WO2019230871A1 - Composite material and bioimplant - Google Patents

Composite material and bioimplant Download PDF

Info

Publication number
WO2019230871A1
WO2019230871A1 PCT/JP2019/021484 JP2019021484W WO2019230871A1 WO 2019230871 A1 WO2019230871 A1 WO 2019230871A1 JP 2019021484 W JP2019021484 W JP 2019021484W WO 2019230871 A1 WO2019230871 A1 WO 2019230871A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
phase
region
material according
titanium
Prior art date
Application number
PCT/JP2019/021484
Other languages
French (fr)
Japanese (ja)
Inventor
健一 雑賀
渡辺 健一
京本 政之
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP19811092.6A priority Critical patent/EP3804768A4/en
Priority to JP2020522583A priority patent/JP7155259B2/en
Priority to CN201980034963.4A priority patent/CN112188903A/en
Priority to AU2019279208A priority patent/AU2019279208B2/en
Priority to US17/058,063 priority patent/US20210196862A1/en
Publication of WO2019230871A1 publication Critical patent/WO2019230871A1/en
Priority to JP2022160717A priority patent/JP7400049B2/en
Priority to JP2023205780A priority patent/JP2024028859A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/42Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • A61L27/427Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of other specific inorganic materials not covered by A61L27/422 or A61L27/425
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0013Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating
    • A61C8/0015Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating being a conversion layer, e.g. oxide layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3662Femoral shafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/50Preparations specially adapted for dental root treatment
    • A61K6/58Preparations specially adapted for dental root treatment specially adapted for dental implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/84Preparations for artificial teeth, for filling teeth or for capping teeth comprising metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C2201/00Material properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/24Materials or treatment for tissue regeneration for joint reconstruction

