WO2017155311A1 - Method for manufacturing aerogel blanket, and aerogel blanket manufactured thereby - Google Patents

Method for manufacturing aerogel blanket, and aerogel blanket manufactured thereby Download PDF

Info

Publication number
WO2017155311A1
WO2017155311A1 PCT/KR2017/002530 KR2017002530W WO2017155311A1 WO 2017155311 A1 WO2017155311 A1 WO 2017155311A1 KR 2017002530 W KR2017002530 W KR 2017002530W WO 2017155311 A1 WO2017155311 A1 WO 2017155311A1
Authority
WO
WIPO (PCT)
Prior art keywords
airgel
hours
blanket
less
group
Prior art date
Application number
PCT/KR2017/002530
Other languages
French (fr)
Korean (ko)
Inventor
김미리
오경실
이제균
김영훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160123394A external-priority patent/KR20170104914A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17763572.9A priority Critical patent/EP3284721B1/en
Priority to CN202010078849.6A priority patent/CN111501335B/en
Priority to US15/569,056 priority patent/US11274044B2/en
Priority to JP2018522727A priority patent/JP6722283B2/en
Priority to CN201780001639.3A priority patent/CN107709235B/en
Publication of WO2017155311A1 publication Critical patent/WO2017155311A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/10Temperature; Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B9/00Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards
    • F26B9/04Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards in presses or clamping devices

Definitions

  • the present invention relates to a method for producing an airgel blanket having excellent high temperature hydrophobicity, and to an airgel blanket prepared using the same.
  • Aerogel is an ultra-porous, high specific surface area ( ⁇ 500 m 2 / g) material with a porosity of about 90% to 99.9% and a pore size in the range of 1 nm to 100 nm. As it is a material with such characteristics, it is also actively researching the development of aerogel materials, as well as researching transparent insulation materials and environment-friendly high-temperature insulation materials, ultra-low dielectric films for highly integrated devices, catalysts and catalyst carriers, electrodes for supercapacitors, and electrode materials for seawater desalination. Going on
  • the biggest advantage of the airgel is super-insulation, which exhibits a thermal conductivity of 0.300 W / mK or lower, which is lower than that of conventional thermal insulation materials such as styrofoam.
  • Aerogel blanket is a composite of aerogel material to represent a made in the form of a mattress or sheet, it has the flexibility to bend, fold or cut features. Therefore, it can be applied to places such as pipe insulation or clothing, and also various industrial applications. Flexibility is possible because the airgel blanket is a composite consisting of fibers and aerogels. Fibers enhance the flexibility and mechanical strength of aerogel blankets, and aerogels impart insulation properties due to porosity.
  • the core composite technology of the airgel blanket is to combine the characteristics of the fiber and the characteristics of the airgel to take advantage of each other's advantages and to compensate for the disadvantages.
  • the airgel blanket is a new material having excellent heat resistance and heat insulation properties than polystyrene foam or polyurethane foam, which is an existing polymer insulation material, and is attracting attention as an advanced material that can solve energy saving and environmental problems in the future.
  • U.S. Patent No. 5,789,075 discloses a method for preparing an airgel blanket using water glass or an alkoxide precursor alone as a precursor of a silica sol, but spring-back when drying is used when water glass alone is used. ) It has a disadvantage of high thermal conductivity because it does not show the porosity of more than 90% due to the reduced thickness because the effect does not occur.In the case of using an alkoxide-based precursor alone, it has excellent properties such as thermal conductivity at first, but it loses hydrophobicity easily at high temperature and functions as an insulating material. In addition to the problem of not having a problem, because the alkoxide precursor is expensive, there is a problem that is uneconomical.
  • Patent Document 1 US 5,789,075 B
  • the present invention has been made to solve the problems of the prior art as described above, and an object of the present invention is to provide a method for producing a high temperature superhydrophobic airgel blanket that can maintain excellent hydrophobicity even at high temperatures.
  • Another object of the present invention is to provide a high temperature superhydrophobic airgel blanket prepared from the above method.
  • the present invention to solve the above problems, 1) preparing an airgel precursor by mixing the airgel powder in a silica sol; 2) preparing a wet gel-based composite by adding a basic catalyst to the airgel precursor, depositing the gel on a blanket substrate, and then gelling the gel; 3) preparing a hydrophobic wet gel-based composite by performing surface modification on the wet gel-based composite; And 4) it provides a method for producing an airgel blanket comprising the step of drying the hydrophobic wet gel-based composite.
  • the present invention comprises a substrate for aerogels and blankets, the airgel is heat treated for 1 to 5 hours at a temperature of 400 °C or more than less than 500 °C, the carbon content retention calculated by the following formula 2 is 1) To provide an airgel blanket that satisfies at least one of the 5).
  • Carbon content retention rate (%) (carbon content of airgel after heat treatment (% by weight)) / (original carbon content of airgel (% by weight))
  • the present invention comprises a substrate for aerogels and blankets, wherein the airgel heat treatment for 1 to 5 hours at a temperature of 500 °C to 600 °C or less, the carbon content retention calculated by Equation 2 is 13% or more To provide an airgel blanket.
  • Carbon content retention rate (%) (carbon content of airgel after heat treatment (% by weight)) / (original carbon content of airgel (% by weight))
  • the present invention provides a heat insulating material comprising the airgel blanket.
  • the airgel blanket prepared according to the manufacturing method has a hydrophobicity is made not only on the surface of the airgel but also the internal structure of the airgel can exhibit high hydrophobicity, excellent hydrophobic holding power even at high temperature application, the thermal conductivity increase rate is not high, heat insulating material As a useful effect.
  • Figure 1 schematically shows a flow chart of a method of manufacturing an airgel blanket according to an embodiment of the present invention.
  • Figure 2 is a graph measuring the carbon content contained in the airgel after the heat treatment of the airgel of Examples and Comparative Examples at 400 °C for 1 hour to 5 hours.
  • Figure 3 is a graph measuring the carbon content contained in the airgel after the heat treatment of the airgel of the Examples and Comparative Examples at 500 °C for 1 hour to 5 hours.
  • Figure 4 is a graph measuring the carbon content contained in the airgel after the heat treatment of the airgel of Examples and Comparative Examples at 600 °C for 1 hour to 5 hours.
  • Figure 5 is a graph measuring the thermal conductivity of the airgel blanket after heat treatment of the airgel blanket of Examples and Comparative Examples at 400 °C for 1 hour to 5 hours.
  • Figure 6 is a graph measuring the thermal conductivity of the airgel blanket after heat treatment of the airgel blanket of Examples and Comparative Examples at 500 °C for 1 hour to 5 hours.
  • Figure 7 is a graph measuring the thermal conductivity of the airgel blanket after heat treatment of the airgel blanket of Examples and Comparative Examples at 600 °C for 1 hour to 5 hours.
  • TGA thermogravimetric analysis
  • aerogel blankets are used to prepare silica sol alone or in combination with water glass or alkoxysilane (hereinafter referred to as Method 1), or to prepare a sol by mixing a binder with a hydrophobized airgel powder (hereinafter referred to as Method 2). And then, it is prepared by mixing the base material for the blanket such as fibers, gelation, aging, surface modification and drying.
  • Method 1 silica sol alone or in combination with water glass or alkoxysilane
  • Method 2 a sol by mixing a binder with a hydrophobized airgel powder
  • the base material for the blanket such as fibers, gelation, aging, surface modification and drying.
  • the airgel blanket is manufactured by the method 1
  • the surface modification is mostly made only on the surface, so that it is difficult to be hydrophobically modified to the inside, and as a result, a problem of easily losing hydrophobicity at a high temperature may occur.
  • the hydrogel is hydrophobic to the inside, so hydrophobicity can be maintained even at a high temperature.
  • the thermal conductivity is increased due to the use of a binder. ) Has a lot of disadvantages.
  • a silica gel sol mixed with an aerogel powder especially a hydrophobic silica airgel powder or an organic functionalized airgel powder containing one or more organic functional groups on the surface of the aerogel powder, hydrophobicity at high temperature while excellent in thermal conductivity characteristics
  • a method for producing an airgel blanket having excellent retention.
  • Figure 1 schematically shows a flow chart of the manufacturing method according to an embodiment of the present invention, it is only an example for explaining the present invention is not limited thereto.
  • Step 1) is a step for preparing an airgel precursor
  • the airgel precursor may be prepared by mixing the airgel powder in a silica sol.
  • the airgel precursor may be prepared by mixing and reacting an acidic aqueous solution with a mixed solution containing an alkoxysilane and an alcohol to prepare a silica sol, and adding and mixing the airgel powder thereto.
  • the silica sol used in the preparation of the airgel precursor acts as a chemical binder between the airgel powders in preparation of the airgel blanket, thereby increasing the binding force of the airgel powders and enabling uniform gelation. As a result, high-temperature hydrophobicity and durability can be improved to exhibit high thermal insulation performance.
  • the silica sol may be prepared by mixing an acidic aqueous solution with a mixed solution containing an alkoxysilane and an alcohol.
  • the alkoxysilanes usable in the preparation of the silica sol may specifically be tetraethylorthosilicate (TEOS), tetramethylorthosilicate (TMOS) or trialkoxysilane (trialkoxysilane) and the like, a mixture comprising one or more of them. This can be used. More specifically, the alkoxysilane of the present invention may be tetraethylorthosilicate.
  • the alcohol that can be used to prepare the silica sol is not particularly limited, but may be, for example, an alcohol having 1 to 6 carbon atoms such as ethanol, and the content of silica contained in the mixed solution is 2 to 6 wt%, more specifically May be added in an amount such that from 3% to 5% by weight.
  • the acidic aqueous solution used for the production of the silica sol is characterized in that it contains an acidic catalyst and water.
  • the water serves to hydrate the alkoxysilane and at the same time serves as a solvent to dissolve the acidic catalyst. Accordingly, the water may be added separately from the acidic catalyst, or may be added as an acidic aqueous solution in which the acidic catalyst is dissolved.
  • the acidic catalyst is a catalyst for promoting the hydration reaction of the alkoxysilane, and may be used in an amount such that the pH in the mixed solution is 0.5 to 1.
  • Specific examples of the acidic catalyst may include hydrochloric acid, sulfuric acid, nitric acid, acetic acid, and the like, and a mixture including one or more of them may be used.
  • the airgel powder mixed with the silica sol for preparing the airgel precursor may specifically be a silica airgel powder, and more specifically, the surface may be organic by surface modification using an organic functional group, especially a compound having a hydrophobic functional group. Functionalized, specifically, silylated or hydrophobized.
  • the hydrophobized airgel powder is mixed with the silica sol to be used as a precursor for preparing the airgel blanket, thereby improving hydrophobicity of the airgel blanket, particularly in the interior thereof.
  • the airgel powder mixed with the silica sol for preparing the airgel precursor is at least one, more specifically one, two or three identical on the inner surface of the airgel Or an organic functionalized airgel powder comprising different organic functional groups.
  • the organic functional group means a structure having a polar atom bond formed by the presence of a hetero atom in the organic group, it can react with a hydroxyl group or an ether group on the surface of the airgel.
  • the functional group include a halogen group, a pseudo halogen group, a hydroxyl group, a thio group, an amino group, an amide group, an ether group, an ester group, an acid group, a formyl group, a ketone group or a silyl group.
  • the hydrocarbon group containing the aforementioned functional group may be an alkyl group having 1 to 22 carbon atoms, more specifically, 1 to 12 carbon atoms, branched or unbranched.
  • the organic functionalized airgel powder may be any one airgel powder selected from the group consisting of a) to d):
  • X is a linear or branched alkylene group having 1 to 22 carbon atoms
  • R 1 is an alkyl group of straight or branched chain of hydrogen atoms, containing 1 to 22 carbon atoms, or an aryl group having 4 to 10
  • R 2 and R 3 are, each independently containing 1 to 22 carbon atoms It may be a linear or branched alkyl group or an aryl group having 4 to 10 carbon atoms.
  • R 4 is a hydrogen atom; an alkyl group having 1 to 4 carbon atoms; and a hydroxyalkyl group such as — (CH 2 ) 3 —OH, and R 5 is an alkylene group having 1 to 4 carbon atoms)
  • R 6 is an alkyl group having 1 to 8 carbon atoms
  • R 7 , R 8 and R 11 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms and an aryl group having 6 to 10 carbon atoms such as a phenyl group is selected and
  • R 9 and R 10 are alkyl groups each independently represent a hydrogen atom or a C 1 -C 4, a is an integer from 1 to 4, b is an integer from 1 to 8, these functionalities are Pd, Pt, Ni, Complexes with a metal element selected from the group consisting of Co and Cu)
  • the organic functionalized airgel powder may be prepared by reacting a silica wet gel obtained by polycondensation of water glass with at least a bifunctional organic compound, followed by drying.
  • the bifunctional organic compound is characterized in that it comprises at least one functional group that acts as a bonding group with the airgel, more specifically the bifunctional organic compound is methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane It may include one or more compounds selected from the group consisting of, chloropropyltrichlorosilane, trimethyl methoxysilane and hexamethyldisilazane.
  • the method of manufacturing an airgel blanket according to an embodiment of the present invention may further include preparing the organic functionalized airgel powder before preparing an airgel precursor.
  • the gelation may be performed by adding acid ion exchange resin or mineral acid to an aqueous solution of water glass to prepare silicic acid, and then polycondensation reaction in strong acid or strong base.
  • the at least bifunctional organic compound which can be used at the time of surface functionalization (modification) of the gel is a compound containing at least one of the aforementioned organic functional groups, and specifically, an amino alcohol of R 4 -NH-R 5 -OH (wherein R 4 and R 5 are as defined above, R 12 4- n SiCl n or R 13 4- n Si (OR 14 ) n , where n is an integer from 1 to 3, and R 12 and R 13 May be each independently selected from a hydrogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 18 carbon atoms, and an aryl group having 6 to 18 carbon atoms, and R 14 is 1 to 18 carbon atoms.
  • the organic compound may be methyl trichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, chloropropyltrichlorosilane, trimethyl methoxysilane, or hexamethyldisilazane. Lift Were, there is any one or a mixture of two or more of them may be used.
  • the drying step for the surface organic functionalized gel is -30 ° C to 200 ° C, more specifically, a temperature of 0 ° C to 200 ° C; And 0.001 bar to 20 bar, more specifically 0.1 bar to 2 bar, and may be carried out until the residual solvent content of the gel is less than 0.1% by weight.
  • the airgel powder mixed with the silica sol for preparing the airgel precursor may be an organic functionalized airgel powder prepared by silylating the surface of the hydrogel.
  • the silylated organic functionalized airgel powder may be prepared by surface modification of hydrogel, specifically, silica hydrogel, specifically surface silylation, and then drying.
  • the silica hydrogel is controlled to pH 3 or less by adding an acidic ion exchange resin, an inorganic acid or hydrochloric acid solution to an aqueous glass solution, followed by polycondensation by adding a base, and washing the resulting gel with water, or a water glass solution.
  • the surface modification in particular surface silylation, can also be carried out by surface modification with respect to hydrogels using a silylating agent on liquid, gas or water vapor. Thereafter, an acid such as a base or a base may be optionally further added before or after the silylating agent is added.
  • a silylating agent Disiloxane of following General formula (IV); Disilazane of formula (V); And at least one silylating agent of the silane of formula (VI) or (VII) with a gel.
  • R a1 , R a2 , R b1 , R b2 , R c , R d and R e are each independently a hydrogen atom or non-reactive, organic, linear, branched, cyclic, saturated or unsaturated, aromatic ( aromatic) or heteroaromatic radical, and more specifically, may be a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 18 carbon atoms, or an aryl group having 6 to 14 carbon atoms, and more specifically An alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group; Cyclohexyl group; Or a phenyl group, m and n are each independently an integer of 1 to 4.
  • the silylating agent is alkyltrichlorosilane such as methyltrichlorosilane; Dialkyldichlorosilanes such as dimethyldichlorosilane; Trialkylchlorosilanes such as trimethylchlorosilane; Symmetric disiloxanes or hexaalkyldisiloxanes such as hexamethyldisiloxane and the like; Trialkyl methoxysilanes such as trimethyl methoxysilane; Or silazanes such as hexamethyldisilazane and the like, and any one or a mixture of two or more thereof may be used.
  • alkyltrichlorosilane such as methyltrichlorosilane
  • Dialkyldichlorosilanes such as dimethyldichlorosilane
  • Trialkylchlorosilanes such as trimethylchlorosilane
  • the airgel particles may exhibit hydrophobicity in whole or in part depending on the degree of silylation, wherein the hydrophobicity may be permanent.
  • the inner surface of the aerogel surface-silylated using the silylating agent described above is Si-R.
  • Si-OR only containing groups or Si-OH groups Group is not included (wherein R is an alkyl group).
  • R is an alkyl group.
  • the Si-OH groups react completely or partially on the inner surface.
  • Si-O-Si (R) 3 Will provide a flag.
  • the hydrogels are used throughout the entire process, such as alcohols (eg, methanol, ethanol, isopropanol, etc.), ketones (eg, acetone, etc.). ) Or Si-OR on the inner surface of the gel as it is not in contact with a reactive solvent such as ether (e.g. dimethoxyethane, etc.) or tetrahydrofuran. No groups can be formed.
  • a reactive solvent such as ether (e.g. dimethoxyethane, etc.) or tetrahydrofuran. No groups can be formed.
  • the surface silylated airgel powder may have the following i) or ii) characteristics:
  • the degree of coverage of the internal surface or coverage by organic surface groups applied by surface silylation is surface modified to at least 90% of theoretically possible values. Specifically, the application degree of the trimethylsilyl group is 2.5 or more per nm 2 .
  • 'application' refers to the number of organic surface functional groups per square nanometer of the inner surface area of the airgel, and the theoretically applicable applicability value may be calculated according to Equation 1 below.
  • the use application value may have an error of less than 10% depending on the measuring method, and the internal surface area may be measured by nitrogen adsorption according to the BET method (multipoint BET method of DIN66131, ASAP 2010, manufactured by Micromeritics, Inc.). ).
  • the airgel powder mixed with the silica sol for preparing the airgel precursor may be a hydrophobic silica airgel powder having a carbon content of 10 parts by weight to 12 parts by weight based on the total weight of the airgel powder. If the carbon content in the airgel powder is out of the above range, the prepared hydrogel blanket may have low hydrophobicity, and consequently, there is a concern that the hydrophobic holding force may be lowered at high temperature.
  • the airgel powder is not particularly limited in its manufacturing method except that the hydrophobic condition is satisfied.
  • hydrophobic silica airgel powder it can be prepared through the sequencing of the surface modification and drying process using a surface modifier having a hydrophobic functional group, such as gelling, hexamethyldisilazane (HMDS) for the silica sol, the silica
  • HMDS hexamethyldisilazane
  • the solvent used in the preparation of the sol is water
  • a solvent replacement process using an alcohol such as methanol may be optionally further performed after the gelation.
  • the airgel powder may be used in an amount of 25 parts by weight to 50 parts by weight based on 100 parts by weight of silica contained in the silica sol. If the amount of the airgel powder used is less than 25 parts by weight, the degree of improvement in internal hydrophobicity may be insignificant, and a problem of not maintaining hydrophobicity at high temperature may occur. In addition, when the amount of the airgel powder exceeds 50 parts by weight, the binding strength of the airgel powder is reduced due to the decrease in the relative content of the silica sol, as a result of the blowing of the airgel powder during the blanket manufacturing process, and finally the thermal insulation performance is lowered There is a concern.
  • step 2) in the manufacturing method of the airgel blanket according to an embodiment of the present invention is to prepare a wet gel-based composite in which the base material for the airgel and the blanket of the wet gel form, step 1 It can be carried out by adding a basic catalyst to the aerogel precursor prepared in the) and depositing on the substrate for the blanket and then gelling.
  • the substrate for the blanket a substrate of various materials may be used according to the use of the blanket.
  • the blanket substrate may be a film, a sheet, a net, a fiber, a porous body, a foam, a nonwoven fabric, or a laminate of two or more thereof.
  • the surface roughness may be formed or patterned.
  • the base for the blanket is a fiber
  • the base for the blanket is a fiber
  • specifically may be glass fiber, carbon fiber or polyimide fiber, etc., may be used a mixture of one or more of them as desired.
  • the blanket substrate may specifically be a reinforcing structure including a lofty fibrous batting sheet, more specifically a lofty fibrous batting, wherein the fibers are three Oriented along all axes, the bet is in the form of a sheet, the lofty fibrous bet compressible to at least 50% of the thickness and recover to at least 70% of the original thickness after compression for 5 seconds, the density of the lofty fibrous bet Is 0.001 g / cm 3 to 0.26 g / cm 3 and the cross sectional area of the identifiable fibers in the cross section of the airgel blanket to be produced may be less than 10% of the total cross sectional area.
  • the batting refers to a layer or sheet of a fibrous material used as a blanket for thermal insulation, and the batting manufacturing fiber may be thin, specifically 15 or less, more specifically 10 or less denier.
  • the cross section of the fiber in the cross section of the blanket to be finally produced may be less than 10%, specifically less than 8%, more specifically less than 5% of the total cross section of the cross section.
  • the reinforcing structure may include a polyester batting reinforcing structure; Polyester fiber batting comprising a polyvinyl alcohol binder; Lofty silica fiber structures; Fiber laminates of polyester / silicon carbide / copper mesh / silicon carbide / polyester; A stack of unidirectional carbon fiber / copper mesh / loft polyester batting comprising a polyester batting / polymerizable binder; And a laminate of silica felt / stainless steel mesh / silica felt.
  • step 1 When the basic catalyst is added to the aerogel precursor prepared in step 1) and the blanket substrate is deposited, gelation occurs, whereby the wet gel-type aerogel is formed on the surface and inside of the blanket substrate, thereby providing the wet gel-based composite. Is formed.
  • the basic catalyst may play a role of adjusting the pH to promote gelation.
  • the pH adjustment step may be performed so that the pH of the airgel precursor deposited on the blanket substrate using a basic catalyst is 4 to 9, wherein the basic catalyst may be ammonia or the like. More specifically, the basic catalyst may be used at 0.05% by volume to 10% by volume, more specifically 0.1% by volume to 1% by volume relative to the total volume of the airgel precursor.
  • the method for producing an airgel blanket according to an embodiment of the present invention in order to achieve a complete chemical change to the wet gel, after the wet gel in the prepared wet gel-based composite after step 2) It may further comprise the step of aging.
  • the aging may be carried out by leaving the airgel wet gel at a suitable temperature for a long time, specifically, by leaving the wet gel volume in a 90 to 110 volume ratio alcohol at a temperature of 50 °C to 70 °C for 30 minutes to 3 hours. Can be performed.
  • the network structure in the wet gel can be strengthened, and thus the strength of the manufactured airgel blanket can be improved.
  • step 3) is a step for preparing a hydrophobic wet gel-based composite, in the wet gel-based composite prepared in step 2). It can be carried out by surface modification of the wet gel.
  • the surface modification may be performed using a solution in which the surface modifier is dissolved in an organic solvent. More specifically, the solution may be prepared by adding and mixing the surface modifier to the organic solvent so as to be 2.5 vol% to 7.5 vol% with respect to the total volume of the solution. If the surface modifier and the organic solvent are included in the above ratio, surface modification can be easily performed on the surface of the wet gel and the pores therein to show hydrophobicity. Cracks can be prevented during the heat treatment process. More specifically, the surface modification may be performed by using a solution prepared by mixing the surface modifier to 5 vol% to 7.5 vol% in an organic solvent.
  • a silane compound, a silazane compound, or a siloxane compound may be specifically used. More specifically, trimethylchlorosilane, methyltrimethoxysilane, phenyltriethoxysilane, dimethylchlorosilane, One or more selected from the group consisting of trimethylethoxysilane, hexamethyldisilazane and polydimethylsiloxane may be used, but is not limited thereto.
  • organic solvent specifically, an alcohol solvent such as ethanol or isopropyl alcohol; Or hydrocarbon-based solvents such as n-hexane, heptane, toluene or xylene, and the like, or a mixture of two or more of them may be used.
  • an alcohol solvent such as ethanol or isopropyl alcohol
  • hydrocarbon-based solvents such as n-hexane, heptane, toluene or xylene, and the like, or a mixture of two or more of them may be used.
  • the solution containing the surface modifier may be used in a 70 to 100 volume ratio based on the volume of the wet gel to 100. If the amount of the solution is less than 70% by volume, the problem of surface modification and solvent replacement may not be achieved completely, and if it exceeds 100% by volume, it may be economically unfavorable due to excessive use.
  • the surface modification is more specifically in the wet gel-based composite prepared in step 2), after adding a solution containing a surface modifier, at a temperature of 50 °C to 80 °C, more specifically 1 hour to 10 hours Can be carried out by maintaining at a temperature of 60 °C to 70 °C for 4 hours to 5 hours.
  • the airgel distributed on the surface and inside of the blanket substrate exhibits hydrophobicity.
  • the manufacturing method of the airgel blanket according to an embodiment of the present invention when the drying process is carried out by the atmospheric pressure drying, after the surface modification may optionally further include a solvent replacement process.
  • the solvent replacement process may be performed by replacing the solvent in the hydrophobic airgel with the organic solvent by adding an organic solvent after the surface modification process.
  • a hydrocarbon solvent or the like may be used as the organic solvent.
  • step 4) is to prepare the final airgel blanket of the present invention by drying the hydrophobic wet gel-based composite prepared in step 3) Manufacturing step.
  • the drying process may be performed by a supercritical drying process or an atmospheric pressure drying process using supercritical carbon dioxide.
  • Carbon dioxide (CO 2 ) is a gaseous state at room temperature and atmospheric pressure, but if it exceeds a certain temperature and high pressure limit called the supercritical point, the evaporation process does not occur, so it becomes a critical state in which gas and liquid cannot be distinguished. Carbon dioxide in the state is called supercritical carbon dioxide.
  • Supercritical carbon dioxide has a molecular density close to a liquid, but has a low viscosity, close to a gas, high diffusion efficiency, high drying efficiency, and short drying time.
  • the supercritical drying process may be performed according to a conventional method except for using the silica gel-based composite prepared in Step 2. Specifically, in the supercritical drying process the supercritical drying the reactor, surface airgel of the modified hydrophobic-insert the substrate composite, and then, filling up the CO 2 in the liquid state to the solvent replacement step of replacing the alcohol solvent within the airgel to CO 2 Perform. Thereafter, the temperature is raised to 40 ° C. to 50 ° C. at a constant temperature increase rate, specifically 0.1 ° C./min to 1 ° C./min, and then the pressure or more at which carbon dioxide becomes a supercritical state, specifically, 100 bar to 150 The pressure of bar is maintained for a certain time, specifically 20 minutes to 1 hour, in the supercritical state of carbon dioxide.
  • carbon dioxide is supercritical at a temperature of 31 ° C. and a pressure of 73.8 bar.
  • the carbon dioxide may be maintained at a constant temperature and a constant pressure for 2 hours to 12 hours, more specifically, 2 hours to 6 hours at a constant temperature and then the pressure is gradually removed to complete the supercritical drying process.
  • the atmospheric pressure drying process it may be carried out according to a conventional method such as natural drying, hot air drying under normal pressure (1 ⁇ 0.3 atm). Specifically, the reaction may be performed at a temperature of 50 ° C. to 150 ° C. for 12 hours to 24 hours.
  • the airgel blanket has hydrophobicity not only on the surface but also on the internal structure, and thus may exhibit excellent hydrophobic retention even at high temperature.
  • an airgel blanket prepared by the above manufacturing method.
  • the airgel contained in the airgel blanket prepared by the manufacturing method of the present invention has a higher carbon content retention rate compared with the conventional airgel even when heat treated at a temperature of 400 ° C. or higher and less than 500 ° C., and compared with a conventional airgel blanket. Thermal conductivity increase may be low.
  • the airgel blanket of the present invention comprises an airgel and the base for the blanket, the airgel is a carbon content calculated by the following formula 2 when the heat treatment for 1 to 5 hours at a temperature of 400 °C or more less than 500 °C Retention rate may be to satisfy at least one of the following 1) to 5), preferably may be to satisfy all of 1) to 5).
  • Carbon content retention rate (%) (carbon content of airgel after heat treatment (% by weight)) / (original carbon content of airgel (% by weight))
  • the airgel of the present invention when the heat treatment for 1 hour to 5 hours at a temperature of 400 °C or less than 500 °C the carbon content retention rate may be to satisfy at least one of the following 1) to 5), Preferably, all of 1) to 5) may be satisfied.
  • the thermal conductivity increase rate calculated by Equation 3 below satisfies at least one of the following 1) to 5): It may be, preferably to satisfy all of 1) to 5).
  • the thermal conductivity when the heat treatment for 1 hour to 5 hours at a temperature of 400 °C or more less than 500 °C, the thermal conductivity may be to satisfy at least one of the following 1) to 5). And, preferably it may be to satisfy all of 1) to 5).
  • the airgel contained in the airgel blanket prepared by the manufacturing method of the present invention has a higher carbon content retention rate compared with the conventional airgel even when heat treated at a temperature of 500 ° C. or higher and 600 ° C. or lower, and compared with a conventional airgel blanket. Thermal conductivity increase may be low.
  • the airgel blanket of the present invention comprises an airgel and the substrate for the blanket, the airgel is a carbon content calculated by the following formula (2) when heat-treated for 1 to 5 hours at a temperature of 500 ° C or more and 600 ° C or less Retention rate may be 13% or more.
  • Carbon content retention rate (%) (carbon content of airgel after heat treatment (% by weight)) / (original carbon content of airgel (% by weight))
  • the airgel of the present invention may have a carbon content retention of 15% or more, preferably 13% or more and 70% or less, more preferably 15% or more and 60% or less.
  • the airgel of the present invention may be one that satisfies at least one of the following 1) to 5) when the heat treatment for 1 hour to 5 hours at a temperature of 500 °C to 600 °C, Preferably, all of 1) to 5) may be satisfied.
  • the airgel of the present invention may be one that satisfies at least one of the following 1) to 5) when the heat treatment for 1 hour to 5 hours at a temperature of 500 °C to 600 °C, Preferably, all of 1) to 5) may be satisfied.
  • the thermal conductivity increase rate calculated by Equation 3 below may be 17% or less.
  • the airgel blanket of the present invention has a high carbon content retention rate and a low increase rate of thermal conductivity even when the high temperature heat treatment is performed, thereby maintaining excellent thermal insulation performance.
  • hydrophobic airgel may be present in the internal structure as well as the surface structure of the airgel included in the airgel blanket by mixing the hydrophobic airgel powder with the silica sol and using it as an airgel precursor. Bar and hydrophobic holding power is excellent also in the heat treatment at high temperature.
  • the airgel blanket of the present invention may have a density of 130 g / cm 3 to 200 g / cm 3 and a porosity of 80% to 99%.
  • the density of the airgel blanket can be measured using a density measuring device (TAP Density Volumeter, Engelsman Model STAV II), the porosity can be measured using a specific surface area method using a 3Flex instrument of Micrometrics.
  • Such a high hydrophobic airgel blanket can maintain a low thermal conductivity even at high temperatures can be used in a variety of fields, such as insulation, ultra-low dielectric film, catalyst, catalyst carrier, or blanket, in particular, Pore properties can be useful in the manufacture of thermal insulation because it can maintain low thermal conductivity.
  • Airgel powder was then mixed with 140 ml of the prepared silica sol in an amount of 25 parts by weight based on 100 parts by weight of the silica in the silica sol to prepare an airgel precursor.
  • the airgel powder is prepared by preparing a silica sol using tetraethylorthosilicate, gelling it, and surface modification with hexamethyldisilazane (carbon content: 11% by weight of the total weight of the airgel powder).
  • an ammonia catalyst was added to the prepared airgel precursor in an amount of 0.5% by volume based on the total volume of the airgel precursor, and glass fibers were deposited and gelled to prepare a wet gel-based composite.
  • the prepared wet gel-based composite was aged by standing in ethanol at a temperature of 70 ° C. for 2 hours.
  • the surface modifier solution prepared by mixing polydimethylsiloxane and ethanol in a volume ratio of 1:19 was added at a 90 volume ratio based on the volume of the wet gel 100, and surface modified at 70 ° C. for 5 hours to give a hydrophobic wet gel-based substrate.
  • the complex was prepared.
  • the hydrophobic wet gel-based composite was added to an extractor in a supercritical equipment, supercritical drying was performed using supercritical CO 2 , and heat-treated at 150 ° C. for 1 hour to prepare an airgel blanket.
  • An airgel blanket was prepared in the same manner as in Example 1 except that the airgel powder was used in an amount of 50 parts by weight based on 100 parts by weight of silica when the airgel precursor was prepared.
  • An airgel blanket was prepared in the same manner as in Example 1, except that the hydrophobic wet gel-based composite was dried for 12 hours at a temperature of 120 ° C. under 1 ⁇ 0.3 atm.
  • An airgel blanket was prepared in the same manner as in Example 1 except for using the surface functionalized airgel powder prepared above.
  • An airgel blanket was prepared in the same manner as in Example 1 except that the airgel powder prepared above was used.
  • the resulting gel was washed with concentrated hydrochloric acid solution until the pore water of the gel became 10% hydrochloric acid solution. Then, for silylation, 100 g of the resulting hydrogel was suspended in 100 ml of hexamethyldisiloxane (HMDSO) followed by the addition of 31.5 g (42 ml) of trimethylchlorosilane (TMCS). An aqueous phase (120 ml of concentrated HCl) was formed below the HMDSO phase by gas (HCl) release.
  • HMDSO hexamethyldisiloxane
  • TMCS trimethylchlorosilane
  • An airgel blanket was prepared in the same manner as in Example 1 except that the airgel powder prepared above was used.
  • An airgel blanket was prepared in the same manner as in Example 1 except that the airgel powder prepared above was used.
  • polyester fiber batting as the substrate for the blanket uses a reinforcing structure of a lofty silica fiber structure (Quartz el, Saint-Gobain Quartz) containing a polyvinyl alcohol binder and having a density of 65 g / m 2.
  • Airgel blanket was prepared in the same manner as in 1.
  • An airgel blanket was prepared in the same manner as in Example 1, except that no airgel powder was further added in the preparation of the airgel precursor in Example 1.
  • An airgel blanket was prepared in the same manner as in Example 1, except that hydrophilic precipitated silica powder (manufactured by Evonkit, 22S) was used instead of the airgel powder in the preparation of the airgel precursor in Example 1.
  • hydrophilic precipitated silica powder manufactured by Evonkit, 22S
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Temperature (°C) Heat treatment time (hr) Carbon content Carbon content retention rate Carbon content Carbon content retention rate Carbon content Carbon content retention rate Carbon content Carbon content retention rate 400 0 10.1 100 11.84 100 9.78 100 6.98 100 One 8.01 79.30 9.1 76.85 7.12 72.80 4.32 61.89 2 7.2 71.28 7.74 65.37 5.9 60.32 3.56 51.00 3 6.71 66.43 7.43 62.75 5.75 58.79 3.3 47.27 4 6.41 63.46 7.11 60.05 5.66 57.87 3.21 45.98 5 6.4 63.36 7.01 59.20 5.5 56.23 3.1 44.41
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Temperature (°C) Heat treatment time (hr) Carbon content Carbon content retention rate Carbon content Carbon content retention rate Carbon content Carbon content retention rate Carbon content Carbon content retention rate 500 0 10.1 100 11.84 100 9.78 100 6.98 100 One 5.81 57.52 6.74 56.92 1.2 12.26 0.56 8.02 2 4.9 48.51 5.75 48.56 0.5 5.11 0.34 4.87 3 4.42 43.76 5 42.22 0.3 3.06 0.19 2.72 4 4.14 40.99 4.48 37.83 0.22 2.24 0.15 2.14 5 3.95 39.10 4.5 38.00 0.19 1.94 0.11 1.57
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Temperature (°C) Heat treatment time (hr) Carbon content Carbon content retention rate Carbon content Carbon content retention rate Carbon content Carbon content retention rate Carbon content Carbon content retention rate 600 0 10.1 100 11.84 100 9.78 100 6.98 100 One 4.15 41.08 5.05 42.65 0.7 7.15 0.29 4.15 2 2.84 28.11 2.89 24.40 0.3 3.06 0.21 3.00 3 2.42 23.96 2.45 20.69 0.22 2.24 0.12 1.71 4 2.12 20.99 2.15 18.15 0.12 1.22 0.08 1.14 5 1.98 19.60 1.99 16.80 0.09 0.92 0.08 1.14
  • the aerogels of Examples 1 and 2 in which an aerogel precursor was prepared by adding a hydrophobic airgel powder to a silica sol were compared with those of Comparative Example 1, in which the aerogel powder was not added during preparation of the aerogel precursor. It was confirmed that the carbon content retention after heat treatment was higher than before. In particular, as the heat treatment time is performed within the first 1 hour, and at a very high temperature of 500 °C or more, it was confirmed that the carbon content retention ratios of Examples 1 and 2 and Comparative Example 1 were significantly different.
  • Comparative Example 2 in which precipitated silica powder was added instead of hydrophobic airgel powder, did not have a high carbon content retention rate as compared with Comparative Examples 1 as well as Examples 1 and 2, and thus, It was confirmed that the hydrophobic holding power was remarkably inferior.
  • the higher carbon content retention rate of Examples 1 and 2 was obtained by mixing a hydrophobic airgel powder with a silica sol to prepare a silica precursor, thereby providing hydrophobicity not only on the surface structure but also on the internal structure of the finally prepared airgel.
  • the airgel blanket of the present invention can have a high hydrophobicity compared to the conventional airgel blanket, it can be expected that the hydrophobic retention is excellent even at high temperature applications.
  • Example 2 does not have a large difference in terms of carbon content retention rate, but contains a higher amount of carbon content than Example 1 in terms of absolute amount of carbon content, thereby maintaining higher hydrophobicity. It can be seen that. This is because Example 2 added a higher amount of hydrophobic airgel powder.
  • Example 1 has the advantage that can maintain high hydrophobicity at the same time does not weaken the thermal insulation performance compared to Comparative Example 1 not added hydrophobic airgel powder, Example 2 compared to Example 1 by the addition of a larger amount of hydrophobic airgel powder Since the insulation performance is somewhat inferior to the higher hydrophobicity, the amount of hydrophobic airgel powder can be adjusted to produce a more suitable airgel blanket according to the application environment and application of the insulation.
  • the initial thermal conductivity of each airgel blanket prepared in Examples and Comparative Examples was measured, and the thermal conductivity of the airgel blanket was measured after heat treatment at temperatures of 400 ° C., 500 ° C. and 600 ° C. for 1 to 5 hours.
  • the thermal conductivity increase rate is calculated as follows and the results are shown in FIGS. 5 to 7, and Tables 4 to 6.
  • the thermal conductivity was measured at room temperature (25 °C) using a thermal conductivity measuring device (NETZSCH, HFM436 Lambda).
  • % Thermal conductivity increase (thermal conductivity of airgel blanket (mW / mK) at 25 ° C. after heat treatment) / (initial thermal conductivity of airgel at 25 ° C. (mW / mK))
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Temperature (°C) Heat treatment time (hr) Thermal conductivity Thermal conductivity increase Thermal conductivity Thermal conductivity increase Thermal conductivity Thermal conductivity increase Thermal conductivity Thermal conductivity increase 400 0 17.75 0 19.2 0 17.2 0 18.55 0 One 18.8 5.91 20.35 5.98 18.45 7.26 19.8 6.73 2 19.38 9.18 20.78 8.22 18.99 10.40 20.5 10.51 3 19.65 10.70 20.92 8.95 19.38 12.67 20.89 12.61 4 19.78 11.43 21.03 9.53 19.54 13.60 21.08 13.63 5 19.9 12.11 21.2 10.41 19.7 14.53 21.1 13.74
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Temperature (°C) Heat treatment time (hr) Thermal conductivity Thermal conductivity increase Thermal conductivity Thermal conductivity increase Thermal conductivity Thermal conductivity increase Thermal conductivity Thermal conductivity increase 500 0 17.75 0 19.2 0 17.2 0 18.55 0
  • Temperature (°C) Heat treatment time (hr) Thermal conductivity Thermal conductivity increase Thermal conductivity Thermal conductivity increase Thermal conductivity Thermal conductivity increase 500 0 17.75 0 19.2 0 17.2 0 18.55 0
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Temperature (°C) Heat treatment time (hr) Thermal conductivity Thermal conductivity increase Thermal conductivity Thermal conductivity increase Thermal conductivity Thermal conductivity increase Thermal conductivity Thermal conductivity increase 600 0 17.75 0 19.2 0 17.2 0 18.55 0 One 20.47 15.32 21.02 9.47 20.58 19.65 21.54 16.11 2 20.58 15.94 21.39 11.40 20.61 19.82 21.64 16.65 3 20.66 16.39 21.55 12.23 20.77 20.75 21.89 18.00 4 20.68 16.50 21.75 13.28 20.91 21.56 21.91 18.11 5 20.65 16.33 21.71 13.07 20.85 21.22 21.98 18.49
  • the aerogel blankets of Examples 1 and 2 in which an airgel precursor was prepared by adding a hydrophobic airgel powder to a silica sol were prepared in Comparative Example 1, in which the airgel precursor was not added.
  • Comparative Example 1 in which the airgel precursor was not added.
  • the thermal conductivity increase rate after heat treatment was not high compared with before heat treatment.
  • the thermal conductivity was not significantly increased except within the first hour of the heat treatment time, and the thermal insulation performance was maintained relatively well.
  • each piece of airgel blanket prepared in Examples and Comparative Examples was subjected to (1) heat treatment at 400 ° C for 1 hour, (2) heat treatment at 500 ° C for 1 hour, and (3) heat treatment at 600 ° C for 1 hour. After the sample was prepared, it was put in a vial containing water to observe the water absorption, and the hydrophobic holding power was evaluated.
  • the airgel blankets of Examples 1 and 2 prepared by using the airgel powder in the preparation of the airgel precursor showed high hydrophobic retention even at high temperature heat treatment, but Comparative Examples 1 and 2 Aerogel blanket lost its hydrophobicity by high temperature heat treatment.
  • the aerogel blanket of Comparative Example 2 using a hydrophilic powder lost hydrophobicity and settled even after heat treatment at a relatively low temperature of 400 ° C. From these results, it can be expected that hydrophilicity at high temperature is easily weakened when hydrophilic powder is used, and durability at high temperature is easily reduced.
  • M represents a monofunctional group [Si (OSi) (R x ) 3 ], which is derived from hexamethyldisilazane (HMDS) used in the preparation of the airgel powder, wherein R x is a methyl group. being).
  • D represents a difunctional group [Si (OSi) 2 (R y ) 2 and Si (OSi0) (R z ) 2 (OR w )], which is derived from polydimethylsiloxane (PDMS), which is a surface modifier.
  • PDMS polydimethylsiloxane
  • Example 2 is a peak derived from hexamethyldisilazane (HMDS) used to prepare hydrophobic airgel powder added even though NMR analysis was performed on any part of the airgel. ), It was found that the added hydrophobic airgel powder was uniformly distributed throughout the airgel. This is in accordance with the expectation that the hydrophobic airgel powder is uniformly dispersed in the ethanol-based silica sol of Example 2 because of its high dispersibility in the ethanol solution.
  • HMDS hexamethyldisilazane
  • the added hydrophobic airgel powder is uniformly distributed not only on the surface structure of the finally prepared airgel but also on the internal structure. Accordingly, the airgel blanket of the present invention has high hydrophobicity compared to the conventional airgel blanket. It can be confirmed that the hydrophobic holding power is excellent even at high temperatures.
  • the airgels of Examples 1 and 2 prepared using airgel powder in the preparation of the airgel precursor showed excellent hydrophobic holding power over a wide temperature range, and compared with the loss of most of the hydrophobic groups, especially at ultrahigh temperatures of 500 ° C. or higher.
  • the airgels of Examples 1 and 2 still had about 6% of the hydrophobic group remaining at 500 ° C. or higher, indicating that they exhibited excellent high temperature stability compared to Comparative Example 1.
  • the airgel blanket prepared by using the airgel powder in the preparation of the airgel precursor according to an embodiment of the present invention has excellent hydrophobicity on the surface and the inside can maintain the hydrophobicity stable even at high temperature application It can be seen that.

Abstract

The present invention relates to a method for manufacturing an aerogel blanket having excellent hydrophobicity at a high temperature, and an aerogel blanket manufactured thereby. The present invention mixes a silica sol and a hydrophobic aerogel powder so as to use the same as an aerogel precursor, thereby enabling a hydrophobic aerogel to be present in the aerogel surface structure, contained in an aerogel blanket, and even in the internal structure thereof, and thus the present invention can have high hydrophobicity and can have excellent hydrophobicity retentiveness even during high temperature application.

Description

에어로겔 블랑켓의 제조방법 및 이로부터 제조된 에어로겔 블랑켓Method for manufacturing airgel blanket and airgel blanket prepared therefrom
관련출원과의 상호인용Citation with Related Applications
본 출원은 2016년 03월 08일자 한국 특허 출원 제10-2016-0027784호, 2016년 09월 26일자 한국 특허 출원 제10-2016-0123394호, 2017년 03월 08일자 한국 특허 출원 제10-2017-0029619호, 제10-2017-0029620호 및 제10-2017-0029621호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application is filed with Korean Patent Application No. 10-2016-0027784 filed March 08, 2016, Korean Patent Application No. 10-2016-0123394 filed September 26, 2016, and Korean Patent Application No. 10-2017 dated March 08, 2017 Claims the benefit of priority based on -0029619, 10-2017-0029620 and 10-2017-0029621, all the contents disclosed in the documents of the relevant Korean patent application are incorporated as part of this specification.
기술분야Technical Field
본 발명은 고온 소수성이 우수한 에어로겔 블랑켓의 제조방법 및 이를 이용하여 제조된 에어로겔 블랑켓에 관한 것이다. The present invention relates to a method for producing an airgel blanket having excellent high temperature hydrophobicity, and to an airgel blanket prepared using the same.
에어로겔(aerogel)은 90 % ~ 99.9 % 정도의 기공율과 1 nm ~ 100 nm 범위의 기공크기를 갖는 초다공성의 고비표면적(≥≥500 m2/g) 물질로서, 뛰어난 초경량/초단열/초저유전 등의 특성을 갖는 재료이기 때문에 에어로겔 소재 개발연구는 물론 투명단열재 및 환경 친화적 고온형 단열재, 고집적 소자용 극저유전 박막, 촉매 및 촉매 담체, 슈퍼 커패시터용 전극, 해수 담수화용 전극 재료로서의 응용연구도 활발히 진행되고 있다 Aerogel is an ultra-porous, high specific surface area (≥≥500 m 2 / g) material with a porosity of about 90% to 99.9% and a pore size in the range of 1 nm to 100 nm. As it is a material with such characteristics, it is also actively researching the development of aerogel materials, as well as researching transparent insulation materials and environment-friendly high-temperature insulation materials, ultra-low dielectric films for highly integrated devices, catalysts and catalyst carriers, electrodes for supercapacitors, and electrode materials for seawater desalination. Going on
에어로겔의 가장 큰 장점은 종래 스티로폼 등의 유기 단열재보다 낮은 0.300 W/mK 이하의 열전도율을 보이는 슈퍼단열성(super-insulation)이다. 또한, 유기단열재의 치명적인 약점인 화재 취약성과 화재시 유해가스 발생을 해결할 수도 있다. The biggest advantage of the airgel is super-insulation, which exhibits a thermal conductivity of 0.300 W / mK or lower, which is lower than that of conventional thermal insulation materials such as styrofoam. In addition, it is possible to solve the fire vulnerability and the generation of harmful gases during the fire, which is a fatal weakness of the organic insulation.
그러나, 에어로겔은 제조공정이 복잡하고, 제조단가가 높기 때문에 이러한 우수한 소재 특성을 가지고 있음에도 불구하고 극히 제한된 용도에만 사용되고 있는 실정이다. 또한, 높은 기공율로 인하여 기계적인 강도가 매우 취약하여 조그마한 충격에도 쉽게 깨지기 쉬운 단점이 있다. 따라서, 최근에는 이러한 에어로겔 자체의 단점들을 보완하고 여러 가지 형태로 가공이 가능하게 하는 에어로겔 블랑켓 복합화 기술이 연구되고 있다. However, aerogels are used only for extremely limited applications despite the excellent material properties due to the complicated manufacturing process and high manufacturing cost. In addition, due to high porosity, the mechanical strength is very weak, and there is a disadvantage that it is easy to be broken even by a small impact. Therefore, in recent years, airgel blanket complexing technology has been researched that compensates for the disadvantages of the airgel itself and enables processing in various forms.
에어로겔 블랑켓(aerogel blanket)은 에어로겔 소재를 복합화하여 매트리스나 시트 형태로 만든 것을 나타내는 것으로, 유연성이 있어 굽히거나 접거나 또는 자를 수 있는 특징을 가지고 있다. 이에, 파이프의 단열이나 의류 등과 같은 곳에도 응용이 가능하고 여러 가지 산업적인 응용 또한 가능하다. 유연성은 에어로겔 블랑켓이 섬유와 에어로겔로 구성되어 있는 복합체(composite)이기 때문에 가능한 것이다. 섬유는 에어로겔 블랑켓의 유연성과 기계적인 강도를 강화하는 역할을 하고, 에어로겔은 다공성으로 인한 단열 특성을 부여한다. 섬유의 특징과 에어로겔의 특징을 복합화하여 서로의 장점을 살리고 단점을 보완한 것이 에어로겔 블랑켓의 핵심적인 복합화 기술이다.Aerogel blanket (aerogel blanket) is a composite of aerogel material to represent a made in the form of a mattress or sheet, it has the flexibility to bend, fold or cut features. Therefore, it can be applied to places such as pipe insulation or clothing, and also various industrial applications. Flexibility is possible because the airgel blanket is a composite consisting of fibers and aerogels. Fibers enhance the flexibility and mechanical strength of aerogel blankets, and aerogels impart insulation properties due to porosity. The core composite technology of the airgel blanket is to combine the characteristics of the fiber and the characteristics of the airgel to take advantage of each other's advantages and to compensate for the disadvantages.
이러한, 에어로겔 블랑켓은 기존의 폴리머 단열재인 폴리스티로폼이나 폴리우레탄폼 보다 내열성 및 단열성이 우수한 신소재로서, 향후 전개되는 에너지 절약 및 환경문제를 해결할 수 있는 첨단소재로 주목을 받고 있다.The airgel blanket is a new material having excellent heat resistance and heat insulation properties than polystyrene foam or polyurethane foam, which is an existing polymer insulation material, and is attracting attention as an advanced material that can solve energy saving and environmental problems in the future.
종래 에어로겔 블랑켓은 물유리 또는 알콕사이드계 전구체로부터 얻어진 실리카 졸에 섬유를 혼합하여 겔화시킨 후, 숙성, 표면개질 및 건조하여 제조하였다. 그러나 종래 방법으로 제조된 에어로겔 블랑켓의 경우 표면에서만 주로 소수성 개질이 일어나기 때문에 400 ℃ 이상의 고온 소성 시 쉽게 소수성을 잃는 문제가 있다. 소성 시 온도가 높아질수록 에어로겔 기공 내부의 소수화기, 예를 들면 메틸기 또는 에틸기 등이 연소되어 소수성을 잃게 된다. 이와 같이 소수성을 잃을 경우 수분 침투에 의해 단열 성능이 저하될 뿐 아니라 침투된 수분의 증발 과정에서 수축에 의해 기공구조가 무너져 영구적으로 단열 성능을 잃게 된다. Conventional airgel blankets were prepared by mixing and gelling fibers in silica sol obtained from water glass or alkoxide precursors, followed by aging, surface modification and drying. However, in the case of the airgel blanket prepared by the conventional method, since hydrophobic modification mainly occurs only on the surface, there is a problem in that the hydrophobicity is easily lost during high temperature firing at 400 ° C. or higher. As the temperature increases during firing, hydrophobic groups, such as methyl or ethyl groups, in the airgel pores are burned and lose hydrophobicity. As such, when the hydrophobicity is lost, the thermal insulation performance is not only degraded by water infiltration, but the pore structure is collapsed by shrinkage during the evaporation of the infiltrated water, thereby permanently losing the thermal insulation performance.
예컨대, 미국특허 제5,789,075호에는 실리카 졸의 전구체로서 물유리 또는 알콕사이드계 전구체를 단독으로 사용하여 에어로겔 블랑켓을 제조하는 방법을 개시하고 있으나, 물유리만을 단독으로 사용한 경우에는 건조 시 스프링백(spring-back) 효과가 일어나지 않아서 두께가 줄어들어 90 % 이상의 기공율을 나타내지 못하여 열전도율이 높은 단점이 있으며, 알콕사이드계 전구체를 단독으로 사용한 경우에는 처음에는 열전도율 등의 특성이 우수하나 고온 처리시 쉽게 소수성을 잃어 단열재로서의 기능을 못하는 문제가 있을 뿐 아니라 알콕사이드계 전구체가 고가이기 때문에 비경제적이라는 문제점이 있다.For example, U.S. Patent No. 5,789,075 discloses a method for preparing an airgel blanket using water glass or an alkoxide precursor alone as a precursor of a silica sol, but spring-back when drying is used when water glass alone is used. ) It has a disadvantage of high thermal conductivity because it does not show the porosity of more than 90% due to the reduced thickness because the effect does not occur.In the case of using an alkoxide-based precursor alone, it has excellent properties such as thermal conductivity at first, but it loses hydrophobicity easily at high temperature and functions as an insulating material. In addition to the problem of not having a problem, because the alkoxide precursor is expensive, there is a problem that is uneconomical.
따라서, 에어로겔 블랑켓을 단열재 등에 이용하기 위해서는 소수화기가 기공 내에 안정적으로 존재함으로써 고온에서도 소수성을 유지하여 고온 내구성이 악화되는 것을 방지하는 것이 중요하며, 이에 고온에서도 적용 가능한 에어로겔 블랑켓을 제조할 수 있는 기술이 필요한 실정이다.Therefore, in order to use the airgel blanket in a heat insulating material, it is important to keep the hydrophobic group in the pores stably so as to maintain hydrophobicity at high temperatures and to prevent deterioration of high temperature durability, and thus to produce an airgel blanket applicable to high temperatures. There is a need for technology.
(특허문헌 1) US 5,789,075 B(Patent Document 1) US 5,789,075 B
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 고온에서도 우수한 소수성을 유지할 수 있는 고온 초소수성의 에어로겔 블랑켓의 제조방법을 제공하는 것을 목적으로 한다.The present invention has been made to solve the problems of the prior art as described above, and an object of the present invention is to provide a method for producing a high temperature superhydrophobic airgel blanket that can maintain excellent hydrophobicity even at high temperatures.
본 발명의 다른 목적은 상기 제조방법으로부터 제조된 고온 초소수성의 에어로겔 블랑켓을 제공하는 것이다. Another object of the present invention is to provide a high temperature superhydrophobic airgel blanket prepared from the above method.
상기의 과제를 해결하기 위하여 본 발명은, 1) 실리카 졸에 에어로겔 분말을 혼합하여 에어로겔 전구체를 준비하는 단계; 2) 상기 에어로겔 전구체에 염기성 촉매를 첨가하고 블랑켓용 기재에 침적시킨 후 겔화시켜 습윤겔-기재 복합체를 준비하는 단계; 3) 상기 습윤겔-기재 복합체에 대해 표면개질을 수행하여 소수성의 습윤겔-기재 복합체를 준비하는 단계; 및 4) 상기 소수성의 습윤겔-기재 복합체를 건조하는 단계를 포함하는 에어로겔 블랑켓의 제조방법을 제공한다.The present invention to solve the above problems, 1) preparing an airgel precursor by mixing the airgel powder in a silica sol; 2) preparing a wet gel-based composite by adding a basic catalyst to the airgel precursor, depositing the gel on a blanket substrate, and then gelling the gel; 3) preparing a hydrophobic wet gel-based composite by performing surface modification on the wet gel-based composite; And 4) it provides a method for producing an airgel blanket comprising the step of drying the hydrophobic wet gel-based composite.
또한, 본 발명은 에어로겔 및 블랑켓용 기재를 포함하고, 상기 에어로겔은 400 ℃ 이상 500 ℃ 미만의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 하기 수학식 2로 계산되는 탄소 함량 유지율이 하기 1) 내지 5) 중 적어도 어느 하나를 만족하는 에어로겔 블랑켓을 제공한다. In addition, the present invention comprises a substrate for aerogels and blankets, the airgel is heat treated for 1 to 5 hours at a temperature of 400 ℃ or more than less than 500 ℃, the carbon content retention calculated by the following formula 2 is 1) To provide an airgel blanket that satisfies at least one of the 5).
[수학식 2][Equation 2]
탄소 함량 유지율(%) = (열처리 후의 에어로겔의 탄소 함량(중량%)) / (에어로겔의 최초 탄소 함량(중량%))Carbon content retention rate (%) = (carbon content of airgel after heat treatment (% by weight)) / (original carbon content of airgel (% by weight))
1) 1 시간 동안 열처리한 경우 75 % 이상1) More than 75% when heat treated for 1 hour
2) 2 시간 동안 열처리한 경우 65 % 이상2) 65% or more when heat treated for 2 hours
3) 3 시간 동안 열처리한 경우 60 % 이상3) 60% or more when heat treated for 3 hours
4) 4 시간 동안 열처리한 경우 59 % 이상4) 59% or more when heat treated for 4 hours
5) 5 시간 동안 열처리한 경우 58 % 이상5) 58% or more when heat treated for 5 hours
또한, 본 발명은 에어로겔 및 블랑켓용 기재를 포함하고, 상기 에어로겔은 500 ℃ 이상 600 ℃ 이하의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 하기 수학식 2로 계산되는 탄소 함량 유지율이 13 % 이상인 것인 에어로겔 블랑켓을 제공한다.In addition, the present invention comprises a substrate for aerogels and blankets, wherein the airgel heat treatment for 1 to 5 hours at a temperature of 500 ℃ to 600 ℃ or less, the carbon content retention calculated by Equation 2 is 13% or more To provide an airgel blanket.
[수학식 2][Equation 2]
탄소 함량 유지율(%) = (열처리 후의 에어로겔의 탄소 함량(중량%)) / (에어로겔의 최초 탄소 함량(중량%))Carbon content retention rate (%) = (carbon content of airgel after heat treatment (% by weight)) / (original carbon content of airgel (% by weight))
더 나아가, 본 발명은 상기 에어로겔 블랑켓을 포함하는 단열재를 제공한다.Furthermore, the present invention provides a heat insulating material comprising the airgel blanket.
본 발명의 제조방법에 의해 고온에서도 우수한 소수성을 유지할 수 있는 고온 초소수성의 에어로겔 블랑켓을 제조할 수 있다. By the production method of the present invention, it is possible to produce a high temperature superhydrophobic airgel blanket capable of maintaining excellent hydrophobicity even at high temperatures.
또, 상기 제조방법에 따라 제조된 에어로겔 블랑켓은 에어로겔 표면뿐만 아니라 에어로겔 내부 구조에도 소수화가 이루어져 있어 고소수성을 나타낼 수 있으며, 고온 적용 시에도 소수성 유지력이 우수하여 열전도도 증가율이 높지 않은 바, 단열재로서 유용한 효과가 있다. In addition, the airgel blanket prepared according to the manufacturing method has a hydrophobicity is made not only on the surface of the airgel but also the internal structure of the airgel can exhibit high hydrophobicity, excellent hydrophobic holding power even at high temperature application, the thermal conductivity increase rate is not high, heat insulating material As a useful effect.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the contents of the present invention serve to further understand the technical spirit of the present invention, the present invention is limited to the matters described in such drawings. It should not be construed as limited.
도 1은 본 발명의 일 실시예에 따른 에어로겔 블랑켓의 제조방법의 순서도를 개략적으로 나타낸 것이다. Figure 1 schematically shows a flow chart of a method of manufacturing an airgel blanket according to an embodiment of the present invention.
도 2는 실시예 및 비교예의 에어로겔을 400 ℃에서 1 시간 내지 5 시간 동안 열처리한 후의 에어로겔에 포함된 탄소 함량을 측정한 그래프이다. Figure 2 is a graph measuring the carbon content contained in the airgel after the heat treatment of the airgel of Examples and Comparative Examples at 400 ℃ for 1 hour to 5 hours.
도 3은 실시예 및 비교예의 에어로겔을 500 ℃에서 1 시간 내지 5 시간 동안 열처리한 후의 에어로겔에 포함된 탄소 함량을 측정한 그래프이다. Figure 3 is a graph measuring the carbon content contained in the airgel after the heat treatment of the airgel of the Examples and Comparative Examples at 500 ℃ for 1 hour to 5 hours.
도 4는 실시예 및 비교예의 에어로겔을 600 ℃에서 1 시간 내지 5 시간 동안 열처리한 후의 에어로겔에 포함된 탄소 함량을 측정한 그래프이다. Figure 4 is a graph measuring the carbon content contained in the airgel after the heat treatment of the airgel of Examples and Comparative Examples at 600 ℃ for 1 hour to 5 hours.
도 5는 실시예 및 비교예의 에어로겔 블랑켓을 400 ℃에서 1 시간 내지 5 시간 동안 열처리한 후의 에어로겔 블랑켓의 열전도도를 측정한 그래프이다. Figure 5 is a graph measuring the thermal conductivity of the airgel blanket after heat treatment of the airgel blanket of Examples and Comparative Examples at 400 ℃ for 1 hour to 5 hours.
도 6은 실시예 및 비교예의 에어로겔 블랑켓을 500 ℃에서 1 시간 내지 5 시간 동안 열처리 한 후의 에어로겔 블랑켓의 열전도도를 측정한 그래프이다. Figure 6 is a graph measuring the thermal conductivity of the airgel blanket after heat treatment of the airgel blanket of Examples and Comparative Examples at 500 ℃ for 1 hour to 5 hours.
도 7은 실시예 및 비교예의 에어로겔 블랑켓을 600 ℃에서 1 시간 내지 5 시간 동안 열처리한 후의 에어로겔 블랑켓의 열전도도를 측정한 그래프이다.Figure 7 is a graph measuring the thermal conductivity of the airgel blanket after heat treatment of the airgel blanket of Examples and Comparative Examples at 600 ℃ for 1 hour to 5 hours.
도 8은 실시예 및 비교예의 에어로겔 블랑켓을 400 ℃에서 1 시간 동안 열처리한 후의 에어로겔 블랑켓의 소수성 유지력을 비교 분석한 사진이다. 8 is a photograph of comparative analysis of the hydrophobic holding force of the airgel blanket after the heat treatment of the airgel blanket of Examples and Comparative Examples for 1 hour at 400 ℃.
도 9는 실시예 및 비교예의 에어로겔 블랑켓을 500 ℃에서 1 시간 동안 열처리한 후의 에어로겔 블랑켓의 소수성 유지력을 비교 분석한 사진이다.9 is a photograph of comparative analysis of the hydrophobic holding force of the airgel blanket after heat treatment of the airgel blanket of Examples and Comparative Examples at 500 ℃ for 1 hour.
도 10은 실시예 및 비교예의 에어로겔 블랑켓을 600 ℃에서 1 시간 동안 열처리한 후의 에어로겔 블랑켓의 소수성 유지력을 비교 분석한 사진이다.10 is a photograph of comparative analysis of the hydrophobic retention of the airgel blanket after heat treatment of the airgel blanket of Example and Comparative Example at 600 ℃ for 1 hour.
도 11은 실시예 및 비교예의 에어로겔에 대한 열중량 분석 (Thermogravimetric analysis, TGA) 결과를 나타낸 그래프이다.11 is a graph showing the results of thermogravimetric analysis (TGA) for the airgel of the Examples and Comparative Examples.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 발명으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. The terms or words used in this specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors may appropriately define the concept of terms in order to describe their own invention as the best invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
일반적으로 에어로겔 블랑켓은 물유리 또는 알콕시실란을 단독 또는 혼합하여 실리카 졸을 제조하거나(이하, 방법 1로 칭함), 또는 소수화된 에어로겔 분말에 바인더를 혼합 사용하여 졸을 제조(이하, 방법 2로 칭함)한 후, 여기에 섬유 등의 블랑켓용 기재를 혼합하고 겔화, 숙성, 표면개질 및 건조하여 제조한다. 그러나, 상기 방법 1로 에어로겔 블랑켓을 제조할 경우에는 표면개질이 대부분 표면에만 이루어져 내부까지 소수성으로 개질되기 어렵고, 그 결과 고온에서 쉽게 소수성을 잃는 문제가 발생할 수 있다. 또한, 상기 방법 2로 에어로겔 블랑켓을 제조할 경우에는 내부까지 소수화된 에어로겔 분말을 이용하기 때문에 고온에서도 소수성 유지는 가능하나, 바인더 사용으로 인해 열전도율이 증가되고 또, 약한 바인딩으로 인해 에어로겔 분진(dust)이 많이 발생하는 단점이 있다. In general, aerogel blankets are used to prepare silica sol alone or in combination with water glass or alkoxysilane (hereinafter referred to as Method 1), or to prepare a sol by mixing a binder with a hydrophobized airgel powder (hereinafter referred to as Method 2). And then, it is prepared by mixing the base material for the blanket such as fibers, gelation, aging, surface modification and drying. However, when the airgel blanket is manufactured by the method 1, the surface modification is mostly made only on the surface, so that it is difficult to be hydrophobically modified to the inside, and as a result, a problem of easily losing hydrophobicity at a high temperature may occur. In addition, when the airgel blanket is manufactured by the method 2, the hydrogel is hydrophobic to the inside, so hydrophobicity can be maintained even at a high temperature. However, the thermal conductivity is increased due to the use of a binder. ) Has a lot of disadvantages.
따라서, 열전도율 특성이 우수하면서 고온에서도 소수성 유지력이 우수하여 높은 단열 특성을 유지할 수 있는 고온 초소수성의 에어로겔 블랑켓의 개발이 필요하다. Therefore, it is necessary to develop a high temperature super hydrophobic airgel blanket capable of maintaining high thermal insulation properties while maintaining excellent thermal conductivity and excellent hydrophobic retention at high temperatures.
이에 대해, 본 발명에서는 실리카 졸에, 에어로겔 분말, 특히 소수성의 실리카 에어로겔 분말 또는 에어로겔 분말 표면에 유기 관능기를 1 이상 포함하는 유기 관능화 에어로겔 분말을 혼합 사용함으로써, 열전도율 특성이 우수하면서도 고온에서의 소수성 유지력이 우수한 에어로겔 블랑켓을 제조할 수 있는 방법을 제공한다. In the present invention, on the other hand, by using a silica gel sol mixed with an aerogel powder, especially a hydrophobic silica airgel powder or an organic functionalized airgel powder containing one or more organic functional groups on the surface of the aerogel powder, hydrophobicity at high temperature while excellent in thermal conductivity characteristics Provided is a method for producing an airgel blanket having excellent retention.
이하, 도 1에 의하여 본 발명의 일 실시예에 따른 에어로겔 블랑켓의 제조방법을 구체적으로 설명한다. Hereinafter, a method of manufacturing an airgel blanket according to an embodiment of the present invention will be described in detail with reference to FIG. 1.
도 1은 본 발명의 일 실시예에 따른 상기 제조방법의 순서도를 개략적으로 나타낸 것으로, 본 발명을 설명하기 위한 일 예일 뿐 본 발명이 이에 한정되는 것은 아니다. Figure 1 schematically shows a flow chart of the manufacturing method according to an embodiment of the present invention, it is only an example for explaining the present invention is not limited thereto.
본 발명의 일 실시예에 따른 상기 에어로겔 블랑켓의 제조방법은,Method for producing the airgel blanket according to an embodiment of the present invention,
1) 실리카 졸에 에어로겔 분말을 혼합하여 에어로겔 전구체를 준비하는 단계;1) preparing an airgel precursor by mixing the airgel powder in a silica sol;
2) 상기 에어로겔 전구체에 염기성 촉매를 첨가하고 블랑켓용 기재에 침적시킨 후 겔화시켜 습윤겔-기재 복합체를 준비하는 단계;2) preparing a wet gel-based composite by adding a basic catalyst to the airgel precursor, depositing the gel on a blanket substrate, and then gelling the gel;
3) 상기 습윤겔-기재 복합체에 대해 표면개질을 수행하여 소수성의 습윤겔-기재 복합체를 준비하는 단계; 및3) preparing a hydrophobic wet gel-based composite by performing surface modification on the wet gel-based composite; And
4) 상기 소수성의 습윤겔-기재 복합체를 건조하는 단계를 포함한다. 4) drying the hydrophobic wet gel-based composite.
상기 단계 1)은 에어로겔 전구체를 제조하기 위한 단계로, 상기 에어로겔 전구체는 실리카 졸에 에어로겔 분말을 혼합함으로써 제조될 수 있다.Step 1) is a step for preparing an airgel precursor, the airgel precursor may be prepared by mixing the airgel powder in a silica sol.
보다 구체적으로는 상기 에어로겔 전구체는, 알콕시실란 및 알코올을 포함한 혼합 용액에 산성 수용액을 혼합하고 반응시켜 실리카 졸을 제조하고, 여기에 상기 에어로겔 분말을 첨가하여 혼합시킴으로써 제조될 수 있다.More specifically, the airgel precursor may be prepared by mixing and reacting an acidic aqueous solution with a mixed solution containing an alkoxysilane and an alcohol to prepare a silica sol, and adding and mixing the airgel powder thereto.
상기 에어로겔 전구체의 제조 시 사용되는 실리카 졸은 에어로겔 블랑켓 제조 시 에어로겔 분말 사이에 화학적 결착제로 작용하여 에어로겔 분말의 결착력을 높이고, 균일한 겔화가 가능하도록 한다. 그 결과 고온 소수성 및 내구성을 향상시켜 높은 단열 성능을 나타낼 수 있도록 한다. 구체적으로 상기 실리카 졸은 알콕시실란 및 알코올을 포함한 혼합 용액에 산성 수용액을 혼합하여 반응시킴으로써 제조될 수 있다. The silica sol used in the preparation of the airgel precursor acts as a chemical binder between the airgel powders in preparation of the airgel blanket, thereby increasing the binding force of the airgel powders and enabling uniform gelation. As a result, high-temperature hydrophobicity and durability can be improved to exhibit high thermal insulation performance. Specifically, the silica sol may be prepared by mixing an acidic aqueous solution with a mixed solution containing an alkoxysilane and an alcohol.
상기 실리카 졸의 제조에 사용가능한 알콕시실란은 구체적으로 테트라에틸오르소실리케이트(TEOS), 테트라메틸오르소실리케이트(TMOS) 또는 트리알콕시실란(trialkoxysilane) 등일 수 있으며, 이 중 1 종 이상을 포함하는 혼합물이 사용될 수 있다. 보다 구체적으로 본 발명의 상기 알콕시실란은 테트라에틸오르소실리케이트일 수 있다. The alkoxysilanes usable in the preparation of the silica sol may specifically be tetraethylorthosilicate (TEOS), tetramethylorthosilicate (TMOS) or trialkoxysilane (trialkoxysilane) and the like, a mixture comprising one or more of them. This can be used. More specifically, the alkoxysilane of the present invention may be tetraethylorthosilicate.
또, 상기 실리카 졸의 제조에 사용 가능한 알코올은 특별히 제한되는 것은 아니나 예컨대 에탄올 등 탄소수 1 내지 6의 알코올일 수 있으며, 혼합 용액 내 포함된 실리카의 함량이 2 중량% 내지 6 중량%, 보다 구체적으로는 3 중량% 내지 5 중량%가 되도록 하는 양으로 첨가될 수 있다. In addition, the alcohol that can be used to prepare the silica sol is not particularly limited, but may be, for example, an alcohol having 1 to 6 carbon atoms such as ethanol, and the content of silica contained in the mixed solution is 2 to 6 wt%, more specifically May be added in an amount such that from 3% to 5% by weight.
또, 상기 실리카 졸의 제조에 사용되는 산성 수용액은 산성 촉매 및 물을 포함하는 것을 특징으로 한다.In addition, the acidic aqueous solution used for the production of the silica sol is characterized in that it contains an acidic catalyst and water.
상기 물은 알콕시실란을 수화시키는 역할을 하는 동시에, 산성 촉매를 용해시키는 용매로서 작용한다. 이에 따라 상기 물은 산성 촉매와 별도로 단독으로 첨가될 수도 있고, 또는 산성 촉매를 용해시킨 산성 수용액으로 첨가될 수도 있다. The water serves to hydrate the alkoxysilane and at the same time serves as a solvent to dissolve the acidic catalyst. Accordingly, the water may be added separately from the acidic catalyst, or may be added as an acidic aqueous solution in which the acidic catalyst is dissolved.
상기 산성 촉매는 알콕시실란의 수화 반응을 촉진시키기 위한 촉매로서, 상기 혼합용액 내 pH가 0.5 내지 1이 되도록 하는 양으로 사용될 수 있다. 상기 산성 촉매로는 구체적으로 염산, 황산, 질산 또는 아세트산 등을 들 수 있으며, 이 중 1 종 이상을 포함하는 혼합물이 사용될 수 있다. The acidic catalyst is a catalyst for promoting the hydration reaction of the alkoxysilane, and may be used in an amount such that the pH in the mixed solution is 0.5 to 1. Specific examples of the acidic catalyst may include hydrochloric acid, sulfuric acid, nitric acid, acetic acid, and the like, and a mixture including one or more of them may be used.
한편, 상기 에어로겔 전구체 제조를 위하여 상기한 실리카 졸과 혼합되는 에어로겔 분말은 구체적으로 실리카 에어로겔 분말일 수 있으며, 보다 구체적으로는 유기 관능기, 특히 소수성 작용기를 갖는 화합물을 이용한 표면 변형 등을 통해 표면이 유기 관능화, 구체적으로는 실릴화, 또는 소수화된 것일 수 있다. 이와 같이 소수화된 에어로겔 분말은 상기 실리카 졸과 혼합되어 에어로겔 블랑켓 제조를 위한 전구체로 사용됨으로써 에어로겔 블랑켓의, 특히 내부의 소수성을 향상시키는 역할을 한다.Meanwhile, the airgel powder mixed with the silica sol for preparing the airgel precursor may specifically be a silica airgel powder, and more specifically, the surface may be organic by surface modification using an organic functional group, especially a compound having a hydrophobic functional group. Functionalized, specifically, silylated or hydrophobized. The hydrophobized airgel powder is mixed with the silica sol to be used as a precursor for preparing the airgel blanket, thereby improving hydrophobicity of the airgel blanket, particularly in the interior thereof.
구체적으로, 본 발명의 일 실시예에 따르면 상기 에어로겔 전구체 제조를 위하여 상기한 실리카 졸과 혼합되는 에어로겔 분말은 에어로겔의 내부 표면 상에 적어도 1 개, 보다 구체적으로는 1 개, 2 개 또는 3 개의 동일하거나 상이한 유기 관능기 포함 유기 관능화 에어로겔 분말일 수 있다. Specifically, according to an embodiment of the present invention, the airgel powder mixed with the silica sol for preparing the airgel precursor is at least one, more specifically one, two or three identical on the inner surface of the airgel Or an organic functionalized airgel powder comprising different organic functional groups.
한편, 상기 유기 관능기는 유기기 내에 헤테로 원자의 존재에 의해 형성되는 극성 원자 결합을 갖는 구조를 의미하는 것으로, 에어로겔 표면의 히드록시기 또는 에테르기와 반응할 수 있다. 구체적으로는 상기 관능기로는 할로겐기, 슈도 할로겐기, 히드록실기, 티오기, 아미노기, 아미드기, 에테르기, 에스테르기, 산기, 포르밀기, 케톤기 또는 실릴기 등을 들 수 있다. On the other hand, the organic functional group means a structure having a polar atom bond formed by the presence of a hetero atom in the organic group, it can react with a hydroxyl group or an ether group on the surface of the airgel. Specific examples of the functional group include a halogen group, a pseudo halogen group, a hydroxyl group, a thio group, an amino group, an amide group, an ether group, an ester group, an acid group, a formyl group, a ketone group or a silyl group.
또, 상기한 관능기를 포함하는 탄화수소기는 분지되거나 또는 분지되지 않은 탄소수 1 내지 22, 보다 구체적으로는 탄소수 1 내지 12의 알킬기일 수 있다. 이때, 상기 알킬기 내 1 이상의 메틸렌기(-CH2-)기는 -O-, -S-, -CO-, -COO-, -O-CO-O-, -CONR'-, -SO-, -SO2-, -NH-CO-NH-, 탄소수 3 내지 6의 사이클로알킬렌기, -CH=CH-, 또는 헤테로 원자(예를 들면 N, S 또는 O 등)를 포함할 수도 있는 탄소수 4 내지 10의 아릴렌기에 의해 치환될 수도 있고, 또는 상기 알킬기 내 1 이상의 수소원자는 F, Cl, Br, I, CN, SCN, -NCO, -OCN, -NO2, -SO3R", -PR"'2, 및 -CHO 중 적어도 1종의 작용기에 의해 치환될 수 있다(이때, 상기 R', R" 및 R"'은 각각 독립적으로 수소원자, 탄소수 1 내지 12의 알킬기, 탄소수 6 내지 12의 아릴기, 또는 벤질기 등의 탄소수 7 내지 12의 아릴알킬기일 수 있다.In addition, the hydrocarbon group containing the aforementioned functional group may be an alkyl group having 1 to 22 carbon atoms, more specifically, 1 to 12 carbon atoms, branched or unbranched. At least one methylene group (-CH 2- ) in the alkyl group is -O-, -S-, -CO-, -COO-, -O-CO-O-, -CONR'-, -SO-,- 4-10 carbons which may contain SO 2- , -NH-CO-NH-, a cycloalkylene group having 3 to 6 carbon atoms, -CH = CH-, or a hetero atom (for example, N, S or O, etc.) It may be substituted by an arylene group, or one or more hydrogen atoms in the alkyl group is F, Cl, Br, I, CN, SCN, -NCO, -OCN, -NO 2 , -SO 3 R ", -PR" It can be substituted by at least one functional group of ' 2 , and -CHO (wherein R', R "and R"'are each independently a hydrogen atom, an alkyl group of 1 to 12 carbon atoms, of 6 to 12 carbon atoms Or an arylalkyl group having 7 to 12 carbon atoms such as an aryl group or a benzyl group.
구체적으로, 상기 유기 관능화 에어로겔 분말은 하기 a) 내지 d)로 이루어진 군에서 선택되는 어느 하나의 에어로겔 분말일 수도 있다:Specifically, the organic functionalized airgel powder may be any one airgel powder selected from the group consisting of a) to d):
a) 하기 식 (I)의 관능기를 포함하는 에어로겔a) an airgel containing a functional group of the following formula (I)
-X-Y (I)-X-Y (I)
(식 중, X는 탄소수 1 내지 22의 직쇄 또는 분지쇄의 알킬렌기이고, Y는 할로겐기, 슈도할로겐기, -SR1, -PR2R3, 옥시란기 또는 CH2=C(CH3)-COO-이며, 이때, R1은 수소원자, 탄소수 1 내지 22의 직쇄 또는 분지쇄의 알킬기, 또는 탄소수 4 내지 10의 아릴기이며, R2 및 R3은 각각 독립적으로 탄소수 1 내지 22의 직쇄 또는 분지쇄의 알킬기 또는 탄소수 4 내지 10의 아릴기일 수 있다.Wherein X is a linear or branched alkylene group having 1 to 22 carbon atoms, Y is a halogen group, pseudohalogen group, -SR 1 , -PR 2 R 3 , oxirane group or CH 2 = C (CH 3 ) -COO-, and wherein, R 1 is an alkyl group of straight or branched chain of hydrogen atoms, containing 1 to 22 carbon atoms, or an aryl group having 4 to 10, R 2 and R 3 are, each independently containing 1 to 22 carbon atoms It may be a linear or branched alkyl group or an aryl group having 4 to 10 carbon atoms.
b) 에테르 브리지를 통해 에어로겔에 결합가능한, 하기 식 (II)의 아미노 알코올로 변성시킨 에어로겔b) an airgel modified with an amino alcohol of formula (II), which is capable of binding to the airgel via an ether bridge
R4-NH-R5-OH (II)R 4 -NH-R 5 -OH (II)
(식 중, R4는 수소원자; 탄소수 1 내지 4의 알킬기; 및 -(CH2)3-OH 등과 같은 히드록시알킬기로 이루어진 군에서 선택되고, R5는 탄소수 1 내지 4의 알킬렌기이다)Wherein R 4 is a hydrogen atom; an alkyl group having 1 to 4 carbon atoms; and a hydroxyalkyl group such as — (CH 2 ) 3 —OH, and R 5 is an alkylene group having 1 to 4 carbon atoms)
c) -(CH2)3-NH2 또는―(CH2)3-NH-(CH2)3-NH2와 같은 아미노알킬기로 변성시킨 에어로겔 c) - (CH 2) 3 -NH 2 or - (CH 2) 3 -NH- ( CH 2) amino-modified airgel having an alkyl group such as 3 -NH 2
d) 하기 식 (III)의 작용기로 변성시킨 에어로겔d) aerogels modified with a functional group of formula (III)
R6R7N-(CHR8)a-N(R9)-(CHR10)b-Si(OR11)3 (III)R 6 R 7 N- (CHR 8 ) a -N (R 9 )-(CHR 10 ) b -Si (OR 11 ) 3 (III)
(식 중, R6은 탄소수 1 내지 8의 알킬기이고, R7, R8 및 R11은 각각 독립적으로 수소원자, 탄소수 1 내지 4의 알킬기 및 페닐기와 같은 탄소수 6 내지 10의 아릴기로 이루어진 군에서 선택되고, R9 및 R10은 각각 독립적으로 수소원자 또는 탄소수 1 내지 4의 알킬기이고, a는 1 내지 4의 정수이고, b는 1 내지 8의 정수이며, 이들 작용기는 Pd, Pt, Ni, Co 및 Cu로 이루어진 군에서 선택되는 금속원소와 착체 형성하고 있다)Wherein R 6 is an alkyl group having 1 to 8 carbon atoms, and R 7 , R 8 and R 11 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms and an aryl group having 6 to 10 carbon atoms such as a phenyl group is selected and, R 9 and R 10 are alkyl groups each independently represent a hydrogen atom or a C 1 -C 4, a is an integer from 1 to 4, b is an integer from 1 to 8, these functionalities are Pd, Pt, Ni, Complexes with a metal element selected from the group consisting of Co and Cu)
상기 유기 관능화 에어로겔 분말은, 물유리를 중축합에 의해 겔화한 실리카 습윤겔을 적어도 2 관능성의 유기 화합물과 반응시킨 뒤 건조시키는 단계에 의해 제조될 수 있다. 또한, 상기 2 관능성 유기 화합물은 에어로겔과의 결합기로 작용하는 적어도 하나의 관능기를 포함하는 것을 특징으로 하며, 보다 구체적으로 상기 2 관능성의 유기 화합물은 메틸트리클로로실란, 디메틸디클로로실란, 트리메틸클로로실란, 클로로프로필트리클로로실란, 트리메틸 메톡시실란 및 헥사메틸디실라잔으로 이루어진 군에서 선택되는 1 종 이상의 화합물을 포함할 수 있다.The organic functionalized airgel powder may be prepared by reacting a silica wet gel obtained by polycondensation of water glass with at least a bifunctional organic compound, followed by drying. In addition, the bifunctional organic compound is characterized in that it comprises at least one functional group that acts as a bonding group with the airgel, more specifically the bifunctional organic compound is methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane It may include one or more compounds selected from the group consisting of, chloropropyltrichlorosilane, trimethyl methoxysilane and hexamethyldisilazane.
이에 따라 본 발명의 일 실시예에 따른 에어로겔 블랑켓의 제조방법은 에어로겔 전구체의 준비 단계 전, 상기 유기 관능화 에어로겔 분말을 제조하는 단계를 더 포함할 수 있다. Accordingly, the method of manufacturing an airgel blanket according to an embodiment of the present invention may further include preparing the organic functionalized airgel powder before preparing an airgel precursor.
구체적으로는 상기 겔화는 물유리의 수용액에 산 이온 교환 수지 또는 무기산(mineral acid)을 첨가하여 규산을 제조하고, 이어서 강산성 또는 강염기성 중에서 중축합 반응시킴으로써 수행될 수 있다.Specifically, the gelation may be performed by adding acid ion exchange resin or mineral acid to an aqueous solution of water glass to prepare silicic acid, and then polycondensation reaction in strong acid or strong base.
또, 상기 겔화 후에는 0 ℃ 내지 100 ℃ 온도에서 pH 4 내지 pH 11에서의 숙성 공정; 및 결과의 겔에 대한 불활성의 저비점 유기 용매(예를 들면, 메탄올, 에탄올, n-프로판올, 이소프로판올 등의 지방족 알코올; 아세트산에틸 등의 에스테르; 디옥산 등의 에테르; 아세톤 또는 테트라하이드로퓨란 등의 케톤; n-헥산 또는 톨루엔 등의 지방족 또는 방향족 탄화수소 중 적어도 1종 이상)를 이용한 용매 치환 공정 중 적어도 1 이상의 공정이 선택적으로 더 수행될 수 있다. In addition, after the gelation step of aging at pH 4 to pH 11 at a temperature of 0 ℃ to 100 ℃; And inert, low boiling organic solvents for the resulting gel (for example, aliphatic alcohols such as methanol, ethanol, n-propanol, isopropanol; esters such as ethyl acetate; ethers such as dioxane; ketones such as acetone or tetrahydrofuran) at least one or more of the solvent substitution process using an aliphatic or aromatic hydrocarbon such as n-hexane or toluene) may optionally be further performed.
또, 상기 겔의 표면 관능화(변형)시 사용 가능한, 적어도 2 관능성의 유기 화합물은 상기한 유기 관능기를 적어도 하나 포함하는 화합물로서, 구체적으로는 R4-NH-R5-OH의 아미노 알코올(식 중, R4 및 R5는 앞서 정의한 바와 같다), R12 4- nSiCln 또는 R13 4- nSi(OR14)n (여기서 n는 1 내지 3의 정수이고, R12 및 R13은 각각 독립적으로 수소원자, 탄소수 1 내지 18의 직쇄 또는 분지쇄의 알킬기, 탄소수 3 내지 18의 사이클로알킬기 및 탄소수 6 내지 18의 아릴기로 이루어진 군에서 선택되는 것일 수 있고, R14는 탄소수 1 내지 18의 직쇄 또는 분지쇄의 알킬기일 수 있다. 보다 구체적으로 상기 유기 화합물로는 메틸트리클로로실란, 디메틸디클로로실란, 트리메틸클로로실란, 클로로프로필트리클로로실란, 트리메틸 메톡시실란 또는 헥사메틸디실라잔 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.In addition, the at least bifunctional organic compound which can be used at the time of surface functionalization (modification) of the gel is a compound containing at least one of the aforementioned organic functional groups, and specifically, an amino alcohol of R 4 -NH-R 5 -OH ( Wherein R 4 and R 5 are as defined above, R 12 4- n SiCl n or R 13 4- n Si (OR 14 ) n , where n is an integer from 1 to 3, and R 12 and R 13 May be each independently selected from a hydrogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 18 carbon atoms, and an aryl group having 6 to 18 carbon atoms, and R 14 is 1 to 18 carbon atoms. More specifically, the organic compound may be methyl trichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, chloropropyltrichlorosilane, trimethyl methoxysilane, or hexamethyldisilazane. Lift Were, there is any one or a mixture of two or more of them may be used.
한편, 표면 유기 관능화한 겔에 대한 건조 공정은 -30 ℃ 내지 200 ℃, 보다 구체적으로는 0 ℃ 내지 200 ℃의 온도; 및 0.001 bar 내지 20 bar, 보다 구체적으로는 0.1 bar 내지 2 bar의 압력에서 수행될 수 있으며, 겔의 잔류 용제 함유량이 0.1 중량%미만이 될 때까지 수행될 수 있다.On the other hand, the drying step for the surface organic functionalized gel is -30 ° C to 200 ° C, more specifically, a temperature of 0 ° C to 200 ° C; And 0.001 bar to 20 bar, more specifically 0.1 bar to 2 bar, and may be carried out until the residual solvent content of the gel is less than 0.1% by weight.
또, 본 발명의 다른 일 실시예에 따르면, 상기 에어로겔 전구체 제조를 위하여 상기한 실리카 졸과 혼합되는 에어로겔 분말은, 히드로겔의 표면을 실릴화(silylation)시켜 제조한, 유기 관능화 에어로겔 분말일 수 있다. In addition, according to another embodiment of the present invention, the airgel powder mixed with the silica sol for preparing the airgel precursor may be an organic functionalized airgel powder prepared by silylating the surface of the hydrogel. have.
구체적으로는 상기 실릴화된 유기 관능화 에어로겔 분말은 히드로겔, 구체적으로 실리카성 히드로겔을 표면 변형, 구체적으로는 표면 실릴화(silylation) 한 후 건조하여 제조된 것일 수 있다. 상기 실리카성 히드로겔은 물유리 수용액에 산성 이온 교환 수지, 무기산 또는 염산 용액을 첨가하여 pH를 3 이하로 제어한 후, 염기를 부가하여 중축합하고, 결과로 수득된 겔을 물로 세정하거나, 또는 물유리 용액에 유기산 또는 무기산을 첨가하여 실리카 졸의 중간단계를 거쳐 SiO2의 겔을 제조하는 단계; 및 건조 단계에 의해 제조된 것일 수 있으며, 보다 구체적으로는 실리콘 테트라클로라이드의 가수분해 및 중축합에 의해 제조된 것일 수 있다. 또, 상기 표면 변형, 구체적으로 표면 실릴화는, 히드로겔에 대해 액체, 기체 또는 수증기 상의 실릴화제를 이용하여 표면 변형시킴으로써 수행될 수 있다. 이떄 상기 실릴화제의 투입 전 또는 이후에 염기 등의 산, 또는 염기가 선택적으로 더 첨가될 수 있다. 또, 상기 실릴화제로는 하기 화학식 (IV)의 디실록산; 하기 화학식 (V)의 디실라잔; 및 하기 화학식 (VI) 또는 (VII)의 실란 중 적어도 1종 이상의 실릴화제를 겔과 반응시킴으로써 수행될 수 있다.Specifically, the silylated organic functionalized airgel powder may be prepared by surface modification of hydrogel, specifically, silica hydrogel, specifically surface silylation, and then drying. The silica hydrogel is controlled to pH 3 or less by adding an acidic ion exchange resin, an inorganic acid or hydrochloric acid solution to an aqueous glass solution, followed by polycondensation by adding a base, and washing the resulting gel with water, or a water glass solution. Preparing a gel of SiO 2 through an intermediate step of a silica sol by adding an organic acid or an inorganic acid to it; And it may be prepared by a drying step, and more specifically may be prepared by hydrolysis and polycondensation of silicon tetrachloride. The surface modification, in particular surface silylation, can also be carried out by surface modification with respect to hydrogels using a silylating agent on liquid, gas or water vapor. Thereafter, an acid such as a base or a base may be optionally further added before or after the silylating agent is added. Moreover, as said silylating agent, Disiloxane of following General formula (IV); Disilazane of formula (V); And at least one silylating agent of the silane of formula (VI) or (VII) with a gel.
(Ra1)3Si-O-Si(Ra2)3 (IV)(R a1 ) 3 Si-O-Si (R a2 ) 3 (IV)
(Rb1)3Si-N(H)-Si(Rb2)3 (V)(R b1 ) 3 Si-N (H) -Si (R b2 ) 3 (V)
(Rc)4- mSiClm (VI)(R c ) 4- m SiCl m (VI)
(Rd)4- nSi(ORe)n (VII)(R d ) 4- n Si (OR e ) n (VII)
상기 식에서 Ra1, Ra2, Rb1, Rb2, Rc, Rd 및 Re는 각각 독립적으로 수소원자이거나, 또는 비반응성, 유기, 선형, 분지형, 환형, 포화 또는 불포화, 아로메틱(aromatic) 또는 헤테로아로메틱(heteroaromatic) 라디칼일 수 있으며, 보다 구체적으로는 수소원자, 탄소수 1 내지 18의 알킬기, 탄소수 3 내지 18의 사이클로알킬기 또는 탄소수 6 내지 14의 아릴기일 수 있고, 보다 더 구체적으로는 메틸기 또는 에틸기 등의 탄소수 1 내지 6 알킬기; 시클로헥실기; 또는 페닐기일 수 있으며, m 및 n은 각각 독립적으로 1 내지 4의 정수이다.Wherein R a1 , R a2 , R b1 , R b2 , R c , R d and R e are each independently a hydrogen atom or non-reactive, organic, linear, branched, cyclic, saturated or unsaturated, aromatic ( aromatic) or heteroaromatic radical, and more specifically, may be a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 18 carbon atoms, or an aryl group having 6 to 14 carbon atoms, and more specifically An alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group; Cyclohexyl group; Or a phenyl group, m and n are each independently an integer of 1 to 4.
보다 구체적으로 상기 실릴화제는 메틸트리클로로실란 등의 알킬트리클로로실란; 디메틸디클로로실란 등의 디알킬디클로로실란; 트리메틸클로로실란 등의 트리알킬클로로실란; 헥사메틸디실록산 등과 같은 대칭성 디실록산 또는 헥사알킬디실록산; 트리메틸 메톡시실란 등의 트리알킬메톡시실란; 또는 헥사메틸디실라잔 등의 실라잔 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.More specifically, the silylating agent is alkyltrichlorosilane such as methyltrichlorosilane; Dialkyldichlorosilanes such as dimethyldichlorosilane; Trialkylchlorosilanes such as trimethylchlorosilane; Symmetric disiloxanes or hexaalkyldisiloxanes such as hexamethyldisiloxane and the like; Trialkyl methoxysilanes such as trimethyl methoxysilane; Or silazanes such as hexamethyldisilazane and the like, and any one or a mixture of two or more thereof may be used.
상기 에어로겔 입자는 실릴화 정도에 따라 전체적으로 또는 부분적으로 소수성을 나타낼 수 있으며, 이때 상기 소수성은 영구적일 수 있다. The airgel particles may exhibit hydrophobicity in whole or in part depending on the degree of silylation, wherein the hydrophobicity may be permanent.
또, 상기 표면 변형 반응시 히드로겔의 기공 내에 존재하는 물의 일부는 상기 표면 변형 제재인 실릴화제와 반응할 수 있다. 이에 따라, 상기한 실릴화제를 사용하여 표면 실릴화된 에어로겔에 있어서의 내부 표면은 Si-R 기 또는 Si-OH 기만 포함할 뿐, Si-OR 기는 포함하지 않는다(이때 R는 알킬기임). 구체적으로, 내부 표면에 Si-OH 기를 포함하는 히드로겔의 경우, 실릴화제로서 트리알킬클로로실란 또는 헥사알킬디실록산을 이용하여 표면실릴화할 경우, 내부 표면상에서 Si-OH 기가 완전히 또는 부분적으로 반응하여 Si-O-Si(R)3 기를 제공하게 된다. 통상 실릴화 동안에 유기 용매의 존재는 겔의 반응성 OH 기에 유기 용매를 부가시키지만, 상기 히드로겔은 전체 공정을 통하여 알코올(예를 들면, 메탄올, 에탄올, 이소프로판올 등), 케톤(예를 들면, 아세톤 등), 에테르(예를 들면, 디메톡시에탄 등) 또는 테트라히드로푸란과 같은 반응성 용매와 접촉하지 않기 때문에, 겔의 내부 표면상에 Si-OR 기가 형성될 수 없다.In addition, a part of the water present in the pores of the hydrogel during the surface modification reaction may react with the silylating agent which is the surface modification agent. Accordingly, the inner surface of the aerogel surface-silylated using the silylating agent described above is Si-R. Si-OR only containing groups or Si-OH groups Group is not included (wherein R is an alkyl group). Specifically, in the case of the hydrogel containing Si-OH groups on the inner surface, when the surface silylation using trialkylchlorosilane or hexaalkyldisiloxane as the silylating agent, the Si-OH groups react completely or partially on the inner surface. Si-O-Si (R)3 Will provide a flag. While the presence of organic solvents usually adds organic solvents to the reactive OH groups of the gels during silylation, the hydrogels are used throughout the entire process, such as alcohols (eg, methanol, ethanol, isopropanol, etc.), ketones (eg, acetone, etc.). ) Or Si-OR on the inner surface of the gel as it is not in contact with a reactive solvent such as ether (e.g. dimethoxyethane, etc.) or tetrahydrofuran. No groups can be formed.
이에 따라, 상기 표면 실릴화된 에어로겔 분말은 하기 i) 또는 ii)의 특징을 갖는 것일 수 있다:Accordingly, the surface silylated airgel powder may have the following i) or ii) characteristics:
i) Si-OR 기를 포함하지 않음(R은 탄소수 1 내지 18의 알킬기임)i) does not contain Si-OR groups (R is an alkyl group having 1 to 18 carbon atoms)
ii) 표면 실릴화에 의해 적용된 유기 표면 작용기(organic surface group)에 의한 내부 표면의 적용도(degree of coverage of internal surface) 또는 피복도가 이론적으로 가능한 값의 90% 이상으로 표면 변형됨. 구체적으로 트리메틸실릴기의 적용도는 nm2당 2.5 이상임.ii) the degree of coverage of the internal surface or coverage by organic surface groups applied by surface silylation is surface modified to at least 90% of theoretically possible values. Specifically, the application degree of the trimethylsilyl group is 2.5 or more per nm 2 .
본 발명에 있어서 '적용도'는 에어로겔의 내부 표면적의 평방 나노미터 당 유기 표면 작용기의 수를 의미하는 것으로, 이론적으로 가능한 적용도 값은 하기 수학식 1에 따라 계산될 수 있다.In the present invention, 'application' refers to the number of organic surface functional groups per square nanometer of the inner surface area of the airgel, and the theoretically applicable applicability value may be calculated according to Equation 1 below.
[수학식 1][Equation 1]
적용도 = [C]/[BET]* K; 단위:[nm-2]Application = [C] / [BET] * K; Unit: [nm -2 ]
상기 식에서 K = 6.022*1023/100*12*3*1018 = 167.28; 단위:[g-1]Wherein K = 6.022 * 10 23/100 * 12 * 3 * 10 18 = 167.28; Unit: [g -1 ]
[C]: C 함량 (중량%)[C]: C content (% by weight)
[BET]: BET 표면적; 단위:[m2/g][BET]: BET surface area; Unit: [m 2 / g]
사용 적용도 값은 측정 방법에 따라 10% 미만의 오차가 있을 수 있으며, 상기 내부 표면적은 BET법에 따른 질소 흡착에 의해 측정될 수 있다(DIN66131의 멀티 포인트 BET 법, ASAP 2010, 마이크로메리틱스사제).The use application value may have an error of less than 10% depending on the measuring method, and the internal surface area may be measured by nitrogen adsorption according to the BET method (multipoint BET method of DIN66131, ASAP 2010, manufactured by Micromeritics, Inc.). ).
상기 적용도는 트리메틸실릴-변형된(trimethylsilyl-modified) 에어로겔을 사용하여 기술되었는데, 이것으로 제한되지는 않는다. The application has been described using, but not limited to, trimethylsilyl-modified aerogels.
한편, 본 발명의 일 실시예에 따르면 상기 에어로겔 전구체 제조를 위하여 상기한 실리카 졸과 혼합되는 에어로겔 분말은 에어로겔 분말 총 중량에 대하여 탄소 함량이 10 중량부 내지 12 중량부인 소수성 실리카 에어로겔 분말일 수 있다. 만약, 상기 에어로겔 분말 내 탄소 함량이 상기한 범위를 벗어날 경우 제조된 에어로겔 블랑켓 내부 소수성이 낮을 수 있고, 결과적으로 고온 적용 시 소수성 유지력이 저하될 우려가 있다.Meanwhile, according to an embodiment of the present invention, the airgel powder mixed with the silica sol for preparing the airgel precursor may be a hydrophobic silica airgel powder having a carbon content of 10 parts by weight to 12 parts by weight based on the total weight of the airgel powder. If the carbon content in the airgel powder is out of the above range, the prepared hydrogel blanket may have low hydrophobicity, and consequently, there is a concern that the hydrophobic holding force may be lowered at high temperature.
상기 에어로겔 분말은 상기한 소수성 조건을 충족하도록 하는 것 외에는 그 제조방법이 특별히 제한되지 않는다. 구체적으로 소수성 실리카 에어로겔 분말의 경우, 실리카 졸에 대한 겔화, 헥사메틸디실라잔(HMDS) 등과 같은 소수성 작용기를 갖는 표면개질제를 이용한 표면개질 및 건조 공정의 순차적 수행을 통해 제조될 수 있으며, 상기 실리카 졸의 제조시 사용된 용매가 물일 경우, 상기 겔화 후 메탄올과 같은 알코올을 이용한 용매치환 공정이 선택적으로 더 수행될 수도 있다.The airgel powder is not particularly limited in its manufacturing method except that the hydrophobic condition is satisfied. Specifically, in the case of hydrophobic silica airgel powder, it can be prepared through the sequencing of the surface modification and drying process using a surface modifier having a hydrophobic functional group, such as gelling, hexamethyldisilazane (HMDS) for the silica sol, the silica When the solvent used in the preparation of the sol is water, a solvent replacement process using an alcohol such as methanol may be optionally further performed after the gelation.
상기 에어로겔 분말은 실리카 졸 내 포함된 실리카 100 중량부에 대하여 25 중량부 내지 50 중량부로 사용될 수 있다. 만약, 상기 에어로겔 분말의 사용량이 25 중량부 미만일 경우 내부 소수성 향상 정도가 미미할 수 있고, 고온 적용 시 소수성을 유지하지 못하는 문제가 발생할 수 있다. 또 에어로겔 분말의 사용량이 50 중량부를 초과할 경우, 실리카 졸의 상대적인 함량 감소로 인해 에어로겔 분말의 결착력이 저하되고, 그 결과 블랑켓 제조과정에서 에어로겔 분말의 날림이 발생하고, 최종적으로 단열 성능이 저하될 우려가 있다.The airgel powder may be used in an amount of 25 parts by weight to 50 parts by weight based on 100 parts by weight of silica contained in the silica sol. If the amount of the airgel powder used is less than 25 parts by weight, the degree of improvement in internal hydrophobicity may be insignificant, and a problem of not maintaining hydrophobicity at high temperature may occur. In addition, when the amount of the airgel powder exceeds 50 parts by weight, the binding strength of the airgel powder is reduced due to the decrease in the relative content of the silica sol, as a result of the blowing of the airgel powder during the blanket manufacturing process, and finally the thermal insulation performance is lowered There is a concern.
다음으로, 본 발명의 일 실시예에 따른 에어로겔 블랑켓의 제조방법에 있어서의 단계 2)는 습윤겔 형태의 에어로겔과 블랑켓용 기재가 복합화된 습윤겔-기재 복합체를 준비하는 단계로, 상기 단계 1)에서 제조한 에어로겔 전구체에 염기성 촉매를 첨가하고 블랑켓용 기재에 침적시킨 후 겔화시킴으로써 수행될 수 있다. Next, step 2) in the manufacturing method of the airgel blanket according to an embodiment of the present invention is to prepare a wet gel-based composite in which the base material for the airgel and the blanket of the wet gel form, step 1 It can be carried out by adding a basic catalyst to the aerogel precursor prepared in the) and depositing on the substrate for the blanket and then gelling.
상기 블랑켓용 기재로는 블랑켓의 용도에 따라 다양한 재질의 기재가 사용될 수 있다. 구체적으로, 상기 블랑켓용 기재는 필름, 시트, 네트, 섬유, 다공질체, 발포체, 부직포체 또는 이들의 2 층 이상의 적층체일 수도 있다. 또 용도에 따라 그 표면에 표면조도가 형성되거나 패턴화된 것일 수도 있다.As the substrate for the blanket, a substrate of various materials may be used according to the use of the blanket. Specifically, the blanket substrate may be a film, a sheet, a net, a fiber, a porous body, a foam, a nonwoven fabric, or a laminate of two or more thereof. In addition, depending on the application, the surface roughness may be formed or patterned.
또, 상기 블랑켓용 기재가 섬유일 경우, 구체적으로 유리섬유, 카본섬유 또는 폴리이미드계 섬유 등일 수 있으며, 목적하는 바에 따라 이 중 1 종 이상의 혼합물이 사용될 수 있다. In addition, when the base for the blanket is a fiber, specifically may be glass fiber, carbon fiber or polyimide fiber, etc., may be used a mixture of one or more of them as desired.
본 발명의 일 실시예에 따르면 상기 블랑켓용 기재는 구체적으로 로프티 섬유성 배팅 시트(lofty fibrous batting sheet)를 포함하는 강화 구조물일 수 있으며, 보다 구체적으로는 로프티 섬유성 배팅이고, 여기서 섬유들은 세 개의 모든 축을 따라 배향되어 있으며, 상기 배팅은 쉬트 형태이고, 상기 로프티 섬유성 배팅은 두께의 적어도 50 %까지 압축 가능하고 5 초 간의 압축 후에 원래 두께의 적어도 70 %까지 회복되고, 로프티 섬유성 배팅의 밀도는 0.001 g/cm3 내지 0.26 g/cm3이고, 최종 제조되는 에어로겔 블랑켓의 횡단면에서 식별가능한 섬유들의 횡단면적은 횡단면적 전체의 10 % 미만인 것일 수 있다. According to an embodiment of the present invention, the blanket substrate may specifically be a reinforcing structure including a lofty fibrous batting sheet, more specifically a lofty fibrous batting, wherein the fibers are three Oriented along all axes, the bet is in the form of a sheet, the lofty fibrous bet compressible to at least 50% of the thickness and recover to at least 70% of the original thickness after compression for 5 seconds, the density of the lofty fibrous bet Is 0.001 g / cm 3 to 0.26 g / cm 3 and the cross sectional area of the identifiable fibers in the cross section of the airgel blanket to be produced may be less than 10% of the total cross sectional area.
상기 배팅은 열 절연용 블랭킷으로 사용되는 섬유성 물질의 층이나 시트를 의미하는 것으로, 배팅 제조용 섬유는 가늘며, 구체적으로는 15 이하, 보다 구체적으로는 10 이하의 데니어를 갖는 것일 수 있다. 또, 최종 제조되는 블랑켓의 횡단면에서 섬유의 횡단 영역이 횡단면의 전체 횡단 영역의 10 % 미만, 구체적으로는 8 % 미만, 보다 구체적으로는 5 % 미만인 것일 수 있다.The batting refers to a layer or sheet of a fibrous material used as a blanket for thermal insulation, and the batting manufacturing fiber may be thin, specifically 15 or less, more specifically 10 or less denier. In addition, the cross section of the fiber in the cross section of the blanket to be finally produced may be less than 10%, specifically less than 8%, more specifically less than 5% of the total cross section of the cross section.
보다 더 구체적으로는 상기 강화구조물은 폴리에스테르 배팅 강화구조물; 폴리비닐알코올 결합제를 포함하는 폴리에스테르 섬유 배팅; 로프티 실리카 섬유 구조물; 폴리에스테르/실리콘 카바이드/구리 메쉬/실리콘 카바이드/폴리에스테르의 섬유 적층물; 폴리에스테르 배팅/중합성 결합제를 포함하는 단일방향 탄소섬유/구리 메쉬/로프티 폴리에스테르 배팅의 적층물; 및 실리카 펠트/스테인레스 스틸 메쉬/실리카 펠트의 적층물로 이루어진 군에서 선택되는 것일 수 있다.More specifically, the reinforcing structure may include a polyester batting reinforcing structure; Polyester fiber batting comprising a polyvinyl alcohol binder; Lofty silica fiber structures; Fiber laminates of polyester / silicon carbide / copper mesh / silicon carbide / polyester; A stack of unidirectional carbon fiber / copper mesh / loft polyester batting comprising a polyester batting / polymerizable binder; And a laminate of silica felt / stainless steel mesh / silica felt.
상기 단계 1)에서 제조한 에어로겔 전구체에 염기성 촉매를 첨가하고 상기한 블랑켓용 기재를 침적시키면, 겔화가 일어나 습윤겔 형태의 에어로겔이 블랑켓용 기재의 표면 및 내부에 형성되게 되면서 습윤겔-기재 복합체가 형성된다.When the basic catalyst is added to the aerogel precursor prepared in step 1) and the blanket substrate is deposited, gelation occurs, whereby the wet gel-type aerogel is formed on the surface and inside of the blanket substrate, thereby providing the wet gel-based composite. Is formed.
이때, 상기 염기성 촉매는 겔화를 촉진하기 위하여 pH를 조절하는 역할을 수행할 수 있다.In this case, the basic catalyst may play a role of adjusting the pH to promote gelation.
구체적으로, 상기 pH 조절 단계는 염기성 촉매를 사용하여 블랑켓용 기재에 침적된 에어로겔 전구체의 pH가 4 내지 9가 되도록 수행될 수 있으며, 이때 상기 염기성 촉매로는 암모니아 등이 사용될 수 있다. 보다 구체적으로는 상기 염기성 촉매는 에어로겔 전구체 총 부피에 대하여 0.05 부피% 내지 10 부피%, 보다 구체적으로는 0.1 부피% 내지 1 부피%로 사용될 수 있다.Specifically, the pH adjustment step may be performed so that the pH of the airgel precursor deposited on the blanket substrate using a basic catalyst is 4 to 9, wherein the basic catalyst may be ammonia or the like. More specifically, the basic catalyst may be used at 0.05% by volume to 10% by volume, more specifically 0.1% by volume to 1% by volume relative to the total volume of the airgel precursor.
또, 본 발명의 일 실시예에 따른 에어로겔 블랑켓의 제조방법은, 상기 습윤겔로의 화학적 변화가 완전히 이루어지도록 하기 위하여, 단계 2) 이후에 상기 제조된 습윤겔-기재 복합체에서의 습윤겔을 숙성시키는 단계를 더 포함할 수 있다. In addition, the method for producing an airgel blanket according to an embodiment of the present invention, in order to achieve a complete chemical change to the wet gel, after the wet gel in the prepared wet gel-based composite after step 2) It may further comprise the step of aging.
이때, 상기 숙성은 에어로겔 습윤겔을 적당한 온도에서 장시간 방치함으로써 수행될 수 있으며, 구체적으로는 습윤겔 부피의 90 내지 110 부피비의 알코올에 50 ℃ 내지 70 ℃의 온도에서 30 분 내지 3 시간 동안 방치시킴으로써 수행될 수 있다. 상기한 조건에서 숙성 공정이 수행될 경우, 습윤겔 내 네트워크 구조가 강화될 수 있어 제조된 에어로겔 블랑켓의 강도가 향상될 수 있다. In this case, the aging may be carried out by leaving the airgel wet gel at a suitable temperature for a long time, specifically, by leaving the wet gel volume in a 90 to 110 volume ratio alcohol at a temperature of 50 ℃ to 70 ℃ for 30 minutes to 3 hours. Can be performed. When the aging process is performed under the above conditions, the network structure in the wet gel can be strengthened, and thus the strength of the manufactured airgel blanket can be improved.
다음으로, 본 발명의 일 실시예에 따른 에어로겔 블랑켓의 제조방법에 있어서 단계 3)은 소수성의 습윤겔-기재 복합체를 준비하기 위한 단계로, 상기 단계 2)에서 제조한 습윤겔-기재 복합체에서의 습윤겔을 표면개질시킴으로써 수행될 수 있다.Next, in the method of manufacturing an airgel blanket according to an embodiment of the present invention, step 3) is a step for preparing a hydrophobic wet gel-based composite, in the wet gel-based composite prepared in step 2). It can be carried out by surface modification of the wet gel.
구체적으로, 상기 표면개질은 표면개질제를 유기용매 중에 용해시킨 용액을 이용하여 수행될 수 있다. 보다 구체적으로는, 상기 용액은 표면개질제를 용액 총 부피에 대하여 2.5 부피% 내지 7.5 부피%가 되도록 유기용매에 첨가, 혼합함으로써 제조될 수 있다. 만약, 상기의 비율로 표면개질제와 유기용매를 포함하고 있는 경우, 상기 습윤겔 표면 및 내부의 기공에 표면개질이 용이하게 이루어져 소수성을 나타낼 수 있고, 또 내부 용매를 치환함으로써 표면 장력이 낮아져 후속의 열처리 공정시 크랙 발생을 방지할 수 있다. 보다 구체적으로는 상기 표면개질은 표면개질제를 유기용매 중에 5 부피% 내지 7.5 부피%가 되도록 혼합하여 제조한 용액을 이용함으로써 수행될 수 있다. Specifically, the surface modification may be performed using a solution in which the surface modifier is dissolved in an organic solvent. More specifically, the solution may be prepared by adding and mixing the surface modifier to the organic solvent so as to be 2.5 vol% to 7.5 vol% with respect to the total volume of the solution. If the surface modifier and the organic solvent are included in the above ratio, surface modification can be easily performed on the surface of the wet gel and the pores therein to show hydrophobicity. Cracks can be prevented during the heat treatment process. More specifically, the surface modification may be performed by using a solution prepared by mixing the surface modifier to 5 vol% to 7.5 vol% in an organic solvent.
또, 상기 표면개질제로는 구체적으로 실란계 화합물, 실라잔계 화합물 또는 실록산계 화합물 등이 사용될 수 있으며, 보다 구체적으로는 트리메틸클로로실란, 메틸트리메톡시실란, 페닐트리에톡시실란, 디메틸클로로실란, 트리메틸에톡시실란, 헥사메틸디실라잔 및 폴리디메틸실록산으로 이루어진 군으로부터 선택된 1종 이상인 것이 사용될 수 있으나, 이에 제한되는 것은 아니다. In addition, as the surface modifier, a silane compound, a silazane compound, or a siloxane compound may be specifically used. More specifically, trimethylchlorosilane, methyltrimethoxysilane, phenyltriethoxysilane, dimethylchlorosilane, One or more selected from the group consisting of trimethylethoxysilane, hexamethyldisilazane and polydimethylsiloxane may be used, but is not limited thereto.
또, 상기 유기용매로는 구체적으로 에탄올, 이소프로필알코올 등의 알코올계 용매; 또는 n-헥산, 헵탄, 톨루엔 또는 자일렌 등의 탄화수소계 용매 등을 들 수 있으며, 이들 중 1 종 단독 또는 2 종 이상의 혼합물이 사용될 수 있다.As the organic solvent, specifically, an alcohol solvent such as ethanol or isopropyl alcohol; Or hydrocarbon-based solvents such as n-hexane, heptane, toluene or xylene, and the like, or a mixture of two or more of them may be used.
한편, 상기 표면개질제를 포함하는 용액은 습윤겔의 부피를 100으로 기준했을 때 70 부피비 내지 100 부피비로 사용될 수 있다. 만약, 상기 용액의 사용량이 70 부피비 미만일 경우 표면개질 및 용매치환이 완전히 이루어지지 못하는 문제가 발생할 수 있고, 또 100 부피비를 초과할 경우 과도한 사용으로 경제적으로 좋지 못할 수 있다.On the other hand, the solution containing the surface modifier may be used in a 70 to 100 volume ratio based on the volume of the wet gel to 100. If the amount of the solution is less than 70% by volume, the problem of surface modification and solvent replacement may not be achieved completely, and if it exceeds 100% by volume, it may be economically unfavorable due to excessive use.
상기 표면개질은 보다 구체적으로 상기 단계 2)에서 제조한 습윤겔-기재 복합체에, 표면개질제를 포함하는 용액을 첨가한 후, 50 ℃ 내지 80 ℃의 온도에서 1 시간 내지 10 시간 동안, 보다 구체적으로는 60 ℃ 내지 70 ℃의 온도에서 4 시간 내지 5 시간 동안 유지함으로써 수행될 수 있다. The surface modification is more specifically in the wet gel-based composite prepared in step 2), after adding a solution containing a surface modifier, at a temperature of 50 ℃ to 80 ℃, more specifically 1 hour to 10 hours Can be carried out by maintaining at a temperature of 60 ℃ to 70 ℃ for 4 hours to 5 hours.
이와 같은 표면개질 공정을 통해 블랑켓용 기재의 표면 및 내부에 분포하는 에어로겔이 소수성을 나타내게 된다. Through such a surface modification process, the airgel distributed on the surface and inside of the blanket substrate exhibits hydrophobicity.
또, 본 발명의 일 실시예에 따른 에어로겔 블랑켓의 제조방법은, 이후 건조 공정이 상압 건조에 의해 수행될 경우, 표면개질 후 용매 치환 공정을 선택적으로 더 포함할 수 있다.In addition, the manufacturing method of the airgel blanket according to an embodiment of the present invention, when the drying process is carried out by the atmospheric pressure drying, after the surface modification may optionally further include a solvent replacement process.
상기 용매 치환 공정은 상기한 표면개질 공정 후 유기용매를 첨가하여 소수성 에어로겔 내부의 용매를 상기 유기용매로 치환함으로써 수행될 수 있다. 이때 유기용매는 탄화수소계 용매 등이 사용될 수 있다.The solvent replacement process may be performed by replacing the solvent in the hydrophobic airgel with the organic solvent by adding an organic solvent after the surface modification process. In this case, a hydrocarbon solvent or the like may be used as the organic solvent.
다음으로, 본 발명의 일 실시예에 따른 에어로겔 블랑켓의 제조방법에 있어서 단계 4)는 상기 단계 3)에서 제조한 소수성의 습윤겔-기재 복합체에 대한 건조를 통해 본 발명의 최종 에어로겔 블랑켓을 제조하는 단계이다.Next, in the method for producing an airgel blanket according to an embodiment of the present invention step 4) is to prepare the final airgel blanket of the present invention by drying the hydrophobic wet gel-based composite prepared in step 3) Manufacturing step.
상기 건조 공정은 구체적으로 초임계 이산화탄소를 이용한 초임계 건조 공정 또는 상압 건조 공정에 의해 수행될 수 있다. Specifically, the drying process may be performed by a supercritical drying process or an atmospheric pressure drying process using supercritical carbon dioxide.
이산화탄소(CO2)는 상온 및 상압에서는 기체 상태이지만 임계점(supercritical point)이라고 불리는 일정한 온도 및 고압의 한계를 넘으면 증발 과정이 일어나지 않아서 기체와 액체의 구별을 할 수 없는, 임계 상태가 되며, 이 임계 상태에 있는 이산화탄소를 초임계 이산화탄소라고 한다. 초임계 이산화탄소는 분자의 밀도는 액체에 가깝지만, 점성도는 낮아 기체에 가까운 성질을 가지며, 확산이 빠르고 열전도성이 높아 건조 효율이 높고, 건조 공정 시간을 단축시킬 수 있다.Carbon dioxide (CO 2 ) is a gaseous state at room temperature and atmospheric pressure, but if it exceeds a certain temperature and high pressure limit called the supercritical point, the evaporation process does not occur, so it becomes a critical state in which gas and liquid cannot be distinguished. Carbon dioxide in the state is called supercritical carbon dioxide. Supercritical carbon dioxide has a molecular density close to a liquid, but has a low viscosity, close to a gas, high diffusion efficiency, high drying efficiency, and short drying time.
상기 초임계 건조 공정은 단계 2에서 제조한 실리카겔-기재 복합체를 사용하는 것을 제외하고는 통상의 방법에 따라 수행될 수 있다. 구체적으로는 상기 초임계 건조 공정은 초임계 건조 반응기 내에, 표면개질된 소수성의 에어로겔-기재 복합체를 넣은 다음, 액체 상태의 CO2를 채우고 에어로겔 내부의 알코올 용매를 CO2로 치환하는 용매치환 공정을 수행한다. 그 후에 일정 승온 속도, 구체적으로는 0.1 ℃/min 내지 1 ℃/min의 속도로, 40 ℃ 내지 50 ℃로 승온 시킨 후, 이산화탄소가 초임계 상태가 되는 압력 이상의 압력, 구체적으로는 100 bar 내지 150 bar의 압력을 유지하여 이산화탄소의 초임계 상태에서 일정 시간, 구체적으로는 20 분 내지 1 시간 동안 유지한다. 일반적으로 이산화탄소는 31 ℃의 온도, 73.8 bar의 압력에서 초임계 상태가 된다. 이산화탄소가 초임계 상태가 되는 일정 온도 및 일정 압력에서 2 시간 내지 12 시간, 보다 구체적으로는 2 시간 내지 6 시간 동안 유지한 다음, 서서히 압력을 제거하여 초임계 건조 공정을 완료할 수 있다.The supercritical drying process may be performed according to a conventional method except for using the silica gel-based composite prepared in Step 2. Specifically, in the supercritical drying process the supercritical drying the reactor, surface airgel of the modified hydrophobic-insert the substrate composite, and then, filling up the CO 2 in the liquid state to the solvent replacement step of replacing the alcohol solvent within the airgel to CO 2 Perform. Thereafter, the temperature is raised to 40 ° C. to 50 ° C. at a constant temperature increase rate, specifically 0.1 ° C./min to 1 ° C./min, and then the pressure or more at which carbon dioxide becomes a supercritical state, specifically, 100 bar to 150 The pressure of bar is maintained for a certain time, specifically 20 minutes to 1 hour, in the supercritical state of carbon dioxide. In general, carbon dioxide is supercritical at a temperature of 31 ° C. and a pressure of 73.8 bar. The carbon dioxide may be maintained at a constant temperature and a constant pressure for 2 hours to 12 hours, more specifically, 2 hours to 6 hours at a constant temperature and then the pressure is gradually removed to complete the supercritical drying process.
또, 상압 건조 공정의 경우, 상압(1±0.3 atm) 하에서 자연건조, 열풍 건조 등의 통상의 방법에 따라 수행될 수 있다. 구체적으로는 50 ℃ 내지 150 ℃의 온도에서 12 시간 내지 24 시간 동안 수행될 수 있다. In addition, in the case of the atmospheric pressure drying process, it may be carried out according to a conventional method such as natural drying, hot air drying under normal pressure (1 ± 0.3 atm). Specifically, the reaction may be performed at a temperature of 50 ° C. to 150 ° C. for 12 hours to 24 hours.
상기한 제조방법을 통해 고온에서도 우수한 소수성을 유지할 수 있는 고온 초소수성의 에어로겔 블랑켓이 제조된다. 상기 에어로겔 블랑켓은 표면뿐만 아니라 내부 구조에도 소수화가 이루어져 있어 고온 적용시에도 우수한 소수성 유지력을 나타낼 수 있다.Through the above manufacturing method, a high temperature superhydrophobic airgel blanket capable of maintaining excellent hydrophobicity even at high temperatures is manufactured. The airgel blanket has hydrophobicity not only on the surface but also on the internal structure, and thus may exhibit excellent hydrophobic retention even at high temperature.
이에 따라, 본 발명의 다른 일 실시예에 따르면, 상기한 제조방법에 의해 제조된 에어로겔 블랑켓을 제공한다. Accordingly, according to another embodiment of the present invention, there is provided an airgel blanket prepared by the above manufacturing method.
본 발명의 제조방법에 의해 제조된 에어로겔 블랑켓에 포함된 에어로겔은, 400 ℃ 이상 500 ℃ 미만의 온도에서 열처리하여도 종래의 에어로겔과 비교하여 탄소 함량 유지율이 높고, 종래의 에어로겔 블랑켓과 비교하여 열전도도 증가율이 낮을 수 있다. The airgel contained in the airgel blanket prepared by the manufacturing method of the present invention has a higher carbon content retention rate compared with the conventional airgel even when heat treated at a temperature of 400 ° C. or higher and less than 500 ° C., and compared with a conventional airgel blanket. Thermal conductivity increase may be low.
구체적으로, 본 발명의 에어로겔 블랑켓은 에어로겔 및 블랑켓용 기재를 포함하고, 상기 에어로겔은 400 ℃ 이상 500 ℃ 미만의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 하기 수학식 2로 계산되는 탄소 함량 유지율이 하기 1) 내지 5) 중 적어도 어느 하나를 만족하는 것일 수 있으며, 바람직하게는 1) 내지 5)를 모두 만족하는 것일 수 있다.Specifically, the airgel blanket of the present invention comprises an airgel and the base for the blanket, the airgel is a carbon content calculated by the following formula 2 when the heat treatment for 1 to 5 hours at a temperature of 400 ℃ or more less than 500 ℃ Retention rate may be to satisfy at least one of the following 1) to 5), preferably may be to satisfy all of 1) to 5).
[수학식 2][Equation 2]
탄소 함량 유지율(%) = (열처리 후의 에어로겔의 탄소 함량(중량%)) / (에어로겔의 최초 탄소 함량(중량%))Carbon content retention rate (%) = (carbon content of airgel after heat treatment (% by weight)) / (original carbon content of airgel (% by weight))
1) 1 시간 동안 열처리한 경우 75 % 이상1) More than 75% when heat treated for 1 hour
2) 2 시간 동안 열처리한 경우 65 % 이상2) 65% or more when heat treated for 2 hours
3) 3 시간 동안 열처리한 경우 60 % 이상3) 60% or more when heat treated for 3 hours
4) 4 시간 동안 열처리한 경우 59 % 이상4) 59% or more when heat treated for 4 hours
5) 5 시간 동안 열처리한 경우 58 % 이상5) 58% or more when heat treated for 5 hours
보다 구체적으로, 본 발명의 상기 에어로겔은 400 ℃ 이상 500 ℃ 미만의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 탄소 함량 유지율이 하기 1) 내지 5) 중 적어도 어느 하나를 만족하는 것일 수 있으며, 바람직하게는 1) 내지 5)를 모두 만족하는 것일 수 있다.More specifically, the airgel of the present invention when the heat treatment for 1 hour to 5 hours at a temperature of 400 ℃ or less than 500 ℃, the carbon content retention rate may be to satisfy at least one of the following 1) to 5), Preferably, all of 1) to 5) may be satisfied.
1) 1 시간 동안 열처리한 경우 75 % 이상 80 % 이하1) 75% or more and 80% or less when heat treated for 1 hour
2) 2 시간 동안 열처리한 경우 65 % 이상 75 % 이하2) 65% or more and 75% or less when heat treated for 2 hours
3) 3 시간 동안 열처리한 경우 60 % 이상 70 % 이하3) 60% or more and 70% or less when heat-treated for 3 hours
4) 4 시간 동안 열처리한 경우 59 % 이상 65 % 이하4) 59% or more and 65% or less when heat treated for 4 hours
5) 5 시간 동안 열처리한 경우 58 % 이상 64 % 이하5) 58% or more and 64% or less when heat treated for 5 hours
또한, 상기 에어로겔 블랑켓은 400 ℃ 이상 500 ℃ 미만의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 하기 수학식 3으로 계산되는 열전도도 증가율이 하기 1) 내지 5) 적어도 어느 하나를 만족하는 것일 수 있으며, 바람직하게는 1) 내지 5)를 모두 만족하는 것일 수 있다.In addition, when the airgel blanket is heat-treated for 1 hour to 5 hours at a temperature of 400 ° C or more and less than 500 ° C, the thermal conductivity increase rate calculated by Equation 3 below satisfies at least one of the following 1) to 5): It may be, preferably to satisfy all of 1) to 5).
[수학식 3][Equation 3]
열전도도 증가율(%) = (열처리 후 25 ℃ 에서의 에어로겔 블랑켓의 열전도도(mW/mK)) / (25 ℃ 에서의 에어로겔 블랑켓의 최초 열전도도(mW/mK))Thermal conductivity increase rate (%) = (Thermal conductivity of airgel blanket (mW / mK) at 25 ° C after heat treatment) / (Initial thermal conductivity of airgel blanket at 25 ° C (mW / mK))
1) 1 시간 동안 열처리한 경우 6 % 이하1) 6% or less when heat treated for 1 hour
2) 2 시간 동안 열처리한 경우 10 % 이하2) 10% or less when heat treated for 2 hours
3) 3 시간 동안 열처리한 경우 11 % 이하3) 11% or less when heat treated for 3 hours
4) 4 시간 동안 열처리한 경우 12 % 이하4) 12% or less when heat treated for 4 hours
5) 5 시간 동안 열처리한 경우 13 % 이하5) 13% or less when heat treated for 5 hours
보다 구체적으로, 본 발명의 상기 에어로겔 블랑켓은 400 ℃ 이상 500 ℃ 미만의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 열전도도 증가율이 하기 1) 내지 5) 중 적어도 어느 하나를 만족하는 것일 수 있으며, 바람직하게는 1) 내지 5)를 모두 만족하는 것일 수 있다.More specifically, the airgel blanket of the present invention when the heat treatment for 1 hour to 5 hours at a temperature of 400 ℃ or more less than 500 ℃, the thermal conductivity may be to satisfy at least one of the following 1) to 5). And, preferably it may be to satisfy all of 1) to 5).
1) 1 시간 동안 열처리한 경우 5 % 이상 6 % 이하1) 5% or more and 6% or less when heat treated for 1 hour
2) 2 시간 동안 열처리한 경우 7 % 이상 10 % 이하2) 7% or more and 10% or less when heat treated for 2 hours
3) 3 시간 동안 열처리한 경우 8 % 이상 11 % 이하3) 8% or more and 11% or less when heat-treated for 3 hours
4) 4 시간 동안 열처리한 경우 9 % 이상 12 % 이하4) 9% or more and 12% or less when heat treated for 4 hours
5) 5 시간 동안 열처리한 경우 10 % 이상 13 % 이하5) 10% or more and 13% or less when heat treated for 5 hours
본 발명의 제조방법에 의해 제조된 에어로겔 블랑켓에 포함된 에어로겔은, 500 ℃ 이상 600 ℃ 이하의 온도에서 열처리하여도 종래의 에어로겔과 비교하여 탄소 함량 유지율이 높고, 종래의 에어로겔 블랑켓과 비교하여 열전도도 증가율이 낮을 수 있다. The airgel contained in the airgel blanket prepared by the manufacturing method of the present invention has a higher carbon content retention rate compared with the conventional airgel even when heat treated at a temperature of 500 ° C. or higher and 600 ° C. or lower, and compared with a conventional airgel blanket. Thermal conductivity increase may be low.
구체적으로, 본 발명의 에어로겔 블랑켓은 에어로겔 및 블랑켓용 기재를 포함하고, 상기 에어로겔은 500 ℃ 이상 600 ℃ 이하의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 하기 수학식 2로 계산되는 탄소 함량 유지율이 13 % 이상일 수 있다.Specifically, the airgel blanket of the present invention comprises an airgel and the substrate for the blanket, the airgel is a carbon content calculated by the following formula (2) when heat-treated for 1 to 5 hours at a temperature of 500 ° C or more and 600 ° C or less Retention rate may be 13% or more.
[수학식 2][Equation 2]
탄소 함량 유지율(%) = (열처리 후의 에어로겔의 탄소 함량(중량%)) / (에어로겔의 최초 탄소 함량(중량%))Carbon content retention rate (%) = (carbon content of airgel after heat treatment (% by weight)) / (original carbon content of airgel (% by weight))
보다 구체적으로, 본 발명의 에어로겔은 상기 탄소 함량 유지율이 15 % 이상, 바람직하게는 13 % 이상 70 % 이하, 보다 바람직하게는 15 % 이상 60 % 이하일 수 있다. More specifically, the airgel of the present invention may have a carbon content retention of 15% or more, preferably 13% or more and 70% or less, more preferably 15% or more and 60% or less.
보다 더 구체적으로, 본 발명의 에어로겔은 500 ℃ 이상 600 ℃ 이하의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 탄소 함량 유지율이 하기 1) 내지 5) 중 적어도 어느 하나를 만족하는 것일 수 있으며, 바람직하게는 1) 내지 5)를 모두 만족하는 것일 수 있다.More specifically, the airgel of the present invention may be one that satisfies at least one of the following 1) to 5) when the heat treatment for 1 hour to 5 hours at a temperature of 500 ℃ to 600 ℃, Preferably, all of 1) to 5) may be satisfied.
1) 1 시간 동안 열처리한 경우 40 % 이상1) 40% or more when heat treated for 1 hour
2) 2 시간 동안 열처리한 경우 24 % 이상2) 24% or more when heat treated for 2 hours
3) 3 시간 동안 열처리한 경우 20 % 이상3) 20% or more when heat treated for 3 hours
4) 4 시간 동안 열처리한 경우 17 % 이상4) 17% or more when heat treated for 4 hours
5) 5 시간 동안 열처리한 경우 15 % 이상5) 15% or more when heat treated for 5 hours
보다 더 구체적으로, 본 발명의 에어로겔은 500 ℃ 이상 600 ℃ 이하의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 탄소 함량 유지율이 하기 1) 내지 5) 중 적어도 어느 하나를 만족하는 것일 수 있으며, 바람직하게는 1) 내지 5)를 모두 만족하는 것일 수 있다.More specifically, the airgel of the present invention may be one that satisfies at least one of the following 1) to 5) when the heat treatment for 1 hour to 5 hours at a temperature of 500 ℃ to 600 ℃, Preferably, all of 1) to 5) may be satisfied.
1) 1 시간 동안 열처리한 경우 40 % 이상 60 % 이하1) 40% or more and 60% or less when heat treated for 1 hour
2) 2 시간 동안 열처리한 경우 24 % 이상 50 % 이하2) 24% or more and 50% or less when heat treated for 2 hours
3) 3 시간 동안 열처리한 경우 20 % 이상 45 % 이하3) 20% or more and 45% or less when heat-treated for 3 hours
4) 4 시간 동안 열처리한 경우 17 % 이상 42 % 이하4) 17% or more and 42% or less when heat treated for 4 hours
5) 5 시간 동안 열처리한 경우 15 % 이상 40 % 이하5) 15% or more and 40% or less when heat treated for 5 hours
또한, 본 발명의 상기 에어로겔 블랑켓은 500 ℃ 이상 600 ℃ 이하의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 하기 수학식 3으로 계산되는 열전도도 증가율이 17 % 이하일 수 있다.In addition, when the airgel blanket of the present invention is heat-treated for 1 hour to 5 hours at a temperature of 500 ° C or more and 600 ° C or less, the thermal conductivity increase rate calculated by Equation 3 below may be 17% or less.
[수학식 3][Equation 3]
열전도도 증가율(%) = (열처리 후 25 ℃ 에서의 에어로겔 블랑켓의 열전도도(mW/mK)) / (25 ℃ 에서의 에어로겔 블랑켓의 최초 열전도도(mW/mK))Thermal conductivity increase rate (%) = (Thermal conductivity of airgel blanket (mW / mK) at 25 ° C after heat treatment) / (Initial thermal conductivity of airgel blanket at 25 ° C (mW / mK))
상기와 같이 본 발명의 에어로겔 블랑켓은 고온의 열처리를 수행하여도 탄소 함량 유지율이 높고, 열전도도의 증가율이 낮아 우수한 단열 성능이 유지될 수 있다.As described above, the airgel blanket of the present invention has a high carbon content retention rate and a low increase rate of thermal conductivity even when the high temperature heat treatment is performed, thereby maintaining excellent thermal insulation performance.
이는, 실리카 졸에 소수성의 에어로겔 분말을 혼합하여 에어로겔 전구체로 사용함으로써, 에어로겔 블랑켓에 포함된 에어로겔 표면 구조뿐 아니라 내부 구조에도 소수성의 에어로겔이 존재할 수 있기 때문에며, 이에 따라 고소수성을 가질 수 있는 바, 고온의 열처리 시에도 소수성 유지력이 우수한 효과가 있다.This is because hydrophobic airgel may be present in the internal structure as well as the surface structure of the airgel included in the airgel blanket by mixing the hydrophobic airgel powder with the silica sol and using it as an airgel precursor. Bar and hydrophobic holding power is excellent also in the heat treatment at high temperature.
또한, 상기 본 발명의 에어로겔 블랑켓은 밀도가 130 g/cm3 내지 200 g/cm3이고, 기공율이 80 % 내지 99 %인 것일 수 있다. 이때 상기 에어로겔 블랑켓의 밀도는 밀도 측정기(TAP Density Volumeter, Engelsman Model STAV II)을 이용하여 측정할 수 있으며, 기공율은 Micrometrics의 3Flex 기기를 이용한 비표면적법을 이용하여 측정할 수 있다.In addition, the airgel blanket of the present invention may have a density of 130 g / cm 3 to 200 g / cm 3 and a porosity of 80% to 99%. At this time, the density of the airgel blanket can be measured using a density measuring device (TAP Density Volumeter, Engelsman Model STAV II), the porosity can be measured using a specific surface area method using a 3Flex instrument of Micrometrics.
이와 같이 높은 소수성을 갖는 에어로겔 블랑켓은, 고온에서도 낮은 열전도도를 유지할 수 있어 단열재, 극저유전박막, 촉매, 촉매담체, 또는 블랑켓 등의 다양한 분야에 사용될 수 있으며, 특히 상기와 같은 물성적/기공 특성으로 인해 낮은 열전도도를 유지할 수 있기 때문에 단열재의 제조에 유용할 수 있다.Such a high hydrophobic airgel blanket can maintain a low thermal conductivity even at high temperatures can be used in a variety of fields, such as insulation, ultra-low dielectric film, catalyst, catalyst carrier, or blanket, in particular, Pore properties can be useful in the manufacture of thermal insulation because it can maintain low thermal conductivity.
이하, 본 발명을 실시예를 통하여 더욱 상세하게 설명한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 이들만으로 본 발명의 범위가 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited only to them.
실시예Example 1 One
테트라에틸오르소실리케이트와 에탄올을 중량비 3:1로 혼합하여 제조한 혼합 용액(실리카 함량=4 중량%)에, 물에 희석한 염산 용액(농도=0.15 %)을 상기 혼합 용액의 pH가 1이 되도록 첨가한 후 혼합하여 실리카 졸을 제조하였다. 이어서 제조한 실리카 졸 140 ml에 에어로겔 분말을 상기 실리카 졸 내 실리카 100 중량부에 대하여 25 중량부의 함량으로 혼합하여 에어로겔 전구체를 제조하였다. 이때, 상기 에어로겔 분말은 테트라에틸오르소실리케이트를 이용하여 실리카 졸을 제조한 후 이를 겔화시키고 헥사메틸디실라잔으로 표면개질하여 제조한 것이다(탄소 함량: 에어로겔 분말 총 중량 중 11 중량%). 다음으로, 상기 제조한 에어로겔 전구체에 암모니아 촉매를 에어로겔 전구체 총 부피에 대하여 0.5 부피%의 함량으로 첨가하고, 유리 섬유를 침적시킨 후 겔화시켜 습윤겔-기재 복합체를 제조하였다. 이어서 제조한 습윤겔-기재 복합체를, 에탄올에 70 ℃의 온도에서 2 시간 동안 방치하여 숙성시켰다. 이후, 폴리디메틸실록산과 에탄올을 1:19의 부피비로 혼합하여 제조한 표면개질제 용액을, 습윤겔 부피 100을 기준으로 90 부피비로 첨가하고 70 ℃에서 5 시간 동안 표면개질시켜 소수성의 습윤겔-기재 복합체를 제조하였다. 이후 초임계 장비 내 추출기에 상기 소수성의 습윤겔-기재 복합체를 넣고 초임계 CO2를 이용하여 초임계 건조를 실시하고, 150 ℃에서 1 시간 동안 열처리하여 에어로겔 블랑켓을 제조하였다.To a mixed solution prepared by mixing tetraethylorthosilicate and ethanol in a weight ratio of 3: 1 (silica content = 4% by weight), a hydrochloric acid solution (concentration = 0.15%) diluted in water was added at a pH of 1 Silica sol was prepared by addition and mixing to make the addition. Airgel powder was then mixed with 140 ml of the prepared silica sol in an amount of 25 parts by weight based on 100 parts by weight of the silica in the silica sol to prepare an airgel precursor. In this case, the airgel powder is prepared by preparing a silica sol using tetraethylorthosilicate, gelling it, and surface modification with hexamethyldisilazane (carbon content: 11% by weight of the total weight of the airgel powder). Next, an ammonia catalyst was added to the prepared airgel precursor in an amount of 0.5% by volume based on the total volume of the airgel precursor, and glass fibers were deposited and gelled to prepare a wet gel-based composite. Subsequently, the prepared wet gel-based composite was aged by standing in ethanol at a temperature of 70 ° C. for 2 hours. Subsequently, the surface modifier solution prepared by mixing polydimethylsiloxane and ethanol in a volume ratio of 1:19 was added at a 90 volume ratio based on the volume of the wet gel 100, and surface modified at 70 ° C. for 5 hours to give a hydrophobic wet gel-based substrate. The complex was prepared. Then, the hydrophobic wet gel-based composite was added to an extractor in a supercritical equipment, supercritical drying was performed using supercritical CO 2 , and heat-treated at 150 ° C. for 1 hour to prepare an airgel blanket.
실시예Example 2 2
상기 에어로겔 전구체의 제조시 에어로겔 분말을 실리카 100 중량부에 대하여 50 중량부로 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시하여 에어로겔 블랑켓을 제조하였다.An airgel blanket was prepared in the same manner as in Example 1 except that the airgel powder was used in an amount of 50 parts by weight based on 100 parts by weight of silica when the airgel precursor was prepared.
실시예Example 3 3
상기 소수성의 습윤겔-기재 복합체에 대한 건조를 1±0.3atm 하에서 120 ℃의 온도에서 12 시간 수행하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시하여 에어로겔 블랑켓을 제조하였다.An airgel blanket was prepared in the same manner as in Example 1, except that the hydrophobic wet gel-based composite was dried for 12 hours at a temperature of 120 ° C. under 1 ± 0.3 atm.
실시예Example 4 4
나트륨 물유리 용액(SiO2 함량=7 중량%, Na2O:SiO2의 몰비=1:3.3) 1 L에 설폰산기 포함 스티렌-디비닐 벤젠 공중합체의 산 이온 교환 수지(Duolite™ C20) 0.5 L를 첨가한 후 교반하였다(pH 2.7). 결과의 혼합물로부터 이온 교환 수지를 여과 분리한 후, 1 M NaOH 용액을 첨가하여 pH 4.7로 조절하였다. 결과로 수득된 겔을 85 ℃에서 6 시간 숙성시킨 후 3 L의 아세톤으로 물을 추출하였다. 결과로 수득된 아세톤 함유 겔에 클로로프로필 트리클로로실란(아세톤 함유 겔 1 g당 50 mg 첨가)을 첨가하고, 5 시간 동안 반응시킨 후 아세톤 1 L로 세척하였다. 결과의 겔을 대기 분위기 하에 40 ℃에서 3 시간, 50 ℃에서 2 시간 및 150 ℃에서 12 시간 순차로 건조하여 표면 관능화 에어로겔 분말을 제조하였다(에어로겔 밀도=0.152 g/cm3, BET 비표면적=638 m2/g, 탄소 함량: 에어로겔 분말 총 중량 중 10.2 중량%).0.5 L of acid ion exchange resin (Duolite ™ C20) of styrene-divinyl benzene copolymer with sulfonic acid group in 1 L of sodium water glass solution (SiO 2 content = 7 wt%, Na 2 O: SiO 2 molar ratio = 1: 3.3) After addition was stirred (pH 2.7). The ion exchange resin was filtered off from the resulting mixture, and then adjusted to pH 4.7 by addition of 1 M NaOH solution. The resulting gel was aged at 85 ° C. for 6 hours and then water was extracted with 3 L of acetone. Chloropropyl trichlorosilane (added 50 mg per 1 g of acetone-containing gel) was added to the resulting acetone-containing gel, reacted for 5 hours, and washed with 1 L of acetone. Under an atmosphere of a gel of the resulting atmosphere for 3 hours at 40 ℃, and dried at 50 ℃ in 2 hours and 150 ℃ 12-hour sequential surface functionalised the airgel powder was prepared (airgel density = 0.152 g / cm 3, BET specific surface area = 638 m 2 / g, carbon content: 10.2% by weight of the total weight of the airgel powder).
상기에서 제조한 표면 관능화 에어로겔 분말을 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 에어로겔 블랑켓을 제조하였다.An airgel blanket was prepared in the same manner as in Example 1 except for using the surface functionalized airgel powder prepared above.
실시예Example 5 5
7.5 % 염산용액 424 g을 10 ℃로 냉각시킨 후, 여기에 나트륨 물유리 용액(이산화규소 13 중량% 함유, 산화나트륨:이산화규소의 비=1:3.3) 712 g을 적가한 후 10 ℃로 냉각하였다. 이때 pH는 4.7로 하였다. 결과로 수득된 히드로겔을 85 ℃에서 30 분 이상 유지한 후, 뜨거운 물 3 L로 세정하였다. 이어서, 실릴화를 위해, 헥사메틸디실록산(HMDSO) 1 L 및 농축된 염산용액 100 ml를 플라스크에서 끓을 때까지 가열하고 고온의 질소 분류(50l/h, 100 ℃)에 의해 약 30 분 이상 처리하여 80 ℃로 가열시킨 후, 상기 습윤 겔(150 ml)을 통과시켰다. 이후 결과의 겔을 1 시간 동안 고온의 질소 분류(1500l/h, 200 ℃)로 건조시켜 에어로겔 분말을 수득하였다(에어로겔 밀도=0.124 g/㎤, BET 비표면적=685 ㎡/g, 탄소 함량: 에어로겔 분말 총 중량 중 12.3 중량%, 적용도 3.0 nm-2)After cooling 424 g of a 7.5% hydrochloric acid solution to 10 DEG C, 712 g of a sodium water glass solution (containing 13% by weight of silicon dioxide and a ratio of sodium oxide to silicon dioxide = 1: 3.3) was added dropwise and cooled to 10 DEG C. . PH was 4.7. The resulting hydrogel was kept at 85 ° C. for at least 30 minutes and then washed with 3 L of hot water. Then, for silylation, 1 L of hexamethyldisiloxane (HMDSO) and 100 ml of concentrated hydrochloric acid solution were heated until boiling in the flask and treated for at least about 30 minutes by hot nitrogen fractionation (50 l / h, 100 ° C.). Heated to 80 ° C. and then passed through the wet gel (150 ml). The resulting gel was then dried for 1 hour at hot nitrogen fractionation (1500 l / h, 200 ° C.) to give an aerogel powder (aerogel density = 0.124 g / cm 3, BET specific surface area = 685 m 2 / g, carbon content: aerogels) 12.3% by weight of the total weight of the powder, application area 3.0 nm -2 )
상기에서 제조한 에어로겔 분말을 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 에어로겔 블랑켓을 제조하였다.An airgel blanket was prepared in the same manner as in Example 1 except that the airgel powder prepared above was used.
실시예Example 6 6
나트륨 물유리 용액 2 L(이산화규소의 함량 6 중량%, 산화나트륨:이산화규소의 비 1:3.3)를 설폰산기 포함 스티렌-디비닐벤젠 공중합체의 산 이온 교환 수지(Duolite™ C20) 4 L로 채워진 유리 칼럼(jacketed glass column: 길이=100 cm, 직경=8 cm)을 통해 약 70 ml/min의 속도로 통과시켰다. 상기 칼럼은 약 7 ℃에서 작용된다. 결과로 칼럼의 저면의 단부에서 유출되는 실리카 용액(pH 2.3)에 1.0 몰의 수산화나트륨 용액을 pH 4.7이 될 때까지 투입한 후, 85 ℃에서 3시간 동안 유지하여 축중합 반응을 수행하였다. 결과로 수득된 겔의 기공내 물이 염산용액 10 %가 될 때까지 농축된 수상의 염산용액으로 세정하였다. 이어서, 실릴화를 위해, 결과의 히드로겔 100 g을 헥사메틸디실록산(HMDSO) 100 ml에서 현탁시킨 후 트리메틸클로로실란(TMCS) 31.5 g(42 ml)를 첨가하였다. 가스(HCl) 방출에 의해 수상(농축된 HCl 120 ml)이 1 시간 이내에 HMDSO 상 아래에 형성되었다. 결과로 소수화된 겔을 상기 HMDSO 상으로부터 분리한 후, 1 시간 동안 고온의 질소 분류(1500l/h, 200 ℃)로 건조시켜 에어로겔 분말을 수득하였다(에어로겔 밀도=0.101 g/㎤, BET 비표면적=728 ㎡/g, 탄소 함량: 에어로겔 분말 총 중량 중 11.2 중량%, 적용도 2.5 nm-2)2 L of sodium water glass solution (content of 6% by weight of silicon dioxide, sodium oxide: silicon dioxide ratio 1: 3.3) was filled with 4 L of acid ion exchange resin (Duolite ™ C20) of styrene-divinylbenzene copolymer with sulfonic acid group Passed through a glass column (jacketed glass column (length = 100 cm, diameter = 8 cm) at a rate of about 70 ml / min. The column is operated at about 7 ° C. As a result, 1.0 mol of sodium hydroxide solution was added to the silica solution (pH 2.3) flowing out from the end of the bottom of the column until the pH 4.7, and then maintained at 85 ℃ for 3 hours to carry out the condensation polymerization reaction. The resulting gel was washed with concentrated hydrochloric acid solution until the pore water of the gel became 10% hydrochloric acid solution. Then, for silylation, 100 g of the resulting hydrogel was suspended in 100 ml of hexamethyldisiloxane (HMDSO) followed by the addition of 31.5 g (42 ml) of trimethylchlorosilane (TMCS). An aqueous phase (120 ml of concentrated HCl) was formed below the HMDSO phase by gas (HCl) release. The resulting hydrophobized gel was separated from the HMDSO phase and then dried by hot nitrogen fractionation (1500 l / h at 200 ° C.) for 1 hour to obtain an aerogel powder (aerogel density = 0.101 g / cm 3, BET specific surface area =). 728 m 2 / g, carbon content: 11.2% by weight of the total weight of the airgel powder, application 2.5 nm -2 )
상기에서 제조한 에어로겔 분말을 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 에어로겔 블랑켓을 제조하였다.An airgel blanket was prepared in the same manner as in Example 1 except that the airgel powder prepared above was used.
실시예Example 7 7
나트륨 물유리 용액 2 L(이산화규소의 함량 6 중량%, 산화나트륨:이산화규소의 비 1:3.3)를 설폰산기 포함 스티렌-디비닐 벤젠 공중합체의 산 이온 교환 수지(Duolite™ C20) 4 L로 채워진 유리 칼럼(jacketed glass column: 길이=100 cm, 직경=8 cm)을 통해 약 70 ml/min 의 속도로 통과시켰다. 상기 칼럼은 약 7 ℃에서 작용된다. 결과로 칼럼의 저면의 단부에서 유출되는 실리카 용액(pH 2.3)에 1.0 몰의 수산화나트륨 용액을 pH 4.7이 될 때까지 투입한 후, 85 ℃에서 3 시간 동안 유지하여 축중합 반응을 수행하였다. 이어서, 실릴화를 위해, 트리메틸실록산((CH3)3SiOH) 1 L 및 농축된 염산용액 100ml를 플라스크에서 끓을 때까지 가열하고 형성된 가스 혼합물을 고온의 질소 분류(50l/h, 100 ℃)에 의해 약 30 분 이상 처리하여 80 ℃로 가열시킨 후, 상기 습윤겔(150 ml)을 통과시켰다. 이후 결과의 겔을 1 시간 동안 고온의 질소 분류(1500l/h, 200 ℃)로 건조시켜 에어로겔 분말을 수득하였다(에어로겔 밀도=0.128 g/㎤, BET 비표면적=645 ㎡/g, 탄소 함량: 에어로겔 분말 총 중량 중 11.8 중량%, 적용도 2.4 nm-2).2 L of sodium water glass solution (content of 6% by weight of silicon dioxide, sodium oxide: silicon dioxide ratio 1: 3.3) were filled with 4 L of acid ion exchange resin (Duolite ™ C20) of styrene-divinyl benzene copolymer with sulfonic acid group Passed through a glass column (jacketed glass column (length = 100 cm, diameter = 8 cm) at a rate of about 70 ml / min. The column is operated at about 7 ° C. As a result, 1.0 mol of sodium hydroxide solution was added to the silica solution (pH 2.3) flowing out from the end of the bottom of the column until the pH 4.7, and then maintained at 85 ℃ for 3 hours to carry out the condensation polymerization reaction. Subsequently, for silylation, 1 L of trimethylsiloxane ((CH 3 ) 3 SiOH) and 100 ml of concentrated hydrochloric acid solution were heated until boiling in a flask and the formed gas mixture was heated to a hot nitrogen stream (50 l / h, 100 ° C.). Was treated for at least about 30 minutes, heated to 80 ° C., and then passed through the wet gel (150 ml). The resulting gel was then dried for 1 hour in hot nitrogen fractionation (1500 l / h at 200 ° C.) to give an aerogel powder (aerogel density = 0.128 g / cm 3, BET specific surface area = 645 m 2 / g, carbon content: aerogels) 11.8% by weight of the total weight of the powder, application 2.4 nm −2 ).
상기에서 제조한 에어로겔 분말을 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 에어로겔 블랑켓을 제조하였다.An airgel blanket was prepared in the same manner as in Example 1 except that the airgel powder prepared above was used.
