WO2019233012A1 - 一种全光纤横模可切换的高阶模布里渊激光器 - Google Patents

一种全光纤横模可切换的高阶模布里渊激光器 Download PDF

Info

Publication number
WO2019233012A1
WO2019233012A1 PCT/CN2018/110443 CN2018110443W WO2019233012A1 WO 2019233012 A1 WO2019233012 A1 WO 2019233012A1 CN 2018110443 W CN2018110443 W CN 2018110443W WO 2019233012 A1 WO2019233012 A1 WO 2019233012A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
mode
port
coupler
optical
Prior art date
Application number
PCT/CN2018/110443
Other languages
English (en)
French (fr)
Inventor
甘久林
衡小波
杨中民
张智深
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US15/734,648 priority Critical patent/US11870210B2/en
Priority to SG11202011851XA priority patent/SG11202011851XA/en
Publication of WO2019233012A1 publication Critical patent/WO2019233012A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094042Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a fibre laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/1001Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • H01S3/1003Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors tunable optical elements, e.g. acousto-optic filters, tunable gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08013Resonator comprising a fibre, e.g. for modifying dispersion or repetition rate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094065Single-mode pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094069Multi-mode pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to the field of optical communication technology, and in particular, to a high-order mode Brillouin laser with all-fiber transverse mode switchable.
  • Fiber lasers due to their advantages in reducing thresholds, system compatibility, wavelength tunability, flexibility, stability, and compactness, are new laser technologies that have been rapidly developed in recent years.
  • Multiplex systems, optical time-division multiplexing systems, optical-borne wireless communication systems, high-performance fiber-optic sensor networks, optical measurement, laser processing, laser medical, and lidar have extremely broad application prospects.
  • wavelength-tunable fiber lasers and multi-wavelength fiber lasers have attracted much attention.
  • a common way to achieve a wavelength-tunable fiber laser is a tunable fiber Bragg grating. Fiber Bragg Grating pitch is tuned by mechanical stretching or heating.
  • High-order mode lasers have attracted more and more researchers' attention due to their unique spatial intensity, phase, and polarization distribution. Information is modulated on several different high-order modes.
  • the resulting mode-division multiplexing technology can significantly increase the transmission capacity in optical communications and has great potential in the field of optical communications.
  • researchers have proposed many methods to generate high-order mode lasers.
  • the lasers that generate high-order mode lasers can be roughly divided into two categories: solid-element solid-state lasers and all-fiber lasers.
  • all-fiber lasers Compared with the former, all-fiber lasers have the advantages of low cost, good flexibility, good stability, small size, and high efficiency.
  • the transverse mode orders of these high-order mode lasers are also fixed. Not conducive to the development of high-capacity and integrated all-fiber communication systems. Therefore, it is of great significance to realize a high-efficiency, all-fiber, and low-cost method to obtain high-purity, high stability, and compact high-order mode-switchable high-order mode lasers.
  • the object of the present invention is to provide a high-order mode Brillouin laser with switchable all-fiber transverse mode.
  • the invention realizes that the pump light of a specific order transverse mode is injected into the ring cavity, and based on the Brillouin nonlinear gain of the few-mode fiber in the ring cavity, the resonance amplification of the specific order transverse mode in the cavity is realized.
  • An all-fiber horizontal mode switchable high-order mode Brillouin laser includes a narrow linewidth pump laser, an optical amplifier, a 1 ⁇ N optical switch (N ⁇ 2), a fiber mode selection coupler group, and a first polarization Controller, fiber optic circulator, fiber coupler, second polarization controller, and low-mode fiber.
  • the 1 ⁇ N optical switch includes one input port and N output ports;
  • the fiber mode selection coupler group includes N fiber mode selection couplers, which are respectively referred to as a first fiber mode selection coupler to an Nth fiber mode selection coupler; each of the N fiber mode selection couplers includes a first port, a first Two ports, a third port, and a fourth port; the fourth port of the N-1th fiber mode selection coupler is connected to the third port of the Nth fiber mode selection coupler;
  • the fiber optic circulator includes a first port, a second port, and a third port;
  • the fiber coupler includes a first port, a second port, a third port, and a fourth port;
  • the narrow linewidth pump laser is connected to an optical amplifier, the optical amplifier is connected to an input port of a 1 ⁇ N optical switch, and the N output ports of the 1 ⁇ N optical switch are connected to N fiber mode selection couplers, respectively.
  • the first port of the N fiber mode selection coupler is connected to the first port of the fiber optic circulator after the first polarization controller, and the second port of the fiber circulator is connected to the fiber coupling
  • the first port of the fiber coupler, the second port of the fiber coupler is connected to the third port of the fiber circulator to form a ring cavity after passing through the second polarization controller and the low-mode fiber, and the third port of the fiber coupler outputs laser.
  • the narrow linewidth pump laser is selected from a tunable narrow linewidth semiconductor laser or a narrow linewidth fiber laser, and the linewidth of the laser is lower than 1 MHz.
  • the optical amplifier is a high-gain fiber amplifier or a semiconductor optical amplifier.
  • the 1 ⁇ N optical switch is an optical fiber device capable of quickly switching optical signals of each output port or a mechanically and electrically controlled optical splitting ratio adjustable optical coupler.
  • the fiber mode selection coupler group is a 2 ⁇ 2 coupler made by melting a single-mode fiber and a few-mode fiber by a fusion taper, and the coupler can realize a basic transverse mode and a few-mode fiber in a single-mode fiber
  • the first and second ports are single-mode fibers
  • the third and fourth ports are few-mode fibers.
  • the optical fiber circulator is a low-mode fiber circulator, and the pigtails of the three ports of the circulator are low-mode fiber.
  • the optical fiber coupler is a 2 ⁇ 2 coupler made by melting a taper of a small-mode fiber and a small-mode fiber, and the coupler can implement a specific order mode in the low-mode fiber and a same-order mode in the few-mode fiber.
  • the directional selective coupling between the two ports of the coupler is a few-mode fiber.
  • the low-mode fiber is a working-mode low-mode fiber, and the number of modes supported by the small-mode fiber is greater than or equal to N, and the length is greater than 20 cm.
  • the fiber laser of the present invention has a ring-shaped cavity structure.
  • the ring-shaped cavity includes an optical fiber circulator and an optical fiber coupler, and the entire ring-shaped cavity is connected to an optical fiber as a low-mode fiber.
  • pump light of a specific order transverse mode is injected into a ring cavity.
  • the invention utilizes stimulated Brillouin scattering in a few-mode fiber to realize resonance amplification of a specific-order transverse mode in a resonant cavity, and generates stable and high-purity transverse-mode switchable high-order mode Brillouin laser at room temperature.
  • the present invention has the following beneficial effects:
  • the present invention uses an optical switch to adjust the pump light mode injected into the laser cavity, thereby realizing the output of lasers in different order modes, with fast switching speed, high switching accuracy, and small loss;
  • the present invention uses a fiber mode selection coupler as a laser external cavity mode conversion device and a laser output coupling device, which has the advantages of small loss and high efficiency;
  • the present invention achieves high-order mode cavity photo amplification, and the obtained high-order mode laser mode has high purity;
  • the present invention uses passive few-mode fiber as a gain medium, which is convenient to obtain and easy to popularize and use;
  • the present invention adopts an all-fiber structure, which has the advantages of simple structure, low cost, easy integration of the fiber system, good output laser stability, narrow line width, etc., and improves the practicability and reliability of high-order mode lasers.
  • FIG. 1 is a schematic diagram of an all-fiber zero-order and first-order switchable Brillouin laser in Embodiment 1.
  • FIG. 1 is a schematic diagram of an all-fiber zero-order and first-order switchable Brillouin laser in Embodiment 1.
  • FIG. 2 is a graph showing the change of the output splitting ratio of the adjustable splitting ratio fiber coupler with the applied voltage in Embodiment 1.
  • FIG. 3 is a schematic diagram of mode conversion of the first optical fiber mode selection coupler in Embodiment 1.
  • FIG. 3 is a schematic diagram of mode conversion of the first optical fiber mode selection coupler in Embodiment 1.
  • FIG. 4 is a schematic diagram of mode conversion of the second fiber mode selection coupler in Embodiment 1.
  • FIG. 4 is a schematic diagram of mode conversion of the second fiber mode selection coupler in Embodiment 1.
  • FIG. 5 is a fundamental transverse mode light spot pattern output by the laser in Example 1.
  • FIG. 6 is a first-order mode light spot pattern of the laser output in Embodiment 1.
  • FIG. 7 is a schematic diagram of a high-order mode Brillouin laser with all-fiber transverse mode switching in Embodiment 2.
  • FIG. 7 is a schematic diagram of a high-order mode Brillouin laser with all-fiber transverse mode switching in Embodiment 2.
  • First fiber mode selection coupler 4 second fiber mode selection coupler 5, first polarization controller 7, fiber circulator 8, fiber coupler 9, second polarization controller 10, and low-mode fiber 11.
  • the narrow linewidth pump laser 1 is a narrow linewidth semiconductor laser or a narrow linewidth fiber laser with a tunable C-band power.
  • the laser linewidth is lower than 1 MHz, and the pigtail is a single-mode fiber.
  • the optical amplifier 2 is a high-gain erbium-doped fiber amplifier or a 1550 nm band semiconductor optical amplifier, and the pigtail is a single-mode fiber.
  • the input end is fixed at the PZT.
  • One end, the first output port 301 and the second output port 302 are fixed at the other end of the PZT.
  • the voltage applied to the PZT By adjusting the voltage applied to the PZT, the coupling region is stretched to achieve tuning of the splitting ratio of the first output port and the second output port.
  • the split ratio of the first output port and the second output port is 100: 0, and when the applied voltage is 8V, the split ratio of the first output port and the second output port is 0: 100.
  • the first optical fiber mode selection coupler 4 is a 2 ⁇ 2 coupler made of a single-mode optical fiber and a few-mode optical fiber by fusion-pulling.
  • the selected coupler is shown in Fig. 3, which can realize the directional selective coupling between the ground transverse mode in the polished optical fiber and the zero-order basis transverse mode in the few-mode fiber.
  • the first port 401 and the second port 402 are single-mode fibers.
  • the third port 403 and the fourth port 404 are low-mode fibers.
  • the second optical fiber mode selection coupler 5 is a 2 ⁇ 2 coupler made of a single-mode optical fiber and a few-mode optical fiber by fusion-pulling.
  • the selected coupler is shown in Figure 4, which can realize the directional selective coupling between the fundamental transverse mode in a single-mode fiber and the first-order high-order mode in a few-mode fiber.
  • the first port 501 and the second port 502 are single-mode fibers.
  • the three-port 503 and the fourth port 504 are low-mode fibers.
  • the optical fiber circulator 8 is a low-mode optical fiber circulator, and includes a first port 801, a second port 802, and a third port 803.
  • the pigtails of the three ports are a low-mode fiber.
  • Optical fiber coupler 9 a 2 ⁇ 2 coupler made by melting the taper of a few-mode fiber and a few-mode fiber, can achieve directional selective coupling between a specific-order transverse mode in a few-mode fiber and the same-order transverse mode in a few-mode fiber
  • the pigtails of the four ports of the coupler are few-mode fibers.
  • the low-mode optical fiber 11 is a 1550-band low-mode optical fiber that is generally used in commercial use, and supports two modes of a zero-order fundamental transverse mode and a first-order high-order mode with a length of 50 m.
  • the laser output by the narrow linewidth pump laser is power amplified by the amplifier.
  • the amplified high power pump light can be injected into the spectral ratio.
  • the input end of the optical fiber coupler is adjusted. 100% of the pump light is injected into the first port 401 of the first fiber mode selection coupler through the first port 301 of the adjustable optical fiber coupler.