Definitions

  • the present disclosure relates to composite materials and biological implants.
  • Patent Document 1 Metal materials in which fluorine ions are implanted on the surface are known (see, for example, Patent Document 1 and Non-Patent Document 1).
  • the composite material according to one embodiment has a crystal phase of titanium fluoride and a metal crystal phase of titanium.
  • the crystalline phase of titanium fluoride exists in the first region located away from the surface in the depth direction.
  • a biological implant according to an embodiment includes the composite material according to the embodiment.
  • FIG. 1 is a schematic view showing a composite material according to an embodiment.
  • FIG. 2 is an example of a biological implant according to an embodiment.
  • FIG. 3 is a graph showing measurement results of fluorine concentration in the examples.
  • FIG. 4 is a graph showing the measurement results of hardness in Examples and Comparative Examples.
  • FIG. 1 is a schematic view showing a composite material according to an embodiment.
  • the cross section of the part containing the surface of a composite material is expanded and shown.
  • the composite material 1 contains titanium (Ti) and fluorine (F), and includes a titanium fluoride crystal phase 2 (hereinafter sometimes referred to as “crystal phase 2”) and a titanium metal crystal phase 3 (hereinafter referred to as “crystal phase 2”). It may be referred to as “metal crystal phase 3”).
  • a titanium fluoride crystal phase 2 hereinafter sometimes referred to as “crystal phase 2”
  • a titanium metal crystal phase 3 hereinafter referred to as “crystal phase 2”. It may be referred to as “metal crystal phase 3”).
  • titanium fluoride which is a compound of titanium and fluorine exists in a crystalline state.
  • metal crystal phase 3 titanium exists in a crystal state constituted by metal bonds.
  • the composite material 1 contains fluorine and has the crystal phase 2 as described above, it is possible to exhibit antibacterial properties due to fluorine. Moreover, since the composite material 1 has a large hardness, it is possible to exhibit excellent wear resistance and the like. The reason why the composite material 1 has a large hardness is estimated as follows.
  • the bond between titanium and fluorine in titanium fluoride is a covalent bond. Therefore, the crystal phase 2 functions as an obstacle to transition that moves through the metal crystal phase 3. Therefore, when the composite material 1 has the crystal phase 2, the amount of energy required for the movement of transition increases, and as a result, the hardness of the composite material 1 increases. Note that as the fluorine concentration in the composite material 1 increases, the proportion of the crystal phase 2 tends to increase.
  • titanium fluoride examples include TiF (titanium fluoride), TiF 2 (titanium difluoride), TiF 3 (titanium trifluoride), TiF 4 (titanium tetrafluoride), TiOF (titanium oxyfluoride), and TiOF 2.
  • TiF titanium fluoride
  • TiF 2 titanium difluoride
  • TiF 3 titanium trifluoride
  • TiF 4 titanium tetrafluoride
  • TiOF titanium oxyfluoride
  • TiOF 2 titanium oxyfluoride
  • TiOF 2 titanium oxyfluoride
  • Examples of methods for measuring the crystal structure include a transmission electron microscope (hereinafter sometimes referred to as “TEM”) and X-ray diffraction (hereinafter referred to as “XRD”). ) Or X-ray photoelectron spectroscopy (X-ray Photoelectron Spectroscopy: hereinafter referred to as “XPS”).
  • TEM transmission electron microscope
  • XRD X-ray diffraction
  • XPS X-ray photoelectron spectroscopy
  • the composite material 1 may include a region (first region) 12 including the surface 11 of the composite material 1 and having a predetermined thickness in the depth direction from the surface 11.
  • the first region 12 is a composite phase of titanium and fluorine.
  • the fluorine concentration in the first region 12 may be 1 ppm or more.
  • the thickness T of the first region 12 is, for example, 30 to 800 nm.
  • the lower limit and the upper limit are included.
  • the numerical range is 30 to 800 nm
  • the lower limit is 30 nm or more and the upper limit is 800 nm or less.
  • the crystal phase 2 may be located in the first region 12.
  • the antibacterial property due to the fluorine of the titanium fluoride is enhanced, and the hardness of the surface 11 and the vicinity thereof can be increased.
  • the crystal phase 2 may be located in a region having a depth of 20 to 200 nm from the surface 11. The depth may be determined based on the surface 11.
  • the metal crystal phase 3 may have a first phase 31 (fluorine-containing phase) containing fluorine.
  • the metal crystal phase 3 may have the first phase 31 containing fluorine in the crystal lattice of titanium.
  • fluorine may be introduced as an interstitial element in the crystal lattice of titanium. If the metal crystal phase 3 has the first phase 31, the hardness of the composite material 1 can be further increased. The reason for this is presumed as follows.
  • the first phase 31 fluorine atoms enter the space in the titanium crystal lattice constituted by metal bonds. Thereby, lattice distortion corresponding to the size of the invading fluorine atom occurs in the titanium crystal.
  • the deformation of the crystal lattice of titanium is caused by the movement of transition, which is a defect of the crystal lattice. If the crystal lattice of titanium is distorted by the intrusion of fluorine atoms, the mobility of transition decreases, and as a result, the hardness of the composite material 1 increases. Therefore, if the metal crystal phase 3 has the first phase 31, the first phase 31 contributes to the hardness of the composite material 1 in addition to the crystal phase 2, so that the hardness of the composite material 1 is increased. Can do. Moreover, when the fluorine concentration in the composite material 1 is decreased, the proportion of the first phase 31 tends to increase.
  • the first phase 31 may be located in the first region 12.
  • the first region 12 where the first phase 31 is located is the same as the first region 12 where the crystal phase 2 is located. This also applies to the first region 12 where the second phase 32 described later is located, the first region 12 where the maximum value of fluorine concentration is located, and the first region 12 where the maximum value of hardness is located. That is, the first regions 12 in the description of each configuration are all the same.
  • the metal crystal phase 3 may further have a second phase 32 (fluorine-free phase) that does not contain fluorine and is located inward of the first phase 31.
  • a second phase 32 fluorine-free phase
  • the portion including the first phase 31 located closer to the surface 11 than the second phase 32 is less likely to be damaged.
  • the second phase 32 has higher toughness than the first phase 31 due to the fact that it does not contain fluorine. Therefore, when an impact is applied to the surface 11, the impact can be mitigated by the second phase 32 having relatively high toughness. As a result, the portion including the first phase 31 located on the surface 11 side with respect to the second phase 32 is less likely to be damaged.
  • the second phase 32 being located inward of the first phase 31 means that the second phase 32 is located farther from the surface 11 than the first phase 31.
  • Inward means inside the composite material 1 with respect to the surface 11. In other words, inward means the direction in which the depth increases in the composite material 1.
  • the phrase “not containing fluorine” means a state that does not substantially contain fluorine and is not substantially affected by fluorine. Specifically, when the fluorine concentration is less than 1 ppm, it may be determined that no fluorine is contained.
  • the second phase 32 may be located inward of the first region 12.
  • the second region 32 having relatively high toughness makes it difficult for the first region 12 located closer to the surface 11 than the second phase 32 to be damaged.
  • the composite material 1 may further include a region (second region) 13 located inward of the first region 12.
  • the second region may be a region containing titanium and not containing fluorine.
  • the second phase 32 may be located in the second region.
  • the second region 13 may be in contact with the first region 12. That is, the first region 12 and the second region 13 may be continuous regions in the composite material 1.
  • the metal crystal phase 3 may contain, for example, a titanium-based metal.
  • the titanium-based metal include pure titanium or a titanium alloy. Pure titanium includes, for example, C.I. P. Examples include industrial pure titanium such as two types of titanium.
  • the titanium alloy is an alloy whose parent phase is titanium.
  • the composite material 1 may further have an amorphous phase 4 (amorphous phase) containing titanium and fluorine.
  • amorphous phase 4 amorphous phase
  • the composite material 1 is hardly damaged by the high toughness of the amorphous phase 4.
  • the amorphous phase 4 may be located in the first region 12. When satisfying such a configuration, the first region 12 is hardly damaged by the high toughness of the amorphous phase 4.
  • the composite material 1 may further have a mixed phase 5 containing an amorphous phase 4, a crystal phase 2, and a metal crystal phase 3 (first phase 31).
  • the mixed phase 5 is located in the first region 12.
  • a plurality of amorphous phases 4, crystal phases 2, and metal crystal phases 3 are mixed.
  • the material characteristics of the composite material 1 in the first region 12 are characteristics corresponding to the proportion of each phase. Specifically, it becomes the characteristic which averaged the material characteristic of each phase to contain, or the characteristic close
  • the fluorine concentration may be a maximum value inward of the surface 11 (see FIG. 3).
  • the surface 11 having a relatively large fluorine concentration is likely to be exposed, so that antibacterial properties are easily exhibited over a long period of time.
  • the fluorine concentration may increase from the surface 11 inward and reach a maximum value (see FIG. 3). In other words, as the depth increases, the fluorine concentration may increase and reach a maximum value.
  • the composite material 1 can adjust the time which exhibits antibacterial performance by adjusting distribution of fluorine concentration.
  • the maximum value of the fluorine concentration may be located in the first region 12. When satisfying such a configuration, the maximum value of the fluorine concentration is located near the surface 11, so that antibacterial properties are enhanced.
  • the maximum value of the fluorine concentration may be located closer to the surface 11 than the central portion 12a in the thickness direction A of the first region 12 (see FIGS. 1 and 3). When satisfying such a configuration, the maximum value of the fluorine concentration is located near the surface 11, so that antibacterial properties are enhanced.
  • the concentration in fluorine concentration is atomic concentration.
  • the fluorine concentration is the number of fluorine atoms per unit volume relative to the sum of the ideal number of titanium atoms per unit volume and the number of fluorine atoms.
  • Examples of the method for measuring the fluorine concentration include secondary ion mass spectrometry (Secondary / Ion / Mass / Spectrometry: hereinafter sometimes referred to as “SIMS”), XPS, and the like.
  • SIMS secondary ion mass spectrometry
  • XPS XPS
  • the maximum value of the fluorine concentration is, for example, 10 to 80 atomic%.
  • the fluorine concentration in the region less than 5 nm deep from the surface 11 is, for example, 0.5 to 20 atomic%.
  • the fluorine concentration in the region having a depth of 5 nm or more and less than 20 nm is, for example, 2 to 30 atomic%.
  • the fluorine concentration in the region having a depth of 20 nm or more and less than 50 nm is, for example, 5 to 80 atomic%.
  • the fluorine concentration in the region having a depth of 50 nm or more and 100 nm or less is, for example, 2 to 80 atomic%.
  • the hardness of the composite material 1 may be a maximum value inward of the surface 11 (see FIG. 4). When such a configuration is satisfied, when the new surface 11 is exposed due to wear or the like, the surface 11 having a relatively large hardness is likely to be exposed, and thus the possibility that the surface 11 has a large hardness over a long period of time increases. .
  • the surface 11 in the description of hardness is the same as the surface 11 in the description of fluorine concentration described above.
  • the hardness may increase from the surface 11 inward and reach a maximum value (see FIG. 4). In other words, as the depth increases, the hardness may increase and reach a maximum value.
  • a maximum value see FIG. 4
  • the new surface 11 is exposed due to wear or the like, the surface 11 having a relatively large hardness is exposed, so that the surface 11 has a large hardness over a long period of time.
  • the hardness may increase as it goes inward from the surface 11 and reaches a maximum value, and then may decrease as it goes further inward (see FIG. 4).
  • the composite material 1 may be configured such that the change in hardness is moderate inside. According to this, since the generation of local stress can be reduced as compared with a configuration in which the hardness inside the composite material 1 changes abruptly, the possibility that the first region 12 peels can be reduced. it can.
  • the maximum value of hardness may be located in the first region 12. When satisfying such a configuration, since the maximum hardness value is located near the surface 11, the hardness of the surface 11 and the vicinity thereof can be increased.
  • the maximum value of hardness may be located closer to the surface 11 than the central portion 12a in the thickness direction A of the first region 12 (see FIGS. 1 and 4). When satisfying such a configuration, since the maximum hardness value is located near the surface 11, the hardness of the surface 11 and the vicinity thereof can be increased.
  • the maximum value of hardness may be located closer to the surface 11 than the maximum value of fluorine concentration (see FIGS. 3 and 4).
  • the hardness of the portion located near the surface 11 is relatively larger than the maximum value of the fluorine concentration. Therefore, the part located closer to the surface 11 than the maximum value of the fluorine concentration is less likely to be damaged by abrasion or the like, and can exhibit antibacterial properties over a long period of time.
  • the hardness is, for example, 3 to 10 GPa.
  • the maximum value of hardness is, for example, 5 to 10 GPa.
  • the hardness is indentation hardness and indicates the difficulty of deformation when the surface 11 is deformed.
  • the hardness is calculated from the indentation depth when the indenter is pushed into the surface 11 and the required force.
  • Specific examples of the hardness measurement method include a nanoindentation method (ISO 14577 compliant).
  • the composite material 1 may further include an oxide film (not shown) located on the outermost surface.
  • the surface 11 of the composite material 1 consists of the surface of an oxide film.
  • the thickness of the oxide film is, for example, 2 to 5 nm.
  • the composition of the oxide film include TiO 2 (titanium dioxide).
  • the oxide film may contain fluorine.
  • the oxide film is formed by, for example, oxidation treatment. Examples of the oxidation treatment include natural oxidation, heat treatment, oxygen plasma treatment, immersion in an acid solution, or anodic oxidation.
  • the titanium content may be greater than the fluorine content.
  • the composite material 1 may contain titanium as a main component.
  • the main component is a component that is most contained in the composite material 1 by mass ratio.
  • a titanium-based metal You may wash
  • an organic solvent may be used for cleaning.
  • the organic solvent include ethanol or acetone.
  • the exemplified organic solvents may be used as a mixture.
  • the cleaning may be performed by applying ultrasonic waves.
  • the titanium-based metal after cleaning may be vacuum-dried in a desiccator, for example.
  • fluorine ions are implanted into the surface of the titanium-based metal to obtain the composite material 1.
  • fluorine ion implantation conditions include the following conditions. Implant energy: greater than 30 keV and less than 80 keV Implant dose: 1 ⁇ 10 16 to 5 ⁇ 10 17 atoms / cm 2 (atom / cm 2 )
  • the obtained composite material 1 may be washed as necessary.
  • the conditions for cleaning include the same conditions as exemplified for the titanium-based metal described above.
  • the composite material 1 after washing may be vacuum-dried in a desiccator, for example.
  • the case where the composite material 1 is obtained by fluorine ion implantation has been described as an example.
  • the method for manufacturing the composite material 1 is not limited to this, and the composite material 1 is obtained. As long as other methods are available, other methods than fluorine ion implantation may be employed.
  • FIG. 2 is a schematic view showing the appearance of a dental implant according to an embodiment.
  • the dental implant 100 includes a fixture 101, an abutment 102 attached to the end of the fixture 101, and an artificial tooth 103 attached to the fixture 101 via the abutment 102.
  • each of the fixture 101, the abutment 102, and the artificial tooth 103 includes the composite material 1.
  • the composite material 1 has antibacterial properties and a large hardness, the dental implant 100 can suppress bacterial growth, such as brushing, repeated use, or cleaning. It is possible to exhibit excellent durability against.
  • each of the fixture 101, the abutment 102, and the artificial tooth 103 may be composed of only the composite material 1. These may be partially composed of the composite material 1 and the remaining portion may be composed of a material other than the composite material 1. Further, at least one of the fixture 101, the abutment 102, and the artificial tooth 103 may include the composite material 1, and the other member may include a material other than the composite material 1. According to the above configuration, the growth of bacteria on the implant surface is suppressed. For example, since the fixture 101 and the abutment 102 are used in an oxygen-deficient environment, it can be expected to suppress the growth of anaerobic bacteria.
  • the composite material 1 may be appropriately used for the fixture 101, the abutment 102, and the artificial tooth 103 according to the bacterial species whose growth is to be suppressed and the necessary antibacterial performance.
  • the dental implant 100 may be configured such that the first region 12 is located on the surfaces of the fixture 101, the abutment 102, and the artificial tooth 103. Further, for example, the dental implant 100 may be configured such that the first region 12 is positioned at each joint location of the fixture 101, the abutment 102, and the artificial tooth 103. This also applies to other members other than the living body implant and the living body implant described later.
  • this indication is not limited to the embodiment mentioned above, and it cannot be overemphasized that it may be arbitrary, unless it deviates from the gist of this indication. .
  • the biological implant is a dental implant
  • the biological implant is not limited thereto.
  • the living body implant may be an implant made of a living body metal such as titanium.
  • Other biological implants include, for example, artificial joints such as femoral stems or acetabular shells, and spinal surgical implants such as spinal fusion instrumentation.
  • the composite material 1 is used for a biological implant.
  • the composite material 1 is not limited to use for a biological implant. That is, the composite material 1 may be used as a material for members that require antibacterial properties and high hardness. Other members include, for example, orthodontic wires, surgical instruments, injection needles, glasses frames, dishes, food factory lines, water bottle taps, kitchen knives, toilets, Washlets (registered trademark), faucets or water and sewage pipes Etc.
  • Test piece C.I. P. Pure titanium with a thickness of 1 mm made of two types of titanium
  • test piece described above was formed into a disk shape having a diameter of 14 mm and a thickness of 1 mm, and then ultrasonically washed with ethanol and acetone, and vacuum dried in a desiccator. And the fluorine ion was inject
  • Fluorine ion implantation conditions are as follows.
  • the obtained composite material 1 was ultrasonically washed with ethanol and acetone, vacuum-dried in a desiccator, and then used for evaluation.
  • Comparative Example 1 was the same test piece as in Example 1 and Example 2 in which fluorine ions were not implanted.
  • FIG. 3 is a graph showing the measurement results of fluorine concentration in Example 1 and Example 2.
  • the fluorine concentrations of Example 1 and Example 2 were measured by XPS and SIMS. Specifically, the fluorine concentration was determined by XPS in a region where the fluorine concentration was relatively large and exceeded the SIMS measurement range, and the fluorine concentration was determined by SIMS in other regions. Specifically, the fluorine concentration was determined by SIMS in the range where the fluorine concentration was up to 10 atomic%. Moreover, the fluorine concentration was calculated
  • FIG. 3 shows only the measurement results at a depth of 0 to 200 nm.
  • the depth of 0 nm indicates the surface 11 of the composite material 1. This also applies to FIG. 4 described later.
  • the measurement conditions for XPS and SIMS are as follows.
  • Example 1 From the measurement results, it was revealed that in Example 1, the maximum value of the fluorine concentration is located at a depth of 90 nm. The maximum fluorine concentration of Example 1 was 63 atomic%. In Example 2, it was revealed that the maximum value of the fluorine concentration is located at a depth of 46 nm. The maximum value of the fluorine concentration in Example 2 was 11 atomic%.
  • FIG. 4 is a graph showing the measurement results of hardness in Example 1, Example 2, and Comparative Example 1.
  • Hardness was measured by a nanoindentation method (ISO 14577 compliant). Here, the measurement was performed at a depth of 0 to 1000 nm. FIG. 4 shows only the measurement results at a depth of 0 to 500 nm.
  • the measurement conditions of hardness are as follows. Measuring device: “Nanoindenter XP” manufactured by MTS Systems Measurement mode: Continuous stiffness measurement Indentation depth: 1000 nm maximum Hardness unit: Vickers hardness
  • Example 1 From the measurement results, it was revealed that in Example 1, the maximum hardness value is located at a depth of 70 nm.
  • the maximum hardness value of Example 1 was 5 GPa.
  • Example 2 it became clear that the maximum value of hardness is located at a depth of 20 nm.
  • the maximum hardness value of Example 2 was 7 GPa.
  • the crystal structure was evaluated by TEM, XRD and XPS.
  • the first region 12 is determined from the thickness T of the first region 12 described above, and the region located inward of the first region 12 is defined as the second region. .
  • XRD X 'Pert PRO-MRD
  • PANalytical Tube CuK ⁇ Incident angle: 0.5 ° Measurement range: 10 to 120 °
  • XPS measurement conditions are the same as the fluorine concentration described above.
  • Example 1 the first phase 31 was confirmed in the first region 12.
  • the crystal phase 2 was confirmed more than the first phase 31.
  • the first phase 31 was confirmed more than the crystal phase 2.
  • the amorphous phase 4 and the mixed phase 5 were confirmed in the first region 12.
  • Example 1 peaks attributable to TiF 3 , TiF 4 and F—TiO 2 were obtained. Further, in Example 1, a peak attributed to the Ti—F—Ti bond was obtained, but this peak is considered to be attributable to titanium fluoride crystals. Otherwise, the state shown in FIG. 1 was confirmed.
  • Antibacterial properties were measured by a film adhesion test using staphylococcus aureus (according to JIS Z 2801).
  • Example 1 As a result of measurement, in Example 1, the number of viable bacteria was below the detection limit. Moreover, the antibacterial activity value of Example 1 was 3.2. Therefore, it was revealed that Example 1 has an antibacterial effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Transplantation (AREA)
  • Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)
  • Prostheses (AREA)
  • Dental Prosthetics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A composite material according to one embodiment has a crystal phase of a titanium fluoride and a metal crystal phase of titanium. The crystal phase of titanium fluoride is present in a first region located away from the surface in the depth direction.

