WO2019233114A1 - 一种采区覆岩离层水水害危险性评价法 - Google Patents

一种采区覆岩离层水水害危险性评价法 Download PDF

Info

Publication number
WO2019233114A1
WO2019233114A1 PCT/CN2019/073153 CN2019073153W WO2019233114A1 WO 2019233114 A1 WO2019233114 A1 WO 2019233114A1 CN 2019073153 W CN2019073153 W CN 2019073153W WO 2019233114 A1 WO2019233114 A1 WO 2019233114A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
mining area
strata
rock
damage
Prior art date
Application number
PCT/CN2019/073153
Other languages
English (en)
French (fr)
Inventor
李文平
范开放
王启庆
李小琴
赵东良
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to CA3068687A priority Critical patent/CA3068687A1/en
Priority to US16/630,462 priority patent/US20200370433A1/en
Priority to AU2019281278A priority patent/AU2019281278A1/en
Publication of WO2019233114A1 publication Critical patent/WO2019233114A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/003Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by analysing drilling variables or conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere

Definitions

  • the invention relates to the field of water damage prevention and control in coal mining, and in particular relates to a method for evaluating water damage risk of overlying strata in a mining area.
  • the present invention aims to provide a water damage risk evaluation method for overlying strata in strata in mining areas, which is used to solve the technical problems of prevention and control of existing strata water damage.
  • the invention provides a water damage risk assessment method for overlying strata in a mining area, including the following steps:
  • S1 Collect geological data of each rock formation in the mining area. Including borehole histogram, head pressure of delaminated water-filled water source, rock layer thickness, elastic modulus, and rock bulk density, etc. Among them, the borehole histogram is used to describe the layering, thickness, lithology, and structure of the borehole through the rock layer. Engineering geological maps prepared based on tectonic and contact relationships, groundwater sampling and testing, borehole structure and drilling are important basis for analyzing engineering geological conditions and drawing geological section maps. It should be noted that the drilling histogram, the head pressure of the delaminated water-filled water source, and the thickness of the rock formation are all basic data in the field of geotechnology.
  • the elastic modulus of the rock formation can be directly obtained through testing equipment, for example, the elastic modulus can be obtained directly after testing the rock sample through the MTS815 full digital hydraulic servo testing machine
  • the principle is: the test machine obtains the axial stress-strain curve of the rock, which is determined by the average slope of the approximate straight section on the curve, that is,
  • E is the elastic modulus of the rock, that is, the elastic modulus of the rock layer in which the rock is located, MPa; ⁇ is the stress of the approximately straight section on the curve, MPa; ⁇ i is the strain of the approximately straight section on the curve.
  • the bulk density of the rock formation can be obtained by testing the rock using the indoor volume product method. which is:
  • ⁇ rock bulk density that is, the bulk density of the rock layer in which the rock is located, kN / m 3 ; G is the weight of the rock, kN; V is the volume of the rock, m 3 .
  • step S3 Based on the principle of the composite beam, and based on the rock layer thickness, elastic modulus, and rock bulk density of each rock layer collected in step S1, determine the layer development position of the rock layer above the water-conducting fracture zone. It includes the following steps:
  • the rock layers above the water-conducting fracture zone are numbered 1, 2 ... n in sequence from bottom to top;
  • T is the water inrush coefficient, MPa / m
  • P is the head pressure of the delaminated water source, MPa
  • H is the thickness of the rock layer between the delaminated cavity and the water fracture zone, m.
  • the invention provides a water damage risk evaluation method for overlying strata in the mining area by calculating the height of the water-conducting fracture zone, determining the development position of the stratification, calculating the water inrush coefficient of the stratum water at each drilling point, and dividing the stratum water.
  • the hazard safety zone and the danger zone of separated layer water damage and then the qualitative and quantitative evaluation and analysis of the danger degree of separated layer water damage on the roof of the stope, can not only modify the traditional method of determining the location of the separated layer development, but also make the separated layer
  • the prevention and control of water and water damage is targeted.
  • the mining area can design a plan for the prevention of water damage from delaminated water according to the prediction results to ensure the safe mining of coal.
  • FIG. 1 is a flow chart of an implementation method of a water damage risk assessment method for overlying strata in a mining area provided by the present invention
  • FIG. 2 is a result of risk division of water damage to overlying strata in a coal mining area in northwestern China according to the method of the present invention
