WO2019233409A1 - 自适应以太网供电 - Google Patents

自适应以太网供电 Download PDF

Info

Publication number
WO2019233409A1
WO2019233409A1 PCT/CN2019/089975 CN2019089975W WO2019233409A1 WO 2019233409 A1 WO2019233409 A1 WO 2019233409A1 CN 2019089975 W CN2019089975 W CN 2019089975W WO 2019233409 A1 WO2019233409 A1 WO 2019233409A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
matching
place
pse
impedance
Prior art date
Application number
PCT/CN2019/089975
Other languages
English (en)
French (fr)
Inventor
汲哲
宁保涛
Original Assignee
新华三技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新华三技术有限公司 filed Critical 新华三技术有限公司
Publication of WO2019233409A1 publication Critical patent/WO2019233409A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements

Definitions

  • PoE Power over Ethernet
  • POL Power over LAN
  • Active Ethernet Active Ethernet
  • IP-based terminals such as IP phones, wireless LAN access points AP, network cameras, etc.
  • PoE Power Supply Equipment
  • PD Powered Device
  • the PoE system can directly provide a standard voltage to a standard PD in place for power supply.
  • the standard PD here is a PD that complies with 802.3af, 802.3at, and UPOE standards.
  • Non-standard PDs are PDs that do not meet 802.3af, 802.3at, UPOE standards, etc.
  • the main difference between standard PD and non-standard PD is that the power supply voltage is different and the characteristic impedance is different.
  • PSE provides standard voltage for standard PD, such as 48 volts (V). In actual networking, there are often demands for standard PDs and non-standard PDs that require PoE for power supply.
  • FIG. 1 is an example structural diagram of a PoE adaptive device provided by the present disclosure.
  • FIG. 2 is a structural diagram of an exemplary device provided by the present disclosure.
  • FIG. 3 is a flowchart of a method provided by the present disclosure.
  • FIG. 1 is an example structural diagram of a PoE adaptive device provided by the present disclosure.
  • the device provided by the present disclosure is applied to a PSE.
  • the device may include: a voltage output module 101, a detection circuit 102, and a controller 103.
  • the voltage output module 101 can simultaneously output at least two different voltages.
  • the voltage output by the voltage output module 101 includes at least a standard power supply voltage and a non-standard power supply voltage.
  • the standard supply voltage here is a voltage that complies with standards such as 802.3af, 802.3at, and UPOE standards.
  • the non-standard power supply voltage here is a voltage that does not conform to standards such as 802.3af, 802.3at, and UPOE standards.
  • the detection circuit 102 is configured to detect PD information of a PD in position.
  • the controller 103 is configured to select a matching voltage that matches the PD in place from the voltage output by the voltage output module 101 according to the detected PD information, and control the input of the matching voltage to the PD in place to consider the PD in place PD power.
  • a matching voltage is output to an in-place PD to supply power to the in-place PD.
  • FIG. 1 only one PD is schematically shown, but the number of PDs is not limited, and there may be multiple PDs.
  • the controller 103 instead of directly supplying the on-site PD, the controller 103 first selects the on-site PD from the voltage output from the voltage output module 101 according to the detected PD information. A matching matching voltage is then used to power the on-site PD according to the selected matching voltage. In this way, regardless of whether the on-site PD is a standard PD or a non-standard PD, the controller 103 selects a matching matching voltage for the on-site PD to supply power from the voltage output from the voltage output module 101 according to the detected PD information. This achieves the purpose of adaptively powering standard PDs and non-standard PDs, and also achieves the purpose of mixing standard PDs with non-standard PDs.
  • the voltage output by the voltage output module 101 includes a standard power supply voltage supported by the PSE and a non-standard power supply voltage supported by the PSE. Among them, the impedance ranges corresponding to the standard power supply voltage and the non-standard power supply voltage are different.
  • the present disclosure will pre-configure the impedance interval supported by the PSE in the PSE according to requirements.
  • the impedance interval supported by the PSE may include a standard impedance interval and a non-standard impedance interval.
  • the standard impedance interval is set according to the impedance of the standard PD. Taking a standard DC voltage of 48V as an example, and testing the input DC impedance from the PD Ethernet port between 23.75 kohms and 26.25 kohms, you can set the standard impedance range from 23.75 kohms to 26.25 kohms.
  • the non-standard impedance interval is set according to the impedance of the non-standard PD.
  • an adapted voltage will also be configured for the impedance interval supported by the PSE.
  • a DC voltage of 48V can be configured; for the non-standard impedance region of 8kohms to 12kohms, the adaptive voltage can be configured to 24V DC voltage.
  • the PD information detected by the detection circuit 102 may be the impedance of the PD in place.
  • the above-mentioned controller 103 may select a matching voltage that matches the on-site PD from the voltages output by the voltage output module 101 according to the PD information detected by the detection circuit 102, which may specifically include:
  • the voltage corresponding to the target impedance interval is determined as a matching voltage that matches the PD in place.
  • the controller 103 can select a matching voltage that matches the on-site PD from the voltages output by the voltage output module 101 according to the PD information detected by the detection circuit 102.
  • the controller 103 may select a matching voltage that matches the PD in place from the voltage output by the voltage output module 101 according to the PD information detected by the detection circuit 102, and may be performed at a specified time, such as 500 ms.
  • the controller 103 is further used to control the detection circuit 102 to stop performing stepwise detection and on-in-place PD detection. Electricity.
  • the controller 103 may be caused by that the impedance of the PD is not within any impedance interval supported by the PSE. This disclosure is not specifically limited, and is not repeated here.
  • a switch can be provided for each voltage output by the voltage output module 101, and the controller 102 can control the voltage by controlling the switch.
  • the device may further include a switch 104.
  • the switch 104 may include N switches, where N is the number of voltages output by the voltage output module 101.
  • N is the number of voltages output by the voltage output module 101.
  • each voltage output by the voltage output module 101 is connected to the PD via a corresponding switch, respectively.
  • Each switch is used to control the on / off of the voltage output by the voltage output module 101 to the PD via the switch.
  • the switch here is a MOS tube or other device having a switching function.
  • the controller 103 controlling the input of the matching voltage to the in-place PD may include: the controller 103 enables a switch corresponding to the matching voltage to allow the matching voltage to be input to the in-place through the switch. PD. Finally, the controller 103 is implemented to control the matching voltage input to the in-place PD.
  • FIG. 2 is a structural diagram of an exemplary device provided by the present disclosure.
  • the voltage output module 201 outputs a standard voltage of 48V and a non-standard voltage of 24V, respectively.
  • 24V may be one example of the voltage required for IoT devices in the IoT.
  • the standard voltage of 48V and the non-standard voltage of 24V are only examples and are not intended to be limiting.
  • the standard voltage 48V and the non-standard voltage 24V output by the voltage output module 201 are respectively output to the PD through the corresponding switches 202 a and 202 b.
  • the switch shown in FIG. 2 uses a MOS tube as an example.
  • the switch corresponding to the standard voltage 48V output by the voltage output module 201 is referred to as the switch 202a, and the switch corresponding to the non-standard voltage 24V is referred to as the switch 202b.
  • the detection circuit 203 detects that the impedance of the in-place PD is 24.9 kiloohms, and the controller 204 checks the impedance of the in-place PD. 26.25 kiloohms, the controller 204 obtains a voltage corresponding to the standard impedance range of 23.75 kiloohms to 26.25 kiloohms.
  • the voltage corresponding to the standard impedance range of 23.75 kohms to 26.25 kohms is 48V.
  • the controller 204 controls the switch 202a to be turned on to allow a standard voltage of 48V to be input to the PD in place. So far, the power supply voltage provided for the in-place PD is a standard voltage of 48V, and the non-standard voltage of 24V output by the voltage output module 201 cannot supply power to the in-place PD because the switch 202b is not turned on. In this way, only one voltage can be selected to power the on-site PD at the same time.
  • the detection circuit 203 detects that the impedance of the in-place PD is 10 kiloohms, and the controller 204 checks that the impedance of the in-place PD is 10 kiloohms, which is exactly the non-standard impedance interval of 8 kilograms supported by the PSE Ohms to 12 kiloohms, the controller 204 obtains a voltage corresponding to a non-standard impedance range of 8 kiloohms to 12 kiloohms.
  • the voltage corresponding to the non-standard impedance interval of 8 k ⁇ to 12 k ⁇ obtained by the controller 204 is 24V.
  • the controller 204 controls the switch 202b to be turned on to allow a non-standard voltage 24V to be input to the PD in place. So far, the power supply voltage provided for the in-place PD is a non-standard voltage of 24V, and the standard voltage of 48V output by the voltage output module 201 cannot be used to power the in-place PD. Similarly, only one voltage can be selected to power the in-place PD at a time.
  • the detection circuit 203 detects that the impedance of the in-place PD is 20 kiloohms, and the controller 204 checks that the impedance of the in-place PD 20 kiloohms is not in any impedance range supported by the PSE ( Including the standard impedance interval and the non-standard impedance interval), the controller 204 controls the detection circuit 203 to stop performing hierarchical detection and power-on to the in-place PD.
  • the PSE Including the standard impedance interval and the non-standard impedance interval
  • FIG. 3 is a flowchart of a method provided by the present disclosure. This method is applied to PSE. As shown in Figure 3, the process may include the following steps:
  • Step 301 Detect PD information of a PD in position.
  • Step 302 Select a matching voltage that matches the on-site PD from the voltages output by the PSE according to the detected PD information.
  • the PD information is the impedance of the PD in place.
  • step 302 selecting a matching voltage that matches the PD in place from the voltage output by the PSE according to the detected PD information may include:
  • the voltage corresponding to the target impedance interval is determined as a matching voltage that matches the PD in place.
  • the voltage output by the PSE may include a standard power supply voltage supported by the PSE and a non-standard power supply voltage supported by the PSE.
  • the standard power supply voltage and the non-standard power supply voltage correspond to different impedance intervals.
  • Step 303 Control the input of the matching voltage to the in-place PD to supply power to the in-place PD.
  • controlling the input of the matching voltage to the in-place PD includes: enabling a switch corresponding to the matching voltage to allow the matching voltage to be input to the in-place PD through the switch.
  • the PSE does not directly supply the PD in place, but first selects a matching matching voltage for the PD in place from the voltage output by the PSE according to the detected PD information. Then power the on-site PD according to the selected matching voltage.
  • the PSE can select a matching matching voltage for the on-site PD from the output voltage according to the detected PD information to power. This achieves the purpose of adaptively powering standard PDs and non-standard PDs, and also achieves the purpose of mixing standard PDs with non-standard PDs.
  • the above step 302 selects a matching voltage that matches the PD in place from the voltage output by the PSE according to the detected PD information, and executes it within a specified time, such as 500 ms.
  • the present disclosure may further include: controlling to stop performing hierarchical detection and powering on the in-place PD.

Abstract

本公开提供了自适应以太网供电PoE方法和装置。本公开中,PSE并非直接为在位PD供电,而是先由控制器依据检测到的PD信息从电压输出模块输出的电压中自适应为在位PD选择一个匹配的匹配电压,之后按照选择的匹配电压为在位PD进行供电。

Description

自适应以太网供电 背景技术
以太网供电(Power over Ethernet,PoE),也称为基于局域网的供电系统(POL:Power over LAN)或有源以太网(Active Ethernet)。在以太网Cat.5布线基础架构下,利用PoE技术,为一些基于IP的终端(如IP电话机、无线局域网接入点AP、网络摄像机等)传输数据信号的同时,还为此类设备提供直流供电。
在PoE系统中,有一个组成部分称为供电设备(PSE:Power Sourcing Equipment),用于提供电力,还有一个组成部分称为受电设备(PD:Powered Device),用于消耗电力。
PoE系统可直接向在位的标准PD提供标准电压进行供电。这里的标准PD是符合802.3af、802.3at、UPOE标准等的PD。非标准PD是不符合802.3af、802.3at、UPOE标准等的PD。标准PD和非标准PD的最主要区别就是供电电压不同,特征阻抗不一样。PSE为标准PD提供标准电压,比如48伏(V)等。在实际组网中,经常会有标准PD和非标准PD均需要PoE进行供电的需求。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1为本公开提供的PoE自适应装置的示例结构图。
图2为本公开提供的示例装置结构图。
图3为本公开提供的方法流程图。
具体实施方式
为了使本公开更加清楚,下面结合具体附图和实施例对本公开进行描述。
参见图1,图1为本公开提供的PoE自适应装置的示例结构图。作为一个实施例,本公开提供的装置应用于PSE。
如图1所示,该装置可包括:电压输出模块101、检测电路102、控制器103。
在本公开中,电压输出模块101可同时输出至少两个不同电压。作为一个实施例,电压输出模块101输出的电压至少包括:标准供电电压、非标准供电电压。这里的标准供电电压为符合标准比如802.3af、802.3at、UPOE标准等的电压。对应地,这里的非标准供电电压为不符合标准比如802.3af、802.3at、UPOE标准等的电压。
检测电路102,用于检测在位PD的PD信息。
控制器103,用于依据检测到的PD信息从电压输出模块101输出的电压中选择一个与在位PD匹配的匹配电压,并控制所述匹配电压输入至所述在位PD以为所述在位PD供电。最终,会控制对一个在位PD输出一路匹配电压以为该在位PD供电。在图1中,仅示意性地示出一个PD,但是PD的数量并不具有限制性,可以有多个PD。
通过图1所示装置可以看出,在本公开中,并非直接为在位PD供电,而是先由控制器103依据检测到的PD信息从电压输出模块101输出的电压中为在位PD选择一个匹配的匹配电压,之后按照选择的匹配电压为在位PD进行供电。这样,不管在位PD是标准PD还是非标准PD,控制器103依据检测到的PD信息从电压输出模块101输出的电压中为在位PD选择一个匹配的匹配电压进行供电。这实现了自适应为标准PD和非标准PD供电的目的,也实现了标准PD和非标准PD混用的目的。
在本公开中,电压输出模块101输出的电压包括:PSE支持的标准供电电压、PSE支持的非标准供电电压。其中,标准供电电压、非标准供电电压对应的阻抗区间不同。
作为一个实施例,本公开会根据需求预先在PSE配置PSE支持的阻抗区间。其中,PSE支持的阻抗区间可包括:标准阻抗区间、非标准阻抗区间。这里标准阻抗区间是依据标准PD的阻抗设置的。以标准电压为48V的直流电压为例,从PD以太网口测试出输入直流阻抗在23.75千欧~26.25千欧之间,则可设置标准阻抗区间为23.75千欧~26.25千欧。这里,非标准阻抗区间是依据非标准PD的阻抗设置的。以非标准电压为24V的直流电压为例,从PD以太网口测试出输入直流阻抗在8千欧~12千欧之间,则可设置非标准阻抗区间为8千欧~12千欧。
在本公开中,还会为PSE支持的阻抗区间配置适配的电压。例如,对于标准阻抗区间23.75千欧~26.25千欧,则可配置适配的电压为48V的直流电压;对于非标准阻抗区间为8千欧~12千欧,则可配置适配的电压为24V的直流电压。
基于上述配置,则在本公开中,作为一个实施例,上述检测电路102检测到的PD信息可为在位PD的阻抗。
上述控制器103依据检测电路102检测到的PD信息从电压输出模块101输出的电压中选择一个与在位PD匹配的匹配电压具体可包括:
从所述PSE支持的阻抗区间中查找所述在位PD的阻抗所处的目标阻抗区间;
从电压输出模块101输出的电压中选择所述目标阻抗区间对应的电压;
将所述目标阻抗区间对应的电压确定为与所述在位PD匹配的匹配电压。
如此,即可实现控制器103依据检测电路102检测到的PD信息,从电压输出模块101输出的电压中选择一个与在位PD匹配的匹配电压。
本公开中,控制器103依据检测电路102检测到的PD信息从电压输出模块101输出的电压中选择一个与在位PD匹配的匹配电压可以是在指定时间比如500ms执行的。
而一旦控制器103在指定时间结束时若还未成功选择一个与在位PD匹配的匹配电压,则控制器103进一步用于控制所述检测电路102停止对所述在位PD执行分级检测和上电。
这里,控制器103在指定时间结束时若还未成功选择一个与在位PD匹配的匹配电压,则可由在位PD的阻抗并不处于PSE支持的任一阻抗区间内等导致的。本公开并不具体限定,这里不再赘述。
在本公开中,作为一个实施例,可针对电压输出模块101输出的各个电压分别设置一个开关,由控制器102通过控制开关达到控制电压的目的。
基于此,如图1所示,该装置可进一步包括:开关104。
这里,开关104可包括N个开关,其中,N为电压输出模块101输出的电压的数量。在本公开中,电压输出模块101输出的各个电压分别经由对应的开关连接至PD。
每一开关用于控制电压输出模块101经由该开关输出至PD的电压的通断。作为一个实施例,这里的开关为MOS管或者其他具有开关功能的器件。
基于此,上述控制器103控制所述匹配电压输入至所述在位PD可包括:控制器103使能所述匹配电压对应的开关,以允许所述匹配电压通过该开关输入至所述在位PD。最终实现了控制器103控制所述匹配电压输入至所述在位PD。
下面通过一个具体实施例对本公开进行描述:
参见图2,图2为本公开提供的示例装置结构图。如图2所示,电压输出模块201 分别输出标准电压48V和非标准电压24V。24V可为物联网中物联网设备所需要的电压的一个示例。标准电压48V和非标准电压24V只是一种举例,并非用于限定。
在图2中,电压输出模块201输出的标准电压48V和非标准电压24V分别经由对应的开关202a、202b输出至PD。图2所示的开关以MOS管为例。电压输出模块201输出的标准电压48V对应的开关记为开关202a,非标准电压24V对应的开关记为开关202b。
在图2中,作为一个实施例,检测电路203检测在位PD的阻抗为24.9千欧,则控制器204检查在位PD的阻抗24.9千欧正好处于本PSE支持的标准阻抗区间23.75千欧~26.25千欧,则控制器204获取标准阻抗区间23.75千欧~26.25千欧对应的电压。这里,标准阻抗区间23.75千欧~26.25千欧对应的电压为48V。
控制器204控制开关202a导通以允许标准电压48V输入至在位PD。至此,为在位PD提供的供电电压为标准电压48V,而电压输出模块201输出的非标准电压24V因开关202b不被导通而无法为在位PD供电。这样,同一时刻只能选择一种电压为在位PD供电。
在图2中,作为另一个实施例,检测电路203检测在位PD的阻抗为10千欧,则控制器204检查在位PD的阻抗10千欧正好处于本PSE支持的非标准阻抗区间8千欧~12千欧,则控制器204获取非标准阻抗区间8千欧~12千欧对应的电压。这里,控制器204获取的非标准阻抗区间8千欧~12千欧对应的电压为24V。
控制器204控制开关202b导通以允许非标准电压24V输入至在位PD。至此,为在位PD提供的供电电压为非标准电压24V,而电压输出模块201输出的标准电压48V无法用于为在位PD供电。类似地,同一时刻只能选择一种电压为在位PD供电。
在图2中,作为另一个实施例,检测电路203检测在位PD的阻抗为20千欧,则控制器204检查在位PD的阻抗20千欧并不处于本PSE支持的任一阻抗区间(包括标准阻抗区间、非标准阻抗区间),则控制器204控制检测电路203停止对在位PD执行分级检测和上电。
对应上述的装置,本公开还提供了PoE自适应方法流程图。参见图3,图3为本公开提供的方法流程图。该方法应用于PSE。如图3所示,该流程可包括以下步骤:
步骤301,检测在位PD的PD信息。
步骤302,依据检测到的PD信息从本PSE输出的电压中选择一个与在位PD匹配的匹配电压。
作为一个实施例,上述PD信息为在位PD的阻抗。
基于此,本步骤302中,依据检测到的PD信息从本PSE输出的电压中选择一个与在位PD匹配的匹配电压可包括:
从本PSE支持的多个阻抗区间中查找所述在位PD的阻抗所处的目标阻抗区间;
从本PSE输出的电压中选择所述目标阻抗区间对应的电压;
将所述目标阻抗区间对应的电压确定为与所述在位PD匹配的匹配电压。
本公开中,本PSE输出的电压可包括:本PSE支持的标准供电电压、本PSE支持的非标准供电电压。其中,所述标准供电电压、所述非标准供电电压对应的阻抗区间不同。
步骤303,控制所述匹配电压输入至所述在位PD以为所述在位PD供电。
作为一个实施例,这里,控制匹配电压输入至所述在位PD包括:使能所述匹配电压对应的开关,以允许所述匹配电压通过该开关输入至所述在位PD。
通过图3所示流程可以看出,本公开中,PSE并非直接为在位PD供电,而是先依据检测到的PD信息从本PSE输出的电压中为在位PD选择一个匹配的匹配电压,之后按照选择的匹配电压为在位PD进行供电。这样,不管在位PD是标准PD还是非标准PD,PSE都能依据检测到的PD信息从输出的电压中为在位PD选择一个匹配的匹配电压进行供电。这实现了自适应为标准PD和非标准PD供电的目的,也实现了标准PD和非标准PD混用的目的。
本公开中,上述步骤302依据检测到的PD信息从本PSE输出的电压中选择一个与在位PD匹配的匹配电压是在指定时间比如500ms内执行。
判断是否在检测到所述PD信息后的指定时间内成功选择出与在位PD匹配的匹配电压,当所述指定时间比如500ms结束时若还未成功选择一个与在位PD匹配的匹配电压,则本公开可进一步包括:控制对所述在位PD停止执行分级检测和上电。
以上所述仅为本公开的实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开保护的范围之内。

Claims (10)

  1. 一种以太网供电PoE自适应装置,该装置应用于供电设备PSE,包括:
    电压输出模块,用于输出至少两个不同电压;
    检测电路,用于检测在位受电设备PD的PD信息;
    控制器,用于依据所述PD信息,从所述电压输出模块输出的电压中选择一个与所述在位PD匹配的匹配电压,并控制所述匹配电压输入至所述在位PD。
  2. 根据权利要求1所述的装置,其特征在于,所述PD信息为所述在位PD的阻抗;
    所述控制器依据所述PD信息从所述电压输出模块输出的电压中选择一个与所述在位PD匹配的匹配电压,包括:
    从所述PSE支持的多个阻抗区间中查找所述在位PD的阻抗所处的目标阻抗区间;
    从所述电压输出模块输出的电压中选择所述目标阻抗区间对应的电压,作为与所述在位PD匹配的匹配电压。
  3. 根据权利要求1所述的装置,其特征在于,
    所述电压输出模块输出的电压包括所述PSE支持的标准供电电压、所述PSE支持的非标准供电电压,
    所述标准供电电压、所述非标准供电电压对应的阻抗区间不同。
  4. 根据权利要求1所述的装置,其特征在于,
    该装置还包括:
    至少两个开关,所述至少两个开关的数量与所述电压输出模块输出的电压的数量相等,所述电压输出模块输出的每个电压经由一个开关输入至所述在位PD;
    所述控制器通过以下方式控制所述匹配电压输入至所述在位PD:
    所述控制器使能所述匹配电压对应的开关,以允许所述匹配电压通过所述开关输入至所述在位PD。
  5. 根据权利要求1所述的装置,其特征在于,所述控制器还被配置为:
    判断是否在检测到所述PD信息后的指定时间内成功选择出与在位PD匹配的匹配电压;
    若在所述指定时间结束时还未成功选择出与所述在位PD匹配的匹配电压,则控制所述检测电路停止对所述在位PD执行分级检测和上电。
  6. 一种以太网供电PoE自适应方法,应用于供电设备PSE,包括:
    检测在位受电设备PD的PD信息;
    依据检测到的PD信息从本PSE输出的电压中选择一个与所述在位PD匹配的匹配 电压;
    控制所述匹配电压输入至所述在位PD。
  7. 根据权利要求6所述的方法,其特征在于,所述PD信息为所述在位PD的阻抗;
    依据所述PD信息从本PSE输出的电压中选择一个与所述在位PD匹配的匹配电压,包括:
    从本PSE支持的多个阻抗区间中查找所述在位PD的阻抗所处的目标阻抗区间;
    从本PSE输出的电压中选择所述目标阻抗区间对应的电压,作为与所述在位PD匹配的匹配电压。
  8. 根据权利要求6所述的方法,其特征在于,
    本PSE输出的电压包括本PSE支持的标准供电电压、本PSE支持的非标准供电电压,
    所述标准供电电压、所述非标准供电电压对应的阻抗区间不同。
  9. 根据权利要求6所述的方法,其特征在于,控制所述匹配电压输入至所述在位PD包括:
    使能所述匹配电压对应的开关,以允许所述匹配电压通过所述开关输入至所述在位PD。
  10. 根据权利要求6所述的方法,其特征在于,该方法进一步包括:
    判断是否在检测到所述PD信息后的指定时间内成功选择出与在位PD匹配的匹配电压;
    当所述指定时间结束时,若还未成功选择出与所述在位PD匹配的匹配电压,则停止对所述在位PD执行分级检测和上电。
PCT/CN2019/089975 2018-06-08 2019-06-04 自适应以太网供电 WO2019233409A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810586261.4 2018-06-08
CN201810586261.4A CN108964927B (zh) 2018-06-08 2018-06-08 以太网供电PoE自适应方法和装置

Publications (1)

Publication Number Publication Date
WO2019233409A1 true WO2019233409A1 (zh) 2019-12-12

Family

ID=64493851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089975 WO2019233409A1 (zh) 2018-06-08 2019-06-04 自适应以太网供电

Country Status (2)

Country Link
CN (1) CN108964927B (zh)
WO (1) WO2019233409A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964927B (zh) * 2018-06-08 2021-04-27 新华三技术有限公司 以太网供电PoE自适应方法和装置
CN110113174B (zh) * 2019-03-28 2021-06-25 普联技术有限公司 一种以太网供电设备
CN110752935B (zh) * 2019-10-30 2021-10-15 南方电网科学研究院有限责任公司 Poe的自适应供电系统、方法及其装置
WO2021142560A1 (zh) * 2020-01-13 2021-07-22 广东优力普物联科技有限公司 一种poe交换机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104954145A (zh) * 2014-03-29 2015-09-30 华为技术有限公司 以太网供电方法、供电设备和以太网供电系统
CN106330467A (zh) * 2016-08-23 2017-01-11 锐捷网络股份有限公司 一种以太网供电方法、供电装置及供电设备
CN106972936A (zh) * 2017-04-28 2017-07-21 上海斐讯数据通信技术有限公司 一种可调poe供电电压的系统及方法
CN107547210A (zh) * 2017-08-25 2018-01-05 锐捷网络股份有限公司 一种非标准供电设备、受电设备及系统
CN108964927A (zh) * 2018-06-08 2018-12-07 新华三技术有限公司 以太网供电PoE自适应方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9547318B1 (en) * 2012-10-15 2017-01-17 Linear Technology Corporation Powered device, using power over ethernet, with dedicated low current and high current paths for loads
US10225911B2 (en) * 2015-07-24 2019-03-05 Tridonic Gmbh & Co Kg Emergency signaling for power over ethernet systems
CN105049216B (zh) * 2015-08-25 2018-10-12 上海斐讯数据通信技术有限公司 一种以太网供电方法及供电系统
CN106936598A (zh) * 2015-12-31 2017-07-07 华为技术有限公司 以太网供电方法及供电设备与受电设备
KR20180048076A (ko) * 2016-11-02 2018-05-10 삼성전자주식회사 전원 변조기 및 이를 포함하는 통신 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104954145A (zh) * 2014-03-29 2015-09-30 华为技术有限公司 以太网供电方法、供电设备和以太网供电系统
CN106330467A (zh) * 2016-08-23 2017-01-11 锐捷网络股份有限公司 一种以太网供电方法、供电装置及供电设备
CN106972936A (zh) * 2017-04-28 2017-07-21 上海斐讯数据通信技术有限公司 一种可调poe供电电压的系统及方法
CN107547210A (zh) * 2017-08-25 2018-01-05 锐捷网络股份有限公司 一种非标准供电设备、受电设备及系统
CN108964927A (zh) * 2018-06-08 2018-12-07 新华三技术有限公司 以太网供电PoE自适应方法和装置

Also Published As

Publication number Publication date
CN108964927B (zh) 2021-04-27
CN108964927A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2019233409A1 (zh) 自适应以太网供电
US7856561B2 (en) Detecting legacy powered device in power over ethernet system
KR101196024B1 (ko) 통신 케이블에서 네 쌍의 컨덕터들을 통한 전력 공급
US20100031066A1 (en) Method and System for Determining Power Over Ethernet Class Capabilities
CN107147503B (zh) 受电设备和poe系统
US20060164098A1 (en) Utilization of power delivered to powered device during detection and classification mode
US20060164062A1 (en) Distinguishing network interface card from short circuit condition in power over ethernet system
US20060259798A1 (en) Classification mechanism in system for supplying power over communication link
TWI474666B (zh) 電源管理方法及電源管理裝置
KR20070104601A (ko) 통신링크를 통해 전력을 공급하는 시스템에서 전력 공급장치 및 전력 기기 간의 데이터 통신 제공
WO2007106795A2 (en) Method and apparatus for changing power class for a powered device
CN107430421B (zh) 以太网供电网络系统中的受电设备及其方法
CN101147356A (zh) 通过通信电缆中的四对导体供电
KR20070098932A (ko) 통신 링크를 통해 전력을 공급하는 시스템에서 전력 기기의전력 요건에 기초한 전류 제한 스레시홀드의 조절
KR20070101338A (ko) 이더넷을 통한 전력 공급 시스템에서 전력 기기의듀얼-모드 검출
CN105049216A (zh) 一种以太网供电方法及供电系统
US10523448B2 (en) Power source equipment for power over ethernet system
CN109428728A (zh) 端口自适应方法和设备
US20120254639A1 (en) Communication apparatus, power control method thereof, and computer readable medium
CN111181737B (zh) 控制方法、受电设备和系统
EP3737034A1 (en) Pairing of devices in a power network
KR102074190B1 (ko) 전자 장치의 전원을 원격으로 제어하는 장치,방법 및 시스템.
CN110752935B (zh) Poe的自适应供电系统、方法及其装置
JP2017011958A (ja) 給電装置
US10379921B1 (en) Fault detection and power recovery and redundancy in a power over ethernet system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814597

Country of ref document: EP

Kind code of ref document: A1