WO2019233153A1 - 一种基于车车协作的列车移动授权方法 - Google Patents
一种基于车车协作的列车移动授权方法 Download PDFInfo
- Publication number
- WO2019233153A1 WO2019233153A1 PCT/CN2019/078247 CN2019078247W WO2019233153A1 WO 2019233153 A1 WO2019233153 A1 WO 2019233153A1 CN 2019078247 W CN2019078247 W CN 2019078247W WO 2019233153 A1 WO2019233153 A1 WO 2019233153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- train
- vehicle
- current
- authorization
- movement authorization
- Prior art date
Links
- 238000013475 authorization Methods 0.000 title claims abstract description 96
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000013468 resource allocation Methods 0.000 claims abstract description 11
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 8
- 238000012544 monitoring process Methods 0.000 claims abstract description 5
- 230000004044 response Effects 0.000 claims description 3
- PLAIAIKZKCZEQF-UHFFFAOYSA-N methyl 6-chloro-2-oxo-3h-1,2$l^{4},3-benzodithiazole-4-carboxylate Chemical compound COC(=O)C1=CC(Cl)=CC2=C1NS(=O)S2 PLAIAIKZKCZEQF-UHFFFAOYSA-N 0.000 abstract description 7
- 230000001133 acceleration Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 101100532584 Clostridium perfringens (strain 13 / Type A) sspC1 gene Proteins 0.000 description 2
- 101100256651 Homo sapiens SENP6 gene Proteins 0.000 description 2
- 101100095550 Homo sapiens SENP7 gene Proteins 0.000 description 2
- 101150038317 SSP1 gene Proteins 0.000 description 2
- 101150098865 SSP2 gene Proteins 0.000 description 2
- 101100125020 Schizosaccharomyces pombe (strain 972 / ATCC 24843) pss1 gene Proteins 0.000 description 2
- 101100018019 Schizosaccharomyces pombe (strain 972 / ATCC 24843) ssc1 gene Proteins 0.000 description 2
- 102100023713 Sentrin-specific protease 6 Human genes 0.000 description 2
- 102100031406 Sentrin-specific protease 7 Human genes 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 101000800055 Homo sapiens Testican-1 Proteins 0.000 description 1
- 101100202428 Neopyropia yezoensis atps gene Proteins 0.000 description 1
- 102100033390 Testican-1 Human genes 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L27/00—Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
- B61L27/20—Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L23/00—Control, warning or like safety means along the route or between vehicles or trains
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L27/00—Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
- B61L27/04—Automatic systems, e.g. controlled by train; Change-over to manual control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L27/00—Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
- B61L27/40—Handling position reports or trackside vehicle data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L27/00—Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
- B61L27/20—Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
- B61L2027/204—Trackside control of safe travel of vehicle or train, e.g. braking curve calculation using Communication-based Train Control [CBTC]
Definitions
- the invention relates to the technical field of rail traffic signal security control, and particularly to a train movement authorization method based on vehicle-vehicle cooperation.
- the core system of the traditional communication-based automatic train control system (Communication Based Train Control, CBTC)-the "Automatic Train Protection System” (ATP) is composed of two parts: trackside and vehicle-mounted. And train information, calculate the movement authorization for all trains on the line and send to the onboard ATP.
- trackside ATP must maintain all train location and status information within its jurisdiction and adjacent trackside ATP jurisdictions.
- the trackside ATP must also maintain train information at the border of the adjacent trackside ATP that borders this trackside ATP to ensure that the train can run without stopping in the jurisdiction of multiple trackside ATP equipment.
- Trackside ATP has a large jurisdiction due to the key functions it undertakes, and has strict requirements for reliability.
- trackside ATP maintenance of train information and mobile authorization calculations involve not only a large number of numerical calculations, but also the support of complex interfaces between adjacent trackside ATPs. If this part of the function is designed to be calculated by onboard ATP, then The interface between the orbital ATP numerical calculation function and the orbital ATP is completely removed, which can greatly simplify the complexity of the entire CBTC system.
- the train movement authorization method based on vehicle-vehicle cooperation realizes the calculation of train movement authorization through direct information interaction between the train and the train, including train tracking and face-to-face operation modes.
- the trackside ATP is only responsible for maintaining the sequence information of the train running online and providing this information to the on-board ATP.
- the purpose of the present invention is to provide a train movement authorization method based on vehicle-vehicle cooperation in order to overcome the defects existing in the prior art mentioned above.
- a train movement authorization method based on vehicle-vehicle cooperation includes the following steps:
- Step 1 The train obtains the current mission information from the automatic train monitoring system ATS;
- Step 2 The train obtains the current resource allocation information from the trackside resource management center
- Step 3 The train estimates the first train downstream of its running direction according to the received resource allocation information
- Step 4 the train sends a position request to the first train upstream and downstream of its running direction and responds to the position requests of other trains;
- Step 5 The train calculates its own mobile authorization based on the train information sent by the first train in the upstream and downstream directions of the train.
- Step 6 The train applies for the corresponding line resources from the trackside resource management center according to its task and the calculated mobile authorization status.
- the train calculates a list of all track resources that the train needs to pass in sequence according to the current train task.
- the train obtains current resource allocation information from a trackside resource management center, and the resource allocation information is described in a train sequence on a train information container TIC (Train Information Container).
- TIC Train Information Container
- the TIC is a method of dividing the track section in a resource manner, the TIC is a section without a switch or a turnout, and the train ID appears in a TIC to indicate a trackside resource. The manager believes that the TIC resource can be used by the train.
- the movement authorization range of the train spans the entire track section corresponding to the TIC.
- the current train should be arranged according to its running direction and the order of the train IDs in the TIC (the train IDs in the TIC are arranged in the agreed order, such as along the line Direction of the road) to determine the first train ID downstream of the current train.
