WO2019230968A1 - Hydrogel structure and method for producing same - Google Patents

Hydrogel structure and method for producing same Download PDF

Info

Publication number
WO2019230968A1
WO2019230968A1 PCT/JP2019/021838 JP2019021838W WO2019230968A1 WO 2019230968 A1 WO2019230968 A1 WO 2019230968A1 JP 2019021838 W JP2019021838 W JP 2019021838W WO 2019230968 A1 WO2019230968 A1 WO 2019230968A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
value
polymer
hydrogel structure
hydrogel
Prior art date
Application number
PCT/JP2019/021838
Other languages
French (fr)
Japanese (ja)
Inventor
広治 網代
諒 川谷
祐賀子 中井
將行 福嶋
味村 裕
禎宏 加藤
Original Assignee
古河電気工業株式会社
国立大学法人 奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 国立大学法人 奈良先端科学技術大学院大学 filed Critical 古河電気工業株式会社
Priority to JP2020522640A priority Critical patent/JP7311864B2/en
Publication of WO2019230968A1 publication Critical patent/WO2019230968A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a hydrogel structure and a manufacturing method thereof.
  • Hydrogel has a three-dimensional network structure formed by polymerization and crosslinking of a plurality of monomers, and contains a solvent such as water inside the three-dimensional network structure. And according to the kind of monomer or solvent, hydrogel shows various characteristics.
  • hydrogel has excellent compressive strength but low tensile strength. Therefore, hydrogels are required to improve mechanical strength such as tensile strength.
  • Patent Document 1 discloses that a step of forming a first network structure by polymerizing and crosslinking a first monomer component, a second monomer component after introducing the second monomer component into the first network structure, Forming a polymer in the first network structure by polymerizing the monomer component, and further forming a second network structure in the first network structure by further crosslinking.
  • a method for producing a structural hydrogel is described. In the hydrogel described in Patent Document 1, the first monomer component and the second monomer component each form a network structure, and these network structures penetrate each other.
  • Patent Document 2 describes a method for producing a gel having a semi-interpenetrating network structure in which a non-crosslinked polymer invades and physically entangles into a network structure composed of a crosslinked polymer.
  • a non-crosslinked polymer invades and physically entangles into a network structure composed of a crosslinked polymer.
  • one polymer forms a network structure, and the other polymer enters the network structure.
  • the hydrogel structures disclosed in Patent Documents 1 and 2 have a structure in which another network structure or polymer has entered the network structure (hereinafter also referred to as “interpenetrating network structure”). , The mechanical strength of the gel is increased.
  • the solvent is changed many times, or the network structure is immersed in the solvent used in the next step. Had gone. Furthermore, since gelation proceeds even during this operation, it was difficult to produce the final product of the hydrogel structure in the shape and size as designed.
  • An object of the present invention is to provide a hydrogel structure excellent in mechanical properties and a method for producing a hydrogel structure capable of easily producing such a hydrogel structure.
  • the gist configuration of the present invention is as follows.
  • the second polymer is a second network structure obtained by polymerizing and crosslinking the second monomer, and the first monomer has a Q value in the range of 0.001 to 0.199, and an e value. Is in the range of ⁇ 8.60 to 0, and the second monomer has a Q value in the range of 0.200 to 16.000 and an e value in the range of 0.01 to 3.70.
  • the hydrogel structure characterized by being.
  • the first monomer has a Q value in the range of 0.020 or more and 0.170 or less, and an e value in the range of ⁇ 1.70 or more and ⁇ 0.80 or less.
  • the second polymer is a second network structure obtained by polymerizing and crosslinking the second monomer
  • the first monomer is N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone, N-vinyl.
  • Caprolactam N-methyl-N-vinylacetamide, N-allyl stearamide, N, N-methylvinyltoluenesulfonic acid amide, vinyl propionate, 1-vinylimidazole, vinyl butyrate, vinyl acetate, vinyl cinnamate, benzoic acid Group of vinyl acid, vinyl isocyanate, vinyl ethyl ether, and vinyl octadecyl ether
  • One or more of the hydrogel structure is a compound are al selected.
  • the second monomer is ethyl acrylate, butyl acrylate, methyl acrylate, 2-ethylhexyl acrylate, methyl ⁇ -chloroacrylate, acrylamide, ethyl ⁇ -acetoxyacrylate, methyl ⁇ -cyanoacrylate, 2-
  • the cross-linked part is formed of a cross-linking agent having a plurality of functional groups of at least one of the third functional group and the fourth functional group, and the third functional group is represented by the following formula (1-1) or formula ( 1-2.
  • R1 represents an alkyl group having 1 to 5 carbon atoms or hydrogen
  • R2 represents a methylene group
  • * represents a bond.
  • R5 Represents a methylene group, * represents a bond, R3 represents a methylene group, R4 represents an alkyl group having 1 to 2 carbon atoms or hydrogen, and * represents a bond. Is shown.
  • a method for producing a hydrogel structure comprising: a preparation step of preparing a solution containing a polymerization initiator that polymerizes and crosslinks the solution, and a heating step of heating and gelling the solution.
  • the solution prepared in the preparation step includes a first functional group obtained by removing one hydrogen atom from the first monomer, and a second functional group obtained by removing one hydrogen atom from the second monomer.
  • the solution prepared in the preparation step further includes a crosslinking agent having a plurality of functional groups of at least one of a third functional group and a fourth functional group, wherein the third functional group is represented by the following formula (1-1):
  • R1 represents an alkyl group having 1 to 5 carbon atoms or hydrogen
  • R2 represents a methylene group
  • * represents a bond.
  • R5 Represents a methylene group, * represents a bond, R3 represents a methylene group, R4 represents an alkyl group having 1 to 2 carbon atoms or hydrogen, and * represents a bond. Is shown.) [11] The method for producing a hydrogel structure according to any one of [8] to [10], wherein the preparation step and the heating step are performed in one pot.
  • the present inventors have considered the reactivity of raw materials such as monomers and polymerization initiators used in the hydrogel structure, and selected raw materials that satisfy a predetermined relationship with respect to the physical properties of each raw material.
  • raw materials such as monomers and polymerization initiators used in the hydrogel structure
  • selected raw materials that satisfy a predetermined relationship with respect to the physical properties of each raw material.
  • the hydrogel structure of this embodiment includes a first polymer and a second polymer intertwined with the first polymer, and the first polymer is a first network structure formed by polymerizing and crosslinking a first monomer.
  • the second polymer is a second network structure obtained by polymerizing and crosslinking the second monomer, and the first monomer has a Q value in the range of 0.001 to 0.199, and an e value. Is in the range of ⁇ 8.60 to 0, and the second monomer has a Q value in the range of 0.200 to 16.000 and an e value in the range of 0.01 to 3.70. It is.
  • FIG. 1 is a schematic view showing an example of the hydrogel structure of the present embodiment.
  • the first polymer 1 in order to make it easy to visually distinguish the first polymer 1, the second polymer 2, and the cross-linking portion 3 constituting the hydrogel structure, the first polymer 1 is shown for convenience of explanation.
  • the white line, the second polymer 2 is indicated by a black line, and the bridge portion 3 is indicated by a hatched line.
  • the hydrogel structure 10 includes a first polymer 1 and a second polymer 2.
  • the first polymer 1 and the second polymer 2 are entangled with each other and partially bonded at a plurality of portions.
  • the first polymer 1 is a first network structure obtained by polymerizing and crosslinking a first monomer
  • the second polymer 2 is a second network structure obtained by polymerizing and crosslinking a second monomer.
  • the first monomer has a Q value in the range of 0.001 to 0.199 and an e value in the range of ⁇ 8.60 to 0.
  • the second monomer has a Q value in the range of 0.200 to 16.000 and an e value in the range of 0.01 to 3.70.
  • the Q value and e value of the first monomer and the second monomer are within the above ranges, the first polymer 1 and the second polymer 2 are partially bonded to each other, and therefore the breaking strength in the hydrogel structure 10 And mechanical properties such as breaking strain can be improved.
  • the Q value and e value of the first monomer 1 and the second monomer 2 are out of the above ranges, the first polymer 1 and the second polymer 2 do not bind to each other. The mechanical properties cannot be improved sufficiently.
  • the first monomer preferably has a Q value of 0.020 to 0.180 and an e value of ⁇ 1.80 to ⁇ 0.70, more preferably a Q value of 0.020 to 0.170 and The e value is in the range of ⁇ 1.70 or more and ⁇ 0.80 or less.
  • the second monomer preferably has a Q value of 0.230 to 3.070 and an e value of 0.30 to 1.28, more preferably a Q value of 0.320 to 1.000 and an e value. Is in the range of 0.50 or more and 0.90 or less.
  • the Q value of the monomer is an index representing the degree of conjugation between the double bond of the radical polymerizable monomer and its substituent.
  • the first monomer is preferably one or two selected from the group of NVF, NVA, VACe, N-vinyl pyrrolidone, NVCAP, MNVA, vinyl benzoate, and vinyl isocyanate.
  • One or more compounds more preferably one or more compounds selected from the group of NVF, NVA, VACe, NVCAP, and MNVA.
  • the first monomer one type of monomer may be used alone, or two or more types of monomers may be used in combination.
  • the Q value and e value of NVF are values estimated based on the relative values of the Q value and e value of vinyl caprolactam (7 carbons) and vinyl pyrrolidone (5 carbons).
  • the second monomer is preferably selected from the group of EAc, BAc, MAc, methyl ⁇ -chloroacrylate, acrylamide, ethyl ⁇ -acetoxyacrylate, and 2-chloroethyl acrylate.
  • One or more compounds selected from the group consisting of EAc, BAc, MAc, and ethyl ⁇ -acetoxyacrylate are more preferable.
  • the second monomer one type of monomer may be used alone, or two or more types of monomers may be used in combination.
  • the mechanical properties of the hydrogel structure 10 are improved. Further, as the degree of cross-linking of the first network structure and the degree of cross-linking of the second network structure increase, the network density of the first network structure and the network density of the second network structure increase, so that the hydrogel structure While the mechanical strength of 10 increases, the degree of swelling of the hydrogel structure 10 decreases. Therefore, the degree of polymerization and the degree of crosslinking of the first network structure and the second network structure are appropriately selected according to the characteristics required for the hydrogel structure 10.
  • a bridging portion 3 for chemically or physically bonding the first network structure and the second network structure may exist between the first network structure and the second network structure.
  • crosslinking part 3 is formed in the hydrogel structure 10, and several bridge
  • the first network structure and the second network structure are bonded to each other via the plurality of bridging portions 3 in addition to the plurality of bonding portions.
  • the chemical bond is a covalent bond such as a carbon-carbon bond, an ether bond, an ester bond or an amide bond, or an interaction due to an intermolecular force such as an ionic bond or a hydrogen bond.
  • a covalent bond such as a carbon-carbon bond, an ether bond, an ester bond or an amide bond, or an interaction due to an intermolecular force such as an ionic bond or a hydrogen bond.
  • the number of cross-linking parts 3 included in the hydrogel structure 10 is appropriately selected according to the characteristics required for the hydrogel structure 10.
  • the number of cross-linking portions 3 in the hydrogel structure 10 can be indirectly calculated by the molar mass of the cross-linking portions 3 included in the hydrogel structure 10.
  • the cross-linking part 3 includes a plurality of cross-linking agents having at least one functional group of a first functional group obtained by removing one hydrogen atom from the first monomer and a second functional group obtained by removing one hydrogen atom from the second monomer. Or a cross-linking agent having a plurality of functional groups of at least one of a third functional group and a fourth functional group described later.
  • the first functional group, the second functional group, the third functional group, and the fourth functional group each have a cis type and a trans type.
  • the cross-linking part 3 is preferably formed by a cross-linking agent having the same reaction rate as that of the first monomer or the second monomer. Therefore, the cross-linking agent has a structure of each of the first monomer and the second monomer. It is preferable to select a structure similar to the structure in which is bonded.
  • cross-linking agent examples include a chain monomer having two functional groups of at least one of a first functional group and a second functional group that are polymerizable substituents, or a third functional group and a second functional group that are polymerizable substituents. It is a chain monomer having two functional groups of at least one of four functional groups. Such a chain monomer has one of these polymerizable substituents at both ends.
  • the type of the crosslinking agent is appropriately selected according to the types of the first polymer, the second polymer, and the polymerization initiator.
  • the cross-linking agent having one third functional group at each end is an AA cross-linking agent
  • the cross-linking agent having one fourth functional group at each end is a BB cross-linking agent
  • the third functional group is at one end.
  • a cross-linking agent having one and one fourth functional group at the other end is referred to as an AB cross-linking agent.
  • the cross-linking agent is preferably an AB cross-linking agent from the viewpoint of easily forming the cross-linking part 3.
  • the structure bonded to the vinyl group is similar to the structure bonded to the first monomer, and more specifically, the following formula (1-1) or formula (1-2) ).
  • R1 represents an alkyl group having 1 to 5 carbon atoms or hydrogen
  • R2 represents a methylene group
  • * represents a bond
  • R5 Represents a methylene group
  • * represents a bond
  • R3 represents a methylene group
  • R4 represents an alkyl group having 1 to 2 carbon atoms or hydrogen
  • * represents a bond. Is shown.
  • the fourth functional group is, for example, a structure represented by the following formula (2), assuming that the structure bonded to the vinyl group is similar to the structure bonded to the second monomer. is there.
  • R3 represents a methylene group
  • R4 represents an alkyl group having 1 to 2 carbon atoms or hydrogen
  • * represents a bond
  • formula (1-1), formula (1-2), and formula (2) is bonded to both ends of a chain organic compound group, for example.
  • the chain organic compound group may be a straight chain hydrocarbon group or a partially branched chain hydrocarbon group.
  • the organic compound group may have a functional group such as a hydroxy group or an ether bond.
  • the specific structural formula of the AA crosslinking agent is represented by the following formula (4-1), and the first monomer is In the case of vinyl acetate, the specific structural formula of the AA crosslinking agent is represented by the following formula (4-2).
  • the two third functional groups may be cis-type, or one third functional group may be trans-type and the other third functional group may be cis-type. The same applies to formulas (6) and (7) described later.
  • the hydrogel structure 10 previously swollen with water is immersed in 1 mol / L hydrochloric acid for 72 hours, and then the hydrogel structure is washed in ion-exchanged water. Thereafter, the ion-exchanged water is replaced three times every 12 hours, and the washing is repeated. Subsequently, 10 mg of the hydrogel structure dried after washing is added to 400 ⁇ L of water to prepare a sample solution. Then, an alcohol measurement assay (colorimetric) for determining the primary alcohol (STA-620, manufactured by Cell Biolabs) is added to the sample solution, and the difference in color of the sample solution is confirmed.
  • STA-620 manufactured by Cell Biolabs
  • the second network structure crosslinked by the ester bond derived from the BB crosslinking agent has a chain polymer having a carboxyl group and a low molecular weight Decomposes into primary alcohol of the compound. This low molecular weight compound is removed from the hydrogel structure during washing.
  • the 1st network structure maintains the crosslinked structure with the AA crosslinking agent.
  • this crosslinked structure is decomposed into a chain polymer derived from the second network structure and a first network structure having a primary hydroxy group by hydrolysis of the AB crosslinking agent.
  • the chain polymer derived from the second network structure is not a low molecular compound, it remains in the hydrogel structure even after washing. And the structure derived from the primary hydroxy group which this 1st network structure has can be confirmed by the said alcohol measurement assay (colorimetric) as pseudo primary alcohol.
  • the color of the sample solution changes even when the alcohol measurement assay is added to the sample solution in the above measurement method. Or a change in color is small compared to the measurement method of the hydrogel structure 10.
  • the hydrogel structure 10 includes a solvent such as water or an organic solvent.
  • the solvent in the hydrogel structure 10 is taken into, for example, the network of the first network structure, the network of the second network structure, or between the first network structure and the second network structure. .
  • the amount and type of the solvent contained in the hydrogel structure 10 depends on the use of the hydrogel structure 10, the first monomer, the second monomer, the polymerization initiator, the type of raw material of the hydrogel structure such as a crosslinking agent, It is selected appropriately.
  • the solvent one type of solvent may be used alone, or two or more types of solvents may be used in combination.
  • the hydrogel structure 10 includes compounds such as a first monomer, a second monomer, a polymerization initiator, and a crosslinking agent within a range that does not lower the effect of improving the mechanical properties such as breaking strength and breaking strain described above. Unreacted material derived from it may be included.
