络切片对应的抽象拓扑,最后通过映射策略将对应的抽象拓扑映射至物理拓扑中,以生成网络切片。由此,该装置在接收到同类型业务的需求后,根据业务需求生成模板中的约束条件,进一步根据模板中的约束条件生成网络切片,由此通过通用模板创建的网络切片可以满足同类型业务在带宽、时延及设备连接度等各方面的基本需求,从而避免了为每个单独业务创建网络切片的过程,减少了网络切片的创建数量,降低了同类型网络切片的创建成本。
为达上述目的,本公开第三方面实施例提出了一种电子设备,包括:处理器和存储器;其中,所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于实现如上述实施例所述的基于模板的5G端到端网络切片生成方法。
为达上述目的,本公开第四方面实施例提出了一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如上述实施例所述的基于模板 的5G端到端网络切片生成方法。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例所提供的一种基于模板的5G端到端网络切片生成方法的流程示意图;
图2为本公开实施例所提供的一种网络功能单元划分示意图;
图3为本公开实施例所提供的一种具体的网络切片的网络功能单元配置示意图;
图4为本公开实施例所提供的一种网络切片物理拓扑结构示意图;
图5为本公开实施例所提供的一种有源天线处理单元映射示意图;
图6为本公开实施例所提供的一种分布式处理单元映射示意图;
图7为本公开实施例所提供的一种集中单元映射示意图;
图8为本公开实施例所提供的一种移动边缘服务实体映射示意图;
图9为本公开实施例所提供的一种基于模板的5G端到端网络切片生成装置结构示意图;以及
图10为本公开实施例所提供的一种电子设备的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例的基于模板的5G端到端网络切片生成方法及装置。
图1为本公开实施例所提供的一种基于模板的5G端到端网络切片生成方法的流程示意图。如图1所示,该基于模板的5G端到端网络切片生成方法包括以下步骤:
步骤101,接收网络切片生成请求,切片生成请求用于生成网络切片。
其中,网络切片是包含无线接入网(Radio Access Network,简称RAN)和移动边缘计算(Mobile Edge Computing,简称MEC)的能够支持虚拟化技术的网络传输与数据处理系 统,它可以在一个硬件基础设施上切分出多个虚拟的端到端网络,每个网络切片从设备到接入网到传输网再到核心网在逻辑上隔离,这些逻辑网络被分配了不同的拓扑、带宽及计算资源,从而能够为不同类别的服务提供支持。
然而,正如以上提到的,现有技术中,网络切片通常是由单个虚拟拓扑组成,当完成具有相同需求的同类型业务时,需要针对每个业务单独创建网络切片,这种方式增加了网络切片的创建数量和创建成本,因而,在本公开实施例中,基于通用模板创建的网络切片,通过模板创建的网络切片可以满足同类型业务的基本需求,提高了网络切片的创建效率。
具体而言,在本公开实施例中,创建网络切片之前,首先确定5G端到端网络中无线移动网络的控制层面的网络功能,以及用户层面的网络功能,然后将确定的各层面的网络功能划分至各对应预设网络功能单元中,并将划分后得到的各对应预设网络功能单元作为各网络功能单元。本公开实施例提出的创建网络切片的通用模板是在上述网络功能单元的基础上,根据业务需求生成的约束条件建立的抽象拓扑。其中,上述通用模板的节点是网络功能单元的集合,通用模板中的链路是两类相邻网络功能单元集合的连接关系。由通用模板形成的网络切片的抽象拓扑可以看作是模板的实例化,从而更加详细描述了上述模板中功能单元集合内部和功能单元集合之间的连接关系。可以实现无线移动网络的各种网络功能,并且将抽象拓扑映射到物理拓扑后创建的网络切片在逻辑上相互隔离,根据各逻辑网络的不同拓扑、带宽等参数实现不同的业务需求。
其中,上述网络功能单元是利用RAN功能分割和虚拟化技术划分无线基带处理功能,形成的RAN高层逻辑分离的基础架构。在本公开实施例中,如图2所示,将5G端到端网络中无线移动网络控制面和用户面的网络功能划分到有源天线处理单元(AAU)、分布式处理单元(DU)、集中单元(CU)和移动边缘服务实体(MESU)中,每种网络单元根据业务需求被分配各种网络功能,各种网络被分配到网络功能单元的各内部协议层上,例如,如图2所示,将原无线接入网络中基带模块中的高级物理层和无线链路控制层等的功能划分到分布式处理单元中,将核心网络中的控制面功能和用户面功能以及第三方应用的边缘处理功能划分至移动边缘服务实体中等,则原无线接入网络的各协议层被划分后到各网络功能单元内部,比如,分布式处理单元经过网络功能划分后,内部具有高级物理层、介质访问控制层和无线链路控制层等,从而各网络功能单元可以实现原无线接入网络中的各种网络功能。