Description

複合材料および生体インプラントComposite materials and bioimplants
 本開示は、複合材料および生体インプラント(Implant)に関する。 The present disclosure relates to composite materials and biological implants.
 表面にフッ素イオンが注入された金属材料が知られている(例えば、特許文献1および非特許文献1参照)。 Metal materials in which fluorine ions are implanted on the surface are known (see, for example, Patent Document 1 and Non-Patent Document 1).
特許第4568396号公報Japanese Patent No. 4568396
 一実施形態に係る複合材料は、チタンフッ化物の結晶相と、チタンの金属結晶相と、を有する。チタンフッ化物の結晶相は、表面から深さ方向に離れて位置する第1領域に存在する。 The composite material according to one embodiment has a crystal phase of titanium fluoride and a metal crystal phase of titanium. The crystalline phase of titanium fluoride exists in the first region located away from the surface in the depth direction.
 一実施形態に係る生体インプラントは、一実施形態に係る複合材料を含んでいる。 A biological implant according to an embodiment includes the composite material according to the embodiment.
図1は、一実施形態に係る複合材料を示す概略図である。FIG. 1 is a schematic view showing a composite material according to an embodiment. 図2は、一実施形態に係る生体インプラントの一例である。FIG. 2 is an example of a biological implant according to an embodiment. 図3は、実施例におけるフッ素濃度の測定結果を示すグラフである。FIG. 3 is a graph showing measurement results of fluorine concentration in the examples. 図4は、実施例および比較例における硬度の測定結果を示すグラフである。FIG. 4 is a graph showing the measurement results of hardness in Examples and Comparative Examples.
 <複合材料>
 以下、一実施形態に係る複合材料について、図面を用いて詳細に説明する。但し、以下で参照する図は、説明の便宜上、実施形態を説明する上で必要な構成のみを簡略化して示したものである。したがって、一実施形態に係る複合材料は、参照する図に示されていない任意の構成を備え得る。また、図中の構成の寸法は、実際の構成の寸法および寸法比率などを忠実に表したものではない。これらの点は、後述する生体インプラントにおいても同様である。
<Composite material>
Hereinafter, a composite material according to an embodiment will be described in detail with reference to the drawings. However, for convenience of explanation, the drawings referred to below show only a configuration necessary for describing the embodiment in a simplified manner. Thus, a composite material according to one embodiment may have any configuration not shown in the referenced figures. In addition, the dimensions of the configuration in the drawing do not faithfully represent the dimensions and size ratio of the actual configuration. These points are the same in the biological implant described later.
 図1は、一実施形態に係る複合材料を示す概略図である。図1では、複合材料の表面を含む部分の断面を拡大して示している。 FIG. 1 is a schematic view showing a composite material according to an embodiment. In FIG. 1, the cross section of the part containing the surface of a composite material is expanded and shown.
 複合材料1は、チタン(Ti)およびフッ素(F)を含んでおり、チタンフッ化物の結晶相2(以下、「結晶相2」ということがある。)と、チタンの金属結晶相3(以下、「金属結晶相3」ということがある。)とを有している。結晶相2では、チタンおよびフッ素の化合物であるチタンフッ化物が結晶の状態で存在している。金属結晶相3では、チタンが金属結合によって構成される結晶の状態で存在している。 The composite material 1 contains titanium (Ti) and fluorine (F), and includes a titanium fluoride crystal phase 2 (hereinafter sometimes referred to as “crystal phase 2”) and a titanium metal crystal phase 3 (hereinafter referred to as “crystal phase 2”). It may be referred to as “metal crystal phase 3”). In the crystal phase 2, titanium fluoride which is a compound of titanium and fluorine exists in a crystalline state. In the metal crystal phase 3, titanium exists in a crystal state constituted by metal bonds.
 複合材料1は、上述のとおり、フッ素を含んでおり、且つ、結晶相2を有していることから、フッ素に起因する抗菌性を発揮することが可能となる。また、複合材料1は、大きな硬度を有していることから、優れた耐摩耗性などを発揮することが可能となる。複合材料1が大きな硬度を有している理由としては、以下の理由が推測される。 Since the composite material 1 contains fluorine and has the crystal phase 2 as described above, it is possible to exhibit antibacterial properties due to fluorine. Moreover, since the composite material 1 has a large hardness, it is possible to exhibit excellent wear resistance and the like. The reason why the composite material 1 has a large hardness is estimated as follows.
 チタンフッ化物におけるチタンとフッ素との結合は、共有結合である。それゆえ、結晶相2は、金属結晶相3を移動する転移の障害物として機能する。したがって、複合材料1が結晶相2を有していると、転移の移動に必要なエネルギー量が大きくなり、その結果、複合材料1の硬度が大きくなる。なお、複合材料1におけるフッ素濃度が大きくなると、結晶相2の割合が大きくなる傾向がある。 The bond between titanium and fluorine in titanium fluoride is a covalent bond. Therefore, the crystal phase 2 functions as an obstacle to transition that moves through the metal crystal phase 3. Therefore, when the composite material 1 has the crystal phase 2, the amount of energy required for the movement of transition increases, and as a result, the hardness of the composite material 1 increases. Note that as the fluorine concentration in the composite material 1 increases, the proportion of the crystal phase 2 tends to increase.
 チタンフッ化物としては、例えば、TiF(フッ化チタン)、TiF2(二フッ化チタン)、TiF3(三フッ化チタン)、TiF4(四フッ化チタン)、TiOF(オキシフッ化チタン)、TiOF2(オキシ二フッ化チタン)またはF-TiO2(フッ素ドープ酸化チタン)などが挙げられる。チタンフッ化物は、TiOF2であってもよい。結晶相2は、Ti-F-Ti結合(共有結合)を有していてもよい。 Examples of the titanium fluoride include TiF (titanium fluoride), TiF 2 (titanium difluoride), TiF 3 (titanium trifluoride), TiF 4 (titanium tetrafluoride), TiOF (titanium oxyfluoride), and TiOF 2. (Titanium oxydifluoride) or F-TiO 2 (fluorine-doped titanium oxide). Titanium fluoride may be a TiOF 2. The crystal phase 2 may have a Ti—F—Ti bond (covalent bond).
 結晶構造の測定方法としては、例えば、透過型電子顕微鏡(Transmission Electron Microscope:以下、「TEM」ということがある。)、X線回折(X-ray Diffraction:以下、「XRD」ということがある。)またはX線光電子分光分析法(X-ray Photoelectron Spectroscopy:以下、「XPS」ということがある。)などが挙げられる。 Examples of methods for measuring the crystal structure include a transmission electron microscope (hereinafter sometimes referred to as “TEM”) and X-ray diffraction (hereinafter referred to as “XRD”). ) Or X-ray photoelectron spectroscopy (X-ray Photoelectron Spectroscopy: hereinafter referred to as “XPS”).
 複合材料1は、複合材料1の表面11を含み表面11から深さ方向に所定厚みを有する領域(第1領域)12を備えていてもよい。また、第1領域12は、チタンおよびフッ素の複合相である。なお、第1領域12のフッ素濃度は、1ppm以上であってもよい。 The composite material 1 may include a region (first region) 12 including the surface 11 of the composite material 1 and having a predetermined thickness in the depth direction from the surface 11. The first region 12 is a composite phase of titanium and fluorine. The fluorine concentration in the first region 12 may be 1 ppm or more.
 第1領域12の厚みTは、例えば、30~800nmである。なお、数値範囲を「~」を使用して示すときは、特に断りがない限り、下限および上限の数値をそれぞれ含むものとする。例えば、数値範囲が30~800nmのときは、下限が30nm以上を示し、上限が800nm以下を示す。 The thickness T of the first region 12 is, for example, 30 to 800 nm. In addition, when a numerical range is indicated using “to”, unless otherwise specified, the lower limit and the upper limit are included. For example, when the numerical range is 30 to 800 nm, the lower limit is 30 nm or more and the upper limit is 800 nm or less.
 結晶相2は、第1領域12内に位置していてもよい。このような構成を満たすときは、結晶相2が表面11の近くに位置することから、チタンフッ化物のフッ素に起因する抗菌性が高まるとともに、表面11およびその近傍の硬度を大きくすることができる。 The crystal phase 2 may be located in the first region 12. When satisfying such a configuration, since the crystal phase 2 is located near the surface 11, the antibacterial property due to the fluorine of the titanium fluoride is enhanced, and the hardness of the surface 11 and the vicinity thereof can be increased.
 結晶相2は、表面11から深さ20~200nmの領域に位置していてもよい。深さは、表面11を基準にして判断すればよい。 The crystal phase 2 may be located in a region having a depth of 20 to 200 nm from the surface 11. The depth may be determined based on the surface 11.
 金属結晶相3は、フッ素を含む第1相31(フッ素含有相)を有していてもよい。言い換えれば、金属結晶相3は、チタンの結晶格子中にフッ素を含む第1相31を有していてもよい。第1相31では、チタンの結晶格子中にフッ素が侵入型元素として導入されていてもよい。金属結晶相3が第1相31を有していれば、複合材料1の硬度をより大きくすることができる。この理由としては、以下の理由が推測される。 The metal crystal phase 3 may have a first phase 31 (fluorine-containing phase) containing fluorine. In other words, the metal crystal phase 3 may have the first phase 31 containing fluorine in the crystal lattice of titanium. In the first phase 31, fluorine may be introduced as an interstitial element in the crystal lattice of titanium. If the metal crystal phase 3 has the first phase 31, the hardness of the composite material 1 can be further increased. The reason for this is presumed as follows.
 第1相31において、フッ素原子は、金属結合によって構成されるチタンの結晶格子中の空間内に侵入する。これにより、チタンの結晶には、侵入したフッ素原子の大きさに応じた格子歪みが生じる。チタンの結晶格子の変形は、結晶格子の欠陥である転移の移動によって引き起こされる。チタンの結晶格子がフッ素原子の侵入によって歪んでいると、転移の移動度が低下し、その結果、複合材料1の硬度が大きくなる。したがって、金属結晶相3が第1相31を有していれば、結晶相2に加えて第1相31も複合材料1の硬度に寄与することから、複合材料1の硬度をより大きくすることができる。また、複合材料1におけるフッ素濃度を小さくすると、第1相31の割合が大きくなる傾向がある。 In the first phase 31, fluorine atoms enter the space in the titanium crystal lattice constituted by metal bonds. Thereby, lattice distortion corresponding to the size of the invading fluorine atom occurs in the titanium crystal. The deformation of the crystal lattice of titanium is caused by the movement of transition, which is a defect of the crystal lattice. If the crystal lattice of titanium is distorted by the intrusion of fluorine atoms, the mobility of transition decreases, and as a result, the hardness of the composite material 1 increases. Therefore, if the metal crystal phase 3 has the first phase 31, the first phase 31 contributes to the hardness of the composite material 1 in addition to the crystal phase 2, so that the hardness of the composite material 1 is increased. Can do. Moreover, when the fluorine concentration in the composite material 1 is decreased, the proportion of the first phase 31 tends to increase.
 第1相31は、第1領域12内に位置していてもよい。このような構成を満たすときは、第1相31が表面11の近くに位置することから、表面11およびその近傍の硬度を大きくすることができる。また、第1相31が位置する第1領域12は、結晶相2が位置する第1領域12と同一である。この点は、後述する第2相32が位置する第1領域12、フッ素濃度の最大値が位置する第1領域12、および硬度の最大値が位置する第1領域12においても同様である。すなわち、各構成の説明における第1領域12はいずれも、互いに同一である。 The first phase 31 may be located in the first region 12. When satisfying such a configuration, since the first phase 31 is located near the surface 11, the hardness of the surface 11 and the vicinity thereof can be increased. The first region 12 where the first phase 31 is located is the same as the first region 12 where the crystal phase 2 is located. This also applies to the first region 12 where the second phase 32 described later is located, the first region 12 where the maximum value of fluorine concentration is located, and the first region 12 where the maximum value of hardness is located. That is, the first regions 12 in the description of each configuration are all the same.
 金属結晶相3は、第1相31よりも内方に位置するフッ素を含まない第2相32(フッ素非含有相)をさらに有していてもよい。このような構成を満たすときは、第2相32よりも表面11の側に位置している第1相31を含む部位が損傷し難くなる。具体的に説明すると、第2相32は、フッ素を含まないことに起因して、第1相31よりも高い靱性を有する。それゆえ、表面11に衝撃が加わったときには、相対的に高い靱性を有する第2相32によって衝撃を緩和することができる。その結果、第2相32よりも表面11の側に位置している第1相31を含む部位が損傷し難くなる。 The metal crystal phase 3 may further have a second phase 32 (fluorine-free phase) that does not contain fluorine and is located inward of the first phase 31. When satisfying such a configuration, the portion including the first phase 31 located closer to the surface 11 than the second phase 32 is less likely to be damaged. Specifically, the second phase 32 has higher toughness than the first phase 31 due to the fact that it does not contain fluorine. Therefore, when an impact is applied to the surface 11, the impact can be mitigated by the second phase 32 having relatively high toughness. As a result, the portion including the first phase 31 located on the surface 11 side with respect to the second phase 32 is less likely to be damaged.