실시예Example 8 8
블랑켓용 기재로서 폴리에스터 섬유 배팅이 폴리비닐알코올 결합제를 포함하고 65 g/㎡의 밀도를 갖는 로프티 실리카 섬유 구조(Quartz el, Saint-Gobain Quartz)의 강화 구조물을 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 에어로겔 블랑켓을 제조하였다.The above embodiment except that the polyester fiber batting as the substrate for the blanket uses a reinforcing structure of a lofty silica fiber structure (Quartz el, Saint-Gobain Quartz) containing a polyvinyl alcohol binder and having a density of 65 g / m 2. Airgel blanket was prepared in the same manner as in 1.
비교예Comparative example 1 One
상기 실시예 1에서 에어로겔 전구체의 제조시 에어로겔 분말을 추가로 첨가하지 않는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시하여 에어로겔 블랑켓을 제조하였다.An airgel blanket was prepared in the same manner as in Example 1, except that no airgel powder was further added in the preparation of the airgel precursor in Example 1.
비교예Comparative example 2 2
상기 실시예 1에서 에어로겔 전구체의 제조시 에어로겔 분말 대신에 친수성 침강 실리카 분말(Evonkit사제, 22S)를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시하여 에어로겔 블랑켓을 제조하였다.An airgel blanket was prepared in the same manner as in Example 1, except that hydrophilic precipitated silica powder (manufactured by Evonkit, 22S) was used instead of the airgel powder in the preparation of the airgel precursor in Example 1.
실험예Experimental Example 1 : 탄소 함량 비교 분석 1: Carbon content comparison analysis
상기 실시예 및 비교예에서 제조한 각 에어로겔의 최초 탄소 함량을 측정하였고, 400 ℃, 500 ℃ 및 600 ℃의 온도에서 1 시간 내지 5 시간 동안 열처리한 후 에어로겔의 탄소 함량을 측정하였으며, 이를 토대로 하기와 같이 탄소 함량 유지율을 계산하여 그 결과를 도 2 내지 도 4, 표 1 내지 표 3에 나타내었다. 한편, 상기 탄소 함량은 탄소분석기(ELTRA, CS-800)를 이용하여 측정하였다.The initial carbon content of each airgel prepared in Examples and Comparative Examples was measured, and the carbon content of the airgel was measured after heat treatment at temperatures of 400 ° C., 500 ° C. and 600 ° C. for 1 to 5 hours. As shown in Figures 2 to 4, Tables 1 to 3 to calculate the carbon content retention rate. On the other hand, the carbon content was measured using a carbon analyzer (ELTRA, CS-800).
- 탄소 함량 유지율(%)=(열처리 후의 에어로겔의 탄소 함량(중량%))/(열처리 전 에어로겔의 최초 탄소 함량(중량%))-Carbon content retention rate (%) = (carbon content of airgel after heat treatment (% by weight)) / (initial carbon content of airgel before heat treatment (% by weight))
실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2
온도(℃)Temperature (℃) 열처리 시간(hr)Heat treatment time (hr) 탄소 함량Carbon content 탄소 함량 유지율Carbon content retention rate 탄소 함량Carbon content 탄소 함량 유지율Carbon content retention rate 탄소 함량Carbon content 탄소 함량 유지율Carbon content retention rate 탄소 함량Carbon content 탄소 함량 유지율Carbon content retention rate
400400 00 10.110.1 100100 11.8411.84 100100 9.789.78 100100 6.986.98 100100
1One 8.018.01 79.3079.30 9.19.1 76.8576.85 7.127.12 72.8072.80 4.324.32 61.8961.89
22 7.27.2 71.2871.28 7.747.74 65.3765.37 5.95.9 60.3260.32 3.563.56 51.0051.00
33 6.716.71 66.4366.43 7.437.43 62.7562.75 5.755.75 58.7958.79 3.33.3 47.2747.27
44 6.416.41 63.4663.46 7.117.11 60.0560.05 5.665.66 57.8757.87 3.213.21 45.9845.98
55 6.46.4 63.3663.36 7.017.01 59.2059.20 5.55.5 56.2356.23 3.13.1 44.4144.41
실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2
온도(℃)Temperature (℃) 열처리 시간(hr)Heat treatment time (hr) 탄소 함량Carbon content 탄소 함량 유지율Carbon content retention rate 탄소 함량Carbon content 탄소 함량 유지율Carbon content retention rate 탄소 함량Carbon content 탄소 함량 유지율Carbon content retention rate 탄소 함량Carbon content 탄소 함량 유지율Carbon content retention rate
500500 00 10.110.1 100100 11.8411.84 100100 9.789.78 100100 6.986.98 100100
1One 5.815.81 57.5257.52 6.746.74 56.9256.92 1.21.2 12.2612.26 0.560.56 8.028.02
22 4.94.9 48.5148.51 5.755.75 48.5648.56 0.50.5 5.115.11 0.340.34 4.874.87
33 4.424.42 43.7643.76 55 42.2242.22 0.30.3 3.063.06 0.190.19 2.722.72
44 4.144.14 40.9940.99 4.484.48 37.8337.83 0.220.22 2.242.24 0.150.15 2.142.14
55 3.953.95 39.1039.10 4.54.5 38.0038.00 0.190.19 1.941.94 0.110.11 1.571.57
실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2
온도(℃)Temperature (℃) 열처리 시간(hr)Heat treatment time (hr) 탄소 함량Carbon content 탄소 함량 유지율Carbon content retention rate 탄소 함량Carbon content 탄소 함량 유지율Carbon content retention rate 탄소 함량Carbon content 탄소 함량 유지율Carbon content retention rate 탄소 함량Carbon content 탄소 함량 유지율Carbon content retention rate
600600 00 10.110.1 100100 11.8411.84 100100 9.789.78 100100 6.986.98 100100
1One 4.154.15 41.0841.08 5.055.05 42.6542.65 0.70.7 7.157.15 0.290.29 4.154.15
22 2.842.84 28.1128.11 2.892.89 24.4024.40 0.30.3 3.063.06 0.210.21 3.003.00
33 2.422.42 23.9623.96 2.452.45 20.6920.69 0.220.22 2.242.24 0.120.12 1.711.71
44 2.122.12 20.9920.99 2.152.15 18.1518.15 0.120.12 1.221.22 0.080.08 1.141.14
55 1.981.98 19.6019.60 1.991.99 16.8016.80 0.090.09 0.920.92 0.080.08 1.141.14
상기 표 1 내지 3에 나타난 바와 같이, 실리카 졸에 소수성 에어로겔 분말을 첨가하여 에어로겔 전구체를 제조한 실시예 1 및 2 의 에어로겔은, 에어로겔 전구체 제조 시 에어로겔 분말을 첨가하지 않은 비교예 1의 에어로겔과 비교하여 열처리 전과 비교한 열처리 후의 탄소 함량 유지율이 보다 높은 것을 확인할 수 있었다. 특히, 열처리 시간이 최초 1 시간 이내, 그리고 500 ℃ 이상의 초고온에서 열처리를 수행할수록, 실시예 1 및 2와 비교예 1의 탄소 함량 유지율은 큰 폭으로 차이가 있음을 확인할 수 있었다. As shown in Tables 1 to 3, the aerogels of Examples 1 and 2 in which an aerogel precursor was prepared by adding a hydrophobic airgel powder to a silica sol were compared with those of Comparative Example 1, in which the aerogel powder was not added during preparation of the aerogel precursor. It was confirmed that the carbon content retention after heat treatment was higher than before. In particular, as the heat treatment time is performed within the first 1 hour, and at a very high temperature of 500 ℃ or more, it was confirmed that the carbon content retention ratios of Examples 1 and 2 and Comparative Example 1 were significantly different.
또한, 에어로겔 전구체 제조 시, 소수성의 에어로겔 분말을 첨가하는 대신에 침강 실리카 분말을 첨가한 비교예 2는 실시예 1 및 2뿐만 아니라 비교예 1과 비교하여도 탄소 함량 유지율이 높지 않아, 고온에서의 소수성 유지력이 현저히 열등한 것을 확인할 수 있었다. In addition, in preparing the airgel precursor, Comparative Example 2, in which precipitated silica powder was added instead of hydrophobic airgel powder, did not have a high carbon content retention rate as compared with Comparative Examples 1 as well as Examples 1 and 2, and thus, It was confirmed that the hydrophobic holding power was remarkably inferior.
비교예 1 및 2와 비교하여 실시예 1 및 2의 탄소 함량 유지율이 높은 것은 소수성의 에어로겔 분말을 실리카 졸에 혼합하여 실리카 전구체를 제조함으로써, 최종적으로 제조된 에어로겔의 표면 구조뿐 아니라 내부 구조에도 소수성의 에어로겔이 존재하는 것에 따른 것으로서, 이를 통해 본 발명의 에어로겔 블랑켓은 종래의 에어로겔 블랑켓과 비교하여 고소수성을 가질 수 있으며, 고온 적용 시에도 소수성 유지력이 우수하다는 것을 예상할 수 있다.Compared with Comparative Examples 1 and 2, the higher carbon content retention rate of Examples 1 and 2 was obtained by mixing a hydrophobic airgel powder with a silica sol to prepare a silica precursor, thereby providing hydrophobicity not only on the surface structure but also on the internal structure of the finally prepared airgel. According to the presence of the airgel, the airgel blanket of the present invention can have a high hydrophobicity compared to the conventional airgel blanket, it can be expected that the hydrophobic retention is excellent even at high temperature applications.
한편, 실시예 2는 실시예 1과 비교하여, 탄소 함량 유지율 면에서는 차이가 크지 않으나, 탄소 함량의 절대량 면에서는 실시예 1보다 더 많은 양의 탄소 함량을 포함하고 있는 바, 더 높은 소수성을 유지하고 있는 것으로 볼 수 있다. 이는 실시예 2가 소수성 에어로겔 분말을 더 많은 양을 첨가한 것에 따른 것이다. On the other hand, compared with Example 1, Example 2 does not have a large difference in terms of carbon content retention rate, but contains a higher amount of carbon content than Example 1 in terms of absolute amount of carbon content, thereby maintaining higher hydrophobicity. It can be seen that. This is because Example 2 added a higher amount of hydrophobic airgel powder.
실시예 1은 소수성 에어로겔 분말을 첨가하지 아니한 비교예 1 대비 단열 성능이 약화되지 않는 동시에 고소수성을 유지할 수 있는 장점이 있으며, 실시예 2는 더 많은 양의 소수성 에어로겔 분말의 첨가로 실시예 1 대비 소수성이 더 높은 대신 단열 성능은 다소 열등한 특성을 보이므로, 단열재의 적용 환경과 용도에 따라 더 적합한 에어로겔 블랑켓을 제조하기 위하여 소수성 에어로겔 분말의 첨가량을 조절할 수 있다.Example 1 has the advantage that can maintain high hydrophobicity at the same time does not weaken the thermal insulation performance compared to Comparative Example 1 not added hydrophobic airgel powder, Example 2 compared to Example 1 by the addition of a larger amount of hydrophobic airgel powder Since the insulation performance is somewhat inferior to the higher hydrophobicity, the amount of hydrophobic airgel powder can be adjusted to produce a more suitable airgel blanket according to the application environment and application of the insulation.
실험예Experimental Example 2 : 열전도도 비교 분석 2: comparative analysis of thermal conductivity
상기 실시예 및 비교예에서 제조한 각 에어로겔 블랑켓의 최초 열전도도를 측정하였고, 400 ℃, 500 ℃ 및 600 ℃의 온도에서 1 시간 내지 5 시간 동안 열처리한 후 에어로겔 블랑켓의 열전도도를 측정하였으며, 이를 토대로 하기와 같이 열전도도 증가율을 계산하여 그 결과를 도 5 내지 도 7, 표 4 내지 표 6에 나타내었다. 한편, 상기 열전도도는 열전도 측정장치(NETZSCH, HFM436 Lambda)를 이용하여 상온(25 ℃)에서 측정하였다.The initial thermal conductivity of each airgel blanket prepared in Examples and Comparative Examples was measured, and the thermal conductivity of the airgel blanket was measured after heat treatment at temperatures of 400 ° C., 500 ° C. and 600 ° C. for 1 to 5 hours. On the basis of this, the thermal conductivity increase rate is calculated as follows and the results are shown in FIGS. 5 to 7, and Tables 4 to 6. On the other hand, the thermal conductivity was measured at room temperature (25 ℃) using a thermal conductivity measuring device (NETZSCH, HFM436 Lambda).
- 열전도도 증가율(%) = (열처리 후 25 ℃ 에서의 에어로겔 블랑켓의 열전도도(mW/mK)) / (25 ℃ 에서의 에어로겔의 최초 열전도도(mW/mK))% Thermal conductivity increase = (thermal conductivity of airgel blanket (mW / mK) at 25 ° C. after heat treatment) / (initial thermal conductivity of airgel at 25 ° C. (mW / mK))
실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2
온도(℃)Temperature (℃) 열처리 시간(hr)Heat treatment time (hr) 열 전도도Thermal conductivity 열 전도도 증가율Thermal conductivity increase 열 전도도Thermal conductivity 열 전도도 증가율Thermal conductivity increase 열 전도도Thermal conductivity 열 전도도 증가율Thermal conductivity increase 열 전도도Thermal conductivity 열 전도도 증가율 Thermal conductivity increase
400400 00 17.7517.75 00 19.219.2 00 17.217.2 00 18.5518.55 00
1One 18.818.8 5.915.91 20.3520.35 5.985.98 18.4518.45 7.267.26 19.819.8 6.736.73
22 19.3819.38 9.189.18 20.7820.78 8.228.22 18.9918.99 10.4010.40 20.520.5 10.5110.51
33 19.6519.65 10.7010.70 20.9220.92 8.958.95 19.3819.38 12.6712.67 20.8920.89 12.6112.61
44 19.7819.78 11.4311.43 21.0321.03 9.539.53 19.5419.54 13.6013.60 21.0821.08 13.6313.63
55 19.919.9 12.1112.11 21.221.2 10.4110.41 19.719.7 14.5314.53 21.121.1 13.7413.74
실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2
온도(℃)Temperature (℃) 열처리 시간(hr)Heat treatment time (hr) 열 전도도Thermal conductivity 열 전도도 증가율Thermal conductivity increase 열 전도도Thermal conductivity 열 전도도 증가율Thermal conductivity increase 열 전도도Thermal conductivity 열 전도도 증가율Thermal conductivity increase 열 전도도Thermal conductivity 열 전도도 증가율Thermal conductivity increase
500500 00 17.7517.75 00 19.219.2 00 17.217.2 00 18.5518.55 00
1One 20.2220.22 13.9113.91 21.621.6 12.5012.50 20.220.2 17.4417.44 21.4521.45 15.6315.63
22 20.2520.25 14.0814.08 21.6321.63 12.6512.65 20.2220.22 17.5517.55 21.6821.68 16.8716.87
33 20.3320.33 14.5314.53 21.6521.65 12.7612.76 20.2320.23 17.6117.61 21.7921.79 17.4617.46
44 20.3420.34 14.5914.59 21.6621.66 12.8112.81 20.2520.25 17.7317.73 21.8621.86 17.8417.84
55 20.3820.38 14.8114.81 21.721.7 13.0213.02 20.2520.25 17.7317.73 21.9121.91 18.1118.11
실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2
온도(℃)Temperature (℃) 열처리 시간(hr)Heat treatment time (hr) 열 전도도Thermal conductivity 열 전도도 증가율Thermal conductivity increase 열 전도도Thermal conductivity 열 전도도 증가율Thermal conductivity increase 열 전도도Thermal conductivity 열 전도도 증가율Thermal conductivity increase 열 전도도Thermal conductivity 열 전도도 증가율 Thermal conductivity increase
600600 00 17.7517.75 00 19.219.2 00 17.217.2 00 18.5518.55 00
1One 20.4720.47 15.3215.32 21.0221.02 9.479.47 20.5820.58 19.6519.65 21.5421.54 16.1116.11
22 20.5820.58 15.9415.94 21.3921.39 11.4011.40 20.6120.61 19.8219.82 21.6421.64 16.6516.65
33 20.6620.66 16.3916.39 21.5521.55 12.2312.23 20.7720.77 20.7520.75 21.8921.89 18.0018.00
44 20.6820.68 16.5016.50 21.7521.75 13.2813.28 20.9120.91 21.5621.56 21.9121.91 18.1118.11
55 20.6520.65 16.3316.33 21.7121.71 13.0713.07 20.8520.85 21.2221.22 21.9821.98 18.4918.49
상기 표 4 내지 표 6에 나타난 바와 같이, 실리카 졸에 소수성 에어로겔 분말을 첨가하여 에어로겔 전구체를 제조한 실시예 1 및 2 의 에어로겔 블랑켓은, 에어로겔 전구체 제조 시 에어로겔 분말을 첨가하지 않은 비교예 1의 에어로겔 블랑켓과 비교하여 열처리 전과 비교한 열처리 후의 열전도도 증가율이 높지 않은 것을 확인할 수 있었다. 특히, 열처리 시간 최초 1 시간 이내를 제외하고는 열전도도가 크게 증가하지 않고, 단열 성능이 비교적 잘 유지되고 있는 것을 확인할 수 있었다. As shown in Tables 4 to 6, the aerogel blankets of Examples 1 and 2 in which an airgel precursor was prepared by adding a hydrophobic airgel powder to a silica sol were prepared in Comparative Example 1, in which the airgel precursor was not added. Compared with the airgel blanket, it was confirmed that the thermal conductivity increase rate after heat treatment was not high compared with before heat treatment. In particular, it was confirmed that the thermal conductivity was not significantly increased except within the first hour of the heat treatment time, and the thermal insulation performance was maintained relatively well.
이는 소수성의 에어로겔 분말을 실리카 졸에 혼합하여 실리카 전구체를 제조함으로써, 최종적으로 제조된 에어로겔의 표면 구조뿐 아니라 내부 구조에도 소수성의 에어로겔이 존재하게 된 것에 의한 효과로서, 본 발명의 에어로겔 블랑켓은 종래의 에어로겔 블랑켓과 비교하여 고온에서의 적용 시에도 단열 성능이 우수하다는 것을 예상할 수 있었다. This is due to the effect of the presence of hydrophobic airgel in the internal structure as well as the surface structure of the airgel finally prepared by mixing the hydrophobic airgel powder in the silica sol, the airgel blanket of the present invention It can be expected that the thermal insulation performance is excellent even in the application at high temperature compared to the airgel blanket of.
한편, 소수성의 분말이 아닌 친수성의 분말을 첨가한 비교예 2는 실시예 1과 비교하여 열전도도가 높고, 열전도도 증가율 또한 높아 단열 성능이 좋지 못한 것을 확인할 수 있었다. On the other hand, Comparative Example 2 to which the hydrophilic powder was added rather than the hydrophobic powder was confirmed that the thermal insulation performance is high compared with Example 1, the thermal conductivity increase rate is also high, it is not good.
실험예Experimental Example 3 : 소수성  3: hydrophobic 유지력retention 비교 분석(Furnace test) Furnace test
상기 실시예 및 비교예에서 제조한 각 에어로겔 블랑켓의 고온 열처리 시 소수성 유지력을 Furnace test를 통해 비교 분석하였으며, 결과를 도 8 내지 도 10에 나타내었다.Hydrophobic holding force was compared and analyzed by Furnace test at high temperature heat treatment of each airgel blanket prepared in Examples and Comparative Examples, and the results are shown in FIGS. 8 to 10.
상세하게는, 상기 실시예 및 비교예에서 제조한 각 에어로겔 블랑켓 조각을 각각 (1) 400 ℃에서 1 시간 열처리, (2) 500 ℃에서 1시간 열처리, 그리고 (3) 600 ℃에서 1 시간 열처리하여 샘플을 준비한 후, 물이 담긴 바이알에 넣어 수분 흡수 여부를 관찰하고, 소수성 유지력을 평가하였다.Specifically, each piece of airgel blanket prepared in Examples and Comparative Examples was subjected to (1) heat treatment at 400 ° C for 1 hour, (2) heat treatment at 500 ° C for 1 hour, and (3) heat treatment at 600 ° C for 1 hour. After the sample was prepared, it was put in a vial containing water to observe the water absorption, and the hydrophobic holding power was evaluated.
도 8 내지 도 10에 나타난 바와 같이, 에어로겔 전구체의 제조시 에어로겔 분말을 사용하여 제조한 실시예 1 및 2의 에어로겔 블랑켓은, 고온 열처리에도 높은 소수성 유지력을 나타내었으나, 비교예 1 및 비교예 2의 에어로겔 블랑켓은 고온 열처리에 의하여 소수성을 잃었다. 특히 친수성의 분말을 사용한 비교예 2의 에어로겔 블랑켓은 400 ℃의 비교적 낮은 온도에서의 열처리 후에도 소수성을 상실하고 침강되었다. 이 같은 결과로부터 친수성의 분말 사용 시 고온에서의 소수성이 쉽게 약화되어 고온에서의 내구성이 쉽게 감소될 것임을 예상할 수 있었다.As shown in FIGS. 8 to 10, the airgel blankets of Examples 1 and 2 prepared by using the airgel powder in the preparation of the airgel precursor showed high hydrophobic retention even at high temperature heat treatment, but Comparative Examples 1 and 2 Aerogel blanket lost its hydrophobicity by high temperature heat treatment. In particular, the aerogel blanket of Comparative Example 2 using a hydrophilic powder lost hydrophobicity and settled even after heat treatment at a relatively low temperature of 400 ° C. From these results, it can be expected that hydrophilicity at high temperature is easily weakened when hydrophilic powder is used, and durability at high temperature is easily reduced.
실험예Experimental Example 4 : NMR 비교 분석  4: NMR comparative analysis
상기 실시예 2 및 비교예 1에서 제조한 각 에어로겔의 표면 및 내부 소수화 정도를 비교 분석하기 위하여 NMR 분석을 실시하였으며, 그 결과를 하기 표 7에 나타내었다. NMR analysis was performed to compare the surface and internal hydrophobicity of each airgel prepared in Example 2 and Comparative Example 1, and the results are shown in Table 7 below.
하기 표 7에서, M은 일관능성기[Si(OSi)(Rx)3]를 나타내는 것으로, 에어로겔 분말 제조 시 사용된 헥사메틸디실라잔(HMDS)으로부터 기인한 것이다(이때, Rx은 메틸기임). 또, D는 이관능성기[Si(OSi)2(Ry)2 및 Si(OSi0)(Rz)2(ORw)]를 나타내는 것으로, 표면개질제인 폴리디메틸실록산(PDMS)으로부터 기인된 것이며(이때 Ry, Rz 및 Rw는 각각 메틸기임), Q는 4관능성기[(SiO-)4]를 나타내는 것이다.In Table 7, M represents a monofunctional group [Si (OSi) (R x ) 3 ], which is derived from hexamethyldisilazane (HMDS) used in the preparation of the airgel powder, wherein R x is a methyl group. being). D represents a difunctional group [Si (OSi) 2 (R y ) 2 and Si (OSi0) (R z ) 2 (OR w )], which is derived from polydimethylsiloxane (PDMS), which is a surface modifier. (Wherein R y , R z and R w are each methyl groups), Q represents a tetrafunctional group [(SiO ) 4 ].
peak(intensity)peak (intensity) MM DD QQ
실시예 2Example 2 1.01.0 1.11.1 7.87.8
비교예 1Comparative Example 1 -- 1.01.0 3.33.3
상기 표 7에 나타난 바와 같이, 실시예 2는 에어로겔의 임의의 일 부분에 대하여 NMR 분석을 실시하였음에도 불구하구 첨가한 소수성 에어로겔 분말 제조 시 사용된 헥사메틸디실라잔(HMDS)에서 유래한 피크(peak)가 관찰되었는 바, 첨가한 소수성 에어로겔 분말이 에어로겔에 전체에 균일하게 분포되어 있음을 알 수 있었다. 이는 소수성 에어로겔 분말이 에탄올 용액 상에서 분산성이 높은 특성이 있는 바, 본 실시예 2의 에탄올 베이스의 실리카 졸에도 균일하게 분산될 것이라는 예상에도 부합한다. As shown in Table 7, Example 2 is a peak derived from hexamethyldisilazane (HMDS) used to prepare hydrophobic airgel powder added even though NMR analysis was performed on any part of the airgel. ), It was found that the added hydrophobic airgel powder was uniformly distributed throughout the airgel. This is in accordance with the expectation that the hydrophobic airgel powder is uniformly dispersed in the ethanol-based silica sol of Example 2 because of its high dispersibility in the ethanol solution.
따라서, 첨가한 소수성 에어로겔 분말은 최종적으로 제조된 에어로겔의 표면 구조뿐 아니라 내부 구조에도 균일하게 분포하는 것을 알 수 있으며, 이에 따라 본 발명의 에어로겔 블랑켓은 종래의 에어로겔 블랑켓과 비교하여 고소수성을 가질 수 있고, 고온 적용 시에도 소수성 유지력이 우수하다는 것을 확인할 수 있었다.Therefore, it can be seen that the added hydrophobic airgel powder is uniformly distributed not only on the surface structure of the finally prepared airgel but also on the internal structure. Accordingly, the airgel blanket of the present invention has high hydrophobicity compared to the conventional airgel blanket. It can be confirmed that the hydrophobic holding power is excellent even at high temperatures.
실험예Experimental Example 5 :  5: 열중량Heat weight 비교 분석 comparison analysis
상기 실시예 1 및 2 및 비교예 1에서 제조한 각 에어로겔에 대해 열중량 분석(TGA analysis)을 실시하였으며, 그 결과를 도 11에 나타내었다. TGA analysis was performed on each of the airgels prepared in Examples 1 and 2 and Comparative Example 1, and the results are shown in FIG. 11.
실험 결과, 에어로겔 전구체의 제조 시 에어로겔 분말을 사용하여 제조한 실시예 1 및 2의 에어로겔은 넓은 온도 범위 전체에 걸쳐 우수한 소수성 유지력을 나타내었으며, 특히 500 ℃ 이상의 초고온에서 대부분의 소수화기가 소실된 비교예 1과 달리 실시예 1 및 2의 에어로겔은 500 ℃ 이상에서도 여전히 6 % 가량의 소수화기가 남아 있어 비교예 1에 비해 우수한 고온 안정성을 나타내는 것을 확인할 수 있었다. As a result, the airgels of Examples 1 and 2 prepared using airgel powder in the preparation of the airgel precursor showed excellent hydrophobic holding power over a wide temperature range, and compared with the loss of most of the hydrophobic groups, especially at ultrahigh temperatures of 500 ° C. or higher. Unlike Example 1, the airgels of Examples 1 and 2 still had about 6% of the hydrophobic group remaining at 500 ° C. or higher, indicating that they exhibited excellent high temperature stability compared to Comparative Example 1.
상기한 실험 결과들로부터, 본 발명의 일 실시예에 따라 에어로겔 전구체의 제조시 에어로겔 분말을 사용하여 제조한 에어로겔 블랑켓은 표면 및 내부에 우수한 소수성을 가지고 있어 고온 적용 시에도 소수성을 안정하게 유지할 수 있음을 알 수 있다. From the above experimental results, the airgel blanket prepared by using the airgel powder in the preparation of the airgel precursor according to an embodiment of the present invention has excellent hydrophobicity on the surface and the inside can maintain the hydrophobicity stable even at high temperature application It can be seen that.

Claims (30)

1) 실리카 졸에 에어로겔 분말을 혼합하여 에어로겔 전구체를 준비하는 단계;1) preparing an airgel precursor by mixing the airgel powder in a silica sol;
2) 상기 에어로겔 전구체에 염기성 촉매를 첨가하고 블랑켓용 기재에 침적시킨 후 겔화시켜 습윤겔-기재 복합체를 준비하는 단계;2) preparing a wet gel-based composite by adding a basic catalyst to the airgel precursor, depositing the gel on a blanket substrate, and then gelling the gel;
3) 상기 습윤겔-기재 복합체에 대해 표면개질을 수행하여 소수성의 습윤겔-기재 복합체를 준비하는 단계; 및3) preparing a hydrophobic wet gel-based composite by performing surface modification on the wet gel-based composite; And
4) 상기 소수성의 습윤겔-기재 복합체를 건조하는 단계를 포함하는 에어로겔 블랑켓의 제조방법. 4) A method for producing an airgel blanket comprising the step of drying the hydrophobic wet gel-based composite.
청구항 1에 있어서,The method according to claim 1,
상기 에어로겔 분말은 실리카 에어로겔 분말인 것을 특징으로 하는 에어로겔 블랑켓의 제조방법.The airgel powder is a method for producing an airgel blanket, characterized in that the silica airgel powder.
청구항 1에 있어서,The method according to claim 1,
상기 에어로겔 분말은 에어로겔 분말 총 중량 대비 탄소 함량이 10 중량부 내지 12 중량부인 소수성 에어로겔 분말인 것을 특징으로 하는 에어로겔 블랑켓의 제조방법.The airgel powder is a method for producing an airgel blanket, characterized in that the hydrophobic airgel powder 10 to 12 parts by weight of the carbon content relative to the total weight of the airgel powder.
청구항 1에 있어서,The method according to claim 1,
상기 에어로겔 분말은 상기 실리카 졸 내에 포함된 실리카 100 중량부에 대하여 25 중량부 내지 50 중량부의 함량으로 사용되는 것을 특징으로 하는 에어로겔 블랑켓의 제조방법. The airgel powder is a method for producing an airgel blanket, characterized in that used in an amount of 25 to 50 parts by weight based on 100 parts by weight of silica contained in the silica sol.
청구항 1에 있어서, The method according to claim 1,
상기 실리카 졸은 알콕시실란 및 알코올을 포함한 혼합 용액에 산성 수용액을 혼합하여 제조하는 것을 특징으로 하는 에어로겔 블랑켓의 제조방법.The silica sol is prepared by mixing an acidic aqueous solution to a mixed solution containing alkoxysilane and alcohol.
청구항 5에 있어서,The method according to claim 5,
상기 알코올은 상기 혼합 용액 내 포함된 실리카 함량이 2 중량% 내지 6 중량%가 되도록 첨가하는 것을 특징으로 하는 에어로겔 블랑켓의 제조방법. The alcohol is a method for producing an airgel blanket, characterized in that the addition of the silica content contained in the mixed solution is 2% to 6% by weight.
청구항 5에 있어서,The method according to claim 5,
상기 산성 수용액은 상기 혼합 용액 내 pH가 0.5 내지 1이 되도록 첨가하는 것을 특징으로 하는 에어로겔 블랑켓의 제조방법. The acidic aqueous solution is a method of producing an airgel blanket, characterized in that the pH is added so that the mixed solution is 0.5 to 1.
청구항 1에 있어서,The method according to claim 1,
상기 표면개질은 실란계 화합물, 실라잔계 화합물 및 실록산계 화합물로 이루어진 군으로부터 선택된 1종 이상의 표면개질제를 사용하여 수행되는 것을 특징으로 하는 에어로겔 블랑켓의 제조방법. The surface modification is a method for producing an airgel blanket, characterized in that carried out using at least one surface modifier selected from the group consisting of a silane compound, a silazane compound and a siloxane compound.
청구항 1에 있어서,The method according to claim 1,
상기 건조는 초임계 건조 공정, 또는 1±0.3 atm 하에서 50 ℃ 내지 150 ℃의 온도에서의 상압 건조 공정에 의해 수행되는 것을 특징으로 하는 에어로겔 블랑켓의 제조방법. The drying is a method for producing an airgel blanket, characterized in that carried out by a supercritical drying process, or an atmospheric pressure drying process at a temperature of 50 ℃ to 150 ℃ under 1 ± 0.3 atm.
청구항 1에 있어서, The method according to claim 1,
상기 에어로겔 분말은 유기 관능화 에어로겔 분말인 것을 특징으로 하는 에어로겔 블랑켓의 제조방법. The airgel powder is a method for producing an airgel blanket, characterized in that the organic functionalized airgel powder.
청구항 10에 있어서, The method according to claim 10,
상기 유기 관능화 에어로겔 분말은 실리카 습윤겔을 적어도 2 관능성 유기 화합물과 반응시킨 뒤 건조시키는 단계에 의해 제조되는 것을 특징으로 하는 에어로겔 블랑켓의 제조방법.Wherein said organic functionalized airgel powder is prepared by reacting a silica wet gel with at least a bifunctional organic compound and drying it.
청구항 11에 있어서,The method according to claim 11,
상기 2 관능성 유기 화합물은 에어로겔과의 결합기로 작용하는 적어도 하나의 관능기를 포함하는 것을 특징으로 하는 에어로겔 블랑켓의 제조방법.The bifunctional organic compound is a method for producing an airgel blanket, characterized in that it comprises at least one functional group that acts as a bond with the airgel.
청구항 11에 있어서, The method according to claim 11,
상기 2 관능성 유기 화합물은 할로겐기, 슈도 할로겐기, 히드록실기, 티오기, 아미노기, 아미드기, 에테르기, 에스테르기, 산기, 포르밀기, 케톤기 및 실릴기로 이루어진 군에서 선택되는 1 종 이상의 관능기를 포함하는 탄화수소기를 포함하는 것을 특징으로 하는 에어로겔 블랑켓의 제조방법.The bifunctional organic compound is at least one selected from the group consisting of a halogen group, a pseudo halogen group, a hydroxyl group, a thio group, an amino group, an amide group, an ether group, an ester group, an acid group, a formyl group, a ketone group and a silyl group Method for producing an airgel blanket comprising a hydrocarbon group containing a functional group.
청구항 11에 있어서, The method according to claim 11,
상기 2 관능성 유기 화합물은 메틸트리클로로실란, 디메틸디클로로실란, 트리메틸클로로실란, 클로로프로필트리클로로실란, 트리메틸 메톡시실란 및 헥사메틸디실라잔으로 이루어진 군에서 선택되는 1 종 이상의 화합물을 포함하는 것을 특징으로 하는 에어로겔 블랑켓의 제조방법.The bifunctional organic compound includes one or more compounds selected from the group consisting of methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, chloropropyltrichlorosilane, trimethyl methoxysilane and hexamethyldisilazane Airgel blanket production method characterized in that.
청구항 10에 있어서, The method according to claim 10,
상기 유기 관능화 에어로겔 분말은 하기 i) 또는 ii)의 특징을 갖는 표면 실릴화된 에어로겔 분말인 것을 특징으로 하는 에어로겔 블랑켓의 제조방법:The organic functionalized airgel powder is a method for producing an airgel blanket, characterized in that the surface silylated airgel powder having the characteristics of i) or ii):
i) Si-OR 기를 포함하지 않음(R은 탄소수 1 내지 18의 알킬기)i) does not contain a Si-OR group (R is an alkyl group having 1 to 18 carbon atoms)
ii) 하기 수학식 1에 따라 계산되는, 표면 실릴화에 의해 적용된 유기 표면 작용기(organic surface group)에 의한 내부 표면의 적용도(degree of coverage of internal surface) 또는 피복도가 90% 이상ii) the degree of coverage of internal surface or coverage by an organic surface group applied by surface silylation, calculated according to Equation 1 below, of at least 90%
[수학식 1] [Equation 1]
적용도 = [C]/[BET]*K; 단위:[nm-2]Application = [C] / [BET] * K; Unit: [nm -2 ]
상기 식에서, K = 6.022*1023/100*12*3*1018 = 167.28; 단위:[g-1] Wherein, K = 6.022 * 10 23/ 100 * 12 * 3 * 10 18 = 167.28; Unit: [g -1 ]
[C]: C 함량; 단위 [중량%][C]: C content; Unit [wt%]
[BET]: BET 표면적; 단위:[m2/g][BET]: BET surface area; Unit: [m 2 / g]
청구항 15에 있어서, The method according to claim 15,
상기 유기 관능화 에어로겔 분말은 습윤겔을 실릴화제와 반응시켜 상기 습윤겔의 표면을 변형시킨 뒤 건조시키는 단계에 의해 제조되며, The organic functionalized airgel powder is prepared by reacting the wet gel with a silylating agent to modify the surface of the wet gel and then dry it.
상기 실릴화제는 헥사메틸디실록산 및 트리메틸클로로실란으로 이루어진 군에서 선택되는 1종 이상의 화합물을 포함하는 것을 특징으로 하는 에어로겔 블랑켓의 제조방법.The silylating agent is a method for producing an airgel blanket, characterized in that it comprises one or more compounds selected from the group consisting of hexamethyldisiloxane and trimethylchlorosilane.
청구항 1에 있어서,The method according to claim 1,
상기 블랑켓용 기재는 강화 구조물을 포함하고, The blanket base material includes a reinforcing structure,
상기 강화 구조물은 로프티 섬유성 배팅(lofty fibrous batting)이고, 여기서 섬유들은 세 개의 모든 축을 따라 배향되어 있으며, 상기 배팅은 쉬트(sheet) 형태이고,The reinforcing structure is a lofty fibrous batting, wherein the fibers are oriented along all three axes, and the bet is in the form of a sheet,
상기 로프티 섬유성 배팅은 두께의 적어도 50 %까지 압축 가능하고 5 초 간의 압축 후에 원래 두께의 적어도 70 %까지 회복되고, 로프티 섬유성 배팅의 밀도는 0.001 g/cm3 내지 0.26 g/cm3이고,The Lofty fibrous bets are compressible to at least 50% of the thickness and recover to at least 70% of the original thickness after compression for 5 seconds, the density of the Lofty fibrous bets is between 0.001 g / cm 3 and 0.26 g / cm 3 ,
최종 제조되는 에어로겔 블랑켓의 횡단면에서 식별가능한 섬유들의 횡단면적은 횡단면적 전체의 10 % 미만인 것을 특징으로 하는 에어로겔 블랑켓의 제조방법.Method for producing an airgel blanket, characterized in that the cross-sectional area of the identifiable fibers in the cross section of the final airgel blanket is less than 10% of the total cross-sectional area.
청구항 17에 있어서, The method according to claim 17,
상기 강화구조물은 폴리에스테르 배팅 강화구조물; 폴리비닐알코올 결합제를 포함하는 폴리에스테르 섬유 배팅; 로프티 실리카 섬유 구조물; 폴리에스테르/실리콘 카바이드/구리 메쉬/실리콘 카바이드/폴리에스테르의 섬유 적층물; 폴리에스테르 배팅/중합성 결합제를 포함하는 단일 방향 탄소섬유/구리 메쉬/로프티 폴리에스테르 배팅의 적층물; 및 실리카 펠트/스테인레스 스틸 메쉬/실리카 펠트의 적층물로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 에어로겔 블랑켓의 제조방법.The reinforcement structure is a polyester batting reinforcement structure; Polyester fiber batting comprising a polyvinyl alcohol binder; Lofty silica fiber structures; Fiber laminates of polyester / silicon carbide / copper mesh / silicon carbide / polyester; A stack of unidirectional carbon fiber / copper mesh / loft polyester batting comprising a polyester batting / polymerizable binder; And a laminate of silica felt / stainless steel mesh / silica felt.
에어로겔 및 블랑켓용 기재를 포함하고,A base material for aerogels and blankets,
상기 에어로겔은 400 ℃ 이상 500 ℃ 미만의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 하기 수학식 2로 계산되는 탄소 함량 유지율이 하기 1) 내지 5) 중 적어도 어느 하나를 만족하는 에어로겔 블랑켓.When the airgel is heat-treated for 1 hour to 5 hours at a temperature of 400 ° C or more and less than 500 ° C, an airgel blanket satisfying at least one of the following 1) to 5) carbon content retention rate calculated by Equation 2 below.
[수학식 2][Equation 2]
탄소 함량 유지율(%) = (열처리 후의 에어로겔의 탄소 함량(중량%)) / (에어로겔의 최초 탄소 함량(중량%))Carbon content retention rate (%) = (carbon content of airgel after heat treatment (% by weight)) / (original carbon content of airgel (% by weight))
1) 1 시간 동안 열처리한 경우 75 % 이상1) More than 75% when heat treated for 1 hour
2) 2 시간 동안 열처리한 경우 65 % 이상2) 65% or more when heat treated for 2 hours
3) 3 시간 동안 열처리한 경우 60 % 이상3) 60% or more when heat treated for 3 hours
4) 4 시간 동안 열처리한 경우 59 % 이상4) 59% or more when heat treated for 4 hours
5) 5 시간 동안 열처리한 경우 58 % 이상5) 58% or more when heat treated for 5 hours
청구항 19에 있어서,The method according to claim 19,
상기 에어로겔은 400 ℃ 이상 500 ℃ 미만의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 탄소 함량 유지율이 하기 1) 내지 5) 중 적어도 어느 하나를 만족하는 것을 특징으로 하는 에어로겔 블랑켓.The airgel is an airgel blanket, characterized in that when the heat treatment for 1 hour to 5 hours at a temperature of 400 ℃ or more less than 500 ℃ satisfies at least one of the following 1) to 5).
1) 1 시간 동안 열처리한 경우 75 % 이상 80 % 이하1) 75% or more and 80% or less when heat treated for 1 hour
2) 2 시간 동안 열처리한 경우 65 % 이상 75 % 이하2) 65% or more and 75% or less when heat treated for 2 hours
3) 3 시간 동안 열처리한 경우 60 % 이상 70 % 이하3) 60% or more and 70% or less when heat-treated for 3 hours
4) 4 시간 동안 열처리한 경우 59 % 이상 65 % 이하4) 59% or more and 65% or less when heat treated for 4 hours
5) 5 시간 동안 열처리한 경우 58 % 이상 64 % 이하5) 58% or more and 64% or less when heat treated for 5 hours
청구항 19에 있어서,The method according to claim 19,
상기 에어로겔 블랑켓은 400 ℃ 이상 500 ℃ 미만의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 하기 수학식 3으로 계산되는 열전도도 증가율이 하기 1) 내지 5) 중 적어도 어느 하나를 만족하는 것을 특징으로 하는 에어로겔 블랑켓.When the airgel blanket is heat treated at a temperature of 400 ° C. or more and less than 500 ° C. for 1 to 5 hours, the thermal conductivity increase rate calculated by Equation 3 below satisfies at least one of the following 1) to 5). Aerogel blanket.
[수학식 3][Equation 3]
열전도도 증가율(%) = (열처리 후 25 ℃ 에서의 에어로겔 블랑켓의 열전도도(mW/mK)) / (25 ℃ 에서의 에어로겔 블랑켓의 최초 열전도도(mW/mK))Thermal conductivity increase rate (%) = (Thermal conductivity of airgel blanket (mW / mK) at 25 ° C after heat treatment) / (Initial thermal conductivity of airgel blanket at 25 ° C (mW / mK))
1) 1 시간 동안 열처리한 경우 6 % 이하1) 6% or less when heat treated for 1 hour
2) 2 시간 동안 열처리한 경우 10 % 이하2) 10% or less when heat treated for 2 hours
3) 3 시간 동안 열처리한 경우 11 % 이하3) 11% or less when heat treated for 3 hours
4) 4 시간 동안 열처리한 경우 12 % 이하4) 12% or less when heat treated for 4 hours
5) 5 시간 동안 열처리한 경우 13 % 이하5) 13% or less when heat treated for 5 hours
청구항 19에 있어서,The method according to claim 19,
상기 에어로겔 블랑켓은 400 ℃ 이상 500 ℃ 미만의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 열전도도 증가율이 하기 1) 내지 5) 중 적어도 어느 하나를 만족하는 것을 특징으로 하는 에어로겔 블랑켓.The airgel blanket is an airgel blanket, characterized in that when the heat treatment for 1 to 5 hours at a temperature of 400 ℃ or more less than 500 ℃ satisfies at least one of the following 1) to 5).
1) 1 시간 동안 열처리한 경우 5 % 이상 6 % 이하1) 5% or more and 6% or less when heat treated for 1 hour
2) 2 시간 동안 열처리한 경우 7 % 이상 10 % 이하2) 7% or more and 10% or less when heat treated for 2 hours
3) 3 시간 동안 열처리한 경우 8 % 이상 11 % 이하3) 8% or more and 11% or less when heat-treated for 3 hours
4) 4 시간 동안 열처리한 경우 9 % 이상 12 % 이하4) 9% or more and 12% or less when heat treated for 4 hours
5) 5 시간 동안 열처리한 경우 10 % 이상 13 % 이하5) 10% or more and 13% or less when heat treated for 5 hours
에어로겔 및 블랑켓용 기재를 포함하고, A base material for aerogels and blankets,
상기 에어로겔은 500 ℃ 이상 600 ℃ 이하의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 하기 수학식 2로 계산되는 탄소 함량 유지율이 13 % 이상인 것인 에어로겔 블랑켓.When the airgel is heat-treated for 1 to 5 hours at a temperature of 500 ° C or more and 600 ° C or less, the air content blanket is 13% or more carbon content retention calculated by Equation 2 below.
[수학식 2][Equation 2]
탄소 함량 유지율(%) = (열처리 후의 에어로겔의 탄소 함량(중량%)) / (에어로겔의 최초 탄소 함량(중량%))Carbon content retention rate (%) = (carbon content of airgel after heat treatment (% by weight)) / (original carbon content of airgel (% by weight))
청구항 23에 있어서,The method according to claim 23,
상기 에어로겔은 500 ℃ 이상 600 ℃ 이하의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 탄소 함량 유지율이 15 % 이상인 것을 특징으로 하는 에어로겔 블랑켓.The airgel is an airgel blanket, characterized in that the carbon content retention rate is 15% or more when heat-treated for 1 hour to 5 hours at a temperature of 500 ℃ to 600 ℃ or less.
청구항 23에 있어서,The method according to claim 23,
상기 에어로겔은 500 ℃ 이상 600 ℃ 이하의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 탄소 함량 유지율이 13 % 이상 70 % 이하인 것을 특징으로 하는 에어로겔 블랑켓.The airgel is an airgel blanket, characterized in that the carbon content retention rate is 13% or more and 70% or less when heat-treated for 1 hour to 5 hours at a temperature of 500 ℃ to 600 ℃ or less.
청구항 23에 있어서,The method according to claim 23,
상기 에어로겔은 500 ℃ 이상 600 ℃ 이하의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 탄소 함량 유지율이 15 % 이상 60 % 이하인 것을 특징으로 하는 에어로겔 블랑켓.The airgel is an airgel blanket, characterized in that the carbon content retention rate is 15% or more and 60% or less when heat-treated for 1 hour to 5 hours at a temperature of 500 ° C or more and 600 ° C or less.
청구항 23에 있어서,The method according to claim 23,
상기 에어로겔은 500 ℃ 이상 600 ℃ 이하의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 탄소 함량 유지율이 하기 1) 내지 5) 중 적어도 어느 하나를 만족하는 것을 특징으로 하는 에어로겔 블랑켓.The airgel is an airgel blanket, characterized in that when the heat treatment for 1 to 5 hours at a temperature of 500 ℃ to 600 ℃ below at least any one of the following 1) to 5).
1) 1 시간 동안 열처리한 경우 40 % 이상1) 40% or more when heat treated for 1 hour
2) 2 시간 동안 열처리한 경우 24 % 이상2) 24% or more when heat treated for 2 hours
3) 3 시간 동안 열처리한 경우 20 % 이상3) 20% or more when heat treated for 3 hours
4) 4 시간 동안 열처리한 경우 17 % 이상4) 17% or more when heat treated for 4 hours
5) 5 시간 동안 열처리한 경우 15 % 이상5) 15% or more when heat treated for 5 hours
청구항 23에 있어서,The method according to claim 23,
상기 에어로겔은 500 ℃ 이상 600 ℃ 이하의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 탄소 함량 유지율이 하기 1) 내지 5) 중 적어도 어느 하나를 만족하는 것을 특징으로 하는 에어로겔 블랑켓.The airgel is an airgel blanket, characterized in that when the heat treatment for 1 to 5 hours at a temperature of 500 ℃ to 600 ℃ below at least any one of the following 1) to 5).
1) 1 시간 동안 열처리한 경우 40 % 이상 60 % 이하1) 40% or more and 60% or less when heat treated for 1 hour
2) 2 시간 동안 열처리한 경우 24 % 이상 50 % 이하2) 24% or more and 50% or less when heat treated for 2 hours
3) 3 시간 동안 열처리한 경우 20 % 이상 45 % 이하3) 20% or more and 45% or less when heat-treated for 3 hours
4) 4 시간 동안 열처리한 경우 17 % 이상 42 % 이하4) 17% or more and 42% or less when heat treated for 4 hours
5) 5 시간 동안 열처리한 경우 15 % 이상 40 % 이하5) 15% or more and 40% or less when heat treated for 5 hours
청구항 23에 있어서,The method according to claim 23,
상기 에어로겔 블랑켓은 500 ℃ 이상 600 ℃ 이하의 온도에서 1 시간 내지 5 시간 동안 열처리한 경우, 하기 수학식 3으로 계산되는 열전도도 증가율이 17 % 이하인 것을 특징으로 하는 에어로겔 블랑켓.The airgel blanket is an airgel blanket, characterized in that when the heat treatment at a temperature of 500 ° C or more and 600 ° C or less for 1 hour to 5 hours, the thermal conductivity increase rate calculated by Equation 3 below 17%.
[수학식 3][Equation 3]
열전도도 증가율(%) = (열처리 후 25 ℃ 에서의 에어로겔 블랑켓의 열전도도(mW/mK)) / (25 ℃ 에서의 에어로겔 블랑켓의 최초 열전도도(mW/mK))Thermal conductivity increase rate (%) = (Thermal conductivity of airgel blanket (mW / mK) at 25 ° C after heat treatment) / (Initial thermal conductivity of airgel blanket at 25 ° C (mW / mK))
청구항 19 내지 청구항 29 중 어느 한 항에 따른 에어로겔 블랑켓을 포함하는 단열재. 30. An insulating material comprising the airgel blanket of claim 19.
PCT/KR2017/002530 2016-03-08 2017-03-08 Method for manufacturing aerogel blanket, and aerogel blanket manufactured thereby WO2017155311A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17763572.9A EP3284721B1 (en) 2016-03-08 2017-03-08 Method for manufacturing aerogel blanket
CN202010078849.6A CN111501335B (en) 2016-03-08 2017-03-08 Aerogel blanket and method of making same
US15/569,056 US11274044B2 (en) 2016-03-08 2017-03-08 Method for producing aerogel blanket and aerogel blanket produced thereby
JP2018522727A JP6722283B2 (en) 2016-03-08 2017-03-08 Airgel blanket manufacturing method and airgel blanket manufactured thereby
CN201780001639.3A CN107709235B (en) 2016-03-08 2017-03-08 Aerogel blanket and method of making same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20160027784 2016-03-08
KR10-2016-0027784 2016-03-08
KR1020160123394A KR20170104914A (en) 2016-03-08 2016-09-26 Method for preparing aerogel blanket and aerogel blanket prepared by the same
KR10-2016-0123394 2016-09-26
KR10-2017-0029621 2017-03-08
KR10-2017-0029620 2017-03-08
KR1020170029619A KR101993642B1 (en) 2016-03-08 2017-03-08 Method for preparing aerogel blanket and aerogel blanket prepared by the same
KR1020170029621A KR101964894B1 (en) 2016-03-08 2017-03-08 Method for preparing aerogel blanket and aerogel blanket prepared by the same
KR1020170029620A KR101993643B1 (en) 2016-03-08 2017-03-08 Method for preparing aerogel blanket and aerogel blanket prepared by the same
KR10-2017-0029619 2017-03-08

Publications (1)

Publication Number Publication Date
WO2017155311A1 true WO2017155311A1 (en) 2017-09-14

Family

ID=59790785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002530 WO2017155311A1 (en) 2016-03-08 2017-03-08 Method for manufacturing aerogel blanket, and aerogel blanket manufactured thereby

Country Status (1)

Country Link
WO (1) WO2017155311A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111212813A (en) * 2017-11-17 2020-05-29 株式会社Lg化学 Method for producing silica aerogel felt by recycling supercritical waste liquid
WO2020208186A1 (en) * 2019-04-10 2020-10-15 Keey Aerogel Process for synthesising a "one pot" hydrophobic silica aerogel from a silica precursor
US20200332168A1 (en) * 2017-11-21 2020-10-22 Lg Chem, Ltd. Method for producing silica aerogel blanket having high thermal insulation and high strength
KR20210038374A (en) * 2019-09-30 2021-04-07 주식회사 엘지화학 Silica sol, silica aerogel blanket manufactured by using the same and preparing method thereof
CN113174747A (en) * 2021-04-22 2021-07-27 杭州海滤新材料科技有限公司 Spunlace nonwoven fabric for wiping and preparation method thereof
CN113913021A (en) * 2021-08-25 2022-01-11 河南爱彼爱和新材料有限公司 Ceramic rubber and ceramic composite belt prepared from waste glass fiber aerogel felt and preparation process
CN115427352A (en) * 2020-11-09 2022-12-02 株式会社Lg化学 Aerogel blanket manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587107A (en) * 1993-01-13 1996-12-24 Basf Aktiengesellschaft SiO2 aerogels containing carbon particles and their preparation
KR20090069187A (en) * 2006-10-10 2009-06-29 한국생산기술연구원 Method for preparing permanently hydrophobic aerogel and permanently hydrophobic aerogel prepared by using the method
KR20100053350A (en) * 2008-11-12 2010-05-20 한국세라믹기술원 Method for manufacturing aerogel blanket
KR20100120036A (en) * 2009-05-04 2010-11-12 유미선 Porous ceramic prepared from sodium silicate and aerogel and a method for preparing thereof
KR20120070948A (en) * 2010-12-22 2012-07-02 주식회사 화인텍 Manufacturing method of hydropobic silica aerogel powder with insulating performance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587107A (en) * 1993-01-13 1996-12-24 Basf Aktiengesellschaft SiO2 aerogels containing carbon particles and their preparation
KR20090069187A (en) * 2006-10-10 2009-06-29 한국생산기술연구원 Method for preparing permanently hydrophobic aerogel and permanently hydrophobic aerogel prepared by using the method
KR20100053350A (en) * 2008-11-12 2010-05-20 한국세라믹기술원 Method for manufacturing aerogel blanket
KR20100120036A (en) * 2009-05-04 2010-11-12 유미선 Porous ceramic prepared from sodium silicate and aerogel and a method for preparing thereof
KR20120070948A (en) * 2010-12-22 2012-07-02 주식회사 화인텍 Manufacturing method of hydropobic silica aerogel powder with insulating performance

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111212813A (en) * 2017-11-17 2020-05-29 株式会社Lg化学 Method for producing silica aerogel felt by recycling supercritical waste liquid
US11891306B2 (en) 2017-11-17 2024-02-06 Lg Chem, Ltd. Method for producing silica aerogel blanket by reusing supercritical waste liquid
US11485892B2 (en) * 2017-11-21 2022-11-01 Lg Chem, Ltd. Method for producing silica aerogel blanket having high thermal insulation and high strength
US20200332168A1 (en) * 2017-11-21 2020-10-22 Lg Chem, Ltd. Method for producing silica aerogel blanket having high thermal insulation and high strength
CN113677622A (en) * 2019-04-10 2021-11-19 凯伊气凝胶公司 Method for synthesizing hydrophobic silica aerogel by using silica precursor in one-pot mode
FR3094975A1 (en) * 2019-04-10 2020-10-16 Keey Aerogel Process for the synthesis of a hydrophobic silica airgel of the "one pot" type from a silica precursor
WO2020208186A1 (en) * 2019-04-10 2020-10-15 Keey Aerogel Process for synthesising a "one pot" hydrophobic silica aerogel from a silica precursor
KR20210038374A (en) * 2019-09-30 2021-04-07 주식회사 엘지화학 Silica sol, silica aerogel blanket manufactured by using the same and preparing method thereof
KR102623026B1 (en) 2019-09-30 2024-01-10 주식회사 엘지화학 Silica sol, silica aerogel blanket manufactured by using the same and preparing method thereof
CN115427352A (en) * 2020-11-09 2022-12-02 株式会社Lg化学 Aerogel blanket manufacturing method
CN115427352B (en) * 2020-11-09 2024-03-05 株式会社Lg化学 Method for producing aerogel blanket
CN113174747A (en) * 2021-04-22 2021-07-27 杭州海滤新材料科技有限公司 Spunlace nonwoven fabric for wiping and preparation method thereof
CN113913021A (en) * 2021-08-25 2022-01-11 河南爱彼爱和新材料有限公司 Ceramic rubber and ceramic composite belt prepared from waste glass fiber aerogel felt and preparation process

Similar Documents

Publication Publication Date Title
WO2017155311A1 (en) Method for manufacturing aerogel blanket, and aerogel blanket manufactured thereby
WO2015119431A1 (en) Method for preparing hydrophobic silica aerogel
JP6722283B2 (en) Airgel blanket manufacturing method and airgel blanket manufactured thereby
WO2015119430A1 (en) Production method for hydrophobic silica aerogel
WO2017159968A1 (en) Aerogel precursor and aerogel produced using same
WO2016032299A1 (en) Polyimide preparation method using monomer salt
WO2010041909A2 (en) Polymer and preparation method thereof
WO2017078294A1 (en) Method for preparing hydrophobic metal oxide-silica composite aerogel, and hydrophobic metal oxide-silica composite aerogel prepared thereby
WO2012088683A1 (en) Porous graphene material and preparation method and uses as electrode material thereof
WO2021045528A1 (en) Method for manufacturing aerogel blanket
WO2013169024A1 (en) Solvent-substitution solvent used in aerogel production, and hydrophobised aerogel production method using same
WO2020111765A1 (en) Method for synthesizing prehydrolyzed polysilicate
WO2018056626A1 (en) Silica aerogel blanket for ultra-high temperature, manufacturing method thereof, and installation method thereof
WO2018212414A1 (en) Silicon carbide powder and preparation method therefor
WO2017179900A1 (en) Graphene fiber and manufacturing method therefor
WO2016167494A1 (en) Method for manufacturing silica aerogel-containing blanket, and silica aerogel-containing blanket manufactured thereby
WO2018208005A1 (en) Production method for silica aerogel blanket and silica aerogel blanket produced thereby
WO2019160368A1 (en) Method for preparing hydrophobic silica aerogel granules
WO2018124705A1 (en) Etching composition, and method for producing semiconductor element by utilizing same
WO2017043721A1 (en) Blanket comprising silica aerogel and manufacturing method therefor
WO2021045484A1 (en) Aerogel blanket
WO2021002660A1 (en) Aerogel-containing composition for spraying and method for preparing same
WO2018030796A1 (en) Aerogel precursor, preparation method therefor, aerogel prepared therefrom, and aerogel preparation method using same
WO2017171217A1 (en) Method for manufacturing low-dust high-insulation aerogel blanket
WO2017213379A1 (en) Organic transistor and gas sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15569056

Country of ref document: US

Ref document number: 2017763572

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2018522727

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE