WO2019231063A1 - Biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force, and method for preparing same - Google Patents

Biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force, and method for preparing same Download PDF

Info

Publication number
WO2019231063A1
WO2019231063A1 PCT/KR2018/013336 KR2018013336W WO2019231063A1 WO 2019231063 A1 WO2019231063 A1 WO 2019231063A1 KR 2018013336 W KR2018013336 W KR 2018013336W WO 2019231063 A1 WO2019231063 A1 WO 2019231063A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly ash
biomaterial
silica nanoparticles
solution
sio
Prior art date
Application number
PCT/KR2018/013336
Other languages
French (fr)
Korean (ko)
Inventor
김홍건
곽이구
정훈
고상철
마오 응웬당
Original Assignee
전주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전주대학교 산학협력단 filed Critical 전주대학교 산학협력단
Publication of WO2019231063A1 publication Critical patent/WO2019231063A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/152Preparation of hydrogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating

Definitions

  • the present invention relates to a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power and a method for preparing the same, and more particularly, to a fly ash containing silicon dioxide (SiO 2 ) .
  • the present invention relates to a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power and to a biomaterial fly ash synthesized by a gel method).
  • silica nanoparticles are well known as advanced functional materials for a wide range of emerging applications such as composite and nanocomposite adhesives, catalysis, adsorbents and drug delivery.
  • silica nanoparticles with high porosity can provide a high surface area to retain small molecules or to encapsulate therapeutic agents.
  • silica nanoparticles have been generally synthesized from tetra-alkoxysilanes such as tetramethoxysilane (TMOS), ethyl silicate (TEOS) and the like.
  • TMOS tetramethoxysilane
  • TEOS ethyl silicate
  • TEOS Tetraethyl Orthosilicate
  • fly ash which is a byproduct of about 600 million tons, is generated every year.
  • Such fly ash is used in various business fields such as construction cement raw materials, metal adsorption, and zeolite catalyst raw materials.
  • fly ash is still being discarded in the natural environment and thus causing serious damage to the environment.
  • fly ash has been found to have a high SiO 2 content, and thus, in the synthesis of silica nanoparticles, It can be considered a potentially inexpensive raw material.
  • the present invention synthesizes amorphous silica in a fly ash containing silicon dioxide (SiO 2 ) by the sol-gel method (Sol-gel method) to produce a biomaterial fly ash amorphous having a high surface power
  • the present invention provides a biomaterial fly ash synthesized with silica nanoparticles and a method for preparing the same.
  • the method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface force is a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface force.
  • step (a) is 7 to 9 parts by weight of fly ash into the flask, characterized in that the stirring by adding 90 to 110 parts by weight of 3M sodium aqueous solution (3M NaOH).
  • step (a) is characterized in that the fly ash is put into the flask and added 3M aqueous sodium solution (3M NaOH) and stirred homogeneously for 8 to 9 hours at 60 to 65 °C.
  • step (b) is characterized in that the concentration of cetyl trimethylmethyl ammonium bromide is 3 to 4wt%.
  • step (b) is characterized in that 90 to 110 parts by weight of cetyl trimethylmethylammonium bromide and 190 to 210 parts by weight of N-butanol to 90 to 110 parts by weight of the sodium silicate solution.
  • step (b) is characterized in that cetyl trimethylmethyl ammonium bromide and N-butanol is added to the sodium silicate solution and heated to 75 to 85 °C to prepare a mixture.
  • step (f) is characterized in that the washed silica gel collected and dried at 95 to 105 °C for 23 to 25 hours.
  • step (g) is characterized in that to activate the dried silica gel by heating at 540 to 560 °C for 3.5 to 4.5 hours.
  • biomaterial fly ash prepared by the method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface force according to an embodiment of the present invention.
  • Biomaterial fly ash synthesized from amorphous silica nanoparticles having a high surface power according to an embodiment of the present invention and a method for manufacturing the same are inexpensive, and can finely control the size, shape, reactivity and material properties of the particles.
  • High quality biomaterial fly ash (silica nanoparticles) can be provided.
  • FIG. 1 is a flow chart sequentially showing a method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power according to an embodiment of the present invention.
  • Figure 2 is a graph showing the results of measuring the XRF spectrum through the fly ash XRF analysis.
  • 3A to 3G show the concentration of cetyl trimethylammonium bromide (1wt%, 3wt%, 5wt%) in the method of preparing a biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface power according to an embodiment of the present invention.
  • Figure 4 is a bio-according to the concentration (1wt%, 3wt%, 5wt%) of cetyl trimethylammonium bromide in the method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power according to an embodiment of the present invention
  • Conceptual diagram showing particle bonding of material fly ash.
  • 5A to 5C show the reaction temperature (30 ° C., 60 ° C., 90 ° C.) at step S400 of the method for preparing a biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force according to an embodiment of the present invention.
  • 6A to 6C illustrate the biomaterial fly according to the reaction time (4h, 8h, 16h) in step S400 of the method for preparing a biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force according to an embodiment of the present invention.
  • Figure 7 is a graph showing the FT-IR spectrum of the biomaterial fly ash before and after step S700 (activation step) in the method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power according to an embodiment of the present invention.
  • FIG. 8 is a graph showing an XRD pattern of a fly ash and a biomaterial fly ash according to an embodiment of the present invention.
  • Figure 9 is a graph showing the results of measuring the nitrogen adsorption-desorption isotherm of biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power according to an embodiment of the present invention.
  • the present invention is a method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power, (a) a fly ash is added to the flask, 3M sodium aqueous solution (3M NaOH), stirred and filtered to sodium sodium silicate Preparing a (Na 2 SiO 3 ) solution; (b) adding cetyl trimethylmethylammonium bromide and N-butanol to the sodium silicate solution and heating to prepare a mixture; (c) adding 1M hydrogen chloride (1M HCl) solution to the mixture and stirring the pH to reach 4; (d) reacting the stirred mixture at 55-65 ° C.
  • the present invention is a biomaterial fly ash prepared by a method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface force.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a flow chart sequentially showing a method of manufacturing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power according to an embodiment of the present invention.
  • a method for preparing a biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface power is a biomaterial fly by synthesizing amorphous silica by a sol-gel method into a potentially cheap fly ash.
  • a silicon fly ash hereinafter referred to as 'silica nanoparticles (SiO 2 NPs)'
  • SiO 2 NPs silicon nanoparticles
  • a fly ash is placed in a flask, and then stirred by adding 3M aqueous sodium solution (3M NaOH) and filtering to prepare a sodium silicate (Na 2 SiO 3 ) solution (S100). Cetyl trimethylmethylammonium bromide and N-butanol were added to the sodium solution, followed by heating to prepare a mixture (S200), and 1M hydrogen chloride (1M HCl) solution was added to the mixture and stirred to reach a pH of 4 (S300). , Reacting the stirred mixture at 40 to 75 ° C.
  • step S100 is a step of preparing a sodium silicate (Na 2 SiO 3 ) solution, a fly ash, 3M sodium aqueous solution (3M NaOH) may be added and stirred to prepare a sodium silicate (Na 2 SiO 3 ) solution. .
  • the S100 step is to add 7 to 9 parts by weight of fly ash in a 250 parts by weight of flask and add 90 to 110 parts by weight of 3M sodium aqueous solution (3M NaOH) and stirred at 85 to 95 °C for 5.5 to 6.5 hours of the fly ash
  • Silica can be completely reacted with sodium silicate (Na 2 SiO 3 ), where 8 parts by weight of fly ash is placed in a 250 parts by weight flask and 100 parts by weight of 3M aqueous sodium solution (3M NaOH) is added to homogeneously at 90 ° C. for 6 hours. It is preferable to stir.
  • 3M sodium aqueous solution is a 3M sodium aqueous solution (3M NaOH) of the optimum concentration because the extraction efficiency of SiO 2 is maintained constant when the concentration of sodium aqueous solution (NaOH) is 3M. It is preferable to use.
  • the concentration of the aqueous sodium solution (NaOH) is less than 3M is insufficient to extract SiO 2 from the fly ash, if it exceeds 3M, the extraction efficiency of SiO 2 is increased.
  • the mixture may be prepared by adding and heating cetyl trimethylmethylammonium bromide (CTAB) and N-butanol to the sodium silicate solution prepared in step S100.
  • CTAB cetyl trimethylmethylammonium bromide
  • Cetyl trimethylammonium bromide is added as a surfactant in the synthesis of silica nanoparticles (SiO 2 NPs).
  • cetyl trimethylammonium bromide is positively adsorbed on the surface of the negatively charged silica nanoparticles (SiO 2 NPs) at the pH> 2.5 by the head of cetyl trimethylmethylammonium bromide (CTAB)
  • the surface of silica nanoparticles (SiO 2 NPs) may be wrapped with cetyl trimethylmethylammonium bromide (CTAB) to form a physical adsorption layer.
  • N-butanol was added as a dispersant of silica nanoparticles (SiO 2 NPs).
  • silica nanoparticles may be uniformly dispersed while having a small and uniform size on N-butanol.
  • silica nanoparticles (SiO 2 NPs) while forming a micelle structure of the cetyl Trill methyl ammonium bromide adsorption physically surrounding the surface of silica nanoparticles (SiO 2 NPs) as described above, Will have Accordingly, silica nanoparticles (SiO 2 NPs) are spread on the hydrophobic solvent N-butanol to prevent aggregation between the silica nanoparticles (SiO 2 NPs).
  • the concentration of cetyl trimethylmethylammonium bromide is preferably 2 to 4 wt%, to protect the silica nanoparticles (SiO 2 NPs) from aggregation and to obtain uniform and small particles of the silica nanoparticles (SiO 2 NPs), and 3 wt% Most preferably.
  • cetyl Trill hydroxyl group of tetramethylammonium if the concentration of bromide 2% by weight is less than cetyl Trill methyl ammonium bromide molecules are silica nanoparticles (SiO 2 NPs) failure to uniformly coat the surface of silica nanoparticles (SiO 2 NPs) ( -OH) may form hydrogen bonds with silica nanoparticles (SiO 2 NPs) or hydroxyl group (-OH) in water, which may cause aggregation, and when the concentration exceeds 4wt%, the concentration of silica nanoparticles (SiO 2 NPs) As is increased, silica nanoparticles (SiO 2 NPs) may aggregate to form granules.
  • the step S300 may add 90 to 110 parts by weight of cetyl trimethylmethylammonium bromide and 190 to 210 parts by weight of N-butanol to 90 to 110 parts by weight of a sodium silicate solution and heat to 75 to 85 ° C. to prepare a mixture.
  • 100 parts by weight of cetyl trimethylmethylammonium bromide and 200 parts by weight of N-butanol are preferably added to 100 parts by weight of sodium silicate solution and heated to 80 ° C.
  • the heating temperature in the step S200 is less than 75 °C sufficient efficiency can not appear, if it exceeds 85 °C already enough efficiency is out of further increase in temperature is inefficient.
  • Step S300 is a step of causing a hydrolysis condensation reaction, by adding a 1M hydrogen chloride (1M HCl) solution to the mixture prepared in step S200 may be stirred to reach a pH of 4.
  • a 1M hydrogen chloride (1M HCl) solution to the mixture prepared in step S200 may be stirred to reach a pH of 4.
  • a reaction such as the following Equation 2 may occur.
  • Step S400 is a step of reacting and cooling the stirred mixture.
  • the stirred mixture in S300 may be reacted at 55 to 65 ° C. for 6 to 10 hours and cooled at room temperature, and the stirred mixture is heated at 60 ° C. for 8 hours. It is preferable to react and cool to room temperature.
  • a reaction such as the following Equation 3 may occur to obtain a silica gel.
  • n Si-O cluster and is a positive integer.
  • Step S500 is a step of collecting the silica gel, after transferring the mixture cooled in the step S400 to a new flask may collect the silica gel (silica gel) dispersed on the N-butanol.
  • Step S600 is a drying step, and the silica gel collected in step S400 may be washed several times and dried at 95 to 105 ° C. for 23 to 25 hours, and preferably dried at 100 ° C. for 24 hours.
  • drying temperature and time is less than 95 °C and 23 hours may not be enough drying due to insufficient drying, if more than 105 °C and 25 hours, complete drying is already inefficient and silica nanoparticles (SiO 2 Deformation may occur in NPs).
  • S700 step is to activate the synthesized silica nanoparticles (SiO 2 NPs), by heating the silica gel dried in step S700 to remove cetyl trimethylmethylammonium bromide (CTAB), silica nanoparticles (SiO 2 NPs ) Can be activated.
  • CAB cetyl trimethylmethylammonium bromide
  • step S700 may be activated by heating the dried silica gel at 540 to 560 °C for 3.5 to 4.5 hours, it is most preferable to heat at 550 °C for 4 hours.
  • cetyl trimethylmethylammonium bromide (CTAB) is not completely removed, and when it exceeds 4.5 hours, cetyl trimethylmethylammonium bromide (CTAB) is already completely removed, so further heating is inefficient. .
  • the final biomaterial fly ash (silica nanoparticles (SiO 2 NPs)) can be obtained in step S700.
  • the weight part in the manufacturing method may be derived based on 1g, 1ml, but is not limited thereto.
  • the present invention can provide a bio-material fly ash prepared by the manufacturing method as described above.
  • the biomaterial fly ash synthesized from the amorphous silica nanoparticles having the high surface force according to the embodiment of the present invention and its manufacturing method are inexpensive, and the size, shape, reactivity and material properties of the particles Fine control and high quality biomaterial fly ash (silica nanoparticles) can be provided.
  • the chemical composition of the fly ash was measured by XRF analysis using an AXIOSmAX X-ray fluorescence (XRF) spectrometer (PANalytical B.V. Co., Netherlands), and the measurement results are shown in FIG. 2.
  • XRF AXIOSmAX X-ray fluorescence
  • the fly ash includes various types of oxides such as SiO 2 , Fe 2 O 3 , CaO, and K 2 O.
  • the SiO 2 content was found to be 43.7 wt%.
  • silica nanoparticles This compared to rice husk, rice hull and bagasse ash SiO 2 Although somewhat lower in content, it was considered to be an alternative low cost silica source for the synthesis of silica nanoparticles.
  • silica gel was washed three times, dried at 100 ° C. for 24 hours, and activated by heating the dried silica gel at 550 ° C. for 4 hours to prepare a final biomaterial fly ash (silica nanoparticles). It was.
  • the stirred mixture was prepared in the same manner as in Example except that the reaction was carried out at 30 ° C. instead of at 60 ° C.
  • the stirred mixture was prepared in the same manner as in Example except that the reaction was carried out at 90 ° C instead of at 60 ° C.
  • the stirred mixture was prepared in the same manner as in Example except that the reaction was carried out for 4 hours instead of for 8 hours.
  • the stirred mixture was prepared in the same manner as in Example except that the reaction was carried out for 16 hours instead of for 8 hours.
  • 3A to 3G show the concentration of cetyl trimethylammonium bromide (1wt%, 3wt%, 5wt%) in the method of preparing a biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface power according to an embodiment of the present invention.
  • Bio-material fly ash (silica nanoparticles) according to the optical image and the SEM observation picture.
  • Figure 4 is a bio-according to the concentration of cetyl trimethylammonium bromide (1wt%, 3wt%, 5wt%) in the method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power according to an embodiment of the present invention
  • Comparative Example 1 (CTAB1, wt%) can be confirmed that the silica nanoparticles (SiO 2 NPs) is completely dispersed in the aqueous phase with very strong aggregation, as shown in Figure 3A.
  • CTAB molecules were not uniformly coated on the SiO 2 surface, as indicated by CTAB 1wt% of FIG. 4. Accordingly, free hydroxyl groups on the surface of the silica nanoparticles can form hydrogen bonds with the hydroxyl groups of the silica nanoparticles or water molecules, causing aggregation to a larger particle size in order to reduce high surface energy.
  • Example (CTAB, 3 wt%) as shown in B, D and E of FIG. 3, the silica particles are uniformly dispersed on N-butanol, and observed by SEM and are uniform and 20 to 32 nm. It can be seen that it shows small particles.
  • Comparative Example 2 Comparative Example 2 (CTAB, 5 wt%), as shown in C, F, and G of FIG. 3, the silica particles were dispersed together with the aggregation phenomenon at the interface between the N-butanol phase and the water yarn, and observed by SEM. It can be seen that the results are uniform and exhibit large particles of 92 to 123 nm.
  • micellar structure by self-assembly of a bilayer at a high CTAB concentration, as indicated by CTAB 5wt% in FIG. 4, where the micelle structure has a positive charge surface of a cation to interact with water molecules.
  • the silica nanoparticles are moved and positioned in the interface region.
  • 5A to 5C show the reaction temperature (30 ° C., 60 ° C., 90 ° C.) at step S400 of the method for preparing a biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force according to an embodiment of the present invention.
  • Comparative Example 3 can confirm the silica nanoparticles having a size of more than about 100nm, such as 50, 100, 200nm when reacting at 30 °C in S400 step, as shown in Figure 5 A, confirming that the number of the observed silica nanoparticles are small could.
  • the non-uniform size of the silica nanoparticles at 30 ° C. is due to the fact that the extraction efficiency is not kept constant, and the extraction efficiency is low, and thus the number of particles observed is low.
  • step S400 when reacting at 60 ° C. in step S400, silica nanoparticles having a uniform and small size could be confirmed.
  • 6A to 6C illustrate a biomaterial fly according to reaction time (4h, 8h, 16h) in step S400 of the method for preparing a biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force according to an embodiment of the present invention. It is a photograph observing the ash (silica nanoparticles) by SEM.
  • the size of the silica nanoparticles was found to be the most desirable because the equilibrium between dissolution and precipitation process at 8 hours.
  • reaction for 8 hours as in the embodiment can obtain silica nanoparticles of uniform and small particles.
  • the FT-IR spectra are shown in FIG. 6 by FT-IR measurement of the silica nanoparticles (except the activation process after drying in the examples) before the activation and the activation.
  • EQUINOX 55 spectrometer (Bruker Co., Germany) was performed to transform infrared (FT-IR) spectrum Fourier at 400 to 4000 cm -1 with a resolution of 1 cm -1 using.
  • step S700 activation step
  • Figure 7 (a) is the silica nanoparticles before activation
  • (b) is an example, it is confirmed that there is a wide absorption band at 3,400 cm -1 corresponding to the vibration of the -OH group in (a) and (b) could.
  • FIG. 8 is a graph showing an XRD pattern of a fly ash (Comparative Example 1) and a biomaterial fly ash (Example) according to an embodiment of the present invention.
  • the XRD pattern of (a) of Comparative Example 1 exhibits two sharp peak values at 26.6 ° and 20.5 °, indicating that quartz (SiO 2 ) minerals are present.
  • the weak peak values at 33.2 ° and 16.4 ° indicate that hematite (Fe 2 O 3 ) and mullite (Al 6 Si 2 O 13 ) minerals are present.
  • Example (b) shows a wide peak value at 22.5 ° it can be seen that SiO 2 is present. In addition, in the examples, no specific peak of impurities was observed.
  • the specific surface area of the silica nanoparticles was analyzed by N 2 adsorption-desorption method at -196 ° C using an AUTOSORB-1 analyzer (Quantachrome Instruments Co., USA).
  • FIG. 9 is a graph showing the results of nitrogen adsorption-desorption isotherm of biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force according to an embodiment of the present invention.
  • SBET specific surface area

Abstract

The present invention relates to biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface force and to a method for preparing same, and, according to the present invention, the method for preparing biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface force can be provided, the method comprising the steps of: (a) preparing a sodium silicate (Na2SiO3) solution by inputting fly ash in a flask, adding a 3 M aqueous sodium solution (3 M NaOH), stirring same, and then filtering same; (b) preparing a mixture by adding cetyltrimethylammonium bromide and n-butanol to the sodium silicate solution and heating same; (c) adding a 1 M hydrogen chloride (1 M HCl) solution to the mixture and stirring so that the pH reaches 4; (d) allowing the stirred mixture to react for 6 to 10 hours at 55 to 65 ℃ and cooling same at room temperature; (e) collecting dispersed silica gel from the cooled mixture; (f) cleansing the collected silica gel and drying same; and (g) activating the dried silica gel by heating same.

Description

높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬 및 이의 제조방법Biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface power and its preparation method
본 발명은 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 이산화규소(SiO2 )를 포함하는 플라이 애쉬에 비정질 실리카를 졸-겔법(Sol-gel method)으로 합성하여 바이오물질 플라이 애쉬를 제조하는 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬 및 이의 제조방법에 관한 것이다.The present invention relates to a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power and a method for preparing the same, and more particularly, to a fly ash containing silicon dioxide (SiO 2 ) . The present invention relates to a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power and to a biomaterial fly ash synthesized by a gel method).
나노 기술의 빠른 발전은 다양한 산업 응용 분야에 대한 큰 가능성을 보여준 다양한 새로운 나노 물질을 생산을 촉진하고 있다.Rapid advances in nanotechnology are driving the production of a variety of new nanomaterials that show great potential for a variety of industrial applications.
이러한 나노 물질 중 실리카 나노 입자(SiO2NPs)는 복합소재 및 나노 복합소재 접착제, 촉매 작용, 흡착제 및 약물 전달과 같은 광범위한 신생 응용 분야의 첨단 기능성 소재로 잘 알려져 있다.Among these nanomaterials, silica nanoparticles (SiO 2 NPs) are well known as advanced functional materials for a wide range of emerging applications such as composite and nanocomposite adhesives, catalysis, adsorbents and drug delivery.
이러한 맥락에서, 높은 다공성을 갖는 실리카 나노 입자(SiO2NPs)는 작은 분자를 유지하거나 치료제를 캡슐화하기 위해 높은 표면적을 제공할 수 있음을 알려져 있다.In this context, it is known that silica nanoparticles (SiO 2 NPs) with high porosity can provide a high surface area to retain small molecules or to encapsulate therapeutic agents.
또한 SiO2 표면에 수산기가 고밀도로 존재하기 때문에, 표면의 기능화(surface functionalization)는 물리적 흡착이나 화학적 결합을 통해 쉽게 얻을 수 있다.In addition, because of the high density of hydroxyl groups on the SiO 2 surface, surface functionalization can be easily obtained through physical adsorption or chemical bonding.
또한, 실리카 나노 입자의 무독성, 생체 적합성, 양호한 분산, 순도 특징은 생체 공학 분야에서 매우 유망한 후보로 입증되었다.In addition, the non-toxicity, biocompatibility, good dispersion and purity characteristics of the silica nanoparticles have proved to be very promising candidates in the field of biotechnology.
현재, 실리카 나노입자는 테트라메톡시실란(tetramethoxysilane, TMOS), 에틸 실리케이트(tetraethyl orthosilicate, TEOS) 등과 같은 tetra-alkoxysilanes로부터 일반적으로 합성되어 왔다. Currently, silica nanoparticles have been generally synthesized from tetra-alkoxysilanes such as tetramethoxysilane (TMOS), ethyl silicate (TEOS) and the like.
또한, 제조방법으로서 선행기술인 한국공개특허 제10-2008-0085464호(발명의 명칭: 실리카 나노입자 및 그 제조방법)와 같이 테트라에틸 오르소실리케이트(TEOS)를 사용하여 제조하는 제조방법이 제시되어 왔다.In addition, a manufacturing method using Tetraethyl Orthosilicate (TEOS), such as Korean Patent Publication No. 10-2008-0085464 (name of the invention: silica nanoparticles and a manufacturing method thereof), which is a prior art, is proposed. come.
그러나 높은 비용과 독성으로 실리카 나노입자의 제조에 이들 물질을 사용하는 것이 큰 문제로 지적되고 있다.However, the use of these materials for the production of silica nanoparticles with high cost and toxicity has been pointed out as a big problem.
한편, 화력 발전소에서 석탄을 사용하기 때문에 매년 약 6억톤의 부산물인 플라이 애쉬가 생성되는데, 이러한 플라이 애쉬는 건축용 시멘트 원료, 금속흡착 및 제올라이트 촉매의 원료 등 다양한 사업분야에 사용되고 있다. Meanwhile, since coal is used in thermal power plants, fly ash, which is a byproduct of about 600 million tons, is generated every year. Such fly ash is used in various business fields such as construction cement raw materials, metal adsorption, and zeolite catalyst raw materials.
그러나 플라이 애쉬가 여전히 자연 환경에서 페기되고 있고 이에 따라 환경 등에 심각한 피해를 주고 있다.However, fly ash is still being discarded in the natural environment and thus causing serious damage to the environment.
그러므로, 처분 비용 절감, 환경적 영향의 완화 및 물질적 가치의 향상을 위한 플라이 애쉬 활용의 새로운 기술 개발의 연구가 필요한데, 플라이 애쉬는 SiO2 함량이 높은 것으로 밝혀져, 이에 따라 실리카 나노입자의 합성에 있어 잠재적으로 저렴한 원료로 간주될 수 있다.Therefore, research on the development of new technologies using fly ash for reducing disposal costs, mitigating environmental impact, and improving material value is needed. Fly ash has been found to have a high SiO 2 content, and thus, in the synthesis of silica nanoparticles, It can be considered a potentially inexpensive raw material.
따라서, SiO2 함량이 높은 플라이 애쉬를 활용하여 저렴하고 특성 제어가 용이한 실리카 나노입자의 합성 기술 및 바이오물질에 대한 개발이 필요하다.Accordingly, there is a need to develop a biomaterial and a synthesis technology of silica nanoparticles that are inexpensive and easy to control properties by utilizing a fly ash having a high SiO 2 content.
상기와 같은 문제를 해결하고자, 본 발명은 이산화규소(SiO2 )를 포함하는 플라이 애쉬에 비정질 실리카를 졸-겔법(Sol-gel method)으로 합성하여 바이오물질 플라이 애쉬를 제조하는 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬 및 이의 제조방법을 제공하는 데 있다.In order to solve the above problems, the present invention synthesizes amorphous silica in a fly ash containing silicon dioxide (SiO 2 ) by the sol-gel method (Sol-gel method) to produce a biomaterial fly ash amorphous having a high surface power The present invention provides a biomaterial fly ash synthesized with silica nanoparticles and a method for preparing the same.
상기와 같은 과제를 해결하기 위하여, 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법은 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법에 있어서, (a) 플라스크에 플라이 애쉬를 넣고 3M 나트륨수용액(3M NaOH)을 첨가하여 교반한 후 여과하여 규산나트륨(Na2SiO3) 용액을 제조하는 단계; (b) 상기 규산나트륨 용액에 세틸 트릴메틸암모늄 브롬화물 및 N-부탄올을 첨가하고 가열하여 혼합물을 제조하는 단계; (c) 상기 혼합물에 1M 염화수소(1M HCl) 용액를 첨가하여 pH가 4에 도달하도록 교반하는 단계; (d) 교반한 상기 혼합물을 55 내지 65℃에서 6 내지 10시간동안 반응시키고 실온에서 냉각시키는 단계; (e) 냉각된 혼합물에서 분산된 실리카 겔을 수거하는 단계; (f) 수거한 상기 실리카 겔을 세척하고 건조시키는 단계 및 (g) 건조된 상기 실리카 겔을 가열하여 활성화시키는 단계를 포함하는 바이오물질 플라이 애쉬의 제조방법을 제공할 수 있다.In order to solve the above problems, the method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface force according to an embodiment of the present invention is a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface force. In the manufacturing method of (a) adding a fly ash to the flask 3M sodium hydroxide solution (3M NaOH) by stirring and filtering to prepare a sodium silicate (Na 2 SiO 3 ) solution; (b) adding cetyl trimethylmethylammonium bromide and N-butanol to the sodium silicate solution and heating to prepare a mixture; (c) adding 1M hydrogen chloride (1M HCl) solution to the mixture and stirring the pH to reach 4; (d) reacting the stirred mixture at 55-65 ° C. for 6-10 hours and cooling at room temperature; (e) collecting the silica gel dispersed in the cooled mixture; (F) washing and drying the collected silica gel and (g) heating and activating the dried silica gel may provide a method for producing a biomaterial fly ash.
또한, 상기 (a) 단계는 상기 플라스크에 플라이 애쉬 7 내지 9 중량부를 넣고 90 내지 110 중량부의 3M 나트륨수용액(3M NaOH)을 첨가하여 교반하는 것을 특징으로 한다.In addition, the step (a) is 7 to 9 parts by weight of fly ash into the flask, characterized in that the stirring by adding 90 to 110 parts by weight of 3M sodium aqueous solution (3M NaOH).
또한, 상기 (a) 단계는 상기 플라스크에 플라이 애쉬를 넣고 3M 나트륨수용액(3M NaOH)을 첨가하여 60 내지 65℃에서 8 내지 9시간 동안 균질하게 교반하는 것을 특징으로 한다.In addition, the step (a) is characterized in that the fly ash is put into the flask and added 3M aqueous sodium solution (3M NaOH) and stirred homogeneously for 8 to 9 hours at 60 to 65 ℃.
또한, 상기 (b) 단계는 상기 세틸 트릴메틸암모늄 브롬화물의 농도가 3 내지 4wt%인 것을 특징으로 한다. In addition, the step (b) is characterized in that the concentration of cetyl trimethylmethyl ammonium bromide is 3 to 4wt%.
또한, 상기 (b) 단계는 상기 규산나트륨 용액 90 내지 110 중량부에 세틸 트릴메틸암모늄 브롬화물 90 내지 110중량부 및 N-부탄올 190 내지 210 중량부를 첨가하는 것을 특징으로 한다.In addition, the step (b) is characterized in that 90 to 110 parts by weight of cetyl trimethylmethylammonium bromide and 190 to 210 parts by weight of N-butanol to 90 to 110 parts by weight of the sodium silicate solution.
또한, 상기 (b) 단계는 상기 규산나트륨 용액에 세틸 트릴메틸암모늄 브롬화물 및 N-부탄올을 첨가하고 75 내지 85℃로 가열하여 혼합물을 제조하는 것을 특징으로 한다.In addition, the step (b) is characterized in that cetyl trimethylmethyl ammonium bromide and N-butanol is added to the sodium silicate solution and heated to 75 to 85 ℃ to prepare a mixture.
또한, 상기 (f) 단계는 수거한 상기 실리카 겔을 세척하고 95 내지 105℃에서 23 내지 25시간동안 건조시키는 것을 특징으로 한다.In addition, the step (f) is characterized in that the washed silica gel collected and dried at 95 to 105 ℃ for 23 to 25 hours.
또한, 상기 (g) 단계는 건조된 상기 실리카 겔을 540 내지 560℃에서 3.5 내지 4.5시간동안 가열하여 활성화시키는 것을 특징으로 한다.In addition, the step (g) is characterized in that to activate the dried silica gel by heating at 540 to 560 ℃ for 3.5 to 4.5 hours.
또한, 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법에 의해 제조된 바이오물질 플라이 애쉬를 제공할 수 있다.In addition, it is possible to provide a biomaterial fly ash prepared by the method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface force according to an embodiment of the present invention.
본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬 및 이의 제조방법은 비용이 저렴하고, 입자의 크기, 형태, 반응성 및 물질 특성 등을 섬세하게 제어할 수 있고, 고품질의 바이오물질 플라이 애쉬(실리카 나노입자)를 제공할 수 있다.Biomaterial fly ash synthesized from amorphous silica nanoparticles having a high surface power according to an embodiment of the present invention and a method for manufacturing the same are inexpensive, and can finely control the size, shape, reactivity and material properties of the particles. High quality biomaterial fly ash (silica nanoparticles) can be provided.
또한, 매해 발생하는 많은 양의 플라이 애쉬 폐기물로 인한 환경 문제를 해결하는데 도움이 될 수 있다.It can also help solve environmental problems caused by the large amount of fly ash waste generated each year.
도 1은 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법을 순차적으로 나타낸 흐름도.1 is a flow chart sequentially showing a method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power according to an embodiment of the present invention.
도 2는 플라이 애쉬를 XRF 분석을 통해 XRF 스펙트럼을 측정한 결과를 나타낸 그래프.Figure 2 is a graph showing the results of measuring the XRF spectrum through the fly ash XRF analysis.
도 3의 A 내지 G는 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법에서 세틸 트릴메틸암모늄 브롬화물의 농도(1wt%, 3wt%, 5wt%)에 따른 바이오물질 플라이 애쉬(실리카 나노입자)를 찍은 광학이미지 및 SEM으로 관찰한 사진.3A to 3G show the concentration of cetyl trimethylammonium bromide (1wt%, 3wt%, 5wt%) in the method of preparing a biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface power according to an embodiment of the present invention. ) And the optical image taken with the biomaterial fly ash (silica nanoparticles) according to the SEM observation picture.
도 4는 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법에서 세틸 트릴메틸암모늄 브롬화물의 농도(1wt%, 3wt%, 5wt%)에 따른 바이오물질 플라이 애쉬의 입자결합 모습을 도시한 개념도.Figure 4 is a bio-according to the concentration (1wt%, 3wt%, 5wt%) of cetyl trimethylammonium bromide in the method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power according to an embodiment of the present invention Conceptual diagram showing particle bonding of material fly ash.
도 5의 A 내지 C는 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법의 S400 단계에서 반응온도(30℃, 60℃, 90℃)에 따른 바이오물질 플라이 애쉬(실리카 나노입자)를 SEM으로 관찰한 사진.5A to 5C show the reaction temperature (30 ° C., 60 ° C., 90 ° C.) at step S400 of the method for preparing a biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force according to an embodiment of the present invention. SEM photograph of biomaterial fly ash (silica nanoparticles).
도 6의 A 내지 C는 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법의 S400 단계에서 반응시간(4h, 8h, 16h)에 따른 바이오물질 플라이 애쉬(실리카 나노입자)를 SEM으로 관찰한 사진.6A to 6C illustrate the biomaterial fly according to the reaction time (4h, 8h, 16h) in step S400 of the method for preparing a biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force according to an embodiment of the present invention. SEM photograph of the ash (silica nanoparticles).
도 7은 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법에서 S700 단계(활성화시키는 단계) 전후 바이오물질 플라이 애쉬의 FT-IR 스펙트럼을 나타낸 그래프.Figure 7 is a graph showing the FT-IR spectrum of the biomaterial fly ash before and after step S700 (activation step) in the method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power according to an embodiment of the present invention.
도 8은 플라이 애쉬와 본 발명의 실시예에 따른 바이오물질 플라이 애쉬의 XRD 패턴을 나타낸 그래프.8 is a graph showing an XRD pattern of a fly ash and a biomaterial fly ash according to an embodiment of the present invention.
도 9는 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 질소 흡착-탈착 등온선을 측정한 결과를 나타낸 그래프.Figure 9 is a graph showing the results of measuring the nitrogen adsorption-desorption isotherm of biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power according to an embodiment of the present invention.
본 발명은 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법에 있어서, (a) 플라스크에 플라이 애쉬를 넣고 3M 나트륨수용액(3M NaOH)을 첨가하여 교반한 후 여과하여 규산나트륨(Na2SiO3) 용액을 제조하는 단계; (b) 상기 규산나트륨 용액에 세틸 트릴메틸암모늄 브롬화물 및 N-부탄올을 첨가하고 가열하여 혼합물을 제조하는 단계; (c) 상기 혼합물에 1M 염화수소(1M HCl) 용액를 첨가하여 pH가 4에 도달하도록 교반하는 단계; (d) 교반한 상기 혼합물을 55 내지 65℃에서 6 내지 10시간동안 반응시키고 실온에서 냉각시키는 단계; (e) 냉각된 혼합물에서 분산된 실리카 겔을 수거하는 단계; (f) 수거한 상기 실리카 겔을 세척하고 건조시키는 단계 및 (g) 건조된 상기 실리카 겔을 가열하여 활성화시키는 단계를 포함하는 바이오물질 플라이 애쉬의 제조방법이다.The present invention is a method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power, (a) a fly ash is added to the flask, 3M sodium aqueous solution (3M NaOH), stirred and filtered to sodium sodium silicate Preparing a (Na 2 SiO 3 ) solution; (b) adding cetyl trimethylmethylammonium bromide and N-butanol to the sodium silicate solution and heating to prepare a mixture; (c) adding 1M hydrogen chloride (1M HCl) solution to the mixture and stirring the pH to reach 4; (d) reacting the stirred mixture at 55-65 ° C. for 6-10 hours and cooling at room temperature; (e) collecting the silica gel dispersed in the cooled mixture; (f) washing and drying the collected silica gel, and (g) heating and activating the dried silica gel to prepare a biomaterial fly ash.
또한, 본 발명은 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법에 의해 제조된 바이오물질 플라이 애쉬이다.In addition, the present invention is a biomaterial fly ash prepared by a method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface force.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements. In the accompanying drawings, the dimensions of the structures are shown in an enlarged scale than actual for clarity of the invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 구성요소 등을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성요소 등을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a combination of features, numbers, steps, components, etc. described in the specification, but one or more other features, numbers, steps It is to be understood that the present invention does not exclude, in advance, the possibility of the presence or addition of a combination of elements, components, and the like.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are not construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
이하, 본 발명의 실시 예를 첨부한 도 1 내지 도 9를 참조하여 상세히 설명하기로 한다.Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 9.
도 1은 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법을 순차적으로 나타낸 흐름도이다.1 is a flow chart sequentially showing a method of manufacturing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법은 잠재적으로 저렴한 플라이 애쉬에 비정질 실리카를 졸-겔법으로 합성하여 바이오물질 플라이 애쉬(이하 '실리카 나노입자(SiO2NPs)'라 함)를 제조하는 것으로, 저렴하고 특성 제어가 용이한 제조방법을 제공하고자 하는 것이다.Referring to FIG. 1, a method for preparing a biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface power according to an embodiment of the present invention is a biomaterial fly by synthesizing amorphous silica by a sol-gel method into a potentially cheap fly ash. By manufacturing ash (hereinafter referred to as 'silica nanoparticles (SiO 2 NPs)'), it is to provide a manufacturing method that is inexpensive and easy to control properties.
이를 위해, 바이오물질 플라이 애쉬의 제조방법은 플라스크에 플라이 애쉬를 넣고 3M 나트륨수용액(3M NaOH)을 첨가하여 교반한 후 여과하여 규산나트륨(Na2SiO3) 용액을 제조하는 단계(S100), 규산나트륨 용액에 세틸 트릴메틸암모늄 브롬화물 및 N-부탄올을 첨가하고 가열하여 혼합물을 제조하는 단계(S200), 혼합물에 1M 염화수소(1M HCl) 용액를 첨가하여 pH가 4에 도달하도록 교반하는 단계(S300), 교반한 혼합물을 40 내지 75℃에서 7내지 9시간동안 반응시키고 실온에서 냉각시키는 단계(S400), 냉각된 혼합물에서 분산된 실리카 겔을 수거하는 단계(S500), 수거한 실리카 겔을 세척하고 건조시키는 단계(S600) 및 건조된 실리카 겔을 가열하여 활성화시키는 단계(S700)를 포함할 수 있다.To this end, in the method for preparing a biomaterial fly ash, a fly ash is placed in a flask, and then stirred by adding 3M aqueous sodium solution (3M NaOH) and filtering to prepare a sodium silicate (Na 2 SiO 3 ) solution (S100). Cetyl trimethylmethylammonium bromide and N-butanol were added to the sodium solution, followed by heating to prepare a mixture (S200), and 1M hydrogen chloride (1M HCl) solution was added to the mixture and stirred to reach a pH of 4 (S300). , Reacting the stirred mixture at 40 to 75 ° C. for 7 to 9 hours and cooling at room temperature (S400), collecting the silica gel dispersed in the cooled mixture (S500), washing and drying the collected silica gel It may include the step (S600) and the activated by heating the dried silica gel (S700).
먼저, S100 단계는 규산나트륨(Na2SiO3) 용액을 제조하는 단계로, 플라이 애쉬를 넣고 3M 나트륨수용액(3M NaOH)을 첨가하고 교반하여 규산나트륨(Na2SiO3) 용액을 제조할 수 있다.First, step S100 is a step of preparing a sodium silicate (Na 2 SiO 3 ) solution, a fly ash, 3M sodium aqueous solution (3M NaOH) may be added and stirred to prepare a sodium silicate (Na 2 SiO 3 ) solution. .
더욱 구체적으로, S100 단계는 250 중량부의 플라스크에 플라이 애쉬 7 내지 9 중량부를 넣고 90 내지 110 중량부의 3M 나트륨수용액(3M NaOH)을 첨가하여 85 내지 95℃에서 5.5 내지 6.5 시간 동안 교반하여 플라이 애쉬의 실리카를 규산나트륨(Na2SiO3)으로 완전히 반응시킬 수 있고, 이때 250 중량부의 플라스크에 플라이 애쉬 8 중량부를 넣고 100 중량부의 3M 나트륨수용액(3M NaOH)을 첨가하여 90℃에서 6시간 동안 균질하게 교반시키는 것이 바람직하다.More specifically, the S100 step is to add 7 to 9 parts by weight of fly ash in a 250 parts by weight of flask and add 90 to 110 parts by weight of 3M sodium aqueous solution (3M NaOH) and stirred at 85 to 95 ℃ for 5.5 to 6.5 hours of the fly ash Silica can be completely reacted with sodium silicate (Na 2 SiO 3 ), where 8 parts by weight of fly ash is placed in a 250 parts by weight flask and 100 parts by weight of 3M aqueous sodium solution (3M NaOH) is added to homogeneously at 90 ° C. for 6 hours. It is preferable to stir.
이는, 플라이 애쉬와 3M 나트륨수용액 간에 하기 식 1과 같이 반응이 일어나 규산나트륨(Na2SiO3)으로 생성되는 것이다.This is a reaction between the fly ash and the 3M aqueous sodium solution as shown in the following formula 1 is produced as sodium silicate (Na 2 SiO 3 ).
[식 1][Equation 1]
2NaOH + SiO2 → Na2SiO3 + H2O2NaOH + SiO 2 → Na 2 SiO 3 + H 2 O
이후에, 여과하여 규산나트륨(Na2SiO3) 용액을 얻는 것으로 규산나트륨(Na2SiO3) 용액을 제조할 수 있다.Then, it may be filtered to obtain a sodium silicate (Na 2 SiO 3) solution of sodium silicate (Na 2 SiO 3) to the solution.
여기서, 3M의 나트륨수용액(NaOH)을 사용하는 것은 나트륨수용액(NaOH)의 농도가 3M 일 경우에 SiO2의 추출 효율이 일정하게 유지되기 때문에, 최적의 농도 상태인 3M 나트륨수용액(3M NaOH)을 사용하는 것이 바람직하다.Here, the use of 3M sodium aqueous solution (NaOH) is a 3M sodium aqueous solution (3M NaOH) of the optimum concentration because the extraction efficiency of SiO 2 is maintained constant when the concentration of sodium aqueous solution (NaOH) is 3M. It is preferable to use.
예를 들어 나트륨수용액(NaOH)의 농도가 3M 미만일 경우 플라이 애쉬로부터 SiO2를 추출하기에는 불충분하고, 3M을 초과할 경우 SiO2의 추출 효율이 증가하게 된다.For example, when the concentration of the aqueous sodium solution (NaOH) is less than 3M is insufficient to extract SiO 2 from the fly ash, if it exceeds 3M, the extraction efficiency of SiO 2 is increased.
여기서, 교반온도가 85℃ 미만일 경우 SiO2가 완전히 규산나트륨(sodium silicate)으로 전환되지 못하고, 95℃를 초과할 경우 SiO2가 규산나트륨(sodium silicate)로 전환되는 전환율이 저하될 수 있다.Here, when the stirring temperature is less than 85 ℃ SiO 2 is not completely converted to sodium silicate (sodium silicate), if it exceeds 95 ℃ may be reduced conversion rate of SiO 2 is converted to sodium silicate (sodium silicate).
또한, 교반시간이 5.5 시간 미만일 경우 SiO2가 완전히 규산나트륨(sodium silicate)으로 전환되지 못하고, 6.5 시간을 초과할 경우 규산나트륨(sodium silicate)으로 완전히 전환이 이루어진 상태이기 때문에 더 이상의 교반은 비효율적이다.In addition, when the stirring time is less than 5.5 hours, SiO 2 is not completely converted to sodium silicate, and when it exceeds 6.5 hours, further stirring is inefficient because the state is completely converted to sodium silicate. .
S200 단계는 S100 단계에서 제조된 규산나트륨 용액에 세틸 트릴메틸암모늄 브롬화물(CTAB) 및 N-부탄올을 첨가하고 가열하여 혼합물을 제조할 수 있다.In step S200, the mixture may be prepared by adding and heating cetyl trimethylmethylammonium bromide (CTAB) and N-butanol to the sodium silicate solution prepared in step S100.
세틸 트릴메틸암모늄 브롬화물(CTAB)는 실리카 나노입자(SiO2NPs)를 합성하는데 있어 계면활성제(surfactant)로써 첨가된 것이다.Cetyl trimethylammonium bromide (CTAB) is added as a surfactant in the synthesis of silica nanoparticles (SiO 2 NPs).
더욱 구체적으로, 세틸 트릴메틸암모늄 브롬화물(CTAB)는 pH> 2.5에서 음전하를 띠는 실리카 나노입자(SiO2NPs) 표면 상에 세틸 트릴메틸암모늄 브롬화물(CTAB)의 헤드가 양전하를 띄어 흡착됨으로써, 실리카 나노입자(SiO2NPs) 표면을 세틸 트릴메틸암모늄 브롬화물(CTAB)로 감싸 물리적 흡착층을 형성하도록 할 수 있다. More specifically, cetyl trimethylammonium bromide (CTAB) is positively adsorbed on the surface of the negatively charged silica nanoparticles (SiO 2 NPs) at the pH> 2.5 by the head of cetyl trimethylmethylammonium bromide (CTAB) The surface of silica nanoparticles (SiO 2 NPs) may be wrapped with cetyl trimethylmethylammonium bromide (CTAB) to form a physical adsorption layer.
이러한 분자간 상호작용에 의한 계면에서의 세틸 트릴메틸암모늄 브롬화물(CTAB)의 자기회합(self assembly)에 의한 마이셀(surfactant)을 이용하면, 실리카 나노입자(SiO2NPs)의 수산화기(-OH)가 실리카 나노입자(SiO2NPs) 또는 물의 수산화기(-OH)와의 상호작용을 막을 수 있어, 실리카 나노입자(SiO2NPs)의 응집 발생을 방지할 수 있다.When surfactant is used by self-assembly of cetyl trimethylmethylammonium bromide (CTAB) at the interface due to such intermolecular interaction, the hydroxyl group (-OH) of silica nanoparticles (SiO 2 NPs) Interaction of the silica nanoparticles (SiO 2 NPs) or the hydroxyl group (-OH) with water can be prevented, thereby preventing the aggregation of the silica nanoparticles (SiO 2 NPs).
N-부탄올은 실리카 나노입자(SiO2NPs)의 분산제로써 첨가된 것이다.N-butanol was added as a dispersant of silica nanoparticles (SiO 2 NPs).
더욱 구체적으로, 실리카 나노입자(SiO2NPs)는 N-부탄올 상에서 작고 균일한 크기를 가지면서 균일하게 분산될 수 있다. More specifically, silica nanoparticles (SiO 2 NPs) may be uniformly dispersed while having a small and uniform size on N-butanol.
이는 상기에서 설명한 바와 같이 실리카 나노입자(SiO2NPs)의 표면을 둘러싸 물리적으로 흡착된 세틸 트릴메틸암모늄 브롬화물의 마이셀 구조가 형성되면서, 실리카 나노입자(SiO2NPs)는 소수성(hydrophobic)의 성질을 갖게 된다. 이에 따라 소수성 용매인 N-부탄올 상에서 실리카 나노입자(SiO2NPs)가 퍼져나가 분산이 이루어져 실리카 나노입자(SiO2NPs)들간의 응집을 막아줄 수 있는 것이다.This nature of the hydrophobic (hydrophobic), silica nanoparticles (SiO 2 NPs) while forming a micelle structure of the cetyl Trill methyl ammonium bromide adsorption physically surrounding the surface of silica nanoparticles (SiO 2 NPs) as described above, Will have Accordingly, silica nanoparticles (SiO 2 NPs) are spread on the hydrophobic solvent N-butanol to prevent aggregation between the silica nanoparticles (SiO 2 NPs).
여기서, 세틸 트릴메틸암모늄 브롬화물의 농도는 실리카 나노입자(SiO2NPs)를 응집으로부터 보호하고 실리카 나노입자(SiO2NPs)의 균일하고 작은 입자를 얻기 위해 2 내지 4wt%인 것이 바람직하고, 3wt%인 것이 가장 바람직하다.Here, the concentration of cetyl trimethylmethylammonium bromide is preferably 2 to 4 wt%, to protect the silica nanoparticles (SiO 2 NPs) from aggregation and to obtain uniform and small particles of the silica nanoparticles (SiO 2 NPs), and 3 wt% Most preferably.
이때, 세틸 트릴메틸암모늄 브롬화물의 농도가 2중량% 미만일 경우 세틸 트릴메틸암모늄 브롬화물 분자가 실리카 나노입자(SiO2NPs) 표면을 균일하게 코팅하지 못하여 실리카 나노입자(SiO2NPs)의 수산화기(-OH)가 실리카 나노입자(SiO2NPs) 또는 물의 수산화기(-OH)와 수소결합을 형성할 수 있어 응집현상이 발생할 수 있고, 4wt%를 초과할 경우 실리카 나노입자(SiO2NPs)들의 농도가 높아짐에 따라 실리카 나노입자(SiO2NPs)들이 응집하여 과립 (granule)이 형성될 수 있다.At this time, cetyl Trill hydroxyl group of tetramethylammonium, if the concentration of bromide 2% by weight is less than cetyl Trill methyl ammonium bromide molecules are silica nanoparticles (SiO 2 NPs) failure to uniformly coat the surface of silica nanoparticles (SiO 2 NPs) ( -OH) may form hydrogen bonds with silica nanoparticles (SiO 2 NPs) or hydroxyl group (-OH) in water, which may cause aggregation, and when the concentration exceeds 4wt%, the concentration of silica nanoparticles (SiO 2 NPs) As is increased, silica nanoparticles (SiO 2 NPs) may aggregate to form granules.
또한, S300 단계는 규산나트륨 용액 90 내지 110 중량부에 세틸 트릴메틸암모늄 브롬화물 90 내지 110중량부 및 N-부탄올 190 내지 210 중량부를 첨가하고 75 내지 85℃로 가열하여 혼합물을 제조할 수 있고, 규산나트륨 용액 100 중량부에 세틸 트릴메틸암모늄 브롬화물 100 중량부 및 N-부탄올 200 중량부를 첨가하고 80℃로 가열하는 것이 바람직하다.In addition, the step S300 may add 90 to 110 parts by weight of cetyl trimethylmethylammonium bromide and 190 to 210 parts by weight of N-butanol to 90 to 110 parts by weight of a sodium silicate solution and heat to 75 to 85 ° C. to prepare a mixture. 100 parts by weight of cetyl trimethylmethylammonium bromide and 200 parts by weight of N-butanol are preferably added to 100 parts by weight of sodium silicate solution and heated to 80 ° C.
또한, S200 단계에서 가열 온도가 75℃가 미만일 경우 충분한 효율이 나타날 수 없고, 85℃를 초과할 경우 이미 충분한 효율이 나와 더 이상의 온도 증가는 비효율적이다.In addition, if the heating temperature in the step S200 is less than 75 ℃ sufficient efficiency can not appear, if it exceeds 85 ℃ already enough efficiency is out of further increase in temperature is inefficient.
S300 단계는 가수 분해 축합 반응을 일으키는 단계로, S200 단계에서 제조된 혼합물에 1M 염화수소(1M HCl) 용액를 첨가하여 pH가 4에 도달하도록 교반할 수 있다.Step S300 is a step of causing a hydrolysis condensation reaction, by adding a 1M hydrogen chloride (1M HCl) solution to the mixture prepared in step S200 may be stirred to reach a pH of 4.
이와 같은 S300 단계에서 하기 식2와 같은 반응이 일어날 수 있다.In such a step S300, a reaction such as the following Equation 2 may occur.
[식 2][Equation 2]
Na2SiO3 + 2HCl + H2O → 2NaCl + Si(OH)4 Na 2 SiO 3 + 2 HCl + H 2 O → 2 NaCl + Si (OH) 4
이와 같이 1M 염화수소로 혼합물의 규산나트륨을 중화하여 pH 4까지 도달시키는 것으로 가수 분해 축합 반응 및 SiO2 회수가 가능하도록 한다.As such, by neutralizing the sodium silicate of the mixture with 1M hydrogen chloride to reach pH 4, hydrolysis condensation reaction and SiO 2 recovery are possible.
S400 단계는 교반한 혼합물을 반응시키고 냉각시키는 단계로, S300 단계에서 교반한 혼합물을 55 내지 65℃에서 6 내지 10시간동안 반응시키고 실온에서 냉각시킬 수 있고, 교반한 혼합물을 60℃에서 8시간 동안 반응시키고 실온으로 냉각시키는 것이 바람직하다.Step S400 is a step of reacting and cooling the stirred mixture. The stirred mixture in S300 may be reacted at 55 to 65 ° C. for 6 to 10 hours and cooled at room temperature, and the stirred mixture is heated at 60 ° C. for 8 hours. It is preferable to react and cool to room temperature.
여기서 반응온도가 55℃ 미만일 경우 미만일 경우 SiO2의 추출 효율이 충분히 나타나지 않아 플라이 애쉬로부터 SiO2가 충분히 용해되지 못할 수 있고, 65℃를 초과할 경우 SiO2의 추출효율이 충분히 일정하게 유지되기 때문에 더 이상의 온도 증가는 효율적이지 못하다.Here, since the reaction temperature when 55 ℃ below may extraction efficiency of SiO 2 are not allowed to be sufficiently SiO 2 is fully dissolved from the fly ash does not appear, if less, the extraction efficiency is maintained sufficiently constant of SiO 2 exceeds the 65 ℃ Any further temperature increase is not efficient.
또한, 반응시간이 6시간 미만일 경우에 SiO2의 추출 효율이 충분하지 않고 일정하게 유지되지 않으며, 10시간을 초과할 경우 이미 충분히 SiO2의 추출 효율이 증가하여 일정하게 유지되는 상태이기 때문에 더 이상의 교반은 비효율적이다.In addition, when the reaction time is less than 6 hours, the extraction efficiency of SiO 2 is not sufficient and does not remain constant, and if it exceeds 10 hours, the extraction efficiency of SiO 2 is already sufficiently increased and maintained. Agitation is inefficient.
이러한 S400 단계를 통해 하기 식 3과 같은 반응이 일어나 실리카 겔이 얻어질 수 있다.Through the S400 step, a reaction such as the following Equation 3 may occur to obtain a silica gel.
[식 3][Equation 3]
nSi(OH)4 → (SiO2)n + 2nH2OnSi (OH) 4 → (SiO 2 ) n + 2nH 2 O
여기서, n은 Si-O 클러스터를 의미하고, 양의 정수이다.Here, n means Si-O cluster and is a positive integer.
S500 단계는 실리카 겔을 수거하는 단계로, S400 단계에서 냉각된 혼합물을 새 플라스크로 옮긴 후에 N-부탄올 상에 분산된 실리카 겔(silica gel)을 수거할 수 있다.Step S500 is a step of collecting the silica gel, after transferring the mixture cooled in the step S400 to a new flask may collect the silica gel (silica gel) dispersed on the N-butanol.
S600 단계는 건조시키는 단계로, S400 단계에서 수거한 실리카 겔을 여러 번 세척하고 95 내지 105℃에서 23 내지 25시간 동안 건조시킬 수 있고, 100℃에서 24시간동안 건조시키는 것이 바람직하다.Step S600 is a drying step, and the silica gel collected in step S400 may be washed several times and dried at 95 to 105 ° C. for 23 to 25 hours, and preferably dried at 100 ° C. for 24 hours.
여기서, 건조온도 및 시간이 95℃ 및 23시간 미만일 경우 충분한 건조가 되지 않아 수분이 완전히 제거되지 않을 수 있고, 105℃ 및 25시간을 초과할 경우 완전한 건조가 이미 이루어져 비효율적이며 실리카 나노입자(SiO2NPs)에 변형이 발생할 수 있다.Here, if the drying temperature and time is less than 95 ℃ and 23 hours may not be enough drying due to insufficient drying, if more than 105 ℃ and 25 hours, complete drying is already inefficient and silica nanoparticles (SiO 2 Deformation may occur in NPs).
S700 단계는 합성된 실리카 나노입자(SiO2NPs)을 활성화시키는 단계로, S700 단계에서 건조된 실리카 겔을 가열하여 세틸 트릴메틸암모늄 브롬화물(CTAB)를 제거하는 것으로, 실리카 나노입자(SiO2NPs)의 활성화를 수행할 수 있다.S700 step is to activate the synthesized silica nanoparticles (SiO 2 NPs), by heating the silica gel dried in step S700 to remove cetyl trimethylmethylammonium bromide (CTAB), silica nanoparticles (SiO 2 NPs ) Can be activated.
이때, S700 단계는 건조된 실리카 겔을 540 내지 560℃에서 3.5 내지 4.5시간동안 가열하여 활성화시킬 수 있고, 550℃에서 4시간 동안 가열하는 것이 가장 바람직하다.At this time, step S700 may be activated by heating the dried silica gel at 540 to 560 ℃ for 3.5 to 4.5 hours, it is most preferable to heat at 550 ℃ for 4 hours.
이때, 가열온도가 540℃ 미만일 경우 세틸 트릴메틸암모늄 브롬화물(CTAB)가 완전히 제거되지 못하고, 560℃를 초과할 경우 실리카 나노입자(SiO2NPs)에 변형이 발생할 수 있다.In this case, when the heating temperature is less than 540 ℃ Cetyl trimethyl methyl ammonium bromide (CTAB) is not completely removed, if it exceeds 560 ℃ may cause deformation in the silica nanoparticles (SiO 2 NPs).
또한, 가열시간이 3.5시간 미만일 경우 세틸 트릴메틸암모늄 브롬화물(CTAB)가 완전히 제거되지 못하고, 4.5시간을 초과할 경우 세틸 트릴메틸암모늄 브롬화물(CTAB)가 이미 완전히 제거되어 더 이상의 가열은 비효율적이다.In addition, when the heating time is less than 3.5 hours, cetyl trimethylmethylammonium bromide (CTAB) is not completely removed, and when it exceeds 4.5 hours, cetyl trimethylmethylammonium bromide (CTAB) is already completely removed, so further heating is inefficient. .
S700 단계로 최종적인 바이오물질 플라이 애쉬(실리카 나노입자(SiO2NPs))를 얻을 수 있다.The final biomaterial fly ash (silica nanoparticles (SiO 2 NPs)) can be obtained in step S700.
상기 제조방법에서의 중량부는 1g, 1ml를 기준으로 중량이 도출될 수 있으나, 이에 한정되지는 않는다.The weight part in the manufacturing method may be derived based on 1g, 1ml, but is not limited thereto.
또한, 본 발명은 상기와 같은 제조방법에 의하여 제조된 바이오물질 플라이 애쉬를 제공할 수 있다.In addition, the present invention can provide a bio-material fly ash prepared by the manufacturing method as described above.
상기에서 설명한 바와 같이, 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬 및 이의 제조방법은 비용이 저렴하고, 입자의 크기, 형태, 반응성 및 물질 특성 등을 섬세하게 제어할 수 있고, 고품질의 바이오물질 플라이 애쉬(실리카 나노입자)를 제공할 수 있다.As described above, the biomaterial fly ash synthesized from the amorphous silica nanoparticles having the high surface force according to the embodiment of the present invention and its manufacturing method are inexpensive, and the size, shape, reactivity and material properties of the particles Fine control and high quality biomaterial fly ash (silica nanoparticles) can be provided.
또한, 매해 발생하는 많은 양의 플라이 애쉬 폐기물로 인한 환경 문제를 해결하는데 도움이 될 수 있다.It can also help solve environmental problems caused by the large amount of fly ash waste generated each year.
이하 본 발명의 내용을 실시예, 비교예 및 실험예를 통하여 구체적으로 설명한다. Hereinafter, the content of the present invention will be described in detail through Examples, Comparative Examples and Experimental Examples.
이하, 실시되는 실험 예들은 이해를 돕기 위하여 제시되는 것으로서, 본 발명을 예시하는 것일 뿐 본 발명의 권리범위가 하기 실험 예들에 한정되는 것은 아니다.Hereinafter, the experimental examples are presented to aid the understanding, it is only to illustrate the present invention and the scope of the present invention is not limited to the following experimental examples.
[실험예 1] 플라이 애쉬 XRF 분석Experimental Example 1 Fly Ash XRF Analysis
플라이 애쉬의 화학적 조성을 AXIOSmAX X-ray 형광 (XRF) 분광계 (PANalytical B.V. Co., Netherlands)를 사용하여 XRF 분석을 통해 측정하였고, 측정 결과를 도 2에 나타내었다. The chemical composition of the fly ash was measured by XRF analysis using an AXIOSmAX X-ray fluorescence (XRF) spectrometer (PANalytical B.V. Co., Netherlands), and the measurement results are shown in FIG. 2.
도 2는 플라이 애쉬를 XRF 분석을 통해 XRF 스펙트럼을 측정한 결과를 나타낸 그래프로, 도 2에 나타나는 바와 같이 플라이 애쉬는 SiO2, Fe2O3, CaO, K2O 등 여러 종류의 산화물을 포함하고, SiO2 함량은 43.7wt%인 것으로 나타났다.2 is a graph showing the results of measuring the XRF spectrum of the fly ash through XRF analysis. As shown in FIG. 2, the fly ash includes various types of oxides such as SiO 2 , Fe 2 O 3 , CaO, and K 2 O. The SiO 2 content was found to be 43.7 wt%.
이는 rice husk, rice hull 및 bagasse ash와 비교했을 때 SiO2 함량이 다소 낮지만 실리카 나노입자의 합성을 위한 대안적인 저비용 실리카 공급원이 될 수 있다고 판단되었다.This compared to rice husk, rice hull and bagasse ash SiO 2 Although somewhat lower in content, it was considered to be an alternative low cost silica source for the synthesis of silica nanoparticles.
[실시예]EXAMPLE
250 중량부의 플라스크에 플라이 애쉬 8 중량부를 넣고 100 중량부의 3M 나트륨수용액(3M NaOH)을 첨가하여 60℃에서 8시간 동안 균질하게 교반하고 여과하여 규산나트륨(Na2SiO3) 용액 제조, 규산나트륨(Na2SiO3) 용액 100중량부에 세틸 트릴메틸암모늄 브롬화물 100중량부(CTAB, 3wt%) 및 N-부탄올 200중량부를 첨가하고 80℃에서 가열하여 혼합물 제조, 혼합물에 1M 염화수소(1M HCl) 용액를 첨가하여 pH가 4에 도달할 때까지 교반, 교반된 혼합물을 60℃에서 8시간동안 반응시키고 실온으로 냉각시켜 실리카 겔 형성, 냉각된 혼합물을 새 플라스크로 옯긴 후에 분산된 실리카 겔을 수거, 수거된 실리카 겔을 3회 세척하고 100℃에서 24시간동안 건조, 건조된 실리카 겔을 550℃에서 4시간동안 가열하여 활성화시켜 최종적인 바이오물질 플라이 애쉬(실라카 나노입자)를 제조하였다.Placed in a 250 parts by weight of the flask fly ash 8 parts by weight to 100 parts by weight of a 3M sodium hydroxide solution (3M NaOH) of sodium silicate (Na 2 SiO 3) and homogeneously stirred and filtered at 60 ℃ for 8 hours by adding the solution prepared, of sodium silicate ( 100 parts by weight of cetyl trimethylmethylammonium bromide (CTAB, 3wt%) and 200 parts by weight of N-butanol were added to 100 parts by weight of Na 2 SiO 3 ) solution to prepare a mixture by heating at 80 ° C., 1M hydrogen chloride (1M HCl) to the mixture. The solution was added and stirred until the pH reached 4, the stirred mixture was allowed to react at 60 ° C. for 8 hours and cooled to room temperature to form silica gel. The cooled mixture was poured into a new flask, and the dispersed silica gel was collected and collected. The washed silica gel was washed three times, dried at 100 ° C. for 24 hours, and activated by heating the dried silica gel at 550 ° C. for 4 hours to prepare a final biomaterial fly ash (silica nanoparticles). It was.
[비교예 1]Comparative Example 1
세틸 트릴메틸암모늄 브롬화물의 농도가 3wt%인 것 대신에 1wt%인 것을 제외하고 실시예와 동일하게 제조하였다.It was prepared in the same manner as in Example except that the concentration of cetyl trimethylammonium bromide is 1wt% instead of 3wt%.
[비교예 2]Comparative Example 2
세틸 트릴메틸암모늄 브롬화물의 농도가 3wt%인 것 대신에 5wt%인 것을 제외하고 실시예와 동일하게 제조하였다.It was prepared in the same manner as in Example except that the concentration of cetyl trimethylammonium bromide is 5wt% instead of 3wt%.
[비교예 3]Comparative Example 3
교반된 혼합물을 60℃에서 반응시키는 것 대신에 30℃에서 반응시키는 것을 제외하고 실시예와 동일하게 제조하였다.The stirred mixture was prepared in the same manner as in Example except that the reaction was carried out at 30 ° C. instead of at 60 ° C.
[비교예 4][Comparative Example 4]
교반된 혼합물을 60℃에서 반응시키는 것 대신에 90℃에서 반응시키는 것을 제외하고 실시예와 동일하게 제조하였다.The stirred mixture was prepared in the same manner as in Example except that the reaction was carried out at 90 ° C instead of at 60 ° C.
[비교예 5][Comparative Example 5]
교반된 혼합물을 8시간 동안 반응시키는 것 대신에 4시간동안 반응시키는 것을 제외하고 실시예와 동일하게 제조하였다.The stirred mixture was prepared in the same manner as in Example except that the reaction was carried out for 4 hours instead of for 8 hours.
[비교예 6]Comparative Example 6
교반된 혼합물을 8시간 동안 반응시키는 것 대신에 16시간동안 반응시키는 것을 제외하고 실시예와 동일하게 제조하였다.The stirred mixture was prepared in the same manner as in Example except that the reaction was carried out for 16 hours instead of for 8 hours.
[비교예 7]Comparative Example 7
화력 발전소에서 발생한 플라이 애쉬Fly Ash from Thermal Power Plant
[실험예 2] CTAB 농도에 따른 영향Experimental Example 2 Effect of CTAB Concentration
실시예 및 비교예 1, 2의 균일성 및 입자크기를 광학 이미지 및 SEM 기술에 의해 관찰하였고, 이는 도 3과 같다.The uniformity and particle size of Examples and Comparative Examples 1 and 2 were observed by optical image and SEM technology, as shown in FIG.
여기서, 주사 전자 현미경(SEM) 측정은 JSM-7401F(JEOL Co., Japan)를 사용하여 조사되었다.Here, a scanning electron microscope (SEM) measurement was investigated using JSM-7401F (JEOL Co., Japan).
도 3의 A 내지 G는 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법에서 세틸 트릴메틸암모늄 브롬화물의 농도(1wt%, 3wt%, 5wt%)에 따른 바이오물질 플라이 애쉬(실리카 나노입자)를 찍은 광학이미지 및 SEM으로 관찰한 사진이다.3A to 3G show the concentration of cetyl trimethylammonium bromide (1wt%, 3wt%, 5wt%) in the method of preparing a biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface power according to an embodiment of the present invention. Bio-material fly ash (silica nanoparticles) according to the optical image and the SEM observation picture.
도 4는 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법에서 세틸 트릴메틸암모늄 브롬화물의 농도(1wt%, 3wt%, 5wt%)에 따른 바이오물질 플라이 애쉬의 입자결합 모습을 도시한 개념도이다.Figure 4 is a bio-according to the concentration of cetyl trimethylammonium bromide (1wt%, 3wt%, 5wt%) in the method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power according to an embodiment of the present invention A conceptual diagram showing particle bonding of a material fly ash.
먼저, 비교예 1(CTAB1, wt%)은 도 3의 A에 나타난 바와 같이 실리카 나노입자(SiO2NPs)가 매우 강한 응집과 함께, 수상에 완전히 분산되었음을 확인할 수 있다.First, Comparative Example 1 (CTAB1, wt%) can be confirmed that the silica nanoparticles (SiO 2 NPs) is completely dispersed in the aqueous phase with very strong aggregation, as shown in Figure 3A.
이는 도 4의 CTAB 1wt%로 표시된 바와 같이 CTAB 분자가 SiO2 표면에 균일하게 코팅되지 못했기 때문이다. 이에 따라, 실리카 나노입자 표면상의 자유 수산화기는 실리카 나노입자 또는 물 분자의 수산화기와 수소 결합을 형성할 수 있어 높은 표면에너지를 감소시키기 위해 더 큰 입자 크기로 응집 현상을 발생시키게 된다.This is because CTAB molecules were not uniformly coated on the SiO 2 surface, as indicated by CTAB 1wt% of FIG. 4. Accordingly, free hydroxyl groups on the surface of the silica nanoparticles can form hydrogen bonds with the hydroxyl groups of the silica nanoparticles or water molecules, causing aggregation to a larger particle size in order to reduce high surface energy.
또한, 실시예(CTAB, 3 wt%)는 도 3의 B, D 및 E에 나타난 바와 같이 실라카 나노입자는 N-부탄올 상에 균일하게 분산되고, SEM으로 관찰한 결과 균일하고 20 내지 32nm의 작은 입자를 나타내는 것을 확인할 수 있다.In addition, Example (CTAB, 3 wt%), as shown in B, D and E of FIG. 3, the silica particles are uniformly dispersed on N-butanol, and observed by SEM and are uniform and 20 to 32 nm. It can be seen that it shows small particles.
이는 도 4의 CTAB 3wt%로 표시된 바와 같이 물리적으로 흡착된 SiO2 표면상의 CTAB층에 의한 미셀 구조의 형성에 기인하며, 실리카 나노입자를 소수성으로 전환시킨 후 나노입자를 N-부탄올 상으로 이동시켜 실리카 나노입자를 응집으로부터 보호할 수 있는 것으로 판단된다.This is due to the formation of the micelle structure by the CTAB layer on the physically adsorbed SiO 2 surface, as indicated by CTAB 3wt% in FIG. 4, by converting the silica nanoparticles to hydrophobic and moving the nanoparticles onto N-butanol. It is believed that the silica nanoparticles can be protected from aggregation.
또한, 비교예 2(CTAB, 5 wt%)는 도 3의 C, F 및 G에 나타난 바와 같이 실라카 나노입자는 N-부탄올 상과 물 사의 계면에서 응집 현상과 함께 분산되고, SEM으로 관찰한 결과 균일하고 92 내지 123nm의 큰 입자를 나타내는 것을 확인할 수 있다.In addition, in Comparative Example 2 (CTAB, 5 wt%), as shown in C, F, and G of FIG. 3, the silica particles were dispersed together with the aggregation phenomenon at the interface between the N-butanol phase and the water yarn, and observed by SEM. It can be seen that the results are uniform and exhibit large particles of 92 to 123 nm.
이는 도 4의 CTAB 5wt%로 표시된 바와 같이 높은 CTAB 농도로 이중층의 자기조립(self-assembly)에 의한 미셀 구조로 형성되며, 여기서 미셀 구조는 물 분자와 상호작용할 양이온의 양전하 표면을 가지고 있기 때문에 일정량의 실리카 나노입자가 이동하여 계면 영역에 위치되는 것이다.It is formed as a micellar structure by self-assembly of a bilayer at a high CTAB concentration, as indicated by CTAB 5wt% in FIG. 4, where the micelle structure has a positive charge surface of a cation to interact with water molecules. The silica nanoparticles are moved and positioned in the interface region.
따라서, 실시예와 같이 3 wt%인 CTAB의 사용이 SiO2를 응집으로부터 보호하고 균일하고 작은 입자 크기인 실리카 나노입자를 얻을 수 있는 것으로 판단된다.Therefore, it is judged that the use of 3 wt% CTAB as in the example can protect SiO 2 from aggregation and obtain silica nanoparticles with uniform and small particle size.
[실험예 3] 시효 온도에 따른 영향Experimental Example 3 Effect of Aging Temperature
실시예 및 비교예 3, 4의 균일성 및 입자크기를 SEM 기술에 의해 관찰하였고, 이는 도 5와 같다.The uniformity and particle size of Examples and Comparative Examples 3 and 4 were observed by SEM, which is shown in FIG.
여기서, 주사 전자 현미경(SEM) 측정은 JSM-7401F (JEOL Co., Japan)를 사용하여 조사되었다.Here, scanning electron microscopy (SEM) measurements were examined using JSM-7401F (JEOL Co., Japan).
도 5의 A 내지 C는 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법의 S400 단계에서 반응온도(30℃, 60℃, 90℃)에 따른 바이오물질 플라이 애쉬(실리카 나노입자)를 SEM으로 관찰한 사진이다.5A to 5C show the reaction temperature (30 ° C., 60 ° C., 90 ° C.) at step S400 of the method for preparing a biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force according to an embodiment of the present invention. The SEM photograph of the biomaterial fly ash (silica nanoparticles).
비교예 3은 도 5의 A에 나타난 바와 같이 S400 단계에서 30℃로 반응시키면 50, 100, 200nm 등 약 100nm 이상의 크기를 갖는 실리카 나노입자를 확인할 수 있고, 관측된 실리카 나노입자의 수가 적은 것을 확인할 수 있었다.Comparative Example 3 can confirm the silica nanoparticles having a size of more than about 100nm, such as 50, 100, 200nm when reacting at 30 ℃ in S400 step, as shown in Figure 5 A, confirming that the number of the observed silica nanoparticles are small Could.
이러한 30℃에서의 실리카 나노입자의 크기가 균일하지 못하는 것은 추출 효율이 일정하게 유지되지 못하기 때문이고, 추출 효율이 낮아 관측된 입자수가 적은 것으로 판단된다. The non-uniform size of the silica nanoparticles at 30 ° C. is due to the fact that the extraction efficiency is not kept constant, and the extraction efficiency is low, and thus the number of particles observed is low.
또한, 여기서 SiO2 표면의 수산기와 CTAB 사이는 상호작용이 낮아 작은 입자로 형성된 실리카 나노입자의 응집을 일으켜 입자 크기가 커질 수 있다.In addition, since the interaction between the hydroxyl group and the CTAB on the SiO 2 surface is low, agglomeration of silica nanoparticles formed into small particles may occur, thereby increasing the particle size.
또한, 실시예는 도 5의 B에 나타난 바와 같이 S400 단계에서 60℃로 반응시키면 균일하고 작은 크기의 실리카 나노입자를 확인할 수 있었다.In addition, in the embodiment, as shown in B of FIG. 5, when reacting at 60 ° C. in step S400, silica nanoparticles having a uniform and small size could be confirmed.
이는 용해와 침전 과정 사이가 평형 상태가 되어 CTAB와 SiO2 표면의 수산기 사이의 상호작용이 증가하기 때문이라고 판단된다.This is because the equilibrium between the dissolution and precipitation processes increases the interaction between the CTAB and hydroxyl groups on the SiO 2 surface.
또한, 비교예 4는 도 5의 C에 나타난 바와 같이 S400 단계에서 90℃로 반응시키면 입자 크기가 다소 큰 실리카 나노입자를 확인할 수 있었다.In addition, in Comparative Example 4, as shown in C of FIG. 5, when the reaction was performed at 90 ° C. in step S400, silica nanoparticles having a somewhat larger particle size were confirmed.
이는 CTAB의 탈착으로 실리카 나노입자의 크기 증가를 유발하기 때문이라고 판단된다.This may be because the size of silica nanoparticles is increased by desorption of CTAB.
따라서, 실시예와 같이 60℃로 반응시키는 것이 균일하고 작은 입자의 실리카 나노입자를 얻을 수 있는 것으로 확인할 수 있다.Therefore, it can be confirmed that by reacting at 60 ° C. as in Examples, it is possible to obtain uniform and small particles of silica nanoparticles.
[실험예 4] 시효 시간에 따른 영향Experimental Example 4 Effect of Aging Time
실시예 및 비교예 5, 6의 균일성 및 입자크기를 SEM 기술에 의해 관찰하였고, 이는 도 6과 같다.The uniformity and particle size of the Examples and Comparative Examples 5 and 6 were observed by SEM, which is shown in FIG.
여기서, 주사 전자 현미경(SEM) 측정은 JSM-7401F (JEOL Co., Japan)를 사용하여 조사되었다.Here, scanning electron microscopy (SEM) measurements were examined using JSM-7401F (JEOL Co., Japan).
도 6의 A 내지 C는 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법의 S400 단계에서 반응시간(4h, 8h, 16h)에 따른 바이오물질 플라이 애쉬(실리카 나노입자)를 SEM으로 관찰한 사진이다.6A to 6C illustrate a biomaterial fly according to reaction time (4h, 8h, 16h) in step S400 of the method for preparing a biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force according to an embodiment of the present invention. It is a photograph observing the ash (silica nanoparticles) by SEM.
비교예 5는 도 6의 A에 나타난 바와 같이 S400 단계에서 4시간 동안 반응시키면 균일하지 못하고 관측된 실리카 나노입자의 수가 적은 것을 확인할 수 있었다.In Comparative Example 5, as shown in FIG. 6A, when the reaction was performed for 4 hours in the S400 step, it was confirmed that the number of silica nanoparticles was not uniform and observed.
또한, 실시예는 도 6의 B에 나타난 바와 같이 S400 단계에서 8시간동안 반응시키면 균일하고 작은 크기의 실리카 나노입자를 확인할 수 있었다.In addition, in the embodiment, as shown in B of FIG. 6, when reacted for 8 hours in the S400 step, silica nanoparticles of uniform and small size could be confirmed.
다른 시효 시간들과 비교하여, 실리카 나노입자의 크기는 8시간에서 용해와 침전 과정 사이가 평형상태가 되기 때문에 가장 바람직함을 알 수 있었다.Compared with other aging times, the size of the silica nanoparticles was found to be the most desirable because the equilibrium between dissolution and precipitation process at 8 hours.
또한, 시효 시간이 증가함에 따라 실리카 나노입자의 크기가 증가하나 큰 차이가 나지 않아 문제가 나타나진 않았다.In addition, as the aging time increases, the size of the silica nanoparticles increases, but there is no significant difference.
그러나, 비교예 6은 도 5의 C에 나타난 바와 같이 S400 단계에서 16시간동안 반응시키면 실리카 나노입자가 응집하여 입자 크기가 커지는 것을 알 수 있었다.However, in Comparative Example 6, as shown in C of FIG. 5, when the reaction was performed for 16 hours in the S400 step, the silica nanoparticles were aggregated to increase the particle size.
따라서, 실시예와 같이 8시간동안 반응시키는 것이 균일하고 작은 입자의 실리카 나노입자를 얻을 수 있는 것으로 확인할 수 있다.Therefore, it can be confirmed that the reaction for 8 hours as in the embodiment can obtain silica nanoparticles of uniform and small particles.
[실험예 5] FT-IR 측정Experimental Example 5 FT-IR Measurement
실시예 및 활성화시키기 전 실리카 나노입자(실시예에서 건조 후 활성화 과정 제외)를 FT-IR 측정하여 FT-IR 스펙트럼을 도 6에 나타내었다.The FT-IR spectra are shown in FIG. 6 by FT-IR measurement of the silica nanoparticles (except the activation process after drying in the examples) before the activation and the activation.
여기서, EQUINOX 55 분광기 (Bruker Co., Germany)를 사용하여 1 cm-1의 분해능으로 400 내지 4000 cm-1에서 푸리에 변환 적외선(FT-IR) 스펙트럼을 수행 하였다.Here, EQUINOX 55 spectrometer (Bruker Co., Germany) was performed to transform infrared (FT-IR) spectrum Fourier at 400 to 4000 cm -1 with a resolution of 1 cm -1 using.
도 7은 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법에서 S700 단계(활성화시키는 단계) 전후 바이오물질 플라이 애쉬의 FT-IR 스펙트럼을 나타낸 그래프이다.7 is a graph showing the FT-IR spectrum of the biomaterial fly ash before and after step S700 (activation step) in the method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power according to an embodiment of the present invention. .
도 7의 (a)는 활성화시키기 전 실리카 나노입자, (b)는 실시예이고, (a) 및 (b)에서 -OH 그룹의 진동에 해당하는 3,400 cm-1에서 넓은 흡수 밴드가 있는 것을 확인할 수 있었다.Figure 7 (a) is the silica nanoparticles before activation, (b) is an example, it is confirmed that there is a wide absorption band at 3,400 cm -1 corresponding to the vibration of the -OH group in (a) and (b) Could.
또한, (b)의 1095 cm-1은 Si-O-Si 결합의 비대칭 진동에 기인하며, 게다가 약 801과 472 cm-1에서 두 개의 약한 밴드는 각각 Si-O 굴곡 진동과 Si-O 진동으로부터 나온 것을 의미한다.In addition, 1095 cm -1 in (b) is due to the asymmetric oscillation of the Si-O-Si bond, and two weak bands at about 801 and 472 cm -1 from Si-O flexion and Si-O vibrations, respectively. It means to come out.
또한, (a)는 (b)와 비교하여, CTAB의 -CH2와 -CH3의 굽힘에 각각 상응하는 2,919와 2,850 cm-1의 밴드가 나타났다.In addition, (a) compared with (b), bands of 2919 and 2850 cm −1 corresponding to the bending of —CH 2 and —CH 3 of CTAB, respectively.
이러한 결과는 CTAB는 고온 처리 후에 실리카 나노입자로부터 완전히 제거되었음 확인할 수 있다.These results confirm that CTAB was completely removed from the silica nanoparticles after high temperature treatment.
[실험예 6] XRD 측정Experimental Example 6 XRD Measurement
실시예 및 비교예 7의 XRD 측정을 이용하여 결정성을 측정하였고, 그 결과는 도 8에 나타내었다.Crystallinity was measured using the XRD measurements of Example and Comparative Example 7. The results are shown in FIG. 8.
여기서, X- 선 회절(XRD) 측정은 40kV에서 Ni- 필터링된 Cu-Kα선(λ = 1.54
Figure PCTKR2018013336-appb-I000001
) 및 5 내지 40°의 2θ 범위를 갖는 D8 Advance 회절계(Bruker Co., Germany)에서 수행되었다.
Here, X-ray diffraction (XRD) measurements were performed using Ni-filtered Cu-Kα rays (λ = 1.54 at 40 kV).
Figure PCTKR2018013336-appb-I000001
) And a D8 Advance diffractometer (Bruker Co., Germany) having a 2θ range of 5-40 °.
도 8은 플라이 애쉬(비교예 1)와 본 발명의 실시예에 따른 바이오물질 플라이 애쉬(실시예)의 XRD 패턴을 나타낸 그래프이다.8 is a graph showing an XRD pattern of a fly ash (Comparative Example 1) and a biomaterial fly ash (Example) according to an embodiment of the present invention.
먼저, 비교예 1인 (a)의 XRD 패턴은 26.6° 및 20.5°에서 두개의 날카로운 peak값을 나타내는데, 이는 석영 (SiO2) 광물이 존재하는 것을 알 수 있다.First, the XRD pattern of (a) of Comparative Example 1 exhibits two sharp peak values at 26.6 ° and 20.5 °, indicating that quartz (SiO 2 ) minerals are present.
또한, 33.2° 및 16.4°에서 약한 peak값은 적철광(Fe2O3)와 물라이트(Al6Si2O13) 미네랄이 존재하는 것을 알 수 있다.In addition, the weak peak values at 33.2 ° and 16.4 ° indicate that hematite (Fe 2 O 3 ) and mullite (Al 6 Si 2 O 13 ) minerals are present.
그 다음, 실시예인 (b)의 XRD 패턴은 22.5°에서 넓은 peak값을 보여 SiO2가 존재하는 것을 알 수 있다. 또한, 실시예는 불순물의 특정 피크가 관찰되지 않았다. Next, the XRD pattern of Example (b) shows a wide peak value at 22.5 ° it can be seen that SiO 2 is present. In addition, in the examples, no specific peak of impurities was observed.
[실험예 7] 비표면적 측정Experimental Example 7 Measurement of Specific Surface Area
실시예의 흡착-탈착 등온선을 이용하여 비표면적을 측정하였고, 그 결과는 도 9에 나타내었다.The specific surface area was measured using the adsorption-desorption isotherm of the example, and the results are shown in FIG. 9.
실리카 나노입자(실시예)의 비표면적은 AUTOSORB-1 분석기(Quantachrome Instruments Co., USA)를 사용하여 -196 ℃에서 N2 흡착-탈착 방법으로 분석하였다.The specific surface area of the silica nanoparticles (example) was analyzed by N 2 adsorption-desorption method at -196 ° C using an AUTOSORB-1 analyzer (Quantachrome Instruments Co., USA).
도 9는 본 발명의 실시예에 따른 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 질소 흡착-탈착 등온선을 측정한 결과를 나타낸 그래프이다.9 is a graph showing the results of nitrogen adsorption-desorption isotherm of biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force according to an embodiment of the present invention.
도 9를 참조하면, 낮은 P/P0값에서 미세 다공성 흡착제와 유사한 상태를 나타내는 것을 확인할 수 있었다.Referring to Figure 9, it was confirmed that the similar state to the microporous adsorbent at a low P / P 0 value.
그러나, 흡착이 크게 증가하면 히스테리 시스 루프를 나타내므로(P/P0> 0.4), 활성화 된 실리카 나노입자에 mesoporous 기공이 존재함을 알 수 있다. However, when the adsorption increases significantly, it shows a hysteresis loop (P / P 0 > 0.4), indicating that mesoporous pores exist in the activated silica nanoparticles.
또한, 비표면적(SBET)이 408m2g- 1으로, 높은 표면적을 갖는 것을 확인할 수 있었다.Further, the specific surface area (SBET) is 408m 2 g - 1, it was confirmed that it has a high surface area.
이상에서 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의하여 다른 구체적인 형태로 실시할 수 있다는 것을 이해할 수 있을 것이다. 따라서 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것이다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, it will be appreciated that those skilled in the art may implement the present invention in other specific forms. Accordingly, the embodiments described above are exemplary in all respects and not restrictive.

Claims (9)

  1. 높은 표면력을 갖는 비정질 실리카 나노입자로 합성된 바이오물질 플라이 애쉬의 제조방법에 있어서,In the method for producing a biomaterial fly ash synthesized with amorphous silica nanoparticles having a high surface power,
    (a) 플라스크에 플라이 애쉬를 넣고 3M 나트륨수용액(3M NaOH)을 첨가하여 교반한 후 여과하여 규산나트륨(Na2SiO3) 용액을 제조하는 단계;(a) adding fly ash to the flask, adding 3M aqueous sodium solution (3M NaOH), stirring, and filtering to prepare a sodium silicate (Na 2 SiO 3 ) solution;
    (b) 상기 규산나트륨 용액에 세틸 트릴메틸암모늄 브롬화물 및 N-부탄올을 첨가하고 가열하여 혼합물을 제조하는 단계;(b) adding cetyl trimethylmethylammonium bromide and N-butanol to the sodium silicate solution and heating to prepare a mixture;
    (c) 상기 혼합물에 1M 염화수소(1M HCl) 용액를 첨가하여 pH가 4에 도달하도록 교반하는 단계;(c) adding 1M hydrogen chloride (1M HCl) solution to the mixture and stirring the pH to reach 4;
    (d) 교반한 상기 혼합물을 55 내지 65℃에서 6 내지 10시간 동안 반응시키고 실온에서 냉각시키는 단계;(d) reacting the stirred mixture at 55-65 ° C. for 6-10 hours and cooling at room temperature;
    (e) 냉각된 혼합물에서 분산된 실리카 겔을 수거하는 단계;(e) collecting the silica gel dispersed in the cooled mixture;
    (f) 수거한 상기 실리카 겔을 세척하고 건조시키는 단계 및(f) washing and drying the collected silica gel, and
    (g) 건조된 상기 실리카 겔을 가열하여 활성화시키는 단계를 포함하는 바이오물질 플라이 애쉬의 제조방법.(g) heating the dried silica gel to activate the biomaterial fly ash comprising the step of activating.
  2. 제1항에 있어서,The method of claim 1,
    상기 (a) 단계는,In step (a),
    상기 플라스크에 플라이 애쉬 7 내지 9 중량부를 넣고 90 내지 110 중량부의 3M 나트륨수용액(3M NaOH)을 첨가하여 교반하는 것을 특징으로 하는 바이오물질 플라이 애쉬의 제조방법.7 to 9 parts by weight of fly ash is added to the flask and 90 to 110 parts by weight of 3M sodium aqueous solution (3M NaOH) is added.
  3. 제1항에 있어서,The method of claim 1,
    상기 (a) 단계는,In step (a),
    상기 플라스크에 플라이 애쉬를 넣고 3M 나트륨수용액(3M NaOH)을 첨가하여 85 내지 95℃에서 5.5 내지 6.5 시간동안 균질하게 교반하는 것을 특징으로 하는 바이오물질 플라이 애쉬의 제조방법.The fly ash into the flask is added to 3M aqueous sodium solution (3M NaOH) and the method of producing a biomaterial fly ash, characterized in that homogeneously stirred at 85 to 95 ℃ for 5.5 to 6.5 hours.
  4. 제1항에 있어서,The method of claim 1,
    상기 (b) 단계는,In step (b),
    상기 세틸 트릴메틸암모늄 브롬화물의 농도가 3 내지 4wt%인 것을 특징으로 하는 바이오물질 플라이 애쉬의 제조방법.The cetyl trimethylmethyl ammonium bromide concentration of 3 to 4wt%, characterized in that the biomaterial fly ash manufacturing method.
  5. 제1항에 있어서,The method of claim 1,
    상기 (b) 단계는,In step (b),
    상기 규산나트륨 용액 90 내지 110 중량부에 세틸 트릴메틸암모늄 브롬화물 90 내지 110중량부 및 N-부탄올 190 내지 210 중량부를 첨가하는 것을 특징으로 하는 바이오물질 플라이 애쉬의 제조방법.90 to 110 parts by weight of cetyl trimethylmethylammonium bromide and 190 to 210 parts by weight of N-butanol are added to 90 to 110 parts by weight of the sodium silicate solution.
  6. 제1항에 있어서,The method of claim 1,
    상기 (b) 단계는,In step (b),
    상기 규산나트륨 용액에 세틸 트릴메틸암모늄 브롬화물 및 N-부탄올을 첨가하고 75 내지 85℃로 가열하여 혼합물을 제조하는 것을 특징으로 하는 바이오물질 플라이 애쉬의 제조방법.Cetyl trimethylmethylammonium bromide and N-butanol are added to the sodium silicate solution and heated to 75 to 85 ° C. to prepare a biomaterial fly ash.
  7. 제1항에 있어서,The method of claim 1,
    상기 (f) 단계는,Step (f) is,
    수거한 상기 실리카 겔을 세척하고 95 내지 105℃에서 23 내지 25시간동안 건조시키는 것을 특징으로 하는 바이오물질 플라이 애쉬의 제조방법.The collected silica gel is washed and dried at 95 to 105 ° C. for 23 to 25 hours.
  8. 제1항에 있어서,The method of claim 1,
    상기 (g) 단계는,Step (g) is
    건조된 상기 실리카 겔을 540 내지 560℃에서 3.5 내지 4.5시간동안 가열하여 활성화시키는 것을 특징으로 하는 바이오물질 플라이 애쉬의 제조방법.The dried silica gel is heated at 540 to 560 ° C. for 3.5 to 4.5 hours to activate the biomaterial fly ash.
  9. 제1항 내지 제8항 중 어느 한 항의 제조방법에 의해 제조된 바이오물질 플라이 애쉬.A biomaterial fly ash prepared by the method of any one of claims 1 to 8.
PCT/KR2018/013336 2018-06-01 2018-11-06 Biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force, and method for preparing same WO2019231063A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180063677A KR102071364B1 (en) 2018-06-01 2018-06-01 Biomass Fly Ash as an Alternative Approach for Synthesis of Amorphous Silica Nanoparticles with High Surface Area and Method of Manufacturing
KR10-2018-0063677 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019231063A1 true WO2019231063A1 (en) 2019-12-05

Family

ID=68697222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013336 WO2019231063A1 (en) 2018-06-01 2018-11-06 Biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force, and method for preparing same

Country Status (2)

Country Link
KR (1) KR102071364B1 (en)
WO (1) WO2019231063A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117263632A (en) * 2023-11-22 2023-12-22 中国建筑第六工程局有限公司 Cement-free ready-mixed green ultra-high-performance concrete and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1355135A (en) * 2001-12-31 2002-06-26 天津大学 Process for preparing mesoporous SiO2 microparticles material
CN1449997A (en) * 2003-04-24 2003-10-22 清华大学 Process for preparing silicon dioxide aerogel using rice husk ash as raw material
KR20090048082A (en) * 2007-11-09 2009-05-13 학교법인 함주학원 A production method of porous silica
KR20110049852A (en) * 2008-08-06 2011-05-12 마야테리얼스, 아이엔씨. Low cost routes to high purity silicon and derivatives thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171114A (en) * 2000-05-08 2003-06-17 B M:Kk Method for manufacturing silica gel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1355135A (en) * 2001-12-31 2002-06-26 天津大学 Process for preparing mesoporous SiO2 microparticles material
CN1449997A (en) * 2003-04-24 2003-10-22 清华大学 Process for preparing silicon dioxide aerogel using rice husk ash as raw material
KR20090048082A (en) * 2007-11-09 2009-05-13 학교법인 함주학원 A production method of porous silica
KR20110049852A (en) * 2008-08-06 2011-05-12 마야테리얼스, 아이엔씨. Low cost routes to high purity silicon and derivatives thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAO, NGUYEN DANG: "Biomass Fly Ash as an Alternative Approach for Synthesis of Amorphous Silica Nanoparticles with High Surface Area", JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, vol. 18, 1 May 2018 (2018-05-01), pages 3329 - 3334 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117263632A (en) * 2023-11-22 2023-12-22 中国建筑第六工程局有限公司 Cement-free ready-mixed green ultra-high-performance concrete and preparation method thereof
CN117263632B (en) * 2023-11-22 2024-02-13 中国建筑第六工程局有限公司 Cement-free ready-mixed green ultra-high-performance concrete and preparation method thereof

Also Published As

Publication number Publication date
KR20190137980A (en) 2019-12-12
KR102071364B1 (en) 2020-01-31

Similar Documents

Publication Publication Date Title
WO2017090912A1 (en) Method for preparing hydrophobic silica aerogel and hydrophobic silica aerogel prepared therefrom
WO2018088698A1 (en) Method for producing synthetic hectorite at low temperature and under atmospheric pressure
WO2017078294A1 (en) Method for preparing hydrophobic metal oxide-silica composite aerogel, and hydrophobic metal oxide-silica composite aerogel prepared thereby
WO2017078293A1 (en) Method for preparing hydrophobic metal oxide-silica composite aerogel, and hydrophobic metal oxide-silica composite aerogel prepared thereby
WO2015137761A1 (en) Method for preparing conductive heat-dissipating graphene coating material using sol-gel method and graphene oxide, and conductive heat-dissipating graphene coating material prepared thereby
WO2015119431A1 (en) Method for preparing hydrophobic silica aerogel
WO2017155311A1 (en) Method for manufacturing aerogel blanket, and aerogel blanket manufactured thereby
WO2015119430A1 (en) Production method for hydrophobic silica aerogel
JP3543352B2 (en) Method for producing sulfur-containing organosilicon compound
WO2020226348A1 (en) Novel metal layered hydroxide composite and preparation method therefor
WO2017090911A1 (en) Method for preparing hydrophobic silica aerogel and hydrophobic silica aerogel prepared therefrom
WO2019231063A1 (en) Biomaterial fly ash synthesized with amorphous silica nanoparticles having high surface force, and method for preparing same
WO2012033347A2 (en) Film formed by secondarily growing seed crystals having three crystal axes oriented on a substrate
WO2019160368A1 (en) Method for preparing hydrophobic silica aerogel granules
WO2013169024A1 (en) Solvent-substitution solvent used in aerogel production, and hydrophobised aerogel production method using same
WO2020130259A1 (en) Zeolite and preparation method therefor
WO2018212414A1 (en) Silicon carbide powder and preparation method therefor
WO2013187542A1 (en) Synthetic gel for crystal growth inducing only secondary growth from surface of silicalite-1 or zeolite beta seed crystal
EP0015422B1 (en) Method for producing powder of alpha-silicon nitride
WO2017159968A1 (en) Aerogel precursor and aerogel produced using same
WO2021054513A1 (en) Method for producing polyimide powder, and polyimide powder produced thereby
WO2018186546A1 (en) Method for producing acicular metal-silica composite aerogel particles and acicular metal-silica composite aerogel particle produced thereby
WO2018088697A1 (en) Method for producing synthetic hectorite at low temperature and under atmospheric pressure
WO2022181871A1 (en) Method for manufacturing coal ash-based geopolymer foam containing silica fume
WO2019004755A1 (en) Method for preparing nickel oxide nanoparticle and nickel oxide nanoparticle prepared using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920682

Country of ref document: EP

Kind code of ref document: A1