 なお、第2相32が第1相31よりも内方に位置するとは、第2相32が第1相31よりも表面11から離れて位置することを意味する。内方とは、表面11に対して複合材料1の内側のことを意味する。言い換えれば、内方とは、複合材料1において深さが大きくなる方向のことを意味する。また、フッ素を含まないとは、フッ素を実質的に含んでおらず、フッ素による影響が実質的にない状態のことを意味する。具体的には、フッ素濃度が1ppm未満のとき、フッ素を含まないと判断してもよい。 It should be noted that the second phase 32 being located inward of the first phase 31 means that the second phase 32 is located farther from the surface 11 than the first phase 31. Inward means inside the composite material 1 with respect to the surface 11. In other words, inward means the direction in which the depth increases in the composite material 1. Further, the phrase “not containing fluorine” means a state that does not substantially contain fluorine and is not substantially affected by fluorine. Specifically, when the fluorine concentration is less than 1 ppm, it may be determined that no fluorine is contained.
 第2相32は、第1領域12よりも内方に位置していてもよい。このような構成を満たすときは、相対的に高い靱性を有する第2相32によって、第2相32よりも表面11の側に位置している第1領域12が損傷し難くなる。 The second phase 32 may be located inward of the first region 12. When satisfying such a configuration, the second region 32 having relatively high toughness makes it difficult for the first region 12 located closer to the surface 11 than the second phase 32 to be damaged.
 複合材料1は、第1領域12よりも内方に位置する領域(第2領域)13をさらに備えていてもよい。第2領域は、チタンを含み、且つ、フッ素を含まない領域であればよい。また、第2相32は、第2領域内に位置していてもよい。第2領域13は、第1領域12に接していてもよい。すなわち、第1領域12と第2領域13は、複合材料1において連続する領域であってもよい。 The composite material 1 may further include a region (second region) 13 located inward of the first region 12. The second region may be a region containing titanium and not containing fluorine. The second phase 32 may be located in the second region. The second region 13 may be in contact with the first region 12. That is, the first region 12 and the second region 13 may be continuous regions in the composite material 1.
 金属結晶相3は、例えば、チタン系金属を含んでいてもよい。チタン系金属としては、例えば、純チタンまたはチタン合金などが挙げられる。純チタンとしては、例えば、母相をチタンとするC.P.2種チタンなどの工業用純チタンが挙げられる。チタン合金は、母相をチタンとする合金であり、例えば、Ti-6Al(アルミニウム)-4V(バナジウム)、Ti-15Mo(モリブデン)-5Zr(ジルコニウム)-3Al、Ti-Nb(ニオブ)、Ti-6Al-7Nb、Ti-6Al-2Nb-1Ta(タンタル)、Ti-30Zr-Mo、Ni(ニッケル)-Ti、Ti-3Al-2.5V、Ti-10V-2Fe(鉄)-3AlまたはTi-15V-3Cr(クロム)-3Al-3Sn(スズ)などが挙げられる。 The metal crystal phase 3 may contain, for example, a titanium-based metal. Examples of the titanium-based metal include pure titanium or a titanium alloy. Pure titanium includes, for example, C.I. P. Examples include industrial pure titanium such as two types of titanium. The titanium alloy is an alloy whose parent phase is titanium. For example, Ti-6Al (aluminum) -4V (vanadium), Ti-15Mo (molybdenum) -5Zr (zirconium) -3Al, Ti-Nb (niobium), Ti -6Al-7Nb, Ti-6Al-2Nb-1Ta (tantalum), Ti-30Zr-Mo, Ni (nickel) -Ti, Ti-3Al-2.5V, Ti-10V-2Fe (iron) -3Al or Ti- And 15V-3Cr (chromium) -3Al-3Sn (tin).
 複合材料1は、チタンおよびフッ素を含む非晶質相4(アモルファス相)をさらに有していてもよい。このような構成を満たすときは、非晶質相4の高い靱性によって、複合材料1が損傷し難くなる。 The composite material 1 may further have an amorphous phase 4 (amorphous phase) containing titanium and fluorine. When satisfying such a configuration, the composite material 1 is hardly damaged by the high toughness of the amorphous phase 4.
 非晶質相4は、第1領域12内に位置していてもよい。このような構成を満たすときは、非晶質相4の高い靱性によって、第1領域12が損傷し難くなる。 The amorphous phase 4 may be located in the first region 12. When satisfying such a configuration, the first region 12 is hardly damaged by the high toughness of the amorphous phase 4.
 複合材料1は、非晶質相4、結晶相2、および金属結晶相3(第1相31)を含有する混合相5をさらに有していてもよい。一実施形態において、混合相5は、第1領域12内に位置している。混合相5では、複数の非結晶相4、結晶相2および金属結晶相3が混在している。この場合、各相の材料特性はそれぞれ異なるが、第1領域12における複合材料1の材料特性は、各相の割合に応じた特性となる。具体的には、含有する各相の材料特性を平均した特性、あるいはこれに近い特性となる。すなわち、複合材料1は、各相を混合相5として含有することで、第1領域において材料特性が異なる部分を低減することができる。したがって、複合材料1は、混合相5を有することで、第1領域12から材料が部分的に剥離する可能性を低減することができる。すなわち、複合材料1の安定性を向上させることができる。 The composite material 1 may further have a mixed phase 5 containing an amorphous phase 4, a crystal phase 2, and a metal crystal phase 3 (first phase 31). In one embodiment, the mixed phase 5 is located in the first region 12. In the mixed phase 5, a plurality of amorphous phases 4, crystal phases 2, and metal crystal phases 3 are mixed. In this case, although the material characteristics of each phase are different, the material characteristics of the composite material 1 in the first region 12 are characteristics corresponding to the proportion of each phase. Specifically, it becomes the characteristic which averaged the material characteristic of each phase to contain, or the characteristic close | similar to this. That is, the composite material 1 can reduce portions having different material properties in the first region by containing each phase as the mixed phase 5. Therefore, the composite material 1 having the mixed phase 5 can reduce the possibility that the material partially peels from the first region 12. That is, the stability of the composite material 1 can be improved.
 複合材料1において、フッ素濃度は、表面11よりも内方において最大値を示していてもよい(図3参照)。このような構成を満たすときは、摩耗などによって新しい表面11が露出するとき、相対的に大きなフッ素濃度を有する表面11が露出しやすくなることから、長期にわたって抗菌性を発揮しやすくなる。 In the composite material 1, the fluorine concentration may be a maximum value inward of the surface 11 (see FIG. 3). When satisfying such a configuration, when the new surface 11 is exposed due to wear or the like, the surface 11 having a relatively large fluorine concentration is likely to be exposed, so that antibacterial properties are easily exhibited over a long period of time.
 フッ素濃度は、表面11から内方に向かうにつれて大きくなって最大値に至っていてもよい(図3参照)。言い換えれば、深さが大きくなるにつれて、フッ素濃度が大きくなって最大値に至っていてもよい。このような構成を満たすときは、摩耗などによって新しい表面11が露出するとき、相対的に大きなフッ素濃度を有する表面11が露出することから、長期にわたって抗菌性を発揮することが可能となる。また、フッ素濃度の分布を調整することで、複合材料1は、抗菌性能を発揮する時期を調整することができる。 The fluorine concentration may increase from the surface 11 inward and reach a maximum value (see FIG. 3). In other words, as the depth increases, the fluorine concentration may increase and reach a maximum value. When satisfying such a configuration, when the new surface 11 is exposed due to wear or the like, the surface 11 having a relatively large fluorine concentration is exposed, so that antibacterial properties can be exhibited over a long period of time. Moreover, the composite material 1 can adjust the time which exhibits antibacterial performance by adjusting distribution of fluorine concentration.
 フッ素濃度の最大値は、第1領域12内に位置していてもよい。このような構成を満たすときは、フッ素濃度の最大値が表面11の近くに位置することから、抗菌性が高まる。 The maximum value of the fluorine concentration may be located in the first region 12. When satisfying such a configuration, the maximum value of the fluorine concentration is located near the surface 11, so that antibacterial properties are enhanced.
 フッ素濃度の最大値は、第1領域12の厚み方向Aの中央部12aよりも表面11の側に位置していてもよい(図1および図3参照)。このような構成を満たすときは、フッ素濃度の最大値が表面11の近くに位置することから、抗菌性が高まる。 The maximum value of the fluorine concentration may be located closer to the surface 11 than the central portion 12a in the thickness direction A of the first region 12 (see FIGS. 1 and 3). When satisfying such a configuration, the maximum value of the fluorine concentration is located near the surface 11, so that antibacterial properties are enhanced.
 ここで、フッ素濃度における濃度とは、原子濃度である。一実施形態において、フッ素濃度とは、単位体積当たりのチタン原子の理想原子数とフッ素原子数の和に対する、単位体積当たりのフッ素原子数である。フッ素濃度の測定方法としては、例えば、二次イオン質量分析法(Secondary Ion Mass Spectrometry:以下、「SIMS」ということがある。)またはXPSなどが挙げられる。SIMSは、フッ素濃度が比較的小さいときに好適である。XPSは、フッ素濃度が比較的大きいときに好適である。 Here, the concentration in fluorine concentration is atomic concentration. In one embodiment, the fluorine concentration is the number of fluorine atoms per unit volume relative to the sum of the ideal number of titanium atoms per unit volume and the number of fluorine atoms. Examples of the method for measuring the fluorine concentration include secondary ion mass spectrometry (Secondary / Ion / Mass / Spectrometry: hereinafter sometimes referred to as “SIMS”), XPS, and the like. SIMS is suitable when the fluorine concentration is relatively small. XPS is suitable when the fluorine concentration is relatively large.
 フッ素濃度の最大値は、例えば、10~80原子%である。表面11から深さ5nm未満の領域におけるフッ素濃度は、例えば、0.5~20原子%である。深さ5nm以上20nm未満の領域におけるフッ素濃度は、例えば、2~30原子%である。深さ20nm以上50nm未満の領域におけるフッ素濃度は、例えば、5~80原子%である。深さ50nm以上100nm以下の領域におけるフッ素濃度は、例えば、2~80原子%である。 The maximum value of the fluorine concentration is, for example, 10 to 80 atomic%. The fluorine concentration in the region less than 5 nm deep from the surface 11 is, for example, 0.5 to 20 atomic%. The fluorine concentration in the region having a depth of 5 nm or more and less than 20 nm is, for example, 2 to 30 atomic%. The fluorine concentration in the region having a depth of 20 nm or more and less than 50 nm is, for example, 5 to 80 atomic%. The fluorine concentration in the region having a depth of 50 nm or more and 100 nm or less is, for example, 2 to 80 atomic%.
 複合材料1の硬度は、表面11よりも内方において最大値を示していてもよい(図4参照)。このような構成を満たすときは、摩耗などによって新しい表面11が露出するとき、相対的に大きな硬度を有する表面11が露出しやすくなることから、長期にわたって表面11が大きな硬度を有する可能性が高まる。なお、硬度の説明における表面11は、上述したフッ素濃度の説明における表面11と同一である。 The hardness of the composite material 1 may be a maximum value inward of the surface 11 (see FIG. 4). When such a configuration is satisfied, when the new surface 11 is exposed due to wear or the like, the surface 11 having a relatively large hardness is likely to be exposed, and thus the possibility that the surface 11 has a large hardness over a long period of time increases. . The surface 11 in the description of hardness is the same as the surface 11 in the description of fluorine concentration described above.
 硬度は、表面11から内方に向かうにつれて大きくなって最大値に至っていてもよい(図4参照)。言い換えれば、深さが大きくなるにつれて、硬度が大きくなって最大値に至っていてもよい。このような構成を満たすときは、摩耗などによって新しい表面11が露出するとき、相対的に大きな硬度を有する表面11が露出することから、長期にわたって表面11が大きな硬度を有するようになる。 The hardness may increase from the surface 11 inward and reach a maximum value (see FIG. 4). In other words, as the depth increases, the hardness may increase and reach a maximum value. When satisfying such a configuration, when the new surface 11 is exposed due to wear or the like, the surface 11 having a relatively large hardness is exposed, so that the surface 11 has a large hardness over a long period of time.
 また、硬度は、表面11から内方に向かうにつれて大きくなって最大値に至った後、さらに内方に向かうにつれて小さくなっていてもよい(図4参照)。言い換えれば、複合材料1は、内部において硬度の変化が緩やかになるように構成されてもよい。これによれば、複合材料1内部の硬度が急激に変化する構成と比較して、局所的な応力の発生を低減することができるため、第1領域12が剥離する可能性を低減することができる。 Further, the hardness may increase as it goes inward from the surface 11 and reaches a maximum value, and then may decrease as it goes further inward (see FIG. 4). In other words, the composite material 1 may be configured such that the change in hardness is moderate inside. According to this, since the generation of local stress can be reduced as compared with a configuration in which the hardness inside the composite material 1 changes abruptly, the possibility that the first region 12 peels can be reduced. it can.
 硬度の最大値は、第1領域12内に位置していてもよい。このような構成を満たすときは、硬度の最大値が表面11の近くに位置することから、表面11およびその近傍の硬度を大きくすることができる。 The maximum value of hardness may be located in the first region 12. When satisfying such a configuration, since the maximum hardness value is located near the surface 11, the hardness of the surface 11 and the vicinity thereof can be increased.
 硬度の最大値は、第1領域12の厚み方向Aの中央部12aよりも表面11の側に位置していてもよい(図1および図4参照)。このような構成を満たすときは、硬度の最大値が表面11の近くに位置することから、表面11およびその近傍の硬度を大きくすることができる。 The maximum value of hardness may be located closer to the surface 11 than the central portion 12a in the thickness direction A of the first region 12 (see FIGS. 1 and 4). When satisfying such a configuration, since the maximum hardness value is located near the surface 11, the hardness of the surface 11 and the vicinity thereof can be increased.
 硬度の最大値は、フッ素濃度の最大値よりも表面11の近くに位置していてもよい(図3および図4参照)。このような構成を満たすときは、フッ素濃度の最大値よりも表面11の近くに位置している部位の硬度が、相対的に大きくなる。それゆえ、フッ素濃度の最大値よりも表面11の近くに位置している部位が、摩耗などによって損傷し難くなり、長期にわたって抗菌性を発揮することが可能となる。 The maximum value of hardness may be located closer to the surface 11 than the maximum value of fluorine concentration (see FIGS. 3 and 4). When such a configuration is satisfied, the hardness of the portion located near the surface 11 is relatively larger than the maximum value of the fluorine concentration. Therefore, the part located closer to the surface 11 than the maximum value of the fluorine concentration is less likely to be damaged by abrasion or the like, and can exhibit antibacterial properties over a long period of time.
 硬度は、例えば、3~10GPaである。硬度の最大値は、例えば、5~10GPaである。硬度は、押し込み硬度であって、表面11が変形を受けるときの変形し難さを示すものである。硬度は、表面11に圧子を押し込んだときの押し込み深さと要する力とから算出される。具体的な硬度の測定方法としては、例えば、ナノインデンテーション法(ISO 14577準拠)などが挙げられる。 The hardness is, for example, 3 to 10 GPa. The maximum value of hardness is, for example, 5 to 10 GPa. The hardness is indentation hardness and indicates the difficulty of deformation when the surface 11 is deformed. The hardness is calculated from the indentation depth when the indenter is pushed into the surface 11 and the required force. Specific examples of the hardness measurement method include a nanoindentation method (ISO 14577 compliant).
 複合材料1は、最表面に位置している酸化皮膜(不図示)をさらに備えていてもよい。この場合、複合材料1の表面11は、酸化皮膜の表面からなる。酸化皮膜の厚みは、例えば、2~5nmである。酸化皮膜の組成としては、例えば、TiO2(二酸化チタン)などが挙げられる。酸化皮膜は、フッ素を含んでいてもよい。酸化皮膜は、例えば、酸化処理などによって形成される。酸化処理としては、例えば、自然酸化、熱処理、酸素プラズマ処理、酸溶液への浸漬または陽極酸化などが挙げられる。 The composite material 1 may further include an oxide film (not shown) located on the outermost surface. In this case, the surface 11 of the composite material 1 consists of the surface of an oxide film. The thickness of the oxide film is, for example, 2 to 5 nm. Examples of the composition of the oxide film include TiO 2 (titanium dioxide). The oxide film may contain fluorine. The oxide film is formed by, for example, oxidation treatment. Examples of the oxidation treatment include natural oxidation, heat treatment, oxygen plasma treatment, immersion in an acid solution, or anodic oxidation.
 複合材料1において、チタンの含有量は、フッ素の含有量よりも多くてもよい。また、複合材料1は、チタンを主成分として含んでいてもよい。主成分とは、複合材料1中に質量比で最も多く含まれる成分のことである。 In the composite material 1, the titanium content may be greater than the fluorine content. The composite material 1 may contain titanium as a main component. The main component is a component that is most contained in the composite material 1 by mass ratio.
 <複合材料の製造方法>
 次に、一実施形態に係るに係る複合材料の製造方法について、上述した複合材料1を得る場合を例にとって、詳細に説明する。
<Production method of composite material>
Next, the manufacturing method of the composite material according to the embodiment will be described in detail by taking as an example the case of obtaining the composite material 1 described above.
 まず、チタン系金属を準備する。チタン系金属は、必要に応じて洗浄してもよい。洗浄には、例えば、有機溶剤などを使用してもよい。有機溶剤としては、例えば、エタノールまたはアセトンなどが挙げられる。例示した有機溶剤は、混合して使用してもよい。洗浄は、超音波をかけて行ってもよい。洗浄後のチタン系金属は、例えば、デシケーター内で真空乾燥させてもよい。 First, prepare a titanium-based metal. You may wash | clean a titanium-type metal as needed. For example, an organic solvent may be used for cleaning. Examples of the organic solvent include ethanol or acetone. The exemplified organic solvents may be used as a mixture. The cleaning may be performed by applying ultrasonic waves. The titanium-based metal after cleaning may be vacuum-dried in a desiccator, for example.
 次に、チタン系金属の表面にフッ素イオンを注入し、複合材料1を得る。フッ素イオンの注入条件としては、例えば、以下の条件が挙げられる。
 注入エネルギー:30keVよりも大きく80keV以下
 注入ドーズ:1×1016~5×1017原子/cm2(atom/cm2
Next, fluorine ions are implanted into the surface of the titanium-based metal to obtain the composite material 1. Examples of fluorine ion implantation conditions include the following conditions.
Implant energy: greater than 30 keV and less than 80 keV Implant dose: 1 × 10 16 to 5 × 10 17 atoms / cm 2 (atom / cm 2 )
 得られた複合材料1は、必要に応じて洗浄してもよい。洗浄の条件は、上述したチタン系金属で例示したのと同じ条件が挙げられる。洗浄後の複合材料1は、例えば、デシケーター内で真空乾燥させてもよい。 The obtained composite material 1 may be washed as necessary. The conditions for cleaning include the same conditions as exemplified for the titanium-based metal described above. The composite material 1 after washing may be vacuum-dried in a desiccator, for example.
 なお、上述した実施形態では、フッ素イオンの注入によって複合材料1を得る場合を例にとって説明したが、複合材料1の製造方法としては、これに限定されるものではなく、複合材料1が得られる限り、フッ素イオンの注入以外の他の方法を採用することができる。 In the above-described embodiment, the case where the composite material 1 is obtained by fluorine ion implantation has been described as an example. However, the method for manufacturing the composite material 1 is not limited to this, and the composite material 1 is obtained. As long as other methods are available, other methods than fluorine ion implantation may be employed.
 <生体インプラント>
 次に、一実施形態に係る生体インプラントについて、図面を用いて詳細に説明する。なお、本実施形態では、生体インプラントの例として、歯科インプラントについて説明する。
<Biological implant>
Next, the biological implant which concerns on one Embodiment is demonstrated in detail using drawing. In this embodiment, a dental implant will be described as an example of a biological implant.
 図2は、一実施形態に係る歯科インプラントの外観を示す概略図である。 FIG. 2 is a schematic view showing the appearance of a dental implant according to an embodiment.
 歯科インプラント100は、フィクスチャー101と、フィクスチャー101の端部に取り付けられているアバットメント102と、アバットメント102を介してフィクスチャー101に取り付けられている人工歯103とを備えている。 The dental implant 100 includes a fixture 101, an abutment 102 attached to the end of the fixture 101, and an artificial tooth 103 attached to the fixture 101 via the abutment 102.
 歯科インプラント100は、フィクスチャー101、アバットメント102および人工歯103のそれぞれが複合材料1を含んでいる。上述の通り、複合材料1が、抗菌性を有し、且つ、大きな硬度を有していることから、歯科インプラント100は、細菌の増殖を抑制することができ、ブラッシング、繰り返しの使用または洗浄などに対して優れた耐久性を発揮することが可能となる。 In the dental implant 100, each of the fixture 101, the abutment 102, and the artificial tooth 103 includes the composite material 1. As described above, since the composite material 1 has antibacterial properties and a large hardness, the dental implant 100 can suppress bacterial growth, such as brushing, repeated use, or cleaning. It is possible to exhibit excellent durability against.
 ここで、フィクスチャー101、アバットメント102および人工歯103のそれぞれは、複合材料1のみで構成されていてもよい。また、これらは、一部が複合材料1で構成されており、残りの部位が複合材料1以外の材料で構成されていてもよい。また、フィクスチャー101、アバットメント102および人工歯103のうち少なくとも1つが複合材料1を含んでおり、他の部材が複合材料1以外の材料を含んでいればよい。上記のような構成によれば、インプラント表面の細菌の増殖が抑制される。例えば、フィクスチャー101、およびアバットメント102は酸素の欠乏した環境で使用されるため嫌気性細菌の増殖抑制が期待できる。また、例えば、人工歯103は口腔内で露出し空気にさらされるため通性嫌気性細菌や好気性細菌の増殖抑制が期待できる。したがって、複合材料1は、増殖を抑制したい菌種、必要な抗菌性能に応じて、フィクスチャー101、アバットメント102および人工歯103に適宜用いられればよい。 Here, each of the fixture 101, the abutment 102, and the artificial tooth 103 may be composed of only the composite material 1. These may be partially composed of the composite material 1 and the remaining portion may be composed of a material other than the composite material 1. Further, at least one of the fixture 101, the abutment 102, and the artificial tooth 103 may include the composite material 1, and the other member may include a material other than the composite material 1. According to the above configuration, the growth of bacteria on the implant surface is suppressed. For example, since the fixture 101 and the abutment 102 are used in an oxygen-deficient environment, it can be expected to suppress the growth of anaerobic bacteria. Further, for example, since the artificial tooth 103 is exposed in the oral cavity and exposed to air, growth of facultative anaerobic bacteria and aerobic bacteria can be expected. Therefore, the composite material 1 may be appropriately used for the fixture 101, the abutment 102, and the artificial tooth 103 according to the bacterial species whose growth is to be suppressed and the necessary antibacterial performance.
 複合材料1における第1領域12は、例えば、歯科インプラント100のうち細菌が接触する可能性がある部位、摩耗する可能性がある部位などに位置していればよい。例えば、歯科インプラント100は、第1領域12が、フィクスチャー101、アバットメント102、および人工歯103の表面に位置するように構成されればよい。また、例えば、歯科インプラント100は、第1領域12が、フィクスチャー101、アバットメント102、および人工歯103の各接合箇所に位置するように構成されればよい。この点は、後述する他の生体インプラント、生体インプラント以外の他の部材においても同様である。 1st area | region 12 in the composite material 1 should just be located in the site | part which bacteria may contact in the dental implant 100, the site | part which may be worn out, etc., for example. For example, the dental implant 100 may be configured such that the first region 12 is located on the surfaces of the fixture 101, the abutment 102, and the artificial tooth 103. Further, for example, the dental implant 100 may be configured such that the first region 12 is positioned at each joint location of the fixture 101, the abutment 102, and the artificial tooth 103. This also applies to other members other than the living body implant and the living body implant described later.
 以上、本開示に係る一実施形態について例示したが、本開示は上述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない限り任意のものとすることができることはいうまでもない。 As mentioned above, although one embodiment concerning this indication was illustrated, this indication is not limited to the embodiment mentioned above, and it cannot be overemphasized that it may be arbitrary, unless it deviates from the gist of this indication. .
 例えば、上述した実施形態では、生体インプラントが歯科インプラントである場合を例にとって説明したが、生体インプラントは、これに限定されるものではない。例えば、生体インプラントは、チタンなどの生体用金属製のインプラントであればよい。他の生体インプラントとしては、例えば、大腿骨ステムまたは寛骨臼シェルなどの人工関節、および脊椎固定インストゥルメンテーションなどの脊椎外科インプラントなどが挙げられる。 For example, in the above-described embodiment, the case where the biological implant is a dental implant has been described as an example, but the biological implant is not limited thereto. For example, the living body implant may be an implant made of a living body metal such as titanium. Other biological implants include, for example, artificial joints such as femoral stems or acetabular shells, and spinal surgical implants such as spinal fusion instrumentation.
 また、上述した実施形態では、複合材料1が生体インプラント用である場合を例にとって説明したが、複合材料1は、生体インプラント用に限定されるものではない。すなわち、複合材料1は、抗菌性および高硬度性を要する部材の材料として用いられればよい。他の部材としては、例えば、歯科矯正ワイヤー、手術器具、注射針、メガネのフレーム、食器類、食品工場のライン、水筒の飲み口、包丁、トイレ、ウォシュレット(登録商標)、蛇口または上下水道管などが挙げられる。 In the above-described embodiment, the case where the composite material 1 is used for a biological implant has been described as an example. However, the composite material 1 is not limited to use for a biological implant. That is, the composite material 1 may be used as a material for members that require antibacterial properties and high hardness. Other members include, for example, orthodontic wires, surgical instruments, injection needles, glasses frames, dishes, food factory lines, water bottle taps, kitchen knives, toilets, Washlets (registered trademark), faucets or water and sewage pipes Etc.
 以下、実施例を挙げて本開示を詳細に説明する。なお、本開示は以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described in detail with reference to examples. Note that the present disclosure is not limited to the following examples.
 [実施例1および実施例2]
  <複合材料の作製>
 まず、以下に示す試験片を準備した。
 試験片:C.P.2種チタンからなる厚さ1mmの純チタン
[Example 1 and Example 2]
<Production of composite material>
First, the following test pieces were prepared.
Test piece: C.I. P. Pure titanium with a thickness of 1 mm made of two types of titanium
 上述した試験片を、直径14mm、厚さ1mmの円盤状に成形した後、エタノールおよびアセトンで超音波洗浄し、デシケーター内で真空乾燥させた。そして、試験片の表面に異なる条件でフッ素イオンを注入し、実施例1および実施例2の複合材料1を得た。 The test piece described above was formed into a disk shape having a diameter of 14 mm and a thickness of 1 mm, and then ultrasonically washed with ethanol and acetone, and vacuum dried in a desiccator. And the fluorine ion was inject | poured on the surface of a test piece on different conditions, and the composite material 1 of Example 1 and Example 2 was obtained.
 フッ素イオンの注入条件は、以下のとおりである。
  (実施例1)
 注入エネルギー:40keV
 注入ドーズ:5×1017原子/cm2
  (実施例2)
 注入エネルギー:40keV
 注入ドーズ:5×1016原子/cm2
Fluorine ion implantation conditions are as follows.
Example 1
Injection energy: 40 keV
Implantation dose: 5 × 10 17 atoms / cm 2
(Example 2)
Injection energy: 40 keV
Implantation dose: 5 × 10 16 atoms / cm 2
 得られた複合材料1は、エタノールおよびアセトンで超音波洗浄し、デシケーター内で真空乾燥させた後、評価に使用した。 The obtained composite material 1 was ultrasonically washed with ethanol and acetone, vacuum-dried in a desiccator, and then used for evaluation.
 [比較例1]
 実施例1および実施例2と同じ試験片であってフッ素イオンを注入しなかったものを比較例1とした。
[Comparative Example 1]
Comparative Example 1 was the same test piece as in Example 1 and Example 2 in which fluorine ions were not implanted.
  <評価>
 実施例1および実施例2の複合材料1について、フッ素濃度、硬度および結晶構造を測定した。また、実施例1の複合材料1については、抗菌性を測定した。比較例1については、硬度および抗菌性を測定した。
<Evaluation>
For the composite material 1 of Example 1 and Example 2, the fluorine concentration, hardness and crystal structure were measured. Moreover, about the composite material 1 of Example 1, antibacterial property was measured. For Comparative Example 1, hardness and antibacterial properties were measured.
 図3は、実施例1および実施例2におけるフッ素濃度の測定結果を示すグラフである。 FIG. 3 is a graph showing the measurement results of fluorine concentration in Example 1 and Example 2.
  (フッ素濃度)
 実施例1および実施例2のフッ素濃度は、XPSおよびSIMSによって測定した。具体的には、フッ素濃度が比較的大きくてSIMSの測定範囲を超える領域はXPSよってフッ素濃度を求め、それ以外の領域はSIMSによってフッ素濃度を求めた。具体的には、フッ素濃度が10原子%までの範囲はSIMSによってフッ素濃度を求めた。また、フッ素濃度が10原子%以上の範囲は、XPSによってフッ素濃度を求めた。ここで、XPSの測定は、深さ0~200nmで実施し、SIMSの測定は、深さ0~900nmで実施した。なお、図3には、深さ0~200nmの測定結果のみを示した。また、図3において、深さ0nmは、複合材料1の表面11を示す。この点は、後述する図4においても同様である。XPSおよびSIMSのそれぞれの測定条件は、以下のとおりである。
(Fluorine concentration)
The fluorine concentrations of Example 1 and Example 2 were measured by XPS and SIMS. Specifically, the fluorine concentration was determined by XPS in a region where the fluorine concentration was relatively large and exceeded the SIMS measurement range, and the fluorine concentration was determined by SIMS in other regions. Specifically, the fluorine concentration was determined by SIMS in the range where the fluorine concentration was up to 10 atomic%. Moreover, the fluorine concentration was calculated | required by XPS in the range whose fluorine concentration is 10 atomic% or more. Here, the XPS measurement was performed at a depth of 0 to 200 nm, and the SIMS measurement was performed at a depth of 0 to 900 nm. FIG. 3 shows only the measurement results at a depth of 0 to 200 nm. In FIG. 3, the depth of 0 nm indicates the surface 11 of the composite material 1. This also applies to FIG. 4 described later. The measurement conditions for XPS and SIMS are as follows.
   (XPSの測定条件)
 分析装置:ULVAC-PHI社製のX線光電子分光分析装置「PHI Quantera II」
 X線源:モノクロAlKα
 スパッタリングイオン:Ar+
 加速電圧:4kV
(XPS measurement conditions)
Analyzer: X-ray photoelectron spectrometer “PHI Quantera II” manufactured by ULVAC-PHI
X-ray source: Monochrome AlKα
Sputtering ion: Ar +
Acceleration voltage: 4 kV
   (SIMSの測定条件)
 分析装置:ULVAC-PHI社製の二次イオン質量分析装置「D-SIMS 6650」
 一次イオン種:Cs+
 二次イオン極性:Negative
 加速電圧:2kV
 ビーム電流:25nA
 電荷補償:なし
 ラスターサイズ:400μm
(SIMS measurement conditions)
Analyzer: Secondary ion mass spectrometer “D-SIMS 6650” manufactured by ULVAC-PHI
Primary ion species: Cs +
Secondary ion polarity: Negative
Acceleration voltage: 2 kV
Beam current: 25 nA
Charge compensation: None Raster size: 400 μm
 測定結果から、実施例1では、深さ90nmにフッ素濃度の最大値が位置していることが明らかとなった。実施例1のフッ素濃度の最大値は、63原子%であった。実施例2では、深さ46nmにフッ素濃度の最大値が位置していていることが明らかとなった。実施例2のフッ素濃度の最大値は、11原子%であった。 From the measurement results, it was revealed that in Example 1, the maximum value of the fluorine concentration is located at a depth of 90 nm. The maximum fluorine concentration of Example 1 was 63 atomic%. In Example 2, it was revealed that the maximum value of the fluorine concentration is located at a depth of 46 nm. The maximum value of the fluorine concentration in Example 2 was 11 atomic%.
 深さ0nm(表面11)からフッ素濃度が1ppmとなる深さまでを第1領域12とし、その厚みTを測定した。測定結果は、以下のとおりである。
   (第1領域の厚みT)
 実施例1:740nm
 実施例2:390nm
From the depth of 0 nm (surface 11) to the depth at which the fluorine concentration becomes 1 ppm was defined as the first region 12, and the thickness T was measured. The measurement results are as follows.
(Thickness T of the first region)
Example 1: 740 nm
Example 2: 390 nm
 図4は、実施例1、実施例2および比較例1における硬度の測定結果を示すグラフである。 FIG. 4 is a graph showing the measurement results of hardness in Example 1, Example 2, and Comparative Example 1.
  (硬度)
 硬度は、ナノインデンテーション法(ISO 14577準拠)によって測定した。ここで、測定は、深さ0~1000nmで実施した。なお、図4には、深さ0~500nmの測定結果のみを示した。
(hardness)
Hardness was measured by a nanoindentation method (ISO 14577 compliant). Here, the measurement was performed at a depth of 0 to 1000 nm. FIG. 4 shows only the measurement results at a depth of 0 to 500 nm.
 硬度の測定条件は、以下のとおりである。
 測定装置:MTSシステムズ社製の「ナノインデンターXP」
 測定モード:連続剛性測定
 押込み深さ:最大1000nm
 硬度単位:ビッカース硬度
The measurement conditions of hardness are as follows.
Measuring device: “Nanoindenter XP” manufactured by MTS Systems
Measurement mode: Continuous stiffness measurement Indentation depth: 1000 nm maximum
Hardness unit: Vickers hardness
 測定結果から、実施例1では、深さ70nmに硬度の最大値が位置していることが明らかとなった。実施例1の硬度の最大値は、5GPaであった。実施例2では、深さ20nmに硬度の最大値が位置していることが明らかとなった。実施例2の硬度の最大値は、7GPaであった。 From the measurement results, it was revealed that in Example 1, the maximum hardness value is located at a depth of 70 nm. The maximum hardness value of Example 1 was 5 GPa. In Example 2, it became clear that the maximum value of hardness is located at a depth of 20 nm. The maximum hardness value of Example 2 was 7 GPa.
  (結晶構造)
 結晶構造は、TEM、XRDおよびXPSによって評価した。なお、TEM、XRDおよびXPSの各測定では、上述した第1領域12の厚みTから第1領域12を判断し、第1領域12よりも内方に位置している領域を第2領域とした。
(Crystal structure)
The crystal structure was evaluated by TEM, XRD and XPS. In each measurement of TEM, XRD, and XPS, the first region 12 is determined from the thickness T of the first region 12 described above, and the region located inward of the first region 12 is defined as the second region. .
 TEMの測定条件は、以下のとおりである。
 分析装置:FEI社製の透過型電子顕微鏡「Talos F200X」
 加速電圧:200kV
 ビーム電流値:150pA
 測定場所:複合材料1を厚み方向に切断した断面
The measurement conditions of TEM are as follows.
Analyzer: Transmission electron microscope “Talos F200X” manufactured by FEI
Accelerating voltage: 200kV
Beam current value: 150 pA
Measurement location: cross section of composite material 1 cut in thickness direction
 XRDの測定条件は、以下のとおりである。
 分析装置:PANalytical社製の「X’ Pert PRO-MRD」
 管球:CuKα
 入射角度:0.5°
 測定範囲:10~120°
The measurement conditions of XRD are as follows.
Analyzer: “X 'Pert PRO-MRD” manufactured by PANalytical
Tube: CuKα
Incident angle: 0.5 °
Measurement range: 10 to 120 °
 XPSの測定条件は、上述したフッ素濃度と同じである。 XPS measurement conditions are the same as the fluorine concentration described above.
 まず、TEMによる断面観察を実施した。回折パターンは、国際回折データセンター(International Centre for Diffraction Data, ICDD)が提供するデータベースを参照した(TiOF2:ICDD No.00-008-0060、チタンα相:ICDD No.00-044-1294)。観察の結果、実施例1および実施例2ではいずれも、第1領域12内にTiOF2(結晶相2)に帰属する回折パターンが得られ、第2領域内にチタンα相の回折パターン(第2相32)が得られた。 First, cross-sectional observation by TEM was performed. For the diffraction pattern, a database provided by the International Center for Diffraction Data (ICDD) was referred to (TiOF2: ICDD No. 00-008-0060, titanium α phase: ICDD No. 00-044-1294). As a result of observation, in both Example 1 and Example 2, a diffraction pattern attributed to TiOF 2 (crystalline phase 2) was obtained in the first region 12, and a diffraction pattern of the titanium α phase (first in the second region). Two phases 32) were obtained.
 また、実施例1および実施例2ではいずれも、第1領域12内に第1相31が確認された。実施例1では、結晶相2が第1相31よりも多く確認された。実施例2では、第1相31が結晶相2よりも多く確認された。また、実施例1では、第1領域12内に非晶質相4および混合相5が確認された。 In both Example 1 and Example 2, the first phase 31 was confirmed in the first region 12. In Example 1, the crystal phase 2 was confirmed more than the first phase 31. In Example 2, the first phase 31 was confirmed more than the crystal phase 2. In Example 1, the amorphous phase 4 and the mixed phase 5 were confirmed in the first region 12.
 次に、XRDによる測定を実施した。回折パターンはICDDが提供するJCPDSを参照した。測定の結果、第1領域12において第2領域と異なる結晶構造が確認された。 Next, measurement by XRD was performed. The diffraction pattern referred to JCPDS provided by ICDD. As a result of the measurement, a crystal structure different from the second region in the first region 12 was confirmed.
 そして、XPSによる測定を実施した。ピークの帰属については、表1に示す。測定の結果、実施例1および実施例2ではいずれも、TiF3、TiF4およびF-TiO2に帰属するピークが得られた。また、実施例1では、Ti-F-Ti結合に帰属するピークが得られたが、このピークは、チタンフッ化物の結晶に起因するものと考えられる。その他は、図1に示す状態が確認された。 And the measurement by XPS was implemented. The assignment of peaks is shown in Table 1. As a result of measurement, in both Example 1 and Example 2, peaks attributable to TiF 3 , TiF 4 and F—TiO 2 were obtained. Further, in Example 1, a peak attributed to the Ti—F—Ti bond was obtained, but this peak is considered to be attributable to titanium fluoride crystals. Otherwise, the state shown in FIG. 1 was confirmed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  (抗菌性)
 抗菌性は、黄色ブドウ球菌を使用したフィルム密着試験(JIS Z 2801準拠)によって測定した。
(Antibacterial)
Antibacterial properties were measured by a film adhesion test using staphylococcus aureus (according to JIS Z 2801).
 測定結果は、以下のとおりである。
 付着生菌数(CFUs)
  実施例1:<10(検出限界以下)
  比較例1:17667
The measurement results are as follows.
Adherent viable count (CFUs)
Example 1: <10 (below detection limit)
Comparative Example 1: 17667
 測定の結果、実施例1では、付着生菌数が検出限界以下であった。また、実施例1の抗菌活性値は、3.2であった。したがって、実施例1は、抗菌効果を有していることが明らかとなった。 As a result of measurement, in Example 1, the number of viable bacteria was below the detection limit. Moreover, the antibacterial activity value of Example 1 was 3.2. Therefore, it was revealed that Example 1 has an antibacterial effect.
 1・・・複合材料
 2・・・チタンフッ化物の結晶相
 3・・・チタンの金属結晶相
  31・・・第1相
  32・・・第2相
 4・・・非晶質相
 5・・・混合相
 11・・・表面
 12・・・第1領域
  12a・・・中央部
  T・・・厚み
  A・・・厚み方向
 13・・・第2領域
 100・・・歯科インプラント
 101・・・フィクスチャー
 102・・・アバットメント
 103・・・人工歯
DESCRIPTION OF SYMBOLS 1 ... Composite material 2 ... Crystalline phase of titanium fluoride 3 ... Metal crystal phase of titanium 31 ... First phase 32 ... Second phase 4 ... Amorphous phase 5 ... Mixed phase 11 ... surface 12 ... first region 12a ... central portion T ... thickness A ... thickness direction 13 ... second region 100 ... dental implant 101 ... fixture 102 ... Abutment 103 ... Artificial tooth

Claims (19)

  1.  チタンフッ化物の結晶相と、チタンの金属結晶相と、を有し、
     前記チタンフッ化物の結晶相は、表面から深さ方向に離れて位置する第1領域に存在する、複合材料。
    Having a crystal phase of titanium fluoride and a metal crystal phase of titanium,
    The titanium fluoride crystal phase is a composite material present in a first region located away from the surface in the depth direction.
  2.  前記チタンフッ化物は、TiOF2である、請求項1に記載の複合材料。 The composite material according to claim 1, wherein the titanium fluoride is TiOF 2 .
  3.  前記金属結晶相は、フッ素を含む第1相を有する、請求項1または2に記載の複合材料。 The composite material according to claim 1 or 2, wherein the metal crystal phase has a first phase containing fluorine.
  4.  前記第1相は、前記第1領域に位置している、請求項3に記載の複合材料。 The composite material according to claim 3, wherein the first phase is located in the first region.
  5.  前記金属結晶相は、前記第1相よりも内方に位置する第2相、をさらに有し、
     前記第2相は、フッ素を含まない、請求項3または4に記載の複合材料。
    The metal crystal phase further includes a second phase located inward of the first phase;
    The composite material according to claim 3 or 4, wherein the second phase does not contain fluorine.
  6.  前記第2相は、前記第1領域よりも内方に位置している、請求項5に記載の複合材料。 The composite material according to claim 5, wherein the second phase is located inward of the first region.
  7.  チタンおよびフッ素を含む非晶質相、をさらに有する、請求項1~6のいずれかに記載の複合材料。 The composite material according to any one of claims 1 to 6, further comprising an amorphous phase containing titanium and fluorine.
  8.  前記非晶質相、前記チタンフッ化物の結晶相、および前記金属結晶相の混合相、をさらに有する、請求項7に記載の複合材料。 The composite material according to claim 7, further comprising a mixed phase of the amorphous phase, the crystal phase of the titanium fluoride, and the metal crystal phase.
  9.  フッ素濃度は、表面よりも内方において最大値を示す、請求項1~8のいずれかに記載の複合材料。 9. The composite material according to claim 1, wherein the fluorine concentration shows a maximum value inward from the surface.
  10.  前記フッ素濃度は、前記表面から内方に向かうにつれて大きくなって最大値に至っている、請求項9に記載の複合材料。 The composite material according to claim 9, wherein the fluorine concentration increases from the surface inward and reaches a maximum value.
  11.  前記フッ素濃度は、前記第1領域内で最大値に至っている、請求項9または10に記載の複合材料。 The composite material according to claim 9 or 10, wherein the fluorine concentration reaches a maximum value in the first region.
  12.  前記フッ素濃度は、前記第1領域の深さ方向の中央部よりも前記表面の側で最大値に至っている、請求項11に記載の複合材料。 The composite material according to claim 11, wherein the fluorine concentration reaches a maximum value on the surface side with respect to a central portion in the depth direction of the first region.
  13.  硬度は、表面よりも内方において最大値を示す、請求項1~12のいずれかに記載の複合材料。 The composite material according to any one of claims 1 to 12, wherein the hardness shows a maximum value inward from the surface.
  14.  前記硬度は、前記表面から内方に向かうにつれて大きくなって最大値に至っている、請求項13に記載の複合材料。 The composite material according to claim 13, wherein the hardness increases from the surface inward and reaches a maximum value.
  15.  前記硬度は、前記第1領域内で最大値に至っている、請求項13または14に記載の複合材料。 The composite material according to claim 13 or 14, wherein the hardness reaches a maximum value in the first region.
  16.  前記硬度は、前記第1領域の深さ方向の中央部よりも前記表面の側で最大値に至っている、請求項15に記載の複合材料。 The composite material according to claim 15, wherein the hardness reaches a maximum value on the surface side with respect to a central portion in a depth direction of the first region.
  17.  硬度は、フッ素濃度が最大値を示す位置よりも表面の側で最大値を示す、請求項1~16のいずれかに記載の複合材料。 The composite material according to any one of claims 1 to 16, wherein the hardness shows a maximum value on the surface side from a position where the fluorine concentration shows a maximum value.
  18.  生体インプラント用である、請求項1~17のいずれかに記載の複合材料。 The composite material according to any one of claims 1 to 17, which is used for biological implants.
  19.  請求項1~18のいずれかに記載の複合材料を含む、生体インプラント。 A biological implant comprising the composite material according to any one of claims 1 to 18.
PCT/JP2019/021484 2018-06-01 2019-05-30 Composite material and bioimplant WO2019230871A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19811092.6A EP3804768A4 (en) 2018-06-01 2019-05-30 Composite material and bioimplant
JP2020522583A JP7155259B2 (en) 2018-06-01 2019-05-30 Composites and bioimplants
CN201980034963.4A CN112188903A (en) 2018-06-01 2019-05-30 Composite material and bioimplant
AU2019279208A AU2019279208B2 (en) 2018-06-01 2019-05-30 Composite material and bioimplant
US17/058,063 US20210196862A1 (en) 2018-06-01 2019-05-30 Composite material and bioimplant
JP2022160717A JP7400049B2 (en) 2018-06-01 2022-10-05 Composite material manufacturing method
JP2023205780A JP2024028859A (en) 2018-06-01 2023-12-06 Composite material and bioimplant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-106267 2018-06-01
JP2018106267 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019230871A1 true WO2019230871A1 (en) 2019-12-05