  • the hydrogel structure 10 of the embodiment can be used in various fields. As an example, it can be used for a water retention material. Moreover, it can be applied to medical materials as a high-strength gel material with high biocompatibility. For example, as a highly functional biomaterial or low friction material, an artificial blood vessel utilizing the light transmittance of the hydrogel structure, an artificial joint cartilage utilizing the low friction surface of the hydrogel structure, an antithrombotic material, an artificial organ It can be suitably used for surfaces such as artificial joints. In addition, it can be used for daily goods such as cushion materials and industrial materials.
  • diapers, hygiene products, sustained release materials, civil engineering materials, building materials, communication materials, soil modifiers, contact lenses, intraocular lenses, hollow fibers, fuel cell materials, battery membranes (separators), impact resistant materials, And can be suitably used for cushions.
  • it can be applied to various fields as a friction reducing member such as a film, a sheet, and a tube.
  • a friction reducing member such as a film, a sheet, and a tube.
  • medical instruments such as endoscopes and catheters.
  • a hydrogel structure having a shape such as a film shape, a sheet shape, or a tube shape is mounted on the outer surface of a medical device such as an endoscope or a catheter, the medical device when the medical device is inserted into the patient's body Since the frictional resistance with the body is reduced, it is possible to greatly reduce the patient's pain during surgery and examination.
  • the manufacturing method of the hydrogel structure 10 of the embodiment includes a preparation step S10 and a heating step S20.
  • a solution containing a first monomer, a second monomer, and a polymerization initiator that polymerizes and crosslinks the first monomer and the second monomer is prepared.
  • a solution prepared in preparation process S10 after purchasing the solution which has the structure similar to the solution containing one monomer and a polymerization initiator among 1st monomer and 2nd monomer, it is contained in the said solution.
  • the other monomer that has not been added may be added to the solution and mixed.
  • after purchasing the solution which has the structure similar to the solution which does not contain a 1st monomer and a 2nd monomer but contains a polymerization initiator it adds and mixes the 1st monomer and the 2nd monomer to the said solution, and mixes May be.
  • the solution may be prepared without purchasing any of the above solutions. Below, preparation process S10 which prepares a solution, without purchasing either of said solutions is demonstrated.
  • the first monomer used in the method for producing the hydrogel structure 10 has a Q value in the range of 0.001 to 0.199 and an e value in the range of ⁇ 8.60 to 0.
  • the second monomer has a Q value in the range of 0.200 to 16.000 and an e value in the range of 0.01 to 3.70.
  • the reactivity of the first monomer and the second monomer as raw materials in particular, the difference in the reaction rate between the first monomer and the second monomer is utilized. It was found that a hydrogel structure excellent in mechanical properties can be produced easily and in a short time without waiting for completion of each operation as described above when the value is in the above range.
  • the polymerization reaction, the crosslinking reaction, and the crosslinking agent of the first monomer and the second monomer are further used.
  • these reactions and a plurality of operations associated with the formation reaction of the bridging portion 3 can be performed at the same time, so that the shape change of the hydrogel structure during synthesis is reduced, which is simpler and shorter in time than conventional manufacturing methods.
  • the final product of the hydrogel structure can be easily manufactured in the shape and size as designed.
  • the previous work is completed as in the conventional method for producing a hydrogel structure. Then you need to do the following: Therefore, compared with the manufacturing method of the hydrogel structure 10 of the embodiment, the work is complicated and takes a long time. Furthermore, the manufactured hydrogel structure has mechanical properties such as breaking strength and breaking strain that are lowered, and it is not easy to produce the designed shape and size.
  • the first monomer preferably has a Q value of 0.020 to 0.180 and an e value of ⁇ 1.80 to ⁇ 0.70, more preferably a Q value of 0.020 to 0.170 and The e value is in the range of ⁇ 1.70 or more and ⁇ 0.80 or less.
  • the second monomer preferably has a Q value of 0.230 to 3.070 and an e value of 0.30 to 1.28, more preferably a Q value of 0.320 to 1.000 and an e value. Is in the range of 0.50 or more and 0.90 or less.
  • the polymerization initiator used in the method for producing a hydrogel structure polymerizes and crosslinks the first monomer and the second monomer, and bonds the first network structure and the second network structure to each other.
  • the polymerization initiator used is appropriately selected according to the types of the first monomer and the second monomer.
  • examples of the polymerization initiator include azobisisobutyronitrile (AIBN).
  • the solvent used as a raw material for the solution prepared in the preparation step S10 has compatibility with the first monomer and the second monomer.
  • the solvent used is appropriately selected according to the types of the first monomer and the second monomer. Specific examples include acetonitrile, ethanol, methanol, propanol, acetone, dimethyl sulfoxide (DMSO), water, N, N-dimethylformamide (DMF), and the like.
  • examples of the solvent include dimethyl sulfoxide (DMSO), water, N, N-dimethylformamide (DMF), and the like.
  • the solution prepared in the preparation step S10 is prepared by adding and mixing the first monomer, the second monomer, and the polymerization initiator in a solvent and dissolving them.
  • the timing of adding the first monomer, the second monomer, and the polymerization initiator to the solvent is not particularly limited, and since the procedure is simple, the first monomer, the second monomer, and the polymerization initiator are added. It is preferable to add all at once.
  • the content of the first monomer in the solution is in the range of 0.01 mol / L to 10.00 mol / L, preferably 0.05 mol / L to 1.00 mol / L.
  • the content of the first monomer in the solution is within the above range, sufficient reactivity can be exhibited in a shorter time in the heating step S20 described later.
  • the radical collision probability is increased, the reactivity of the solution is further improved, and the content of the first monomer is 1.00 mol / L.
  • the mobility of the first monomer and the first polymer in the solvent is sufficiently ensured.
  • the content of the second monomer in the solution is in the range of 0.01 mol / L to 10.00 mol / L, preferably 0.05 mol / L to 1.00 mol / L.
  • the content of the second monomer in the solution is within the above range, sufficient reactivity can be exhibited in a shorter time in the heating step S20.
  • the radical collision probability is increased, the reactivity of the solution is further improved, and the content of the second monomer is 1.00 mol / L.
  • the mobility of the second polymer in the solvent is sufficiently ensured.
  • the number of moles (m) of the polymerization initiator relative to the total number of moles (m1 + m2) of the number of moles of vinyl groups of the first monomer (m1) and the number of moles of vinyl groups of the second monomer (m2) contained in the solution
  • the ratio ⁇ m / (m1 + m2) ⁇ is in the range of 0.0001 to 0.1000, preferably 0.0050 to 0.0300.
  • the content of the polymerization initiator in the solution is within the above range with respect to the number of moles of all vinyl groups of the first monomer and the second monomer, the polymerization initiator due to oxygen radicals remaining in the solution Since deactivation can be prevented and a sufficient degree of polymerization can be obtained, a hydrogel structure excellent in mechanical properties can be obtained.
  • the above ratio is 0.0050 or more, it is possible to avoid a situation in which the polymerization reaction does not sufficiently proceed due to deactivation of the polymerization initiator, and when the above ratio is 0.0300 or less, the first monomer In addition, the second monomers can grow to a certain length or more.
  • a solution prepared in the preparation step can be obtained.
  • the solution (reaction solution) prepared in the preparation step S10 can be obtained by adding the second monomer to the solution. .
  • the solution prepared in the preparation step S10 is heated to be gelled.
  • the heating step S20 when the solution obtained in the preparation step S10 is heated, the gelation of the solution occurs, and the hydrogel structure of the above-described embodiment can be obtained.
  • the heating temperature of the solution in the heating step S20 is in the range of 40 ° C to 120 ° C, preferably 45 ° C to 100 ° C.
  • the heating temperature of the solution is 40 ° C. or higher, the radical generation rate of the polymerization initiator increases.
  • evaporation of a solution can be suppressed as the heating temperature of a solution is 120 degrees C or less.
  • the heating time of the solution in the heating step S20 is 4 hours to 48 hours, preferably 6 hours to 12 hours.
  • the heating time of the solution is 4 hours or longer, the solution can be sufficiently gelled. Further, when the heating time of the solution is 48 hours or less, excessive progress of gelation can be avoided.
  • the solution prepared in the preparation step S10 further includes the cross-linking agent in addition to the first monomer, the second monomer, and the polymerization initiator.
  • the solution contains a cross-linking agent, in the resulting hydrogel structure, the mechanical properties are further improved due to the increase in the cross-linked portion 3 and the degree of cross-linking of the first polymer and the second polymer.
  • the timing for adding the crosslinking agent in the preparation step S10 to the solution is not particularly limited, and may be the same timing as the first polymer, for example, heating in the heating step S20
  • the conditions can be the same as the conditions for heating the solution containing no crosslinking agent.
  • the content of the crosslinking agent in the solution is 0.0001 mol / L or more and 0.5000 mol / L or less, preferably 0.0005 mol / L or more and 0.1000 mol / L or less.
  • a network structure having an appropriate size is formed in the hydrogel structure, and the hydrogel structure has excellent mechanical strength.
  • the content of the cross-linking agent in the solution is 0.0005 mol / L or more and 0.1000 mol / L or less, the hydrogel structure has excellent mechanical strength and the network size becomes too small, so It can be avoided that the solvent cannot be contained in the gel structure.
  • the solution may further include other additives in addition to the first monomer, the second monomer, the polymerization initiator, and the crosslinking agent.
  • content of the additive in a solution will not be specifically limited if it is a range which does not reduce said effect.
  • the preparation step S10 and the heating step S20 in one pot.
  • the hydrogel structure can be manufactured by performing a plurality of steps in one container, and therefore the method for manufacturing the hydrogel structure becomes simpler.
  • the next operation is performed after completing the previous operation while changing the container as in the conventional manufacturing method. Since it is necessary, it is difficult to manufacture the hydrogel structure of the above embodiment in one pot.
  • the hydrogel structure can be manufactured in a desired shape and size easily and easily. Moreover, the hydrogel structure obtained by such a manufacturing method is excellent in mechanical characteristics.
  • Example 1 N-hydroxypropyl N-vinylformamide was produced.
  • 3.1 g of sodium hydride was prepared in a reaction vessel and washed with tetrahydrofuran (THF).
  • 130 mL of N, N-dimethylformamide (DMF) was added to the reaction vessel under a nitrogen atmosphere, and 9.2 g of N-vinylformamide was added dropwise to the reaction vessel at 0 ° C.
  • the reaction solution in the reaction vessel was stirred for 4 hours at room temperature, and then 18 g of 3-bromo-1-propanol was dropped into the reaction vessel at 0 ° C.
  • a crosslinking agent represented by the above formula (7) was produced.
  • 1.3 g of N-hydroxypropyl N-vinylformamide, 20 mL of triethylamine, and 90 mL of THF as a solvent were prepared in a reaction vessel.
  • 11.8 g of acryl chloride was added into the reaction vessel with a syringe at 0 ° C.
  • the reaction solution was allowed to stir for 1.5 hours, and an excess amount of water was added to the reaction vessel to stop the reaction.
  • the organic phase was dried with magnesium sulfate.
  • a crosslinking agent represented by the above formula (4-1) was produced.
  • AA crosslinking agent represented by the above formula (4-1) was produced.
  • 1.35 g of sodium hydride was prepared in a reaction vessel and washed with THF.
  • 15 mL of DMF was added to the reaction vessel under a nitrogen atmosphere, and 2.88 g of N-vinylacetamide (NVA) was added dropwise to the reaction vessel at 0 ° C.
  • N-vinylacetamide N-vinylacetamide
  • the reaction solution in the reaction vessel was heated to 50 ° C. and stirred for 6 hours, and 3.37 g of bis (4-chlorobutyl) ether was added dropwise to the reaction vessel at 0 ° C.
  • the reaction solution in the reaction vessel was heated again to 50 ° C.
  • triethylene glycol dimethacrylate (T0948, manufactured by Tokyo Chemical Industry Co., Ltd.) was prepared for the crosslinking agent (BB crosslinking agent) represented by the above formula (6).
  • Example 1 the hydrogel structure of Example 1 was manufactured using the raw material manufactured and prepared above.
  • DMSO dimethyl sulfoxide
  • NVF N-vinylformamide
  • EAc ethyl acrylate
  • AIBN polymerization initiator as azobisisobutyronitrile
  • AA crosslinking agent represented by formula (4-1) The cross-linking agent represented by the formula (6) as the cross-linking agent and the BB cross-linking agent, and the cross-linking agent represented by the formula (7) as the AB cross-linking agent have the contents shown in Table 1 in the reaction solution
  • the mixture was poured into a 20 mL screw tube and stirred.
  • a septum 23 pierced with syringes 21 and 22 is attached to a screw tube 24, and nitrogen (N 2 ) bubbling is performed on the reaction solution 25 for 1 minute as indicated by an arrow. Expelled oxygen in 24.
  • a container 30 is formed by combining two glass plates 31 and four silicon sheets 32, and an opening 30a having an opening size of 1 mm is formed in the formed container 30.
  • the reaction solution 25 bubbled with nitrogen (N 2 ) was poured with a syringe, and the remainder of the reaction solution 25 was returned to the screw tube 24.
  • the container 30 shown in FIG. 3 is configured so that two rectangular glass plates 31 are maintained in parallel with each other at an interval of 1 mm so that peripheral portions of the glass plates (however, four sides excluding the opening 30a) are maintained. In this case, the silicon sheet 32 is sandwiched between the two portions.
  • the container 30 containing the reaction solution 25 and the screw tube containing the remaining reaction solution 25 are placed in a thermostat set at 60 ° C. with the opening 30a on the upper side as shown in FIG. 24 was set and each reaction solution was reacted for 8 hours. Thereafter, it is visually confirmed that the reaction solution in the container 30 and the reaction solution in the screw tube 24 are gelled, and the hydrogel structure is sufficiently washed with water.
  • a hydrogel structure of Example 2 was produced by the same raw materials and production method as Example 1 except that divinyl adipate (A1188, manufactured by Tokyo Chemical Industry Co., Ltd.) was used.
  • NVF N-vinylformamide
  • EAc ethyl acrylate
  • MAc methyl acrylate
  • N-vinylacetamide N-vinylformamide
  • AIBN azobisisobutyronitrile
  • V-50 2,2′azobis (2-methylpropionamidine) dihydrochloride
  • N, N-5-oxa is used as a cross-linking agent without using an AA cross-linking agent, a BB cross-linking agent and an AB cross-linking agent.
  • Example 2 According to the same raw materials and production method as in Example 1, except that nonamethylene bis-bis-N-vinylacetamide (5ON-bisNVA) was used and the temperature of the thermostatic bath was 37 ° C. instead of 60 ° C. The hydrogel structure of Comparative Example 2 was produced.
  • nonamethylene bis-bis-N-vinylacetamide 5ON-bisNVA
  • Table 1 shows the types and contents of each component contained in the reaction solutions used in Examples 1 to 4 and Comparative Examples 1 and 2.
  • each manufactured hydrogel structure was cut out using a punching die, and as shown in FIG. 4, dimension a (distance between positions of chuck portions): 25 mm, dimension b: A test piece for a tensile test of a sheet of 6 mm, dimension c: 1 mm, and thickness 1 mm was prepared.
  • the test piece of the produced hydrogel structure was subjected to a mechanical test using EZ-SX (manufactured by Shimadzu Corporation).
  • the tensile speed is 2 mm / min when the maximum elongation is 0.5 or less, 5 mm / min when the maximum elongation is 0.5 to 2.0, and 2.0 to 5.0.
  • the breaking strain was calculated by the following formula (11). L is the distance between the gauge points (mm) at the time of breaking in the tensile test, and L0 is the original gauge distance (mm) of the test piece before the tensile test. Table 2 shows the results of breaking strength (MPa) and breaking strain.
  • Example 1 having the highest breaking strain
  • Comparative Example 2 having the lowest breaking strength were compared.
  • the produced hydrogel structure was swollen with water. Subsequently, the swollen hydrogel structure was immersed in 1 mol / L hydrochloric acid for 72 hours, and then the hydrogel structure was washed in 1 L of ion exchange water. Thereafter, the ion exchange water was changed three times every 12 hours, and the washing was repeated. Subsequently, 10 mg of the hydrogel structure dried after washing was added to 400 ⁇ L of water to prepare a sample solution. Then, an alcohol measurement assay (colorimetric) for determining the primary alcohol (STA-620, manufactured by Cell Biolabs) was added to the sample solution, and the difference in color of the sample solution was confirmed.
  • an alcohol measurement assay colorimetric for determining the primary alcohol (STA-620, manufactured by Cell Biolabs) was added to the sample solution, and the difference in color of the sample solution was confirmed.
  • the hydrogel structures of Examples 1 to 4 all have a larger breaking strain than the hydrogel structures of Comparative Examples 1 and 2, and have a certain breaking strength. It can be seen that the strength is maintained and the mechanical properties are excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A hydrogel structure 10 according to the present invention is characterized by containing a first polymer 1 and a second polymer 2 which is entangled with the first polymer, wherein the first polymer 1 is a first mesh structure which is formed by polymerizing and cross-linking a first monomer, the second polymer 2 is a second mesh structure which is formed by polymerizing and cross-linking a second monomer, the first monomer has a Q-value within a range of 0.001 to 0.199 and an e-value within a range of -8.60 to 0, and the second monomer has a Q-value within a range of 0.200 to 16.000 and an e-value within a range of 0.01 to 3.70. The hydrogel structure 10 according to the present invention has excellent mechanical properties.