  • Figure 3 is a graph of actual water inflow during mining in a certain face of a coal mine in Northwest China.
  • the present invention provides a water damage risk assessment method for overlying strata in a mining area, as shown in FIG. 1, and includes the following steps:
  • Geological data of each rock formation in the mining area are obtained through drilling and rock mechanics, including: borehole histograms, head pressure of separated water-filled water sources, rock thickness, elastic modulus, and rock weight.
  • the drilling histogram is an engineering geological map prepared to describe the layering, thickness, lithology, structural structure and contact relationship of the borehole through the rock formation, groundwater sampling and testing, drilling structure and drilling, etc. An important basis for analyzing engineering geological conditions and drawing geological section maps. It should be noted that the drilling histogram, the head pressure of the delaminated water-filled water source, and the thickness of the rock formation are all basic data in the field of geotechnology.
  • the elastic modulus of the rock formation can be directly obtained through testing equipment, for example, the elastic modulus can be obtained directly after testing the rock sample through the MTS815 full digital hydraulic servo testing machine
  • the principle is: the test machine obtains the axial stress-strain curve of the rock, which is determined by the average slope of the approximate straight section on the curve, that is,
  • E is the elastic modulus of the rock, that is, the elastic modulus of the rock layer in which the rock is located, MPa; ⁇ is the stress of the approximately straight section on the curve, MPa; ⁇ i is the strain of the approximately straight section on the curve.
  • the bulk density of the rock formation can be obtained by testing the rock using the indoor volume product method. which is:
  • rock bulk density that is, the bulk density of the rock where the rock is located, kN / m 3 ; G is the weight of the rock, kN; V is the volume of the rock, m 3 .
  • step S3 Based on the principle of composite beams, determine the layer development position of the rock layer above the water-conducting fracture zone based on the rock layer thickness, elastic modulus, and rock bulk density collected in step S1.
  • the determination process includes the following steps:
  • the rock layers above the water-conducting fracture zone are numbered 1, 2 ... n in sequence from bottom to top;
  • the danger zone of water damage from delaminated water includes the following steps: S41. Calculate the "water burst coefficient" of delaminated water at each drilling point according to the following formula:
  • T is the water inrush coefficient, MPa / m
  • P is the head pressure of the delaminated water source, MPa
  • H is the thickness of the rock layer between the delaminated cavity and the water fracture zone, m.
  • the 06A working face of a coal mine in Northwest China is 290m wide and 1100m in strike length.
  • the first coal seam is 2-2 seam near level, with an average buried depth of 650m and an average mining thickness of 9.1m.
  • the mining method is fully mechanized mining. Collect the borehole data in and near the working face, and use the empirical formula corresponding to the hard rock in the "Code for Hydrogeological Engineering Geological Exploration of Mining Areas" to calculate the height of the hydraulic fracture zone. Some calculation results are shown in Table 1.
  • the specific formula is as follows:
  • H f is the height of the water-conducting fracture zone, m; M is the cumulative thickness of the coal seam, m; n is the number of coal strata.
  • the layer above the number 1 is judged for the location of the out-of-straight development, and the number 1 layer is used as the first layer of the composite beam.
  • the calculation results show that:
  • the nearest layered cavity to the top boundary of the water-conducting fracture zone is located between the sandstone of No. 4 and the sandy mudstone of No. 3 located in the lower part of the Luohe Formation.
  • Geological data show that the Luohe Formation has a water pressure of 3.2 MPa. Calculate the water inrush coefficient:
  • the contour map of the water inrush coefficient of the delaminated water in the mining area is drawn using theufferr software.
  • the critical water inrush coefficient T s 0.06 MPa / m. That is, the section where T is less than 0.06 MPa / m is classified as a safe area, and the section where the water inrush coefficient T is greater than 0.06 MPa / m is classified as a danger zone for water damage from the stratum.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Geology (AREA)
  • Educational Administration (AREA)
  • Analytical Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Primary Health Care (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Agronomy & Crop Science (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及一种采区覆岩离层水水害危险性评价法,属于煤炭开采水害防治,解决了现有技术中离层水水害的防治主要是通过井下施工离层水"截流孔"或"导流孔"来实现,但由于对采场顶板离层水水害的危险程度未能进行定性或定量评价分析,导致离层水水害的防治具有一定盲目性。本发明提供一种采区覆岩离层水水害危险性评价法,包括以下步骤:S1.收集采区各岩层地质资料;S2.计算采区导水裂缝带高度;S3.基于组合梁原理,对导水裂缝带以上岩层进行离层发育位置判定;S4.计算离层水突水系数,进行采区覆岩离层水水害危险性分区。本发明可以对采区覆岩离层水水害危险性进行超前预测评价,可为离层水水害防治方案的制定提供科学依据,保证煤矿的安全开采。