- the train calculates an Expected Envelope (ETE) of the train based on its mission information, and calculates a GTE (Guaranteed Train Envelope) of the train based on the current running status of the train.
- Envelope ETE and Train Commit Envelope GTE are mobile authorization reports used to respond to mobile authorization requests of other trains.
- the train calculates a mobile authorization request to be sent to its downstream train according to the ETE, and the request includes the ETE information of the current train.
- the current train calculates the mobile authorization of the train according to the mobile authorization request and the mobile authorization report sent by the first downstream train, and calculates a mobile authorization report for responding to the mobile authorization requests of other trains.
- the train determines the next TIC that the train needs to apply for by comparing the running tasks of the train according to the current mobile authorized position, and generates a resource application request sent to the resource management center.
- the present invention has the following advantages:
- the method described in the present invention changes the mobile authorization calculation function in the existing CBTC system design to direct calculation by the vehicle through vehicle-vehicle information interaction, and is used to replace the existing method of centralized calculation by trackside ATP in the existing CBTC system.
- the present invention reduces the complexity of trackside ATP and completely removes the interface between the trackside ATP numerical calculation module and trackside ATP.
- the vehicle-mounted ATP of the present invention realizes train tracking, track resource competition coordination and train face-to-face operation with higher efficiency through vehicle-vehicle information interaction based on a request confirmation mechanism.
- FIG. 1 is a topology diagram of the information interaction between the resource management center (side-track ATP) and the vehicle ATP;
- FIG. 2 is a schematic diagram of a calculation principle of train expected envelope and train committed envelope
- Figure 3 is a typical flowchart of resource competition for on-board ATP when trains run face to face.
- 11 is the expected envelope of train 1
- 21 is the promised envelope of train 1
- 31 is the authorization of train 1 movement
- 12 is the expected envelope of train 2
- Promise envelope for train 2 and 32 authorize movement for train 2;
- FIG. 4 is a schematic diagram of a train tracking and face-to-face operation principle based on a request / confirmation mechanism
- FIG. 5 is a flowchart of a train movement authorization method based on vehicle-vehicle cooperation according to the present invention.
- the vehicle-to-vehicle / vehicle-to-vehicle communication topology based on the vehicle-to-vehicle collaboration is shown in Figure 1.
- the on-board ATP needs to calculate the jurisdiction area of the resource management center where the train is currently located according to the running direction, position and speed information of the train, and send the track resource request to the currently located resource management center and the resource management center to be entered soon.
- the train After receiving the train sequence information from the resource management center, the train determines the next train in its running direction based on the train sequencing information of the current track, and requests the mobile train's authorization for the downstream train through the train movement authorization request. After the mobile authorization report, the mobile authorization of the vehicle can be calculated accordingly.
- a train When a train interacts with other trains, it must first obtain the information of “what trains it needs to interact with”. This information is maintained by the trackside ATP (resource management center) and sent to the on-board ATP and is tracked as a TIC. Description). Through this sequence, the on-board ATP can determine the ID information of the nearest train upstream and downstream of its running direction. On-board ATP implements its own mobile authorization calculation by directly requesting train information from its upstream and downstream trains.
- the information that trains need to interact with should include the train's expected envelope (ETE) and train commitment envelope (GTE) in addition to the train's basic operating information (position, speed, direction).
- ETE expected envelope
- GTE train commitment envelope
- the train calculates a “train commitment envelope”, a “train expectation envelope”, and a train movement authorization based on the current track resource allocation status, train sequence information, and own vehicle running status.
- the ETE is calculated by the train according to its operational tasks, and it ranges from the smallest secure back end where the train considers the maximum rollback to the far-end endpoint of the next TIC the train is expected to enter.
- the starting point of GTE is the same as that of ETE.
- the ending point of GTE is obtained by extending the maximum head safety positioning of the train by a distance in the direction of the train's movement. This distance is the distance from which the train can start from the current on-board ATP braking instruction to the complete stop of the train.
- the longest distance it is calculated according to the following function:
- t 1 is the traction removal time of the train
- t 2 is the brake application time of the train
- v t is the current running speed of the train
- a m is the maximum traction acceleration of the train
- a s is the equivalent maximum acceleration of the train
- a e is the train Emergency braking guarantees acceleration (negative values).
- the train obtains the global information required for calculating the mobile authorization from the ATS and the trackside resource management center, including the current train task and the train sequence of the current line.
- the train calculates the first train ID downstream of its running direction according to the current train sequence information sent by the resource management center.
- step 4 the on-board ATP calculates the "train expectation envelope” according to its operation task. If the first train ID downstream in the running direction calculated in the previous step is valid, the on-board ATP should send the "train expectation envelope" through the train movement authorization request. To its downstream train, the mobile authorization should not be extended until a response from the downstream train is obtained. In addition to location and direction information, the "Train Expectation Envelope” should also include the time identification (represented by the on-board ATP main cycle count) of the train and the operational priority of the train. When the on-board ATP receives the "train expectation envelope" sent by other trains, it should first determine whether the train sending the expected envelope has a higher priority than the current train.
- the end point of the "train expectation envelope” should be calculated for the current train. Limitations of authorization. If the "train expectation envelope” end point falls within the "train commitment envelope” interval of the current train, the current train should apply emergency braking. If the "Train Expectation Envelope" end point is downstream of the current train "Train Promise Envelope” end point, the “Train Promise Envelope” end point sent by the current train through the train movement authorization report shall be extended to the aforementioned "Train Expectation Envelope" end. If the current train finds that the requested train has a lower priority than the current train, the "train commitment envelope" in the train movement authorization report to be responded should be set to an invalid value.
- step 5 after receiving the train movement authorization report from the downstream train, the on-board ATP should first determine the timeliness of the train movement authorization report, for example, the time stamp contained in it is not less than the time stamp of the time when the current train initiated the train movement authorization request , The current train should adopt the "train commitment envelope" in the train's movement authorization report and calculate its own movement authorization.
- Figure 3 is a typical process of resource competition when the vehicle ATP runs face to face.
- train 2 has a higher traffic priority, but the movement authorization of train 1 first extends into TIC2 and reaches turnout 2.
- Train 1 begins to apply for resources of turnout 2 to the resource management center, but because turnout 2 has been In the resource management, train 2 is allocated in the opposite direction, so train 1 cannot obtain the use authorization of turnout 2.
- Train 2 After the train 2's mobile authorization arrives at turnout 2, it starts to apply for the next track resource in its running direction, that is, TIC2.
- Train 2 extends its expected envelope to the remote endpoint of TIC2, and sends it through the train mobile authorization request to Train 1.
- train 1 After receiving the mobile authorization request, train 1 judges that the mobile authorization location requested by train 2 overlaps with the currently used mobile authorization but does not yet enter the promised envelope of the train, then train 1 actively withdraws its own mobile authorization to the TIC1 endpoint (requires Ensure that its own mobile authorization has no intersection with the expected envelope of the oncoming train), and send the “guaranteed mobile authorization” position to train 2 as the mobile authorization position after the withdrawal through the train mobile authorization report, and at the same time actively deregister the turnout 1 and the resource management center TIC2. After turnout 1 is successfully deregistered, the resource management center can continue to process train 2's application for turnout 1 resources.
- train 2 After train 2 successfully applies for the reverse resource of turnout 1, train 2 can continue to apply for TIC3 resources and realize the function of passing the turnout area in priority.
- train 1 processes the on-board train's request for movement authorization, if the requested movement authorization position is found to be within the train's promised envelope for the train, the on-board ATP is replying to the train's movement authorization
- the report shall send the end of the train commitment envelope of the train as a "guaranteed movement authorization". If a broken link point within the "train commitment envelope" causes the train's mobile authorization to retract, the train cannot cancel the resource based on the retracted transfer authorization to prevent the resource from being reassigned to other trains and causing conflicts.
- Figure 4 is a typical scenario of a train running face to face. It is assumed that train 2 has a higher running priority. Train 1 and Train 2 will experience a face-to-face turn-back process during operation. Since the two service parking points (SSP) SSP1 and SSP2 are relatively close, if the trains return at the same time, the resources required for the train will occur Overlap causes resource competition. At this time, trains need to coordinate resource use by themselves. In the figure, train 2 first applies for TIC2 resources, and its movement authorization extends into TIC2 to ensure that train 2 accurately stops at SSP2. When train 1 also applies for the TIC2 resource, it will detect the train sequence information sent to it by the resource management center.
- SSP service parking points
- Train 1 It is not the only train in TIC2, and there is another train (ie train 2) downstream. Train 1 is in Before extending its movement authorization, it is necessary to send a train movement authorization request message to train 2 to obtain the running status of train 2. After receiving the train movement authorization request from train 1, train 2 judges that the priority of train 1 is low, then train 2 does not roll back its own movement authorization, but limits the position of resources it has already acquired (ie, the "train expectation package of train 2" Network "end, which is also the movement authorization end of train 2) as a guaranteed movement authorization is sent to train 1 through the train movement authorization report. After receiving the guaranteed movement authorization, train 1 may extend its own movement authorization into the above-mentioned guaranteed movement authorization position in TIC2.
- train 2 After the train 2 is stopped and stopped, the mobile authorization is invalidated, and then the expected envelope of the train is contracted. At this time, when receiving a new mobile authorization request from train 1, train 2 will send the contracted expected end of the envelope to the train 1 as a guaranteed mobile authorization, so that train 1 can further extend its mobile authorization to make the train 1 Stop at SSP1.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Train Traffic Observation, Control, And Security (AREA)
Abstract
一种基于车车协作的列车移动授权方法,包括以下步骤:步骤1、列车从自动列车监控系统ATS获取当前任务信息;步骤2、列车从轨旁资源管理中心获取当前的资源分配信息;步骤3、列车根据所收到的资源分配信息推算其运行方向下游的第一列列车;步骤4、列车根据自身运行任务,向其运行方向上下游第一列列车发送位置请求并应答其他列车的位置请求;步骤5、列车根据运行方向上下游第一列列车发送的列车信息计算本车移动授权;步骤6、列车根据其任务和所计算的移动授权状态向轨旁资源管理中心申请相应的线路资源。该方法简化了CBTC系统架构,提高了CBTC运行效率。
Description
本发明涉及轨道交通信号安全控制技术领域,尤其是涉及一种基于车车协作的列车移动授权方法。
传统的基于通信的自动列车控制系统(Communication Based Train Control,CBTC)的核心系统——“自动列车保护系统”(ATP)由轨旁和车载两部分组成,其中轨旁部分主要负责采集轨旁设备和列车信息,为线路上所有列车计算移动授权并发送至车载ATP。为了实现这个功能,轨旁ATP必须维护其管辖范围内以及相邻轨旁ATP管辖范围的所有列车位置和状态信息。同时,轨旁ATP还必须维护与本轨旁ATP交界的相邻轨旁ATP边界处的列车信息,以保证列车可在多个轨旁ATP设备管辖区内不停车运行。轨旁ATP由于承担的功能关键而管辖范围较大,对可靠性有严格的要求。所以,尽量简化轨旁ATP的设计以降低其出问题的概率是CBTC系统设计发展的一个重要方向。轨旁ATP的核心功能——列车信息维护和移动授权计算不仅涉及大量数值计算,还需要相邻轨旁ATP之间复杂接口的支持,如将这部分功能设计为由车载ATP计算,则可将轨旁ATP的数值计算功能和轨旁ATP之间的接口完全移除,可极大简化整个CBTC系统的复杂度。
基于车车协作的列车移动授权方法通过列车和列车之间直接的信息交互实现了列车移动授权的计算,包括列车追踪和面对面行驶等运行模式。轨旁ATP只负责维护在线运行列车的序列信息并将这些信息提供给车载ATP。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于车车协作的列车移动授权方法。
本发明的目的可以通过以下技术方案来实现:
一种基于车车协作的列车移动授权方法,该方法包括以下步骤:
步骤1、列车从自动列车监控系统ATS获取当前任务信息;
步骤2、列车从轨旁资源管理中心获取当前的资源分配信息;
步骤3、列车根据所收到的资源分配信息推算其运行方向下游的第一列列车;
步骤4、列车根据自身运行任务,向其运行方向上下游第一列列车发送位置请求并应答其他列车的位置请求;
步骤5、列车根据运行方向上下游第一列列车发送的列车信息计算本车移动授权;
步骤6、列车根据其任务和所计算的移动授权状态向轨旁资源管理中心申请相应的线路资源。
优选的,所述的步骤1中列车从自动列车监控系统ATS获取当前列车的任务信息后,列车根据当前列车任务计算列车需要依次通过的所有轨道资源列表。
优选的,所述的步骤2中列车从轨旁资源管理中心获取当前的资源分配信息,所述的资源分配信息以列车信息容器TIC(Train Information Container)上的列车序列的方式描述。
优选的,所述的TIC是对轨道区段以资源方式进行划分的一种方式,所述的TIC为一段无岔区段或一个道岔;所述的列车ID出现在一个TIC中表示轨旁资源管理器认为列车可以使用该TIC资源。
优选的,所述的步骤2中若列车信息容器TIC中只有当前列车的ID,则该列车的移动授权范围跨越整个TIC对应的轨道区段。