并且各网络功能单元集合形成的节点间链路包括:连接有源天线处理单元和分布式处理单元的前传链路、连接分布式处理单元和集中单元之间以及连接不同的分布式处理单元之间的中传链路、连接集中单元和移动边缘服务实体之间以及连接不同的集中单元之间的回传链 路,各网络功能单元通过相连的数据通信链路传递数据。由此,形成无线接入网络的基础架构后,可以根据用户发送的业务需求建立网络切片的抽象拓扑。
进而,接入无线网络的用户根据业务需求发送网络切片生成请求,其中,切片生成请求用于生成网络切片。作为一种示例,切片生成请求包括:待生成的网路切片所属的业务类型,每个无线移动网络接入节点标识对应的接入节点传输数据时所使用的无线载波带宽(B)、天线数量(A)及流量负载(L),其中,无线载波带宽为接入点在传输数据的调制模式下相邻频点的间隔,流量负载为接入点传输数据时使用的时频资源。从而,可以根据切片生成请求中的参数生成网络切片的抽象拓扑的约束条件,便于下一步在基础架构的基础上结合约束条件生成抽象拓扑。
步骤102,根据切片生成请求触发采用通用模板生成网络切片对应的抽象拓扑,抽象拓扑用于描述各网络功能单元之间的连接关系。
一些实施例中,本公开实施例中采用上述基础架构的通用模板,结合第一约束条件和第二约束条件生成网络切片对应的抽象拓扑,其中,第一约束条件用于约束各网络功能单元之间的连接关系,各网络功能单元对应的,描述其处理能力的参数取值,以及各网络功能单元之间的链路能力的配置参数取值;第二约束条件用于约束网络切片中各网络功能单元的无线协议特征和功能部署策略。
其中,第一约束条件由网络切片生成请求确定,在本公开实施例中,可以通过以下方式确定第一约束条件。
首先,根据网络切片生成请求中的业务类型确定各网络功能单元之间的连接关系,如上所述,网络切片对应的抽象拓扑的节点是网络功能单元的集合,网络功能单元集合中单个元素与该集合中其他元素或其他集合中元素的连接关系,反映了该抽象拓扑可以提供的处理功能。比如,当AAU集合中任意一个AAU单元通过两条边不交的前传链路连接到DU集合中两个DU单元,则表明对于每个AAU单元都有两个独立DU单元为其提供处理功能,并且对于每个AAU单元与DU单元的连接都有一条备用光路避免故障带来的连接中断,从而该连接关系增加了网络传输的可靠性,当生成请求中的业务类型为超低时延业务时,该项业务对网络传输的时延和可靠性要求较高,从而可以根据该业务类型选取上述的连接关系。当然,实际应用中,处理每项业务都需要各网络功能单元协调配合,因此各网络功能单元连接关系较为复杂,当业务类型为超低时延业务时,除上述连接关系,还需要DU集合中各DU单元的介质访问控制层(MAC)改变传输格式等。
然后,根据每个接入节点传输数据时所使用的无线载波带宽、天线数量,以及流量负载, 确定各网络功能单元的处理能力和各网络单元之间的链路能力的配置参数取值,进而根据配置参数取值计算上述处理能力。其中,如表1所示,网络单元处理能力包括上述四种网络功能单元的处理能力,网络单元之间的链路能力包括前传路径、中传路径及回传路径的带宽以及同一网络功能单元集合中各网络功能单元间路径的带宽。
表1
Figure PCTCN2019090012-appb-000001
为了更加清楚的表示表1中各网络功能单元的处理能力和各网络单元之间的链路能力计算方法,本公开提出了计算上述处理能力和链路能力的公式,具体计算公式如下:
Figure PCTCN2019090012-appb-000002
Figure PCTCN2019090012-appb-000003
Figure PCTCN2019090012-appb-000004
Figure PCTCN2019090012-appb-000005
Figure PCTCN2019090012-appb-000006
Figure PCTCN2019090012-appb-000007
Figure PCTCN2019090012-appb-000008
Figure PCTCN2019090012-appb-000009
Figure PCTCN2019090012-appb-000010
其中,上述公式中的X表示业务类型,K为比例系数,K的取值与业务类型、网络功能单元类型以及无线接入网络的传输设备有关,利用上述公式进行计算时,首先获取切片生成请求中的B、A、L以及业务类型,然后根据业务类型、网络功能单元类型以及传输设备参数,如无线基站的设置参数确定比例系数K,进而根据上述公式计算各网络功能单元的处理能力和各网络单元之间的链路能力。
进一步的,确定网络切片对应的抽象拓扑的第一约束条件后,为了在后续实际部署网络切片时可以保留第一约束条件中的配置信息,如上述计算出的网络功能单元的处理能力等,本公开实施例通过第二约束条件指定网络切片中各网络功能单元的无线协议特征和功能部署策略。其中,无线协议特征是网络切片在服务不同类型的业务时,为满足业务需求采用的空口控制面协议和空口用户面协议,根据空口协议部署各网络功能单元的连接方式及网络功能单元的功能。
作为一种示例,如图3所示,当网络切片服务于超大容量的增强型移动宽带(eMBB)业务时,网络切片为了满足大容量、大带宽和高传输速率的业务需求,第二约束条件指定网络切片采用支持多载波协作传输的空口协议,并且部署DU单元中的MAC层支持多成员载波处理能力以及CU单元中的分组数据汇聚层支持分叉承载(split bearers)能力等。
在本公开实施例中,可以通过以下方式确定第二约束条件,首先调用与所属的业务类型对应的配置文件,配置文件中包括与业务类型对应的各个网络功能单元之间的连接关系、节点链路能力的配置参数取值,然后根据对应的配置文件确定第二约束条件,由此第二约束条件可以保留第一约束条件中的配置信息,同时根据业务需求指定网络切片采用的无线协议。
其中,节点和链路能力的配置参数包括用于描述各网络功能单元处理能力的参数、节点间链路带宽参数,以及节点间链路距离参数。其中,配置参数可以通过用户发送的切片生成请求中的待生成的网络切片所覆盖的接入节点集合,接入节点集合中包括:多个接入节点标识,每个接入节点标识对应的接入节点在传输数据时所使用的无线载波带宽,天线数量,流量负载确定
由此,根据第一约束条件生成了网络切片对应的抽象拓扑,及其节点和链路资源的分配,并进一步通过第二约束条件指定了部署网络切片时对应的抽象拓扑中的配置信息,从而便于下一步将抽象拓扑映射到物理拓扑中以生成网络切片。
步骤103,通过映射策略将对应的抽象拓扑映射至物理拓扑中,以生成网络切片。
其中,映射策略是将已生成的抽象拓扑的节点和链路映射到物理网络中以生成网络切片 的方法。
一些实施例中,首先确定网络切片的物理网络拓扑模型,以及与其对应的物理参数,然后将抽象拓扑中的节点和链路相应的映射到物理拓扑模型中。其中,如图4所示,物理网络拓扑模型包括数据中心节点集合、光网络节点集合,无线接入节点集合,以及各节点之间的链路集合。其中,数据中心节点用于提供无线移动网络的数据访问功能,光网络节点是无线网络的传输节点,无线接入节点是用户接入无线移动网络的节点。物理网络拓扑模型的物理参数包括预设节点的处理能力、预设链路距离和预设链路带宽。
应当理解的是,为了使用户接入无线移动网络时,无线接入节点的射频能力和物理层处理能力能满足该接入节点覆盖范围内所有用户的流量需求,需要为物理网络拓扑的每个接入点分配一个有源天线处理单元。一些实施例中,如图5所示,将抽象拓扑中的AAU单元映射到物理拓扑的无线接入点中。在各节点集合中,与每个接入节点标识对应的接入节点中,配置第一网络功能单元,得到与每个接入节点对应的第一网络功能单元,第一网络功能单元为有源天线处理单元,第一网络单元运行在无线网络接入节点的专用处理器上。
进一步的,根据每个接入节点的流量计算得出对应的分布式处理单元所需要的容量,并基于所需要的容量,结合各网络功能单元的前传链路的连接关系、距离、带宽,确定各分布式处理单元所映射的数据中心节点。作为一种示例,可以根据不同的接入点,各分布式处理单元的可映射数据中心节点确定各分布式处理单元所映射的数据中心节点,其中,数据中心节点和链路能力经由以下公式确定:
Figure PCTCN2019090012-appb-000011
上述公式中α,β,γ分别表示数据中心剩余处理能力,接入点与数据中心点间的可用带宽,接入点与数据点中心间距三项取值在选择映射数据中心中所占的权重值。
Figure PCTCN2019090012-appb-000012
表示数据中心的剩余带宽,
Figure PCTCN2019090012-appb-000013
表示前传链路的长度。由此,计算出各分布式处理单元的数据中心节点和链路能力后,对相应的处理能力进行排序,优先为处理能力最大的分布式处理单元映射数据中心节点。如图6所示,有源天线处理单元1和有源天线处理单元2对应的分布式处理单元被映射到数据中心点1上,有源天线处理单元3对应的分布式处理单元映射到数据中心点2上。然后,在完成各分布式处理单元映射后,触发对应的前传链路映射。图6中,新增实线为映射的前传链路,用于有源天线处理单元到分布式处理单元之间的数据通信。新增虚线为分布式处理单元之间的数据通信链路,属于中传链路的一部分。
更进一步的,根据各分布式处理单元所连接的接入节点的流量,计算得到对应的集中单元所需要的容量,结合各网络功能单元的中传链路的连接关系、距离、带宽,确定各集中式 处理单元所映射的数据中心节点。如图7所示,分布式处理单元1对应的集中单元映射到数据中心处理单元2上(该情况属于DU和CU共站部署)。然后在完成各集中式处理单元映射后,完成对应的中传链路映射。图7中,新增实线为映射的中传链路的一部分,用于分布式处理单元到集中式处理单元之间的数据通信。
再进一步的,根据各集中式处理单元所连接的接入节点的流量,计算得到对应的移动边缘服务实体的容量,结合各网络功能单元的回传链路的连接关系、距离、带宽,确定各移动边缘服务实体所映射的数据中心节点,如图8所示,移动边缘服务实体1被映射到数据中心处理单元3上。然后在完成各移动边缘服务实体的映射后,完成对应的回传链路映射。图8中,新增实线为映射的回传链路的一部分,用于集中式处理单元到移动边缘服务实体之间的数据通信。