Description

一种采区覆岩离层水水害危险性评价法 技术领域
本发明涉及煤炭开采水害防治领域,具体涉及一种采区覆岩离层水水害危险性的评价方法。
背景技术
随着工作面推进煤层开采,采场覆岩离层逐渐发育,并伴有覆岩中含水层对离层不断补给;随着离层积水量及覆岩变形逐渐增大,在一定条件下,离层下部岩层发生破断,离层空腔内的水体涌出,发生离层突水。离层水水害是一种特殊的水害类型,此类灾害具有突水瞬间水量大、突水征兆不明显、且存在周期性的顶板突水特征,常造成极大危害。如淮北矿业集团海孜煤矿在2006年5月21日发生离层突水,3887m 3/h的强大水流携带近500m 3的矸石瞬间涌出,淹没了工作面、机巷和风巷,造成5名工人死亡。
目前离层水水害的防治主要是通过井下施工离层水“截流孔”或“导流孔”来实现,但由于对采场顶板离层水水害的危险程度未能进行定性或定量评价分析,导致离层水水害的防治具有一定盲目性。
发明内容
鉴于上述的分析,本发明旨在提供一种采区覆岩离层水水害危险性评价法,用以解决现有离层水水害的防治具有一定盲目性的技术问题。
本发明的目的主要是通过以下技术方案实现的:
本发明提供了一种采区覆岩离层水水害危险性评价法,包括以下步骤:
S1.收集采区各岩层地质资料。包括钻孔柱状图、离层水充水源的水头压力、岩层厚度、弹性模量和岩层容重等,其中,钻孔柱状图是为描述钻孔穿过岩层的层性、厚度、岩性、结构构造和接触关系、地下水取样和试验、钻孔结构和钻进等情况而编制的工程地质图,是分析工程地质条件和绘制地质断面图的重要依据。需要说明的是,钻孔柱状图、离层水充水源的水头压力和岩层厚度等数据都是地质技术领域的基础数据,在前期的建设矿井过程中地质工作者通过水文地质勘探获取到这些基础数据,因此,本领域的技术人员是能够直接收集得到的;另外,岩层的弹性模量可以通过测试设备直接获取,例如,通过MTS815全数字型液压伺服试验机测试岩石样品后可直接获得弹性模量,其原理是:试验机获得岩石轴向应力-应变曲线,由曲线上近似直线区段的平均斜率确定,即
Figure PCTCN2019073153-appb-000001
式中:E为岩石弹性模量,即该岩石所在岩层弹性模量,MPa;Δσ为曲线上近似直线区段应力,MPa;Δε i为曲线上近似直线区段应变。
岩层容重可通过室内量积法测试岩石获取。即:
γ=G/V
式中:γ岩石容重,即该岩石所在岩层容重,kN/m 3;G为岩石重量,kN;V为岩石体 积,m 3
S2.计算采区导水裂缝带高度。具体地,采用《矿区水文地质工程地质勘探规范》中公式来计算采区导水裂缝带发育高度。
S3.基于组合梁原理,根据S1步骤中采集的各岩层的岩层厚度、弹性模量、岩层容重对导水裂缝带以上的岩层进行离层发育位置判定。包括以下步骤:
S31.根据钻孔柱状图,对导水裂缝带以上岩层从下至上依次编号1、2...n;
S32.根据以下公式依次计算n层岩层组合梁同步变形时,载荷重新分配,最底层(即组合梁第1层)岩层实际承受的载荷(q n) 1
Figure PCTCN2019073153-appb-000002
式中:q n岩层实际承受的载荷,kPa;E为弹性模量,MPa;h为岩层厚度,m;γ为岩层容重,kN/m 3
S33.若(q m) 1=max((q 1) 1,(q 2) 1...,(q n) 1),且1≤m<n,则判定第m+1层岩层与第m层岩层之间发生了离层;若(q n) 1=max((q 1) 1,(q 2) 1...,(q n) 1),则判定1号岩层至n号岩层无离层空腔。
S4.计算离层水“突水系数”,进行采区离层水水害危险性分区。
S41.根据以下公式计算各钻孔点的离层水“突水系数”:
Figure PCTCN2019073153-appb-000003
式中:T为突水系数,MPa/m;P为离层充水水源的水头压力,MPa;H为离层空腔与导水裂缝带之间岩层厚度,m。
S42.根据各钻孔点的离层水“突水系数”计算结果,绘制采区离层“突水系数”等值线图;
S43.通过统计分析矿区实际离层水突水资料确定临界突水系数T s;若矿区实际离层水突水资料有限或无实际离层水突水资料,则依据《煤矿防治水规定》取T s=0.06MPa/m。
S44.将突水系数T小于临界突水系数T s的区段划分为安全区;将突水系数T大于临界突水系数T s的区段划分为离层水水害危险区。
与现有技术相比,本发明的有益效果为:
本发明提供的一种采区覆岩离层水水害危险性评价法,通过计算导水裂缝带高度、判定离层发育位置、计算各个钻孔点的离层水突水系数、划分离层水水害安全区和离层水水害危险区,进而对采场顶板离层水水害的危险程度进行定性和定量评价分析,不仅能够对传统离层发育位置的判别方法做出修正,而且,使离层水水害的防治工作具有针对性,通过对采区离层水水害危险性进行的预测,采区可根据预测结果设计离层水水害防治方案,从而保证煤炭安全开采。
本发明中,上述各技术方案之间还可以相互组合,以实现更多的优选组合方案。本发明的其他特征和优点将在随后的说明书中阐述,并且,部分优点可从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过说明书、权利要求书以及附图中所特别指出的内容中来实现和获得。
附图说明
附图仅用于示出具体实施例的目的,而并不认为是对本发明的限制,在整个附图中,相同的参考符号表示相同的部件。
图1为本发明提供的采区覆岩离层水水害危险性评价法实施流程图;
图2为依据本发明方法对西北某煤矿采区进行覆岩离层水水害危险性分区的结果;
图3为西北某煤矿某工作面开采过程中实际涌水量图。
具体实施方式
下面结合附图来具体描述本发明的优选实施例,其中,附图构成本申请一部分,并与本发明的实施例一起用于阐释本发明的原理,并非用于限定本发明的范围。
本发明提供了一种采区覆岩离层水水害危险性评价法,如图1所示,包括如下步骤:
S1.收集采区各岩层地质资料。通过钻探和岩石力学实际获取采区地质资料,包括:钻孔柱状图、离层水充水源的水头压力、岩层厚度、弹性模量和岩层容重等。其中,钻孔柱状图是为描述钻孔穿过岩层的层性、厚度、岩性、结构构造和接触关系、地下水取样和试验、钻孔结构和钻进等情况而编制的工程地质图,是分析工程地质条件和绘制地质断面图的重要依据。需要说明的是,钻孔柱状图、离层水充水源的水头压力和岩层厚度等数据都是地质技术领域的基础数据,在前期的建设矿井过程中地质工作者通过水文地质勘探获取到这些基础数据,因此,本领域的技术人员是能够直接收集得到的;另外,岩层的弹性模量可以通过测试设备直接获取,例如,通过MTS815全数字型液压伺服试验机测试岩石样品后可直接获得弹性模量,其原理是:试验机获得岩石轴向应力-应变曲线,由曲线上近似直线区段的平均斜率确定,即
Figure PCTCN2019073153-appb-000004
式中,E为岩石弹性模量,即该岩石所在岩层弹性模量,MPa;Δσ为曲线上近似直线区段应力,MPa;Δε i为曲线上近似直线区段应变。
岩层容重可通过室内量积法测试岩石获取。即:
γ=G/V
γ岩石容重,即该岩石所在岩层容重,kN/m 3;G为岩石重量,kN;V为岩石体积,m 3
S2.根据《矿区水文地质工程地质勘探规范》计算采区导水裂缝带高度。
S3.基于组合梁原理,根据S1步骤中采集的岩层厚度、弹性模量、岩层容重对导水裂缝带以上的岩层进行离层发育位置判定。判定过程包括以下步骤:
S31.根据钻孔柱状图,对导水裂缝带以上岩层从下至上依次编号1、2...n;
S32.根据以下公式依次计算n层岩层组合梁同步变形时,载荷重新分配,最底层(即组合梁第1层)岩层实际承受的载荷(q n) 1
Figure PCTCN2019073153-appb-000005
式中:q n第n层岩层实际承受的载荷,kPa;E为弹性模量,MPa;h为岩层厚度,m;γ为岩层容重,kN/m 3
S33.若(q m) 1=max((q 1) 1,(q 2) 1...,(q n) 1),且1≤m<n,则判定第m+1层岩层与第m层岩层之间发生了离层;若(q n) 1=max((q 1) 1,(q 2) 1...,(q n) 1),则判定1号岩层至n号岩层无离层空腔。
S4.计算离层水“突水系数”,进行采区离层水水害危险性分区。
离层水水害危险性分区包括以下步骤:S41.根据以下公式计算各钻孔点的离层水“突水系数”:
Figure PCTCN2019073153-appb-000006
式中:T为突水系数,MPa/m;P为离层充水水源的水头压力,MPa;H为离层空腔与导水裂缝带之间岩层厚度,m。
S42.根据各钻孔点的离层水“突水系数”计算结果,绘制采区离层“突水系数”等值线图;
S43.通过统计分析矿区实际离层水突水资料确定临界突水系数T s;若矿区实际离层水突水资料有限或无实际离层水突水资料,则依据《煤矿防治水规定》取T s=0.06MPa/m。
S44.将突水系数T小于临界突水系数T s的区段划分为安全区;将突水系数T大于临界突水系数T s的区段划分为离层水水害危险区。
实施例1
西北某煤矿06A工作面宽290m,走向长度1100m,首采煤层2-2煤层近水平,平均埋深650m,平均采厚9.1m,开采方式为综放开采。收集工作面内及附近的钻孔资料,采用《矿区水文地质工程地质勘探规范》中坚硬岩类对应的经验公式计算导水裂缝带高度,部分计算结果见表一,具体公式如下:
Figure PCTCN2019073153-appb-000007
式中:H f为导水裂缝带高度,m;M为煤层累计采厚,m;n为煤分层层数。
表1导水裂缝带高度规范计算值
Figure PCTCN2019073153-appb-000008
根据以下公式依次计算n层岩层组合梁同步变形时,载荷重新分配,最底层(即组合梁第1层)岩层实际承受的载荷(q n) 1,可得:
Figure PCTCN2019073153-appb-000009
若(q m) 1=max((q 1) 1,(q 2) 1...,(q n) 1),1≤m<n,意味着编号1至编号m的岩层能以“组合梁”形式同步弯曲变形,而编号m+1岩层与编号m岩层不能同步弯曲变形,则判定第m+1层岩层与第m层岩层之间发生了离层;
若(q n) 1=max((q 1) 1,(q 2) 1...,(q n) 1),意味着编号1至编号n的岩层能以“组合梁”形式同步弯曲变形,则判定1号岩层至n号岩层无离层空腔。
以K40钻孔为例,根据以上公式对依次进行导水裂缝带以上的岩层进行离层发育位置的理论判定,判定结果见表2。
表2离层发育位置理论判别结果(K40钻孔)
Figure PCTCN2019073153-appb-000010
Figure PCTCN2019073153-appb-000011
首先对编号1之上的岩层进行离层发育位置判定,将1号岩层作为组合梁的第一层进行判定,计算结果表明:
max((q 1) 1,(q 2) 1...,(q 8) 1)=(q 3) 1=835.67kPa
则判定编号4岩层与编号3岩层之间有离层空腔产生;
继续对编号4之上的岩层进行离层发育位置判定,由于4号岩层与3号岩层之间已产生离层,所以将4号岩层作为组合梁的第1层进行判定,计算结果表明:
max((q 4) 4,(q 5) 4...,(q 8) 4)=(q 4) 4=690.90kPa
则判定编号5岩层与编号4岩层之间有离层空腔产生;
继续对编号5之上的岩层进行离层发育位置判定,由于5号岩层与4号岩层之间已产生离层,所以将5号岩层作为组合梁的第1层进行判定,计算结果表明:
max((q 5) 5,(q 6) 5...,(q 8) 5)=(q 8) 5=1674.93kPa
则判定编号5岩层与编号8岩层之间无离层空腔产生。
根据判定结果表明,距离导水裂缝带顶界最近的离层空腔为位于洛河组下部,编号4中砂岩及编号3砂质泥岩之间,距离导水裂缝带63.08m,根据钻孔K40地质资料得此处洛河组水压3.2MPa。计算突水系数:
Figure PCTCN2019073153-appb-000012
同理,对其他钻孔进行离层发育位置理论判定,并计算离层水突水系数,部分结果如表3。
表3离层水突水系数理论计算值
Figure PCTCN2019073153-appb-000013
根据钻孔孔口坐标及采区边界坐标,利用sufferr软件绘制采区离层水突水系数等值线图,根据《煤矿防治水规定》,取临界突水系数T s=0.06MPa/m,即将T小于0.06MPa/m的区段划分为安全区,将突水系数T大于0.06MPa/m的区段划分为离层水水害危险区,划分 结果见图2。根据矿区开采实践,06A工作面在推进558m时顶板发生瞬间涌突水,最大突水量达921.4m 3/h,见图3,有明显的离层水涌突特征,说明06A工作面开采受覆岩离层水水害威胁,同时也验证了采区覆岩离层水水害危险评价结果与实际相符。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种采区覆岩离层水水害危险性评价法,其特征在于,包括以下步骤:
    S1.收集采区各岩层地质资料;
    S2.根据岩性计算采区导水裂缝带高度;
    S3.基于组合梁原理,根据S1步骤中收集采区各岩层地质资料对所述导水裂缝带以上的岩层进行离层发育位置判定;
    S4.计算离层水突水系数,进行采区覆岩离层水水害危险性分区。
  2. 根据权利要求1所述的采区覆岩离层水水害危险性评价法,其特征在于,所述S1步骤中,收集采区各岩层地质资料为收集采区各岩层的如下物理参数:钻孔柱状图、离层水充水源的水头压力、岩层厚度、弹性模量和岩层容重。
  3. 根据权利要求2所述的采区覆岩离层水水害危险性评价法,其特征在于,所述S3步骤中,基于组合梁原理,根据S1步骤中收集采区各岩层地质资料对导水裂缝带以上的岩层进行离层发育位置判定,离层发育位置判定方法为:
    S31.根据钻孔柱状图,对采区导水裂缝带以上岩层从下至上依次编号1、2...n;n≥1;
    S32.根据以下公式依次计算n层岩层以“组合梁”形式同步变形时,载荷重新分配,最底层即组合梁第1层岩层实际承受的载荷(q n) 1
    Figure PCTCN2019073153-appb-100001
    式中:q为岩层实际承受的载荷,kPa;E为弹性模量,MPa;h为岩层厚度,m;γ为岩层容重,kN/m3。
  4. 根据权利要求3所述的采区覆岩离层水水害危险性评价法,其特征在于,所述离层发育位置判定方法中的S32步骤中,若(q m) 1=max((q 1) 1,(q 2) 1...,(q n) 1),且1≤m<n,则判定第m+1层岩层与第m层岩层之间发生了离层,存在离层空腔。
  5. 根据权利要求3所述的采区覆岩离层水水害危险性评价法,其特征在于,所述离层发育位置判定方法中的S32步骤中,若(q n) 1=max((q 1) 1,(q 2) 1...,(q n) 1),则判定1号岩层至n号岩层无离层空腔。
  6. 根据权利要求1所述的采区覆岩离层水水害危险性评价法,其特征在于,所述S4步骤中,计算离层水突水系数,进行采区覆岩离层水水害危险性分区方法的步骤为:
    S41.计算离层水突水系数;
    S42.根据各钻孔点的离层水突水系数计算结果,绘制采区覆岩离层突水系数等值线图;
    S43.通过统计分析矿区实际离层水突水资料确定临界突水系数T s
    S44.将离层水突水系数T与临界突水系数T s的进行比较,划分离层水水害危险性分区和离层水水害安全区。
  7. 根据权利要求6所述的采区覆岩离层水水害危险性评价法,其特征在于,所述S41步骤中,根据以下公式计算离层水突水系数:
    Figure PCTCN2019073153-appb-100002
    式中:T为突水系数,MPa/m;P为离层水充水源的水头压力,MPa;H为离层空腔与导水裂缝带之间岩层厚度,m。
  8. 根据权利要求6所述的采区覆岩离层水水害危险性评价法,其特征在于,所述S43步骤中,若矿区实际离层水突水资料有限或无实际离层水突水资料,则取T s=0.06MPa/m。
  9. 根据权利要求7所述的采区覆岩离层水水害危险性评价法,其特征在于,所述S44步骤中,将突水系数T小于临界突水系数T s的区段划分为安全区。
  10. 根据权利要求7所述的采区覆岩离层水水害危险性评价法,其特征在于,所述S44步骤中,将突水系数T大于临界突水系数T s的区段划分为离层水水害危险区。
PCT/CN2019/073153 2018-06-08 2019-01-25 一种采区覆岩离层水水害危险性评价法 WO2019233114A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3068687A CA3068687A1 (en) 2018-06-08 2019-01-25 Risk evaluation method of overburden bed-separation water disaster in mining area
US16/630,462 US20200370433A1 (en) 2018-06-08 2019-01-25 Risk evaluation method of overburden bed-separation water disaster in mining area
AU2019281278A AU2019281278A1 (en) 2018-06-08 2019-01-25 Method for evaluating risk of water damage from strata water inrush of overlying strata in mining area

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810583414.X 2018-06-08
CN201810583414.XA CN108805352B (zh) 2018-06-08 2018-06-08 一种采区覆岩离层水水害危险性评价法

Publications (1)

Publication Number Publication Date
WO2019233114A1 true WO2019233114A1 (zh) 2019-12-12

Family

ID=64087756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073153 WO2019233114A1 (zh) 2018-06-08 2019-01-25 一种采区覆岩离层水水害危险性评价法

Country Status (5)

Country Link
US (1) US20200370433A1 (zh)
CN (1) CN108805352B (zh)
AU (1) AU2019281278A1 (zh)
CA (1) CA3068687A1 (zh)
WO (1) WO2019233114A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112377221A (zh) * 2020-10-30 2021-02-19 中煤科工集团西安研究院有限公司 采前注浆建造结构关键层抑制导水裂缝带发育的方法
CN112727452A (zh) * 2020-09-29 2021-04-30 中国石油天然气集团有限公司 一种致密砂岩气藏可动水分布的描述方法
CN112836995A (zh) * 2021-03-09 2021-05-25 山东科技大学 一种基于未确知-熵权法的断层活化突水危险性评价方法
CN113793038A (zh) * 2021-09-16 2021-12-14 贵阳市城市轨道交通集团有限公司 一种多因素耦合下岩溶山区地铁隧道工程灾害分区方法

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108805352B (zh) * 2018-06-08 2021-10-01 中国矿业大学 一种采区覆岩离层水水害危险性评价法
CN109611084B (zh) * 2018-11-20 2021-10-22 中国矿业大学 一种采动覆岩可积水离层位置判别方法
CN109635357B (zh) * 2018-11-20 2023-03-14 中国矿业大学 一种考虑采动岩体碎胀性的覆岩离层动态位置预测方法
CN109667577B (zh) * 2019-02-14 2020-04-10 中国矿业大学 一种离层上位岩层破断时离层水动水压力变化过程模拟方法
CN109813486B (zh) * 2019-02-14 2020-05-01 中国矿业大学 一种离层上位岩层破断时离层水动水压力监测装置
CN110009190B (zh) * 2019-03-04 2021-09-28 天地科技股份有限公司 一种基于水体保护的煤炭安全开采评价方法
CN109933954B (zh) * 2019-04-12 2022-06-24 宿州学院 一种残余离层的识别与灾害防治方法
CN111239840B (zh) * 2020-02-25 2022-05-24 华北科技学院 一种基于高密度电法的底板突水预警方法
CN111652509B (zh) * 2020-06-03 2024-02-13 华北科技学院 一种基于多变量的太原组灰岩含水层突水风险分类判别方法
CN112380691A (zh) * 2020-11-12 2021-02-19 合肥工业大学 一种松散承压含水层下开采突水危险性评价方法
CN112432727B (zh) * 2020-11-24 2023-02-03 中国煤炭地质总局勘查研究总院 底板突水预警方法
CN112861311B (zh) * 2021-01-04 2024-04-16 国家能源集团国源电力有限公司 露天矿端帮岩体的防突水设计方法、装置及电子设备
CN112901268B (zh) * 2021-01-19 2021-09-28 宿州学院 一种煤层底板水害防治方法
CN113030430B (zh) * 2021-03-17 2023-02-17 中煤科工集团重庆研究院有限公司 煤矿采动稳定区储层内的游离煤层气浓度测算方法
CN113187550B (zh) * 2021-04-02 2022-02-08 中煤科工集团沈阳研究院有限公司 一种基于对比钻孔瓦斯流量曲线的煤与瓦斯突出预测方法
CN113047829B (zh) * 2021-04-07 2022-07-15 中煤科工集团重庆研究院有限公司 基于掘进机运行参数的煤体结构坚固性的确定方法
CN113250684B (zh) * 2021-04-22 2022-10-14 内蒙古上海庙矿业有限责任公司 一种侏罗系富水软岩的富水性评价及水害分级防控方法
CN113217103B (zh) * 2021-05-18 2022-09-09 华北科技学院(中国煤矿安全技术培训中心) 一种识别离层突水的方法
CN113586150A (zh) * 2021-06-30 2021-11-02 华北科技学院(中国煤矿安全技术培训中心) 一种煤与瓦斯突出预警方法
CN113550791B (zh) * 2021-07-15 2024-02-09 陕西麟北煤业开发有限责任公司 一种煤矿防治管理的煤层顶板离层水探测方法
CN113806841B (zh) * 2021-08-30 2024-02-09 安徽省煤田地质局勘查研究院 基于三维地质模型煤层底板岩溶水害防治钻孔设计方法
CN113916590B (zh) * 2021-10-13 2023-08-15 中煤地质集团有限公司 一种覆岩离层精确检测方法
CN113984621B (zh) * 2021-10-25 2023-06-23 六盘水师范学院 一种风化基岩含水层保水采煤区的识别方法及采煤方法
CN113982486A (zh) * 2021-10-27 2022-01-28 陕西旬邑青岗坪矿业有限公司 工作面溃水溃泥灾害的防治方法
CN114049020B (zh) * 2021-11-17 2024-06-04 中国矿业大学 一种用于关闭/废弃矿山的转型评估方法
CN114091260A (zh) * 2021-11-23 2022-02-25 安徽理工大学 一种考虑断裂保护层隔水性的覆岩离层突水风险评价方法
CN114118848B (zh) * 2021-12-03 2022-07-01 河南大学 一种城市岩溶致陷因子定量识别和灾害风险评估方法
CN114519465A (zh) * 2022-02-18 2022-05-20 中煤能源研究院有限责任公司 一种降雨直接补给矿井的涌水量预测方法
CN115130311B (zh) * 2022-07-04 2023-06-09 河南大学 一种煤层覆岩离层突水灾害判定方法
CN115169948B (zh) * 2022-07-25 2023-05-09 中国矿业大学 采煤工作面覆岩离层突水风险预测方法及安全采矿方法
CN115510776B (zh) * 2022-09-14 2023-04-28 国家能源投资集团有限责任公司 采空区覆岩渗流能力计算与修复方法、装置及电子设备
CN115479540B (zh) * 2022-09-14 2023-06-30 西南交通大学 一种基于激光扫描的岩溶突水灾害量级评估方法和系统
CN116446880B (zh) * 2023-04-04 2023-12-01 中煤科工开采研究院有限公司 绿色开采方法、装置、电子设备及存储介质
CN116797020A (zh) * 2023-05-24 2023-09-22 中国矿业大学 一种考虑岩层结构演化的煤矿顶板离层突水微震预警方法
CN116611567B (zh) * 2023-05-24 2024-02-02 中国矿业大学 一种矿区采动覆岩顶板突水复合灾害危险性分区预测方法
CN116644614B (zh) * 2023-06-30 2023-11-14 中国矿业大学 一种采动覆岩突水离层带层位识别方法
CN116957325B (zh) * 2023-07-05 2024-02-13 中国矿业大学 一种基于多元非线性指标的顶板离层突水预报方法
CN117436695A (zh) * 2023-10-26 2024-01-23 中铁二院工程集团有限责任公司 一种隧道突涌塌方风险的评估方法及系统
CN118052541B (zh) * 2024-04-16 2024-06-14 安徽省七星工程测试有限公司 一种基于隧道快速检测的数字化交付管理平台

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104933266A (zh) * 2015-07-09 2015-09-23 西安科技大学 一种覆岩导水裂缝带高度的确定方法
CN107728228A (zh) * 2017-10-20 2018-02-23 贵州工程应用技术学院 水体下采煤覆岩导水裂隙带发育高度预计方法
CN108805352A (zh) * 2018-06-08 2018-11-13 中国矿业大学 一种采区覆岩离层水水害危险性评价法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102799955B (zh) * 2012-08-09 2016-05-25 中国矿业大学(北京) 突水系数小于0.06MPa/m区底板突水评价三图法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104933266A (zh) * 2015-07-09 2015-09-23 西安科技大学 一种覆岩导水裂缝带高度的确定方法
CN107728228A (zh) * 2017-10-20 2018-02-23 贵州工程应用技术学院 水体下采煤覆岩导水裂隙带发育高度预计方法
CN108805352A (zh) * 2018-06-08 2018-11-13 中国矿业大学 一种采区覆岩离层水水害危险性评价法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112727452A (zh) * 2020-09-29 2021-04-30 中国石油天然气集团有限公司 一种致密砂岩气藏可动水分布的描述方法
CN112727452B (zh) * 2020-09-29 2024-06-07 中国石油天然气集团有限公司 一种致密砂岩气藏可动水分布的描述方法
CN112377221A (zh) * 2020-10-30 2021-02-19 中煤科工集团西安研究院有限公司 采前注浆建造结构关键层抑制导水裂缝带发育的方法
CN112377221B (zh) * 2020-10-30 2022-09-23 中煤科工集团西安研究院有限公司 采前注浆建造结构关键层抑制导水裂缝带发育的方法
CN112836995A (zh) * 2021-03-09 2021-05-25 山东科技大学 一种基于未确知-熵权法的断层活化突水危险性评价方法
CN113793038A (zh) * 2021-09-16 2021-12-14 贵阳市城市轨道交通集团有限公司 一种多因素耦合下岩溶山区地铁隧道工程灾害分区方法
CN113793038B (zh) * 2021-09-16 2023-12-22 贵阳市城市轨道交通集团有限公司 一种多因素耦合下岩溶山区地铁隧道工程灾害分区方法

Also Published As

Publication number Publication date
CN108805352A (zh) 2018-11-13
AU2019281278A1 (en) 2020-01-23
US20200370433A1 (en) 2020-11-26
AU2019281278A9 (en) 2020-12-10
CA3068687A1 (en) 2019-12-12
CN108805352B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2019233114A1 (zh) 一种采区覆岩离层水水害危险性评价法
Zhang et al. Enhancement of gas drainage efficiency in a special thick coal seam through hydraulic flushing
Qiu et al. Assessment of water inrush risk using the fuzzy delphi analytic hierarchy process and grey relational analysis in the Liangzhuang coal mine, China
WO2016090883A1 (zh) 一种基于多源信息融合的采场顶板离层水害超前预报方法
Zhang et al. Experimental and numerical investigation on coal drawing from thick steep seam with longwall top coal caving mining
Pan et al. Effect of premining on hard roof distress behavior: a case study
Abbas et al. Rock mass classification systems
Wei et al. Formation and height of the interconnected fractures zone after extraction of thick coal seams with weak overburden in Western China
Khomenko et al. Analytical modeling of the backfill massif deformations around the chamber with mining depth increase
WO2020048137A1 (zh) 一种固体充填材料内部应力确定方法
WO2016041389A1 (zh) 一种固体充填采煤工作面充填质量评价方法
Kurlenya et al. Experimental and analytical method for assessing stability of stopes
Xue et al. The influence of magmatic rock thickness on fracture and instability law of mining surrounding rock
Palchik Analysis of main factors influencing the apertures of mining-induced horizontal fractures at longwall coal mining
Cao et al. Protection scope and gas extraction of the low-protective layer in a thin coal seam: lessons from the DaHe coalfield, China
Bertuzzi et al. Improving the GSI Hoek-Brown criterion relationships
Öge Prediction of top coal cavability character of a deep coal mine by empirical and numerical methods
Meng et al. In situ investigation and numerical simulation of the failure depth of an inclined coal seam floor: a case study
Raina et al. Rock mass damage from underground blasting, a literature review, and lab-and full scale tests to estimate crack depth by ultrasonic method
Chen et al. Calculation method of overburden damage height based on fracture mechanics analysis of soft and hard rock layers
Mitri Assessment of horizontal pillar burst in deep hard rock mines
Strzalkowski et al. Analytical and numerical method assessing the risk of sinkholes formation in mining areas
CN112377259A (zh) 一种瓦斯圈闭形成的判定方法及圈闭瓦斯资源量的计算方法
CN109635357A (zh) 一种考虑采动岩体碎胀性的覆岩离层动态位置预测方法
Jiang et al. Study on distribution characteristics of mining stress and elastic energy under hard and thick igneous rocks

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3068687

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019281278

Country of ref document: AU

Date of ref document: 20190125

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814639

Country of ref document: EP

Kind code of ref document: A1