优选的,所述的步骤3中若列车信息容器TIC中还有其他列车的ID,则当前列车应根据其运行方向和TIC中列车ID的排列顺序(TIC中列车ID以约定顺序排列,比如沿线路上行方向),确定当前列车下游的第一列列车ID。
优选的,所述的步骤4中列车根据其任务信息计算列车期望包络ETE(Expected Train Envelope),并根据列车当前的运行状态计算列车承诺包络GTE(Guaranteed Train Envelope),所述的列车期望包络ETE和列车承诺包络GTE用于应答其他列车的移动授权请求的移动授权报告。
优选的,所述的步骤4中列车根据ETE计算需向其下游列车发送的移动授权请求,该请求中包含当前列车的ETE信息。
优选的,所述的步骤5中当前列车根据其下游第一列列车发送的移动授权请求和移动授权报告计算本列车的移动授权,同时计算用于应答其他列车的移动授权请求的移动授权报告。
优选的,所述的步骤6中列车根据当前的移动授权位置,通过比较列车的运行任务,确定列车需要申请的下一个TIC,并生成发送到资源管理中心的资源申请请求。
与现有技术相比,本发明具有以下优点:
1、本发明所述方法将既有CBTC系统设计中的移动授权计算功能改为由车载通过车车信息交互直接计算,用于替代既有CBTC系统中由轨旁ATP集中计算的方法。
2、本发明降低了轨旁ATP的复杂度,完全去除了轨旁ATP的数值计算模块和轨旁ATP之间的接口。
3、本发明的车载ATP通过基于请求确认机制的车车信息交互以更高的效率实现了列车追踪、轨道资源竞争协调以及列车面对面运行。
图1为资源管理中心(轨旁ATP)与车载ATP的信息交互拓扑结构图;
图2为列车期望包络和列车承诺包络计算原理示意图;
图3为车载ATP在列车面对面运行时资源竞争的典型流程图,其中11为列车1期望包络,21为列车1承诺包络,31为列车1移动授权,12为列车2期望包络,22为列车2承诺包络,32为列车2移动授权;
图4为基于请求/确认机制的列车追踪和面对面运行原理示意图;
图5为本发明的基于车车协作的列车移动授权方法流程图。
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
基于车车协作的CBTC系统车地/车车通信的拓扑结构如图1所示,在这个系统中,资源管理中心(轨旁ATP)之间不要交换信息。车载ATP需根据列车的运行方向和位置、速度信息计算列车当前所在的资源管理中心管辖区域,并向当前所在的资源管理中心和即将进入的资源管理中心发送轨道资源请求。列车从资源管理中心收到列车序列信息后,根据当前轨道的列车排序信息确定其运行方向上的下一列列车并通 过列车移动授权请求向该下游列车请求移动授权,在收到该列车回复的列车移动授权报告后可据此计算本车的移动授权。
列车在与其他列车进行信息交互时,首先需获取“需与哪些列车进行交互”的信息,这个信息由轨旁ATP(资源管理中心)维护并发送到车载ATP并以轨道区段(以TIC进行描述)上的列车序列进行描述。通过这个序列,车载ATP可以确定其运行方向的上下游最近列车的ID信息。车载ATP通过直接向其上下游列车请求列车信息来实现自身移动授权的计算。在列车需要进行交互的信息中,除了列车的基本运行信息(位置、速度、方向),还应包括列车期望包络(ETE)和列车承诺包络(GTE)。
如图2所示,列车根据当前的轨道资源分配状态、列车序列信息和本车运行状态计算的“列车承诺包络”、“列车期望包络”以及列车移动授权。ETE由列车根据其运行任务计算,它的范围为列车考虑最大回滚的最小安全后端,到列车期望进入的下一个TIC的远端端点。GTE的起点与ETE相同,GTE的终点为列车的最大头部安全定位向列车移动方向扩展一个距离得到,该距离为列车从当前时刻开始相应车载ATP制动指令到列车完全停下所能运行的最远距离,它根据如下函数计算:
d=f(t
1,t
2,v
t,a
m,a
s,a
e)
其中:t
1为列车牵引切除时间,t
2为列车的制动施加时间,v
t为列车当前运行速度,a
m为列车最大牵引加速度,a
s为列车最大坡度等效加速度,a
e为列车紧急制动保障加速度(负值)。
计算的基本原理为,车载ATP在发出制动指令后,列车会经历如下三个阶段:
牵引切除:加速阶段,此时列车仍有牵引力;
制动施加:惰行阶段,此时列车牵引力已切除但仍受等效坡度加速度的影响
紧急制动:列车在紧急制动保障加速度作用下直至停下的过程
上述三个阶段的运行距离分别计算如下:
如图5所示流程,步骤1和步骤2中,列车分别从ATS和轨旁资源管理中心获 取计算移动授权所需要的全局信息,包括当前列车的任务和当前线路的列车序列。步骤3中,列车根据资源管理中心发送的当前列车序列信息计算其运行方向下游的第一列列车ID。
步骤4中,车载ATP根据其运行任务计算“列车期望包络”,如其上一步中计算的运行方向下游第一列列车ID有效,车载ATP应通过列车移动授权请求将“列车期望包络”发送到其下游列车,在获得下游列车的回复前,移动授权不应延伸。“列车期望包络”中除包含位置和方向信息外,还应包含列车发出该信息的时间标识(以车载ATP主周期计数表示)和列车的运营优先级。车载ATP收到其他列车发送的“列车期望包络”时,应首先判断发送该期望包络的列车是否优先级大于当前列车,如是,则该“列车期望包络”终点应为当前列车计算移动授权的限制点。如该“列车期望包络”终点落在当前列车的“列车承诺包络”区间内,则当前列车应施加紧急制动。如该“列车期望包络”终点落在当前列车“列车承诺包络”终点的下游,则当前列车通过列车移动授权报告发送的“列车承诺包络”终点应扩展至上述“列车期望包络”终点。如果当前列车发现发送请求的列车优先级小于当前列车,则应将待回复的列车移动授权报告中的“列车承诺包络”置为无效值。
步骤5中,车载ATP在收到下游列车回复的列车移动授权报告后,应首先判断该列车移动授权报告的时效性,如其中所含时间标识不小于当前列车发起列车移动授权请求时刻的时间标识,则当前列车应采纳该列车移动授权报告中的“列车承诺包络”,并计算本车移动授权。
图3是车载ATP在面对面运行时资源竞争的典型流程。所示场景中假定列车2具有较高的通行优先权,但列车1的移动授权先延伸进入了TIC2并到达了道岔2,列车1开始向资源管理中心申请道岔2资源,但由于道岔2已被资源管理中沿相反方向分配给了列车2,所以列车1无法获取道岔2的使用授权。列车2的移动授权到达道岔2后,开始继续申请其运行方向上的下一个轨道资源,即TIC2,列车2将其期望包络延伸到TIC2的远端端点处,并通过列车移动授权请求发送到列车1。列车1收到该移动授权请求后判断列车2请求的移动授权位置与其当前使用的移动授权有重叠但尚未进入本车的列车承诺包络,则列车1主动回撤自身移动授权至TIC1端点(需保证自身移动授权与迎面列车期望包络无交集),并通过列车移动授权报告向列车2发送“保证移动授权”位置为其回撤后的移动授权位置,同时向资源管理中心主 动注销道岔1和TIC2。道岔1被成功注销后,资源管理中心可继续处理列车2对道岔1资源的申请。当列车2成功申请到道岔1的反位资源后,列车2可继续申请TIC3资源并实现优先通过岔区功能。基于安全考虑,低优先级列车(列车1)在处理迎面列车的移动授权请求时,如发现其请求的移动授权位置已进入本列车的列车承诺包络范围内,则车载ATP在回复列车移动授权报告时应将本列车的列车承诺包络末端作为“保证移动授权”发送。如“列车承诺包络”范围内出现断链点导致列车移动授权回缩,该列车不可根据回缩的移送授权注销资源,以防止该资源被再次分配给其他列车而产生冲突。
图4是列车面对面折返运行的一个典型场景。假定列车2具有较高的运行优先级。列车1和列车2在运营过程中会经历一个面对面折返的过程,由于两个服务停车点(Service Stopping Point,SSP)SSP1和SSP2距离较近,如果列车同时折返,则列车需申请的资源会发生重叠,从而产生资源竞争,这时,需要列车自行进行资源使用协调。图中,列车2先申请到TIC2资源,其移动授权延伸进入TIC2可以保证列车2准确停靠SSP2的位置。当列车1也申请到TIC2资源时,它会检测到资源管理中心给它发送的列车序列信息中,在TIC2它不是唯一的列车,其下游还有另一列列车(即列车2),列车1在延伸其移动授权前需先向列车2发送列车移动授权请求报文获取列车2的运行状态。列车2收到列车1的列车移动授权请求后,判断列车1的优先级较低,则列车2不回退自身移动授权,而将自身已征用的资源极限位置(即列车2的“列车期望包络”末端,同时也是列车2的移动授权末端)作为保证移动授权通过列车移动授权报告发送到列车1。列车1收到该保证移动授权后,可以将自身移动授权延伸进入TIC2中上述保证移动授权位置处。列车2停准停稳后,将自身移动授权置为无效状态,然后收缩列车期望包络。此时,当收到列车1发送的新的移动授权请求时,列车2会将收缩后的列车期望包络末端作为保证移动授权发送到列车1,从而列车1可以进一步延伸其移动授权以使列车1可在SSP1处停准。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
Claims (10)
- 一种基于车车协作的列车移动授权方法,其特征在于,该方法包括以下步骤:步骤1、列车从自动列车监控系统ATS获取当前任务信息;步骤2、列车从轨旁资源管理中心获取当前的资源分配信息;步骤3、列车根据所收到的资源分配信息推算其运行方向下游的第一列列车;步骤4、列车根据自身运行任务,向其运行方向上下游第一列列车发送位置请求并应答其他列车的位置请求;步骤5、列车根据运行方向上下游第一列列车发送的列车信息计算本车移动授权;步骤6、列车根据其任务和所计算的移动授权状态向轨旁资源管理中心申请相应的线路资源。
- 根据权利要求1所述的一种基于车车协作的列车移动授权方法,其特征在于,所述的步骤1中列车从自动列车监控系统ATS获取当前列车的任务信息后,列车根据当前列车任务计算列车需要依次通过的所有轨道资源列表。
- 根据权利要求1所述的一种基于车车协作的列车移动授权方法,其特征在于,所述的步骤2中列车从轨旁资源管理中心获取当前的资源分配信息,所述的资源分配信息以列车信息容器TIC上的列车序列的方式描述。
- 根据权利要求3所述的一种基于车车协作的列车移动授权方法,其特征在于,所述的TIC是对轨道区段以资源方式进行划分的一种方式,所述的TIC为一段无岔区段或一个道岔;所述的列车ID出现在一个TIC中表示轨旁资源管理器认为列车可以使用该TIC资源。
- 根据权利要求4所述的一种基于车车协作的列车移动授权方法,其特征在于,所述的步骤2中若列车信息容器TIC中只有当前列车的ID,则该列车的移动授权范围跨越整个TIC对应的轨道区段。
- 根据权利要求4所述的一种基于车车协作的列车移动授权方法,其特征在于,所述的步骤3中若列车信息容器TIC中还有其他列车的ID,则当前列车应根据其运行方向和TIC中列车ID的排列顺序,确定当前列车下游的第一列列车ID。
- 根据权利要求1所述的一种基于车车协作的列车移动授权方法,其特征在于,所述的步骤4中列车根据其任务信息计算列车期望包络ETE,并根据列车当前的运行状态计算列车承诺包络GTE,所述的列车期望包络ETE和列车承诺包络GTE用于应 答其他列车的移动授权请求的移动授权报告。
- 根据权利要求7所述的一种基于车车协作的列车移动授权方法,其特征在于,所述的步骤4中列车根据ETE计算需向其下游列车发送的移动授权请求,该请求中包含当前列车的ETE信息。
- 根据权利要求1所述的一种基于车车协作的列车移动授权方法,其特征在于,所述的步骤5中当前列车根据其下游第一列列车发送的移动授权请求和移动授权报告计算本列车的移动授权,同时计算用于应答其他列车的移动授权请求的移动授权报告。
- 根据权利要求1所述的一种基于车车协作的列车移动授权方法,其特征在于,所述的步骤6中列车根据当前的移动授权位置,通过比较列车的运行任务,确定列车需要申请的下一个TIC,并生成发送到资源管理中心的资源申请请求。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/978,293 US12024212B2 (en) | 2018-06-06 | 2019-03-15 | Train movement authorization method based on vehicle-to-vehicle cooperation |
EA202091815A EA202091815A1 (ru) | 2018-06-06 | 2019-03-15 | Способ обеспечения движения поездов на основе взаимодействия между транспортными средствами |
RS20221122A RS63808B1 (sr) | 2018-06-06 | 2019-03-15 | Postupak za dobijanje dozvole za kretanje voza zasnovan na saradnji vozila |
EP19815797.6A EP3747728B1 (en) | 2018-06-06 | 2019-03-15 | Vehicle cooperation-based train movement authorization method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810575896.4 | 2018-06-06 | ||
CN201810575896.4A CN109080667B (zh) | 2018-06-06 | 2018-06-06 | 一种基于车车协作的列车移动授权方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019233153A1 true WO2019233153A1 (zh) | 2019-12-12 |
Family
ID=64839449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/078247 WO2019233153A1 (zh) | 2018-06-06 | 2019-03-15 | 一种基于车车协作的列车移动授权方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US12024212B2 (zh) |
EP (1) | EP3747728B1 (zh) |
CN (1) | CN109080667B (zh) |
EA (1) | EA202091815A1 (zh) |
HU (1) | HUE060667T2 (zh) |
RS (1) | RS63808B1 (zh) |
WO (1) | WO2019233153A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111731348A (zh) * | 2020-06-02 | 2020-10-02 | 通号城市轨道交通技术有限公司 | 基于资源管理的地面控制方法、装置、设备及存储介质 |
CN112046551A (zh) * | 2020-09-07 | 2020-12-08 | 合肥工大高科信息科技股份有限公司 | 一种基于井下cbtc系统的无人驾驶机车系统及追踪方法 |
CN113844508A (zh) * | 2021-11-10 | 2021-12-28 | 中车青岛四方车辆研究所有限公司 | 基于车车通信的移动授权计算方法和移动授权管理系统 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109080667B (zh) * | 2018-06-06 | 2020-09-01 | 卡斯柯信号有限公司 | 一种基于车车协作的列车移动授权方法 |
CN110104031B (zh) * | 2019-04-19 | 2021-06-08 | 卡斯柯信号有限公司 | 一种基于车车通信的列控系统降级管理系统 |
CN110126882B (zh) * | 2019-05-29 | 2021-04-02 | 北京和利时系统工程有限公司 | 列车控制方法和系统及移动授权的计算方法 |
CN110450827B (zh) * | 2019-08-09 | 2021-07-23 | 湖南中车时代通信信号有限公司 | 一种行车许可线路的计算方法和系统 |
CN110775104B (zh) * | 2019-11-07 | 2021-09-10 | 交控科技股份有限公司 | 一种基于车车通信的双车对向追踪方法 |
CN110901703B (zh) * | 2019-12-09 | 2021-11-02 | 中南大学 | 高速列车移动协同闭塞控制方法及系统 |
CN111409674B (zh) * | 2020-04-03 | 2022-10-04 | 雷冰 | 移动单元的组队行驶方法及装置、计算机装置及存储介质 |
CN111994135B (zh) * | 2020-08-17 | 2022-06-28 | 交控科技股份有限公司 | 一种基于迭代计算的协同编队列车安全防护方法及系统 |
CN111923931B (zh) * | 2020-10-15 | 2020-12-29 | 北京全路通信信号研究设计院集团有限公司 | 一种基于自组网的列车动态编组解编方法与系统 |
CN112572537A (zh) * | 2020-12-30 | 2021-03-30 | 卡斯柯信号有限公司 | 一种车地协同的列车运行控制系统及方法 |
CN113746664B (zh) * | 2021-07-12 | 2024-09-06 | 浙江众合科技股份有限公司 | 基于状态机的冗余架构设备资源管理方法 |
CN115782968A (zh) * | 2021-09-10 | 2023-03-14 | 比亚迪股份有限公司 | 一种道岔冲突的防护方法及目标控制装置 |
CN113911184A (zh) * | 2021-11-12 | 2022-01-11 | 卡斯柯信号有限公司 | 一种轨道区段中反向重叠区域的通用判断计算方法 |
CN114275015B (zh) * | 2021-12-13 | 2023-08-29 | 卡斯柯信号有限公司 | 一种基于资源管理的列车控制系统及控制方法 |
CN115158408B (zh) * | 2022-06-30 | 2023-09-26 | 通号城市轨道交通技术有限公司 | 列车冲突检测方法、列车冲突检测装置及电子设备 |
CN115743233B (zh) * | 2022-10-14 | 2024-10-18 | 卡斯柯信号有限公司 | 一种虚拟编组列车安全防护方法、装置、设备及介质 |
CN115771549B (zh) * | 2022-12-02 | 2024-09-20 | 上海电气泰雷兹交通自动化系统有限公司 | 一种列车自动连挂方法 |
CN116853321B (zh) * | 2023-09-04 | 2023-12-12 | 成都交控轨道科技有限公司 | 一种基于车车通信的免筛方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104149821A (zh) * | 2014-07-09 | 2014-11-19 | 卡斯柯信号有限公司 | 用于列车运行控制系统的列车主动间隔防护方法及装置 |
CN106515797A (zh) * | 2016-12-20 | 2017-03-22 | 交控科技股份有限公司 | 无次级轨道检测设备的列车追踪运行方法及cbtc系统 |
CN107054413A (zh) * | 2016-12-21 | 2017-08-18 | 交控科技股份有限公司 | 一种轨道交通全自动驾驶精简方法及系统 |
CN107284471A (zh) * | 2017-05-18 | 2017-10-24 | 交控科技股份有限公司 | 一种基于车车通信的cbtc系统 |
CN107650949A (zh) * | 2017-10-30 | 2018-02-02 | 成都九壹通智能科技股份有限公司 | 一种基于uwb通信的列车自动感知系统 |
CN107745729A (zh) * | 2017-11-17 | 2018-03-02 | 中国铁道科学研究院 | 一种有轨电车自动驾驶系统 |
WO2018091231A1 (de) * | 2016-11-21 | 2018-05-24 | Siemens Aktiengesellschaft | Schienenfahrzeug und verfahren zu dessen betrieb |
CN109080667A (zh) * | 2018-06-06 | 2018-12-25 | 卡斯柯信号有限公司 | 一种基于车车协作的列车移动授权方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004276757A (ja) * | 2003-03-17 | 2004-10-07 | Okumura Corp | 車両の走行方向監視装置 |
AU2010213757B2 (en) * | 2009-02-12 | 2015-07-02 | Ansaldo Sts Usa, Inc. | System and method for controlling braking of a train |
EP2529493A2 (en) * | 2010-01-25 | 2012-12-05 | General Electric Company | Method and apparatus related to on-board message repeating for vehicle consist communications system |
CN101934807B (zh) * | 2010-08-24 | 2011-09-28 | 北京交大资产经营有限公司 | 基于列车控制系统的移动授权计算方法 |
US9718487B2 (en) * | 2014-02-18 | 2017-08-01 | Nabil N. Ghaly | Method and apparatus for a train control system |
KR101864340B1 (ko) * | 2016-08-03 | 2018-06-07 | 한국철도기술연구원 | 열차간 통신기반 열차제어시스템의 선행열차 탐색 및 무결성 확인방법 |
CN106394611B (zh) * | 2016-08-31 | 2018-09-04 | 交控科技股份有限公司 | 一种道岔控制方法、装置及控制器 |
CN106828542B (zh) * | 2016-12-29 | 2018-08-07 | 北京交通大学 | 一种列车运行控制信息传输及信息融合使用方法 |
CN106909120A (zh) * | 2017-05-11 | 2017-06-30 | 四川高新轨道交通产业技术研究院 | 地铁车辆基地综合自动化系统 |
CN107757656B (zh) * | 2017-09-30 | 2020-02-25 | 上海富欣智能交通控制有限公司 | 列车自动驾驶制动方法 |
CN109664923B (zh) * | 2017-10-17 | 2021-03-12 | 交控科技股份有限公司 | 基于车车通信的城市轨道交通列控系统 |
CN109664916B (zh) * | 2017-10-17 | 2021-04-27 | 交控科技股份有限公司 | 以车载控制器为核心的列车运行控制系统 |
-
2018
- 2018-06-06 CN CN201810575896.4A patent/CN109080667B/zh active Active
-
2019
- 2019-03-15 WO PCT/CN2019/078247 patent/WO2019233153A1/zh unknown
- 2019-03-15 EA EA202091815A patent/EA202091815A1/ru unknown
- 2019-03-15 US US16/978,293 patent/US12024212B2/en active Active
- 2019-03-15 RS RS20221122A patent/RS63808B1/sr unknown
- 2019-03-15 HU HUE19815797A patent/HUE060667T2/hu unknown
- 2019-03-15 EP EP19815797.6A patent/EP3747728B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104149821A (zh) * | 2014-07-09 | 2014-11-19 | 卡斯柯信号有限公司 | 用于列车运行控制系统的列车主动间隔防护方法及装置 |
WO2018091231A1 (de) * | 2016-11-21 | 2018-05-24 | Siemens Aktiengesellschaft | Schienenfahrzeug und verfahren zu dessen betrieb |
CN106515797A (zh) * | 2016-12-20 | 2017-03-22 | 交控科技股份有限公司 | 无次级轨道检测设备的列车追踪运行方法及cbtc系统 |
CN107054413A (zh) * | 2016-12-21 | 2017-08-18 | 交控科技股份有限公司 | 一种轨道交通全自动驾驶精简方法及系统 |
CN107284471A (zh) * | 2017-05-18 | 2017-10-24 | 交控科技股份有限公司 | 一种基于车车通信的cbtc系统 |
CN107650949A (zh) * | 2017-10-30 | 2018-02-02 | 成都九壹通智能科技股份有限公司 | 一种基于uwb通信的列车自动感知系统 |
CN107745729A (zh) * | 2017-11-17 | 2018-03-02 | 中国铁道科学研究院 | 一种有轨电车自动驾驶系统 |
CN109080667A (zh) * | 2018-06-06 | 2018-12-25 | 卡斯柯信号有限公司 | 一种基于车车协作的列车移动授权方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3747728A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111731348A (zh) * | 2020-06-02 | 2020-10-02 | 通号城市轨道交通技术有限公司 | 基于资源管理的地面控制方法、装置、设备及存储介质 |
CN112046551A (zh) * | 2020-09-07 | 2020-12-08 | 合肥工大高科信息科技股份有限公司 | 一种基于井下cbtc系统的无人驾驶机车系统及追踪方法 |
CN112046551B (zh) * | 2020-09-07 | 2022-08-19 | 合肥工大高科信息科技股份有限公司 | 一种基于井下cbtc系统的无人驾驶机车系统及追踪方法 |
CN113844508A (zh) * | 2021-11-10 | 2021-12-28 | 中车青岛四方车辆研究所有限公司 | 基于车车通信的移动授权计算方法和移动授权管理系统 |
Also Published As
Publication number | Publication date |
---|---|
HUE060667T2 (hu) | 2023-04-28 |
CN109080667A (zh) | 2018-12-25 |
US12024212B2 (en) | 2024-07-02 |
US20200406943A1 (en) | 2020-12-31 |
RS63808B1 (sr) | 2023-01-31 |
EP3747728A4 (en) | 2021-03-24 |
EA202091815A1 (ru) | 2020-10-14 |
CN109080667B (zh) | 2020-09-01 |
EP3747728B1 (en) | 2022-09-21 |
EP3747728A1 (en) | 2020-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019233153A1 (zh) | 一种基于车车协作的列车移动授权方法 | |
CN108189869B (zh) | Ctcs-2与cbtc的共管区域设置及在共管区域内切换的方法 | |
CN107284471B (zh) | 一种基于车车通信的cbtc系统 | |
WO2021143238A1 (zh) | 基于列车自主定位的移动闭塞列车运行控制方法及系统 | |
CN109649435B (zh) | 一种基于车车通信的新型列车运行控制系统 | |
CN110239596B (zh) | 一种基于ctcs-3的移动闭塞列车控制方法及系统 | |
WO2023109499A1 (zh) | 一种基于资源管理的列车控制系统及控制方法 | |
WO2022142715A1 (zh) | 一种车地协同的列车运行控制系统及方法 | |
CN109664923B (zh) | 基于车车通信的城市轨道交通列控系统 | |
CN106915367B (zh) | 一种列车控制系统 | |
KR101618077B1 (ko) | 지상 연동 장치를 사용하지 않는 자동 유도 차량의 제어 | |
WO2022241988A1 (zh) | 支持后备控车模式和人工故障处理方式的tacs系统 | |
CN112519836B (zh) | 一种列车运行制式自动切换方法及系统 | |
CN109625031A (zh) | 简化轨道占用检测设备的非通信车运行方法和控制系统 | |
CN109625032A (zh) | 一种无轨道占用检测设备的非通信车运行方法和控制系统 | |
WO2022257298A1 (zh) | 一种基于tacs系统的列车间隔防护控制方法及装置 | |
CN113335350A (zh) | 一种互联互通共线与跨线运行的列车自主运行系统 | |
CN112429045B (zh) | 用于轨道交通列车运行控制的车地联锁方法及系统 | |
KR101745505B1 (ko) | Ats의 차량간 통신기반 열차제어시스템을 위한 열차간 연결 토폴로지 무결성 관리 방법 | |
CN112960018A (zh) | 一种城市轨道交通融合信号系统及使用方法 | |
CN114261433B (zh) | 一种多功能的资源目标控制器 | |
CN116443082B (zh) | 相邻轨旁资源管理器间脱轨防护方法、装置、设备及介质 | |
CN113320574A (zh) | 一种tacs与ctcs融合的信号系统 | |
CN115257864A (zh) | 车车通信列控系统和方法 | |
CN114715229A (zh) | 一种融合既有cbtc和tacs的信号系统架构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19815797 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019815797 Country of ref document: EP Effective date: 20200902 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |