WO2019231004A1 - Zero-liquid discharge process - Google Patents

Zero-liquid discharge process Download PDF

Info

Publication number
WO2019231004A1
WO2019231004A1 PCT/KR2018/006110 KR2018006110W WO2019231004A1 WO 2019231004 A1 WO2019231004 A1 WO 2019231004A1 KR 2018006110 W KR2018006110 W KR 2018006110W WO 2019231004 A1 WO2019231004 A1 WO 2019231004A1
Authority
WO
WIPO (PCT)
Prior art keywords
process solution
fluorine
chlorine
sulfuric acid
solution
Prior art date
Application number
PCT/KR2018/006110
Other languages
French (fr)
Korean (ko)
Inventor
박영민
김택훈
정명진
Original Assignee
주식회사 영풍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 영풍 filed Critical 주식회사 영풍
Publication of WO2019231004A1 publication Critical patent/WO2019231004A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes

Definitions

  • the present invention relates to a zero discharge process. More specifically, the present invention relates to a non-discharge process that can be operated without discharge by utilizing sulfuric acid wastewater generated from by-products such as a smelting process in the manufacture of gypsum and reusing the filtrate process liquid.
  • Korean Patent No. 10-1484575 discloses a method of treating sulfuric acid waste liquid containing sulfuric acid and heavy metal components by forming gypsum as a by-product. Specifically, a method of pretreating sulfuric acid waste liquid to remove heavy metals and forming gypsum is disclosed, but does not disclose any method for environmentally friendly treatment of remaining filtrate after gypsum production.
  • Sulfuric acid wastewater generated from by-products such as smelting process is used for the production of gypsum, and the process liquid as a filtrate is reused to provide a non-discharge process that can be operated without discharge.
  • the non-discharge process comprises the steps of pretreating sulfuric acid wastewater containing a heavy metal component to remove and remove the heavy metal component; Preparing gypsum by adding calcium carbonate to the pretreated sulfuric acid wastewater; Neutralizing the remaining process solution after the gypsum is separated; Removing fluorine from the neutralized process solution; Chlorine is removed from the fluorine-free process solution . Removing; And the process solution from which the chlorine is removed 2019/231004 1 »(: 1 ⁇ 1 ⁇ 2018/006110
  • It includes a step used for cleaning.
  • 3 ⁇ 4 0 3 and ⁇ Ye may be added to the spent sulfuric acid wastewater to co-precipitate the heavy metal.
  • the neutralizing of the process solution may include: neutralizing by adding hydrated lime to the remaining process liquid after the gypsum is separated, and removing the tidal gypsum generated by adding the hydrated lime; desulfurizing by adding sulfuric acid to the neutralized process solution. Doing; And neutralizing by adding slaked lime to the de-neutralized process solution, and removing tidal gypsum generated by adding slaked lime.
  • alumina may be added to remove fluorine
  • iron chloride may be added to remove arsenic.
  • the removing of fluorine may include firstly removing fluorine by introducing a lime and a polymer material into the neutralized process solution; Injecting aluminum ions into the process solution from which fluorine is first removed; And removing residual fluorine from the process solution into which the aluminum ions are added using cerium resin.
  • Injecting the aluminum ions may have a reaction temperature of 33 to 381 :.
  • the concentration of fluorine in the process solution in weight% It may be:
  • the removing of chlorine may include: electrolyzing the process solution from which the fluorine is removed to oxidize chlorine ions in the process solution to a chlorine gas state; Converting the chlorine gas into hypochlorous acid by reacting with water in the process solution; And phase change of the hypochlorous acid to a chlorine gas state by maintaining the process solution at less than 2.0, and then discharging it in water.
  • the chlorine concentration of the process solution may be 30% by weight, or less.
  • the neutralized process solution may be 6.5 to 8.5.
  • the step of mixing the wastewater generated in the smelting process to the pretreated sulfuric acid wastewater may further comprise a.
  • the step of washing the sulfurous acid gas generated in the roasting process with an alkaline solution may further include.
  • the process solution is to branch can be used as makeup water in the slag pit (3 ⁇ ⁇ 1 :).
  • the non-discharge process after the sulfuric acid wastewater generated from the by-products such as the smelting process and the like is used for the production of gypsum, it is possible to operate the process without discharge by reusing the process liquid as the filtrate. Accordingly, eco-friendly plant facilities can be operated.
  • FIG. 1 is a view showing a schematic diagram of a non-discharge process according to an embodiment of the present invention.
  • FIG. 2 is a view showing a fluorine removal step of the process solution in a non-discharge process according to an embodiment of the present invention.
  • first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the present invention.
  • a portion When a portion is referred to as being “on” or “on” another portion, it may be directly on or on the other portion or may be accompanied by another portion in between. In contrast, if you mention that a part is "just above” another part, no other part is intervened.
  • pretreatment of sulfuric acid wastewater containing a heavy metal component to remove streaks of heavy metal components is prepared by putting calcium carbonate into the pretreated sulfuric acid wastewater. Neutralizing the remaining process solution after the gypsum is separated, removing fluorine from the neutralized process solution, removing chlorine from the fluorine-free process solution, and using the chlorine-free process solution for cleaning sulfur dioxide. It includes. First, in the step of removing the heavy metal components, the heavy metal components contained in the sulfuric acid wastewater are removed by pretreating the sulfuric acid wastewater generated as a by-product of the smelting process.
  • the heavy metal in the step of precipitating and removing the heavy metal component, can be co-precipitated by adding (: 0 3 and ⁇ ) to the sulfuric acid wastewater.
  • Heavy metals removed in the pretreatment process may be Pb 0 (1, show (, 3 ⁇ 4), etc.
  • reaction may be performed by the following reaction formula. 2019/231004 1 »(: 1 ⁇ 1 ⁇ 2018/006110
  • reaction with 3 ⁇ 4) 3 takes place and can be removed from the sulfuric acid wastewater.
  • reaction with [and 0 in the case of 1, occurs and co-precipitation can be removed from sulfuric acid wastewater.
  • the gypsum production reaction can take place at 45-50 ° 0 and about 3.0.
  • the process solution in the acidic solution state is neutralized with alkali.
  • the step of neutralizing the process solution is neutralized by adding hydrated lime (0 Li 2 ) to the remaining process solution after the gypsum is separated, removing the tidal gypsum generated by the addition of hydrated lime, sulfuric acid in the neutralized process solution
  • It may include the step of de-neutralizing by inputting the neutralized by the addition of hydrated lime to the de-neutralized process solution, the step of removing the gypsum generated by the input of hydrated lime.
  • gypsum is separated and hydrated lime can be added to the remaining process solution to neutralize it, and the resulting tidal gypsum can be separated and removed.
  • ⁇ 11, 0 (1, 01, metals such as Pb), and 4 ,, II ions can be removed from the process solution.
  • reaction can be made by the following reaction scheme.
  • the addition of slaked lime may neutralize the process solution with the removal of heavy metals and 80 4 ions.
  • sulfuric acid may be added to the neutralized process solution to change the process solution into a weakly acidic state.
  • alumina sulfate hour 2 ( 4 ) 3
  • iron chloride may be added to remove residual traces of arsenic.
  • reaction may be performed by the following reaction formula.
  • the precipitated system can be separated and removed by the reaction of fluorine ions and alumina sulfate.
  • the reverse reaction of the reaction scheme 6 to 12 may occur by reverse neutralization.
  • the fluorine content in the process solution after the pretreatment and the multi-stage neutralization process may be 26% by weight or less.
  • the step of removing fluorine may include firstly removing fluorine by adding calcium hydroxide and a polymer material to the neutralized process solution, firstly adding aluminum ions to the process solution from which fluorine is removed, and cerium resin. It may include the step of removing the residual fluorine from the process solution into which the aluminum ion is added.
  • the fluorine component may be removed due to some precipitation by adding slaked lime ratio 3 (0 2 2 ) and a polymer material to the neutralized process solution.
  • the polymeric material may be an anionic precipitater.
  • aluminum ions (hour 3+ ) are first added to the fluorine-free process solution to co-precipitate fluorine ions, and fluorine in the form of a combined fluorine present in the process solution. It can cause the bonds of compounds to break.
  • Coprecipitation as in Scheme 16 and Scheme 17 may be made, and as shown in Scheme 18, the binding of the bond fluorine may be broken.
  • the reaction in which the fluorine bond is broken by aluminum ions is It can be activated from above. More specifically, The reaction can take place at 3.0, 35 to 38 for about 4 hours.
  • the cerium resin may be used to adsorb and remove the residual fluorine ions in the process solution into the process solution into which aluminum is added. This can be done in a fluorine adsorption tower.
  • reaction may be performed by the following reaction formula.
  • the reaction scheme 19 may be a reaction at 3.5 or less. With this 2019/231004 1 »(: 1 ⁇ 1 ⁇ 2018/006110
  • the fluorine content in the process solution may be 2 wt% or less in weight%.
  • the suspended solids are removed from the fluorine adsorption tower, ion is desorbed by injecting ions, and then one is discharged from the fluorine saw tower. Can be played.
  • the step of removing chlorine includes the steps of electrolyzing a process solution from which fluorine is removed to oxidize chlorine ions in the process solution to a chlorine gas state, converting chlorine gas into hypochlorous acid by reacting with water in the process solution, and Maintaining the process solution at less than 2.0 to convert the hypochlorous acid into a chlorine gas state, and may include the step of discharging in water.
  • the fluorine-free process solution can be electrolyzed and converted to chlorine gas ratio1 2 by oxidizing chlorine ions ( ⁇ : ⁇ ) present in the process solution.
  • Chlorine gas can react with water in the process solution to convert hypochlorous acid 03 ⁇ 4).
  • reaction may be performed by the following reaction formula.
  • hypochlorous acid can be phase-changed to a chlorine gas state by keeping the process liquid at less than 2.0.
  • the reaction in which hypochlorous acid phase changes to a chlorine gas state may be a reverse reaction of Scheme 20.
  • the removal of chlorine can then be completed by abandoning the chlorine gas and draining it from the process liquid. Through this process, the chlorine content in the process solution may be less than or equal to 30% by weight).
  • the step of neutralizing by adding the lime to the process solution from which chlorine has been removed is acidic, so it can be neutralized and removed to make it reusable by removing sulfate ions. Neutralized 6.5 to 8.5.
  • a process liquid from which heavy metals, fluorine and chlorine have been removed can be used for the cleaning process of sulfurous acid gas (X 2 ).
  • the process solution may be reused as a weak acid supplement. Sulfurous acid gas is generated in the roasting process, and the sulfurous acid gas and You can prevent it from being released into the atmosphere.
  • sulfuric acid wastewater generated from by-products such as a smelting process may be used to manufacture gypsum, and then the process may be operated by circulating the filtrate without discharge. . Accordingly, it is possible to operate eco-friendly plant facilities. This is enough to remove the fluorine and chlorine components in the process solution, the process can be operated without discharge.
  • the non-discharge process may further include washing the sulfurous acid gas generated in the roasting process with an alkaline solution before the step of depositing and removing heavy metal components. After removing the sulfurous acid gas (33 ⁇ 4) generated in the roasting process with sulfuric acid in the crude acid process, it can be washed with alkaline solution so that the remaining trace amount of sulfurous acid gas and ⁇ are not released into the atmosphere.
  • the gypsum generated in the step of washing the sulfurous acid gas with an alkaline solution may be prepared and the remaining process solution may be neutralized with the remaining process solution after preparing gypsum from the pretreated sulfuric acid wastewater.
  • the alkaline solution may include calcium carbonate.
  • the step of depositing and removing the heavy metal component may further comprise the step of mixing the wastewater generated in the smelting process to the pretreated sulfuric acid wastewater.
  • the wastewater generated in the smelting process may be, for example, waste acid generated from the zinc residue treatment process or iron waste water. Such waste acid or waste water can be put together in a non-discharge process and treated together.
  • Sintered lime was first neutralized by adding lime to the process solution, and sulfuric acid was added to neutralize it, and then slaked lime was added to neutralize it. In reverse neutralization, alumina and iron chloride were added to the process solution to remove fluorine and arsenic.
  • the process solution After the electrolysis of the process solution after the removal of fluorine, the process solution was kept at 1.81. Through this, the generated chlorine gas was given up and discharged from the water. Sintered lime was added to the process solution after the removal of chlorine to neutralize it, and the generated tides were separated and removed. The neutralized process solution was about 7.0. It was added to neutralize the process solution with sulfur dioxide (et 2) replacement of the cleaning process, and some by the branch was used as makeup water in the slag pit (greater ⁇ 1)).
  • sulfur dioxide et 2
  • 1 refers to sulfuric acid wastewater before pretreatment
  • 2 refers to process solution after pretreatment and separation of gypsum production
  • 3 means ⁇ waste acid / indium 1 ⁇ 2 waste water
  • 4 means process liquid mixed with ⁇ waste acid / indium waste water.
  • 5 means the process liquid after the first neutralization
  • 6 means the process liquid after the second neutralization
  • 7 means process solution after fluorine removal
  • 8 means process solution after chlorine removal
  • 9 means the process solution after neutralization by adding slaked lime to the process solution from which chlorine is removed.
  • the content of fluorine ions and chlorine ions is the most important item in water quality standards for reuse of process liquids in smelter processes. This is because the quality of the product is affected during the smelting process.
  • the content standards of 1 out, heavy metal ions, including the content of fluorine ions and chlorine ions are shown in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

Disclosed is a zero-liquid discharge process comprising the steps of: pretreating sulfuric acid wastewater containing heavy metal components to precipitate and remove the heavy metal components; preparing gypsum by adding calcium carbonate to the pretreated sulfuric acid wastewater; neutralizing the remaining process liquid after the gypsum is isolated; removing fluorine from the neutralized process liquid; removing chlorine from the process liquid from which the fluorine has been removed; and using the process liquid from which the chlorine has been removed to clean a sulphurous acid gas.

Description

2019/231004 1»(:1^1{2018/006110  2019/231004 1 »(: 1 ^ 1 {2018/006110
【명세서】 【Specification】
【발명의 명칭】  [Name of invention]
무방류 공정  Zero discharge process
【기술분야】  Technical Field
본 발명은 무방류 공정에 관한 것이다. 보다 구체적으로, 제련 공정 등의 부산물로부터 발생된 황산 폐수 등을 석고의 제조에 활용한 후, 여액인 공정액을 재이용하여 방류 없이 가동이 가능한 무방류 공정에 관한 것이다.  The present invention relates to a zero discharge process. More specifically, the present invention relates to a non-discharge process that can be operated without discharge by utilizing sulfuric acid wastewater generated from by-products such as a smelting process in the manufacture of gypsum and reusing the filtrate process liquid.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
대한민국 특허 제 10-1484575호에서는 황산과 중금속 성분을 포함하는 황산 폐액을 석고를 부산물로 형성하여 처리하는 방법을 개시한다. 구체적으로, 황산 폐액을 전처리하여 중금속을 제거하고, 석고를 형성시키는 방법에 대하여 개시하지만 석고의 제조 후, 남은 여액을 친환경적으로 처리하는 방법에 관해 전혀 개시하지 않는다.  Korean Patent No. 10-1484575 discloses a method of treating sulfuric acid waste liquid containing sulfuric acid and heavy metal components by forming gypsum as a by-product. Specifically, a method of pretreating sulfuric acid waste liquid to remove heavy metals and forming gypsum is disclosed, but does not disclose any method for environmentally friendly treatment of remaining filtrate after gypsum production.
황산 폐액으로부터 석고를 제조 분리하고 남은 여액에는 여전히, 211, The remaining filtrate was produced and separated from the sulfuric acid waste solution,
1¾, 0(3 등의 중금속이 많이 포함되어 있기 때문에 이를 그대로 방류할 경우, 큰 환경 문제가 야기될 수 있다. 따라서 중금속이 포함된 여액의 방류 없이 가동시키는 것이 가능한 공정의 개발이 시급한상황이다. Since heavy metals such as 1¾, 0 (3, etc. are contained, if they are discharged as they are, they can cause big environmental problems. Therefore, it is urgent to develop a process that can be operated without discharge of the filtrate containing heavy metals.
【발명의 내용】  [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
제련 공정 등의 부산물로부터 발생된 황산 폐수 등을 석고의 제조에 활용한 후, 여액인 공정액을 재이용하여 방류 없이 가동이 가능한 무방류 공정을 제공한다.  Sulfuric acid wastewater generated from by-products such as smelting process is used for the production of gypsum, and the process liquid as a filtrate is reused to provide a non-discharge process that can be operated without discharge.
【과제의 해결 수단】  [Measures of problem]
본 발명의 일 실시예에 의한 무방류 공정은 중금속 성분이 포함된 황산 폐수를 전처리하여 상기 중금속 성분을 석출 제거하는 단계 ; 상기 전처리된 황산 폐수에 탄산칼슘을 투입하여 석고를 제조하는 단계; 상기 석고가 분리되고 남은 공정액을 중화하는 단계 ; 상기 중화된 공정액으로부터 불소를 제거하는 단계 ; 상기 불소가 제거된 공정액으로부터 염소를 .제거하는 단계 ; 및 상기 염소가 제거된 공정액을 아황산 가스의 2019/231004 1»(:1^1{2018/006110 The non-discharge process according to an embodiment of the present invention comprises the steps of pretreating sulfuric acid wastewater containing a heavy metal component to remove and remove the heavy metal component; Preparing gypsum by adding calcium carbonate to the pretreated sulfuric acid wastewater; Neutralizing the remaining process solution after the gypsum is separated; Removing fluorine from the neutralized process solution; Chlorine is removed from the fluorine-free process solution . Removing; And the process solution from which the chlorine is removed 2019/231004 1 »(: 1 ^ 1 {2018/006110
세정에 이용하는 단계;를 포함한다. It includes a step used for cleaning.
상기 중금속 성분을 석출 제거하는 단계에서, 상가 황산 폐수에 ¾ 03 및 犯예를 투입하여 상기 중금속을 공침 제거할수 있다. In the step of depositing and removing the heavy metal component, ¾ 0 3 and 犯 Ye may be added to the spent sulfuric acid wastewater to co-precipitate the heavy metal.
상기 공정액을 중화하는 단계는, 상기 석고가 분리되고 남은 공정액에 소석회를 투입하여 중화하며 , 상기 소석회의 투입으로 발생된 조석고를 제거하는 단계; 상기 중화된 공정액에 황산을 투입하여 역중화하는 단계 ; 및 상기 역중화된 공정액에 소석회를 투입하여 중화하고, 상기 소석회의 투입으로 발생된 조석고를 제거하는 단계;를 포함할 수 있다. 상기 황산을 투입하여 역중화하는 단계에서, 상기 황산의 투입 후, 황산반토를 투입하여, 불소를 제거하고, 염화철을 투입하여 비소를 제거할 수 있다.  The neutralizing of the process solution may include: neutralizing by adding hydrated lime to the remaining process liquid after the gypsum is separated, and removing the tidal gypsum generated by adding the hydrated lime; desulfurizing by adding sulfuric acid to the neutralized process solution. Doing; And neutralizing by adding slaked lime to the de-neutralized process solution, and removing tidal gypsum generated by adding slaked lime. In the step of neutralizing the sulfuric acid, after the sulfuric acid is added, alumina may be added to remove fluorine, and iron chloride may be added to remove arsenic.
상기 불소를 제거하는 단계는, 상기 중화된 공정액에 소석회 및 고분자 물질을 투입하여 1차적으로 불소를 제거하는 단계; 상기 1차적으로 불소가 제거된 공정액에 알루미늄 이온을 투입하는 단계; 및 세륨 수지를 이용하여 상기 알루미늄 이온이 투입된 공정액으로부터 잔여 불소를 제거하는 단계;를 포함할 수 있다.  The removing of fluorine may include firstly removing fluorine by introducing a lime and a polymer material into the neutralized process solution; Injecting aluminum ions into the process solution from which fluorine is first removed; And removing residual fluorine from the process solution into which the aluminum ions are added using cerium resin.
상기 알루미늄 이온을 투입하는 단계는 반응 온도가 33 내지 381:일 수 있다.  Injecting the aluminum ions may have a reaction temperature of 33 to 381 :.
상기 불소를 제거하는 단계 이후, 상기 공정액의 불소 농도는 중량%로,
Figure imgf000003_0001
이하일 수 있다.
After the step of removing the fluorine, the concentration of fluorine in the process solution in weight%,
Figure imgf000003_0001
It may be:
상기 염소를 제거하는 단계는, 상기 불소가 제거된 공정액을 전기분해하여 상기 공정액 중의 염소 이온을 염소 가스 상태로 산화시키는 단계 ; 상기 염소 가스가 상기 공정액 중의 물과 반응하여 차아염소산으로 전환되는 단계 ; 및 상기 공정액의 를 2.0 이하로 유지하여 상기 차아염소산을 염소 가스 상태로 상변화시킨 후, 수중 배출하는 단계;를 포함할수 있다.  The removing of chlorine may include: electrolyzing the process solution from which the fluorine is removed to oxidize chlorine ions in the process solution to a chlorine gas state; Converting the chlorine gas into hypochlorous acid by reacting with water in the process solution; And phase change of the hypochlorous acid to a chlorine gas state by maintaining the process solution at less than 2.0, and then discharging it in water.
상기 염소를 제거하는 단계 이후, 상기 공정액의 염소 농도는 중량%로, 30¾) 이하일 수 있다.  After removing the chlorine, the chlorine concentration of the process solution may be 30% by weight, or less.
상기 수중 배출하는 단계 이후, 상기 염소가 제거된 공정액에 소석회를투입하여 중화하는 단계;를 더 포함할수 있다. 2019/231004 1»(:1^1{2018/006110 After the step of discharging in the water, the step of neutralizing by introducing the lime into the process solution from which the chlorine has been removed. 2019/231004 1 »(: 1 ^ 1 {2018/006110
상기 공정액에 소석회를 투입하여 중화하는 단계에서, 상기 중화된 공정액은 가 6.5 내지 8.5일 수 있다. In the step of neutralizing the slaked lime into the process solution, the neutralized process solution may be 6.5 to 8.5.
상기 중금속 성분을 석출 제거하는 단계 이후, 상기 전처리된 황산 폐수에 제련 공정에서 발생된 폐수를 혼합하는 단계;를 더 포함할 수 있다. 상기 중금속 성분을 석출 제거하는 단계 이전, 배소 공정에서 발생된 아황산가스를 알칼리 용액으로 세척하는 단계;를 더 포함할수 있다.  After the step of depositing and removing the heavy metal component, the step of mixing the wastewater generated in the smelting process to the pretreated sulfuric acid wastewater; may further comprise a. Before the precipitation of the heavy metal component, the step of washing the sulfurous acid gas generated in the roasting process with an alkaline solution; may further include.
상기 공정액을 아황산 가스의 세정에 이용하는 단계에서, 상기 염소가 제거된 공정액 중 일부는 분기시켜 슬래그 피트( 3§ 山1:)의 보충수로 이용할수 있다. In utilizing the process liquid to the cleaning of sulfur dioxide, some of the chlorine is removed, the process solution is to branch can be used as makeup water in the slag pit (3 §山1 :).
【발명의 효과】  【Effects of the Invention】
본 발명의 일 실시예에 의한 무방류 공정에 의하면 제련 공정 등의 부산물로부터 발생된 황산 폐수 등을 석고의 제조에 활용한 후, 여액인 공정액을 재이용함으로써 방류 없이 공정을 가동시키는 것이 가능하다. 이에 따라 친환경적인 공장설비의 가동이 가능하다.  According to the non-discharge process according to an embodiment of the present invention, after the sulfuric acid wastewater generated from the by-products such as the smelting process and the like is used for the production of gypsum, it is possible to operate the process without discharge by reusing the process liquid as the filtrate. Accordingly, eco-friendly plant facilities can be operated.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 본 발명의 일 실시예에 의한 무방류 공정의 모식도를 나타낸 도면이다.  1 is a view showing a schematic diagram of a non-discharge process according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 의한 무방류 공정에서 공정액의 불소 제거 단계를 나타낸도면이다.  2 is a view showing a fluorine removal step of the process solution in a non-discharge process according to an embodiment of the present invention.
【발명을실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
제 1 , 제 2 및 제 3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제 1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제 2부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.  Terms such as first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the present invention.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 “포함하는” 의 의미는 특정 특성, 2019/231004 1»(:1^1{2018/006110 The terminology used herein is for reference only to specific embodiments and is not intended to limit the invention. As used herein, the singular forms “a,” “an,” and “the” include plural forms as well, unless the phrases clearly indicate the opposite. As used in the specification, the meaning of “comprising” means certain characteristics, 2019/231004 1 »(: 1 ^ 1 {2018/006110
영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다. It specifies areas, integers, steps, actions, elements and / or components and does not exclude the presence or addition of other features, areas, integers, steps, actions, elements and / or components.
어느 부분이 다른 부분의 "위에’’ 또는 "상에” 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 ’ '바로 위에” 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.  When a portion is referred to as being "on" or "on" another portion, it may be directly on or on the other portion or may be accompanied by another portion in between. In contrast, if you mention that a part is "just above" another part, no other part is intervened.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.  Although not defined otherwise, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Commonly defined terms used are additionally interpreted to have a meaning consistent with the related technical literature and the presently disclosed contents, and are not interpreted in an ideal or very formal sense unless defined.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.  Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
무방류공정  Zero discharge process
본 발명의 일 실시예에 의한 무방류 공정은 도 1과 같이, 중금속 성분아 포함된 황산 폐수를 전처리하여 중금속 성분을 석줄 제거하는 단계 , 전처리된 황산 폐수에 탄산칼슘을 투입하여 석고를 제조하는 단계 , 석고가 분리되고 남은 공정액을 중화하는 단계, 중화된 공정액으로부터 불소를 제거하는 단계 , 불소가 제거된 공정액으로부터 염소를 제거하는 단계 및 염소가 제거된 공정액을 아황산 가스의 세정에 이용하는 단계를 포함한다. 먼저, 중금속 성분을 석줄 제거하는 단계에서는 제련 공정 등의 부산물로 발생되는 황산 폐수를 전처리하여 황산 폐수 중에 포함된 중금속 성분을 제거한다. 구체적으로, 중금속 성분을 석출 제거하는 단계에서, 황산 폐수에 (:03 및 抑를 투입하여 중금속을 공침 제거할 수 있다. 전처리 공정에서 제거되는 중금속은 Pb 0(1 , 쇼 ( , ¾등일 수 있다. In a non-discharge process according to an embodiment of the present invention, as shown in FIG. 1, pretreatment of sulfuric acid wastewater containing a heavy metal component to remove streaks of heavy metal components is prepared by putting calcium carbonate into the pretreated sulfuric acid wastewater. Neutralizing the remaining process solution after the gypsum is separated, removing fluorine from the neutralized process solution, removing chlorine from the fluorine-free process solution, and using the chlorine-free process solution for cleaning sulfur dioxide. It includes. First, in the step of removing the heavy metal components, the heavy metal components contained in the sulfuric acid wastewater are removed by pretreating the sulfuric acid wastewater generated as a by-product of the smelting process. Specifically, in the step of precipitating and removing the heavy metal component, the heavy metal can be co-precipitated by adding (: 0 3 and 抑) to the sulfuric acid wastewater. Heavy metals removed in the pretreatment process may be Pb 0 (1, show (, ¾), etc.
이에 따라 하기와 같은 반응식에 의한 반응이 이루어질 수 있다. 2019/231004 1»(:1^1{2018/006110 Accordingly, the reaction may be performed by the following reaction formula. 2019/231004 1 »(: 1 ^ 1 {2018/006110
[반응식
Figure imgf000006_0001
丄 + ¾¥3
[Scheme]
Figure imgf000006_0001
丄 + ¾ ¥ 3
[반응식
Figure imgf000006_0002
+犯2304 1 + ¾ !
[Scheme]
Figure imgf000006_0002
+ 犯2 30 4 1 + ¾!
[반응식 3] 2他況 + 0(保04 0(13 +此必04 + ¾ ! [Scheme 3] 2 他 況 + 0 (保 0 4 0 (13 + 此 必 0 4 + ¾!
황산 폐수에 포함된 1¾의 경우, ¾ )3과의 반응이 일어나 공침되므로 황산 폐수로부터 제거할 수 있다. 황산 폐수에 포함된 〔 및 0(1의 경우, 과의 반응이 일어나 공침되므로 황산 폐수로부터 제거할수 있다. In the case of 1¾ contained in the sulfuric acid wastewater, the reaction with ¾) 3 takes place and can be removed from the sulfuric acid wastewater. In the case of sulfuric acid wastewater, the reaction with [and 0 (in the case of 1, occurs and co-precipitation can be removed from sulfuric acid wastewater.
다음으로, 석고를 제조하는 단계에서는 전처리된 황산 폐수에 탄산칼슘 (: 030)3)을 투입한다. 황산 폐수와 탄산칼슘의 반응에 의해 석고의 제조가 이루어진다. 이를 통해, 황산 폐수 중의 304 이온을 제거하고, 고품위 제품 석고를 생산할 수 있으며, 폐기물의 발생이 억제될 수 있다. 이에 따라하기와 같은 반응식에 의한 반응이 이루어질 수 있다. Next, in the step of preparing gypsum, calcium carbonate ( : 030) 3 ) is added to the pretreated sulfuric acid wastewater. The production of gypsum is achieved by the reaction of sulfuric acid wastewater with calcium carbonate. This can remove 30 4 ions in the sulfuric acid wastewater, produce high-quality product gypsum, and suppress the generation of waste. Accordingly, the reaction can be made by the following reaction scheme.
[반응식 4] ¾304 +。크。% + ¾0 0¾304 · 2¾0 1 + ¥2 ! [Scheme 4] ¾30 4 +。 Size. + ¾0 0 ¾ 30 4 · 2¾0 1 + ¥ 2 !
상기의 석고 제조 반응은 45 내지 50 °0 및 약 3.0에서 이루어질 수 있다. The gypsum production reaction can take place at 45-50 ° 0 and about 3.0.
다음으로, 공정액을 중화하는 단계에서는 산성 용액 상태의 공정액을 알칼리로 중화시킨다. 구체적으로, 공정액을 중화하는 단계는, 석고가 분리되고 남은 공정액에 소석회 0 (0리2)를 투입하여 중화하며, 소석회의 투입으로 발생된 조석고를 제거하는 단계, 중화된 공정액에 황산을 투입하여 역중화하는 단계 및 역중화된 공정액에 소석회를 투입하여 중화하곤, 소석회의 투입으로 발생된 조석고를 제거하는 단계를 포함할 수 있다. Next, in the step of neutralizing the process solution, the process solution in the acidic solution state is neutralized with alkali. Specifically, the step of neutralizing the process solution is neutralized by adding hydrated lime (0 Li 2 ) to the remaining process solution after the gypsum is separated, removing the tidal gypsum generated by the addition of hydrated lime, sulfuric acid in the neutralized process solution It may include the step of de-neutralizing by inputting the neutralized by the addition of hydrated lime to the de-neutralized process solution, the step of removing the gypsum generated by the input of hydrated lime.
전처리된 공정액에 소석회를 투입하는 단계에서는 석고가 분리되고 남은 공정액에 소석회를 투입하여 중화할 수 있으며, 이로 인해 생성된 조석고는 분리하여 제거할 수 있다. 공정액 중에서 å11 , 0(1, 01, Pb 등의 금속 및 ¾)4, , II 이온이 제거될 수 있다. In the step of adding hydrated lime to the pretreated process solution, gypsum is separated and hydrated lime can be added to the remaining process solution to neutralize it, and the resulting tidal gypsum can be separated and removed. Å11, 0 (1, 01, metals such as Pb), and 4 ,, II ions can be removed from the process solution.
이에 따라하기와 같은 반응식에 의한 반응이 이루어질 수 있다.  Accordingly, the reaction can be made by the following reaction scheme.
[반응식 5] ¾엤4(301) +◦3(0 2(3(1) 03504 · 2¾0( [Scheme 5] ¾ 엤 4 (301) + ◦3 (0 2 (3 (1) 0350 4
[반응식 6] ¾304(3(1)代:3((¾)2(3(1)+2¾0( 1 )[Scheme 6] ¾30 4 (3 (1) 代 : 3 ((¾) 2 (3 (1) + 2¾0 (1)
11(0}02(3)+03304 · 2¾0( 11 (0} 0 2 (3 ) +0330 4 · 2¾0 (
[반응식 7] ¾엤4(3(1)此&(0}1)2 +2¾0( 1 ) ® 2019/231004 1»(:1^1{2018/006110 Scheme 7 ¾ 엤 4 (3 (1) 此& (0} 1) 2 + 2¾0 (1) ® 2019/231004 1 »(: 1 ^ 1 {2018/006110
1¾(011)2(3)4 3304 · 2¾0(3) 1¾ (011) 2 (3) 4 330 4 · 2¾0 (3)
[반응식 8] 01304(3<¾)祀3_2(3(1)+2¾0( 1 ) Equation 8 0130 4 (3 <¾) <3_ 2 (3 (1) + 2¾0 (1)
(:11_2(3)^^04 · 2¾0(3) (: 11_ 2 (3) ^^ 042 2¾0 (3)
[반응식 9] 0선304(明 _2 )+2¾0( 1 ) [Scheme 9] 0 wire 30 4 (明 _ 2 ) + 2¾0 (1)
0(1(0}02(3) 304 · 2¾0(3) 0 (1 (0} 0 2 (3) 30 4 · 2¾0 (3)
[반응식 10] 04(明) _2(3(1)+2¾0( 1 )[Scheme 10] 0 4 (明) _ 2 (3 (1) + 2¾0 (1)
_2( 04 - 2¾0( _ 2 (0 4 - 2¾0 (
[반응식 11]
Figure imgf000007_0001
Scheme 11
Figure imgf000007_0001
1§(0비2(3)祀3304 - 2¾0 ) 1 § (0 ratio 2 (3)祀330 4 - 2¾0)
[반응식 12] 6304(3(1)代뇨(0 2(3(1)+2¾0( 1 ) [Scheme 12] 630 4 (3 (1)) urine (0 2 (3 (1) + 2¾0 (1)
?6(011)2(3)此3304 · 2¾0( ? 6 (011) 2 (3 )此330 4 · 2¾0 (
[반응식 13] 2^(3(!) +◦크(0102(3(1) ® ◦크 ) + 2¾0(1) [Scheme 13] 2 ^ (3 (!) + ◦k (010 2 (3 (1) ® ◦)) + 2¾0 (1)
[반응식
Figure imgf000007_0002
[Scheme]
Figure imgf000007_0002
상기 반응식과 같이, 소석회의 투입으로 중금속 및 804 이온 등의 제거와 함께 공정액을 중화시킬 수 있다. As shown in the above reaction scheme, the addition of slaked lime may neutralize the process solution with the removal of heavy metals and 80 4 ions.
황산을 투입하여 역중화하는 단계에서는 중화된 공정액에 다시 황산을 투입하여 공정액을 약산성 상태로 변화시킬 수 있다. 구체적으로, 공정액을 역중화한 다음 황산반토 (시2(엤4)3)를 투입하여, 불소를 제거하고, 염화철을 투입하여 잔존한 미량의 비소를 제거할 수 있다. In the step of neutralizing by adding sulfuric acid, sulfuric acid may be added to the neutralized process solution to change the process solution into a weakly acidic state. Specifically, after neutralizing the process solution, alumina sulfate (hour 2 ( 4 ) 3) may be added to remove fluorine, and iron chloride may be added to remove residual traces of arsenic.
이에 따라 하기와 같은 반응식에 의한 반응이 이루어질 수 있다.  Accordingly, the reaction may be performed by the following reaction formula.
[반응식
Figure imgf000007_0003
[Scheme]
Figure imgf000007_0003
불소 이온과 황산반토의 반응으로 침전된 시的를 분리하여 제거할 수 있다. 한편, 역중화에 의해 상기 반응식 6 내지 12의 역반응이 일어날 수 있다.  The precipitated system can be separated and removed by the reaction of fluorine ions and alumina sulfate. On the other hand, the reverse reaction of the reaction scheme 6 to 12 may occur by reverse neutralization.
역중화된 공정액에 소석회를 투입하여 중화하는 단계에서는 역중화된 공정액에 다시 소석회를 투입하여 중화할 수 있으며, 이로 인해 생성된 조석고는 분리하여 제거할 수 있다. 공정액 중에서 1^, 06, 01, ¾ 등의 금속 및 304 II이온이 제거될 수 있다. In the step of neutralizing by adding the slaked lime to the de-neutralized process solution, it is possible to neutralize the slaked lime by adding it again to the de-neutralized process solution. Metals such as 1 ^, 06, 01, ¾ and 30 4 II ions can be removed from the process solution.
상기 반응식 5 내지 14의 반응이 다시 이루어질 수 있다.  The reaction of Schemes 5 to 14 may be made again.
다음으로, 불소를 제거하는 단계에서는 도 2와 같이 , 공정액 중에 2019/231004 1»(:1^1{2018/006110 Next, in the step of removing fluorine, as shown in FIG. 2019/231004 1 »(: 1 ^ 1 {2018/006110
존재하는 불소 성분을 제거한다. 전처리 및 다단의 중화 공정을 거친 공정액 중의 불소 함량은 중량%로, 26ppm 이하일 수 있다. 불소를 제거하는 단계를 통해, 불소의 함량을 1如, 이하로 낮출 수 있다. 구체적으로, 불소를 제거하는 단계는 중화된 공정액에 수산화칼슘 및 고분자 물질을 투입하여 1차적으로 불소를 제거하는 단계, 1차적으로 불소가 제거된 공정액에 알루미늄 이온을 투입하는 단계 및 세륨 수지를 이용하여 알루미늄 이온이 투입된 공정액으로부터 잔여 불소를 제거하는 단계를 포함할 수 있다. Eliminate fluoride present. The fluorine content in the process solution after the pretreatment and the multi-stage neutralization process may be 26% by weight or less. Through the step of removing fluorine, the content of fluorine can be lowered to less than 1 如 ,. Specifically, the step of removing fluorine may include firstly removing fluorine by adding calcium hydroxide and a polymer material to the neutralized process solution, firstly adding aluminum ions to the process solution from which fluorine is removed, and cerium resin. It may include the step of removing the residual fluorine from the process solution into which the aluminum ion is added.
1차적으로 불소를 제거하는 단계에서는 중화된 공정액에 소석회比3(0的2) 및 고분자 물질을 투입하여 일부 침전으로 인해 불소 성분을 제거할수 있다. 고분자물질은 음이온 침강제일 수 있다. In the first step of removing fluorine, the fluorine component may be removed due to some precipitation by adding slaked lime ratio 3 (0 ² 2 ) and a polymer material to the neutralized process solution. The polymeric material may be an anionic precipitater.
알루미늄 이온을 투입하는 단계에서는 1차적으로 불소가 제거된 공정액에 알루미늄 이온(시3+)을 투입하여 불소 이온의 공침이 이루어지도록 할 뿐 아니라 공정액에 존재하는 결합불소犯 _) 형태의 불소화합물의 결합이 깨지도록 할수 있다. In the step of adding aluminum ions, aluminum ions (hour 3+ ) are first added to the fluorine-free process solution to co-precipitate fluorine ions, and fluorine in the form of a combined fluorine present in the process solution. It can cause the bonds of compounds to break.
이에 따라 하기와 같은 반응식에 의 ¾ 반응이 이루어질 수 있다.  Accordingly, ¾ reaction according to the following reaction formula can be made.
[반응식 16] 시3+ + 3 시的 | [Scheme 16] Poetry 3+ + 3 Poetic |
[반응식 17] 사3+ + 3011一 + ?一 시(0103 · [Reaction Scheme 17] 4 3 + + 3011 one +? One hour (010 3 ·
[반응식 18] 13 4- + 4시31- + 3¾0 ¾¾)3 + 4시 + + 3^ [Reaction Scheme 18] 13 4- + 4 hours 31- + 3¾0 ¾¾) 3 + 4 hours + + 3 ^
상기 반응식 16 및 반응식 17과 같은 공침이 이루어질 수 있고, 반응식 18과 같이, 결합불소의 결합이 깨질 수 있다. 구체적으로, 결합불소가 알루미늄 이온에 의해 그 결합이 깨지는 반응은
Figure imgf000008_0001
이상에서 활성화 될 수 있다. 보다 구체적으로,
Figure imgf000008_0002
3.0 , 35 내지 38 에서 약 4시간 동안 반응이 이루어질 수 있다.
Coprecipitation as in Scheme 16 and Scheme 17 may be made, and as shown in Scheme 18, the binding of the bond fluorine may be broken. Specifically, the reaction in which the fluorine bond is broken by aluminum ions is
Figure imgf000008_0001
It can be activated from above. More specifically,
Figure imgf000008_0002
The reaction can take place at 3.0, 35 to 38 for about 4 hours.
알루미늄이 투입된 공정액에 세륨比 수지를 이용하여 공정액 중의 잔여 불소 이온을 흡착 제거할 수 있다. 이는 불소 흡착 타워에서 이루어질 수 있다.  The cerium resin may be used to adsorb and remove the residual fluorine ions in the process solution into the process solution into which aluminum is added. This can be done in a fluorine adsorption tower.
이에 따라 하기와 같은 반응식에 의한 반응이 이루어질 수 있다.  Accordingly, the reaction may be performed by the following reaction formula.
[반응식 19] ◦ 애 + 06^ + 0『  [Scheme 19] ◦ Ke + 06 ^ + 0 『
상기 반응식 19는 3.5 이하에서 반응이 이루어질 수 있다. 이와 2019/231004 1»(:1^1{2018/006110 The reaction scheme 19 may be a reaction at 3.5 or less. With this 2019/231004 1 »(: 1 ^ 1 {2018/006110
같은 과정을 거쳐 공정액 중의 불소 함량은 중량%로, 2?, 이하일 수 있다. 한편, 세륨 수지와의 반응 이후, 불소 흡착 타워에서 부유물질을 제거하고, 에를 주입하여 를 이온 탈착시킨 다음 불소 톱착 타워로부터 一를 배출하고, 11(:1로 불소 흡착 타워 내부를 세척함으로써 세륨 수지를 재생할수 있다. Through the same process, the fluorine content in the process solution may be 2 wt% or less in weight%. On the other hand, after the reaction with the cerium resin, the suspended solids are removed from the fluorine adsorption tower, ion is desorbed by injecting ions, and then one is discharged from the fluorine saw tower. Can be played.
다음으로, 염소를 제거하는 단계에서는 공정액 중에 존재하는 염소 성분을 제거한다. 염소를 제거하는 단계를 통해, 염소의 함량을 30¾), 이하로 낮출 수 있다. 구체적으로, 염소를 제거하는 단계는 불소가 제거된 공정액을 전기분해하여 공정액 중의 염소 이온을 염소 가스 상태로 산화시키는 단계, 염소 가스가 공정액 중의 물과 반응하여 차아염소산으로 전환되는 단계 및 공정액의 如를 2.0 이하로 유지하여 차아염소산을 염소 가스 상태로상변화시킨 후, 수중 배출하는 단계를 포함할수 있다.  Next, in the step of removing chlorine, chlorine components present in the process solution are removed. By removing chlorine, the content of chlorine can be lowered to 30¾), or less. Specifically, the step of removing chlorine includes the steps of electrolyzing a process solution from which fluorine is removed to oxidize chlorine ions in the process solution to a chlorine gas state, converting chlorine gas into hypochlorous acid by reacting with water in the process solution, and Maintaining the process solution at less than 2.0 to convert the hypochlorous acid into a chlorine gas state, and may include the step of discharging in water.
공정액을 전기분해하는 단계에서는 불소가 제거된 공정액을 전기분해하여 공정액 중에 존재하는 염소 이온(<:厂)을 산화시킴으로써 염소 가스比12)로 전환시킬 수 있다 . 염소 가스는 공정액 중의 물과 반응하여 차아염소산 0¾)이)으로 전환될 수 있다. In the step of electrolyzing the process solution, the fluorine-free process solution can be electrolyzed and converted to chlorine gas ratio1 2 by oxidizing chlorine ions (<: 厂) present in the process solution. Chlorine gas can react with water in the process solution to convert hypochlorous acid 0¾).
이에 따라 하기와 같은 반응식에 의한 반응이 이루어질 수 있다.  Accordingly, the reaction may be performed by the following reaction formula.
[반응식 20] 012
Figure imgf000009_0001
Scheme 20 01 2
Figure imgf000009_0001
이후, 공정액의 를 2.0 이하로 유지함으로써 차아염소산을 염소 가스 상태로 상변화시킬 수 있다. 차아염소산이 염소 가스 상태로 상변화하는 반응은 상기 반응식 20의 역반응이 이루어질 수 있다. 그 다음 염소 가스를 포기시켜 공정액으로부터 수중 배출함으로써 염소의 제거를 완료할 수 있다. 이와 같은 과정을 거쳐 공정액 중의 염소 함량은 중량%로 , 30¾)!)111 이하일 수 있다.  Subsequently, hypochlorous acid can be phase-changed to a chlorine gas state by keeping the process liquid at less than 2.0. The reaction in which hypochlorous acid phase changes to a chlorine gas state may be a reverse reaction of Scheme 20. The removal of chlorine can then be completed by abandoning the chlorine gas and draining it from the process liquid. Through this process, the chlorine content in the process solution may be less than or equal to 30% by weight).
다음으로, 염소가 제거된 공정액에 소석회를 투입하여 중화하는 단계를 더 수행할 수 있다. 염소가 제거된 공정액은 산성 상태이므로 이를 중성으로 중화하고, 황산 이온을 제거하여 재이용 가능한 상태로 만들 수 있다. 중화된
Figure imgf000009_0002
6.5 내지 8.5일 수 있다.
Next, the step of neutralizing by adding the lime to the process solution from which chlorine has been removed. The chlorine-free process solution is acidic, so it can be neutralized and removed to make it reusable by removing sulfate ions. Neutralized
Figure imgf000009_0002
6.5 to 8.5.
다음으로, 공정액을 아황산 가스의 세정에 이용하는 단계에서는 중금속, 불소 및 염소가 모두 제거된 공정액을 순환시켜 재이용한다. 즉, 2019/231004 1»(:1^1{2018/006110 Next, in the step of using the process solution for cleaning sulfurous acid gas, the process solution from which all heavy metals, fluorine and chlorine have been removed is circulated and reused. In other words, 2019/231004 1 »(: 1 ^ 1 {2018/006110
중금속, 불소 및 염소가 제거된 공정액을 아황산 가스(쌨2)의 세정 공정에 사용할 수 있다. 도 1을 기준으로 공정액은 약산보충수로 재이용될 수 있다. 아황산 가스는 배소 공정에서 발생된 것으로서, 아황산 가스를 공정액으로 세정함에 따라 아황산가스 및
Figure imgf000010_0001
대기 중으로 방출되지 않도록 할수 있다.
A process liquid from which heavy metals, fluorine and chlorine have been removed can be used for the cleaning process of sulfurous acid gas (X 2 ). Based on FIG. 1, the process solution may be reused as a weak acid supplement. Sulfurous acid gas is generated in the roasting process, and the sulfurous acid gas and
Figure imgf000010_0001
You can prevent it from being released into the atmosphere.
구체적으로, 공정액을 아황산 가스의 세정에 이용하는 단계에서, 염소가 제거된 공정액 중 일부는 분기시켜 슬래그 피트( 3용
Figure imgf000010_0002
보충수로 재이용할수 있다.
Specifically, in the step of using the process solution for the cleaning of sulfurous acid gas, some of the process solution from which chlorine has been removed are branched to make slag pits (for 3
Figure imgf000010_0002
Can be reused as supplemental water.
이와 같이, 본 발명의 일 실시예에 의한 무방류 공정은 제련 공정 등의 부산물로부터 발생된 황산 폐수 등을 석고의 제조에 활용한 후, 여액인 공정액을 방류 없이 순환시킴으로써 공정을 가동시키는 것이 가능하다. 이에 따라 친환경적인 공장 설비의 가동이 가능한 것이다. 이는 공정액 중의 불소 및 염소 성분을 충분히 제거하였으므로 방류 없이 공정의 가동이 가능하다.  As described above, in the non-discharge process according to an embodiment of the present invention, sulfuric acid wastewater generated from by-products such as a smelting process may be used to manufacture gypsum, and then the process may be operated by circulating the filtrate without discharge. . Accordingly, it is possible to operate eco-friendly plant facilities. This is enough to remove the fluorine and chlorine components in the process solution, the process can be operated without discharge.
본 발명의 일 실시예에 의한 무방류 공정은 중금속 성분을 석출 제거하는 단계 이전, 배소 공정에서 발생된 아황산 가스를 알칼리 용액으로 세척하는 단계를 더 포함할 수 있다. 배소 공정에서 발생된 아황산가스(3¾)를 조산 공정에서 황산으로 제거 후, 남은 미량의 아황산가스 및 此 가 대기 중으로 방출되지 않도록 알칼리 용액으로 세척할수 있다.  The non-discharge process according to an embodiment of the present invention may further include washing the sulfurous acid gas generated in the roasting process with an alkaline solution before the step of depositing and removing heavy metal components. After removing the sulfurous acid gas (3¾) generated in the roasting process with sulfuric acid in the crude acid process, it can be washed with alkaline solution so that the remaining trace amount of sulfurous acid gas and 此 are not released into the atmosphere.
아황산 가스를 알칼리 용액으로 세척하는 단계에서 발생된 석고를 제조하고 남은 공정액을 전처리된 황산 폐수로부터 석고를 제조하고 남은 공정액과 함께 중화할 수 있다. 알칼리 용액에는 탄산칼슘이 포함될 수 있다.  The gypsum generated in the step of washing the sulfurous acid gas with an alkaline solution may be prepared and the remaining process solution may be neutralized with the remaining process solution after preparing gypsum from the pretreated sulfuric acid wastewater. The alkaline solution may include calcium carbonate.
또한, 중금속 성분을 석출 제거하는 단계 이후, 전처리된 황산 폐수에 제련 공정에서 발생된 폐수를 혼합하는 단계를 더 포함할 수 있다. 제련 공정에서 발생된 폐수는 아연 잔재 처리 공정으로부터 발생한 孔 폐산 또는 인둠 폐수 등일 수 있다. 이와 같은 폐산 또는 폐수를 무방류 공정에 투입하여 함께 처리할수 있다.  In addition, after the step of depositing and removing the heavy metal component, it may further comprise the step of mixing the wastewater generated in the smelting process to the pretreated sulfuric acid wastewater. The wastewater generated in the smelting process may be, for example, waste acid generated from the zinc residue treatment process or iron waste water. Such waste acid or waste water can be put together in a non-discharge process and treated together.
이하 본 발명의 구체적인 실시예를 기재한다. 그러나 하기 실시예는 2019/231004 1»(:1^1{2018/006110 Hereinafter, specific examples of the present invention will be described. However, the following examples 2019/231004 1 »(: 1 ^ 1 {2018/006110
본 발명의 구체적인 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다. The present invention is not limited to the following examples, only specific examples of the present invention.
실시예  Example
1) 무방류 공정의 가동  1) Operation of discharge-free process
본 발명의 일 실시예에 의한 무방류 공정에 따라 중금속 성분이 포함된 황산 폐수를
Figure imgf000011_0001
및 % 의 투입을 통해, 전처리하였고, 전처리하여 중금속이 제거된 공정액에 탄산칼슘을 투입하여 석고를 제조한 다음 분리하였다. 이후, 석고가 분리된 공정액에 또 폐산 및 인듐 폐수를 투입하여 혼합하였다.
Sulfuric acid wastewater containing a heavy metal component according to the non-discharge process according to an embodiment of the present invention
Figure imgf000011_0001
And pretreatment through the addition of%, calcium carbonate was added to the process solution from which the heavy metal was removed to prepare gypsum and then separated. Thereafter, waste acid and indium wastewater were added to the process solution in which the gypsum was separated and mixed.
석고가 분리된 공정액에 소석회를 투입하여 1차 중화하고, 황산을 투입하여 역중화한 다음 다시 소석회를 투입하여 2차 중화하였다. 역중화시에는 공정액에 황산반토 및 염화철을 투입하여 불소 및 비소를 제거하였다.  Sintered lime was first neutralized by adding lime to the process solution, and sulfuric acid was added to neutralize it, and then slaked lime was added to neutralize it. In reverse neutralization, alumina and iron chloride were added to the process solution to remove fluorine and arsenic.
중화를 마친 공정액에 소석회 및 고분자 물질을 투입하여 불소를 제거하였고, 이후, 알루미늄 이온을 투입한 후, 세륨 수지의 이용으로 공정액 중의 잔여 불소를 제거하였다. 알루미늄 이온 투입 후, 반응 온도는 381:로 유지하였다.  After the neutralization of the process solution, hydrated lime and a polymer were added to remove fluorine. Then, aluminum ions were added thereto, followed by removal of residual fluorine in the process solution using cerium resin. After addition of aluminum ions, the reaction temperature was maintained at 381 :.
불소의 제거를 마친 공정액을 전기분해한 후, 공정액의 를 1 .81로 유지하였다. 이를 통해, 발생된 염소 가스를 포기시켜 수중에서 배출하였다. 염소의 제거를 마친 공정액에 다시 소석회를 투입하여 중화시켰고, 발생된 조석고는 분리하여 제거하였다. 중화된 공정액의 는 약 7 .0이었다. 중화된 공정액을 아황산가스(엤2) 세정 공정의 보충수로 투입하였고, 일부는 분기시켜 슬래그 핏( 크§ 1) )의 보충수로 활용하였다. After the electrolysis of the process solution after the removal of fluorine, the process solution was kept at 1.81. Through this, the generated chlorine gas was given up and discharged from the water. Sintered lime was added to the process solution after the removal of chlorine to neutralize it, and the generated tides were separated and removed. The neutralized process solution was about 7.0. It was added to neutralize the process solution with sulfur dioxide (et 2) replacement of the cleaning process, and some by the branch was used as makeup water in the slag pit (greater § 1)).
2) 각 단계에서의 성분 측정  2) Component measurement at each step
각 단계에서의 공정액의 를 측정하였고, 1x1, ¾, 0(1 등의 중금속 성분 함량을 측정하였으며, ? 및 이의 함량을 측정하였다. 이에 따른 결과는 하기의 표 1에 나타내었다.  The process solution was measured at each step, and heavy metal components such as 1x1, ¾, 0 (1) were measured. And its content was measured. The results are shown in Table 1 below.
【표 1】
Figure imgf000011_0002
2019/231004 1»(:1^1{2018/006110
Figure imgf000012_0001
Table 1
Figure imgf000011_0002
2019/231004 1 »(: 1 ^ 1 {2018/006110
Figure imgf000012_0001
①은 전처리 전의 황산 폐수를 의미하고 , ②는 전처리하고 , 석고 제조 분리 후의 공정액을 의미한다. ③은 此 폐산/인듐½ 폐수를 의미하고, ④는 석고 제조 분리 후의 공정액과 孔 폐산/인듐 폐수가 혼합된 공정액을 의미한다. ① refers to sulfuric acid wastewater before pretreatment, ② refers to process solution after pretreatment and separation of gypsum production. ③ means 此 waste acid / indium ½ waste water, ④ means process liquid mixed with 공정 waste acid / indium waste water.
⑤는 1차 중화 후의 공정액을 의미하고, ⑥은 2차 중화 후의 공정액을 의미한다. ⑦은 불소 제거 후의 공정액을 의미하고, ⑧은 염소 제거 후의 공정액을 의미한다. ⑨는 염소를 제거한 공정액에 소석회를 투입하여 중화한후의 공정액을 의미한다.  ⑤ means the process liquid after the first neutralization, and ⑥ means the process liquid after the second neutralization. ⑦ means process solution after fluorine removal, and ⑧ means process solution after chlorine removal. ⑨ means the process solution after neutralization by adding slaked lime to the process solution from which chlorine is removed.
3) 무방류 공정의 검증  3) Verification of no discharge process
일반적으로 제련소 공정에서 공정액의 재이용을 위한 수질 기준 중 불소 이온 및 염소 이온의 함량이 가장 중요한 항목이다. 이는 제련공정 중 제품의 품질에 영향을 주기 때문이다. 불소 이온 및 염소 이온의 함량을 비롯한 1出, 중금속 이온의 함량 기준은 하기의 표 2에 나타내었다.  In general, the content of fluorine ions and chlorine ions is the most important item in water quality standards for reuse of process liquids in smelter processes. This is because the quality of the product is affected during the smelting process. The content standards of 1 out, heavy metal ions, including the content of fluorine ions and chlorine ions are shown in Table 2 below.
【표 2]  [Table 2]
Figure imgf000012_0002
Figure imgf000012_0002
표 2에서 무방류 공정 처리수는 본 발명의 일 실시예에 의해 중금속, 2019/231004 1»(:1^1{2018/006110 In Table 2, the non-discharge process treated water is heavy metal, according to one embodiment of the present invention. 2019/231004 1 »(: 1 ^ 1 {2018/006110
불소, 염소의 제거 후, 중화를 마친 공정액을 의미한다. It means the process liquid which neutralized after removal of fluorine and chlorine.
표 1의 ⑨에서의 불소 이온 및 염소 이온, 1 , 중금속 이온의 함량 및 표 2의 무방류 공정 처리수에서의 불소 이온 및 염소 이온, 1出, 중금속 이온의 함량을 통해, 알 수 있는 바와 같이, 1出, 1^, 1¾, 0(1 등의 중금속 성분 함량, 및 □의 함량 모두 재이용가능 기준을 만족시킴을 알 수 있다. 즉, 방류 없이 공정의 가동이 가능하다.  As can be seen from the contents of fluorine ions and chlorine ions, 1, heavy metal ions in ⑨ of Table 1 and the contents of fluorine ions and chlorine ions, 1 出, heavy metal ions in the non-discharge process water of Table 2, It can be seen that the content of heavy metal components such as 1 出, 1 ^, 1¾, 0 (1, etc., and □ all satisfy the reusability criterion, that is, the process can be operated without discharge.
본 발명은 상기 구현예 및/또는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 구현예 및/또는 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.  The present invention is not limited to the above embodiments and / or embodiments, but may be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains may change the technical spirit or essential features of the present invention. It will be appreciated that it can be practiced in other specific forms without doing so. Therefore, it is to be understood that the embodiments and / or embodiments described above are illustrative in all respects and not restrictive.

Claims

2019/231004 1»(:1^1{2018/006110 2019/231004 1 »(: 1 ^ 1 {2018/006110
【청구범위】 [Claim]
【청구항 11  [Claim 11
중금속 성분이 포함된 황산 폐수를 전처리하여 상기 중금속 성분을 석출 제거하는 단계 ;  Pretreating sulfuric acid wastewater containing a heavy metal component to remove and remove the heavy metal component;
상기 전처리된 황산 폐수에 탄산칼슘을 투입하여 석고를 제조하는 단계;  Preparing gypsum by adding calcium carbonate to the pretreated sulfuric acid wastewater;
상기 석고가분리되고 남은 공정액을 중화하는 단계 ;  Neutralizing the remaining process solution after the gypsum is separated;
상기 중화된 공정액으로부터 불소를 제거하는 단계 ;  Removing fluorine from the neutralized process solution;
상기 불소가 제거된 공정액으로부터 염소를 제거하는 단계 ; 및 상기 염소가 제거된 공정액을 아황산 가스의 세정에 이용하는 단계 ;를 포함하는무방류 공정 .  Removing chlorine from the fluorine-free process solution; And using the process solution from which the chlorine has been removed to wash the sulfurous acid gas.
【청구항 2]  [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 중금속 성분을 석출 제거하는 단계에서,  In the step of removing and removing the heavy metal component,
상기 황산 폐수에 ¥3 및 此況를 투입하여 상기 중금속을 공침 제거하는무방류 공정 . A non-discharge step of coprecipitation removal of the heavy metal by adding ¥ 3 and 此 況 to the sulfuric acid wastewater.
【청구항 3]  [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 공정액을 중화하는 단계는,  Neutralizing the process solution,
상기 석고가 분리되고 남은 공정액에 소석회를 투입하여 중화하며, 상기 소석회의 투입으로 발생된 조석고를 제거하는 단계;  Neutralizing by adding slaked lime to the remaining process solution after the gypsum is separated, and removing the gypsum generated by the slaked lime;
상기 중화된 공정액에 황산을 투입하여 역중화하는 단계 ; 및  De-neutralizing by adding sulfuric acid to the neutralized process solution; And
상기 역중화된 공정액에 소석회를 투입하여 중화하고 , 상기 소석회의 투입으로 발생된 조석고를 제거하는 단계;를 포함하는 무방류 공정.  And neutralizing the hydrated lime by injecting the hydrated lime into the de-neutralized process solution, and removing the crude tide generated by the addition of the lime.
【청구항 4]  [Claim 4]
저 13항에 있어서,  According to claim 13,
상기 황산을투입하여 역중화하는 단계에서,  In the step of neutralizing by adding the sulfuric acid,
상가 황산의 투입 후, 황산반토를 투입하여, 불소를 체거하고, 염화철을 투입하여 비소를 제거하는 무방류 공정.  After the addition of sulfuric acid, alumina-free is a process in which alumina sulfate is added, fluorine is removed, and iron chloride is added to remove arsenic.
【청구항 5] 2019/231004 1»(그1^1{2018/006110 [Claim 5] 2019/231004 1 »(1 ^ 1 {2018/006110
제 1항에 있어서, The method of claim 1,
상기 불소를 제거하는 단계는,  Removing the fluorine is,
상기 중화된 공정액에 소석회 및 고분자 물질을 투입하여 1차적으로 불소를 제거하는 단계 ;  Firstly removing fluorine by adding slaked lime and a polymer material to the neutralized process solution;
상기 1차적으로 불소가 제거된 공정액에 알루미늄 이온을 투입하는 단계; 및  Injecting aluminum ions into the process solution from which fluorine is first removed; And
세륨 수지를 이용하여 상기 알루미늄 이온이 투입된 공정액으로부터 잔여 불소를 제거하는 단계;를 포함하는무방류 공정 .  And removing residual fluorine from the process solution into which the aluminum ions are injected using cerium resin.
【청구항 6]  [Claim 6]
제 5항에 있어서,  The method of claim 5,
상기 알루미늄 이온을 투입하는 단계는 반응 온도가 33 내지 38 X:인 무방류 공정 .  The step of injecting the aluminum ions is a non-discharge process wherein the reaction temperature is 33 to 38 X :.
【청구항 7]  [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 불소를 제거하는 단계 이후,  After removing the fluorine,
상기 공정액의 불소 농도는 중량%로 , 2^ 이하인 무방류 공정 .  Fluoride concentration of the process solution is weight percent, no discharge process less than 2 ^.
【청구항 8]  [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 염소를 제거하는 단계는,  Removing the chlorine,
상기 불소가 제거된 공정액을 전기분해하여 상기 공정액 중의 염소 이온을 염소 가스상태로산화시키는 단계 ;  Electrolyzing the process solution from which the fluorine is removed to oxidize chlorine ions in the process solution to a chlorine gas state;
상기 염소 가스가 상기 공정액 중의 물과 반응하여 차아염소산으로 전환되는 단계; 및  Converting the chlorine gas into hypochlorous acid by reacting with water in the process solution; And
상기 공정액의 를 2.0 이하로 유지하여 상기 차아염소산을 염소 가스상태로 상변화시킨 후, 수중 배출하는 단계;를 포함하는 무방류 공정.  Maintaining the process solution at less than or equal to 2.0 to change the hypochlorous acid into a chlorine gas state, and then discharging it in water.
【청구항 9】 [Claim 9]
제 1항에 있어서,  The method of claim 1,
상기 염소를 제거하는 단계 이후,  After removing the chlorine,
상기 공정액의 염소 농도는 중량%로, 30如 이하인 무방류 공정 .  The chlorine concentration of the process solution is weight percent, no discharge process less than 30 如.
【청구항 10】 2019/231004 1»(:1^1{2018/006110 [Claim 10] 2019/231004 1 »(: 1 ^ 1 {2018/006110
제 7항에 있어서, The method of claim 7,
상기 수중 배출하는 단계 이후,  After the step of discharging in water,
상기 염소가 제거된 공정액에 소석회를 투입하여 중화하는 단계;를 더 포함하는 무방류 공정 .  Neutralization by adding the lime in the process solution from which the chlorine has been removed.
【청구항 11】  [Claim 11]
제 10항에 있어서,  The method of claim 10,
상기 공정액에 소석회를 투입하여 중화하는 단계에서,  In the step of neutralizing by adding slaked lime to the process solution,
상기 중화된
Figure imgf000016_0001
6.5 내지 8.5인 무방류 공정 .
Neutralized
Figure imgf000016_0001
Zero discharge process with 6.5 to 8.5.
【청구항 12】  [Claim 12]
제1항에 있어서,  The method of claim 1,
상기 중금속 성분을 석출 제거하는 단계 이후,  After the step of removing and removing the heavy metal component,
상기 전처리된 황산 폐수에 제련 공정에서 발생된 폐수를 혼합하는 단계 ;를 더 포함하는무방류 공정  Mixing the wastewater generated in the smelting process to the pretreated sulfuric acid wastewater;
【청구항 13]  [Claim 13]
제 1항에 있어서,  The method of claim 1,
상기 중금속성분을 석출 제거하는 단계 이전,  Before the step of removing and removing the heavy metal component,
배소 공정에서 발생된 아황산 가스를 알칼리 용액으로 세척하는 단계 ;를 더 포함하는무방류 공정 .  Non-discharge step further comprising the step of washing the sulfurous acid gas generated in the roasting process with an alkaline solution.
【청구항 14】  [Claim 14]
제 1항에 있어서,  The method of claim 1,
상기 공정액을 아황산가스의 세정에 이용하는 단계에서,  In the step of using the process solution for the cleaning of sulfurous acid gas,
상기 염소가 제거된 공정액 중 일부는 분기시켜 슬래그 피트比 塔 1:)의 보중수로 이용하는 무방류 공정 .  A part of the process liquid from which the chlorine has been removed is branched so that it can be used as a conserved water of slag pits.
PCT/KR2018/006110 2018-05-28 2018-05-29 Zero-liquid discharge process WO2019231004A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0060531 2018-05-28
KR1020180060531A KR102063246B1 (en) 2018-05-28 2018-05-28 Zero liquid discharge process

Publications (1)

Publication Number Publication Date
WO2019231004A1 true WO2019231004A1 (en) 2019-12-05

Family

ID=68697632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006110 WO2019231004A1 (en) 2018-05-28 2018-05-29 Zero-liquid discharge process

Country Status (2)

Country Link
KR (1) KR102063246B1 (en)
WO (1) WO2019231004A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113860552A (en) * 2021-10-11 2021-12-31 紫金矿业集团股份有限公司 Method for removing fluorine and chlorine in mine smelting wastewater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111056675B (en) * 2019-12-19 2022-03-29 北京矿冶科技集团有限公司 Method for recycling and recovering waste acid
CN111018229B (en) * 2019-12-31 2021-11-05 中南民族大学 Method for resource utilization of sulfuric acid waste acid wastewater from copper smelting and obtaining arsenic-containing product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028667A (en) * 2000-07-17 2002-01-29 New Japan Radio Co Ltd Method for treating waste liquid and reactor used for the same
JP2004000962A (en) * 2002-04-26 2004-01-08 National Institute Of Advanced Industrial & Technology Process for removal and removing agent of fluorine ion
JP2012012230A (en) * 2010-06-29 2012-01-19 Pan Pacific Copper Co Ltd Method for producing waste acid gypsum
KR20120106601A (en) * 2011-03-18 2012-09-26 가부시키가이샤 오메가 The treating method of waste water
JP5644900B1 (en) * 2013-06-14 2014-12-24 住友金属鉱山株式会社 Wastewater treatment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3702511B2 (en) * 1995-10-20 2005-10-05 千代田化工建設株式会社 Wastewater treatment method in wet flue gas desulfurization system
KR100406392B1 (en) * 1998-12-11 2004-02-14 주식회사 포스코 The neutralization process of waste sulphuric acid with by product from iron and steel works and the method of manufacturing gypsum with precipitate made the neutralization process
DE60014831T2 (en) * 1999-05-17 2005-10-13 Mitsubishi Heavy Industries, Ltd. METHOD FOR TREATING THE WASTE WATER OF AN EXHAUST AIR DISPENSER
KR100573186B1 (en) * 2004-06-30 2006-04-24 한국남부발전 주식회사 Wastewater Disposal Method in Flue Gas Desulfurization System by Using Scale Preventer
KR101484575B1 (en) * 2013-03-18 2015-01-20 그린엔텍 주식회사 Treating methods of sulfuric acid lyes and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028667A (en) * 2000-07-17 2002-01-29 New Japan Radio Co Ltd Method for treating waste liquid and reactor used for the same
JP2004000962A (en) * 2002-04-26 2004-01-08 National Institute Of Advanced Industrial & Technology Process for removal and removing agent of fluorine ion
JP2012012230A (en) * 2010-06-29 2012-01-19 Pan Pacific Copper Co Ltd Method for producing waste acid gypsum
KR20120106601A (en) * 2011-03-18 2012-09-26 가부시키가이샤 오메가 The treating method of waste water
JP5644900B1 (en) * 2013-06-14 2014-12-24 住友金属鉱山株式会社 Wastewater treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113860552A (en) * 2021-10-11 2021-12-31 紫金矿业集团股份有限公司 Method for removing fluorine and chlorine in mine smelting wastewater

Also Published As

Publication number Publication date
KR20190135268A (en) 2019-12-06
KR102063246B1 (en) 2020-01-07

Similar Documents

Publication Publication Date Title
RU2709915C1 (en) Method of treating residues after chlorination and melt of salts in order to reuse said residues
WO2019231004A1 (en) Zero-liquid discharge process
CN104829001B (en) The low slag processed for waste acid neutralizes and the method for heavy metals removal and resource
JP4461225B2 (en) Separation and recovery of valuable resources from stainless steel pickling waste liquid
BRPI0807352A2 (en) METHOD AND SYSTEM FOR REMOVING MANGANESE OF WASTE LIQUORS
JP4747382B1 (en) Flue gas purification treatment method
CN103964445A (en) Quartz sand pickling comprehensive recycle method
CN104532292B (en) A kind of method removing sulfate radical from lead sulfate alkaline electrolyte
JP4954131B2 (en) Treatment method of water containing borofluoride
CA2825228C (en) Precipitation of zinc from solution
CN107117746A (en) A kind of processing method of desulfurization waste liquor
CN105967396A (en) Method for treating manganese-containing wastewater
US2020313A (en) Zinc sulphide
CN107117747A (en) A kind of processing method of desulfurization waste liquor
KR950002347B1 (en) Process for the treatment of wash water from the gas washing system of an iron ore reduction plant
WO2019074444A1 (en) Process for treating waste streams containing bauxite tailings
JP3945216B2 (en) Waste acid gypsum manufacturing method
KR102543786B1 (en) Wastewater Treatment Method
JP6742596B2 (en) High-quality gypsum manufacturing method
WO2011120093A1 (en) Recovering metals from pickle liquor
US10233081B2 (en) Method to prepare one or more chemical products using hydrogen sulfide
JP3951794B2 (en) Treatment method of contaminated soil
WO2014022882A1 (en) Recovery of zinc from lead slag
JP2005515302A (en) Method for separating zinc from a second metal that does not form an anion complex in the presence of chloride ion
CN102320697A (en) Desulfuration process for chromate waste water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921244

Country of ref document: EP

Kind code of ref document: A1