Description

ハイドロゲル構造体およびその製造方法Hydrogel structure and manufacturing method thereof
 本発明は、ハイドロゲル構造体およびその製造方法に関する。 The present invention relates to a hydrogel structure and a manufacturing method thereof.
 ハイドロゲルは、複数のモノマーの重合および架橋によって形成される3次元ネットワーク構造を有し、その3次元ネットワーク構造の内部に水などの溶媒を含むものである。そして、モノマーや溶媒の種類に応じて、ハイドロゲルは様々な特性を示す。 Hydrogel has a three-dimensional network structure formed by polymerization and crosslinking of a plurality of monomers, and contains a solvent such as water inside the three-dimensional network structure. And according to the kind of monomer or solvent, hydrogel shows various characteristics.
 一般的に、ハイドロゲルは、優れた圧縮強度を有するものの、引張強度が低い。そのため、ハイドロゲルについて、引張強度などの機械的な強度を向上させることが求められている。 Generally, hydrogel has excellent compressive strength but low tensile strength. Therefore, hydrogels are required to improve mechanical strength such as tensile strength.
 例えば、特許文献1には、第1のモノマー成分を重合し架橋することにより第1の網目構造を形成させる工程と、第1の網目構造中に第2のモノマー成分を導入した後、第2のモノマー成分を重合することにより、第1の網目構造中にポリマーを形成させ、更に架橋することにより、第1の網目構造中に第2の網目構造を形成させる工程とを含む、相互侵入網目構造ハイドロゲルの製造方法が記載されている。特許文献1に記載のハイドロゲルでは、第1のモノマー成分および第2のモノマー成分がそれぞれ網目構造体を形成し、それらの網目構造体が互いに侵入している。 For example, Patent Document 1 discloses that a step of forming a first network structure by polymerizing and crosslinking a first monomer component, a second monomer component after introducing the second monomer component into the first network structure, Forming a polymer in the first network structure by polymerizing the monomer component, and further forming a second network structure in the first network structure by further crosslinking. A method for producing a structural hydrogel is described. In the hydrogel described in Patent Document 1, the first monomer component and the second monomer component each form a network structure, and these network structures penetrate each other.
 また、特許文献2には、架橋ポリマーで構成される網目構造に非架橋ポリマーが侵入し物理的に絡み付いたセミ相互侵入網目構造を有するゲルの製造方法が記載されている。特許文献2に記載のゲルでは、一方のポリマーが網目構造体を形成し、他方のポリマーが網目構造体に侵入している。 Patent Document 2 describes a method for producing a gel having a semi-interpenetrating network structure in which a non-crosslinked polymer invades and physically entangles into a network structure composed of a crosslinked polymer. In the gel described in Patent Document 2, one polymer forms a network structure, and the other polymer enters the network structure.
 このように、特許文献1および2に開示されるハイドロゲル構造体は、網目構造体に他の網目構造体またはポリマーが侵入した構造(以下、「相互侵入網目構造」ともいう。)を有するため、ゲルの機械的強度が増加する。 As described above, the hydrogel structures disclosed in Patent Documents 1 and 2 have a structure in which another network structure or polymer has entered the network structure (hereinafter also referred to as “interpenetrating network structure”). , The mechanical strength of the gel is increased.
 しかしながら、このような相互侵入網目構造を有するハイドロゲル構造体を製造する場合、使用するモノマー、重合開始剤、架橋剤などの反応性を十分に考慮していなかった。そのため、一方の網目構造体を合成した後に他方の網目構造体を侵入させて合成する、または網目構造体を合成した後にポリマーを網目構造体に侵入させるなど、先の作業を完了してから次の作業を行う必要があった。 However, when producing a hydrogel structure having such an interpenetrating network structure, the reactivity of the monomer, polymerization initiator, crosslinking agent, etc. used has not been fully considered. Therefore, after synthesizing one network structure and then injecting the other network structure, or synthesizing the network structure and then injecting the polymer into the network structure, the next work is completed. It was necessary to do the work.
 具体的には、はじめの網目構造体を合成した後、未反応のモノマーを除去するために、何度も溶媒を交換したり、次の工程で用いる溶媒で網目構造体を浸漬させたりする作業を行っていた。さらに、この作業を行っているときにもゲル化が進行するため、ハイドロゲル構造体の最終生成物を設計通りの形状や大きさに製造することは困難であった。 Specifically, after synthesizing the first network structure, in order to remove unreacted monomers, the solvent is changed many times, or the network structure is immersed in the solvent used in the next step. Had gone. Furthermore, since gelation proceeds even during this operation, it was difficult to produce the final product of the hydrogel structure in the shape and size as designed.
 このような観点から、上記のような煩雑な作業を行わずにハイドロゲル構造体を製造できる簡便な方法が求められている。しかしながら、任意に選択したモノマーを用いて一度に合成を行うと、機械的強度の低いハイドロゲル構造体が形成されることがある。このようなハイドロゲル構造体は機械的に脆いので、簡便な製造方法を用いた場合であっても、機械的強度の高いハイドロゲル構造体を製造できることが望まれている。 From such a viewpoint, there is a demand for a simple method capable of producing a hydrogel structure without performing the above-described complicated work. However, when synthesis is performed at once using an arbitrarily selected monomer, a hydrogel structure having low mechanical strength may be formed. Since such a hydrogel structure is mechanically fragile, it is desired that a hydrogel structure having high mechanical strength can be produced even when a simple production method is used.
特許第4381297号公報Japanese Patent No. 438297 特許第5059407号公報Japanese Patent No. 5059407
 本発明の目的は、機械的特性に優れるハイドロゲル構造体、および、かかるハイドロゲル構造体を簡便に製造できるハイドロゲル構造体の製造方法を提供することである。 An object of the present invention is to provide a hydrogel structure excellent in mechanical properties and a method for producing a hydrogel structure capable of easily producing such a hydrogel structure.
 本発明の要旨構成は、以下のとおりである。
[1]第1ポリマー、および前記第1ポリマーと絡み合う第2ポリマーを含有するハイドロゲル構造体であって、前記第1ポリマーが、第1モノマーを重合および架橋させてなる第1網目構造体であり、前記第2ポリマーが、第2モノマーを重合および架橋させてなる第2網目構造体であり、前記第1モノマーは、Q値が0.001以上0.199以下の範囲内、およびe値が-8.60以上0以下の範囲内であり、前記第2モノマーは、Q値が0.200以上16.000以下の範囲内、およびe値が0.01以上3.70以下の範囲内であることを特徴とするハイドロゲル構造体。
[2]前記第1モノマーは、Q値が0.020以上0.170以下の範囲内、およびe値が-1.70以上-0.80以下の範囲内であり、前記第2モノマーは、Q値が0.320以上1.000以下の範囲内、およびe値が0.50以上0.90以下の範囲内である上記[1]に記載のハイドロゲル構造体。
[3]第1ポリマー、および前記第1ポリマーと絡み合う第2ポリマーを含有するハイドロゲル構造体であって、前記第1ポリマーが、第1モノマーを重合および架橋させてなる第1網目構造体であり、前記第2ポリマーが、第2モノマーを重合および架橋させてなる第2網目構造体であり、前記第1モノマーが、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン、N-ビニルカプロラクタム、N-メチル-N-ビニルアセトアミド、N-アリルステアルアミド、N,N-メチルビニルトルエンスルホン酸アミド、プロピオン酸ビニル、1-ビニルイミダゾール、酪酸ビニル、酢酸ビニル、けい皮酸ビニル、安息香酸ビニル、ビニルイソシアネート、ビニルエチルエーテル、およびビニルオクタデシルエーテルの群から選択される1つまたは2つ以上の化合物であるハイドロゲル構造体。
[4]前記第2モノマーが、エチルアクリレート、アクリル酸ブチル、アクリル酸メチル、2-エチルヘキシルアクリレート、α-クロロアクリル酸メチル、アクリルアミド、α-アセトキシアクリル酸エチル、α-シアノアクリル酸メチル、2-クロロエチルアクリレート、メタクリロニトリル、メタクリル酸、ヘキサフルオロブタジエン、イタコン酸ジメチルおよびα-ブロモアクリル酸の群から選択される1つまたは2つ以上の化合物である上記[3]に記載のハイドロゲル構造体。
[5]前記第1網目構造体と前記第2網目構造体との間に、前記第1網目構造体と前記第2網目構造体とを化学的または物理的に結合させる架橋部が存在する上記[1]~[4]のいずれか1項に記載のハイドロゲル構造体。
[6]前記架橋部が、前記第1モノマーから水素原子の1つを除いた第1官能基、および前記第2モノマーから水素原子の1つを除いた第2官能基の少なくとも一方の官能基を複数有する架橋剤により形成されてなる上記[5]に記載のハイドロゲル構造体。
[7]前記架橋部が、第3官能基および第4官能基の少なくとも一方の官能基を複数有する架橋剤により形成されてなり、前記第3官能基が下記式(1-1)または式(1-2)で表される構造であり、前記第4官能基が下記式(2)で表される構造である上記[5]に記載のハイドロゲル構造体。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
(式(1-1)中、R1は、炭素数1~5のアルキル基または水素を示し、R2は、メチレン基を示し、*は、結合手を示す。式(1-2)中、R5は、メチレン基を示し、*は、結合手を示す。式(2)中、R3は、メチレン基を示し、R4は、炭素数1~2のアルキル基または水素を示し、*は、結合手を示す。)
[8]上記[1]~[7]いずれか1項に記載のハイドロゲル構造体の製造方法であって、前記第1モノマーと、前記第2モノマーと、前記第1モノマーおよび前記第2モノマーを重合および架橋させる重合開始剤とを含む溶液を調製する調製工程と、前記溶液を加熱してゲル化する加熱工程とを有することを特徴とするハイドロゲル構造体の製造方法。
[9]前記調製工程で調製する前記溶液は、前記第1モノマーから水素原子の1つを除いた第1官能基、および前記第2モノマーから水素原子の1つを除いた第2官能基の少なくとも一方の官能基を複数有する架橋剤をさらに含む上記[8]に記載のハイドロゲル構造体の製造方法。
[10]前記調製工程で調製する前記溶液は、第3官能基および第4官能基の少なくとも一方の官能基を複数有する架橋剤をさらに含み、前記第3官能基が下記式(1-1)または式(1-2)で表される構造であり、前記第4官能基が下記式(2)で表される構造である上記[8]に記載のハイドロゲル構造体の製造方法。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(式(1-1)中、R1は、炭素数1~5のアルキル基または水素を示し、R2は、メチレン基を示し、*は、結合手を示す。式(1-2)中、R5は、メチレン基を示し、*は、結合手を示す。式(2)中、R3は、メチレン基を示し、R4は、炭素数1~2のアルキル基または水素を示し、*は、結合手を示す。)
[11]前記調製工程および前記加熱工程をワンポットで行う[8]~[10]のいずれか1項に記載のハイドロゲル構造体の製造方法。
The gist configuration of the present invention is as follows.
[1] A hydrogel structure containing a first polymer and a second polymer intertwined with the first polymer, wherein the first polymer is a first network structure obtained by polymerizing and crosslinking a first monomer. The second polymer is a second network structure obtained by polymerizing and crosslinking the second monomer, and the first monomer has a Q value in the range of 0.001 to 0.199, and an e value. Is in the range of −8.60 to 0, and the second monomer has a Q value in the range of 0.200 to 16.000 and an e value in the range of 0.01 to 3.70. The hydrogel structure characterized by being.
[2] The first monomer has a Q value in the range of 0.020 or more and 0.170 or less, and an e value in the range of −1.70 or more and −0.80 or less. The hydrogel structure according to the above [1], wherein the Q value is in the range of 0.320 to 1.000 and the e value is in the range of 0.50 to 0.90.
[3] A hydrogel structure containing a first polymer and a second polymer intertwined with the first polymer, wherein the first polymer is a first network structure obtained by polymerizing and crosslinking a first monomer. The second polymer is a second network structure obtained by polymerizing and crosslinking the second monomer, and the first monomer is N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone, N-vinyl. Caprolactam, N-methyl-N-vinylacetamide, N-allyl stearamide, N, N-methylvinyltoluenesulfonic acid amide, vinyl propionate, 1-vinylimidazole, vinyl butyrate, vinyl acetate, vinyl cinnamate, benzoic acid Group of vinyl acid, vinyl isocyanate, vinyl ethyl ether, and vinyl octadecyl ether One or more of the hydrogel structure is a compound are al selected.
[4] The second monomer is ethyl acrylate, butyl acrylate, methyl acrylate, 2-ethylhexyl acrylate, methyl α-chloroacrylate, acrylamide, ethyl α-acetoxyacrylate, methyl α-cyanoacrylate, 2- The hydrogel structure according to the above [3], which is one or more compounds selected from the group consisting of chloroethyl acrylate, methacrylonitrile, methacrylic acid, hexafluorobutadiene, dimethyl itaconate and α-bromoacrylic acid body.
[5] The above-described structure in which a bridging portion for chemically or physically bonding the first network structure and the second network structure exists between the first network structure and the second network structure. [1] The hydrogel structure according to any one of [4].
[6] At least one functional group of the first functional group obtained by removing one hydrogen atom from the first monomer and the second functional group obtained by removing one hydrogen atom from the second monomer. The hydrogel structure according to the above [5], which is formed by a cross-linking agent having a plurality of
[7] The cross-linked part is formed of a cross-linking agent having a plurality of functional groups of at least one of the third functional group and the fourth functional group, and the third functional group is represented by the following formula (1-1) or formula ( 1-2. The hydrogel structure according to [5] above, wherein the fourth functional group is a structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
(In Formula (1-1), R1 represents an alkyl group having 1 to 5 carbon atoms or hydrogen, R2 represents a methylene group, and * represents a bond. In Formula (1-2), R5 Represents a methylene group, * represents a bond, R3 represents a methylene group, R4 represents an alkyl group having 1 to 2 carbon atoms or hydrogen, and * represents a bond. Is shown.)
[8] The method for producing a hydrogel structure according to any one of [1] to [7] above, wherein the first monomer, the second monomer, the first monomer, and the second monomer A method for producing a hydrogel structure, comprising: a preparation step of preparing a solution containing a polymerization initiator that polymerizes and crosslinks the solution, and a heating step of heating and gelling the solution.
[9] The solution prepared in the preparation step includes a first functional group obtained by removing one hydrogen atom from the first monomer, and a second functional group obtained by removing one hydrogen atom from the second monomer. The method for producing a hydrogel structure according to the above [8], further comprising a crosslinking agent having a plurality of at least one functional group.
[10] The solution prepared in the preparation step further includes a crosslinking agent having a plurality of functional groups of at least one of a third functional group and a fourth functional group, wherein the third functional group is represented by the following formula (1-1): Alternatively, the method for producing a hydrogel structure according to the above [8], wherein the structure is represented by the formula (1-2), and the fourth functional group is a structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(In Formula (1-1), R1 represents an alkyl group having 1 to 5 carbon atoms or hydrogen, R2 represents a methylene group, and * represents a bond. In Formula (1-2), R5 Represents a methylene group, * represents a bond, R3 represents a methylene group, R4 represents an alkyl group having 1 to 2 carbon atoms or hydrogen, and * represents a bond. Is shown.)
[11] The method for producing a hydrogel structure according to any one of [8] to [10], wherein the preparation step and the heating step are performed in one pot.
 本発明によれば、機械的特性に優れるハイドロゲル構造体、および、かかるハイドロゲル構造体を簡便に製造できるハイドロゲル構造体の製造方法の提供が可能になる。 According to the present invention, it is possible to provide a hydrogel structure excellent in mechanical properties and a method for producing a hydrogel structure capable of easily producing such a hydrogel structure.
本発明に従う一の実施形態のハイドロゲル構造体を示す概略図である。It is the schematic which shows the hydrogel structure of one Embodiment according to this invention. ハイドロゲル構造体を製造するのに用いる反応溶液を窒素バブリングしている状態を示す図である。It is a figure which shows the state which is carrying out the nitrogen bubbling of the reaction solution used for manufacturing a hydrogel structure. 窒素バブリングした後の反応溶液を入れた容器の概略を示す斜視図である。It is a perspective view which shows the outline of the container which put the reaction solution after nitrogen bubbling. ハイドロゲル構造体から抜き型を用いてくり抜いて作製した引張試験用の試験片の概略を示す平面図である。It is a top view which shows the outline of the test piece for a tensile test produced by punching out from the hydrogel structure using the punching die.
 以下、本発明を実施形態に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments.
 本発明者らは、鋭意研究を重ねた結果、ハイドロゲル構造体に用いるモノマーや重合開始剤などの原料の反応性を考慮し、各原料の物性について所定の関係を満たすように選択した原料を用いる場合、簡便な製造方法でも、優れた機械的特性、特に高破断強度および高破を有するハイドロゲル構造体が得られることを見出し、かかる知見に基づき本発明を完成させるに至った。 As a result of extensive research, the present inventors have considered the reactivity of raw materials such as monomers and polymerization initiators used in the hydrogel structure, and selected raw materials that satisfy a predetermined relationship with respect to the physical properties of each raw material. When used, it has been found that a hydrogel structure having excellent mechanical properties, particularly high breaking strength and high breaking can be obtained even with a simple production method, and the present invention has been completed based on such knowledge.
 本実施形態のハイドロゲル構造体は、第1ポリマー、および前記第1ポリマーと絡み合う第2ポリマーを含有し、前記第1ポリマーが、第1モノマーを重合および架橋させてなる第1網目構造体であり、前記第2ポリマーが、第2モノマーを重合および架橋させてなる第2網目構造体であり、前記第1モノマーは、Q値が0.001以上0.199以下の範囲内、およびe値が-8.60以上0以下の範囲内であり、前記第2モノマーは、Q値が0.200以上16.000以下の範囲内、およびe値が0.01以上3.70以下の範囲内である。 The hydrogel structure of this embodiment includes a first polymer and a second polymer intertwined with the first polymer, and the first polymer is a first network structure formed by polymerizing and crosslinking a first monomer. The second polymer is a second network structure obtained by polymerizing and crosslinking the second monomer, and the first monomer has a Q value in the range of 0.001 to 0.199, and an e value. Is in the range of −8.60 to 0, and the second monomer has a Q value in the range of 0.200 to 16.000 and an e value in the range of 0.01 to 3.70. It is.
 図1は、本実施形態のハイドロゲル構造体の一例を示す概略図である。なお、図1では、ハイドロゲル構造体を構成する、第1ポリマー1と第2ポリマー2と架橋部3とを視覚的に容易に区別できるようにするため、説明の便宜上、第1ポリマー1を白抜き線、第2ポリマー2を黒塗り線、そして、架橋部3を白抜き線にハッチングしたもので示している。 FIG. 1 is a schematic view showing an example of the hydrogel structure of the present embodiment. In FIG. 1, in order to make it easy to visually distinguish the first polymer 1, the second polymer 2, and the cross-linking portion 3 constituting the hydrogel structure, the first polymer 1 is shown for convenience of explanation. The white line, the second polymer 2 is indicated by a black line, and the bridge portion 3 is indicated by a hatched line.
 図1に示すように、ハイドロゲル構造体10は、第1ポリマー1および第2ポリマー2を含有する。第1ポリマー1と第2ポリマー2とは、互いに絡み合い、複数部分で部分的に結合している。第1ポリマー1が、第1モノマーを重合および架橋させてなる第1網目構造体であり、第2ポリマー2が、第2モノマーを重合および架橋させてなる第2網目構造体である。 As shown in FIG. 1, the hydrogel structure 10 includes a first polymer 1 and a second polymer 2. The first polymer 1 and the second polymer 2 are entangled with each other and partially bonded at a plurality of portions. The first polymer 1 is a first network structure obtained by polymerizing and crosslinking a first monomer, and the second polymer 2 is a second network structure obtained by polymerizing and crosslinking a second monomer.
 第1モノマーは、Q値が0.001以上0.199以下の範囲内であり、e値が-8.60以上0以下の範囲内である。また、第2モノマーは、Q値が0.200以上16.000以下の範囲内であり、e値が0.01以上3.70以下の範囲内である。第1モノマーおよび第2モノマーのQ値とe値とが上記の範囲内であると、第1ポリマー1と第2ポリマー2とが互いに部分的に結合するため、ハイドロゲル構造体10における破断強度や破断歪みなどの機械的特性を向上させることができる。一方で、第1モノマー1および第2モノマー2のQ値とe値とが上記の範囲外であると、第1ポリマー1と第2ポリマー2とは結合しないので、得られるハイドロゲル構造体の機械的特性を十分に向上させることはできない。 The first monomer has a Q value in the range of 0.001 to 0.199 and an e value in the range of −8.60 to 0. The second monomer has a Q value in the range of 0.200 to 16.000 and an e value in the range of 0.01 to 3.70. When the Q value and e value of the first monomer and the second monomer are within the above ranges, the first polymer 1 and the second polymer 2 are partially bonded to each other, and therefore the breaking strength in the hydrogel structure 10 And mechanical properties such as breaking strain can be improved. On the other hand, if the Q value and e value of the first monomer 1 and the second monomer 2 are out of the above ranges, the first polymer 1 and the second polymer 2 do not bind to each other. The mechanical properties cannot be improved sufficiently.
 また、第1モノマーは、好ましくはQ値が0.020以上0.180以下およびe値が-1.80以上-0.70以下、より好ましくはQ値が0.020以上0.170以下およびe値が-1.70以上-0.80以下の範囲内である。また、第2モノマーは、好ましくはQ値が0.230以上3.070以下およびe値が0.30以上1.28以下、より好ましくはQ値が0.320以上1.000以下およびe値が0.50以上0.90以下の範囲内である。第1モノマーおよび第2モノマーのQ値とe値とが上記の範囲内であると、上記の効果がさらに向上する。 The first monomer preferably has a Q value of 0.020 to 0.180 and an e value of −1.80 to −0.70, more preferably a Q value of 0.020 to 0.170 and The e value is in the range of −1.70 or more and −0.80 or less. The second monomer preferably has a Q value of 0.230 to 3.070 and an e value of 0.30 to 1.28, more preferably a Q value of 0.320 to 1.000 and an e value. Is in the range of 0.50 or more and 0.90 or less. When the Q value and e value of the first monomer and the second monomer are within the above ranges, the above effects are further improved.
 ここで、モノマーのQ値とは、ラジカル重合性モノマーの2重結合とその置換基との共役の程度を表す指標である。また、モノマーのe値とは、ラジカル重合性モノマーの2重結合の電子密度の指標である。スチレンを基準(Q値=1.0、e値=-0.8)として、様々なモノマーについてのQ値およびe値が実験的に求められている。 Here, the Q value of the monomer is an index representing the degree of conjugation between the double bond of the radical polymerizable monomer and its substituent. The e value of the monomer is an indicator of the electron density of the double bond of the radical polymerizable monomer. Based on styrene (Q value = 1.0, e value = −0.8), the Q value and e value for various monomers have been experimentally determined.
 代表的なモノマーのQ値およびe値は、J.Brandrup,E.H.Immergut,E.A.Grulke著「ポリマーハンドブック 第3刷(Polymer Handbook Fourth Edition)」(John Wiley & Sons Inc.、1998)などに記載され、これらの値を参照してもよいし、以下の方法によって算出してもよい。 Q and e values of typical monomers are Brandrup, E .; H. Immergut, E .; A. It is described in Grulke's “Polymer Handbook Fourth Edition” (John Wiley & Sons Inc., 1998), and these values may be referred to or calculated by the following method. .
 モノマーM1のQ1値およびe1値を算出する方法として、まず、Q1値およびe1値が不明のモノマーM1と、Q2値およびe2値が既知のモノマーM2とを各種モル比F(=[M1]/[M2])で重合する。このとき、ガスクロマトグラフィーなどの測定方法から、重合初期における各モノマーの消費量の比f(=d[M1]/d[M2])を算出する。ここで、Fおよびfは,下記式(A)の関係を満たすため、F{(f-1)/f}を,{F(2/f)}に対してプロットして直線近似することによって得られるグラフについて、その傾きがr1であり、縦軸切片が-r2である。 As a method for calculating the Q1 value and the e1 value of the monomer M1, first, a monomer M1 whose Q1 value and e1 value are unknown and a monomer M2 whose Q2 value and e2 value are known are mixed in various molar ratios F (= [M1] / [M2]). At this time, the ratio f (= d [M1] / d [M2]) of the consumption amount of each monomer in the initial stage of polymerization is calculated from a measurement method such as gas chromatography. Here, since F and f satisfy the relationship of the following formula (A), F {(f−1) / f} is plotted against {F (2 / f)} and linearly approximated. For the resulting graph, the slope is r1 and the vertical axis intercept is -r2.
 F{(f-1)/f}=r1{F(2/f)}-r2          式(A) F {(f-1) / f} = r1 {F (2 / f)}-r2 equation (A)
 そして、T. AlfreyおよびC.C.Priceによって提案された下記式(B)および式(C)に対して、上記の方法で求めたr1、r2、およびモノマーM2のQ2値およびe2値を代入することによって、モノマーM1のQ1値およびe1値を算出することができる。 And T. Alfredy and C.I. C. By substituting the Q2 value and the e2 value of r1, r2, and the monomer M2 obtained by the above method into the following formulas (B) and (C) proposed by Price, the Q1 value of the monomer M1 and The e1 value can be calculated.
 r1=(Q1/Q2)exp[-e1(e1-e2)]         式(B)
 r2=(Q2/Q1)exp[-e2(e2-e1)]         式(C)
r1 = (Q1 / Q2) exp [-e1 (e1-e2)] Formula (B)
r2 = (Q2 / Q1) exp [-e2 (e2-e1)] Formula (C)
 上記のQ値およびe値を満たす第1モノマーとしては、例えば、N-ビニルホルムアミド(NVF)(Q=0.08~0.14,e=-1.7~-1.6)、N-ビニルアセトアミド(NVA)(Q=0.16,e=-1.57)、N-ビニルピロリドン、N-ビニルカプロラクタム(NVCAP)(Q=0.14,e=-1.18)、N-メチル-N-ビニルアセトアミド(MNVA)、N-アリルステアルアミド、N,N-メチルビニルトルエンスルホン酸アミド、プロピオン酸ビニル、1-ビニルイミダゾール、酪酸ビニル、酢酸ビニル(VACe)(Q=0.026,e=-0.88)、けい皮酸ビニル(VCinn)(Q=0.18,e=-0.76)、安息香酸ビニル、ビニルイソシアネート、ビニルエチルエーテル、およびビニルオクタデシルエーテルの群から選択される1つまたは2つ以上の化合物である。上記のQ値およびe値の観点から、第1モノマーは、好ましくはNVF、NVA、VACe、N-ビニルピロリドン、NVCAP、MNVA、安息香酸ビニル、およびビニルイソシアネートの群から選択される1つまたは2つ以上の化合物であり、より好ましくはNVF、NVA、VACe、NVCAP、およびMNVAの群から選択される1つまたは2つ以上の化合物である。第1モノマーは、1種のモノマーを単独で用いてもよいし、2種以上のモノマーを併用してもよい。また、NVFのQ値およびe値は、ビニルカプロラクタム(炭素7個)とビニルピロリドン(炭素5個)のQ値およびe値の相対的な値に基づいて推定した値である。 Examples of the first monomer satisfying the above Q value and e value include N-vinylformamide (NVF) (Q = 0.08 to 0.14, e = −1.7 to −1.6), N— Vinylacetamide (NVA) (Q = 0.16, e = −1.57), N-vinylpyrrolidone, N-vinylcaprolactam (NVCAP) (Q = 0.14, e = −1.18), N-methyl -N-vinylacetamide (MNVA), N-allyl stearamide, N, N-methylvinyltoluenesulfonic acid amide, vinyl propionate, 1-vinylimidazole, vinyl butyrate, vinyl acetate (VACe) (Q = 0.026) E = −0.88), vinyl cinnamate (VCinn) (Q = 0.18, e = −0.76), vinyl benzoate, vinyl isocyanate, vinyl ethyl ether, and vinyl octade One or more compounds selected from the group of sil ethers. In view of the above Q and e values, the first monomer is preferably one or two selected from the group of NVF, NVA, VACe, N-vinyl pyrrolidone, NVCAP, MNVA, vinyl benzoate, and vinyl isocyanate. One or more compounds, more preferably one or more compounds selected from the group of NVF, NVA, VACe, NVCAP, and MNVA. As the first monomer, one type of monomer may be used alone, or two or more types of monomers may be used in combination. The Q value and e value of NVF are values estimated based on the relative values of the Q value and e value of vinyl caprolactam (7 carbons) and vinyl pyrrolidone (5 carbons).
 上記のQ値およびe値を満たす第2モノマーとしては、アクリレート系モノマーが挙げられ、例えば、エチルアクリレート(EAc)(Q=0.41,e=0.55)、アクリル酸ブチル(BAc)(Q=0.38,e=0.85)、アクリル酸メチル(MAc)(Q=0.45,e=0.64)、2-エチルヘキシルアクリレート、α-クロロアクリル酸メチル、アクリルアミド、α-アセトキシアクリル酸エチル(Q=0.52,e=0.77)、α-シアノアクリル酸メチル、2-クロロエチルアクリレート、メタクリロニトリル(Q=0.86,e=0.68)、メタクリル酸(Q=0.98,e=0.62)、ヘキサフルオロブタジエン(Q=0.82,e=0.58)、イタコン酸ジメチル(Q=0.73,e=0.57)およびα-ブロモアクリル酸の群から選択される1つまたは2つ以上の化合物である。上記のQ値およびe値の観点から、第2モノマーは、好ましくはEAc、BAc、MAc、α-クロロアクリル酸メチル、アクリルアミド、α-アセトキシアクリル酸エチル、および2-クロロエチルアクリレートの群から選択される1つまたは2つ以上の化合物であり、より好ましくはEAc、BAc、MAc、およびα-アセトキシアクリル酸エチルの群から選択される1つまたは2つ以上の化合物である。第2モノマーは、1種のモノマーを単独で用いてもよいし、2種以上のモノマーを併用してもよい。 Examples of the second monomer that satisfies the above Q value and e value include acrylate monomers, such as ethyl acrylate (EAc) (Q = 0.41, e = 0.55), butyl acrylate (BAc) ( Q = 0.38, e = 0.85), methyl acrylate (MAc) (Q = 0.45, e = 0.64), 2-ethylhexyl acrylate, methyl α-chloroacrylate, acrylamide, α-acetoxy Ethyl acrylate (Q = 0.52, e = 0.77), methyl α-cyanoacrylate, 2-chloroethyl acrylate, methacrylonitrile (Q = 0.86, e = 0.68), methacrylic acid ( Q = 0.98, e = 0.62), hexafluorobutadiene (Q = 0.82, e = 0.58), dimethyl itaconate (Q = 0.73, e = 0.57) and α-bromo Acrylic acid Is one or more compounds selected from the group. In view of the above Q and e values, the second monomer is preferably selected from the group of EAc, BAc, MAc, methyl α-chloroacrylate, acrylamide, ethyl α-acetoxyacrylate, and 2-chloroethyl acrylate. One or more compounds selected from the group consisting of EAc, BAc, MAc, and ethyl α-acetoxyacrylate are more preferable. As the second monomer, one type of monomer may be used alone, or two or more types of monomers may be used in combination.
 ここで、第1網目構造体の重合度および第2網目構造体の重合度が増加するにつれて、ハイドロゲル構造体10の機械的特性は向上する。また、第1網目構造体の架橋度および第2網目構造体の架橋度が増加するにつれて、第1網目構造体の網目密度および第2網目構造体の網目密度が高くなるので、ハイドロゲル構造体10の機械的強度は増加する一方、ハイドロゲル構造体10の膨潤度は低下する。そのため、ハイドロゲル構造体10に求められる特性に応じて、第1網目構造体および第2網目構造体の重合度や架橋度は適宜選択される。 Here, as the polymerization degree of the first network structure and the polymerization degree of the second network structure increase, the mechanical properties of the hydrogel structure 10 are improved. Further, as the degree of cross-linking of the first network structure and the degree of cross-linking of the second network structure increase, the network density of the first network structure and the network density of the second network structure increase, so that the hydrogel structure While the mechanical strength of 10 increases, the degree of swelling of the hydrogel structure 10 decreases. Therefore, the degree of polymerization and the degree of crosslinking of the first network structure and the second network structure are appropriately selected according to the characteristics required for the hydrogel structure 10.
 また、第1網目構造体と第2網目構造体との間には、第1網目構造体と第2網目構造体とを化学的または物理的に結合させる架橋部3が存在してもよい。後述する架橋剤を用いてハイドロゲル構造体10を製造する場合、複数の架橋部3がハイドロゲル構造体10中に形成され、複数の架橋部3が第1網目構造体と第2網目構造体との間に介在する。この場合、第1網目構造体と第2網目構造体とは、上記の複数の結合部分に加えて、これら複数の架橋部3を介して、互いに結合する。ここで、化学的な結合とは、炭素-炭素結合、エーテル結合、エステル結合、アミド結合などの共有結合やイオン結合、水素結合などの分子間力による相互作用等であり、物理的な結合とは、似た組成の分子構造、化合物などの集合体や分子鎖同士の絡み合いなどである。 Further, a bridging portion 3 for chemically or physically bonding the first network structure and the second network structure may exist between the first network structure and the second network structure. When manufacturing the hydrogel structure 10 using the crosslinking agent mentioned later, the some bridge | crosslinking part 3 is formed in the hydrogel structure 10, and several bridge | crosslinking parts 3 are the 1st network structure and the 2nd network structure. It intervenes between. In this case, the first network structure and the second network structure are bonded to each other via the plurality of bridging portions 3 in addition to the plurality of bonding portions. Here, the chemical bond is a covalent bond such as a carbon-carbon bond, an ether bond, an ester bond or an amide bond, or an interaction due to an intermolecular force such as an ionic bond or a hydrogen bond. Are molecular structures of similar composition, aggregates of compounds, and entanglement of molecular chains.
 架橋部3が増加するにつれて、第1網目構造体と第2網目構造体との結合部分が多くなるので、ハイドロゲル構造体10の機械的特性は向上する一方、ハイドロゲル構造体10の膨潤度は低下する。そのため、ハイドロゲル構造体10に求められる特性に応じて、ハイドロゲル構造体10に含まれる架橋部3の数が適宜選択される。例えば、ハイドロゲル構造体10中の架橋部3の数は、ハイドロゲル構造体10に含まれる架橋部3の質量モル濃度で間接的に算出できる。 As the cross-linked portion 3 increases, the number of joints between the first network structure and the second network structure increases, so that the mechanical properties of the hydrogel structure 10 are improved, while the degree of swelling of the hydrogel structure 10 is increased. Will decline. Therefore, the number of cross-linking parts 3 included in the hydrogel structure 10 is appropriately selected according to the characteristics required for the hydrogel structure 10. For example, the number of cross-linking portions 3 in the hydrogel structure 10 can be indirectly calculated by the molar mass of the cross-linking portions 3 included in the hydrogel structure 10.
 架橋部3は、第1モノマーから水素原子の1つを除いた第1官能基、および第2モノマーから水素原子の1つを除いた第2官能基の少なくとも一方の官能基を複数有する架橋剤により形成されてなる、または後述する第3官能基および第4官能基の少なくとも一方の官能基を複数有する架橋剤により形成されてなる。第1官能基、第2官能基、第3官能基、第4官能基は、それぞれシス型とトランス型とがある。特に、架橋部3は、第1モノマーや第2モノマーとそれぞれ反応速度が同じくらいである架橋剤によって形成されることが好ましく、そのため、架橋剤の構造が、第1モノマーおよび第2モノマーのそれぞれが結合している構造と似ているものを選択することが好ましい。 The cross-linking part 3 includes a plurality of cross-linking agents having at least one functional group of a first functional group obtained by removing one hydrogen atom from the first monomer and a second functional group obtained by removing one hydrogen atom from the second monomer. Or a cross-linking agent having a plurality of functional groups of at least one of a third functional group and a fourth functional group described later. The first functional group, the second functional group, the third functional group, and the fourth functional group each have a cis type and a trans type. In particular, the cross-linking part 3 is preferably formed by a cross-linking agent having the same reaction rate as that of the first monomer or the second monomer. Therefore, the cross-linking agent has a structure of each of the first monomer and the second monomer. It is preferable to select a structure similar to the structure in which is bonded.
 架橋剤としては、例えば、重合性置換基である第1官能基および第2官能基の少なくとも一方の官能基を2つ有する鎖状のモノマー、または重合性置換基である第3官能基および第4官能基の少なくとも一方の官能基を2つ有する鎖状のモノマーである。このような鎖状のモノマーは、その両末端にこれら重合性置換基を1つずつ有する。架橋剤の種類は、第1ポリマー、第2ポリマー、および重合開始剤の種類に応じて、適宜選択される。 Examples of the cross-linking agent include a chain monomer having two functional groups of at least one of a first functional group and a second functional group that are polymerizable substituents, or a third functional group and a second functional group that are polymerizable substituents. It is a chain monomer having two functional groups of at least one of four functional groups. Such a chain monomer has one of these polymerizable substituents at both ends. The type of the crosslinking agent is appropriately selected according to the types of the first polymer, the second polymer, and the polymerization initiator.
 以下では、両末端に第3官能基を1つずつ有する架橋剤をAA架橋剤、両末端に第4官能基を1つずつ有する架橋剤をBB架橋剤、一方の末端に第3官能基を1つ有すると共に他方の末端に第4官能基を1つ有する架橋剤をAB架橋剤という。これらの架橋剤うち、架橋部3を容易に形成できる観点から、架橋剤はAB架橋剤であることが好ましい。 In the following, the cross-linking agent having one third functional group at each end is an AA cross-linking agent, the cross-linking agent having one fourth functional group at each end is a BB cross-linking agent, and the third functional group is at one end. A cross-linking agent having one and one fourth functional group at the other end is referred to as an AB cross-linking agent. Among these cross-linking agents, the cross-linking agent is preferably an AB cross-linking agent from the viewpoint of easily forming the cross-linking part 3.
 第3官能基は、例えばビニル基に結合している構造が第1モノマーに結合している構造と似ているものとして、より具体的には下記式(1-1)または式(1-2)で表される構造である。 As for the third functional group, for example, the structure bonded to the vinyl group is similar to the structure bonded to the first monomer, and more specifically, the following formula (1-1) or formula (1-2) ).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式(1-1)中、R1は、炭素数1~5のアルキル基または水素を示し、R2は、メチレン基を示し、*は、結合手を示す。式(1-2)中、R5は、メチレン基を示し、*は、結合手を示す。式(2)中、R3は、メチレン基を示し、R4は、炭素数1~2のアルキル基または水素を示し、*は、結合手を示す。) (In Formula (1-1), R1 represents an alkyl group having 1 to 5 carbon atoms or hydrogen, R2 represents a methylene group, and * represents a bond. In Formula (1-2), R5 Represents a methylene group, * represents a bond, R3 represents a methylene group, R4 represents an alkyl group having 1 to 2 carbon atoms or hydrogen, and * represents a bond. Is shown.)
 また、第4官能基は、例えばビニル基に結合している構造が第2モノマーに結合している構造と似ているものとして、より具体的には下記式(2)で表される構造である。 The fourth functional group is, for example, a structure represented by the following formula (2), assuming that the structure bonded to the vinyl group is similar to the structure bonded to the second monomer. is there.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(2)中、R3は、メチレン基を示し、R4は、炭素数1~2のアルキル基または水素を示し、*は、結合手を示す。 In the formula (2), R3 represents a methylene group, R4 represents an alkyl group having 1 to 2 carbon atoms or hydrogen, and * represents a bond.
 式(1―1)、式(1-2)および式(2)の*は、例えば鎖状の有機化合物基の両末端にそれぞれ結合している。鎖状の有機化合物基は、直鎖状の炭化水素基でもよいし、一部が分岐している鎖状の炭化水素基でもよい。また、有機化合物基は、ヒドロキシ基やエーテル結合などの官能基を有してもよい。 * In formula (1-1), formula (1-2), and formula (2) is bonded to both ends of a chain organic compound group, for example. The chain organic compound group may be a straight chain hydrocarbon group or a partially branched chain hydrocarbon group. The organic compound group may have a functional group such as a hydroxy group or an ether bond.
 例えば、第1モノマーが下記式(3)で表されるN-ビニルホルムアミドである場合には、AA架橋剤の具体的な構造式は下記式(4-1)で表され、第1モノマーが酢酸ビニルである場合には、AA架橋剤の具体的な構造式は下記式(4-2)で表される。これらの構造式ではいずれも、2つの第3官能基はいずれもシス型でもよいし、一方の第3官能基がトランス型で他方の第3官能基がシス型でもよい。後述の式(6)および式(7)についても同様である。 For example, when the first monomer is N-vinylformamide represented by the following formula (3), the specific structural formula of the AA crosslinking agent is represented by the following formula (4-1), and the first monomer is In the case of vinyl acetate, the specific structural formula of the AA crosslinking agent is represented by the following formula (4-2). In any of these structural formulas, the two third functional groups may be cis-type, or one third functional group may be trans-type and the other third functional group may be cis-type. The same applies to formulas (6) and (7) described later.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 また、第2モノマーが下記式(5)で表されるエチルアクリレートである場合、BB架橋剤の具体的な構造式は下記式(6)で表される。 In addition, when the second monomer is ethyl acrylate represented by the following formula (5), a specific structural formula of the BB crosslinking agent is represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 また、第1モノマーが上記式(3)で表されるN-ビニルホルムアミドであり、第2モノマーが上記式(5)で表されるエチルアクリレートである場合、AB架橋剤の具体的な構造式は下記式(7)で表される。 Further, when the first monomer is N-vinylformamide represented by the above formula (3) and the second monomer is ethyl acrylate represented by the above formula (5), a specific structural formula of the AB crosslinking agent Is represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記したハイドロゲル構造体10において、第1網目構造体と第2網目構造体とが互いに結合しているかどうかについて、ハイドロゲル構造体10の加水分解後のOH検出測定により確認することができる。この測定方法の一例は、次の通りである。 In the hydrogel structure 10 described above, whether or not the first network structure and the second network structure are bonded to each other can be confirmed by OH detection measurement after hydrolysis of the hydrogel structure 10. An example of this measurement method is as follows.
 まず、予め水で膨潤したハイドロゲル構造体10を、1mol/Lの塩酸に72時間浸漬させた後、イオン交換水中でハイドロゲル構造体を洗浄する。この後、12時間毎にイオン交換水を3回入れ替え、洗浄を繰り返す。続いて、洗浄後に乾燥させたハイドロゲル構造体の10mgを400μLの水に加え、サンプル溶液を作製する。そして、第一級アルコールを定量するアルコール測定アッセイ(比色)(STA-620、セルバイオラボ社製)をサンプル溶液に添加し、サンプル溶液の色の違いを確認する。サンプル溶液の色の変化によって、第1網目構造体と第2網目構造体とが互いに結合していることが確認できることについては、次の通りである。 First, the hydrogel structure 10 previously swollen with water is immersed in 1 mol / L hydrochloric acid for 72 hours, and then the hydrogel structure is washed in ion-exchanged water. Thereafter, the ion-exchanged water is replaced three times every 12 hours, and the washing is repeated. Subsequently, 10 mg of the hydrogel structure dried after washing is added to 400 μL of water to prepare a sample solution. Then, an alcohol measurement assay (colorimetric) for determining the primary alcohol (STA-620, manufactured by Cell Biolabs) is added to the sample solution, and the difference in color of the sample solution is confirmed. The fact that the first network structure and the second network structure can be confirmed to be bonded to each other by the change in the color of the sample solution is as follows.
 ハイドロゲル構造体10中のエステル結合を選択的に加水分解することで、BB架橋剤由来のエステル結合によって架橋している第2網目構造体が、カルボキシル基を有する鎖状高分子と、低分子化合物の第一級アルコールとに分解する。この低分子化合物は、洗浄中にハイドロゲル構造体から取り除かれる。一方で、第1網目構造体は、AA架橋剤により、架橋構造を維持している。また、この架橋構造は、AB架橋剤の加水分解によって、第2網目構造体に由来する鎖状高分子と、第一級ヒドロキシ基を有する第1網目構造体とに分解する。第2網目構造体に由来する鎖状高分子は、低分子化合物ではないため、洗浄後もハイドロゲル構造体中に残留する。そして、この第1網目構造体の有する第一級ヒドロキシ基由来の構造が、疑似的な第一級アルコールとして、上記アルコール測定アッセイ(比色)により確認することができる。一方で、第1網目構造体と第2網目構造体とが互いに結合していないハイドロゲル構造体では、上記の測定方法においてサンプル溶液にアルコール測定アッセイを添加しても、サンプル溶液の色は変化しない、またはハイドロゲル構造体10の測定方法に比べて色の変化が小さい。 By selectively hydrolyzing the ester bond in the hydrogel structure 10, the second network structure crosslinked by the ester bond derived from the BB crosslinking agent has a chain polymer having a carboxyl group and a low molecular weight Decomposes into primary alcohol of the compound. This low molecular weight compound is removed from the hydrogel structure during washing. On the other hand, the 1st network structure maintains the crosslinked structure with the AA crosslinking agent. Moreover, this crosslinked structure is decomposed into a chain polymer derived from the second network structure and a first network structure having a primary hydroxy group by hydrolysis of the AB crosslinking agent. Since the chain polymer derived from the second network structure is not a low molecular compound, it remains in the hydrogel structure even after washing. And the structure derived from the primary hydroxy group which this 1st network structure has can be confirmed by the said alcohol measurement assay (colorimetric) as pseudo primary alcohol. On the other hand, in the hydrogel structure in which the first network structure and the second network structure are not bonded to each other, the color of the sample solution changes even when the alcohol measurement assay is added to the sample solution in the above measurement method. Or a change in color is small compared to the measurement method of the hydrogel structure 10.
 また、ハイドロゲル構造体10は、水や有機溶媒などの溶媒を含む。ハイドロゲル構造体10中の溶媒は、例えば、第1網目構造体の網目内、第2網目構造体の網目内、第1網目構造体と第2網目構造体との間などに取り込まれている。ハイドロゲル構造体10に含まれる溶媒の量や種類は、ハイドロゲル構造体10の用途、第1モノマー、第2モノマー、重合開始剤、架橋剤などハイドロゲル構造体の原料の種類に応じて、適宜選択される。また、溶媒は、1種の溶媒を単独で用いてもよいし、2種以上の溶媒を併用してもよい。 Further, the hydrogel structure 10 includes a solvent such as water or an organic solvent. The solvent in the hydrogel structure 10 is taken into, for example, the network of the first network structure, the network of the second network structure, or between the first network structure and the second network structure. . The amount and type of the solvent contained in the hydrogel structure 10 depends on the use of the hydrogel structure 10, the first monomer, the second monomer, the polymerization initiator, the type of raw material of the hydrogel structure such as a crosslinking agent, It is selected appropriately. In addition, as the solvent, one type of solvent may be used alone, or two or more types of solvents may be used in combination.
 なお、ハイドロゲル構造体10中には、上述した破断強度や破断歪みなどの機械的特性の向上効果を低下させない範囲で、第1モノマー、第2モノマー、重合開始剤、および架橋剤などの化合物由来の未反応物質が含まれてもよい。 The hydrogel structure 10 includes compounds such as a first monomer, a second monomer, a polymerization initiator, and a crosslinking agent within a range that does not lower the effect of improving the mechanical properties such as breaking strength and breaking strain described above. Unreacted material derived from it may be included.
 実施形態のハイドロゲル構造体10は、様々な分野で使用することができる。一例として、保水材に用いることができる。また、生体適合性の高い高強度ゲル材料として、医用材料に応用できる。例えば、高機能性バイオマテリアルや低摩擦材料として、ハイドロゲル構造体の持つ光透過性を活用した人工血管、ハイドロゲル構造体の低摩擦表面を活用した人工関節軟骨、抗血栓性材料、人工臓器、人工関節などの表面に好適に用いることができる。また、クッション材など生活品や工業用材料に利用できる。例えば、オムツ、衛生用品、徐放材、土木材料、建築材料、通信材料、土壌改質材、コンタクトレンズ、眼内レンズ、ホローファイバー、燃料電池用材料、バッテリー隔膜(セパレータ)、耐衝撃材料、およびクッションに好適に用いることができる。また、フィルム状、シート状、チューブ状などの摩擦低減部材として多方面に応用できる。例えば、内視鏡やカテーテルなどの医療器具の外表面に好適に用いることができる。フィルム状、シート状、チューブ状などの形状を有するハイドロゲル構造体を内視鏡やカテーテルなどの医療器具の外表面に装着した場合、当該医療器具を患者の体内に挿入する際の医療器具と体内との摩擦抵抗が低減されるので、手術や検査の際の患者の苦痛を大幅に低減することが可能である。 The hydrogel structure 10 of the embodiment can be used in various fields. As an example, it can be used for a water retention material. Moreover, it can be applied to medical materials as a high-strength gel material with high biocompatibility. For example, as a highly functional biomaterial or low friction material, an artificial blood vessel utilizing the light transmittance of the hydrogel structure, an artificial joint cartilage utilizing the low friction surface of the hydrogel structure, an antithrombotic material, an artificial organ It can be suitably used for surfaces such as artificial joints. In addition, it can be used for daily goods such as cushion materials and industrial materials. For example, diapers, hygiene products, sustained release materials, civil engineering materials, building materials, communication materials, soil modifiers, contact lenses, intraocular lenses, hollow fibers, fuel cell materials, battery membranes (separators), impact resistant materials, And can be suitably used for cushions. Moreover, it can be applied to various fields as a friction reducing member such as a film, a sheet, and a tube. For example, it can be suitably used for the outer surface of medical instruments such as endoscopes and catheters. When a hydrogel structure having a shape such as a film shape, a sheet shape, or a tube shape is mounted on the outer surface of a medical device such as an endoscope or a catheter, the medical device when the medical device is inserted into the patient's body Since the frictional resistance with the body is reduced, it is possible to greatly reduce the patient's pain during surgery and examination.
 次に、実施形態のハイドロゲル構造体10の製造方法について説明する。 Next, a method for manufacturing the hydrogel structure 10 of the embodiment will be described.
 実施形態のハイドロゲル構造体10の製造方法は、調製工程S10と加熱工程S20とを有する。 The manufacturing method of the hydrogel structure 10 of the embodiment includes a preparation step S10 and a heating step S20.
 調製工程S10では、第1モノマーと、第2モノマーと、第1モノマーおよび第2モノマーを重合および架橋させる重合開始剤とを含む溶液を調製する。 In the preparation step S10, a solution containing a first monomer, a second monomer, and a polymerization initiator that polymerizes and crosslinks the first monomer and the second monomer is prepared.
 なお、調製工程S10で調製する溶液としては、第1モノマーおよび第2モノマーのうち、一方のモノマーと、重合開始剤とを含む溶液と同様の構成を有する溶液を購入した後、当該溶液に含まれていない他方のモノマーを当該溶液に添加して混合することによって調製してもよい。また、第1モノマーおよび第2モノマーを含まずに重合開始剤を含む溶液と同様の構成を有する溶液を購入した後、第1モノマーおよび第2モノマーを当該溶液に添加して混合することによって調製してもよい。また、上記のいずれかの溶液を購入せずに、溶液を調製してもよい。以下では、上記のいずれかの溶液を購入せずに溶液を調製する調製工程S10について説明する。 In addition, as a solution prepared in preparation process S10, after purchasing the solution which has the structure similar to the solution containing one monomer and a polymerization initiator among 1st monomer and 2nd monomer, it is contained in the said solution. The other monomer that has not been added may be added to the solution and mixed. Moreover, after purchasing the solution which has the structure similar to the solution which does not contain a 1st monomer and a 2nd monomer but contains a polymerization initiator, it adds and mixes the 1st monomer and the 2nd monomer to the said solution, and mixes May be. Further, the solution may be prepared without purchasing any of the above solutions. Below, preparation process S10 which prepares a solution, without purchasing either of said solutions is demonstrated.
 ハイドロゲル構造体10の製造方法に用いる第1モノマーは、Q値が0.001以上0.199以下およびe値が-8.60以上0以下の範囲内である。また、第2モノマーは、Q値が0.200以上16.000以下およびe値が0.01以上3.70以下の範囲内である。 The first monomer used in the method for producing the hydrogel structure 10 has a Q value in the range of 0.001 to 0.199 and an e value in the range of −8.60 to 0. The second monomer has a Q value in the range of 0.200 to 16.000 and an e value in the range of 0.01 to 3.70.
 実施形態のハイドロゲル構造体の製造方法では、原料である第1モノマーおよび第2モノマーの反応性、特に第1モノマーと第2モノマーの反応速度の差を利用し、これらモノマーのQ値およびe値が上記の範囲内であると、上述のように各作業の完了を待たずに、簡便かつ短時間に、機械的特性に優れたハイドロゲル構造体を製造できることを見出した。 In the manufacturing method of the hydrogel structure of the embodiment, the reactivity of the first monomer and the second monomer as raw materials, in particular, the difference in the reaction rate between the first monomer and the second monomer is utilized. It was found that a hydrogel structure excellent in mechanical properties can be produced easily and in a short time without waiting for completion of each operation as described above when the value is in the above range.
 すなわち、第1モノマーのQ値およびe値と第2モノマーのQ値およびe値とが上記の範囲内であると、第1モノマーおよび第2モノマーの重合反応と架橋反応、架橋剤をさらに用いる場合にはこれら反応と架橋部3の形成反応に伴う複数の作業を同時に行うことができるため、合成時のハイドロゲル構造体の形状変化が小さくなり、従来の製造方法に比べて簡便かつ短時間に、ハイドロゲル構造体の最終生成物を設計通りの形状や大きさに容易に製造することができる。 That is, when the Q value and e value of the first monomer and the Q value and e value of the second monomer are within the above ranges, the polymerization reaction, the crosslinking reaction, and the crosslinking agent of the first monomer and the second monomer are further used. In some cases, these reactions and a plurality of operations associated with the formation reaction of the bridging portion 3 can be performed at the same time, so that the shape change of the hydrogel structure during synthesis is reduced, which is simpler and shorter in time than conventional manufacturing methods. In addition, the final product of the hydrogel structure can be easily manufactured in the shape and size as designed.
 一方、第1モノマーのQ値およびe値と第2モノマーのQ値およびe値とが上記の範囲外であると、従来のハイドロゲル構造体の製造方法のように、先の作業を完了してから次の作業を行う必要がある。そのため、実施形態のハイドロゲル構造体10の製造方法に比べて、作業が煩雑かつ長時間になる。さらには、製造されるハイドロゲル構造体について、破断強度や破断歪みなどの機械的特性が低下すると共に、設計通りの形状や大きさに製造することは容易ではない。 On the other hand, if the Q value and e value of the first monomer and the Q value and e value of the second monomer are outside the above ranges, the previous work is completed as in the conventional method for producing a hydrogel structure. Then you need to do the following: Therefore, compared with the manufacturing method of the hydrogel structure 10 of the embodiment, the work is complicated and takes a long time. Furthermore, the manufactured hydrogel structure has mechanical properties such as breaking strength and breaking strain that are lowered, and it is not easy to produce the designed shape and size.
 また、第1モノマーは、好ましくはQ値が0.020以上0.180以下およびe値が-1.80以上-0.70以下、より好ましくはQ値が0.020以上0.170以下およびe値が-1.70以上-0.80以下の範囲内である。また、第2モノマーは、好ましくはQ値が0.230以上3.070以下およびe値が0.30以上1.28以下、より好ましくはQ値が0.320以上1.000以下およびe値が0.50以上0.90以下の範囲内である。第1モノマーおよび第2モノマーのQ値とe値とが上記の範囲内であると、上記の効果がさらに向上する。 The first monomer preferably has a Q value of 0.020 to 0.180 and an e value of −1.80 to −0.70, more preferably a Q value of 0.020 to 0.170 and The e value is in the range of −1.70 or more and −0.80 or less. The second monomer preferably has a Q value of 0.230 to 3.070 and an e value of 0.30 to 1.28, more preferably a Q value of 0.320 to 1.000 and an e value. Is in the range of 0.50 or more and 0.90 or less. When the Q value and e value of the first monomer and the second monomer are within the above ranges, the above effects are further improved.
 また、ハイドロゲル構造体の製造方法に用いる重合開始剤は、第1モノマーおよび第2モノマーを重合および架橋させ、第1網目構造体と第2網目構造体とを互いに結合させる。使用される重合開始剤は、第1モノマーおよび第2モノマーの種類に応じて、適宜選択される。 Also, the polymerization initiator used in the method for producing a hydrogel structure polymerizes and crosslinks the first monomer and the second monomer, and bonds the first network structure and the second network structure to each other. The polymerization initiator used is appropriately selected according to the types of the first monomer and the second monomer.
 例えば第1モノマーがNVF、第2モノマーがEAcである場合、重合開始剤としては、アゾビスイソブチロニトリル(AIBN)などが挙げられる。 For example, when the first monomer is NVF and the second monomer is EAc, examples of the polymerization initiator include azobisisobutyronitrile (AIBN).
 また、調製工程S10で調製する溶液の原料として用いられる溶媒は、第1モノマーおよび第2モノマーに対して相溶性を有する。使用される溶媒は、第1モノマーおよび第2モノマーの種類に応じて、適宜選択される。具体的には、アセトニトリル、エタノール、メタノール、プロパノール、アセトン、ジメチルスルホキシド(DMSO)、水、N,N-ジメチルホルムアミド(DMF)などが挙げられる。例えば第1モノマーがNVF、第2モノマーがEAcである場合、溶媒としては、ジメチルスルホキシド(DMSO)、水、N,N-ジメチルホルムアミド(DMF)などが挙げられる。 Further, the solvent used as a raw material for the solution prepared in the preparation step S10 has compatibility with the first monomer and the second monomer. The solvent used is appropriately selected according to the types of the first monomer and the second monomer. Specific examples include acetonitrile, ethanol, methanol, propanol, acetone, dimethyl sulfoxide (DMSO), water, N, N-dimethylformamide (DMF), and the like. For example, when the first monomer is NVF and the second monomer is EAc, examples of the solvent include dimethyl sulfoxide (DMSO), water, N, N-dimethylformamide (DMF), and the like.
 調製工程S10で調製する溶液は、上記の第1モノマーと第2モノマーと重合開始剤とを溶媒に添加および混合して溶解させることによって作製される。第1モノマーと第2モノマーと重合開始剤とを溶媒に添加する時機としては、特に限定されるものではなく、手順が簡便であることから、第1モノマーと第2モノマーと重合開始剤とを一度に添加することが好ましい。 The solution prepared in the preparation step S10 is prepared by adding and mixing the first monomer, the second monomer, and the polymerization initiator in a solvent and dissolving them. The timing of adding the first monomer, the second monomer, and the polymerization initiator to the solvent is not particularly limited, and since the procedure is simple, the first monomer, the second monomer, and the polymerization initiator are added. It is preferable to add all at once.
 溶液中の第1モノマーの含有量は、0.01mol/L以上10.00mol/L以下、好ましくは0.05mol/L以上1.00mol/L以下の範囲内である。溶液中の第1モノマーの含有量が上記の範囲内であると、後述する加熱工程S20において、より短時間で十分な反応性を示すことができる。特に、溶液中の第1モノマーの含有量が0.05mol/L以上であると、ラジカルの衝突確率が高まり、溶液の反応性がさらに向上し、第1モノマーの含有量が1.00mol/L以下であると、溶媒中での第1モノマーおよび第1ポリマーの運動性が十分に確保される。 The content of the first monomer in the solution is in the range of 0.01 mol / L to 10.00 mol / L, preferably 0.05 mol / L to 1.00 mol / L. When the content of the first monomer in the solution is within the above range, sufficient reactivity can be exhibited in a shorter time in the heating step S20 described later. In particular, when the content of the first monomer in the solution is 0.05 mol / L or more, the radical collision probability is increased, the reactivity of the solution is further improved, and the content of the first monomer is 1.00 mol / L. When it is below, the mobility of the first monomer and the first polymer in the solvent is sufficiently ensured.
 溶液中の第2モノマーの含有量は、0.01mol/L以上10.00mol/L以下、好ましくは0.05mol/L以上1.00mol/L以下の範囲内である。溶液中の第2モノマーの含有量が上記の範囲内であると、加熱工程S20において、より短時間で十分な反応性を示すことができる。特に、溶液中の第2モノマーの含有量が0.05mol/L以上であると、ラジカルの衝突確率が高まり、溶液の反応性がさらに向上し、第2モノマーの含有量が1.00mol/L以下であると、溶媒中での第2ポリマーの運動性が十分に確保される。 The content of the second monomer in the solution is in the range of 0.01 mol / L to 10.00 mol / L, preferably 0.05 mol / L to 1.00 mol / L. When the content of the second monomer in the solution is within the above range, sufficient reactivity can be exhibited in a shorter time in the heating step S20. In particular, when the content of the second monomer in the solution is 0.05 mol / L or more, the radical collision probability is increased, the reactivity of the solution is further improved, and the content of the second monomer is 1.00 mol / L. When it is below, the mobility of the second polymer in the solvent is sufficiently ensured.
 溶液に含まれる、第1モノマーのビニル基のモル数(m1)と第2モノマーのビニル基のモル数(m2)との合計モル数(m1+m2)に対する、重合開始剤のモル数(m)の比{m/(m1+m2)}は、0.0001以上0.1000以下、好ましくは0.0050以上0.0300以下の範囲内である。溶液中の重合開始剤の含有量が第1モノマーおよび第2モノマーの全ビニル基のモル数に対して上記の範囲内であると、溶液中に残存している酸素ラジカルなどによる重合開始剤の失活を防ぎ、十分な重合度を得られるため、機械的特性に優れるハイドロゲル構造体を得ることができる。特に、上記の比が0.0050以上であると、重合開始剤の失活により重合反応が十分進行しない事態を避けられることができ、上記の比が0.0300以下であると、第1モノマーおよび第2モノマー同士が一定以上の長さに成長することができる。 The number of moles (m) of the polymerization initiator relative to the total number of moles (m1 + m2) of the number of moles of vinyl groups of the first monomer (m1) and the number of moles of vinyl groups of the second monomer (m2) contained in the solution The ratio {m / (m1 + m2)} is in the range of 0.0001 to 0.1000, preferably 0.0050 to 0.0300. When the content of the polymerization initiator in the solution is within the above range with respect to the number of moles of all vinyl groups of the first monomer and the second monomer, the polymerization initiator due to oxygen radicals remaining in the solution Since deactivation can be prevented and a sufficient degree of polymerization can be obtained, a hydrogel structure excellent in mechanical properties can be obtained. In particular, when the above ratio is 0.0050 or more, it is possible to avoid a situation in which the polymerization reaction does not sufficiently proceed due to deactivation of the polymerization initiator, and when the above ratio is 0.0300 or less, the first monomer In addition, the second monomers can grow to a certain length or more.
 なお、上記では、予め所定の化合物を含む溶液を購入せずに溶液を調製する調製工程について説明したが、予め所定の化合物を含む溶液を用いる場合には、当該溶液に対して残りの化合物を添加することによって、調製工程で調製する溶液を得ることができる。例えば、予め第1モノマーと重合開始剤とを含む溶液を用いる場合には、当該溶液に対して第2モノマーを添加することによって、調製工程S10で調製する溶液(反応溶液)を得ることができる。 In the above description, the preparation process for preparing a solution without purchasing a solution containing a predetermined compound in advance has been described. However, when a solution containing a predetermined compound is used in advance, the remaining compound is added to the solution. By adding, a solution prepared in the preparation step can be obtained. For example, when using a solution containing a first monomer and a polymerization initiator in advance, the solution (reaction solution) prepared in the preparation step S10 can be obtained by adding the second monomer to the solution. .
 調製工程S10の後に行われる加熱工程S20では、調製工程S10で調製された溶液を加熱してゲル化する。 In the heating step S20 performed after the preparation step S10, the solution prepared in the preparation step S10 is heated to be gelled.
 加熱工程S20では、調製工程S10で得られた溶液を加熱すると、溶液のゲル化が起こり、上記した実施形態のハイドロゲル構造体を得ることができる。 In the heating step S20, when the solution obtained in the preparation step S10 is heated, the gelation of the solution occurs, and the hydrogel structure of the above-described embodiment can be obtained.
 加熱工程S20における溶液の加熱温度は、40℃以上120℃以下、好ましくは45℃以上100℃以下の範囲内である。溶液の加熱温度が40℃以上であると、重合開始剤のラジカル発生速度が大きくなる。また、溶液の加熱温度が120℃以下であると、溶液の蒸発を抑制することができる。 The heating temperature of the solution in the heating step S20 is in the range of 40 ° C to 120 ° C, preferably 45 ° C to 100 ° C. When the heating temperature of the solution is 40 ° C. or higher, the radical generation rate of the polymerization initiator increases. Moreover, evaporation of a solution can be suppressed as the heating temperature of a solution is 120 degrees C or less.
 加熱工程S20における溶液の加熱時間は、4時間以上48時間以下、好ましくは6時間以上12時間以下の範囲内である。溶液の加熱時間が4時間以上であると、溶液を十分にゲル化することができる。また、溶液の加熱時間が48時間以下であると、ゲル化の過剰な進行を回避することができる。 The heating time of the solution in the heating step S20 is 4 hours to 48 hours, preferably 6 hours to 12 hours. When the heating time of the solution is 4 hours or longer, the solution can be sufficiently gelled. Further, when the heating time of the solution is 48 hours or less, excessive progress of gelation can be avoided.
 また、調製工程S10で調製する溶液は、上記の第1モノマー、第2モノマー、および重合開始剤に加えて、上記の架橋剤をさらに含むことが好ましい。溶液が架橋剤を含む場合、得られるハイドロゲル構造体において、架橋部3の増加や第1ポリマーおよび第2ポリマーの架橋度の増加のため、機械的特性がさらに向上する。 Moreover, it is preferable that the solution prepared in the preparation step S10 further includes the cross-linking agent in addition to the first monomer, the second monomer, and the polymerization initiator. When the solution contains a cross-linking agent, in the resulting hydrogel structure, the mechanical properties are further improved due to the increase in the cross-linked portion 3 and the degree of cross-linking of the first polymer and the second polymer.
 なお、溶液が架橋剤を含む場合、調製工程S10における架橋剤を溶液に添加する時機は、特に限定されるものではなく、例えば第1ポリマーと同じ時機であってもよく、加熱工程S20の加熱条件は、架橋剤を含まない溶液を加熱する条件と同様にすることができる。 In addition, when a solution contains a crosslinking agent, the timing for adding the crosslinking agent in the preparation step S10 to the solution is not particularly limited, and may be the same timing as the first polymer, for example, heating in the heating step S20 The conditions can be the same as the conditions for heating the solution containing no crosslinking agent.
 溶液中の架橋剤の含有量は、0.0001mol/L以上0.5000mol/L以下、好ましくは0.0005mol/L以上0.1000mol/L以下の範囲内である。溶液中の架橋剤の含有量が上記の範囲内であると、ハイドロゲル構造体中で適度な大きさの網目構造を形成し、ハイドロゲル構造体は優れた機械的強度を有する。特に、溶液中の架橋剤の含有量が0.0005mol/L以上0.1000mol/L以下であると、ハイドロゲル構造体において、優れた機械的強度を有すると共に、網目サイズが小さくなりすぎてハイドロゲル構造体内に溶媒を含有できなくなることを回避できる。 The content of the crosslinking agent in the solution is 0.0001 mol / L or more and 0.5000 mol / L or less, preferably 0.0005 mol / L or more and 0.1000 mol / L or less. When the content of the crosslinking agent in the solution is within the above range, a network structure having an appropriate size is formed in the hydrogel structure, and the hydrogel structure has excellent mechanical strength. In particular, when the content of the cross-linking agent in the solution is 0.0005 mol / L or more and 0.1000 mol / L or less, the hydrogel structure has excellent mechanical strength and the network size becomes too small, so It can be avoided that the solvent cannot be contained in the gel structure.
 また、溶液は、第1モノマー、第2モノマー、重合開始剤、架橋剤に加えて、他の添加剤をさらに含んでもよい。溶液が添加剤を含む場合、溶液中の添加剤の含有量は、上記の効果を低下させない範囲であれば、特に限定されるものではない。 The solution may further include other additives in addition to the first monomer, the second monomer, the polymerization initiator, and the crosslinking agent. When a solution contains an additive, content of the additive in a solution will not be specifically limited if it is a range which does not reduce said effect.
 また、調製工程S10および加熱工程S20をワンポットで行うことが好ましい。調製工程S10および加熱工程S20をワンポットで行うと、1つの容器内で複数の工程を行ってハイドロゲル構造体を製造することができるため、ハイドロゲル構造体の製造方法がより簡便になる。一方、第1モノマーおよび第2モノマーのQ値およびe値が上記の範囲外であると、従来の製造方法のように、容器を替えながら、先の作業を完了してから次の作業を行う必要があるので、ワンポットで上記実施形態のハイドロゲル構造体を製造することが困難である。 Moreover, it is preferable to perform the preparation step S10 and the heating step S20 in one pot. When the preparation step S10 and the heating step S20 are performed in one pot, the hydrogel structure can be manufactured by performing a plurality of steps in one container, and therefore the method for manufacturing the hydrogel structure becomes simpler. On the other hand, if the Q value and e value of the first monomer and the second monomer are outside the above ranges, the next operation is performed after completing the previous operation while changing the container as in the conventional manufacturing method. Since it is necessary, it is difficult to manufacture the hydrogel structure of the above embodiment in one pot.
 以上説明した実施形態によれば、Q値およびe値が所定の関係を満たす第1モノマーおよび第2モノマーを用いて合成を行うと、各工程の終了を待たずに、複数の工程を連続して行うことができるため、簡便かつ容易に、ハイドロゲル構造体を所望の形状や大きさに製造することができる。また、このような製造方法で得られるハイドロゲル構造体は、機械的特性に優れる。 According to the embodiment described above, when the synthesis is performed using the first monomer and the second monomer in which the Q value and the e value satisfy a predetermined relationship, a plurality of steps are continuously performed without waiting for the end of each step. Therefore, the hydrogel structure can be manufactured in a desired shape and size easily and easily. Moreover, the hydrogel structure obtained by such a manufacturing method is excellent in mechanical characteristics.
 以上、実施形態について説明したが、本発明は上記実施の形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments have been described above, the present invention is not limited to the above-described embodiments, and includes all aspects included in the concept and claims of the present invention, and various modifications within the scope of the present invention. can do.
 次に、実施例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, examples and comparative examples will be described, but the present invention is not limited to these examples.
 (実施例1)
 まず、N-ヒドロキシプロピルN-ビニルホルムアミドを製造した。まず、反応容器中に3.1gの水素化ナトリウムを用意し、テトラヒドロフラン(THF)で洗浄した。続いて、窒素雰囲気下にて、130mLのN,N-ジメチルホルムアミド(DMF)を反応容器中に加えた後、9.2gのN-ビニルホルムアミドを0℃にて反応容器中に滴下した。続いて、反応容器中の反応溶液を4時間室温にて撹拌させた後、0℃にて18gの3-ブロモ-1-プロパノールを反応容器中に滴下した。続いて、反応容器中の反応溶液を再度室温にて7時間撹拌させた後、反応溶液中に水を加えて反応を停止した。反応溶液をヘキサンおよび酢酸エチルにより抽出、洗浄した後、有機相を硫酸マグネシウムにより乾燥させた。さらにシリカゲルカラムクロマトグラフィーにより精製し、液体にて11.3gのN-ヒドロキシプロピルN-ビニルホルムアミドを得た(収率68%)。N-ヒドロキシプロピルN-ビニルホルムアミドの合成は、下記反応式(1)で表される。
Example 1
First, N-hydroxypropyl N-vinylformamide was produced. First, 3.1 g of sodium hydride was prepared in a reaction vessel and washed with tetrahydrofuran (THF). Subsequently, 130 mL of N, N-dimethylformamide (DMF) was added to the reaction vessel under a nitrogen atmosphere, and 9.2 g of N-vinylformamide was added dropwise to the reaction vessel at 0 ° C. Subsequently, the reaction solution in the reaction vessel was stirred for 4 hours at room temperature, and then 18 g of 3-bromo-1-propanol was dropped into the reaction vessel at 0 ° C. Subsequently, after the reaction solution in the reaction vessel was again stirred at room temperature for 7 hours, water was added to the reaction solution to stop the reaction. The reaction solution was extracted and washed with hexane and ethyl acetate, and then the organic phase was dried over magnesium sulfate. Further purification by silica gel column chromatography gave 11.3 g of N-hydroxypropyl N-vinylformamide as a liquid (yield 68%). The synthesis of N-hydroxypropyl N-vinylformamide is represented by the following reaction formula (1).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 次に、上記式(7)で表される架橋剤(AB架橋剤)を製造した。まず、反応容器中に、1.3gのN-ヒドロキシプロピルN-ビニルホルムアミドと、20mLのトリエチルアミンと、溶媒として90mLのTHFとを用意した。さらに、11.8gの塩化アクリルを0℃にてシリンジにより反応容器中に加えた。反応溶液を1.5時間撹拌させ、過剰量の水を反応容器中に加えて反応を停止した。その後、酢酸エチルにより抽出、洗浄を行った後、有機相を硫酸マグネシウムにより乾燥させた。次に、シリカゲルカラムクロマトグラフィーにより精製することにより、式(7)で表される架橋剤を白色固体にて12.3g(収率77%)得た。式(7)で表される架橋剤の合成は、下記反応式(2)で表される。 Next, a crosslinking agent (AB crosslinking agent) represented by the above formula (7) was produced. First, 1.3 g of N-hydroxypropyl N-vinylformamide, 20 mL of triethylamine, and 90 mL of THF as a solvent were prepared in a reaction vessel. Furthermore, 11.8 g of acryl chloride was added into the reaction vessel with a syringe at 0 ° C. The reaction solution was allowed to stir for 1.5 hours, and an excess amount of water was added to the reaction vessel to stop the reaction. Then, after extracting and washing with ethyl acetate, the organic phase was dried with magnesium sulfate. Next, 12.3 g (yield 77%) of a cross-linking agent represented by the formula (7) was obtained as a white solid by purification by silica gel column chromatography. The synthesis of the crosslinking agent represented by the formula (7) is represented by the following reaction formula (2).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 次に、上記式(4-1)で表される架橋剤(AA架橋剤)を製造した。まず、反応容器中に1.35gの水素化ナトリウムを用意し、THFで洗浄した。続いて、窒素雰囲気下にて、15mLのDMFを反応容器中に加えた後、2.88gのN-ビニルアセトアミド(NVA)を0℃にて反応容器中に滴下した。続いて、反応容器中の反応溶液を50℃に加熱し、6時間撹拌させた後、0℃にて3.37gのビス(4-クロロブチル)エーテルを反応容器中に滴下した。続いて、反応容器中の反応溶液を再度50℃に加熱し、10時間撹拌させた後、反応溶液中に水を加えて反応を停止した。その後、ヘキサンと酢酸エチルにより抽出、洗浄を行い、有機相を硫酸マグネシウムにより乾燥させた。次に、シリカゲルカラムクロマトグラフィーにより精製することにより、式(4-1)で表される架橋剤を液体にて3.65g(収率73%)得た。式(4-1)で表される架橋剤の合成は、下記反応式(3)で表される。 Next, a crosslinking agent (AA crosslinking agent) represented by the above formula (4-1) was produced. First, 1.35 g of sodium hydride was prepared in a reaction vessel and washed with THF. Subsequently, 15 mL of DMF was added to the reaction vessel under a nitrogen atmosphere, and 2.88 g of N-vinylacetamide (NVA) was added dropwise to the reaction vessel at 0 ° C. Subsequently, the reaction solution in the reaction vessel was heated to 50 ° C. and stirred for 6 hours, and 3.37 g of bis (4-chlorobutyl) ether was added dropwise to the reaction vessel at 0 ° C. Subsequently, the reaction solution in the reaction vessel was heated again to 50 ° C. and stirred for 10 hours, and then water was added to the reaction solution to stop the reaction. Thereafter, extraction and washing were performed with hexane and ethyl acetate, and the organic phase was dried with magnesium sulfate. Next, 3.65 g (yield: 73%) of a crosslinking agent represented by the formula (4-1) was obtained by purification by silica gel column chromatography. The synthesis of the crosslinking agent represented by the formula (4-1) is represented by the following reaction formula (3).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 また、上記式(6)で表される架橋剤(BB架橋剤)については、トリエチレングリコールジメタクリラート(T0948、東京化成社製)を用意した。 Moreover, triethylene glycol dimethacrylate (T0948, manufactured by Tokyo Chemical Industry Co., Ltd.) was prepared for the crosslinking agent (BB crosslinking agent) represented by the above formula (6).
 次に、上記で製造および用意した原料を用いて、実施例1のハイドロゲル構造体を製造した。まず、溶媒として5mLのジメチルスルホキシド(DMSO)、および、第1モノマーとしてN-ビニルホルムアミド(NVF)(Q=0.08~0.14,e=-1.7~-1.6)、第2モノマーとしてエチルアクリレート(EAc)(Q=0.41,e=0.55)、重合開始剤としてアゾビスイソブチロニトリル(AIBN)、AA架橋剤として式(4-1)で表される架橋剤、BB架橋剤として式(6)で表される架橋剤、AB架橋剤として式(7)で表される架橋剤を、反応溶液中の含有量がそれぞれ表1に示す含有量になるように、20mLスクリュー管に投入し撹拌した。その後、図2に示すように、シリンジ21,22を刺したセプタム23をスクリュー管24に装着し、反応溶液25に対して1分間窒素(N)バブリングを矢印に示すように行い、スクリュー管24内の酸素を追い出した。 Next, the hydrogel structure of Example 1 was manufactured using the raw material manufactured and prepared above. First, 5 mL of dimethyl sulfoxide (DMSO) as a solvent, and N-vinylformamide (NVF) (Q = 0.08 to 0.14, e = −1.7 to −1.6) as the first monomer, 2 monomers represented by ethyl acrylate (EAc) (Q = 0.41, e = 0.55), polymerization initiator as azobisisobutyronitrile (AIBN), and AA crosslinking agent represented by formula (4-1) The cross-linking agent represented by the formula (6) as the cross-linking agent and the BB cross-linking agent, and the cross-linking agent represented by the formula (7) as the AB cross-linking agent have the contents shown in Table 1 in the reaction solution The mixture was poured into a 20 mL screw tube and stirred. Thereafter, as shown in FIG. 2, a septum 23 pierced with syringes 21 and 22 is attached to a screw tube 24, and nitrogen (N 2 ) bubbling is performed on the reaction solution 25 for 1 minute as indicated by an arrow. Expelled oxygen in 24.
 次に、図3に示すように、2枚のガラス板31と、4枚のシリコンシート32とを組み合わせて容器30を形成し、この形成した容器30に、開口寸法が1mmの開口部30aに、シリンジで、窒素(N)バブリングした反応溶液25を流し入れ、反応溶液25の残りはスクリュー管24に戻した。ここで、図3に示す容器30は、2枚の矩形状のガラス板31を互いに平行に1mmの間隔で維持されるように、それらのガラス板の周囲部分(ただし開口部30aを除く4辺部分)で、シリコンシート32を挟み込むように構成したものである。続いて、60℃に設定した恒温槽内に、図3に示すように開口部30aを上側となるようにして、反応溶液25が入った容器30と、残りの反応溶液25が入ったスクリュー管24をセットし、それぞれの反応溶液を8時間反応させた。その後、容器30中の反応溶液と、スクリュー管24中の反応溶液とがゲル化していることを目視で確認し、ハイドロゲル構造体を水で十分に洗浄し、実施例1のハイドロゲル構造体を製造した。 Next, as shown in FIG. 3, a container 30 is formed by combining two glass plates 31 and four silicon sheets 32, and an opening 30a having an opening size of 1 mm is formed in the formed container 30. The reaction solution 25 bubbled with nitrogen (N 2 ) was poured with a syringe, and the remainder of the reaction solution 25 was returned to the screw tube 24. Here, the container 30 shown in FIG. 3 is configured so that two rectangular glass plates 31 are maintained in parallel with each other at an interval of 1 mm so that peripheral portions of the glass plates (however, four sides excluding the opening 30a) are maintained. In this case, the silicon sheet 32 is sandwiched between the two portions. Subsequently, the container 30 containing the reaction solution 25 and the screw tube containing the remaining reaction solution 25 are placed in a thermostat set at 60 ° C. with the opening 30a on the upper side as shown in FIG. 24 was set and each reaction solution was reacted for 8 hours. Thereafter, it is visually confirmed that the reaction solution in the container 30 and the reaction solution in the screw tube 24 are gelled, and the hydrogel structure is sufficiently washed with water. The hydrogel structure of Example 1 Manufactured.
 (実施例2)
 第1モノマーとして、N-ビニルホルムアミド(NVF)の代わりに、VACe(Q=0.026,e=-0.88)を用いるとともに、AA架橋剤として、式(4-2)で表されるアジピン酸ジビニル(A1188、東京化成社製)を用いたことを除いて、実施例1と同様の原料および製造方法によって、実施例2のハイドロゲル構造体を製造した。
(Example 2)
As the first monomer, VACe (Q = 0.026, e = −0.88) is used instead of N-vinylformamide (NVF), and the AA crosslinking agent is represented by the formula (4-2). A hydrogel structure of Example 2 was produced by the same raw materials and production method as Example 1 except that divinyl adipate (A1188, manufactured by Tokyo Chemical Industry Co., Ltd.) was used.
 (実施例3)
 第1モノマーとして、N-ビニルホルムアミド(NVF)の代わりに、VACe(Q=0.026,e=-0.88)を用い、第2モノマーとして、エチルアクリレート(EAc)の代わりに、アクリル酸メチル(MAc)(Q=0.45,e=0.64)を用いるとともに、AA架橋剤として、式(4-2)で表されるアジピン酸ジビニル(A1188、東京化成社製)を用いたことを除いて、実施例1と同様の原料および製造方法によって、実施例3のハイドロゲル構造体を製造した。
(Example 3)
VACe (Q = 0.026, e = −0.88) is used as the first monomer instead of N-vinylformamide (NVF), and acrylic acid is used as the second monomer instead of ethyl acrylate (EAc). Methyl (MAc) (Q = 0.45, e = 0.64) was used, and divinyl adipate represented by the formula (4-2) (A1188, manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the AA crosslinking agent. Except for this, the hydrogel structure of Example 3 was manufactured using the same raw materials and manufacturing method as in Example 1.
 (実施例4)
 第1モノマーとして、N-ビニルホルムアミド(NVF)の代わりに、N-ビニルアセトアミド(NVA)(Q=0.16,e=-1.57)を用い、第2モノマーとして、エチルアクリレート(EAc)の代わりに、アクリル酸メチル(MAc)(Q=0.45,e=0.64)を用いたことを除いて、実施例1と同様の原料および製造方法によって、実施例4のハイドロゲル構造体を製造した。
Example 4
Instead of N-vinylformamide (NVF), N-vinylacetamide (NVA) (Q = 0.16, e = −1.57) is used as the first monomer, and ethyl acrylate (EAc) is used as the second monomer. The hydrogel structure of Example 4 using the same raw materials and production method as in Example 1 except that methyl acrylate (MAc) (Q = 0.45, e = 0.64) was used instead of The body was manufactured.
 (比較例1)
 第1モノマーとして、NVFを用い、第2モノマーは用いない代わりに、けい皮酸ビニル(VCinn)(Q=0.18,e=0.76)、BB架橋剤は用いない代わりに、その他の架橋剤として式(4-2)を用いたことを除いて、実施例1と同様の原料および製造方法によって、比較例1のハイドロゲル構造体を製造した。
(Comparative Example 1)
Instead of using NVF as the first monomer and not using the second monomer, instead of using vinyl cinnamate (VCinn) (Q = 0.18, e = 0.76), BB crosslinker A hydrogel structure of Comparative Example 1 was produced by the same raw materials and production method as in Example 1 except that the formula (4-2) was used as a crosslinking agent.
 (比較例2)
 第1モノマーとして、N-ビニルホルムアミド(NVF)の代わりに、N-ビニルアセトアミド(NVA)を用い、第2モノマーは用いず、重合開始剤として、アゾビスイソブチロニトリル(AIBN)の代わりに、2,2’アゾビス(2-メチルプロピオンアミジン)ジハイドロクロリド(V-50)を用い、架橋剤として、AA架橋剤、BB架橋剤およびAB架橋剤を用いず、N,N-5-オキサノナメチレンビス-ビス-N-ビニルアセトアミド(5ON-bisNVA)を用い、さらに、恒温槽の温度を60℃ではなく37℃としたことを除いて、実施例1と同様の原料および製造方法によって、比較例2のハイドロゲル構造体を製造した。
(Comparative Example 2)
As the first monomer, N-vinylacetamide (NVA) is used instead of N-vinylformamide (NVF), the second monomer is not used, and azobisisobutyronitrile (AIBN) is used as a polymerization initiator. 2,2′azobis (2-methylpropionamidine) dihydrochloride (V-50) and N, N-5-oxa is used as a cross-linking agent without using an AA cross-linking agent, a BB cross-linking agent and an AB cross-linking agent. According to the same raw materials and production method as in Example 1, except that nonamethylene bis-bis-N-vinylacetamide (5ON-bisNVA) was used and the temperature of the thermostatic bath was 37 ° C. instead of 60 ° C. The hydrogel structure of Comparative Example 2 was produced.
 表1に、実施例1~4ならびに比較例1および2で用いた反応溶液に含有する各成分の種類および含有量を表1に示す。 Table 1 shows the types and contents of each component contained in the reaction solutions used in Examples 1 to 4 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 <機械的特性の評価>
 まず、機械的特性の評価を行うため、製造した各ハイドロゲル構造体から抜き型を用いてくり抜いて、図4に示すように、寸法a(チャック部の位置間距離):25mm、寸法b:6mm、寸法c:1mm、そして、厚さ1mmのシートの引張試験用の試験片を作製した。作製したハイドロゲル構造体の試験片をEZ-SX(島津製作所製)を用いて力学試験を行った。試験片の力学試験を行う際の引張速度は、最大伸びが0.5以下のものは2mm/分、0.5~2.0のものは5mm/分、2.0~5.0のものは20mm/分、5.0以上のものは40mm/分で設定した。破断歪みは下記式(11)により算出した。Lは、引張試験で破断した時点での標点間距離(mm)であり、L0は引張試験を行う前の試験片の原標点距離(mm)である。破断強度(MPa)および破断歪みの結果を表2に示す。
<Evaluation of mechanical properties>
First, in order to evaluate the mechanical properties, each manufactured hydrogel structure was cut out using a punching die, and as shown in FIG. 4, dimension a (distance between positions of chuck portions): 25 mm, dimension b: A test piece for a tensile test of a sheet of 6 mm, dimension c: 1 mm, and thickness 1 mm was prepared. The test piece of the produced hydrogel structure was subjected to a mechanical test using EZ-SX (manufactured by Shimadzu Corporation). When conducting a mechanical test of the test piece, the tensile speed is 2 mm / min when the maximum elongation is 0.5 or less, 5 mm / min when the maximum elongation is 0.5 to 2.0, and 2.0 to 5.0. Was set at 20 mm / min, and those at 5.0 or more were set at 40 mm / min. The breaking strain was calculated by the following formula (11). L is the distance between the gauge points (mm) at the time of breaking in the tensile test, and L0 is the original gauge distance (mm) of the test piece before the tensile test. Table 2 shows the results of breaking strength (MPa) and breaking strain.
 (L-L0)/L0             式(11) (L-L0) / L0 model (11)
 <膨潤度試験>
 膨潤度は下記式(12)より算出した。Wsは、膨潤後のハイドロゲル構造体の重量であり、Wdは、乾燥時のハイドロゲル構造体の重量である。膨潤度の結果を表2に示す。
<Swelling degree test>
The degree of swelling was calculated from the following formula (12). Ws is the weight of the hydrogel structure after swelling, and Wd is the weight of the hydrogel structure at the time of drying. The results of the degree of swelling are shown in Table 2.
 (Ws-Wd)/Wd          式(12) (Ws-Wd) / Wd equation (12)
 なお、製造した各供試材(ハイドロゲル構造体)は、3つの試験片を作製し、これら試験片について特性試験を実施して得られた3つのデータの平均値(n=3)を表2に示した。また、表2において、各値の右側に示した括弧内の数値は、標準偏差値(n=3)である。 In addition, each manufactured test material (hydrogel structure) produced three test pieces, and expressed the average value (n = 3) of the three data obtained by carrying out the characteristic test about these test pieces. It was shown in 2. In Table 2, the numerical value in parentheses shown on the right side of each value is a standard deviation value (n = 3).
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 次に、実施例および比較例で作製したハイドロゲル構造体について、第1網目構造体と第2網目構造体とが互いに結合しているかどうかを確認した。ここでは、破断歪みの最も高い実施例1と破断強度の最も低い比較例2とを比較した。 Next, it was confirmed whether or not the first network structure and the second network structure were bonded to each other with respect to the hydrogel structures manufactured in Examples and Comparative Examples. Here, Example 1 having the highest breaking strain and Comparative Example 2 having the lowest breaking strength were compared.
 まず、作製したハイドロゲル構造体を水で膨潤させた。続いて、膨潤したハイドロゲル構造体を、1mol/Lの塩酸に72時間浸漬させた後、1Lのイオン交換水中でハイドロゲル構造体を洗浄した。この後、12時間毎にイオン交換水を3回入れ替え、洗浄を繰り返した。続いて、洗浄後に乾燥させたハイドロゲル構造体の10mgを400μLの水に加え、サンプル溶液を作製した。そして、第一級アルコールを定量するアルコール測定アッセイ(比色)(STA-620、セルバイオラボ社製)をサンプル溶液に添加して、サンプル溶液の色の違いを確認した。 First, the produced hydrogel structure was swollen with water. Subsequently, the swollen hydrogel structure was immersed in 1 mol / L hydrochloric acid for 72 hours, and then the hydrogel structure was washed in 1 L of ion exchange water. Thereafter, the ion exchange water was changed three times every 12 hours, and the washing was repeated. Subsequently, 10 mg of the hydrogel structure dried after washing was added to 400 μL of water to prepare a sample solution. Then, an alcohol measurement assay (colorimetric) for determining the primary alcohol (STA-620, manufactured by Cell Biolabs) was added to the sample solution, and the difference in color of the sample solution was confirmed.
 実施例1で作製したハイドロゲル構造体では、サンプル溶液の色が変化したため、第1網目構造体と第2網目構造体とが互いに結合していることがわかった。 In the hydrogel structure produced in Example 1, since the color of the sample solution was changed, it was found that the first network structure and the second network structure were bonded to each other.
 比較例2で作製したハイドロゲル構造体では、サンプル溶液の色が変化しなかった。比較例2では、第2モノマーを用いなかったため、第2網目構造体が形成されなかった。 In the hydrogel structure produced in Comparative Example 2, the color of the sample solution did not change. In Comparative Example 2, since the second monomer was not used, the second network structure was not formed.
 また、表2に示す機械的特性の評価結果から、実施例1~4のハイドロゲル構造体は、いずれも比較例1および2のハイドロゲル構造体に比べて、破断歪みが大きく、一定の破断強度も維持しており、機械的特性に優れていることがわかる。 Further, from the evaluation results of the mechanical properties shown in Table 2, the hydrogel structures of Examples 1 to 4 all have a larger breaking strain than the hydrogel structures of Comparative Examples 1 and 2, and have a certain breaking strength. It can be seen that the strength is maintained and the mechanical properties are excellent.
 1 第1ポリマー
 2 第2ポリマー
 3 架橋部
 10 ハイドロゲル構造体

 
DESCRIPTION OF SYMBOLS 1 1st polymer 2 2nd polymer 3 Crosslinking part 10 Hydrogel structure

Claims (11)

  1.  第1ポリマー、および前記第1ポリマーと絡み合う第2ポリマーを含有するハイドロゲル構造体であって、
     前記第1ポリマーが、第1モノマーを重合および架橋させてなる第1網目構造体であり、
     前記第2ポリマーが、第2モノマーを重合および架橋させてなる第2網目構造体であり、
     前記第1モノマーは、Q値が0.001以上0.199以下の範囲内、およびe値が-8.60以上0以下の範囲内であり、
     前記第2モノマーは、Q値が0.200以上16.000以下の範囲内、およびe値が0.01以上3.70以下の範囲内であることを特徴とするハイドロゲル構造体。
    A hydrogel structure containing a first polymer and a second polymer intertwined with the first polymer,
    The first polymer is a first network structure obtained by polymerizing and crosslinking a first monomer;
    The second polymer is a second network structure obtained by polymerizing and crosslinking a second monomer;
    The first monomer has a Q value in the range of 0.001 to 0.199 and an e value in the range of −8.60 to 0,
    The hydrogel structure, wherein the second monomer has a Q value in the range of 0.200 to 16.000 and an e value in the range of 0.01 to 3.70.
  2.  前記第1モノマーは、Q値が0.020以上0.170以下の範囲内、およびe値が-1.70以上-0.80以下の範囲内であり、
     前記第2モノマーは、Q値が0.320以上1.000以下の範囲内、およびe値が0.50以上0.90以下の範囲内である請求項1に記載のハイドロゲル構造体。
    The first monomer has a Q value in the range of 0.020 or more and 0.170 or less, and an e value in the range of −1.70 or more and −0.80 or less,
    2. The hydrogel structure according to claim 1, wherein the second monomer has a Q value in a range of 0.320 to 1.000 and an e value in a range of 0.50 to 0.90.
  3.  第1ポリマー、および前記第1ポリマーと絡み合う第2ポリマーを含有するハイドロゲル構造体であって、
     前記第1ポリマーが、第1モノマーを重合および架橋させてなる第1網目構造体であり、
     前記第2ポリマーが、第2モノマーを重合および架橋させてなる第2網目構造体であり、
     前記第1モノマーが、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン、N-ビニルカプロラクタム、N-メチル-N-ビニルアセトアミド、N-アリルステアルアミド、N,N-メチルビニルトルエンスルホン酸アミド、プロピオン酸ビニル、1-ビニルイミダゾール、酪酸ビニル、酢酸ビニル、けい皮酸ビニル、安息香酸ビニル、ビニルイソシアネート、ビニルエチルエーテル、およびビニルオクタデシルエーテルの群から選択される1つまたは2つ以上の化合物であるハイドロゲル構造体。
    A hydrogel structure containing a first polymer and a second polymer intertwined with the first polymer,
    The first polymer is a first network structure obtained by polymerizing and crosslinking a first monomer;
    The second polymer is a second network structure obtained by polymerizing and crosslinking a second monomer;
    The first monomer is N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone, N-vinylcaprolactam, N-methyl-N-vinylacetamide, N-allyl stearamide, N, N-methylvinyltoluenesulfone One or more selected from the group of acid amide, vinyl propionate, 1-vinylimidazole, vinyl butyrate, vinyl acetate, vinyl cinnamate, vinyl benzoate, vinyl isocyanate, vinyl ethyl ether, and vinyl octadecyl ether Hydrogel structure which is a compound of
  4.  前記第2モノマーが、エチルアクリレート、アクリル酸ブチル、アクリル酸メチル、2-エチルヘキシルアクリレート、α-クロロアクリル酸メチル、アクリルアミド、α-アセトキシアクリル酸エチル、α-シアノアクリル酸メチル、2-クロロエチルアクリレート、メタクリロニトリル、メタクリル酸、ヘキサフルオロブタジエン、イタコン酸ジメチルおよびα-ブロモアクリル酸の群から選択される1つまたは2つ以上の化合物である請求項3に記載のハイドロゲル構造体。 The second monomer is ethyl acrylate, butyl acrylate, methyl acrylate, 2-ethylhexyl acrylate, methyl α-chloroacrylate, acrylamide, ethyl α-acetoxyacrylate, methyl α-cyanoacrylate, 2-chloroethyl acrylate The hydrogel structure according to claim 3, which is one or more compounds selected from the group consisting of methacrylonitrile, methacrylic acid, hexafluorobutadiene, dimethyl itaconate and α-bromoacrylic acid.
  5.  前記第1網目構造体と前記第2網目構造体との間に、前記第1網目構造体と前記第2網目構造体とを化学的または物理的に結合させる架橋部が存在する請求項1~4のいずれか1項に記載のハイドロゲル構造体。 A bridging portion for chemically or physically bonding the first network structure and the second network structure exists between the first network structure and the second network structure. 5. The hydrogel structure according to any one of 4 above.
  6.  前記架橋部が、前記第1モノマーから水素原子の1つを除いた第1官能基、および前記第2モノマーから水素原子の1つを除いた第2官能基の少なくとも一方の官能基を複数有する架橋剤により形成されてなる請求項5に記載のハイドロゲル構造体。 The cross-linking part has a plurality of functional groups of at least one of a first functional group obtained by removing one hydrogen atom from the first monomer and a second functional group obtained by removing one hydrogen atom from the second monomer. The hydrogel structure according to claim 5, which is formed by a crosslinking agent.
  7.  前記架橋部が、第3官能基および第4官能基の少なくとも一方の官能基を複数有する架橋剤により形成されてなり、前記第3官能基が下記式(1-1)または式(1-2)で表される構造であり、前記第4官能基が下記式(2)で表される構造である請求項5に記載のハイドロゲル構造体。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (式(1-1)中、R1は、炭素数1~5のアルキル基または水素を示し、R2は、メチレン基を示し、*は、結合手を示す。式(1-2)中、R5は、メチレン基を示し、*は、結合手を示す。式(2)中、R3は、メチレン基を示し、R4は、炭素数1~2のアルキル基または水素を示し、*は、結合手を示す。)
    The cross-linked part is formed by a cross-linking agent having a plurality of functional groups of at least one of a third functional group and a fourth functional group, and the third functional group is represented by the following formula (1-1) or formula (1-2): The hydrogel structure according to claim 5, wherein the fourth functional group is a structure represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (In Formula (1-1), R1 represents an alkyl group having 1 to 5 carbon atoms or hydrogen, R2 represents a methylene group, and * represents a bond. In Formula (1-2), R5 Represents a methylene group, * represents a bond, R3 represents a methylene group, R4 represents an alkyl group having 1 to 2 carbon atoms or hydrogen, and * represents a bond. Is shown.)
  8.  請求項1~7のいずれか1項に記載のハイドロゲル構造体の製造方法であって、
     前記第1モノマーと、前記第2モノマーと、前記第1モノマーおよび前記第2モノマーを重合および架橋させる重合開始剤とを含む溶液を調製する調製工程と、
     前記溶液を加熱してゲル化する加熱工程と
    を有することを特徴とするハイドロゲル構造体の製造方法。
    A method for producing a hydrogel structure according to any one of claims 1 to 7,
    A preparation step of preparing a solution containing the first monomer, the second monomer, and a polymerization initiator for polymerizing and crosslinking the first monomer and the second monomer;
    A method for producing a hydrogel structure, comprising a heating step of gelling by heating the solution.
  9.  前記調製工程で調製する前記溶液は、前記第1モノマーから水素原子の1つを除いた第1官能基、および前記第2モノマーから水素原子の1つを除いた第2官能基の少なくとも一方の官能基を複数有する架橋剤をさらに含む請求項8に記載のハイドロゲル構造体の製造方法。 The solution prepared in the preparation step includes at least one of a first functional group obtained by removing one hydrogen atom from the first monomer and a second functional group obtained by removing one hydrogen atom from the second monomer. The method for producing a hydrogel structure according to claim 8, further comprising a cross-linking agent having a plurality of functional groups.
  10.  前記調製工程で調製する前記溶液は、第3官能基および第4官能基の少なくとも一方の官能基を複数有する架橋剤をさらに含み、前記第3官能基が下記式(1-1)または式(1-2)で表される構造であり、前記第4官能基が下記式(2)で表される構造である請求項8に記載のハイドロゲル構造体の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (式(1-1)中、R1は、炭素数1~5のアルキル基または水素を示し、R2は、メチレン基を示し、*は、結合手を示す。式(1-2)中、R5は、メチレン基を示し、*は、結合手を示す。式(2)中、R3は、メチレン基を示し、R4は、炭素数1~2のアルキル基または水素を示し、*は、結合手を示す。)
    The solution prepared in the preparation step further includes a crosslinking agent having a plurality of functional groups of at least one of a third functional group and a fourth functional group, wherein the third functional group is represented by the following formula (1-1) or formula ( The method for producing a hydrogel structure according to claim 8, wherein the structure is represented by 1-2), and the fourth functional group is a structure represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (In Formula (1-1), R1 represents an alkyl group having 1 to 5 carbon atoms or hydrogen, R2 represents a methylene group, and * represents a bond. In Formula (1-2), R5 Represents a methylene group, * represents a bond, R3 represents a methylene group, R4 represents an alkyl group having 1 to 2 carbon atoms or hydrogen, and * represents a bond. Is shown.)
  11.  前記調製工程および前記加熱工程をワンポットで行う請求項8~10のいずれか1項に記載のハイドロゲル構造体の製造方法。

     
    The method for producing a hydrogel structure according to any one of claims 8 to 10, wherein the preparation step and the heating step are performed in one pot.

PCT/JP2019/021838 2018-06-01 2019-05-31 Hydrogel structure and method for producing same WO2019230968A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020522640A JP7311864B2 (en) 2018-06-01 2019-05-31 Hydrogel structure and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018106455 2018-06-01
JP2018-106455 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019230968A1 true WO2019230968A1 (en) 2019-12-05

Family

ID=68697036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021838 WO2019230968A1 (en) 2018-06-01 2019-05-31 Hydrogel structure and method for producing same

Country Status (2)

Country Link
JP (1) JP7311864B2 (en)
WO (1) WO2019230968A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391086A (en) * 1977-01-21 1978-08-10 Sumitomo Chem Co Ltd Imparting method for water absorption and retention properties
JPS53145877A (en) * 1977-05-26 1978-12-19 Toray Ind Inc Manufacture of medical high polymer material
JPS59125712A (en) * 1982-10-11 1984-07-20 コパ−ビジヨン(ユ−・ケ−・)リミテイツド Hydrogel contact lens
JPH03223304A (en) * 1989-11-21 1991-10-02 Showa Denko Kk Water-absorptive resin
JP2004029417A (en) * 2002-06-26 2004-01-29 Toray Ind Inc Soft contact lens
WO2009099210A1 (en) * 2008-02-08 2009-08-13 Mitsubishi Rayon Co., Ltd. Hydrogel and process for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150458A (en) 2017-03-13 2018-09-27 積水化成品工業株式会社 Hydrogel, manufacturing method thereof and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391086A (en) * 1977-01-21 1978-08-10 Sumitomo Chem Co Ltd Imparting method for water absorption and retention properties
JPS53145877A (en) * 1977-05-26 1978-12-19 Toray Ind Inc Manufacture of medical high polymer material
JPS59125712A (en) * 1982-10-11 1984-07-20 コパ−ビジヨン(ユ−・ケ−・)リミテイツド Hydrogel contact lens
JPH03223304A (en) * 1989-11-21 1991-10-02 Showa Denko Kk Water-absorptive resin
JP2004029417A (en) * 2002-06-26 2004-01-29 Toray Ind Inc Soft contact lens
WO2009099210A1 (en) * 2008-02-08 2009-08-13 Mitsubishi Rayon Co., Ltd. Hydrogel and process for producing the same

Also Published As

Publication number Publication date
JPWO2019230968A1 (en) 2021-06-10
JP7311864B2 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
CN112375191B (en) Block copolymer, preparation method and application thereof
JPWO2018207934A1 (en) Composition for polymerization, polymer thereof, and method for producing polymer
JPWO2017170577A1 (en) Process for producing carboxyl group-containing polymer composition
JPWO2019044680A1 (en) Carboxylic group-containing polymer composition and method for producing the same
JPH0667122A (en) Soft contact lens
JP2021524872A (en) High melt index thermoplastic elastomer and its manufacturing method
WO2019230968A1 (en) Hydrogel structure and method for producing same
TWI826523B (en) Monomer composition for contact lens, polymer thereof, contact lens and method of producing the same
WO2003040194A1 (en) (meth)acrylic acid (salt) polymer and process for production thereof
US4745158A (en) Highly water-absorptive optical material
JP2017043661A (en) Manufacturing method of hydrogel
JP2804273B2 (en) Highly hydrous ophthalmic lens material
JPS61267731A (en) Soft contact lens having high moisture content
JP5217522B2 (en) Method for producing polymer
JPH0414124B2 (en)
JP3737241B2 (en) Process for producing phosphorylcholine group-containing polymer
DE2416353A1 (en) HYDROPHILIC COPOLYMER OF N, N- (C DEEP 1C DEEP 2-ALKYL) ACRYLAMIDE
JP4441998B2 (en) Contact lens material, contact lens and manufacturing method thereof
EP0747734A2 (en) Contact lenses with hydrophilic crosslinkers
JPS62207304A (en) Production of copolymer having surface activity
CN114621462B (en) Preparation method of polyacrylate copolymerized hydrogel
JP2022098167A (en) Contact lens monomer composition, polymer thereof, and contact lens and manufacturing method thereof
JP2921948B2 (en) Vinyl chloride copolymer
RU2104675C1 (en) Method of soft contact lens making
TWI257398B (en) Polymer with methyl methacrylate as main component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522640

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811666

Country of ref document: EP

Kind code of ref document: A1