  • the pump light is changed from the fundamental transverse mode of the single-mode fiber in the first port 401 to the zero-order fundamental transverse mode of the few-mode fiber in the fourth port 404, and the generated zero-order fundamental transverse-mode pump light is injected into the second fiber mode.
  • the third port 503 of the coupler is selected. Because the phase matching condition is not satisfied, after the coupler is selected in the second fiber mode, the zero-order fundamental transverse mode pump light still passes through the fourth port 504 through the first polarization in the zero-order fundamental transverse mode. After the controller is injected into the first port 801 of the optical fiber circulator, and then injected into the first port 901 of the optical fiber coupler from the second port 802 of the optical fiber circulator, it enters the low-mode fiber and the stimulated Brillouin scattering effect occurs.
  • the zero-order fundamental transverse mode Brillouin Stokes light of the running zero-order fundamental transverse mode Brillouin Stokes light in a few-mode fiber when the pump light power exceeds the Brillouin threshold in the annular cavity The light passes through the second port 902 of the optical fiber coupler, the second port 802 of the optical fiber circulator, and the third port 803 of the optical fiber circulator in turn, and enters the low-mode fiber again, and forms an oscillation in the resonant cavity, that is, generates a pump light frequency
  • the first-order zero-order fundamental transverse mode Brillouin Stokes laser is shifted down.
  • This zero-order fundamental transverse-mode Brillouin Stokes laser is output through the third port 903 of the fiber coupler to obtain the zero-order fundamental transverse mode.
  • Laser as shown in Figure 5.
  • the first polarization controller between the fourth port 504 of the second fiber mode selection coupler and the first port 801 of the fiber circulator and the second polarization controller on the few-mode fiber jointly control the pump light and the Brillouin pump light Polarization state to obtain maximum Brillouin nonlinear gain.
  • the laser output by the narrow linewidth pump laser is amplified by the amplifier.
  • the amplified high power pump light is injected into the input of the tunable split optical fiber coupler.
  • 100% of the pump light is injected into the first port 501 of the second fiber mode selection coupler through the second port 302 of the tunable optical fiber coupler.
  • the pump light The fundamental transverse mode of the single-mode fiber in one port 501 is transformed into the first-order high-order mode of the few-mode fiber in the fourth port 504.
  • the generated first-order high-order mode pump light passes through the first polarization controller and is injected into the first port 801 of the optical fiber circulator. Then, it is injected into the first port 901 of the fiber coupler from the second port 802 of the fiber circulator, that is, it enters the low-mode fiber, the stimulated Brillouin scattering effect occurs, and the first-order high-order mode Brillouin Stowe in reverse operation occurs.
  • the first-order high-order mode Brillouin Stokes light generated in the few-mode fiber passes through the second port 902 of the fiber coupler, the fiber ring
  • the second port 802 and the third port 803 of the fiber circulator enter the low-mode fiber again, and form an oscillation in the resonant cavity, that is, a first-order high-order mode Brillouin Stokes with a pump light frequency shifted down by one order is generated.
  • Laser this first-order high-order mode Brillouin Stokes laser is output through the third port 903 of the fiber coupler to obtain a first-order high-order mode laser, as shown in FIG. 6.
  • the first polarization controller between the fourth port 504 of the second fiber mode selection coupler and the first port 801 of the fiber circulator and the second polarization controller on the few-mode fiber jointly control the pump light and the Brillouin pump light Polarization state to obtain maximum Brillouin nonlinear gain.
  • the optical signals of the first port 301 and the second port 302 are switched, so that the pump light of a specific order transverse mode is injected into the ring cavity.
  • the connecting fibers in the annular cavity are all low-mode fibers and operate in a specific order transverse mode. Based on the Brillouin nonlinear effect, a specific order transverse mode resonance amplification in the cavity is achieved, so that the third port 903 of the fiber coupler A laser of a specific order transverse mode with high mode purity is obtained.
  • a full-fiber horizontal mode switchable high-order mode Brillouin laser includes a narrow linewidth pump laser 1, an optical amplifier 2, a 1 ⁇ N optical switch 3 (N> 2), and an optical fiber.
  • the 1 ⁇ N optical switch 3 includes one input port and N output ports 301 to 30N;
  • the fiber mode selection coupler group includes N fiber mode selection couplers, which are denoted as a first fiber mode selection coupler 4, a second fiber mode selection coupler 5 to an Nth fiber mode selection coupler 6, and N fibers.
  • the mode selection couplers each include a first port, a second port, a third port, and a fourth port; the fourth port of the N-1th fiber mode selection coupler is connected to the third port of the Nth fiber mode selection coupler;
  • the optical fiber circulator 8 includes a first port 801, a second port 802, and a third port 803.
  • the optical fiber coupler 9 includes a first port 901, a second port 902, a third port 903, and a fourth port 904.
  • the narrow linewidth pump laser is connected to an optical amplifier, the optical amplifier is connected to an input port of a 1 ⁇ N optical switch, and the N output ports of the 1 ⁇ N optical switch are connected to N fiber mode selection couplers, respectively.
  • the first port of the N fiber mode selection coupler is connected to the first port of the fiber optic circulator via the first polarization controller, and the second port of the fiber circulator is connected to the fiber optic coupler.
  • the first port, the second port of the fiber coupler is connected to the third port of the fiber circulator via the second polarization controller and the low-mode fiber to form a ring cavity, and the third port of the fiber coupler outputs laser light.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种全光纤横模可切换的高阶模布里渊激光器,激光器包括窄线宽泵浦激光器(1)、光放大器(2)、1×N光开关(3)(N≥2)、光纤模式选择耦合器组、第一偏振控制器(7)、光纤环形器(8)、光纤耦合器(9)、第二偏振控制器(10)和少模光纤(11)。基于环形腔内少模光纤(11)的布里渊非线性增益,实现特定阶横模在腔内的谐振放大,获得横模可切换的高阶模激光输出。采用全光纤结构,具有结构简单,成本低,易于光纤系统集成,输出激光稳定性好,线宽窄等优点,提高了高阶模激光器的实用性和可靠性。

