WO2019232753A1 - 无人飞行器基站及其定位机构 - Google Patents

无人飞行器基站及其定位机构 Download PDF

Info

Publication number
WO2019232753A1
WO2019232753A1 PCT/CN2018/090291 CN2018090291W WO2019232753A1 WO 2019232753 A1 WO2019232753 A1 WO 2019232753A1 CN 2018090291 W CN2018090291 W CN 2018090291W WO 2019232753 A1 WO2019232753 A1 WO 2019232753A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
unmanned aerial
aerial vehicle
base station
positioning member
Prior art date
Application number
PCT/CN2018/090291
Other languages
English (en)
French (fr)
Inventor
王昊
耿强
王鹏
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880016201.7A priority Critical patent/CN110494362A/zh
Priority to PCT/CN2018/090291 priority patent/WO2019232753A1/zh
Publication of WO2019232753A1 publication Critical patent/WO2019232753A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/12Anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/22Ground or aircraft-carrier-deck installations installed for handling aircraft

Definitions

  • the present invention relates to a base station, in particular to an Unmanned Aerial Vehicle base station and a positioning mechanism thereof.
  • the unmanned aerial vehicle's fixed-point automatic landing and positioning technology can help the unmanned aerial vehicle to perform a fixed-point landing under unmanned operation and fix the unmanned aerial vehicle to an accurate position on the landing base. Based on this technology, unmanned aerial vehicles that land on the base station can automatically change batteries or add loads.
  • the traditional positioning scheme is to use the inclined plane of the landing platform to make the UAV rely on gravity for position correction.
  • the smooth implementation of this scheme must ensure that the friction between the foot of the UAV and the inclined plane is small, and it is often necessary to add rolling components to achieve positioning effects. No, work efficiency is not high.
  • a positioning mechanism for an unmanned aerial vehicle base station includes:
  • a base provided with a landing area, where the unmanned aerial vehicle can land in the landing area;
  • a positioning assembly provided in the landing area, the positioning assembly including at least two positioning members, the at least two positioning members including a first positioning member and a second positioning member, the first positioning member and the second positioning member Movably provided in the landing area;
  • At least one of the positioning members when at least one of the positioning members is driven by the power device, at least the two positioning members are relatively moved in the landing area, so that the at least two positioning members can limit the unmanned aerial vehicle to all positions.
  • the preset position of the landing area is described, so as to locate the unmanned aerial vehicle.
  • the above positioning mechanism has at least the following points:
  • the above-mentioned positioning mechanism can move the unmanned aerial vehicle landing on the unmanned aerial vehicle base to the area to be positioned through the cooperation of the positioning member of the landing area and the power unit, without the problem that the positioning is blocked by friction .
  • the positioning member of the positioning mechanism is movably disposed in the landing area, and the positioning component can move to help the UAV accurately position and reduce the complexity of the positioning device.
  • An unmanned aerial vehicle base station includes:
  • a positioning mechanism of an unmanned aerial vehicle base station is provided with a base for a landing area, and the unmanned aerial vehicle can land in the landing area;
  • a positioning assembly provided in the landing area, the positioning assembly including at least two positioning members, the at least two positioning members including a first positioning member and a second positioning member, the first positioning member and the second positioning member Movably provided in the landing area;
  • At least one of the positioning members when at least one of the positioning members is driven by the power device, at least the two positioning members are relatively moved in the landing area, so that the at least two positioning members can limit the unmanned aerial vehicle to all positions. Describing the preset position of the landing area to locate the unmanned aerial vehicle;
  • the unmanned aerial vehicle is moved to the area to be positioned by a positioning member of the positioning component, and the operating device operates the unmanned aerial vehicle that is positioned and the area to be determined.
  • FIG. 1 is a schematic diagram of an unmanned aerial vehicle base station according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic perspective structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 3a is a schematic diagram of a state of use of an unmanned aerial vehicle base station according to Embodiment 2 of the present invention.
  • FIG. 3b is a schematic diagram of another use state of the unmanned aerial vehicle base station shown in FIG. 3a;
  • FIG. 4 is an enlarged schematic view of the guide assembly in FIG. 3a;
  • 5a is a top plan view of an unmanned aerial vehicle base station according to a second embodiment of the present invention.
  • FIG. 5b is a schematic diagram of another use state of FIG. 5a;
  • 6a is a bottom view of an unmanned aerial vehicle base station according to a second embodiment of the present invention.
  • FIG. 6b is a schematic diagram of another use state of FIG. 6a;
  • FIG. 7 is a schematic diagram of an unmanned aerial vehicle base station according to Embodiment 3 of the present invention.
  • FIG. 8a is a top plan view of an unmanned aerial vehicle base station according to a third embodiment of the present invention.
  • FIG. 8b is a schematic diagram of another use state of FIG. 8a;
  • FIG. 9a is a bottom view of an unmanned aerial vehicle base station according to Embodiment 3 of the present invention.
  • FIG. 9b is a schematic diagram of another use state of FIG. 9a;
  • FIG. 10 is a schematic diagram of a positioning system according to some embodiments of the present invention.
  • a component when a component is called “fixed to” another component, it may be directly on another component or a centered component may exist. When a component is considered to be “connected” to another component, it can be directly connected to another component or there may be a centered component at the same time, and if possible, two components can be directly integrated into one.
  • the terms “vertical”, “horizontal”, “left”, “right” and similar expressions used herein are for illustrative purposes only.
  • An embodiment of the present invention discloses a positioning mechanism of an unmanned aerial vehicle base station, which is used for accurately positioning an unmanned aerial vehicle landing on the mechanism. After the positioning mechanism positions the UAV, other operating devices can facilitate operations such as battery replacement, load replacement, replenishment, and fuel or pesticide transfer to the UAV.
  • the invention discloses a positioning mechanism of an unmanned aerial vehicle base station, which comprises a base, a positioning component and a power device.
  • a landing area is provided above the base of the UAV.
  • the positioning component can move within the landing area, which can accurately position the unmanned aerial vehicle.
  • the positioning mechanism further includes a linkage component and a transmission component.
  • a preset position is set in the landing area, and the preset position is the final precise positioning position of the UAV.
  • the positioning component is driven by the power unit to coordinate and position the unmanned aerial vehicle to a preset position through the cooperation of the transmission component and the linkage component.
  • the two positioning members in the positioning assembly are substantially parallel, and the two positioning members are a first positioning member and a second positioning member, respectively.
  • the positioning member abuts the unmanned aerial vehicle tripod, restricting the unmanned aerial vehicle from rotating on the landing area of the base.
  • There is also a third positioning member in the positioning assembly and the third positioning member is intersected with the first positioning member and the second positioning member.
  • the third positioning member can abut an end of the UAV tripod.
  • the first positioning member, the second positioning member, and the third positioning member can be linked under the connection of the linkage assembly. By moving the positioning member, the UAV can be positioned to a preset position.
  • the positioning mechanism further includes a linkage component and a transmission component.
  • the positioning component is driven by the power unit to position the unmanned aerial vehicle to a preset position through the cooperation of the transmission component and the linkage component.
  • There are two positioning members in the positioning assembly that are substantially parallel and are movably disposed in the landing area, namely a first positioning member and a second positioning member.
  • Another two positioning members are disposed between the first positioning member and the second positioning member, which are a third positioning member and a ground four positioning member, respectively.
  • the third positioning member and the fourth positioning member can finally transfer and position the UAV to a preset position by transmitting a UAV tripod.
  • the positioning assembly includes a first positioning member and a second positioning member.
  • the first positioning member and the second positioning member are respectively located on opposite sides of the dropable area, and the first positioning member and the second positioning member are oppositely disposed.
  • the first positioning member or / and the second positioning member includes a one-dimensional positioning portion for positioning the unmanned aerial vehicle in a one-dimensional direction.
  • the one-dimensional positioning portion is used to locate a linear dimension or an angle of the unmanned aerial vehicle in the landing area.
  • the UAV can only move in one dimension, for example, sliding in a linear dimension, or turning through an angle.
  • the positioning assembly includes a first positioning member and a second positioning member.
  • the first positioning member and the second positioning member are respectively located on opposite sides of the dropable area, and the first positioning member and the second positioning member are oppositely disposed.
  • the first positioning member or / and the second positioning member includes a two-dimensional positioning portion for positioning the unmanned aerial vehicle in a two-dimensional direction.
  • the two-dimensional positioning portion is a curved portion, such as a V-shaped groove, a U-shaped groove, and a C-shaped groove.
  • the two-dimensional positioning unit can locate two dimensions of the UAV, including a linear dimension and an angle.
  • the two-dimensional positioning portion enables the UAV to move in two dimensions, for example, the UAV can rotate through a certain angle while sliding in a linear dimension. Get positioned.
  • the positioning assembly includes a first positioning member and a second positioning member.
  • the first positioning member and the second positioning member are respectively located on opposite sides of the dropable area, and the first positioning member and the second positioning member are oppositely disposed.
  • the first positioning member or / and the second positioning member includes a three-dimensional positioning portion for positioning the unmanned aerial vehicle in a three-dimensional direction.
  • the three-dimensional positioning portion is a curved surface portion, such as a spherical curved portion or a polygonal groove.
  • the three-dimensional positioning unit can locate three dimensions of the UAV, including linear dimensions, angles, and heights.
  • the two-dimensional positioning portion enables the UAV to move in three dimensions, for example, the height of the unmanned aerial vehicle is adjusted by the three-dimensional positioning portion within the landing area, You can also slide in a linear dimension, and at the same time, you can rotate through a certain angle, and finally get accurate positioning.
  • an unmanned aerial vehicle base station 10 includes a positioning mechanism 11 and an operating device 12.
  • the positioning mechanism 11 is used for positioning the unmanned aerial vehicle 20 landing at the unmanned aerial vehicle base station 10
  • the operating device 12 is used for operating the landing unmanned aerial vehicle 20.
  • the operation of the operating device 12 on the unmanned aerial vehicle 20 includes operating its own components, or operating the components carried by the unmanned aerial vehicle.
  • the operating device 12 can operate its own components.
  • the operating device 12 can replace the power battery of the unmanned aerial vehicle 20, the operating device 12 can also replace the propeller of the unmanned aerial vehicle 20, or, The operating device 12 repairs other parts of the UAV 20.
  • the operation device 12 operates the parts of the UAV, and can unload the cargo carried by the UAV 20 for the operation device 12, or add medicine to the medicine box of the UAV 20 for the operation device 12, or, The device 12 loads the unmanned aerial vehicle 20.
  • the operation device 12 may include a structure such as a manipulator, a water pump, a lifting mechanism, a transmission belt, and the like.
  • the positioning mechanism 11 includes a base 11a, a positioning assembly 11b, and a power unit 11c.
  • the base 11 a is used for landing of the unmanned aerial vehicle 20.
  • the positioning component 11 b is used to move the unmanned aerial vehicle 20 that has landed on the base 11 a to a preset position 106 and to position the unmanned aerial vehicle 20.
  • the power unit 11c is used to drive the positioning assembly 11b to move.
  • the base 11a is provided with a landing area 111, and the unmanned aerial vehicle 20 can land on the landing area 111.
  • the positioning component 11b is provided in the landing area 111 of the base station 11a.
  • the positioning assembly 11 b includes at least two positioning members.
  • the positioning mechanism 11 includes a first positioning member 112 and a second positioning member 114.
  • the first positioning member 112 and the second positioning member 114 are movably disposed in the landing area 111 of the base station 11a.
  • the first positioning member 112 and the second positioning member 114 are spaced apart from each other. Specifically, in the illustrated embodiment, the first positioning member 112 and the second positioning member 114 are spaced apart from each other in parallel.
  • the power unit 11c is used to drive at least one of the positioning members. Specifically, in the illustrated embodiment, there are two power devices 11c, which respectively drive the first positioning member 112 and the second positioning member 114. In other embodiments, there is only one power device 11c.
  • the first positioning member 112 and the second positioning member 114 are connected by a linkage mechanism (not shown).
  • the power device 11c drives the first positioning member 112 and the second positioning member 114. One of them moves, and the other moves through the linkage mechanism.
  • the power device 11c drives at least one of the first positioning member 112 and the second positioning member 114
  • the first positioning member 112 and the second positioning member 114 relatively move in the landing area 111, so that at least the The first positioning member 112 and the second positioning member 114 can limit the unmanned aerial vehicle 20 to a preset position 106 of the landing area 111, thereby positioning the unmanned aerial vehicle 20.
  • the unmanned aerial vehicle 20 may be a fixed-wing unmanned aerial vehicle or a rotary-wing unmanned aerial vehicle.
  • Rotor unmanned aerial vehicles can be multi-axis rotary unmanned aerial vehicles such as two-axis rotary unmanned aerial vehicles, three-axis rotary unmanned aerial vehicles, and four-axis rotary unmanned aerial vehicles.
  • the unmanned aerial vehicle 20 is an eight-axis rotary wing unmanned aerial vehicle, which includes a fuselage 26, a rotor 24, and a tripod 22.
  • the tripod 22 of the unmanned aerial vehicle is located at the lower end of the unmanned aerial vehicle 20 and can play a supporting role when the unmanned aerial vehicle 20 lands.
  • the positioning mechanism 100 positions the unmanned aerial vehicle 20
  • the unmanned aerial vehicle's tripod 22 is mainly contacted by the positioning component 110, so as to drive the unmanned aerial vehicle 20 to the preset position 106.
  • the unmanned aerial vehicle base station according to the second embodiment of the present invention is basically similar to the base station according to the first embodiment, and includes a positioning mechanism 100 and an operating device 12 for operating the unmanned aerial vehicle 20.
  • the positioning mechanism 100 includes a base 11 a, a positioning assembly 110, and a power device 160.
  • the positioning component 110 is disposed on the base 11 a and is used for positioning the unmanned aerial vehicle 20.
  • the power unit 160 is configured to provide a driving force to the positioning assembly 110.
  • the base 11a is provided with a landing area 111.
  • an area in the landing area 111 is the preset position 106, and the unmanned aerial vehicle 20 may be limited to the preset position 106 by the positioning component 110.
  • the structure of the base 11a can be designed according to actual needs, for example, it can be an open frame structure or a closed box structure.
  • the positioning assembly 110 may include a positioning member for positioning the unmanned aerial vehicle 20.
  • the positioning assembly 110 includes at least two positioning members, which are a first positioning member 112 and a second positioning member 114, respectively.
  • Two positioning members 112 and 114 are movably disposed on the landing area 111 and are used to position the UAV 20 to a preset position 106 on the landing area 111 of the base 11a.
  • At least one of the first positioning member 112 and the second positioning member 114 can move within the landing area 111 of the base 11a.
  • the first positioning member 112 and the second positioning member 114 are movable relative to the landing area 111 of the base 11a. After the first positioning member 112 and the second positioning member 114 land on the landing area 111, the first positioning member 112 and the second positioning member 114 can be relatively moved in the landing area 111 under the driving of the power unit 160, and limit the unmanned aerial vehicle 20 to a preset position 106, so as to accurately position the unmanned aerial vehicle 20.
  • the positioning mechanism 100 may further include a guide assembly 120 and a reset assembly 150.
  • the positioning assembly 110 includes a first positioning member 112, a second positioning member 114, and a third positioning member 116.
  • the first positioning member 112 and the second positioning member 114 are relatively parallel to each other and are disposed in the landing area 111 and can be relatively moved within the landing area 111.
  • the third positioning member 116 is perpendicular to the first positioning member 112 and the second positioning member 114 and can move within the landing area 111.
  • the first positioning member 112 and the second positioning member 114 abut against the side of the UFO's foot frame 22 through relative movement, and play a position limiting function, for limiting the UAV 20
  • the first positioning member 112 and the second positioning member 114 are used to limit the UAV 20 to a preset position on the X axis.
  • the third positioning member 116 abuts one end of the unmanned aerial vehicle stand 22, and the UAV is pushed to a preset position by the movement of the third positioning member 116.
  • the third positioning member 116 is used to move the UAV 20
  • the tripod 22 is pushed to the preset position of the Y-axis, so that the first positioning member 112, the second positioning member 114, and the third positioning member 116 abut against the unmanned aerial vehicle 20 to position the unmanned aerial vehicle 20 to Preset position.
  • first positioning member 112, the second positioning member 114, and the third positioning member 116 may also be in contact with other parts of the UAV 20 to push the UAV, for example, a machine in a rack of the UAV. Arm, power unit, center body of the frame, paddle protection cover, etc.
  • the specific structure of the positioning member can be designed according to different requirements.
  • the first positioning member 112 is a positioning rod
  • the second positioning member 114 is a positioning rod.
  • the first positioning member 112 and the second positioning member 114 may have other structures, for example, a positioning plate, a positioning block, a manipulator, and a clamping mechanism.
  • the third positioning member 116 is a positioning rod.
  • the third positioning member 116 may also be a positioning plate, a positioning block, a robot arm, a clamping mechanism, and the like.
  • the positioning assembly 110 further includes a fourth positioning member 118.
  • the fourth positioning member 118 has a transmission function, which can reduce the resistance between the UFO's foot stand 22 and the landing area 111.
  • the fourth positioning member 118 may be disposed in parallel with the first positioning member 112 or the second positioning member 114.
  • the UAV 20 may be pushed onto the fourth positioning member 118 by the first positioning member 112 and the second positioning member 114.
  • the tripod 22 of the drone is driven to the preset position on the fourth positioning member 118.
  • the UAV 20 may also be directly driven to the preset position by the fourth positioning member 118.
  • the specific structure of the fourth positioning member 118 may be designed according to different requirements.
  • the fourth positioning member 118 may be a plurality of rollers.
  • the plurality of rollers are arranged in two symmetrical rows in the landing area 111.
  • the width between the symmetrical two rows of rollers is the same as the width of the UAV's stand 22.
  • the fourth positioning member 118 may also be a chain or a belt.
  • the guide assembly 120 can be used to guide the positioning member.
  • the guide assembly 120 can guide the first positioning member 112 and the second positioning member 114 so that the first positioning member 112 and the second positioning member 114 move in the landing area 111 along a preset direction. .
  • the guide assembly 120 includes a slider 112 and a slide rail 124.
  • the slide rail 124 is provided along the X-axis direction.
  • the slider 122 is mounted on the slide rail 124 and can slide along the slide rail 124.
  • the slider 122 is fixedly connected to the first positioning member 112 or the second positioning member 114.
  • the sliding of the slider 122 drives the first positioning member 112 or the second positioning member 114 to move in the direction of the slide rail 124.
  • the guide assembly 120 may also be a combination of a slider and a guide rope, a sliding sleeve and a guide rod.
  • the reset component 150 is used to provide a restoring force to the positioning component 110, so that the positioning component can be automatically reset to a preset positioning position.
  • the reset assembly 150 may keep the positioning member in a maximum position during non-operation.
  • the reset assembly 150 provides a force to return the positioning member to the maximum position after the positioning work is completed.
  • the unmanned aerial vehicle 20 has not landed on the base 11a, and this is the non-working period of the positioning assembly 110.
  • the first positioning member 112 and the second positioning member 114 are distributed in the landing area 111 in parallel, and the two positioning members are respectively connected to the reset assemblies 150 distributed on both sides of the landing area 111.
  • the resetting component 150 is configured to provide a resetting force to the positioning member, so that the positioning member is automatically reset under the resetting force of the resetting component 150.
  • the reset assembly 150 may be a tensile member or a compression member.
  • the resetting component 150 When the resetting component 150 is a tensile member, it may specifically be a tensile spring or a rubber band.
  • the force provided by the reset assembly 150 may be a pre-tensioning force.
  • the resetting component shown is a tension spring, and the first positioning member 112 and the second positioning member 114 are reset to the maximum position of the landing area 111 by the force provided by the tension spring.
  • the shaded area shown in FIG. 5a is the landable area 111 of the unmanned aerial vehicle 20. At this time, it is shown that the positioning assembly 110 is reset to the maximum position under the force of a tension spring.
  • the reset assembly 150 may also be a compression member, and specifically may be a compression spring, a telescopic cylinder, or the like.
  • the shaded portion in the figure is the preset position 104.
  • the unmanned aerial vehicle 20 has landed on the base 11 a and is positioned to a preset position 104 under the operation of the positioning assembly 110.
  • the power unit 160 provides a driving force to move the positioning assembly 110.
  • the resetting assembly 150 is pulled to the maximum working position of the tensile member by the continuous force. If the power unit 160 stops providing driving force at this time, the resetting assembly 150 can provide sufficient force, so that the positioning member is pulled back to the edge of the landing area 111 and the maximum working position of the positioning assembly 110 is maintained.
  • the linkage assembly 140 is used to cause two or more positioning members to move in association when the power unit 160 drives the positioning members to work. Specifically, the linkage assembly 140 is connected between two or more positioning members. When the power device 160 drives one of the positioning members to move, the other positioning members are moved synchronously or asynchronously by the linkage member 140.
  • the illustrated guide assembly 120 includes a slider 122 and a slide rail 124.
  • the slide rail 124 is arranged along the X-axis direction, and the slider 122 can slide along the slide rail 124 in the X-axis direction.
  • a pulley is installed at the upper end of the slider 122.
  • the pulley at the upper end of the slider 122 can accommodate the linkage assembly 140 to pass through.
  • a plurality of fixed pulleys are provided on the base to provide guidance for the linkage assembly 140.
  • a fixed pulley is provided at the intersection of the guide rail 124 and the fourth positioning member 118, and at the boundary of the fourth positioning member 118 along the Y-axis direction with the edge of the base.
  • the linkage assembly 140 may pass through the pulley provided on the slider 122 and the fixed pulley provided on the base in order to associate the positioning members together.
  • the linkage assembly 140 may be two steel wires. One end of the two steel wires is respectively fixed on the base on both sides of the preset position, and the other end is respectively fixedly connected with the third positioning member 116.
  • the steel wire sequentially passes through the pulley on the slider 122 and the fixed pulley provided on the base, and can associate multiple first positioning members 112, second positioning members 114, and third positioning members 116 together.
  • a linkage assembly 140 composed of steel wires associates a plurality of positioning members together, and realizes the linkage of the plurality of positioning members.
  • the linkage assembly 140 may also be a steel wire. The two ends of a steel wire are respectively fixed on the bases on both sides of the preset position, and the middle point is fixedly connected with the third positioning member 116, which can also achieve the same linkage effect as the illustrated embodiment.
  • the linkage assembly 140 may further include a pull rope.
  • the number of drawstrings can be two segments or one segment.
  • the arrangement of the drawstrings may be similar to that of wire.
  • the power device 160 is used to provide a driving force for the positioning mechanism 110 and can drive at least one positioning member.
  • the power unit 160 drives the positioning assembly 110 to move through the transmission assembly 130.
  • the transmission assembly 130 includes a gear 132 (not shown) and a rack 134.
  • the gear 132 is mounted on the power output shaft of the motor, and is provided with a rack 134 that meshes with the gear 132.
  • the third positioning member 116 is fixedly connected to the motor, and can move with the movement of the power device 160.
  • the power unit 160 is a motor.
  • the power output shaft of the motor drives the gear 132 to rotate, and the gear 132 meshes with the rack 134 to drive the motor to move along the extending direction of the rack 134.
  • the third positioning member 116 moves with the motor in the direction of the rack 134.
  • the third positioning member 116 is linked with the first positioning member 112 and the second positioning member 114 through the linkage assembly 140.
  • the power device 160 may also be an electric push rod, an electro-hydraulic push rod, an air cylinder, or a linear drive.
  • the positioning mechanism 100 starts the positioning work
  • the power unit 160 is started, and the transmission assembly 130 starts transmission.
  • the third positioning member 116 is moved to a preset position under the driving of the power device 160, and the first positioning member 112 and the second positioning member 114 are relatively moved by the linkage assembly 140, and finally can be positioned to the preset position.
  • the unmanned aerial vehicle base station according to the third embodiment of the present invention is basically similar to the unmanned aerial vehicle base stations according to the first and second embodiments, and includes a positioning mechanism 200 and an operating device 12 for operating the unmanned aerial vehicle 20.
  • the positioning mechanism 200 includes a base 11 a, a positioning assembly 210, and a power unit 260.
  • the positioning component 210 is disposed on the base 202 and is used for positioning the UAV 20.
  • the power unit 260 is configured to provide a driving force to the positioning assembly 210.
  • the positioning assembly 210 includes a positioning member for positioning the unmanned aerial vehicle 20.
  • the positioning assembly 210 includes a first positioning member 212, a second positioning member 214, a third positioning member 216, and a fourth positioning member 218.
  • the first positioning member 212 and the second positioning member 214 are relatively parallel to each other and are disposed in the landing area 111 and can be relatively moved within the landing area 111.
  • the third positioning member 216 and the fourth positioning member 218 are symmetrically disposed in the landing area 111.
  • the symmetrical positioning width of the two positioning members is equivalent to the width of the pitch of the UAV foot frame 22.
  • the first positioning member 212 and the second positioning member 214 abut against the sides of the unmanned aerial vehicle stand 22 through relative movement, and play a limiting role for limiting the unmanned aerial vehicle 20 to a preset direction.
  • the first positioning member 212 and the second positioning member 214 are used to limit the UAV 20 to a preset position on the X axis.
  • the third positioning member 216 and the fourth positioning member 218 position the unmanned aerial vehicle 20 to a preset position by transmitting the unmanned aerial vehicle stand 22.
  • first positioning member 212 and the second positioning member 214 may also abut the other parts of the unmanned aerial vehicle 20 to push the unmanned aerial vehicle, for example, the arms, power units, The center body of the rack, the paddle protection cover, etc.
  • the specific structure of the positioning member can be designed according to different requirements.
  • the first positioning member 212 is a positioning rod
  • the second positioning member 214 is a positioning rod.
  • the first positioning member 212 and the second positioning member 214 may have other structures, for example, a positioning plate, a positioning block, a manipulator, and a clamping mechanism.
  • the third positioning member 216 and the fourth positioning member 218 are conveyor belts.
  • the third positioning member 216 and the fourth positioning member 218 may also be chains, rollers, or other conveyor belts.
  • the positioning mechanism 200 may further include a guide component 220 and a reset component 250.
  • the unmanned aerial vehicle 20 has not landed on the base 11a, and this is the non-working period of the positioning assembly 210.
  • the first positioning member 212 and the second positioning member 214 are distributed in the landing area 111 in parallel, and the two positioning members are respectively connected to the reset assemblies 250 distributed on both sides of the landing area 111.
  • the unmanned aerial vehicle 20 has landed on the base 11 a and is positioned to the preset position 104 under the operation of the positioning assembly 210.
  • the power unit 260 provides a driving force to move the positioning assembly 210.
  • the resetting assembly 250 is pulled to the maximum working position by the continuous force. If the power unit 260 stops providing driving force at this time, the reset assembly 150 can provide sufficient force so that the positioning member is pulled back to the edge of the landing area 111 to maintain the maximum working position, that is, the state diagram shown in FIG. 8a.
  • the positioning mechanism includes a positioning component 210, a guiding component 220, a transmission component 230, a linkage component 240, a guiding component 250 and a power unit 260.
  • the base of the illustrated embodiment further includes a plurality of fixed pulleys fixed on the base.
  • the function of the fixed pulley is to make the linkage assembly 240 pass through it and change the transmission direction of the force of the linkage assembly 240.
  • the number of fixed pulleys can also be designed according to different requirements.
  • the transmission assembly 230 can transmit the driving force of the power unit 260 to the linkage assembly 240.
  • the power device 260 in this embodiment is an electric push rod and can perform linear motion.
  • the transmission assembly 230 includes a connecting rod outside the push rod and an adapter member 232.
  • the transfer member 232 may be connected to the linkage assembly 240, so that one end of the linkage assembly 240 moves with the electric push rod.
  • the linkage assembly 240 may be a closed drawstring in this embodiment.
  • the pull rope has a point fixedly connected to the adapter 232, and this point can be regarded as the start and end points of the pull rope.
  • the pull rope passes through three fixed pulleys and two positioning members 212 and 214 arranged in parallel.
  • the pull rope has two overlapping points with the first positioning member 212, and one of the overlapping points is fixedly connected with the first positioning member 212, so that the positioning member can move with the movement of the pulling rope.
  • the other overlapping point is provided with a through hole in the positioning member, allowing the pull rope to pass through the through hole so as not to affect the moving direction of the positioning member.
  • the connection manner between the pull rope and the second positioning member 214 is the same as the former.
  • the electric push rod works, the push rod moves linearly in the Y-axis direction, and an adapter member 232 at one end of the push rod is connected to the pull rope, which drives the pull rope to perform corresponding movements. Since the electric push rod is pushed out, the pulling rope is counterclockwise in the moving direction in this embodiment.
  • the first positioning member 212 and the second positioning member 214 move toward each other under the linkage of the pull rope, and the UAV 20 can be positioned on the third positioning member 216 and the fourth positioning member 218. At this time, the third positioning member 216 and the fourth positioning member 218 start transmitting, and the unmanned aerial vehicle is transmitted to a preset position to complete the positioning work.
  • a UAV base station includes a positioning mechanism 100, a controller 101, a navigation sensing system 300, a landing sensing system 400, and a safety sensing system 500.
  • the navigation sensing system 300 is used to sense whether the UAV 20 is above the landing area 111 of the base 11a to ensure that the UAV can land within this range.
  • the navigation sensing system 300 is a GPS system.
  • the GPS sends a signal to the controller 101, and the controller 101 transmits information To the positioning mechanism 100, the positioning mechanism 100 can start preparing for positioning.
  • the navigation sensing system 300 may also be a photoelectric sensor.
  • the landing sensing system 400 is used to sense whether the unmanned aerial vehicle 20 has landed in the landing area 111 to ensure that the positioning mechanism 100 can start positioning work.
  • the landing sensing system 400 is a vibration sensor.
  • a vibration of a certain frequency is triggered to trigger the vibration sensor.
  • the vibration sensor sends a signal to the control.
  • the controller 101 and the controller 101 transmit signals to the positioning mechanism 100, and the positioning mechanism 100 starts positioning.
  • the landing sensing system 400 may also be a photoelectric sensor or a pressure sensor.
  • the safety sensing system 500 is used to sense whether the positioning of the positioning component 110 is accurate, and to ensure that the unmanned aerial vehicle 20 is safely positioned without being damaged by the positioning member.
  • the safety sensing system 500 is a pressure sensor.
  • the pressure sensor receives the pressure from the positioning member and transmits a signal to the controller 101. Determine the size of the pressure value to determine when the positioning mechanism ends the positioning work.
  • the landing sensing system 400 may also be a photoelectric sensor.
  • the above-mentioned UAV base station and its positioning mechanism can enable the UAV to accurately locate on the UAV base station, the time required for positioning is relatively short, and the working efficiency of the UAV positioning is greatly improved.
  • the above-mentioned drone base station can change the current situation that manual landing is needed for landing, replacing batteries, changing loads, and taking off again.
  • Using the unmanned aerial vehicle base station and its positioning mechanism according to the present invention it is possible to automatically provide positioning for the unmanned aerial vehicle 20 landing on the base station in areas where it is difficult for humans to get involved in the wild, unmanned areas, high altitudes, and sea levels. Service, and cooperate with other devices of the base station to automatically change the battery or load.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, the meaning of "a plurality" is at least two, for example, two, three, unless it is specifically and specifically defined otherwise.

Abstract

本发明涉及一种无人飞行器基站,其包括基座、定位组件、动力装置,所述基座设有降落区域,所述无人飞行器能够降落在所述降落区域,所述定位组件包括至少两个定位件,所述至少两个定位件包括第一定位件和第二定位件,所述第一定位件和第二定位件可移动地设于所述降落区域,所述动力装置用于驱动其中至少一个所述定位件;其中,当所述动力装置驱动其中至少一个所述定位件时,至少所述两个定位件在所述降落区域相对移动,使至少所述两个定位件能够将所述无人飞行器限定在所述降落区域的预设位置,从而对所述无人飞行器进行定位。

Description

无人飞行器基站及其定位机构 技术领域
本发明涉及一种基站,具体地,涉及一种无人飞行器(Unmanned Aerial Vehicle)基站及其定位机构。
背景技术
无人飞行器的定点自动降落及定位技术,可以帮助无人飞行器在无人操作的情况下进行定点降落,并将无人飞行器固定到降落基座上的准确位置。基于此技术,可对降落在基站上的无人飞行器进行自动更换电池或添加负载等。
传统的定位方案是使用降落平台的斜面,使无人飞行器依靠重力作用进行位置导正,但此方案的顺利实施要保证无人飞行器脚架与斜面摩擦力小,往往需要增加滚动部件,定位效果不好,工作效率不高。
发明内容
鉴于此,本发明有必要提供一种定位效果好,工作效率高且操作简便的无人飞行器定位机构。
一种无人飞行器基站的定位机构,包括:
设有降落区域的基座,所述无人飞行器能够降落在所述降落区域;
设于所述降落区域的定位组件,所述定位组件包括至少两个定位件,所述至少两个定位件包括第一定位件和第二定位件,所述第一定位件和第二定位件可移动地设于所述降落区域;以及
用于驱动其中至少一个所述定位件的动力装置;
其中,当所述动力装置驱动其中至少一个所述定位件时,至少所述两个定位件在所述降落区域相对移动,使至少所述两个定位件能够将所述无人飞行器限定在所述降落区域的预设位置,从而对所述无人飞行器进行定位。
相较于现有的定位技术,上述定位机构至少有如下有点:
(1)上述定位机构通过降落区域的定位件与动力装置的共同配合,能够将降落于无人飞行器基座上的无人飞行器移动到待定位区域,而不会出现由于摩擦力阻碍定位的问题。
(2)上述定位机构的定位件可移动地设于降落区域,通过定位组件可以的移动,可以帮助无人飞行器准确定位,降低了定位设备的复杂程度。
一种无人飞行器基站,包括:
无人飞行器基站的定位机构,该定位机构设有降落区域的基座,所述无人飞行器能够降落在所述降落区域;
设于所述降落区域的定位组件,所述定位组件包括至少两个定位件,所述至少两个定位件包括第一定位件和第二定位件,所述第一定位件和第二定位件可移动地设于所述降落区域;以及
用于驱动其中至少一个所述定位件的动力装置;
其中,当所述动力装置驱动其中至少一个所述定位件时,至少所述两个定位件在所述降落区域相对移动,使至少所述两个定位件能够将所述无人飞行器限定在所述降落区域的预设位置,从而对所述无人飞行器进行定位;以及
用于对无人飞行器进行操作的操作装置;
其中,所述无人飞行器通过所述定位组件的定位件移动至所述待定位区域,所述操作装置对定位与所述待定为区域的所述无人飞行器进行操作。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1为本发明实施方式一的无人飞行器基站示意图;
图2为本发明某种实施方式的无人飞行器的立体结构示意图;
图3a为本发明实施方式二的无人飞行器基站其中一个使用状态示意图;
图3b为图3a所示的无人飞行器基站的另外一种使用状态示意图;
图4为图3a中的导向组件的放大示意图;
图5a为本发明实施方式二的无人飞行器基站的平面俯视图;
图5b为图5a的另一种使用状态示意图;
图6a为本发明实施方式二的无人飞行器基站的仰视图;
图6b为图6a的另一种使用状态示意图;
图7为本发明实施方式三的无人飞行器基站的示意图;
图8a为本发明实施方式三的无人飞行器基站的平面俯视图;
图8b为图8a的另一种使用状态示意图;
图9a为本发明实施方式三的无人飞行器基站的仰视图;
图9b为图9a的另一种使用状态示意图;
图10为本发明某些实施方式的定位系统原理图。
主要元件符号说明:
Figure PCTCN2018090291-appb-000001
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也 可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件,在可能的情况下,也可以是两个组件直接一体成型。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体地实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明的实施方式公开一种无人飞行器基站的定位机构,用于对降落于该机构上的无人飞行器进行准确定位。定位机构对无人飞行器进行定位后,可方便其他操作装置对无人飞行器进行更换电池、更换负载、添加补给、输送燃料或农药等操作。
本发明公开的一种无人飞行器基站的定位机构包括基座、定位组件及动力装置。无人飞行器基座上方设有降落区域。在所述动力装置的驱动下,定位组件可在降落区域内移动,能够将所述无人飞行器进行精准定位。
在其中一个实施例中,定位机构还包括联动组件和传动组件。降落区域内设有预设位置,预设位置是无人飞行器的最终精准定位位置。定位组件在动力装置的驱动下,通过传动组件和联动组件的配合,将无人飞行器抵接定位至预设位置。其中定位组件中的两个定位件基本平行,该两个定位件分别是第一定位件与第二定位件。定位件通过抵接无人飞行器脚架,限制无人飞行器在基座的降落区域上无法旋转。定位组件中还有第三定位件,第三定位件与第一定位件和第二定位件交叉设置。因此,第三定位件可以抵接无人飞行器脚架的一端。第一定位件、第二定位件、第三定位件在联动组件的连接下可以联动。通过定位件的移动,可以将无人飞行器定位至预设位置。
在其中一个实施例中,定位机构还包括联动组件和传动组件。定位组件在动力装置的驱动下,通过传动组件和联动组件的配合,将无人飞行器定位至预设位置。定位组件中有两个定位件基本平行,且可移动的设于降落区域,分别是第一定位件与第二定位件。另还有两定位件设于第一定位件和第二定位件之间,分别是第三定位件和地四定位件。第三定位件和第四定位件可以通过传送无人飞行器脚架的方式,将无人飞行器最终传送定位至预设位置。
在其中一个实施例中,定位组件包括第一定位件和第二定位件。其中第一定位件和第二定位件分别位于可降落区域的相对两侧边,并且第一定位件和第二定位件相对设置。第一定位件或/及第二定位件包括用于在一维方向上定位无人飞行器的一维定位部。一维定位部用于定位降落区域内的无人飞行器的一个线性维度或一个角度。
具体地,第一定位件及/或第二定位件移动,则使无人飞行器仅能在一个维度上移动,例如在一个线性维度滑动,或者是转过一个角度。
在其中一个实施例中,定位组件包括第一定位件和第二定位件。其中第一定位件和第二定位件分别位于可降落区域的相对两侧边,并且第一定位件和第二定位件相对设置。第一定位件或/及第二定位件包括用于在二维方向上定位无人飞行器的二维定位部。其中,二维定位部为曲面部,例如V型槽、U型槽、C型槽。且二维定位部可以定位无人飞行器的两个维度,包括一个线性维度和一个角度。
具体地,第一定位件及/或第二定位件移动,则二维定位部使无人飞行器能在两个维度上运动,例如,无人飞行器在一个线性维度滑动的同时可以转过一定角度得到定位。
在其中一个实施例中,定位组件包括第一定位件和第二定位件。其中第一定位件和第二定位件分别位于可降落区域的相对两侧边,并且第一定位件和第二定位件相对设置。第一定位件或/及第二定位件包括用于在三维方向上定位无人飞行器的三维定位部。其中,三维定位部为曲面部,例如球面弧形部或多棱形凹槽。三维定位部可以定位无人飞行器的三个维度,包括线性维度、角度、高度等。
具体地,第一定位件及/或第二定位件移动,则二维定位部使无人飞行器能在三个维度上运动,例如,无人飞行器被三维定位部调节在降落区域内的高度,还可以在一个线性维度滑动,同时还可以转过一定角度,最终得到准确定位。
下面结合附图,对本发明的一些实施方式作详细说明。
请参阅图1,本发明的实施方式一的无人飞行器基站10包括定位机构11以及操作装置12。定位机构11用于对降落在无人飞行器基站10的无人飞行器20进行定位,操作装置12用于对降落的无人飞行器20进行操作。
其中,操作装置12对无人飞行器20的操作包括对无人飞行器20的自身部件进行操作,或者对无人飞行器承载的部件进行操作。
例如,操作装置12对无人飞行器20的自身部件进行操作,可以为操作装置12对无人飞行器20的动力电池进行更换,也可以为操作装置12对无人飞行器20的螺旋桨进行更换,或者,操作装置12对无人飞行器20的其他部件进行修理。
操作装置12对无人飞行器自身的部件进行操作,可以为操作装置12对无人飞行器20承载的货物进行卸载,也可以为操作装置12对无人飞行器20的药箱进行加药,或者,操作装置12对无人飞行器20进行装载。
操作装置12可以包括机械手、水泵、升降机构、传动带等结构。
定位机构11包括基座11a、定位组件11b以及动力装置11c。
基座11a用于供无人飞行器20降落。定位组件11b用于将降落在基座11a的无人飞行器20移动至预设位置106,并对无人飞行器20进行定位。动力装置11c用于驱动定位组件11b移动。
基座11a设有降落区域111,所述无人飞行器20能够降落在所述降落区域111。
定位组件11b设于基站11a的降落区域111。定位组件11b包括可以包括至少两个定位件,具体在图示的实施例中,定位机构11包括第一定位件112和第二定位件114。所述第一定位件112和第二定位件114可移动地设于基站11a的降落区域111。
第一定位件112和第二定位件114相对间隔设置,具体在图示的实施例中,第一定位件112与第二定位件114平行间隔设置。
动力装置11c用于驱动其中至少一个定位件。具体在图示的实施例中,动力装置11c为两个,分别驱动第一定位件112和第二定位件114。在其他实施例中,动力装置11c为一个,第一定位件112与第二定位件114之间通过联动机构(图未示)连接,动力装置11c驱动第一定位件112及第二定位件114中的一个移动,并通过联动机构带动另外一个移动。
其中,当所述动力装置11c驱动第一定位件112及第二定位件114中的至少一个时,第一定位件112及第二定位件114在所述降落区域111相对移动,使至少所述第一定位件112及第二定位件114能够将所述无人飞行器20限定在所述降落区域111的预设位置106,从而对所述无人飞行器20进行定位。
请参阅图2,无人飞行器20可以为固定翼无人飞行器、旋翼无人飞行器。旋翼无人飞行器可以为两轴旋翼无人飞行器、三轴旋翼无人飞行器、四轴旋翼无人飞行器等多轴旋翼无人飞行器。
具体在图示的实施例中,无人飞行器20为八轴旋翼无人飞行器,其包括机身26、旋翼24以及脚架22。所述无人飞行器的脚架22位于无人飞行器20下端,可在无人飞行器20降落时起到支撑作用。在定位机构100对无人飞行器20进行定位时,主要通过定位组件110接触无人飞行器的脚架22,从而带动无人飞行器20定位至预设位置106。
请参阅图3a和3b,本发明的实施方式二的无人飞行器基站,与实施方式一的基站基本相似,包括定位机构100以及用于对无人飞行器20进行操作的操作装置12。
定位机构100,包括基座11a、定位组件110、以及动力装置160。定位组件110设于基座11a,用于定位无人飞行器20。动力装置160,用于提供驱动力给所述定位组件110。
基座11a设有降落区域111。在其中一个实施例中,降落区域111内有一块区域是预设位 置106,无人飞行器20可以被定位组件110限定至预设位置106。
基座11a的结构可以根据实际需要来设计,例如,可以是开放式的框架结构,也可以是封闭式的箱体结构。
定位组件110可以包括用于定位无人飞行器20的定位件。具体在图示的实施例中,定位组件110包括至少两个定位件,分别为第一定位件112和第二定位件114。两个定位件112和114可移动地设于降落区域111上,用于将无人飞行器20定位至基座11a的降落区域111上的预设位置106。
第一定位件112和第二定位件114中至少一个可以在所述基座11a的降落区域111内移动。具体在图示的实施例中,第一定位件112和第二定位件114相对于所述基座11a的降落区域111可移动。第一定位件112和第二定位件114在无人飞行器20落在降落区域111上后,可在动力装置160的驱动下在降落区域111相对移动,并将无人飞行器20限定在预设位置106,从而对所述无人飞行器20进行精准定位。
在该实施例中,定位机构100还可以包括导向组件120以及复位组件150。
定位组件110的定位件数量可以根据具体需要来设计。例如,定位组件110包括第一定位件112,第二定位件114和第三定位件116。其中,第一定位件112与第二定位件114相对平行的设于降落区域111,且能够在降落区域111内相对移动。第三定位件116与第一定位件112和第二定位件114相互垂直,且能够在降落区域111内移动。
在其中一个实施例中,第一定位件112和第二定位件114通过相对移动,抵接无人飞行器的脚架22的侧边,并起到限位作用,用于将无人飞行器20限位至预设方向,例如,第一定位件112以及第二定位件114用于将无人飞行器20限位至X轴的预设位置。第三定位件116抵接无人飞行器脚架22的一端,通过第三定位件116的移动,将无人飞行器推动至预设位置,例如,第三定位件116用于将无人飞行器20的脚架22推动至Y轴的预设位置,从而通过第一定位件112、第二定位件114和第三定位件116与无人飞行器20的脚架22抵接而将无人飞行器20定位至预设位置。
需要说明的是,第一定位件112、第二定位件114和第三定位件116也可以与无人飞行器20的其他部分抵接而推动无人飞行器,例如,无人飞行器的机架的机臂、动力装置、机架的中心体、桨保护罩等。
定位件的具体结构可以根据不同需求来设计,例如,在图示的实施例中,第一定位件112为定位杆,第二定位件114为定位杆。当然,在其他实施例中,第一定位件112以及第二定位件114也可以分别为其他结构,例如,定位板、定位块、机械手、夹持机构等。
在图示的实施例中,第三定位件116为定位杆。当然,在其他实施例中,第三定位件116 也可以是定位板、定位块、机械手、夹持机构等。
在其中一个实施例中,定位组件110还包括第四定位件118。第四定位件118具有传送作用,可以减少无人飞行器的脚架22与降落区域111的阻力。
第四定位件118可以平行第一定位件112或第二定位件114设置。无人飞行器20可以被第一定位件112和第二定位件114推动至第四定位件118上。通过第三定位件116的移动,带动无人飞行器的脚架22在第四定位件118上被传送至预设位置。当然,在其他实施例中,无人飞行器20也可以直接由第四定位件118传动至预设位置。
第四定位件118的具体结构可以根据不同需求来设计,例如,在图示的实施例中,第四定位件118可以是多个滚轮。所述多个滚轮在降落区域111内排布成对称的两列。其中,对称的两列滚轮之间的宽度与无人飞行器的脚架22的宽度相同。当然,在其他实施例中,第四定位件118还可以是链条或皮带。
导向组件120可以用于给定位件导向。例如,在其中一个实施例中,导向组件120能够给第一定位件112和第二定位件114进行导向,使第一定位件112与第二定位件114沿预设方向在降落区域111内移动。
导向组件120的具体结构可以根据不同需求来设计,如图4所示,导向组件120包括滑块112以及滑轨124。
滑轨124沿X轴方向设置。滑块122安装在滑轨124上,并能够沿着滑轨124滑动。滑块122与第一定位件112或第二定位件114固定连接,通过滑块122的滑动,带动第一定位件112或第二定位件114沿滑轨124的方向移动。
当然,在其他实施例中,导向组件120也可以是滑块与导向绳、滑动套筒与导向杆的组合。
复位组件150用于提供回复力给定位组件110,使得定位件能够自动复位至预设的定位位置。例如复位组件150可以使定位件在非工作期间保持在最大位置。或者,复位组件150提供作用力,使定位件在完成定位工作后回复到最大位置。
请参阅图5a,在图示的实施例中,无人飞行器20还未降落至基座11a上,此时为定位组件110的非工作期间。所示第一定位件112与第二定位件114平行分布于降落区域111内,且两定位件分别与分布于降落区域111两侧的复位组件150连接。
具体地,复位组件150用于提供复位作用力给定位件,使得所述定位件在复位组件150的复位作用力下自动复位。
复位组件150可以是拉伸件也可以是压缩件。当复位组件150为拉伸件时,具体地可以是拉伸弹簧或者橡皮筋。复位组件150提供的作用力可以是预紧力。图示的复位组件为拉伸 弹簧,在第一定位件112与第二定位件114被拉伸弹簧提供的作用力复位至降落区域111的最大位置。图5a中所示的阴影区域为无人飞行器20的可降落区域111,此时所示的是定位组件110在拉伸弹簧的作用力下被复位至最大位置。
当然,在其他实施例中,复位组件150还可以是压缩件,具体地可以是压缩弹簧、伸缩气缸等。
请参阅图5b,在图示的实施例中,图示的阴影部分为预设位置104。无人飞行器20已降落至基座11a上,并在定位组件110的工作下被定位至预设位置104。在定位机构100工作时,动力装置160提供驱动力使得定位组件110移动。当无人飞行器20被精准定位后,复位组件150被持续的作用力牵动至拉伸件的最大工作位置。若此时动力装置160停止提供驱动力,复位组件150能够提供足够的力,使得定位件被拉回降落区域111的边缘,保持定位组件110的最大工作位置。
请参阅图6a,联动组件140用于在动力装置160驱动定位件工作时,使得两个或两个以上定位件关联运动。具体地,联动组件140连接于两个或两个以上的定位件之间,当动力装置160驱动其中一个定位件移动时,通过联动件140带动其他定位件同步或异步移动。
图示导向组件120包括滑块122和滑轨124。滑轨124沿X轴方向布置,滑块122可以沿滑轨124在X轴方向滑动。在滑块122的上端,装有滑轮。滑块122上端的滑轮可以容纳联动组件140通过。此外,在基座上还设有多个定滑轮,为联动组件140提供导向。具体地,在导轨124与第四定位件118交叉处,以及在第四定位件118沿Y轴方向与基座边缘交界处分别设有定滑轮。
联动组件140可以依次穿过设于滑块122上的滑轮以及设于基座上的定滑轮,将定位件关联在一起。具体地,联动组件140可以是两条钢丝。两根钢丝的一端分别固定在预设位置两侧的基座上,另一端则分别与第三定位件116固定连接。钢丝依次穿过滑块122上的滑轮以及设于基座上的定滑轮,可以将多个第一定位件112、第二定位件114以及第三定位件116关联在一起。
根据图6a所示的实施例,当第三定位件116在动力装置160的驱动下沿Y轴方向移动时,固定连接于第三定位件116上的钢丝会随着第三定位件的移动而移动。此时,滑块122在钢丝的作用力下被带动,滑块122沿滑轨124的方向滑动。与滑块122固定连接的第一定位件112和第二定位件114也会随着滑块122的滑动而在降落区域111内移动。由钢丝组成的联动组件140将多个定位件关联在一起,实现了多个定位件的联动。在其他实施例中,联动组件140还可以是一根钢丝。一根钢丝的两端分别固定在预设位置两侧的基座上,中间点与第三定位件116固定连接,同样可以达到与图示实施例相同的联动效果。
当然,在其他实施例中,联动组件140还可以包括拉绳。拉绳的数量可以是两段拉绳,也可以是一段。拉绳的布置方式可与钢丝的布置方式相似。
请参阅图6b,动力装置160用于提供定位机构110的驱动力,能驱动至少一个定位件。动力装置160通过传动组件130驱动定位组件110移动。
传动组件130包括齿轮132(图未示)和齿条134。齿轮132安装在所述电机的动力输出轴,并配套设有与齿轮132啮合的齿条134。第三定位件116固定连接于电机上,能够随动力装置160的移动而移动。
动力装置160是电机。当电机启动工作,电机的动力输出轴带动齿轮132旋转,齿轮132与齿条134啮合从而带动电机沿齿条134的延伸方向移动,此时第三定位件116跟随电机在齿条134方向移动。第三定位件116通过联动组件140与第一定位件112和第二定位件114联动。
在其他实施例中,动力装置160还可以是电动推杆、电液推杆、气缸或直线驱动器。
当定位机构100开始定位工作时,动力装置160启动,传动组件130开始传动。此时,第三定位件116在动力装置160的驱动下向预设位置移动,并通过联动组件140带动第一定位件112和第二定位件114相对移动,最终能够定位至预设位置。
请参阅图7,本发明的实施方式三的无人飞行器基站与实施方式一、二的无人飞行器基站基本相似,包括定位机构200以及用于对无人飞行器20进行操作的操作装置12。
定位机构200,包括基座11a、定位组件210、以及动力装置260。定位组件210设于基座202,用于定位无人飞行器20。动力装置260,用于提供驱动力给所述定位组件210。
定位组件210包括用于定位无人飞行器20的定位件。在本实施例中,定位组件210包括第一定位件212,第二定位件214,第三定位件216和第四定位件218。其中,第一定位件212与第二定位件214相对平行的设于降落区域111,能够在降落区域111内相对移动。第三定位件216和第四定位件218对称设于降落区域111内,两定位件对称设置的宽度与无人飞行器脚架22的间距宽度相当。
第一定位件212和第二定位件214通过相对移动,抵接无人飞行器脚架22的侧边,并起到限位作用,用于将无人飞行器20限位至预设方向,例如,第一定位件212以及第二定位件214用于将无人飞行器20限位至X轴的预设位置。第三定位件216和第四定位件218通过传送无人飞行器脚架22,将无人飞行器20定位至预设位置。
需要说明的是,第一定位件212和第二定位件214也可以与无人飞行器20的其他部分抵接而推动无人飞行器,例如,无人飞行器的机架的机臂、动力装置、机架的中心体、桨保护罩等。
定位件的具体结构可以根据不同需求来设计,例如,在图示的实施例中,第一定位件212为定位杆,第二定位件214为定位杆。当然,在其他实施例中,第一定位件212以及第二定位件214也可以分别为其他结构,例如,定位板、定位块、机械手、夹持机构等。
在图示的实施例中,第三定位件216和第四定位件218为传送带。当然,在其他实施例中,第三定位件216和第四定位件218也可以是链条,滚轮或者其他传送带。
在该实施例中,定位机构200还可以包括导向组件220以及复位组件250。
请参阅图8a,在图示的实施例中,无人飞行器20还未降落至基座11a上,此时为定位组件210的非工作期间。所示第一定位件212与第二定位件214平行分布于降落区域111内,且两定位件分别与分布与降落区域111两侧的复位组件250连接。
请参阅图8b,在图示的实施例中,无人飞行器20已降落至基座11a上,并在定位组件210的工作下被定位至预设位置104。在定位机构200工作时,动力装置260提供驱动力使得定位组件210移动。当无人飞行器20被精准定位后,复位组件250被持续的作用力牵动至最大工作位置。若此时动力装置260停止提供驱动力,复位组件150能够提供足够的力,使得定位件被拉回降落区域111的边缘,保持最大工作位置,即图8a所示的状态示意图。
请参阅图9a,图示定位机构包括定位组件210、导向组件220、传动组件230、联动组件240、导向组件250以及动力装置260。
图示实施例的基座上还包括固定设于基座上的多个定滑轮。定滑轮作用是使得联动组件240穿过其中,并改变联动组件240力的传递方向。具体地,本实施例中有三个定滑轮,其中有两个定滑轮沿X轴方向对称设于基座的两侧,另一定滑轮沿Y轴方向设于基座边缘。在其他实施例中,定滑轮的个数还可以根据不同需求进行设计。
传动组件230能够将动力装置260的驱动力传动至联动组件240。具体地,本实施例中的动力装置260是电动推杆,可以进行直线运动。传动组件230包括推杆外的连接杆以及转接部件232。转接部件232可以连接联动组件240,使得联动组件240的一端跟随电动推杆进行运动。
联动组件240在本实施例中可以是一根闭合的拉绳。拉绳有一个点与转接部件232固定连接,该点可以视为拉绳的起点和终点。拉绳依次穿过三个定滑轮和两平行设置的定位件212、214。拉绳与第一定位件212有两个重合点,其中一个重合点处拉绳与第一定位件212固定连接,使得定位件能够随拉绳的移动而移动。另一个重合点处则在定位件上开有通孔,允许拉绳穿过通孔从而不影响定位件的移动方向。相应地,拉绳与第二定位件214的连接方式跟前者相同。
请参阅图9b,在图示实施例中,电动推杆工作,推杆沿Y轴方向直线运动,推杆一端的 转接部件232连接拉绳,带动拉绳也进行相应的运动。由于电动推杆向外推出,因此拉绳在此实施例中的移动方向中是逆时针方向。第一定位件212和第二定位件214在拉绳的联动下相向移动,可以将无人飞行器20定位至第三定位件216和第四定位件218上。此时第三定位件216和第四定位件218开始传送,将无人飞行器传送至预设位置,完成定位工作。
请参阅图10,本发明实施方式四的无人飞行器基站,包括定位机构100,控制器101、导航感应系统300、着陆感应系统400以及安全感应系统500。
导航感应系统300用于感应无人飞行器20是否在基座11a的降落区域111的上方,以确保无人飞行器可以在此范围内着陆。例如,在其中一个实施例中,导航感应系统300是GPS系统,当无人飞行器20飞行至基座11a的降落区域111的上方,此时GPS发送信号给控制器101,控制器101将信息传输给定位机构100,定位机构100可以开始准备定位。当然,在其他实施例中,导航感应系统300还可以是光电传感器。
着陆感应系统400用于感应无人飞行器20是否降落在所述降落区域111内,以确保定位机构100可以开始定位工作。例如,在其中一个实施例中,着陆感应系统400是振动传感器,当无人飞行器20降落至基座11a的降落区域111的内产生一定频率的振动触发振动传感器,此时振动传感器发送信号给控制器101,控制器101将信号传输给定位机构100,定位机构100开始定位工作。当然,在其他实施例中,着陆感应系统400还可以是光电传感器、压力传感器。
安全感应系统500用于感应定位组件110的定位是否准确,用于保证无人飞行器20被安全定位,不至于被定位件破坏。例如,在其中一个实施例中,安全感应系统500是压力传感器,当定位组件已将无人飞行器20定位至预设位置,压力传感器接收来自定位件的压力,并将信号传送给控制器101,判断压力值的大小以此来确定定位机构何时结束定位工作。当然,在其他实施例中,着陆感应系统400还可以是光电传感器。
上述无人飞行器基站及其定位机构能够使无人飞行器在无人飞行器基站上准确定位,定位所需时间较短,极大地提高了无人飞行器定位的工作效率。
上述无人机基站可以改变无人飞行器的降落、更换电池、变更负载、再次起飞均需要人工参与的现状。使用本发明所述无人飞行器基站及其定位机构,可以在野外、无人区域、高海拔、海上平面等人类难以涉足或难以操控自如的区域为降落在基站上的无人飞行器20自动提供定位服务,并配合基站的其他装置进行自动更换电池或负载。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本实用新型的至少一个实施方式或示例中。 在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本实用新型的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体地限定。
尽管上面已经示出和描述了本实用新型的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本实用新型的限制,本领域的普通技术人员在本实用新型的范围内可以对上述实施例进行变化、修改、替换和变型,本实用新型的范围由权利要求及其等同物限定。

Claims (37)

  1. 一种无人飞行器基站的定位机构,其特征在于,包括:
    设有降落区域的基座,所述无人飞行器能够降落在所述降落区域;
    设于所述降落区域的定位组件,所述定位组件包括至少两个定位件,所述至少两个定位件包括第一定位件和第二定位件,所述第一定位件和第二定位件可移动地设于所述降落区域;以及
    用于驱动其中至少一个所述定位件的动力装置;
    其中,当所述动力装置驱动其中至少一个所述定位件时,至少所述两个定位件在所述降落区域相对移动,使至少所述两个定位件能够将所述无人飞行器限定在所述降落区域的预设位置,从而对所述无人飞行器进行定位。
  2. 如权利要求1所述的无人飞行器基站的定位机构,其特征在于,所述第一定位件与所述第二定位件在所述降落区域内平行分布。
  3. 如权利要求1所述的无人飞行器基站的定位机构,其特征在于,所述第一定位件与所述第二定位件在所述降落区域内交叉分布。
  4. 如权利要求1所述的无人飞行器基站的定位机构,其特征在于,所述第一定位件或/及所述第二定位件包括用于在一维方向上定位所述无人飞行器的一维定位部。
  5. 如权利要求4所述的无人飞行器基站的定位机构,其特征在于,所述一维定位部为定位杆或定位板。
  6. 如权利要求1所述的无人飞行器基站的定位机构,其特征在于,所述第一定位件或/及所述第二定位件设有用于在二维方向上定位所述无人飞行器的二维定位部。
  7. 如权利要求6所述的无人飞行器基站的定位机构,其特征在于,所述二维定位部为曲面部。
  8. 如权利要求7所述的无人飞行器基站的定位机构,其特征在于,所述曲面部包括如下至少一种:V型槽,U型槽,C型槽。
  9. 如权利要求1所述的无人飞行器基站的定位机构,其特征在于,所述第一定位件或/及所述第二定位件包括用于在三维方向上定位所述无人飞行器的三维定位部。
  10. 如权利要求9所述的无人飞行器基站的定位机构,其特征在于,所述三维定位部为曲面部。
  11. 如权利要求10所述的无人飞行器基站的定位机构,其特征在于,所述曲面部包括如下至少一种:球面弧形部,多棱形凹槽。
  12. 如权利要求1所述的无人飞行器基站的定位机构,其特征在于,所述第一定位件或/及所述第二定位件包括如下至少一种:
    用于对所述无人飞行器施加推力的抵接部;
    用于对所述无人飞行器施加拉力的卡扣部。
  13. 如权利要求1所述的无人飞行器基站的定位机构,其特征在于,所述定位组件还包括第三定位件及第四定位件,所述第三定位件及第四定位件相互平行地设于所述降落区域,用于将所述无人飞行器传动至预设位置。
  14. 如权利要求13所述的无人飞行器基站的定位机构,其特征在于,所述第三定位件及第四定位件包括如下至少一种:滚轮、链条、皮带。
  15. 如权利要求1所述的无人飞行器基站的定位机构,其特征在于,所述定位机构还包括导向组件,所述导向组件用于给所述定位件导向,使所述定位件沿预设方向移动。
  16. 如权利要求15所述的无人飞行器基站的定位机构,其特征在于,所述导向组件包括滑块与滑轨、滑块与滑槽、滑动套筒与导向杆中的至少一种。
  17. 如权利要求1所述的无人飞行器基站的定位机构,其特征在于,所述定位机构还包括传动组件,所述传动组件用于带动所述定位组件在所述降落区域相对移动。
  18. 如权利要求17所述的无人飞行器基站的定位机构,其特征在于,所述传动组件包括传动轴、传动带、传动链、传动齿轮中的至少一种。
  19. 如权利要求1所述的无人飞行器基站的定位机构,其特征在于,所述定位机构还包括联动组件,所述联动组件连接于所述第一定位件与所述第二定位件之间,使得所述第一定位件及所述第二定位件中的一个通过所述联动组件带动另外一个移动。
  20. 如权利要求19所述的无人飞行器基站的定位机构,其特征在于,所述联动组件包括拉绳、钢丝中的至少一种。
  21. 如权利要求1所述的无人飞行器基站的定位机构,其特征在于,所述定位机构还包括复位组件,所述复位组件与所述定位件连接,用于提供作用力给所述定位件,使得所述定位件在所述作用力的作用下自动复位。
  22. 如权利要求21所述的无人飞行器基站的定位机构,其特征在于,所述复位组件包括如下至少一种:压缩件,拉伸件。
  23. 如权利要求22所述的无人飞行器基站的定位机构,其特征在于,所述压缩件包括如下至少有一种:压缩弹簧,伸缩气缸;
    所述拉伸件包括如下至少一种:拉伸弹簧,橡皮筋。
  24. 如权利要求1所述的无人飞行器基站的定位机构,其特征在于,所述动力装置包括气 缸、电机中的至少一种。
  25. 如权利要求1所述的无人飞行器基站的定位机构,其特征在于,所述定位机构还包括导航感应系统,所述导航感应系统用于感应无人飞行器是否在所述基座的所述降落区域的上方,以确保无人飞行器可以在此范围内着陆。
  26. 如权利要求25所述的无人飞行器基站的定位机构,其特征在于,所述导航感应系统包括GPS、光电传感器中的至少一种。
  27. 如权利要求1所述的无人飞行器基站的定位机构,其特征在于,所述定位机构还包括着陆感应系统,所述着陆感应系统用于感应所述无人飞行器是否降落在所述降落区域。
  28. 如权利要求27所述的无人飞行器基站的定位机构,其特征在于,所述导航感应系统包括光电传感器、振动传感器、压力传感器中的至少一种。
  29. 如权利要求1所述的无人飞行器基站的定位机构,其特征在于,所述定位机构还包括安全感应系统,所述安全感应系统用于感应所述定位组件的定位是否准确,用于保证所述无人飞行器被安全定位,不至于被所述定位件破坏。
  30. 如权利要求29所述的无人飞行器基站的定位机构,其特征在于,所述导航感应系统包括光电传感器、压力传感器中的至少一种。
  31. 一种无人飞行器基站,其特征在于,包括:
    权利要求1~30任一项所述的无人飞行器基站的定位机构;以及
    用于对无人飞行器进行操作的操作装置;
    其中,所述无人飞行器通过所述定位组件的定位件移动至所述预设位置,所述操作装置对定位于所述预设位置的所述无人飞行器进行操作。
  32. 如权利要求31所述的无人飞行器基站,其特征在于,所述操作装置包括用于辅助定位所述无人飞行器的辅助机械结构。
  33. 如权利要求32所述的无人飞行器基站,其特征在于,所述辅助机械结构可夹持所述无人飞行器以使所述无人飞行器在所述预设位置内保持固定位置。
  34. 如权利要求33所述的无人飞行器基站,其特征在于,所述操作装置包括用于抓取电池的电池抓取机构以及用于定位所述无人飞行器的夹持机构。
  35. 如权利要求34所述的无人飞行器基站,其特征在于,所述操作装置包括用于对所述无人飞行器进行原材料补给的原材料补给机构。
  36. 如权利要求35所述的无人飞行器基站,其特征在于,所述原材料补给机构包括:液体原料输送接口,固体原料输送装置其中的至少一种。
  37. 如权利要求36所述的无人飞行器基站,其特征在于,所述操作装置包括用于对所述 无人飞行器的负载进行更换的更换装置。
PCT/CN2018/090291 2018-06-07 2018-06-07 无人飞行器基站及其定位机构 WO2019232753A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880016201.7A CN110494362A (zh) 2018-06-07 2018-06-07 无人飞行器基站及其定位机构
PCT/CN2018/090291 WO2019232753A1 (zh) 2018-06-07 2018-06-07 无人飞行器基站及其定位机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090291 WO2019232753A1 (zh) 2018-06-07 2018-06-07 无人飞行器基站及其定位机构

Publications (1)

Publication Number Publication Date
WO2019232753A1 true WO2019232753A1 (zh) 2019-12-12

Family

ID=68545792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090291 WO2019232753A1 (zh) 2018-06-07 2018-06-07 无人飞行器基站及其定位机构

Country Status (2)

Country Link
CN (1) CN110494362A (zh)
WO (1) WO2019232753A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210047053A1 (en) * 2018-02-14 2021-02-18 Ford Global Technologies, Llc Self-centering landing platform
WO2022079254A1 (de) * 2020-10-16 2022-04-21 Phoenix-Wings GmbH Automatisches drohnen-positionierungssystem
WO2023041679A1 (de) * 2021-09-16 2023-03-23 HHLA Sky GmbH Landeplattform

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111003162B (zh) * 2019-12-25 2023-04-07 南京维景数据工程有限公司 一种测绘无人机及其测绘方法
CN112706937B (zh) * 2020-04-08 2022-03-22 江苏方天电力技术有限公司 无人机柔性精准自主起降装置及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140124621A1 (en) * 2010-11-09 2014-05-08 Roy Godzdanker Intelligent self-leveling docking system
CN206533201U (zh) * 2017-03-15 2017-09-29 无锡职业技术学院 一种自定位的无人机无线充电系统
CN206766377U (zh) * 2017-04-21 2017-12-19 北京建中数字科技有限公司 一种交叉双旋翼无人直升机地面测试平台
CN207089676U (zh) * 2017-08-01 2018-03-13 杭州米希科技有限公司 无人机降落姿态调整固定系统及使用该系统的停机坪

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106081146A (zh) * 2016-07-18 2016-11-09 厦门大壮深飞科技有限公司 基于着陆引导的无人机补给平台
CN206569283U (zh) * 2017-03-01 2017-10-20 西南交通大学 一种无人机电池更换装置
CN108016345B (zh) * 2017-12-08 2023-12-22 超农力(浙江)智能科技有限公司 一种无人机自定位车载续航系统
CN208377084U (zh) * 2018-06-07 2019-01-15 深圳市大疆创新科技有限公司 无人飞行器基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140124621A1 (en) * 2010-11-09 2014-05-08 Roy Godzdanker Intelligent self-leveling docking system
CN206533201U (zh) * 2017-03-15 2017-09-29 无锡职业技术学院 一种自定位的无人机无线充电系统
CN206766377U (zh) * 2017-04-21 2017-12-19 北京建中数字科技有限公司 一种交叉双旋翼无人直升机地面测试平台
CN207089676U (zh) * 2017-08-01 2018-03-13 杭州米希科技有限公司 无人机降落姿态调整固定系统及使用该系统的停机坪

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210047053A1 (en) * 2018-02-14 2021-02-18 Ford Global Technologies, Llc Self-centering landing platform
US11655048B2 (en) * 2018-02-14 2023-05-23 Ford Global Technologies, Llc Self-centering landing platform
WO2022079254A1 (de) * 2020-10-16 2022-04-21 Phoenix-Wings GmbH Automatisches drohnen-positionierungssystem
WO2023041679A1 (de) * 2021-09-16 2023-03-23 HHLA Sky GmbH Landeplattform

Also Published As

Publication number Publication date
CN110494362A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2019232753A1 (zh) 无人飞行器基站及其定位机构
EP3599175B1 (en) Gravity compensation for self-propelled robotic vehicles crawling on non-level surfaces
US10974830B2 (en) Manipulation system and method for an aircraft
KR102018970B1 (ko) 회전익기
US9884681B2 (en) Aerial vehicle with frame assemblies
JP6704735B2 (ja) 飛行体の着陸対象装置、および飛行体の制御方法
US11772814B2 (en) System including a drone, a wire, and a docking station, enabling autonomous landings of the drones in degraded conditions
US20160281910A1 (en) Automated Mobile Boom System for Crawling Robots
CN110254652B (zh) 一种基于水平稳定平台的无人机回收充电装置
KR101884902B1 (ko) 무인비행체
GB2532295A (en) Surface effect unmanned vehicle
KR20160049810A (ko) 멀티로터 시스템용 실험 장치
JP6339460B2 (ja) ケーブル検査装置
WO2022144029A1 (zh) 可移动的设备、控制方法、控制装置、存储介质、移动平台及附件
US10745125B2 (en) Hovering vehicle
CN109018248B (zh) 一种并联绳驱动海上救捞系统
KR101872923B1 (ko) 드론형 고소작업장치
CN208377084U (zh) 无人飞行器基站
WO2022062174A1 (zh) 用于无人机的位置矫正装置和存储系统
JP6818337B2 (ja) 多関節ロボットアーム及びuav
CN110466765A (zh) 一种空中悬停精准操控系统
CN108516113B (zh) 一种偏心旋转空间载荷地面调试用重力卸载方法及装置
CN113282109A (zh) 无人飞行器与人协同作业系统
CN205586472U (zh) 一种多功能电动爬杆作业装置
CN108035528B (zh) 一种协同受力导轨结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921752

Country of ref document: EP

Kind code of ref document: A1