由此,实现了网络切片的抽象拓扑到物理拓扑的映射,将抽象拓扑中的网络功能单元的配置信息以及链路映射到具体的物理网络中,从而形成网络切片。
综上所述,本公开实施例的基于模板的5G端到端网络切片生成方法,首先接收网络切片生成请求,然后根据切片生成请求触发采用通用模板生成网络切片对应的抽象拓扑,最后通过映射策略将对应的抽象拓扑映射至物理拓扑中,以生成网络切片。由此,该方法针对具有相同需求的同一类型业务,在接收到同类型业务的需求后,根据业务需求生成模板中的约束条件,进一步根据模板中的约束条件生成网络切片,由此通过通用模板创建的网络切片可以满足同类型业务在带宽、时延及设备连接度等各方面的基本需求,从而避免了为每个单独业务创建网络切片的过程,减少了网络切片的创建数量,优化了网络切片的映射关系,降低了同类型网络切片的创建成本。
为了实现上述实施例,本公开还提出了一种基于模板的5G端到端网络切片生成装置,图9为本公开实施例所提供的一种基于模板的5G端到端网络切片生成装置结构示意图,如图9所示,该基于模板的5G端到端网络切片生成装置包括:接收模块110、生成模块120和映射模块130。
其中,接收模块110,用于接收网络切片生成请求,切片生成请求用于生成网络切片。
其中,切片生成请求中包括待生成的网络切片所属的业务类型,每个接入节点标识对应的接入节点传输数据时所使用的无线载波带宽、天线数量,以及流量负载。
生成模块120,用于根据切片生成请求触发采用通用模板生成网络切片对应的抽象拓扑,抽象拓扑用于描述各网络功能单元之间的连接关系。
一些实施例中,生成模块120采用通用模板,结合第一约束条件和第二约束条件生成网络切片对应的抽象拓扑,其中,第一约束条件用于约束各网络功能单元之间的连接关系,各网络功能单元对应的,描述其处理能力的参数取值,各网络功能单元之间的链路能力的配置参数取值,第二约束条件用于约束网络切片中各网络功能单元的无线协议特征和功能部署策略。
映射模块130,用于通过映射策略将对应的抽象拓扑映射至物理拓扑中,以生成网络切片。
一些实施例中,映射模块130首先确定物理网络拓扑模型,以及与其对应的物理参数,然后在各节点集合中,与每个接入节点标识对应的接入节点中,配置第一网络功能单元,得到与每个接入节点对应的第一网络功能单元,第一网络功能单元为有源天线处理单元,第一网络单元运行在专用处理器上。
进一步的,根据每个接入节点的流量计算得出对应的分布式处理单元所需要的容量,并基于所需要的容量,结合各网络功能单元的前传链路的连接关系、距离、带宽,确定各分布式处理单元所映射的数据中心节点,并在完成各分布式处理单元映射后,触发对对应的前传链路映射。
更进一步的,根据各分布式处理单元所连接的接入节点的流量,计算得到对应的集中单元所需要的容量,结合各网络功能单元的中传链路的连接关系、距离、带宽,确定各集中式处理单元所映射的数据中心节点,并在完成各集中式处理单元映射后,完成对应的中传链路映射。
再进一步的,根据各集中式处理单元所连接的接入节点的流量,计算得到对应的移动边缘服务实体的容量,结合各网络功能单元的回传链路的连接关系、距离、带宽,确定各移动边缘服务实体所映射的数据中心节点,并在完成各移动边缘服务实体的映射后,完成对应的回传链路映射。
需要说明的是,前述对方法实施例的描述,也适用于本公开实施例的装置,其实现原理类似,在此不再赘述。
本公开实施例的基于模板的5G端到端网络切片生成装置,首先接收网络切片生成请求,然后根据切片生成请求触发采用通用模板生成网络切片对应的抽象拓扑,最后通过映射策略将对应的抽象拓扑映射至物理拓扑中,以生成网络切片。由此该装置在接收到同类型业务的需求后,根据业务需求生成模板中的约束条件,进一步根据模板中的约束条件生成网络切片,由此通过通用模板创建的网络切片可以满足同类型业务在带宽、时延及设备连接度等各方面 的基本需求,从而避免了为每个单独业务创建网络切片,减少了网络切片的创建数量,降低了同类型网络切片的创建成本。
为了实现上述实施例,本公开还提出一种电子设备。
图10为本公开一实施例提出的一种电子设备的结构示意图。如图10所示,该电子设备120包括:壳体121、处理器122、存储器123、电路板124和电源电路125,其中,电路板124安置在壳体121围成的空间内部,处理器122和存储器123设置在电路板上;电源电路125,用于为上述电子设备120的各个电路或器件供电;存储器123用于存储可执行程序代码;处理器122通过读取存储器123中存储的可执行程序代码来运行与可执行程序代码对应的程序,用于实现如上述实施例所述的基于模板的5G端到端网络切片生成方法。
为了实现上述实施例,本公开还提出一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述实施例所述的基于模板的5G端到端网络切片生成方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所 属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 一种基于模板的5G端到端网络切片生成方法,其特征在于,包括以下步骤:
    接收网络切片生成请求,所述切片生成请求用于生成网络切片;
    根据所述切片生成请求触发采用通用模板生成所述网络切片对应的抽象拓扑,所述抽象拓扑用于描述各网络功能单元之间的连接关系;
    通过映射策略将所述对应的抽象拓扑映射至物理拓扑中,以生成所述网络切片。
  2. 如权利要求1所述的基于模板的5G端到端网络切片生成方法,其特征在于,在所述接收网络切片生成请求之前,还包括:
    确定5G端到端网络所对应第一层面的网络功能,以及所对应的第二层面的网络功能;
    将所确定的各层面的网络功能划分至各对应预设网络功能单元中,并将划分后得到的各对应预设网络功能单元作为所述各网络功能单元;
    其中,所述第一层面用于指示所述5G端到端网络中无线移动网络的控制层面,所述第二层面用于指示所述无线移动网络的用户层面。
  3. 如权利要求1或2所述的基于模板的5G端到端网络切片生成方法,其特征在于,所述采用通用模板生成所述网络切片对应的抽象拓扑,包括:
    采用所述通用模板,结合第一约束条件和第二约束条件生成所述网络切片对应的抽象拓扑,其中,所述第一约束条件用于约束所述各网络功能单元之间的连接关系,所述各网络功能单元对应的,描述其处理能力的参数取值,所述各网络功能单元之间的链路能力的配置参数取值,所述第二约束条件用于约束所述网络切片中各网络功能单元的无线协议特征和功能部署策略。
  4. 如权利要求3所述的基于模板的5G端到端网络切片生成方法,其特征在于,所述切片生成请求中包括:待生成的网络切片所属的业务类型,每个接入节点标识对应的接入节点传输数据时所使用的无线载波带宽、天线数量,以及流量负载。
  5. 如权利要求4所述的基于模板的5G端到端网络切片生成方法,其特征在于,通过以下方式确定所述第一约束条件:
    根据所述所属的业务类型确定所述各网络功能单元之间的连接关系,根据每个接入节点传输数据时所使用的无线载波带宽、天线数量,以及流量负载,确定所述各网络功能单元的处理能力和各网络单元之间的链路能力的配置参数取值。
  6. 如权利要求4所述的基于模板的5G端到端网络切片生成方法,其特征在于,通过以 下方式确定所述第二约束条件:
    调用与所述所属的业务类型对应的配置文件,所述配置文件中包括:与所述业务类型对应的各个网络功能单元之间的连接关系、节点链路能力的配置参数取值;
    根据所述对应的配置文件确定所述第二约束条件。
  7. 如权利要求6所述的基于模板的5G端到端网络切片生成方法,其特征在于,所述节点链路能力的配置参数包括:用于描述各网络功能单元处理能力的参数、节点间链路带宽参数,以及节点间链路距离参数。
  8. 如权利要求1-7任一项所述的基于模板的5G端到端网络切片生成方法,其特征在于,所述多个网络功能单元包括:有源天线处理单元、分布式处理单元、集中单元,以及移动边缘服务实体,所述节点间链路包括:连接所述有源天线处理单元和所述分布式处理单元的前传链路、连接所述分布式处理单元和所述集中单元之间以及连接所述不同的分布式处理单元之间的中传链路、连接所述集中单元和所述移动边缘服务实体之间以及连接所述不同的集中单元之间的回传链路。
  9. 如权利要求7所述的基于模板的5G端到端网络切片生成方法,其特征在于,所述切片生成请求中还包括:待生成的网络切片所覆盖的接入节点集合,所述接入节点集合中包括:多个接入节点标识,每个接入节点标识对应的接入节点在传输数据时所使用的无线载波带宽,天线数量,流量负载。
  10. 如权利要求7所述的基于模板的5G端到端网络切片生成方法,其特征在于,所述通过映射策略将所述对应的抽象拓扑映射至物理拓扑中,以生成所述网络切片,包括:
    确定物理网络拓扑模型,以及与其对应的物理参数,所述物理网络拓扑模型包括:数据中心节点集合、光网络节点集合,无线接入节点集合,以及各节点之间的链路集合,所述对应的物理参数包括:预设节点的处理能力、预设链路距离和预设链路带宽;
    在各所述节点集合中,与每个接入节点标识对应的接入节点中,配置第一网络功能单元,得到与每个接入节点对应的第一网络功能单元,所述第一网络功能单元为有源天线处理单元,第一网络单元运行在专用处理器上;
    根据每个接入节点的流量计算得出对应的分布式处理单元所需要的容量,并基于所述所需要的容量,结合各网络功能单元的前传链路的连接关系、距离、带宽,确定各分布式处理单元所映射的数据中心节点,并在完成所述各分布式处理单元映射后,触发对对应的前传链路映射;
    根据各分布式处理单元所连接的接入节点的流量,计算得到对应的集中单元所需要的容 量,结合各网络功能单元的中传链路的连接关系、距离、带宽,确定各集中式处理单元所映射的数据中心节点,并在完成所述各集中式处理单元映射后,完成对应的中传链路映射;
    根据各集中式处理单元所连接的接入节点的流量,计算得到对应的移动边缘服务实体的容量,结合各网络功能单元的回传链路的连接关系、距离、带宽,确定各移动边缘服务实体所映射的数据中心节点,并在完成所述各移动边缘服务实体的映射后,完成对应的回传链路映射。
  11. 如权利要求10所述的基于模板的5G端到端网络切片生成方法,其特征在于,还包括:
    根据数据中心节点和链路能力确定所述所映射的数据中心节点,其中,所述数据中心节点和链路能力经由以下参数选定:描述数据中心剩余处理能力的参数、前传链路的长度、剩余带宽,以及数据中心与相邻的接入节点所连接网络功能单元之间的链路距离和带宽。
  12. 一种基于模板的5G端到端网络切片生成装置,其特征在于,包括:
    接收模块,用于接收网络切片生成请求,所述切片生成请求用于生成网络切片;
    生成模块,用于根据所述切片生成请求触发采用通用模板生成所述网络切片对应的抽象拓扑,所述抽象拓扑用于描述各网络功能单元之间的连接关系;
    映射模块,用于通过映射策略将所述对应的抽象拓扑映射至物理拓扑中,以生成所述网络切片。
  13. 一种电子设备,其特征在于,包括:处理器和存储器;
    其中,所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于实现如权利要求1-11中任一所述的基于模板的5G端到端网络切片生成方法。
  14. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-11中任一所述的基于模板的5G端到端网络切片生成方法。
PCT/CN2019/090012 2018-06-04 2019-06-04 基于模板的5g端到端网络切片生成方法及装置 WO2019233420A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810564658.3 2018-06-04
CN201810564658.3A CN108770016B (zh) 2018-06-04 2018-06-04 基于模板的5g端到端网络切片生成方法及装置

Publications (1)

Publication Number Publication Date
WO2019233420A1 true WO2019233420A1 (zh) 2019-12-12

Family

ID=64002515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090012 WO2019233420A1 (zh) 2018-06-04 2019-06-04 基于模板的5g端到端网络切片生成方法及装置

Country Status (2)

Country Link
CN (1) CN108770016B (zh)
WO (1) WO2019233420A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210289436A1 (en) * 2018-11-30 2021-09-16 Huawei Technologies Co., Ltd. Data Processing Method, Controller, and Forwarding Device
TWI786839B (zh) * 2021-09-17 2022-12-11 國立雲林科技大學 5g核心網路中多流量類型的適性網路切片生成系統及其方法
US11570066B1 (en) 2021-07-07 2023-01-31 Cisco Technology, Inc. Slice intent efficiency assurance and enhancement in enterprise private 5G network

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108770016B (zh) * 2018-06-04 2019-07-05 北京邮电大学 基于模板的5g端到端网络切片生成方法及装置
CN112118122B (zh) * 2019-06-21 2023-03-24 中国信息通信研究院 一种光传输网络切片管控方法和系统
CN110958133B (zh) * 2019-11-01 2020-12-04 北京邮电大学 网络切片映射方法、设备、服务器和存储介质
CN112817688B (zh) * 2019-11-15 2023-10-20 大唐移动通信设备有限公司 一种网络切片模板生成方法及装置
CN112825502A (zh) * 2019-11-20 2021-05-21 中兴通讯股份有限公司 网络切片创建方法、基础网络控制器、系统和存储介质
CN110995514B (zh) * 2019-12-30 2021-07-20 西安电子科技大学 一种多维度的端到端网络切片生成装置及方法
US11638312B2 (en) * 2020-02-13 2023-04-25 Qualcomm Incorporated Slice allocation
CN113708948A (zh) * 2020-05-22 2021-11-26 亚信科技(中国)有限公司 切片流程的控制方法、装置、模块、以及计算机可读介质
CN114024855B (zh) * 2020-07-16 2023-05-30 中国联合网络通信集团有限公司 一种网络切片和边缘云的融合方法和装置
CN112165717B (zh) * 2020-10-16 2021-09-17 北京邮电大学 基于多路径多副本的ran切片部署方法、装置及网络控制器
CN112566819B (zh) * 2020-11-20 2022-09-16 华为技术有限公司 一种访问io设备的方法及装置
CN115484183A (zh) * 2021-06-16 2022-12-16 中兴通讯股份有限公司 切片信息的确定方法、装置、存储介质及电子装置
CN115701043A (zh) * 2021-07-14 2023-02-07 南宁富联富桂精密工业有限公司 网络切片管理方法、装置及计算机可读存储介质
CN113568860B (zh) * 2021-07-23 2022-08-19 北京百度网讯科技有限公司 基于深度学习的多机集群拓扑映射方法、装置及程序产品
CN113810939B (zh) * 2021-08-17 2023-07-18 中国人民解放军战略支援部队信息工程大学 一种用户无感的网络切片动态映射装置及方法
CN114006814B (zh) * 2021-10-11 2023-12-05 中盈优创资讯科技有限公司 一种基于网络的硬切片动态监控方法及装置
CN114448802B (zh) * 2022-01-28 2024-05-14 北京百度网讯科技有限公司 网关配置方法、装置、电子设备及存储介质
CN114915670B (zh) * 2022-04-12 2023-10-24 中国人民解放军战略支援部队信息工程大学 一种支持多种协议共存的网络切片实现方法与装置
CN115037625B (zh) * 2022-06-14 2024-04-26 中国电信股份有限公司 网络切片处理方法、装置、电子设备及可读存储介质
CN115051944B (zh) * 2022-07-15 2023-07-21 中国电信股份有限公司 端到端切片创建方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170332421A1 (en) * 2016-05-12 2017-11-16 Convida Wireless, Llc Connecting to Virtualized Mobile Core Networks
CN107659426A (zh) * 2016-07-26 2018-02-02 华为技术有限公司 分配物理资源的方法和网络侧设备
US20180077023A1 (en) * 2016-09-09 2018-03-15 Huawei Technologies Co., Ltd. Method and apparatus for network slicing
CN107889169A (zh) * 2016-09-29 2018-04-06 华为技术有限公司 网络切片的建立方法和装置
CN107925587A (zh) * 2015-08-21 2018-04-17 华为技术有限公司 用于网络切片的方法和装置
CN108770016A (zh) * 2018-06-04 2018-11-06 北京邮电大学 基于模板的5g端到端网络切片生成方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103024859B (zh) * 2012-11-30 2016-06-08 无锡清华信息科学与技术国家实验室物联网技术中心 低占空比无线传感器网络中最小时延的数据收集方法
US20150154258A1 (en) * 2013-12-04 2015-06-04 Nec Laboratories America, Inc. System and method for adaptive query plan selection in distributed relational database management system based on software-defined network
CN107318113B (zh) * 2016-04-27 2021-09-21 华为技术有限公司 网络切片处理方法和装置
CN107888425B (zh) * 2017-11-27 2019-12-06 北京邮电大学 移动通信系统的网络切片部署方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925587A (zh) * 2015-08-21 2018-04-17 华为技术有限公司 用于网络切片的方法和装置
US20170332421A1 (en) * 2016-05-12 2017-11-16 Convida Wireless, Llc Connecting to Virtualized Mobile Core Networks
CN107659426A (zh) * 2016-07-26 2018-02-02 华为技术有限公司 分配物理资源的方法和网络侧设备
US20180077023A1 (en) * 2016-09-09 2018-03-15 Huawei Technologies Co., Ltd. Method and apparatus for network slicing
CN107889169A (zh) * 2016-09-29 2018-04-06 华为技术有限公司 网络切片的建立方法和装置
CN108770016A (zh) * 2018-06-04 2018-11-06 北京邮电大学 基于模板的5g端到端网络切片生成方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210289436A1 (en) * 2018-11-30 2021-09-16 Huawei Technologies Co., Ltd. Data Processing Method, Controller, and Forwarding Device
US11570066B1 (en) 2021-07-07 2023-01-31 Cisco Technology, Inc. Slice intent efficiency assurance and enhancement in enterprise private 5G network
TWI786839B (zh) * 2021-09-17 2022-12-11 國立雲林科技大學 5g核心網路中多流量類型的適性網路切片生成系統及其方法

Also Published As

Publication number Publication date
CN108770016A (zh) 2018-11-06
CN108770016B (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2019233420A1 (zh) 基于模板的5g端到端网络切片生成方法及装置
WO2018127144A1 (zh) 管理网络切片实例的方法、装置和系统
US20210274418A1 (en) Information Transmission Method and Apparatus
WO2020119648A1 (zh) 一种基于代价优化的计算任务卸载算法
WO2019062830A1 (zh) 实例业务拓扑的生成方法及装置
KR20200108049A (ko) 디폴트 서비스 품질(QoS) 제어 방법 및 장치
WO2020073903A1 (zh) 时延敏感网络通信方法及其装置
WO2019029268A1 (zh) 网络切片的部署方法和装置
CN109392092A (zh) 一种寻呼消息的发送方法及相关设备
WO2021238774A1 (zh) 通信方法及装置
WO2019029522A1 (zh) 网络组件的管理方法和网络设备
WO2019029267A1 (zh) 网络切片的管理方法和装置
CN105340224A (zh) 网络控制方法和装置
WO2019119424A1 (zh) 一种非授权载波的处理方法和装置以及系统
WO2019047769A1 (zh) 一种处理网络切片实例的方法、装置及系统
WO2021037133A1 (zh) 一种网络管理的方法及设备
WO2021244302A1 (zh) 一种服务质量管理方法和装置
WO2022142277A1 (zh) 一种通信架构的动态调节方法及系统
CN110958133A (zh) 网络切片映射方法、设备、服务器和存储介质
TWI826552B (zh) 頻譜管理設備、電子設備、無線通信方法和儲存介質
JP7472110B2 (ja) セルラ電気通信ネットワーク
CN107241223A (zh) 一种基于sdr和虚拟化技术资源弹性协作映射方法及装置
CN107734508A (zh) 一种分组传送网接入环拆环方法和装置
WO2019100796A1 (zh) 一种网络性能保障方法及装置
WO2019076301A1 (zh) 多集中单元融合方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815367

Country of ref document: EP

Kind code of ref document: A1