Description

一种全光纤横模可切换的高阶模布里渊激光器 技术领域
本发明涉及光通信技术领域,尤其涉及一种全光纤横模可切换的高阶模布里渊激光器。
背景技术
光纤激光器,由于其在降低阈值、系统兼容性、波长可调谐性、灵活性、稳定性以及紧凑性等方面的优点,是近年来迅速发展起来的新型激光技术,在未来高码率密集波分复用系统、光时分复用系统、光载无线通信系统、高性能光纤传感网络、光学测量、激光加工、激光医疗、激光雷达等领域具有极广阔的应用前景。作为波分复用系统和光纤传感网络中多信道光源的理想选择,波长可调谐的光纤激光器和多波长光纤激光器备受人们关注。目前,实现波长可调谐的光纤激光器的常用方式为可调谐光纤布拉格光栅。光纤布拉格光栅的间距通过机械拉伸或加热来调谐。
随着移动通信业务的迅猛发展,云计算、物联网、大数据等互联网技术的日渐兴起,当前的波分复用、偏振复用等技术已经很难进一步提升信息传输容量。高阶模激光由于其独特的空间强度、相位和偏振分布,引起了越来越多研究者的关注。信息在几种不同的高阶模上调制,由此产生的模式分复用技术,可以显著提高光通信中的传输容量,在光通信领域有极大的潜力。在这些应用前景的推动下,研究者们提出了许多方法以产生高阶模激光。目前,产生高阶模激光的激光器大致可以分为两类:体元件固体激光器和全光纤激光器。与前者相比,全光纤激光器具有成本低、灵活性好、稳定性好、体积小、效率高等优点。然而,当结构固定时,这些高阶模激光器输出的横模阶数也是固定的。不利于高容量和集成的全光纤通信系统的开发。因此,实现一种高效率、全光纤和低成本的方法以获得高纯度、高稳定性和结构紧凑的横模可切换的高阶模激光器具有重要的意义。
发明内容
本发明的目的在于提供一种全光纤横模可切换的高阶模布里渊激光器。本发明通过调整1×N光开关,实现特定阶数横模的泵浦光注入环形腔,基于环形腔内少模光纤的布里渊非线性增益,实现特定阶横模在腔内的谐振放大,获得横模可切换的高阶模激光输出。
本发明的目的能够通过以下技术方案实现:
一种全光纤横模可切换的高阶模布里渊激光器,所述激光器包括窄线 宽泵浦激光器、光放大器、1×N光开关(N≥2)、光纤模式选择耦合器组、第一偏振控制器、光纤环形器、光纤耦合器、第二偏振控制器和少模光纤。
所述1×N光开关包括一个输入端口和N个输出端口;
所述光纤模式选择耦合器组包括N个光纤模式选择耦合器,分别记为第一光纤模式选择耦合器至第N光纤模式选择耦合器;N个光纤模式选择耦合器均包括第一端口、第二端口、第三端口和第四端口;第N-1光纤模式选择耦合器的第四端口与第N光纤模式选择耦合器的第三端口相连接;
所述光纤环形器包括第一端口、第二端口和第三端口;
所述光纤耦合器包括第一端口、第二端口、第三端口和第四端口;
所述窄线宽泵浦激光器连接至光放大器,所述光放大器连接至1×N光开关的输入端口,所述1×N光开关的N个输出端口分别连接至N个光纤模式选择耦合器的第一端口,所述第N个光纤模式选择耦合器的第四端口经过第一偏振控制器后与光纤环形器的第一端口相连接,所述光纤环形器的第二端口连接至光纤耦合器的第一端口,所述光纤耦合器的第二端口经过第二偏振控制器和少模光纤后与光纤环形器的第三端口连接以构成环形腔,所述光纤耦合器的第三端口输出激光。
优选地,所述窄线宽泵浦激光器选用功率可调谐的窄线宽半导体激光器或者窄线宽光纤激光器,所述激光器的线宽低于1MHz。
优选地,所述光放大器选用高增益光纤放大器或者半导体光放大器。
优选地,所述1×N光开关选用可快速开关各输出端口光信号的光纤器件或者机械和电控等方式控制的分光比可调光纤耦合器。
优选地,所述光纤模式选择耦合器组选用单模光纤与少模光纤熔融拉锥制得的2×2的耦合器,所述耦合器能够实现单模光纤中的基横模和少模光纤中特定阶模式间的定向选择耦合,第一和第二端口为单模光纤,第三和第四端口为少模光纤。
优选地,所述光纤环形器选用少模光纤环形器,所述环形器三个端口的尾纤为少模光纤。
优选地,所述光纤耦合器选用少模光纤与少模光纤熔融拉锥制得的2×2的耦合器,所述耦合器能够实现少模光纤中特定阶模式和少模光纤中相同阶模式间的定向选择耦合,所述耦合器四个端口的尾纤为少模光纤。
优选地,所述少模光纤选用工作波段少模光纤,所述少模光纤支持的模式数大于等于N,长度大于20cm。
本发明的光纤激光器为环形腔结构,环形腔内包括一个光纤环形器和一个光纤耦合器,整个环形腔内连接光纤为少模光纤。本发明通过调整1×N光开关,实现特定阶数横模的泵浦光注入环形腔。本发明利用少模光纤中的受激布里渊散射,实现特定阶横模在谐振腔内谐振放大,在室温下产生稳定高纯度的横模可切换的高阶模布里渊激光。
本发明相较于现有技术,具有以下的有益效果:
1、本发明利用光开关调整注入激光腔的泵浦光模式,从而实现不同阶数模式激光的输出,切换速率快,切换精度高,损耗小;
2、本发明利用光纤模式选择耦合器作为激光器谐振腔外模式转换器件和激光输出耦合器件,具有损耗小,效率高的优点;
3、本发明基于布里渊非线性增益,实现高阶模式腔内写真放大,获得的高阶模激光模式纯度高;
4、本发明利用无源少模光纤作为增益介质,获取方便,易于推广使用;
5、本发明采用全光纤结构,具有结构简单,成本低,易于光纤系统集成,输出激光稳定性好,线宽窄等优点,提高了高阶模激光器的实用性和可靠性。
附图说明
图1为实施例1中全光纤零阶和一阶可切换布里渊激光器的示意图。
图2为实施例1中分光比可调光纤耦合器的输出分光比随施加电压的变化图。
图3为实施例1中第一光纤模式选择耦合器的模式转换示意图。
图4为实施例1中第二光纤模式选择耦合器的模式转换示意图。
图5为实施例1中激光器输出的基横模光斑图。
图6为实施例1中激光器输出的一阶模式光斑图。
图7为实施例2中全光纤横模可切换的高阶模布里渊激光器的示意图。
图中,1-窄线宽泵浦激光器、2-光放大器、3-分光比可调光纤耦合器、4-第一光纤模式选择耦合器、5-第二光纤模式选择耦合器、6-第N光纤模式选择耦合器、7-第一偏振控制器、8-光纤环形器、9-第三光纤模式选择 耦合器、10-第二偏振控制器、11-少模光纤。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
如图1所示为本实施例中的一种全光纤零阶和一阶可切换的布里渊激光器,包括窄线宽泵浦激光器1、光放大器2、1×N光开关3(N=2)、第一光纤模式选择耦合器4、第二光纤模式选择耦合器5、第一偏振控制器7、光纤环形器8、光纤耦合器9、第二偏振控制器10和少模光纤11。
在本实施例中,所述窄线宽泵浦激光器1选用C波段功率可调谐的窄线宽半导体激光器或者窄线宽光纤激光器,所述激光器线宽低于1MHz,尾纤为单模光纤。
所述光放大器2选用高增益掺铒光纤放大器或者1550nm波段半导体光放大器,尾纤为单模光纤。
所述1×N光开关3(N=2)选用分光比可调光纤耦合器,包括单模光纤与单模光纤熔融拉锥制得的1×2的耦合器以及PZT,输入端固定在PZT的一端,第一输出端口301和第二输出端口302固定在PZT的另一端。通过调整施加在PZT上的电压,使耦合区拉伸,实现第一输出端口和第二输出端口分光比的调谐。如图2所示,当施加电压为0V时,第一输出端口和第二输出端口的分光比为100:0,当施加电压为8V时,第一输出端口和第二输出端口的分光比为0:100。
第一光纤模式选择耦合器4选用单模光纤与少模光纤熔融拉锥制得的2×2的耦合器。所选用的耦合器如图3所示,能够实现打磨光纤中的基横模和少模光纤中零阶基横模间的定向选择耦合,第一端口401和第二端口402为单模光纤,第三端口403和第四端口404为少模光纤。
第二光纤模式选择耦合器5选用单模光纤与少模光纤熔融拉锥制得的2×2的耦合器。所选用的耦合器如图4所示,能够实现单模光纤中的基横模和少模光纤中一阶高阶模间的定向选择耦合,第一端口501和第二端口502为单模光纤,第三端口503和第四端口504为少模光纤。
光纤环形器8,选用少模光纤环形器,包括第一端口801、第二端口802和第三端口803,上述三个端口的尾纤为少模光纤。
光纤耦合器9,选用少模光纤与少模光纤熔融拉锥制得的2×2的耦合 器,能够实现少模光纤中特定阶横模和少模光纤中相同阶横模间的定向选择耦合,所述耦合器的四个端口的尾纤为少模光纤。
少模光纤11选用普通商用的1550波段少模光纤,支持零阶基横模和一阶高阶模两个模式,长度为50m。
在本实施例中,当施加在分光比可调光纤耦合器的电压幅度为0V时,窄线宽泵浦激光器输出的激光由放大器进行功率放大,放大后的高功率泵浦光注入分光比可调光纤耦合器的输入端,100%的泵浦光由分光比可调光纤耦合器的第一端口301注入第一光纤模式选择耦合器的第一端口401,经过第一光纤模式选择耦合器后,泵浦光由第一端口401中单模光纤的基横模转变为第四端口404中少模光纤的零阶基横模,产生的零阶基横模泵浦光再注入第二光纤模式选择耦合器的第三端口503,由于不满足相位匹配条件,经过第二光纤模式选择耦合器后,零阶基横模泵浦光仍以零阶基横模由第四端口504经过第一偏振控制器后注入光纤环形器的第一端口801,再从光纤环形器的第二端口802注入光纤耦合器的第一端口901,即进入到少模光纤中,发生受激布里渊散射效应,产生反向运行的零阶基横模布里渊斯托克斯光,当泵浦光功率超过环形腔中布里渊阈值时,其少模光纤中产生的零阶基横模布里渊斯托克斯光依次经光纤耦合器的第二端口902、光纤环形器的第二端口802、光纤环形器的第三端口803再次进入少模光纤中,在谐振腔内形成振荡,即产生一个泵浦光频率下移一阶的零阶基横模布里渊斯托克斯激光,此零阶基横模布里渊斯托克斯激光经光纤耦合器的第三端口903输出,获得零阶基横模激光,如图5所示。第二光纤模式选择耦合器的第四端口504和光纤环形器的第一端口801间的第一偏振控制器以及少模光纤上的第二偏振控制器共同控制泵浦光和布里渊泵浦光的偏振态,以获得最大的布里渊非线性增益。
当施加在可调分光比光纤耦合器的电压幅度为8V时,窄线宽泵浦激光器输出的激光由放大器进行功率放大,放大后的高功率泵浦光注入分光比可调光纤耦合器的输入端,100%的泵浦光由分光比可调光纤耦合器的第二端口302注入第二光纤模式选择耦合器的第一端口501,经第二光纤模式选择耦合器后,泵浦光由第一端口501中单模光纤的基横模转变为第四端口504中少模光纤的一阶高阶模,产生的一阶高阶模泵浦光经过第一偏振控制器后注入光纤环形器的第一端口801,再自光纤环形器的第二端口802注入光纤耦合器的第一端口901,即进入少模光纤中,发生受激布里渊 散射效应,产生反向运行的一阶高阶模布里渊斯托克斯光,当泵浦光功率超过环形腔中布里渊阈值时,其少模光纤中产生的一阶高阶模布里渊斯托克斯光依次经光纤耦合器的第二端口902、光纤环形器的第二端口802、光纤环形器的第三端口803再次进入少模光纤中,在谐振腔内形成振荡,即产生一个泵浦光频率下移一阶的一阶高阶模布里渊斯托克斯激光,此一阶高阶模布里渊斯托克斯激光经光纤耦合器的第三端口903输出,获得一阶高阶模激光,如图6所示。第二光纤模式选择耦合器的第四端口504和光纤环形器的第一端口801间的第一偏振控制器以及少模光纤上的第二偏振控制器共同控制泵浦光和布里渊泵浦光的偏振态,以获得最大的布里渊非线性增益。
通过调整施加在分光比可调光纤耦合器中PZT的电压,实现了第一端口301和第二端口302的光信号切换,从而实现特定阶数横模的泵浦光注入环形腔。在环形腔中的连接光纤均为少模光纤,且以特定阶横模运行,基于布里渊非线性效应,实现了腔内特定阶横模谐振放大,从而在光纤耦合器的第三端口903获得高模式纯度的特定阶横模的激光。
实施例2
如图7所示为一种全光纤横模可切换的高阶模布里渊激光器,所述激光器包括窄线宽泵浦激光器1、光放大器2、1×N光开关3(N>2)、光纤模式选择耦合器组、第一偏振控制器7、光纤环形器8、光纤耦合器9、第二偏振控制器10和少模光纤11。
所述1×N光开关3包括一个输入端口和N个输出端口301至30N;
所述光纤模式选择耦合器组包括N个光纤模式选择耦合器,分别记为第一光纤模式选择耦合器4、第二光纤模式选择耦合器5至第N光纤模式选择耦合器6;N个光纤模式选择耦合器均包括第一端口、第二端口、第三端口和第四端口;第N-1光纤模式选择耦合器的第四端口连接至第N光纤模式选择耦合器的第三端口;
所述光纤环形器8包括第一端口801、第二端口802和第三端口803;
所述光纤耦合器9包括第一端口901、第二端口902、第三端口903和第四端口904;
所述窄线宽泵浦激光器连接至光放大器,所述光放大器连接至1×N光开关的输入端口,所述1×N光开关的N个输出端口分别连接至N个光纤模 式选择耦合器的第一端口,所述第N个光纤模式选择耦合器的第四端口经第一偏振控制器连接至光纤环形器的第一端口,所述光纤环形器的第二端口连接至光纤耦合器的第一端口,所述光纤耦合器的第二端口经第二偏振控制器和少模光纤连接至光纤环形器的第三端口以此构成环形腔,所述光纤耦合器的第三端口输出激光。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