Family

ID=68698885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021484 WO2019230871A1 (en) 2018-06-01 2019-05-30 Composite material and bioimplant

Country Status (6)

Country Link
US (1) US20210196862A1 (en)
EP (1) EP3804768A4 (en)
JP (3) JP7155259B2 (en)
CN (1) CN112188903A (en)
AU (1) AU2019279208B2 (en)
WO (1) WO2019230871A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130981A1 (en) * 2020-12-15 2022-06-23 京セラ株式会社 Composite material, method for manufacturing same, and biological implant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332569A (en) * 2001-05-11 2002-11-22 Ion Engineering Research Institute Corp SURFACE MODIFYING METHOD FOR IMPARTING HIGH TEMPERATURE OXIDATION RESISTANCE TO Ti-Al BASED ALLOY
JP2005533551A (en) * 2002-07-19 2005-11-10 アストラ・テック・アクチエボラーグ Methods for treating implants and implant surfaces
JP4568396B2 (en) 2000-03-01 2010-10-27 株式会社イオンテクノセンター Surface treatment method of metal material and fluorination mold
JP2017101275A (en) * 2015-12-01 2017-06-08 京セラメディカル株式会社 Titanium material and living body implant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628459A1 (en) * 1996-07-15 1998-01-29 Siemens Ag Semiconductor device with low contact resistance to highly doped areas
JP2004000504A (en) 2002-04-09 2004-01-08 Techno Network Shikoku Co Ltd Intraoral appliance and ion implantation method to intraoral appliance
DE202009018006U1 (en) * 2009-05-13 2011-01-20 Renkel, Manfred Implant made of an intermetallic titanium aluminide alloy
CN107773782A (en) 2016-08-24 2018-03-09 上海双申医疗器械股份有限公司 It is a kind of to put forward high purity titanium and the method for titanium alloy surface cytocompatibility and biocidal property
CN106637121B (en) * 2016-10-19 2019-04-12 中国科学院上海硅酸盐研究所慈溪生物材料表面工程中心 A kind of medical titanium metal alkyl materials and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568396B2 (en) 2000-03-01 2010-10-27 株式会社イオンテクノセンター Surface treatment method of metal material and fluorination mold
JP2002332569A (en) * 2001-05-11 2002-11-22 Ion Engineering Research Institute Corp SURFACE MODIFYING METHOD FOR IMPARTING HIGH TEMPERATURE OXIDATION RESISTANCE TO Ti-Al BASED ALLOY
JP2005533551A (en) * 2002-07-19 2005-11-10 アストラ・テック・アクチエボラーグ Methods for treating implants and implant surfaces
JP2017101275A (en) * 2015-12-01 2017-06-08 京セラメディカル株式会社 Titanium material and living body implant

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. YOSHINARIY. ODAT. KATOK. OKUDA: "Influence of surface modifications to titanium on antibacterial activity in vitro", BIOMATERIALS, vol. 22, 2001, pages 2043 - 2048, XP004245923, DOI: 10.1016/S0142-9612(00)00392-6
YOSHINARI, M. ET AL.: "Influence of surface modifications to titanuim on antibacterial activity in vitro", BIOMATERIALS, vol. 22, 2001, pages 2043 - 2048, XP004245923, DOI: 10.1016/S0142-9612(00)00392-6 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130981A1 (en) * 2020-12-15 2022-06-23 京セラ株式会社 Composite material, method for manufacturing same, and biological implant

Also Published As

Publication number Publication date
JP7155259B2 (en) 2022-10-18
EP3804768A1 (en) 2021-04-14
CN112188903A (en) 2021-01-05
AU2019279208A1 (en) 2021-01-28
AU2019279208B2 (en) 2022-01-27
JP2023015032A (en) 2023-01-31
JP2024028859A (en) 2024-03-05
EP3804768A4 (en) 2022-03-09
JP7400049B2 (en) 2023-12-18
US20210196862A1 (en) 2021-07-01
JPWO2019230871A1 (en) 2021-06-17
EP3804768A9 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
Hussein et al. Mechanical, in-vitro corrosion, and tribological characteristics of TiN coating produced by cathodic arc physical vapor deposition on Ti20Nb13Zr alloy for biomedical applications
Resnik et al. Strategies for improving antimicrobial properties of stainless steel
Luo et al. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted NiTi alloy
JP2024028859A (en) Composite material and bioimplant
Liu et al. Improved corrosion resistance and antibacterial properties of composite arch-wires by N-doped TiO 2 coating
Jeong et al. Bacterial attachment on titanium surfaces is dependent on topography and chemical changes induced by nonthermal atmospheric pressure plasma
Fuentes et al. Advanced surface treatments on titanium and titanium alloys focused on electrochemical and physical technologies for biomedical applications
Sun et al. Biphasic calcium phosphates/tantalum pentoxide hybrid layer and its effects on corrosion resistance and biocompatibility of titanium surface for orthopedic implant applications
Chen et al. Antibacterial ability and biocompatibility of fluorinated titanium by plasma-based surface modification
Jarosz et al. Anodization of titanium alloys for biomedical applications
Xue et al. Antibacterial properties and cytocompatibility of Ti-20Zr-10Nb-4Ta alloy surface with Ag microparticles by laser treatment
Fathi et al. Tantalum, niobium and titanium coatings for biocompa improvement of dental implants
Sun et al. Bioactive (Si, O, N)/(Ti, O, N)/Ti composite coating on NiTi shape memory alloy for enhanced wear and corrosion performance
Hong et al. Improved bonding strength between TiO2 film and Ti substrate by microarc oxidation
US20090187253A1 (en) Method of making a coated medical bone implant and a medical bone implant made thereof
RO129460A2 (en) Carbides of high entropy alloys as thin layers, for coating articular endoprostheses
Saad et al. Application of PVD coatings in medical implantology for enhanced performance, biocompatibility, and quality of life
JP6580964B2 (en) Titanium materials and bioimplants
EP3195825B1 (en) Dental implant
RO130173A2 (en) Biocompatible materials based on high-entropy alloy carbides, for coating mobile couplings of articular endoprostheses and medical instruments
WO2022130981A1 (en) Composite material, method for manufacturing same, and biological implant
Rokosz et al. SEM and EDS studies of selected porous coatings obtained on titanium by Plasma Electrolytic Oxidation
Billah et al. A review on surface modification of NiTinol for biomedical applications
Karlagina et al. In Vitro Study of Ti Implants with Laser-functionalized Surface
Souza et al. Surface Modification of the Ti25Ta25Nb3Sn Alloy and its Influence on The Cell and Bacteria Adhesion-In Vitro Studies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522583

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019811092

Country of ref document: EP

Effective date: 20210111

ENP Entry into the national phase

Ref document number: 2019279208

Country of ref document: AU

Date of ref document: 20190530

Kind code of ref document: A