  1. 一种全光纤横模可切换的高阶模布里渊激光器,其特征在于,所述激光器包括窄线宽泵浦激光器、光放大器、1×N光开关(N≥2)、光纤模式选择耦合器组、第一偏振控制器、光纤环形器、光纤耦合器、第二偏振控制器和少模光纤;
    所述1×N光开关包括一个输入端口和N个输出端口;
    所述光纤模式选择耦合器组包括N个光纤模式选择耦合器,分别记为第一光纤模式选择耦合器至第N光纤模式选择耦合器;N个光纤模式选择耦合器均包括第一端口、第二端口、第三端口和第四端口;第N-1光纤模式选择耦合器的第四端口与第N光纤模式选择耦合器的第三端口相连接;
    所述光纤环形器包括第一端口、第二端口和第三端口;
    所述光纤耦合器包括第一端口、第二端口、第三端口和第四端口;
    所述窄线宽泵浦激光器连接至光放大器,所述光放大器连接至1×N光开关的输入端口,所述1×N光开关的N个输出端口分别连接至N个光纤模式选择耦合器的第一端口,所述第N个光纤模式选择耦合器的第四端口经过第一偏振控制器后与光纤环形器的第一端口相连接,所述光纤环形器的第二端口连接至光纤耦合器的第一端口,所述光纤耦合器的第二端口经过第二偏振控制器和少模光纤后与光纤环形器的第三端口相连接以构成环形腔,所述光纤耦合器的第三端口输出激光。
  2. 根据权利要求1所述的一种全光纤横模可切换的高阶模布里渊激光器,其特征在于,所述窄线宽泵浦激光器选用功率可调谐的窄线宽半导体激光器或者窄线宽光纤激光器,所述激光器的线宽低于1MHz。
  3. 根据权利要求1所述的一种全光纤横模可切换的高阶模布里渊激光器,其特征在于,所述光放大器选用高增益光纤放大器或者半导体光放大器。
  4. 根据权利要求1所述的一种全光纤横模可切换的高阶模布里渊激光器,其特征在于,所述1×N光开关选用可快速开关各输出端口光信号的光纤器件或者机械和电控等方式控制的分光比可调光纤耦合器。
  5. 根据权利要求1所述的一种全光纤横模可切换的高阶模布里渊激光器,其特征在于,所述光纤模式选择耦合器组选用单模光纤与少模光纤熔融拉锥制得的2×2的耦合器,所述耦合器的第一和第二端口为单模光纤,第三和第四端口为少模光纤。
  6. 根据权利要求1所述的一种全光纤横模可切换的高阶模布里渊激光 器,其特征在于,所述光纤环形器选用少模光纤环形器,所述环形器三个端口的尾纤为少模光纤。
  7. 根据权利要求1所述的一种全光纤横模可切换的高阶模布里渊激光器,其特征在于,所述光纤耦合器选用少模光纤与少模光纤熔融拉锥制得的2×2的耦合器,所述耦合器四个端口的尾纤为少模光纤。
  8. 根据权利要求1所述的一种全光纤横模可切换的高阶模布里渊激光器,其特征在于,所述少模光纤选用工作波段少模光纤,所述少模光纤支持的模式数大于等于N,长度大于20cm。
PCT/CN2018/110443 2018-06-05 2018-10-16 一种全光纤横模可切换的高阶模布里渊激光器 WO2019233012A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/734,648 US11870210B2 (en) 2018-06-05 2018-10-16 Transverse mode switchable all-fiber high-order mode Brillouin laser
SG11202011851XA SG11202011851XA (en) 2018-06-05 2018-10-16 A transverse mode switchable all-fiber high-order mode brillouin laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810569311.8A CN108551075B (zh) 2018-06-05 2018-06-05 一种全光纤横模可切换的高阶模布里渊激光器
CN201810569311.8 2018-06-05

Publications (1)

Publication Number Publication Date
WO2019233012A1 true WO2019233012A1 (zh) 2019-12-12

Family

ID=63493557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110443 WO2019233012A1 (zh) 2018-06-05 2018-10-16 一种全光纤横模可切换的高阶模布里渊激光器

Country Status (4)

Country Link
US (1) US11870210B2 (zh)
CN (1) CN108551075B (zh)
SG (1) SG11202011851XA (zh)
WO (1) WO2019233012A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108551075B (zh) 2018-06-05 2023-08-18 华南理工大学 一种全光纤横模可切换的高阶模布里渊激光器
CN109324373B (zh) * 2018-11-14 2019-10-08 东北林业大学 基于环形谐振腔的全光双控可调光开关
CN110308516A (zh) * 2019-07-30 2019-10-08 南京邮电大学 一种基于少模光纤耦合器的模式转换及应用
CN114520459B (zh) * 2022-01-20 2023-08-01 哈尔滨工程大学 一种切换输出连续正交偏振激光的装置和方法
US11803011B1 (en) 2022-04-12 2023-10-31 Eagle Technology, Llc Optical switch having latched switch states and associated methods
US11982883B2 (en) * 2022-04-12 2024-05-14 Eagle Technology, Llc Optical device having phase change material and associated methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170302048A1 (en) * 2015-12-22 2017-10-19 California Institute Of Technology Stabilized non-reciprocal fiber-ring brillouin laser source
CN107834351A (zh) * 2017-09-19 2018-03-23 南京邮电大学 一种基于模式选择耦合器的1μm波段柱矢量光纤激光器
CN108051890A (zh) * 2017-05-12 2018-05-18 南京邮电大学 一种高效率低损耗全光纤熔融模式选择耦合器
CN108551075A (zh) * 2018-06-05 2018-09-18 华南理工大学 一种全光纤横模可切换的高阶模布里渊激光器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424664B1 (en) * 2000-02-03 2002-07-23 Electronics And Telecommunications Research Institute Brillouin/erbuim fiber laser outputting dual spacing multiwavelength light
JP4141664B2 (ja) * 2001-06-07 2008-08-27 富士通株式会社 音響光学チューナブルフィルタを用いた多波長光源
US7272160B1 (en) * 2005-01-24 2007-09-18 Np Photonics, Inc Single-frequency Brillouin fiber ring laser with extremely narrow linewidth
CN102361210B (zh) * 2011-09-24 2013-06-26 中国人民解放军国防科技大学 一种单频超窄线宽布里渊掺铒光纤激光器
CN105703206B (zh) * 2016-01-05 2018-07-06 南昌工程学院 一种44ghz频率间隔的多波长布里渊光纤激光器
CN109066279B (zh) * 2018-09-07 2024-03-26 华南理工大学 一种基于轨道角动量模式谐振的全光纤涡旋光激光器
CN109324373B (zh) 2018-11-14 2019-10-08 东北林业大学 基于环形谐振腔的全光双控可调光开关
CN110308516A (zh) 2019-07-30 2019-10-08 南京邮电大学 一种基于少模光纤耦合器的模式转换及应用
US20220221583A1 (en) * 2020-04-13 2022-07-14 Imra America, Inc. Ultra-low phase noise millimeter-wave oscillator and methods to characterize same
US11796419B2 (en) * 2020-08-12 2023-10-24 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Distributed Brillouin laser sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170302048A1 (en) * 2015-12-22 2017-10-19 California Institute Of Technology Stabilized non-reciprocal fiber-ring brillouin laser source
CN108051890A (zh) * 2017-05-12 2018-05-18 南京邮电大学 一种高效率低损耗全光纤熔融模式选择耦合器
CN107834351A (zh) * 2017-09-19 2018-03-23 南京邮电大学 一种基于模式选择耦合器的1μm波段柱矢量光纤激光器
CN108551075A (zh) * 2018-06-05 2018-09-18 华南理工大学 一种全光纤横模可切换的高阶模布里渊激光器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, JIALI ET AL.: "Refractive Index Fiber Sensor Based on Brillouin Fast Light", THE JAPAN SOCIETY OF APPLIED PHYSICS - APPLIED PHYSICS EXPRESS, vol. 7, no. 012501, 18 December 2013 (2013-12-18) - 2014, pages 012501-1 - 012501-3, XP055664848 *
HENG, XIAOBO ET AL.: "Transverse Mode Switchable All-Fiber Brillouin Laser", OPTICS LETTERS, vol. 43, no. 17, 24 August 2018 (2018-08-24) - 1 September 2018 (2018-09-01), pages 4172 - 4175, XP055664844 *
REN, FANG ET AL.: "Spatial-Mode Switchable Ring Fiber Laser Based on Low Mode-Crosstalk All-Fiber Mode MUX/DEMUX", OPTICS AND LASER TECHNOLOGY, vol. 101, 10 November 2017 (2017-11-10), pages 21 - 24, XP085336097, DOI: 10.1016/j.optlastec.2017.10.034 *

Also Published As

Publication number Publication date
US11870210B2 (en) 2024-01-09
SG11202011851XA (en) 2020-12-30
CN108551075B (zh) 2023-08-18
CN108551075A (zh) 2018-09-18
US20210234330A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
WO2019233012A1 (zh) 一种全光纤横模可切换的高阶模布里渊激光器
US12015235B2 (en) All-fiber optical vortex laser based on resonance of orbital angular momentum modes
CN104297854B (zh) 硅基多波长光源及其实现的方法
CN110165548A (zh) 采用微环谐振腔滤波器的波长锁定器及窄线宽激光器
CN105514773A (zh) 一种双波长光纤激光器及其工作方法
CN108089267B (zh) 一种光纤型宽带光涡旋转换器
CN100505442C (zh) 一种双波长单纵模光纤环行激光器
CN108418086B (zh) 一种全光纤高阶模布里渊光纤激光器
CN113625502B (zh) 基于石墨烯复合微纳光纤的高转换效率2μm波长转换器
CN102610987A (zh) 基于光纤Mach-Zehnder干涉仪的可开关多波长掺铒光纤激光器
CN103269012B (zh) 单频拉曼光纤激光器系统
CN108390243B (zh) 一种基于少模光纤的高阶模布里渊光纤激光器
CN104078827A (zh) 一种具有多种调谐功能的多波长掺铒光纤激光器
CN110113104B (zh) 一种基于单模双芯光纤产生可调微波信号的装置
CN113572003B (zh) 一种基于双Sagnac环的通道间隔可调谐多波长光纤激光器
CN211265955U (zh) 一种可调超高重频超短脉冲光纤激光器
CN103311783A (zh) 单频拉曼光纤激光器
Cheng et al. Tunable and switchable dual-wavelength Er-doped fiber ring laser using ASEs
CN102570275B (zh) 一种波长可调谐的激光器
CN208849228U (zh) 一种全光纤横模可切换的高阶模布里渊激光器
CN101459312B (zh) 输出波长与功率稳定的可调谐单频掺铒光纤环形腔激光器
CN114300919B (zh) 一种通道间隔能切换的多波长光纤激光器
CN209056761U (zh) 一种输出多波长激光的激光器
CN109888603A (zh) 三环谐振腔的平坦多波长类噪声脉冲光源
CN209056760U (zh) 基于啁啾光栅和多模光纤的多波长光纤激光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18921968

Country of ref document: EP

Kind code of ref document: A1