WO2019230686A1 - Solar battery element and solar battery module - Google Patents

Solar battery element and solar battery module Download PDF

Info

Publication number
WO2019230686A1
WO2019230686A1 PCT/JP2019/021007 JP2019021007W WO2019230686A1 WO 2019230686 A1 WO2019230686 A1 WO 2019230686A1 JP 2019021007 W JP2019021007 W JP 2019021007W WO 2019230686 A1 WO2019230686 A1 WO 2019230686A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
semiconductor substrate
protective layer
cell element
light
Prior art date
Application number
PCT/JP2019/021007
Other languages
French (fr)
Japanese (ja)
Inventor
順次 荒浪
誠一郎 稲井
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2020522197A priority Critical patent/JPWO2019230686A1/en
Publication of WO2019230686A1 publication Critical patent/WO2019230686A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings

Definitions

  • the present disclosure relates to a solar cell element and a solar cell module.
  • the solar cell element includes, for example, a PERC (Passivated Emitter and Rear Cell) type solar cell element in which a passivation film is present between a semiconductor substrate and a back electrode.
  • PERC Passivated Emitter and Rear Cell
  • a back electrode is locally present on the back side of the semiconductor substrate, and light incident on the back side as well as the front side is also used for power generation.
  • solar cell elements and solar cell modules of a type also referred to as a double-sided light receiving type that use light incident on both the front surface and the back surface for power generation have been proposed.
  • a solar cell element and a solar cell module are disclosed.
  • the solar cell element includes a semiconductor substrate, an antireflection film, a passivation film, a protective layer, and an electrode.
  • the semiconductor substrate has a first surface, a second surface located on the opposite side of the first surface, and a side surface located in a state where the first surface and the second surface are connected.
  • the antireflection film is located on the first surface side of the semiconductor substrate.
  • the passivation film is located on the second surface.
  • the protective layer is located on the passivation film and has a larger thickness than the antireflection film.
  • the electrode is electrically connected to the semiconductor substrate in a first portion located on the first region of the protective layer, and in a through hole in a state of continuously passing through the passivation film and the protective layer.
  • the protective layer has a base material portion and a plurality of granular materials.
  • the plurality of granular materials are a plurality of first granular materials present in a first particle size range at a frequency higher than outside the first particle size range, and a second particle size different from the first particle size range.
  • the refractive index of each of the first granular materials is closer to the refractive index of the semiconductor substrate than the refractive index of the base material portion.
  • One aspect of the solar cell module includes a first protective member, a second protective member, a solar cell portion, and a filler.
  • the first protective member has translucency.
  • the second protective member has translucency.
  • the solar cell unit is located between the first protective member and the second protective member.
  • the filler is located between the first protective member and the second protective member so as to cover the solar cell portion from the first protective member side and the second protective member side, and has translucency.
  • the solar cell unit includes a plurality of the solar cell elements according to the one aspect.
  • FIG. 1 is a plan view showing an appearance of an example of the solar cell module according to the first embodiment viewed from the front side.
  • FIG. 2 is a diagram showing a virtual cut surface of an example of the solar cell module according to the first embodiment along the line II-II in FIG.
  • Fig.3 (a) is a top view which shows the external appearance seen from the 1st element surface side of an example of the solar cell element which concerns on 1st Embodiment.
  • FIG.3 (b) is a top view which shows the external appearance seen from the 2nd element surface side of an example of the solar cell element which concerns on 1st Embodiment.
  • FIG. 1 is a plan view showing an appearance of an example of the solar cell module according to the first embodiment viewed from the front side.
  • FIG. 2 is a diagram showing a virtual cut surface of an example of the solar cell module according to the first embodiment along the line II-II in FIG.
  • Fig.3 (a) is a top view which shows the external appearance seen from the
  • FIG. 4A is a diagram showing a virtual cut surface of an example of the solar cell element according to the first embodiment taken along line IVa-IVa in FIGS. 3A and 3B.
  • FIG. 4B is a diagram showing a virtual cut surface of an example of the solar cell element according to the first embodiment along the line IVb-IVb in FIGS. 3A and 3B.
  • FIG. 4C is a diagram showing a virtual cut surface of an example of the solar cell element according to the first embodiment along the line IVc-IVc in FIGS. 3A and 3B.
  • FIG. 5 is a cross-sectional view schematically showing one configuration example of the protective layer according to the first embodiment.
  • FIG. 5 is a cross-sectional view schematically showing one configuration example of the protective layer according to the first embodiment.
  • FIG. 6 is a cross-sectional view schematically showing three paths through which light enters the solar cell element in the cut surface of an example of a part of the solar cell module according to the first embodiment in the VI part of FIG. 2.
  • FIG. 7A to FIG. 7D are cross-sectional views illustrating states in the middle of manufacturing the solar cell element according to the first embodiment.
  • FIG. 8 is a cross-sectional view schematically showing one configuration example of the protective layer according to the second embodiment.
  • FIG. 9A is a cross-sectional view schematically showing a configuration example of the first region of the protective layer according to the third embodiment.
  • FIG. 9B is a cross-sectional view schematically showing a configuration example of the second region of the protective layer according to the third embodiment.
  • a so-called PERC type solar cell element in which a passivation film exists between a semiconductor substrate and a back electrode is known.
  • the passivation film for example, an aluminum oxide thin film that can be formed by a film forming method such as atomic layer deposition (ALD) is applied.
  • a back electrode is locally present on the back side of the semiconductor substrate, and light incident on the back side as well as the front side is used for power generation, thereby improving photoelectric conversion efficiency. It is possible to make it.
  • a solar cell element and a solar cell module of a type (double-sided light receiving type) that uses light incident on both the front surface and the back surface for power generation can be considered.
  • the double-sided light receiving solar cell element for example, it is conceivable to reduce reflection of light irradiated to the back surface by making a fine uneven structure (texture) exist on the back surface side.
  • a fine concavo-convex structure is present on the back side of a double-sided light receiving solar cell element, carriers are likely to recombine on the back side of the solar cell element, and the photoelectric conversion efficiency may be reduced.
  • a protective layer that protects the passivation film located on the back surface of the semiconductor substrate.
  • a silicon nitride thin film that can be formed using a plasma-enhanced chemical vapor deposition (PECVD) method or a sputtering method is applied.
  • PECVD plasma-enhanced chemical vapor deposition
  • sputtering method a plasma-enhanced chemical vapor deposition (PECVD) method or a sputtering method is applied.
  • PECVD plasma-enhanced chemical vapor deposition
  • sputtering method a sputtering method.
  • the protective layer for example, on the back side of the solar cell element, if there is no fine uneven structure, multiple reflection of light may occur due to the presence of the protective layer.
  • there may be light in a wavelength range in which multiple reflection is likely to occur such as light in a relatively short wavelength range of 600 nanometers (nm) or less of sunlight.
  • the present inventors have created a technology capable of improving the photoelectric conversion efficiency for the double-sided light receiving solar cell element and the solar cell module.
  • FIGS. 1 to 9B each have a right-handed XYZ coordinate system.
  • the direction along the pair of sides of the front surface 1fs of the solar cell module 100 is the + X direction
  • the direction along the other pair of sides of the front surface 1fs is the + Y direction
  • the normal direction of the front surface 1fs that is orthogonal to both is the + Z direction.
  • the solar cell module 100 has a light receiving surface (also referred to as a front surface) 1fs on which light is mainly incident, and a back surface 1bs located on the opposite side of the front surface 1fs.
  • the front surface 1fs faces the + Z direction.
  • the back surface 1bs faces the ⁇ Z direction.
  • the + Z direction is set to a direction toward the sun going south.
  • the front surface 1fs has a rectangular shape.
  • the solar cell module 100 includes, for example, a solar cell panel Pn1.
  • the solar cell module 100 may include, for example, a terminal box J1.
  • the terminal box J1 is located on, for example, the back surface 1bs of the solar cell panel Pn1, and can output the electricity obtained by the power generation in the solar cell panel Pn1 to the outside.
  • the solar cell module 100 may include a frame 106, for example.
  • the frame 106 is located along the outer periphery of the solar cell panel Pn1, for example, and can protect the outer periphery of the solar cell panel Pn1.
  • a sealing material having a low moisture permeability such as a butyl resin may be filled between the outer peripheral portion of the solar cell panel Pn1 and the frame 106.
  • the solar cell panel Pn1 includes, for example, a first protection member 101, a second protection member 102, a solar cell portion 103, a filler 104, and a packing portion 105.
  • the first protection member 101 and the second protection member 102 are positioned so as to sandwich the solar cell portion 103.
  • the 1st protection member 101 is located in the state which comprises front surface 1fs of solar cell panel Pn1, for example.
  • the 2nd protection member 102 is located in the state which constitutes back side 1bs of solar cell panel Pn1, for example.
  • the first protective member 101 is a member having translucency.
  • the first protective member 101 has translucency with respect to light in a specific range of wavelengths.
  • the wavelength in this specific range includes, for example, the wavelength of light that can be photoelectrically converted by the solar cell unit 103.
  • the light applied to the front surface 1fs can transmit the first protective member 101 toward the solar cell unit 103.
  • the wavelength in the specific range includes the wavelength of light with high irradiation intensity constituting sunlight, the photoelectric conversion efficiency of the solar cell module 100 can be improved.
  • a flat glass plate having a refractive index of about 1.4 to 1.8 is applied to the first protection member 101. As shown in FIGS.
  • the first protective member 101 has a first plate surface F1, a second plate surface F2, and a first outer peripheral surface S1.
  • the second plate surface F2 is in a state facing the opposite direction to the first plate surface F1.
  • the first outer peripheral surface S1 is in a state of connecting the first plate surface F1 and the second plate surface F2.
  • the first plate surface F1 is in a state of constituting the front surface 1fs.
  • the thickness of the first protective member 101 is set to, for example, about 1 millimeter (mm) to about 5 mm.
  • the outer shape of the first protective member 101 is rectangular when viewed from the front surface 1 fs side.
  • the 1st protection member 101 which has the said structure can protect the solar cell part 103 from the front 1fs side with high rigidity and low moisture permeability, for example.
  • the second protective member 102 is a member having translucency, similar to the first protective member 101.
  • the second protective member 102 has a light-transmitting property with respect to light in a specific range of wavelengths, like the first protective member 101.
  • the light applied to the back surface 1bs can be transmitted through the second protective member 102 toward the solar cell unit 103.
  • the solar cell unit 103 for example, not only the light irradiated to the front surface 1fs but also the light irradiated to the rear surface 1bs is used for photoelectric conversion in the solar cell unit 103.
  • the solar cell module 100 is a solar cell module of a type (double-sided light receiving type) that uses light incident on both the front surface 1fs and the back surface 1bs for power generation.
  • a flat glass plate having a refractive index of about 1.4 to 1.8 is applied to the second protective member 102.
  • the second protective member 102 has a third plate surface F3, a fourth plate surface F4, and a second outer peripheral surface S2.
  • the third plate surface F3 is in a state of facing the second plate surface F2 of the first protective member 101.
  • the fourth plate surface F4 is in a state facing the opposite direction to the third plate surface F3.
  • the second outer peripheral surface S2 is in a state where the third plate surface F3 and the fourth plate surface F4 are connected.
  • the fourth plate surface F4 is in a state of constituting the back surface 1bs.
  • the thickness of the second protective member 102 is set to about 1 mm to 5 mm, for example.
  • the outer shape of the second protective member 102 is a rectangular shape when seen in a plan view from the front surface 1 fs side.
  • the 2nd protection member 102 which has the said structure can protect the solar cell part 103 from the back surface 1bs side with high rigidity and low moisture permeability, for example.
  • the solar cell unit 103 is located, for example, in an area A0 (also referred to as an inter-plate area) between the first protection member 101 and the second protection member 102. As shown in FIG. 1, the solar cell unit 103 includes, for example, a plurality of solar cell elements 1. In the first embodiment, the plurality of solar cell elements 1 are positioned in a two-dimensional array. In the example of FIGS. 1 and 2, the plurality of solar cell elements 1 are positioned in a state of being planarly arranged so as to be positioned along the second plate surface F ⁇ b> 2 of the first protection member 101.
  • the solar cell unit 103 includes, for example, a plurality of first wiring members W1 and a plurality of second wiring members W2.
  • the solar cell unit 103 includes, for example, a plurality (eight in this example) of solar cell strings St1.
  • the solar cell string St1 includes, for example, a plurality (here, seven) solar cell elements 1 and a plurality of first wiring members W1.
  • the plurality of first wiring members W1 are in a state in which, for example, the solar cell elements 1 adjacent to each other among the plurality of solar cell elements 1 are electrically connected to each other.
  • the plurality of second wiring members W2 are in a state in which solar cell strings St1 adjacent to each other among the plurality of solar cell strings St1 are electrically connected to each other.
  • the second wiring member W2 connected to the solar cell string St1 located at the end in the ⁇ X direction and the second wiring material W2 connected to the solar cell string St1 located at the end in the + X direction.
  • the wiring member W ⁇ b> 2 is positioned in a state of being drawn out of the solar cell module 100.
  • the two second wiring members W2 are positioned in a state of being pulled out of the solar cell module 100 through, for example, a hole positioned so as to penetrate the second protective member 102. Yes.
  • the filler 104 is positioned so as to cover the solar cell unit 103 in the inter-plate region A0 between the first protective member 101 and the second protective member 102.
  • the filler 104 is positioned so as to be filled in the inter-plate area A0 between the first protection member 101 and the second protection member 102, for example.
  • the filler 104 includes, for example, a portion (also referred to as a first filling portion) 104u located on the front surface 1fs side and a portion (also referred to as a second filling portion) 104b located on the back surface 1bs side.
  • the 1st filling part 104u is located so that the whole surface by the side of the 1st protection member 101 of the solar cell part 103 may be covered, for example.
  • the 2nd filling part 104b is located so that the whole surface by the side of the 2nd protection member 102 of the solar cell part 103 may be covered, for example.
  • the solar cell part 103 exists in the state enclosed so that it might be pinched
  • the filler 104 has translucency, for example.
  • the first filling portion 104u and the second filling portion 104b constituting the filling material 104 have translucency, incident light from the front surface 1fs side and incident light from the back surface 1bs side. Both can reach the solar cell unit 103.
  • the material of the filler 104 for example, a material having a refractive index close to or substantially the same as that of the first protective member 101 and the second protective member 102 and excellent in translucency for light in a specific range of wavelengths is applied. Is done.
  • the material of the filler 104 includes, for example, one or more of polyester resins such as ethylene vinyl acetate copolymer (EVA), triacetyl cellulose (TAC), and polyethylene naphthalate (PEN).
  • EVA ethylene vinyl acetate copolymer
  • TAC triacetyl cellulose
  • PEN polyethylene naphthalate
  • the material is applied.
  • the first protective member 101 and the first filling portion 104u are close or have substantially the same refractive index, the light irradiated to the front surface 1fs is the first protective member 101 and the first protective member 101u. It is difficult to reflect at the interface with the filling portion 104u and easily reaches the solar cell portion 103.
  • the light irradiated to the back surface 1bs is the second protective member 102 and the second filling member. It is difficult to reflect at the interface with the portion 104 b and easily reaches the solar cell portion 103.
  • the packing part 105 is located along the annular part (it is also called annular opening part) A0p opened with respect to external space among the board
  • the packing part 105 is located so that the outer peripheral part of the area
  • the packing part 105 is located so that the area
  • the packing part 105 has a moisture permeability lower than that of the filler 104, the packing part 105 can seal a portion along the outer peripheral part of the inter-plate region A0. .
  • the packing part 105 can reduce the penetration
  • a butyl resin, a polyisopropylene resin, an acrylic resin, or the like is applied to the material of the packing unit 105.
  • the material of the packing unit 105 may include a metal such as copper or solder or a non-metal such as glass as long as the material has low moisture permeability.
  • the packing part 105 may be, for example, one obtained by bonding a copper foil by soldering, or one obtained by melting glass with a laser or the like and then solidifying it.
  • a white or transparent resin may be applied to the material of the packing unit 105 so as not to hinder light capture in the solar cell unit 103.
  • each of the plurality of solar cell elements 1 can convert light energy into electrical energy, for example.
  • each of the plurality of solar cell elements 1 is a surface (also referred to as a first element surface) Sf1 positioned on the front (front) surface side.
  • a surface (also referred to as a second element surface) Sf2 located on the opposite side of the first element surface Sf1.
  • the first element surface Sf1 faces the + Z direction
  • the second element surface Sf2 faces the ⁇ Z direction.
  • the first element surface Sf1 is a front surface on which light is mainly incident
  • the second element surface Sf2 is a rear surface on which light is not incident than the front surface.
  • each of the plurality of solar cell elements 1 includes a semiconductor substrate 2, an antireflection film 3, a passivation film 4, and a protection film.
  • a layer 5, a front electrode 6, and a back electrode 7 are provided.
  • the front electrode 6 is located at a part on the first element surface Sf1 side
  • the back electrode 7 is located at a part on the second element surface Sf2 side.
  • the solar cell element 1 according to the first embodiment is a type (double-sided light receiving type) solar cell element that uses light incident on both the first element surface Sf1 and the second element surface Sf2 for power generation.
  • the semiconductor substrate 2 has a first surface 2u, a second surface 2b, and a side surface 2s.
  • the second surface 2b is located on the opposite side to the first surface 2u.
  • the side surface 2s is located in a state where the first surface 2u and the second surface 2b are connected.
  • the first surface 2u is positioned in the + Z direction
  • the second surface 2b is positioned in the ⁇ Z direction.
  • the semiconductor substrate 2 includes, for example, a region (also referred to as a first semiconductor region) 21 having a first conductivity type, and a region (also referred to as a second semiconductor region) 22 having a second conductivity type opposite to the first conductivity type.
  • the first semiconductor region 21 is located on the second surface 2b side of the semiconductor substrate 2, for example.
  • the second semiconductor region 22 is located in the surface layer portion of the semiconductor substrate 2 on the first surface 2u side.
  • the semiconductor substrate 2 has a pn junction located at the interface between the first semiconductor region 21 and the second semiconductor region 22.
  • the semiconductor substrate 2 is a silicon substrate.
  • a polycrystalline or single crystal silicon substrate is employed as the silicon substrate.
  • the silicon substrate has, for example, a thickness of 250 micrometers ( ⁇ m) or less or 150 ⁇ m or less.
  • the silicon substrate has a rectangular outer shape in plan view, for example. If the semiconductor substrate 2 having such a shape is employed, the gap between the solar cell elements 1 can be reduced when the solar cell module 100 is manufactured by arranging the plurality of solar cell elements 1.
  • the first conductivity type is p-type and the second conductivity type is n-type
  • boron or gallium as a dopant element is added to a polycrystalline or single crystal silicon crystal.
  • a p-type silicon substrate can be manufactured.
  • the n-type second semiconductor region 22 can be generated by diffusing impurities such as phosphorus as an n-type dopant in the surface layer portion on the first surface 2u side of the p-type silicon substrate.
  • the semiconductor substrate 2 in which the p-type first semiconductor region 21 and the n-type second semiconductor region 22 are stacked can be formed.
  • the first surface 2u of the semiconductor substrate 2 may have, for example, a fine uneven structure (texture) for reducing reflection of irradiated light.
  • 23 may exist.
  • the concentration of the dopant contained in the third semiconductor region 23 is higher than the concentration of the dopant contained in the first semiconductor region 21, the third semiconductor region 23 will be the second semiconductor substrate 2. It functions as a BSF (Back Surface Field) layer that forms an internal electric field on the two-surface 2b side.
  • BSF Back Surface Field
  • the third semiconductor region 23 can be generated, for example, by diffusing a dopant element such as aluminum in the surface layer portion of the semiconductor substrate 2 on the second surface 2b side.
  • the antireflection film 3 is located, for example, on the first surface 2 u side of the semiconductor substrate 2. In the example of FIGS. 3A to 3C, the antireflection film 3 is located on the first surface 2u.
  • the antireflection film 3 can reduce the reflectance of the light applied to the first element surface Sf ⁇ b> 1 of the solar cell element 1.
  • a material of the antireflection film 3 for example, silicon oxide, aluminum oxide, silicon nitride, or the like can be employed.
  • the refractive index and the thickness of the antireflection film 3 are, for example, a condition where the reflectance is low with respect to light in a wavelength range that can be absorbed by the semiconductor substrate 2 and contribute to power generation in sunlight (also referred to as a low reflection condition). ) Is appropriately set to a value capable of realizing.
  • the refractive index of the antireflection film 3 is about 1.8 to 2.5
  • the thickness of the antireflection film 3 is about 50 nm to 120 nm.
  • the antireflection film 3 can be formed using, for example, PECVD or sputtering.
  • the passivation film 4 is located on at least the second surface 2 b of the semiconductor substrate 2. In the first embodiment, the passivation film 4 is in contact with the second surface 2 b of the semiconductor substrate 2. For example, the passivation film 4 can reduce recombination of minority carriers generated by photoelectric conversion in response to light irradiation in the semiconductor substrate 2.
  • the material for the passivation film 4 for example, one or more materials selected from aluminum oxide, zirconium oxide, hafnium oxide, silicon oxide, silicon nitride, silicon oxynitride, and the like are employed.
  • the passivation film 4 may be, for example, a single layer film of one kind of material, or may be a state in which two or more layers of different materials are laminated.
  • a single layer film of aluminum oxide or the like may be employed, or a film in which a silicon oxide film and an aluminum oxide film are stacked in the order of description. It may be adopted.
  • the passivation film 4 can be formed by, for example, an ALD method.
  • the passivation film 4 can reduce minority carrier recombination by, for example, termination of dangling bonds on the second surface 2 b of the semiconductor substrate 2 and field effect.
  • the aluminum oxide has a negative fixed charge.
  • the thickness of the passivation film 4 is, for example, about 10 nm to 60 nm.
  • the passivation film 4 may be located on the first surface 2u of the semiconductor substrate 2, for example.
  • the passivation film 4 may be located on the side surface 2s that connects the first surface 2u and the second surface 2b of the semiconductor substrate 2, for example.
  • the protective layer 5 is located on the second surface 2b side of the semiconductor substrate 2, for example.
  • the protective layer 5 is located on the passivation film 4 located on the second surface 2b of the semiconductor substrate 2, for example. If it says from another viewpoint, the protective layer 5 will be located between the passivation film 4 and the back surface electrode 7, for example.
  • the protective layer 5 is in a state of covering the passivation film 4 on the passivation film 4. Thereby, the protective layer 5 can protect the passivation film 4, for example.
  • the protective layer 5 may be formed on the side surface 2s of the semiconductor substrate 2, for example. In this case, the presence of the protective layer 5 makes it difficult for leak current to occur in the solar cell element 1.
  • the protective layer 5 is located on the passivation film 4 in a state having a desired pattern, for example.
  • the protective layer 5 has a plurality of holes in a state of passing through the protective layer 5 in the thickness direction (here, the + Z direction).
  • the plurality of holes are, for example, in a state of penetrating through the protective layer 5 among a plurality of holes (also referred to as through holes) 45h in a state of continuously penetrating the protective layer 5 and the passivation film 4.
  • Each through-hole 45h may be, for example, a hole forming a closed through-hole along the second surface 2b, or at least a part of the periphery along the second surface 2b is open. It may be a slit-shaped hole.
  • the protective layer 5 includes a base material portion (also referred to as a base material portion) 5a and a plurality of granular bodies 5b.
  • the plurality of granular bodies 5b are positioned in a moderately dispersed state within the base material portion 5a.
  • a siloxane resin or the like is employed as a material of the base material part 5a.
  • a siloxane resin is a siloxane compound having a Si—O—Si bond (also referred to as a siloxane bond).
  • the protective layer 5 can be formed by using a wet process in which an insulating paste is applied onto the passivation film 4 by a screen printing method and dried.
  • the insulating paste for example, an insulating paste including a siloxane resin that is a raw material of the base material portion 5a, an organic solvent, and a large number of granular materials is applied.
  • the siloxane resin for example, a low molecular weight resin having a molecular weight of 15,000 or less, which is produced by hydrolyzing alkoxysilane or silazane and performing condensation polymerization, is employed.
  • the organic solvent for example, a solvent in which a siloxane resin and a large number of particles are dispersed is employed.
  • organic solvents examples include diethylene glycol monobutyl ether, methyl cellosolve, ethyl cellosolve, ethyl alcohol, 2- (4-methylcyclohex-3-enyl) propan-2-ol, or 2-propanol. Or multiple types are applied.
  • the large number of granular materials includes, for example, at least a plurality of granular materials 5b.
  • the many granular materials include, for example, an inorganic filler (also referred to as a viscosity adjusting filler) for adjusting the viscosity of an insulating paste such as silicon oxide, aluminum oxide, or titanium oxide having an average particle diameter of 1000 nm or less. obtain.
  • the average particle diameter here may be the average particle diameter of the primary particles or the average particle diameter of the secondary particles in which the secondary particles are aggregated.
  • the insulating paste can be applied on the passivation film 4 in a desired pattern having a plurality of holes corresponding to the plurality of through holes 45h.
  • the plurality of granules 5b and the viscosity adjusting filler may exist separately, and the plurality of granules 5b function as a viscosity adjusting filler. You may have.
  • the solar cell module 100 is irradiated with light on both the front surface 1fs and the back surface 1bs.
  • the light irradiated to the front surface 1fs mainly passes through an optical path (also referred to as a first optical path) Rt1 that passes through the first protective member 101 and the first filling portion 104u and reaches the first element surface Sf1 of the solar cell element 1.
  • the first optical path Rt1 may include, for example, a path in which the light applied to the front surface 1fs is reflected a plurality of times in the solar cell module 100 and reaches the first element surface Sf1.
  • the light irradiated on the front surface 1fs may pass through a path (also referred to as a second optical path) Rt2 that is reflected once or more in the solar cell module 100 and reaches the second element surface Sf2.
  • the light irradiated on the back surface 1bs mainly passes through the second protective member 102 and the second filling portion 104b and reaches the second element surface Sf2 of the solar cell element 1 (also referred to as a third optical path).
  • Rt3 can be passed.
  • the front surface 1fs is positioned so as to face the sun going south, the amount of light passing through the first optical path Rt1 per day is the amount of light passing through the second optical path Rt2.
  • the protective layer 5 has a thickness larger than that of the antireflection film 3, visible light and near infrared rays hardly cause multiple reflection on the second element surface Sf 2 side of the solar cell element 1. can do. Thereby, for example, the third light utilization rate related to the third optical path Rt3 can be increased.
  • the protective layer 5 having a thickness significantly larger than that of the antireflection film 3 can be easily formed by, for example, applying and drying the insulating paste described above.
  • the thickness of the protective layer 5 is set to, for example, about 600 nm to 20 ⁇ m.
  • the performance of protecting the passivation film 4 of the protective layer 5 can be improved by increasing the thickness of the protective layer 5.
  • the plurality of granular bodies 5b include a plurality of first granular bodies 5b1 and a plurality of second granular bodies 5b2.
  • the plurality of first granular materials 5b1 are in the first particle size range (also referred to as the first particle size range). It exists more frequently than outside the range of one particle size.
  • a configuration showing a peak indicating that the particle size distribution of the plurality of first granular materials 5b1 is present at the highest frequency within the first particle size range is conceivable.
  • the plurality of second particles 5b2 have a second particle size range (first value) different from the first particle size range. 2) is also present at a higher frequency than outside the second particle size range.
  • a configuration showing a peak indicating that the particle size distribution of the plurality of second granular bodies 5b2 exists at the highest frequency within the second particle size range is conceivable.
  • the measurement of the particle size distribution of the plurality of granular materials 5b included in the protective layer 5 can be executed by extracting the plurality of granular materials 5b from the solar cell element 1, for example.
  • the front electrode 6 and the back electrode 7 are melted using hydrochloric acid and then hydrofluoric acid.
  • a method of melting the protective layer 5, the semiconductor substrate 2 and the like using, for example, is applied.
  • the protective layer 5 is formed from the base material part 5a alone.
  • the refractive index of the protective layer 5 may approach the refractive index of the semiconductor substrate 2 due to the presence of the plurality of first granular bodies 5b1.
  • the light emitted from the back surface 1bs side to the second element surface Sf2 is less likely to be reflected in the region between the protective layer 5 and the semiconductor substrate 2, and is likely to enter the semiconductor substrate 2.
  • the third light utilization rate related to the third optical path Rt3 can be increased.
  • the photoelectric conversion efficiency in the solar cell element 1 can be improved.
  • the semiconductor substrate 2 is a silicon substrate and the base material portion 5a of the protective layer 5 is a siloxane resin.
  • the refractive index of the semiconductor substrate 2 is about 3.4
  • the refractive index of the base material portion 5a is about 1.5, which is equivalent to the refractive index of silicon oxide (SiO 2 ).
  • the material of the first granular body 5b1 for example, a material having a refractive index between the refractive index of the semiconductor substrate 2 (about 3.4) and the refractive index of the base material portion 5a (about 1.5). Adopted.
  • titanium oxide (TiO 2 ), ferric oxide (Fe 2 O 3 ), niobium oxide (Nb 2 O 5 ), zirconium oxide (ZrO 2 ) and One or more of hafnium oxide (HfO 2 ) may be employed.
  • the refractive index of titanium oxide (TiO 2 ) is about 2.5 to 2.7.
  • the refractive index of ferric oxide (Fe 2 O 3 ) is about 3.0.
  • the refractive index of niobium oxide (Nb 2 O 5 ) is about 2.7.
  • the refractive index of zirconium oxide (ZrO 2 ) is about 2.1.
  • the refractive index of hafnium oxide (HfO 2 ) is about 1.95.
  • the refractive index of the passivation film 4 is about 1.76.
  • the refractive index of the passivation film 4 is closer to the refractive index of the semiconductor substrate 2 than the refractive index of the base material part 5a.
  • the protective layer 5 has visible light and near infrared rays having high energy intensity in sunlight. Including light in a wavelength region of 1200 nm or less is difficult to occur. This phenomenon was confirmed by observing the protective layer 5 in which the first particle size range was variously changed. In this case, for example, the refractive index of the protective layer 5 is changed to the refractive index of the semiconductor substrate 2 by the first granular body 5b1 that hardly scatters the light irradiated to the second element surface Sf2 from the back surface 1bs side in the protective layer 5. Can be approached.
  • the light applied to the second element surface Sf ⁇ b> 2 is less likely to be reflected in the region between the protective layer 5 and the semiconductor substrate 2 and is likely to enter the semiconductor substrate 2.
  • the third light utilization rate related to the third optical path Rt3 can be increased.
  • the photoelectric conversion efficiency in the solar cell element 1 can be improved.
  • the semiconductor substrate 2 is thinned in accordance with a reduction in the amount of the material used, so that the semiconductor substrate 2 extends in the thickness direction (also referred to as the first thickness direction) of the semiconductor substrate 2 from the first surface 2u to the second surface 2b.
  • Light that passes through the substrate 2 may be generated.
  • the semiconductor substrate 2 is a silicon substrate, near-infrared rays in the wavelength region of 1000 nm or more of sunlight are likely to pass through the semiconductor substrate 2 according to the light absorption coefficient of silicon.
  • the plurality of second granular bodies 5 b 2 are arranged in the thickness direction (first thickness direction) of the semiconductor substrate 2 from the first surface 2 u to the second surface 2 b. You may be in the state which scatters the light to permeate
  • the first thickness direction is the ⁇ Z direction.
  • the light scattering includes Mie scattering that can occur, for example, when the plurality of second granular materials 5b2 have a refractive index different from that of the base material portion 5a.
  • light transmitted through the semiconductor substrate 2 can be scattered by the plurality of second granular bodies 5b2 existing in the protective layer 5 and re-enter the semiconductor substrate 2 at various angles.
  • the re-incident light can be used for photoelectric conversion in the semiconductor substrate 2.
  • the ratio of the light used for photoelectric conversion in the semiconductor substrate 2 out of the light irradiated to the first surface 2u of the semiconductor substrate 2 can be improved.
  • the first light utilization rate related to the first optical path Rt1 can be increased.
  • the photoelectric conversion efficiency in the solar cell element 1 can be improved.
  • the semiconductor substrate 2 is a silicon substrate
  • a plurality of second granular bodies 5 b 2 may scatter near infrared rays that pass through the semiconductor substrate 2 in the first thickness direction. .
  • the near infrared light transmitted through the semiconductor substrate 2 is scattered by the plurality of second granular bodies 5b2 existing in the protective layer 5, and re-enters the semiconductor substrate 2 at various angles, so that the semiconductor substrate 2 2 can be used for photoelectric conversion.
  • the lower limit value of the second particle size range related to the plurality of second granular materials 5b2 is set to a value higher than 30 nm is conceivable.
  • the protective layer 5 scattering of light in a wavelength region of 1200 nm or less including visible light and near infrared light having high energy intensity in sunlight can occur.
  • the protective layer 5 is less likely to scatter relatively short-wavelength near-ultraviolet rays and visible rays in light with high energy intensity among sunlight. .
  • the protective layer 5 scatters light such as near-infrared light transmitted through the semiconductor substrate 2 out of light irradiated on the first element surface Sf1, and also irradiates the light irradiated on the second element surface Sf2. It is possible to transmit near-ultraviolet rays and visible rays to the semiconductor substrate 2. For this reason, for example, it is possible to improve the first light utilization rate related to the first optical path Rt1 and the third light utilization rate related to the third optical path Rt3 in a balanced manner. For example, it is possible to appropriately set which one of the first light utilization rate related to the first optical path Rt1 and the third light utilization rate related to the third optical path Rt3 is to be increased.
  • a wavelength range in which a proportion of light that is equal to or greater than a preset threshold among the light applied to the first surface 2 u can be transmitted in the first thickness direction is the first wavelength range.
  • a wavelength range of light that can be absorbed by the semiconductor substrate 2 is set as a second wavelength range. In this case, for example, even if the degree of light scattering generated by the plurality of second granular bodies 5b2 in the protective layer 5 is in a state where it shows a peak in the wavelength region where the first wavelength region and the second wavelength region overlap. Good.
  • the light transmitted through the semiconductor substrate 2 is scattered by the plurality of second granular bodies 5b2 present in the protective layer 5, and easily reenters the semiconductor substrate 2 at various angles.
  • the photoelectric conversion efficiency in the solar cell element 1 can be improved.
  • a value of about 40% can be adopted as the threshold value.
  • the first wavelength range is a wavelength range corresponding to the light absorption coefficient and thickness of the semiconductor substrate 2, for example.
  • the second wavelength range is, for example, a wavelength range corresponding to the light absorption coefficient of the semiconductor substrate 2.
  • the first wavelength range is a wavelength range of about 900 nm to about 1000 nm or more according to the thickness (also referred to as plate thickness) of the silicon substrate, and the second wavelength range is 1120 nm.
  • the wavelength range is less than about.
  • the material of the protective layer 5 is silicon oxide having a refractive index of about 1.5
  • the material of the second granular material 5b2 is titanium oxide having a refractive index of about 2.7. .
  • the lower limit value of the particle size of the plurality of second granular bodies 5b2 is as follows in the calculation.
  • the lower limit value of the first wavelength region is about 930 nm
  • the lower limit value of the particle diameters of the plurality of second granular bodies 5b2 is about 350 nm.
  • the lower limit of the first wavelength region is about 970 nm
  • the lower limit of the particle size of the plurality of second granular bodies 5b2 is about 361 nm.
  • the lower limit value of the first wavelength region is about 980 nm
  • the lower limit value of the particle size of the plurality of second granular materials 5b2 is about 364 nm.
  • the lower limit value of the first wavelength region is about 990 nm
  • the lower limit value of the particle diameters of the plurality of second granular bodies 5b2 is about 367 nm.
  • the lower limit value of the first wavelength region is about 1000 nm
  • the lower limit value of the particle size of the plurality of second granular materials 5b2 is about 370 nm.
  • the plate thickness is 215 ⁇ m
  • the lower limit value of the first wavelength region is about 1010 nm
  • the lower limit value of the particle size of the plurality of second granular bodies 5b2 is about 373 nm.
  • the lower limit value of the particle size of the plurality of second granular bodies 5b2 for example, about 350 nm or more can be adopted as the lower limit value of the particle size of the plurality of second granular bodies 5b2.
  • the refractive index of the material of the second granular body 5b2 is a value smaller than 2.7 (for example, about 2.5 or about 2.2)
  • the refraction of the material of the second granular body 5b2 is performed.
  • the lower limit value of the particle diameters of the plurality of second granular bodies 5b2 may be larger than when the rate is 2.7.
  • the refractive index of the material of the second granular material 5b2 is a value larger than 2.7
  • a plurality of second granular materials 5b2 than the case where the refractive index of the material of the second granular material 5b2 is 2.7.
  • the lower limit value of the particle size of the two granular bodies 5b2 may be large.
  • the refractive index of the material of the second granular body 5b2 is 3, a value of about 220 nm or more may be adopted as the lower limit value of the particle size.
  • a value of 220 nm or more can be adopted as the lower limit value of the second particle size range related to the plurality of second granular materials 5b2.
  • the upper limit value of the second particle size range related to the plurality of second granular bodies 5b2 a value about half or less of the thickness of the protective layer 5 can be adopted. Thereby, for example, the performance of protecting the passivation film 4 by the protective layer 5 can be ensured.
  • the upper limit value of the second particle size range may be 10 ⁇ m.
  • a plurality of second granular bodies 5b2 are arranged in the thickness direction of the protective layer 5 (also referred to as the second thickness direction).
  • the granular material 5b2 may be included.
  • the second thickness direction is the ⁇ Z direction.
  • light traveling in the second thickness direction out of the light scattered by the first second granular body 5 b 2 is the second second granular shape. It can be scattered by the body 5b2.
  • the amount of light re-entering the semiconductor substrate 2 out of the light transmitted through the semiconductor substrate 2 can be increased.
  • the photoelectric conversion efficiency in the solar cell element 1 can be improved.
  • the front electrode 6 is located on the first surface 2u side of the semiconductor substrate 2, for example. In the first embodiment, the front electrode 6 is located on the first surface 2 u of the semiconductor substrate 2.
  • the front electrode 6 includes, for example, a first output extraction electrode 6a and a first current collecting electrode 6b.
  • the first output extraction electrode 6 a is located on the first surface 2 u side of the semiconductor substrate 2.
  • the 1st output extraction electrode 6a can take out the carrier obtained by the photoelectric conversion according to the irradiation of the light in the semiconductor substrate 2, for example to the exterior of the solar cell element 1.
  • FIG. In the example of FIG. 3A and FIG. 4A to FIG. 4C, two first output extraction electrodes 6a are present on the first surface 2u side of the semiconductor substrate 2.
  • Each first output extraction electrode 6a has a longitudinal direction along the first surface 2u. This longitudinal direction is the + Y direction.
  • the length (also referred to as width) of the first output extraction electrode 6a in the short direction is, for example, about 1.3 mm to 2.5 mm. At least a part of the first output extraction electrode 6a is in a state of being electrically connected across the first collector electrode 6b.
  • the first current collecting electrode 6 b is located on the first surface 2 u side of the semiconductor substrate 2.
  • the first current collecting electrode 6b can collect, for example, carriers obtained by photoelectric conversion according to light irradiation in the semiconductor substrate 2.
  • a plurality of first current collecting electrodes 6 b exist on the first surface 2 u side of the semiconductor substrate 2.
  • Each first current collecting electrode 6b has a longitudinal direction along the first surface 2u. This longitudinal direction is the + X direction.
  • the plurality of first current collecting electrodes 6b have a so-called finger shape.
  • Each first current collecting electrode 6b is a linear electrode having a width of about 20 ⁇ m to 200 ⁇ m, for example.
  • each first collector electrode 6b is smaller than the width of the first output extraction electrode 6a.
  • the plurality of first current collecting electrodes 6b are positioned, for example, in a state where they are aligned with an interval of about 1 mm to 3 mm.
  • the thickness of the front electrode 6 is, for example, about 10 ⁇ m to 40 ⁇ m.
  • the front electrode 6 having the above-described configuration can be formed by, for example, applying the first metal paste to a desired shape by screen printing or the like and then firing the first metal paste.
  • the first metal paste contains, for example, metal particles mainly composed of silver, an organic vehicle, and glass frit.
  • the main component means a component having the largest (high) content ratio (also referred to as a content ratio).
  • the first metal paste is applied in a desired shape on the antireflection film 3. And when this 1st metal paste is baked, this 1st metal paste produces the baking penetration of the anti-reflective film 3.
  • FIG. Thereby, the front electrode 6 in a state of being connected to the first surface 2u of the semiconductor substrate 2 can be formed.
  • the front electrode 6 may have an auxiliary electrode 6c having the same shape as the first current collecting electrode 6b, for example.
  • the auxiliary electrode 6c is located along each of the end in the + X direction and the end in the ⁇ X direction of the semiconductor substrate 2 so that the first current collecting electrodes 6b can be electrically connected to each other. .
  • the back electrode 7 is located on the second surface 2b side of the semiconductor substrate 2, for example.
  • the back electrode 7 includes, for example, a second output extraction electrode 7a and a second current collecting electrode 7b.
  • the second output extraction electrode 7 a is located on the second surface 2 b side of the semiconductor substrate 2.
  • This 2nd output extraction electrode 7a is an electrode for taking out the carrier obtained by photoelectric conversion in the solar cell element 1 to the exterior of the solar cell element 1, for example. 3B, 4A, and 4C, two second output extraction electrodes 7a exist on the protective layer 5 on the second surface 2b side of the semiconductor substrate 2. Yes.
  • Each second output extraction electrode 7a has a longitudinal direction along the second surface 2b. This longitudinal direction is the + Y direction.
  • Each of the second output extraction electrodes 7a is composed of N (N is an integer of 2 or more) island-shaped electrode portions (also referred to as island-shaped electrode portions) arranged along the + Y direction as the longitudinal direction. ing.
  • N is four.
  • the second output extraction electrode 7a has a width direction that intersects the longitudinal direction. This width direction is the + X direction.
  • the thickness of the second output extraction electrode 7a is, for example, about 10 ⁇ m to 40 ⁇ m.
  • the width of the second output extraction electrode 7a is, for example, about 1.3 mm to 7 mm. At least a part of the second output extraction electrode 7a is in contact with and electrically connected to the second collector electrode 7b.
  • the second output extraction electrode 7a having the above-described configuration can be formed by, for example, applying the second metal paste into a desired shape by screen printing or the like and then firing the second metal paste.
  • the second metal paste contains, for example, metal particles mainly composed of silver, an organic vehicle, and glass frit.
  • the second metal paste is applied on the protective layer 5 in a desired shape.
  • the second current collecting electrode 7b is located on the second surface 2b side of the semiconductor substrate 2.
  • the second collector electrode 7b can collect carriers obtained by photoelectric conversion in the semiconductor substrate 2 according to light irradiation.
  • a plurality of second current collecting electrodes 7b are present on the second surface 2b side of the semiconductor substrate 2.
  • Each second current collecting electrode 7b has a longitudinal direction along the second surface 2b. This longitudinal direction is the + X direction.
  • the plurality of second current collecting electrodes 7b also have a so-called finger-like form, similar to the plurality of first current collecting electrodes 6b described above.
  • Each second current collecting electrode 7b is a linear electrode having a width of about 50 ⁇ m to 200 ⁇ m, for example. In other words, the width of each second current collecting electrode 7b is smaller than the width of the second output extraction electrode 7a.
  • the plurality of second current collecting electrodes 7b are located, for example, in a state where they are aligned with an interval of about 1 mm to 3 mm.
  • the second current collecting electrode 7b has, for example, a first portion 7b1 and a second portion 7b2.
  • the first portion 7b1 is located on the first region Ar1 of the protective layer 5.
  • the second portion 7b2 is located in a state where it is electrically connected to the semiconductor substrate 2 in each of the plurality of through holes 45h in a state of continuously passing through the passivation film 4 and the protective layer 5.
  • the thickness of the first portion 7b1 is, for example, about 10 ⁇ m to 40 ⁇ m.
  • the first portion 7b1 and the second portion 7b2 are in an electrically connected state.
  • the second current collecting electrode 7b having the above-described configuration can be formed by, for example, applying the third metal paste into a desired shape by screen printing or the like and then firing the third metal paste.
  • the third metal paste contains, for example, metal particles mainly composed of aluminum, an organic vehicle, and glass frit.
  • the third metal paste is applied on the protective layer 5 and in the plurality of holes of the protective layer 5. And when this 3rd metal paste is baked, the 3rd metal paste located in the several hole part of the protective layer 5 produces baking penetration of the passivation film 4. FIG. Thereby, the 2nd part 7b2 in the state located in the some through-hole 45h can be formed.
  • the third metal paste diffuses into the surface layer portion of the second surface 2b of the semiconductor substrate 2, and the third semiconductor region 23 as a BSF layer can be generated.
  • the first portion 7 b 1 can be formed on the protective layer 5 without causing the firing of the passivation film 4 due to the presence of the protective layer 5.
  • the back electrode 7 can be formed.
  • a copper foil having a thickness of about 0.1 mm to about 0.2 mm and a width of about 1 mm to about 2 mm covered with solder is applied to the first wiring member W1.
  • the first wiring member W1 is positioned in a state where it is electrically connected to the first output extraction electrode 6a and the second output extraction electrode 7a, for example, by soldering.
  • the insulating paste used for forming the protective layer 5 can be produced, for example, by mixing a siloxane resin precursor, water, a catalyst, an organic solvent, and a large number of granular materials.
  • a step of preparing a mixed solution is performed by mixing a siloxane resin precursor, water, a catalyst, and an organic solvent in a container.
  • the precursor of the siloxane resin for example, a silane compound having a Si—O bond or a silazane compound having a Si—N bond is employed. These compounds have a property of causing hydrolysis (also referred to as hydrolyzability).
  • the precursor of the siloxane resin is converted into a siloxane resin by hydrolysis and condensation polymerization.
  • the silane compound is represented by the following general formula 1.
  • D in the general formula 1 is an integer of any one of 1, 2, 3, and 4.
  • R1 and R2 in the general formula 1 represent a carbon hydrogen group such as an alkyl group such as a methyl group and an ethyl group or a phenyl group.
  • the silane compound includes, for example, a silane compound in which at least R1 includes an alkyl group (also referred to as an alkyl group-based silane compound).
  • alkyl group-based silane compound for example, methyltrimethoxysilane, dimethyldimethoxysilane, triethoxymethylsilane, diethoxydimethylsilane, trimethoxypropylsilane, triethoxypropylsilane, hexyltrimethoxysilane, Examples include triethoxyhexylsilane, triethoxyoctylsilane, and decyltrimethoxysilane.
  • the alkyl group is a methyl group, an ethyl group, or a propyl group
  • an alcohol as a by-product that has a small number of carbon atoms and easily volatilizes can be generated when the precursor of the siloxane resin is hydrolyzed.
  • the protective layer 5 when the protective layer 5 is formed, vacancies are hardly generated due to evaporation of by-products, the protective layer 5 becomes dense, and the barrier property of the protective layer 5 can be improved.
  • generated by hydrolysis is a low-viscosity liquid, in a manufacturing process of the insulating paste until a by-product removal process, a mixed solution is hard to gelatinize.
  • the precursor of the siloxane resin when the precursor of the siloxane resin has a phenyl group, the precursor of the siloxane resin undergoes hydrolysis and condensation polymerization in advance, and by-products generated by hydrolysis and condensation polymerization of the phenyl group It may be mixed in the state of the siloxane resin from which is removed. Thereby, the fluctuation
  • an insulating paste is produced by mixing a siloxane resin, an organic solvent, and a large number of granular materials in a state where the by-products are removed, the amount of by-products contained in the insulating paste is reduced. Reduced.
  • the insulating paste is applied by a screen printing method, the emulsion of the screen plate making is hardly dissolved by the by-product. As a result, the dimensions of the screen plate making pattern are less likely to vary.
  • the silane compound includes, for example, a silane compound in which R1 and R2 include both a phenyl group and an alkyl group.
  • silane compounds include trimethoxyphenylsilane, dimethoxydiphenylsilane, methoxytriphenylsilane, triethoxyphenylsilane, diethoxydiphenylsilane, ethoxytriphenylsilane, triisopropoxyphenylsilane, and diisopropoxydiphenylsilane. And isopropoxytriphenylsilane.
  • the silazane compound may be either an inorganic silazane compound or an organic silazane compound.
  • examples of the inorganic silazane compound include polysilazane.
  • examples of the organic silazane compound include hexamethyldisilazane, tetramethylcyclodisilazane, and tetraphenylcyclodisilazane.
  • Water can, for example, hydrolyze a precursor of a siloxane resin.
  • a precursor of a siloxane resin For example, pure water is used as water.
  • water when water reacts with a Si—OCH 3 bond of a silane compound, a Si—OH bond and HO—CH 3 (methyl alcohol) are generated.
  • the organic solvent for example, a siloxane resin precursor and water can be mixed. Moreover, the organic solvent can also play the role which disperse
  • the organic solvent include diethylene glycol monobutyl ether, methyl cellosolve, ethyl cellosolve, ethyl alcohol, 2- (4-methylcyclohex-3-enyl) propan-2-ol or 2-propanol.
  • any one of these organic solvents and an organic solvent obtained by mixing two or more organic solvents may be used.
  • the catalyst can control the rate of the reaction, for example, when the siloxane resin precursor undergoes hydrolysis and condensation polymerization.
  • the Si—OR bond for example, R is an alkyl group contained in the siloxane resin precursor is subjected to hydrolysis and condensation polymerization, so that two or more Si—OH can be converted into Si—O—Si bond and H 2.
  • the rate of reaction to produce O water can be adjusted.
  • the catalyst for example, one or more inorganic acids or one or more organic acids selected from hydrochloric acid, nitric acid, sulfuric acid, boric acid, phosphoric acid, hydrofluoric acid, and acetic acid are used.
  • the catalyst for example, one or more inorganic bases or one or more organic bases among ammonia, sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide, pyridine, and the like may be used. Further, the catalyst may be, for example, a combination of an inorganic acid and an organic acid, or a combination of an inorganic base and an organic base.
  • the precursor of a siloxane resin is 10 mass% to 90 mass%, and water is 5 mass% to 40 with respect to the total mass (100 mass%) of the mixed material, for example.
  • the catalyst is 1 ppm to 1000 ppm
  • the organic solvent is 5 mass% to 50 mass%. If the said ratio is employ
  • siloxane resin precursor and water react to start hydrolysis of the siloxane resin precursor. Also, the hydrolyzed siloxane resin precursor undergoes condensation polymerization, and siloxane resin begins to be produced.
  • a step of stirring the mixed solution prepared in the mixing step using, for example, a mix rotor or a stirrer (also referred to as a first stirring step) is performed.
  • hydrolysis of the precursor of the siloxane resin further proceeds.
  • the hydrolyzed siloxane resin precursor undergoes condensation polymerization, and the siloxane resin continues to be produced.
  • the rotation speed of the rotating roller of the mix rotor is set to about 400 rpm to 600 rpm, and the stirring time is set to about 30 minutes to 90 minutes. With such a setting, the siloxane resin precursor, water, catalyst and organic solvent can be mixed uniformly.
  • the first stirring step for example, if the mixed solution is heated, hydrolysis and condensation polymerization of the precursor of the siloxane resin easily proceed. Thereby, for example, the viscosity of the mixed solution tends to be stable in a step after the first stirring step. Further, for example, hydrolysis and condensation polymerization of the precursor of the siloxane resin can easily proceed, and productivity can be improved by shortening the stirring time.
  • a step of removing by-products from the mixed solution stirred in the first stirring step (also referred to as a by-product removing step) is performed.
  • by-products of organic components such as alcohol generated by the reaction between the precursor of the siloxane resin and water, water and the catalyst are volatilized.
  • fluctuations in the viscosity of the insulating paste due to the volatilization of the organic component as a by-product are reduced.
  • the insulating paste is applied using the screen printing method, the emulsion of the screen plate making becomes difficult to be dissolved by the organic component as a by-product.
  • the hydrolyzed siloxane resin precursor further undergoes condensation polymerization, and the siloxane resin continues to be generated.
  • water and the catalyst are volatilized, and thereafter, the condensation polymerization reaction of the precursor of the siloxane resin is reduced, and the fluctuation of the viscosity of the mixed solution can be reduced.
  • the processing temperature is about room temperature to about 90 ° C. (or about 50 ° C. to about 90 ° C.), and the processing time is about 10 minutes to about 600 minutes.
  • the mixed solution after stirring is processed under the conditions as follows.
  • By-products can be removed by volatilization if the processing temperature is within the above temperature range.
  • an organic component such as methyl alcohol produced by the hydrolysis reaction but also an added catalyst can be removed by volatilization.
  • the by-product removing step is performed under reduced pressure, the organic components and catalysts that are by-products are likely to volatilize, and the processing time can be shortened.
  • the precursor of the siloxane resin remaining without being hydrolyzed in the first stirring step may be further hydrolyzed.
  • the multiple granular materials include, for example, the plurality of granular materials 5b described above.
  • the plurality of granules 5b include the plurality of first granules 5b1 and the plurality of second granules 5b2 described above.
  • a plurality of granular materials may include a plurality of fillers (viscosity adjusting fillers) for adjusting the viscosity of the mixed solution.
  • an inorganic material such as silicon oxide is applied to the plurality of filler materials.
  • a filler having a surface covered with an organic coating may be applied to the plurality of fillers.
  • the organic coating material has, for example, a structure in which the number of carbon atoms in the main chain is 6 or more, or the total number of carbon atoms and silicon atoms in the main chain is 6 or more.
  • a material different from the siloxane resin can be applied.
  • a large number of granular materials are added to the mixed solution so that the insulating paste after the production includes, for example, 3% by mass to 30% by mass (may be 5% by mass to 25% by mass).
  • a step (also referred to as a second stirring step) of stirring the mixed solution to which the plurality of granular materials are added using, for example, a rotation / revolution mixer or the like is performed.
  • the rotation speed of the rotation part and the revolution part is set to 800 rpm to 1000 rpm, and the stirring time is set to 1 minute to 10 minutes.
  • a step of stabilizing the viscosity of the mixed solution (also referred to as a viscosity stabilization step) is performed by storing the mixed solution after stirring in the second stirring step, for example, at room temperature for about 2 to 24 hours. To do.
  • the viscosity stabilization step may be omitted.
  • An insulating paste can be produced by the series of steps described above.
  • a large number of granular materials may be mixed at the same time in the mixing step.
  • the granule addition step and the second stirring step become unnecessary, and the productivity of the insulating paste is improved.
  • the byproduct removal step may be omitted.
  • a siloxane resin having an alkyl group may be generated in the mixing step, and the siloxane resin having a phenyl group may be added in the granular material adding step.
  • a semiconductor substrate 2 is prepared.
  • a substrate made of single crystal silicon or polycrystalline silicon is applied to the semiconductor substrate 2.
  • the semiconductor substrate 2 is formed using, for example, an existing Czochralski method (CZ method) or a casting method.
  • CZ method Czochralski method
  • boron or the like is added as a dopant element when a polycrystalline silicon ingot is produced using a casting method or the like.
  • the resistivity of the ingot is adjusted from 1 ohm centimeter ( ⁇ ⁇ cm) to about 5 ⁇ ⁇ cm.
  • the ingot is cut into, for example, a rectangular parallelepiped shape having a square bottom surface with a side of about 160 mm, and further sliced to a thickness of about 200 ⁇ m to produce the semiconductor substrate 2.
  • a very small amount of etching is performed on the surface of the semiconductor substrate 2 with an aqueous solution such as sodium hydroxide, potassium hydroxide, hydrofluoric acid, or hydrofluoric acid to mechanically damage the cut surface of the semiconductor substrate 2.
  • the received layer and the contaminated layer are removed.
  • the texture may be formed on the first surface 2u of the semiconductor substrate 2 by wet or dry etching.
  • etching using an alkaline aqueous solution such as sodium hydroxide or an acidic aqueous solution such as hydrofluoric acid is applied.
  • etching using a reactive ion etching (RIE) method or the like is applied to the dry etching.
  • RIE reactive ion etching
  • the second semiconductor region 22 that is an n-type semiconductor region is generated in the surface layer portion of the first surface 2 u of the textured semiconductor substrate 2.
  • the second semiconductor region 22 is formed into a gaseous state, for example, by applying a paste of phosphorous pentoxide (P 2 O 5 ) to the first surface 2u of the semiconductor substrate 2 to thermally diffuse phosphorus. It can be produced using a vapor phase thermal diffusion method using phosphorus oxychloride (POCl 3 ) as a diffusion source.
  • the second semiconductor region 22 has, for example, a depth of about 0.1 ⁇ m to 2 ⁇ m and a sheet resistance value of about 40 ⁇ / ⁇ to 200 ⁇ / ⁇ .
  • the semiconductor substrate 2 is subjected to heat treatment for about 5 minutes to 30 minutes at a temperature of about 600 ° C. to 800 ° C. in an atmosphere containing a diffusion source gas such as POCl 3. Then, phosphor silicon glass (PSG) is formed on the first surface 2 u of the semiconductor substrate 2. Thereafter, heat treatment is performed on the semiconductor substrate 2 for about 10 minutes to 40 minutes at a high temperature of about 800 ° C. to 900 ° C. in an atmosphere of an inert gas such as argon or nitrogen. Thereby, phosphorus diffuses from the PSG to the surface layer portion on the first surface 2 u side of the semiconductor substrate 2, and the second semiconductor region 22 is generated in the surface layer portion on the first surface 2 u side of the semiconductor substrate 2.
  • a diffusion source gas such as POCl 3.
  • PSG phosphor silicon glass
  • the second semiconductor region is also generated on the second surface 2b side
  • the second surface 2b side of the semiconductor substrate 2 is immersed in an aqueous solution of fluoric nitric acid so that the second surface 2b side is immersed.
  • the formed second semiconductor region is removed by etching.
  • the first semiconductor region 21 having p-type conductivity may be exposed on the second surface 2 b of the semiconductor substrate 2.
  • PSG attached on the first surface 2u of the semiconductor substrate 2 during the generation of the second semiconductor region 22 is removed by etching.
  • the second semiconductor region formed on the side surface 2s of the semiconductor substrate 2 may also be removed.
  • a diffusion mask may be formed in advance on the second surface 2b side of the semiconductor substrate 2, and the diffusion mask may be removed after the second semiconductor region 22 is generated by a vapor phase thermal diffusion method or the like. In this case, the second semiconductor region is not generated on the second surface 2b side.
  • a passivation film 4 mainly containing, for example, aluminum oxide is formed on at least the second surface 2 b of the semiconductor substrate 2.
  • the passivation film 4 can be formed by, for example, an ALD method or a PECVD method.
  • the surface of the semiconductor substrate 2 can be more densely covered with the passivation film 4 without a gap.
  • the step of forming the passivation film 4 using the ALD method first, the semiconductor substrate 2 on which the second semiconductor region 22 is formed is placed in the chamber of the film forming apparatus. Then, in a state where the semiconductor substrate 2 is heated in a temperature range of 100 ° C.
  • a passivation film 4 mainly containing aluminum oxide is formed on the semiconductor substrate 2.
  • TMA trimethylaluminum
  • TEA triethylaluminum
  • water or ozone gas is applied as the oxidizing agent.
  • the passivation film 4 can be formed not only on the second surface 2 b of the semiconductor substrate 2 but also on the entire periphery of the semiconductor substrate 2 including the side surface 2 s of the semiconductor substrate 2.
  • an unnecessary portion of the passivation film 4 may be removed by etching using hydrofluoric acid or the like.
  • an antireflection film 3 containing, for example, silicon nitride is formed on at least the first surface 2u of the semiconductor substrate 2.
  • the antireflection film 3 is formed using, for example, a PECVD method or a sputtering method.
  • the semiconductor substrate 2 is heated in advance to a temperature higher than the temperature during the formation of the antireflection film 3.
  • a mixed gas of silane (SiH 4 ) and ammonia (NH 3 ) is diluted with nitrogen (N 2 ) gas, the reaction pressure is changed from 50 Pa to 200 Pa, and plasma is generated by glow discharge decomposition. Is deposited on the heated semiconductor substrate 2.
  • the antireflection film 3 is formed on the first surface 2 u of the semiconductor substrate 2.
  • the film formation temperature is, for example, about 350 ° C. to 650 ° C.
  • the frequency of the high-frequency power source necessary for glow discharge is, for example, about 10 kHz to 500 kHz.
  • the flow rate of the mixed gas is appropriately determined according to the size of the reaction chamber.
  • the flow rate of the mixed gas is, for example, in the range of about 150 ml / min (sccm) to about 6000 ml / min (sccm).
  • a value (B / A) obtained by dividing the flow rate B of ammonia gas by the flow rate A of silane gas is, for example, in the range of 0.5 to 15.
  • a protective layer 5 containing silicon oxide or the like is formed on the passivation film 4 formed on the second surface 2 b of the semiconductor substrate 2.
  • the protective layer 5 is, for example, applied on the passivation film 4 formed on the second surface 2b of the semiconductor substrate 2 so that an insulating paste has a desired pattern by a coating method such as a screen printing method.
  • the insulating paste can be formed by drying.
  • the insulating paste containing the plurality of granular materials 5b described above is employed.
  • the protective layer 5 may be formed directly on the passivation film 4 or on the antireflection film 3 formed on the passivation film 4 on the side surface 2 s of the semiconductor substrate 2. In this case, the presence of the protective layer 5 can reduce, for example, a leakage current in the solar cell element 1.
  • the above-described first metal paste Pa1, second metal paste Pa2, and third metal paste Pa3 are applied and baked using screen printing or the like.
  • the front electrode 6 and the back electrode 7 are formed.
  • the front electrode 6 including the first output extraction electrode 6a and the first collector electrode 6b is formed by applying the first metal paste Pa1 on the antireflection film 3 and baking it.
  • the first metal paste is applied by screen printing
  • the first output extraction electrode 6a, the first current collecting electrode 6b, and the auxiliary electrode 6c included in the front electrode 6 can be formed in one step.
  • the first metal paste Pa1 may be dried by evaporating the solvent in the first metal paste Pa1 at a predetermined temperature. Firing of the first metal paste Pa1 is performed, for example, under the condition that the maximum temperature in the firing furnace is 600 ° C. to 850 ° C.
  • the heating time is about several tens of seconds to several tens of minutes.
  • the first metal paste Pa ⁇ b> 1 causes firing through the antireflection film 3, and the front electrode 6 is formed on the first surface 2 u side of the semiconductor substrate 2.
  • the second output extraction electrode 7a of the back electrode 7 is formed by applying the second metal paste Pa2 on the protective layer 5 and baking it.
  • coating of 2nd metal paste Pa2 is performed using screen printing etc., for example.
  • the second metal paste Pa2 may be dried by evaporating the solvent in the second metal paste Pa2 at a predetermined temperature. Firing of the second metal paste is performed, for example, under the condition that the maximum temperature in the firing furnace is 600 ° C. to 850 ° C. and the heating time is about several tens of seconds to several tens of minutes. Thereby, the second output extraction electrode 7 a is formed on the second surface 2 b side of the semiconductor substrate 2.
  • the second current collecting electrode 7b of the back electrode 7 is formed by applying the third metal paste Pa3 on the protective layer 5 and baking it.
  • coating of 3rd metal paste Pa3 is performed using screen printing etc., for example.
  • the third metal paste Pa3 is applied to the second surface 2b side of the semiconductor substrate 2 so as to be in contact with a part of the second metal paste Pa2 previously applied.
  • the third metal paste Pa3 is applied to a part on the protective layer 5 formed on the passivation film 4 on the second surface 2b and a plurality of holes of the protective layer 5.
  • the third metal paste Pa3 may be dried by evaporating the solvent in the third metal paste Pa3 at a predetermined temperature.
  • the third metal paste Pa3 is fired under the condition that the maximum temperature in the firing furnace is 600 ° C. to 850 ° C. and the heating time is several tens of seconds to several tens of minutes.
  • the third metal paste Pa3 is fired under the condition that the maximum temperature in the firing furnace is 600 ° C. to 850 ° C. and the heating time is several tens of seconds to several tens of minutes.
  • the 1st part 7b1 of the 2nd current collection electrode 7b is formed by baking of 3rd metal paste Pa3 on the protective layer 5.
  • FIG. At this time, the third metal paste Pa3 on the protective layer 5 is blocked by the protective layer 5.
  • the third metal paste Pa3 causes firing of the passivation film 4 and is electrically connected to the first semiconductor region 21.
  • the second portion 7b2 of the second collector electrode 7b is formed on the second surface 2b side of the semiconductor substrate 2.
  • the third semiconductor region 23 is also generated with the formation of the second portion 7b2.
  • the back electrode 7 including the second output extraction electrode 7a and the second collector electrode 7b can be formed.
  • the protective layer 5 has a larger thickness than the antireflection film 3. For this reason, for example, on the second element surface Sf2 side of the solar cell element 1, multiple reflections of visible light and near infrared light can be made difficult to occur. Thereby, for example, the third light utilization rate related to the third optical path Rt3 can be increased. Further, for example, by increasing the thickness of the protective layer 5, the performance of protecting the passivation film 4 by the protective layer 5 can be improved.
  • the protective layer 5 includes the base material portion 5a and the plurality of first granular bodies 5b1 having a refractive index closer to the semiconductor substrate 2 than the base material portion 5a, so that the protective layer 5 is the base material.
  • the refractive index of the protective layer 5 can approach the refractive index of the semiconductor substrate 2 as compared with the case where the material portion 5a is constituted alone.
  • the light emitted from the back surface 1bs side to the second element surface Sf2 is not easily reflected in the region between the protective layer 5 and the semiconductor substrate 2, and is likely to enter the semiconductor substrate 2.
  • the third light utilization rate related to the third optical path Rt3 can be increased.
  • the photoelectric conversion efficiency in the solar cell element 1 can be improved.
  • the position between the filler 104 and the semiconductor substrate 2 is set.
  • the refractive index of the protective layer 5 is between the refractive index of the filler 104 and the refractive index of the semiconductor substrate 2.
  • the shape of the plurality of second granular bodies 5b2 for example, any shape such as a particle shape, a layer shape, a flat shape, a hollow shape, and a fiber shape may be adopted.
  • a case where the plurality of second granular bodies 5b2 have an elongated cross section is conceivable.
  • the second granular body 5b2 has a virtual cut surface in a direction perpendicular to the longitudinal direction having a diameter of about several tens of nanometers and a length in the longitudinal direction of about 1 ⁇ m to several ⁇ m or less. Possible forms.
  • the wavelength region corresponding to the length in the longitudinal direction of the second granular material 5b2 is present in the protective layer 5.
  • Light scattering can occur. Therefore, for example, a plurality of second granular bodies 5b2 that can scatter light transmitted through the semiconductor substrate 2 without causing an excessive increase in the thickness of the protective layer 5 are present in the protective layer 5.
  • an increase in the amount of material used and an occurrence of cracks in the protective layer 5 due to an excessive increase in the thickness of the protective layer 5 can be reduced. As a result, for example, the photoelectric conversion efficiency in the solar cell element 1 can be easily improved.
  • the first region Ar1 of the protective layer 5 includes, for example, a plurality of second granular bodies 5b2 as shown in FIG.
  • the second region Ar2 different from the first region Ar1 of the layer 5 may have a plurality of first granular bodies 5b1 as shown in FIG. 9B.
  • the semiconductor substrate 2 from the front surface 1fs side. Is scattered by the presence of the plurality of second granular bodies 5b2 and re-enters the semiconductor substrate 2.
  • the light incident from the back surface 1bs side is caused by the presence of the plurality of first granular bodies 5b1. 2 is easy to enter.
  • the photoelectric conversion efficiency in the solar cell element 1 can be improved.
  • the semiconductor substrate 2 does not absorb, light that increases the temperature of the solar cell element 1 (for example, the temperature of the solar cell element 1 increases due to absorption by a base that supports the solar cell module 100 or a base on which a base such as roofing material or asphalt is installed) Further, far infrared rays having a wavelength exceeding 2 ⁇ m or the like) can be reflected by the protective layer 5 to reduce the temperature rise of the power generation environment. By doing in this way, the temperature rise of the solar cell module 100 can be suppressed and the actual power generation amount can be increased.
  • the plurality of first granular bodies 5b1 may or may not exist.
  • a plurality of second granular bodies 5b2 may exist in the second region Ar2 of the protective layer 5.
  • the density of the plurality of first granules 5b1 and the density of the plurality of second granules 5b2 in the second region Ar2 of the protective layer 5 can be set as appropriate.
  • the density of the plurality of second granular bodies 5b2 in the second region Ar2 is increased, even if the light irradiated to the first element surface Sf1 is transmitted through the semiconductor substrate 2, It is scattered by the presence of the plurality of second granular bodies 5 b 2 and easily reenters the semiconductor substrate 2.
  • the first light utilization rate related to the first optical path Rt1 can be increased.
  • the density of the plurality of first granular bodies 5b1 in the second region Ar2 is increased, the light radiated from the back surface 1bs side to the second element surface Sf2 is between the protective layer 5 and the semiconductor substrate 2.
  • the third light utilization rate related to the third optical path Rt3 can be increased.
  • the photoelectric conversion efficiency in the solar cell element 1 can be improved.
  • the plurality of second granular bodies 5b2 may have a function as a viscosity adjusting filler, for example.
  • the some 1st granule 5b1 may have a function as a filler for viscosity adjustment, for example.
  • the protective layer 5 may or may not contain a viscosity adjusting filler different from the plurality of first granular bodies 5b1 and the plurality of second granular bodies 5b2.
  • the plurality of second current collecting electrodes 7b have other forms such as a so-called honeycomb form instead of the so-called finger form. It may be.
  • the packing unit 105 may not be present.
  • the packing unit 105 is not necessarily required as a member sandwiched between the first protective member 101 and the second protective member 102.
  • an aluminum frame that is a member that reinforces the strength of the solar cell module 100 or a resin that seals the side surface of the solar cell module 100 may serve as the function of the packing unit 105.
  • the semiconductor substrate 2 may be, for example, a silicon substrate using amorphous silicon instead of single crystal or polycrystalline silicon.
  • the semiconductor substrate 2 is not a silicon substrate, for example, four kinds of elements (so-called CIGS) of copper, indium, gallium, and selenium, or cadmium and tellurium.
  • CIGS elements of copper, indium, gallium, and selenium, or cadmium and tellurium.
  • a substrate having a compound semiconductor using the two types of elements may be used.
  • the passivation film 4 is damaged by the application of the insulating paste. Hateful.

Abstract

This solar battery element includes a semiconductor substrate, an antireflection film, a passivation film, a protective layer, and an electrode. The semiconductor substrate has a first surface, a second surface, and side surfaces. The antireflection film is located on the first surface of the semiconductor substrate. The passivation film is located on the second surface. The protective layer is located on the passivation film and is thicker than the antireflection film. The electrode has: a first portion that is located on a first region of the protective layer; and a second portion that is located inside a through hole that passes successively through the passivation film and the protective layer, and is connected to the semiconductor substrate. The protective layer has a base material portion and a plurality of granules. The plurality of granules includes a plurality of first granules that is frequently present in a first diameter range, and a plurality of second granules that is frequently present in a second diameter range that is different from the first diameter range. Each of the first granules has a refractive index that is closer to that of the semiconductor substrate than that of the base material.

Description

太陽電池素子および太陽電池モジュールSolar cell element and solar cell module
 本開示は、太陽電池素子および太陽電池モジュールに関する。 The present disclosure relates to a solar cell element and a solar cell module.
 太陽電池素子には、例えば、半導体基板と裏面電極との間にパッシベーション膜が存在しているPERC(Passivated Emitter and Rear Cell)型の太陽電池素子がある。 The solar cell element includes, for example, a PERC (Passivated Emitter and Rear Cell) type solar cell element in which a passivation film is present between a semiconductor substrate and a back electrode.
 このPERC型の太陽電池素子については、例えば、光電変換効率の向上を指向して、半導体基板の裏面側に裏面電極を局所的に存在させ、前面だけでなく裏面に入射する光も発電に利用する技術が提案されている(例えば、特表2016-523452号公報の記載を参照)。換言すれば、前面および裏面の双方に入射する光を発電に利用するタイプ(両面受光型ともいう)の太陽電池素子および太陽電池モジュールが提案されている。 For this PERC type solar cell element, for example, aiming to improve photoelectric conversion efficiency, a back electrode is locally present on the back side of the semiconductor substrate, and light incident on the back side as well as the front side is also used for power generation. (For example, refer to the description of JP-T-2016-523442). In other words, solar cell elements and solar cell modules of a type (also referred to as a double-sided light receiving type) that use light incident on both the front surface and the back surface for power generation have been proposed.
 太陽電池素子および太陽電池モジュールが開示される。 A solar cell element and a solar cell module are disclosed.
 太陽電池素子の一態様は、半導体基板と、反射防止膜と、パッシベーション膜と、保護層と、電極と、を備えている。前記半導体基板は、第1面、該第1面の逆側に位置している第2面および前記第1面と前記第2面とを接続している状態で位置している側面を有する。前記反射防止膜は、前記半導体基板の前記第1面の側に位置している。前記パッシベーション膜は、前記第2面の上に位置している。前記保護層は、前記パッシベーション膜の上に位置し、前記反射防止膜よりも大きな厚さを有する。前記電極は、前記保護層の第1領域の上に位置している第1部分と、前記パッシベーション膜および前記保護層を連続して貫通している状態の貫通孔内において前記半導体基板に電気的に接続している状態で位置している第2部分と、を有する。前記保護層は、母材部と複数の粒状体とを有する。該複数の粒状体は、第1粒径範囲で該第1粒径範囲外よりも高い頻度で存在している複数の第1粒状体と、前記第1粒径範囲とは異なる第2粒径範囲で該第2粒径範囲外よりも高い頻度で存在している複数の第2粒状体と、を含む。各前記第1粒状体の屈折率は、前記母材部の屈折率よりも前記半導体基板の屈折率に近い。 One aspect of the solar cell element includes a semiconductor substrate, an antireflection film, a passivation film, a protective layer, and an electrode. The semiconductor substrate has a first surface, a second surface located on the opposite side of the first surface, and a side surface located in a state where the first surface and the second surface are connected. The antireflection film is located on the first surface side of the semiconductor substrate. The passivation film is located on the second surface. The protective layer is located on the passivation film and has a larger thickness than the antireflection film. The electrode is electrically connected to the semiconductor substrate in a first portion located on the first region of the protective layer, and in a through hole in a state of continuously passing through the passivation film and the protective layer. And a second portion located in a connected state. The protective layer has a base material portion and a plurality of granular materials. The plurality of granular materials are a plurality of first granular materials present in a first particle size range at a frequency higher than outside the first particle size range, and a second particle size different from the first particle size range. A plurality of second granular materials that are present at a higher frequency than outside the second particle size range. The refractive index of each of the first granular materials is closer to the refractive index of the semiconductor substrate than the refractive index of the base material portion.
 太陽電池モジュールの一態様は、第1保護部材と、第2保護部材と、太陽電池部と、充填材と、を備えている。前記第1保護部材は、透光性を有する。前記第2保護部材は、透光性を有する。前記太陽電池部は、前記第1保護部材と前記第2保護部材との間に位置している。前記充填材は、前記第1保護部材と前記第2保護部材との間において、前記太陽電池部を前記第1保護部材側および前記第2保護部材側から覆うように位置し、透光性を有する。前記太陽電池部は、複数の上記一態様の太陽電池素子を有する。 One aspect of the solar cell module includes a first protective member, a second protective member, a solar cell portion, and a filler. The first protective member has translucency. The second protective member has translucency. The solar cell unit is located between the first protective member and the second protective member. The filler is located between the first protective member and the second protective member so as to cover the solar cell portion from the first protective member side and the second protective member side, and has translucency. Have. The solar cell unit includes a plurality of the solar cell elements according to the one aspect.
図1は、第1実施形態に係る太陽電池モジュールの一例の前面側から見た外観を示す平面図である。FIG. 1 is a plan view showing an appearance of an example of the solar cell module according to the first embodiment viewed from the front side. 図2は、図1のII-II線に沿った第1実施形態に係る太陽電池モジュールの一例の仮想的な切断面を示す図である。FIG. 2 is a diagram showing a virtual cut surface of an example of the solar cell module according to the first embodiment along the line II-II in FIG. 図3(a)は、第1実施形態に係る太陽電池素子の一例の第1素子面側から見た外観を示す平面図である。図3(b)は、第1実施形態に係る太陽電池素子の一例の第2素子面側から見た外観を示す平面図である。Fig.3 (a) is a top view which shows the external appearance seen from the 1st element surface side of an example of the solar cell element which concerns on 1st Embodiment. FIG.3 (b) is a top view which shows the external appearance seen from the 2nd element surface side of an example of the solar cell element which concerns on 1st Embodiment. 図4(a)は、図3(a)および図3(b)のIVa-IVa線に沿った第1実施形態に係る太陽電池素子の一例の仮想的な切断面を示す図である。図4(b)は、図3(a)および図3(b)のIVb-IVb線に沿った第1実施形態に係る太陽電池素子の一例の仮想的な切断面を示す図である。図4(c)は、図3(a)および図3(b)のIVc-IVc線に沿った第1実施形態に係る太陽電池素子の一例の仮想的な切断面を示す図である。FIG. 4A is a diagram showing a virtual cut surface of an example of the solar cell element according to the first embodiment taken along line IVa-IVa in FIGS. 3A and 3B. FIG. 4B is a diagram showing a virtual cut surface of an example of the solar cell element according to the first embodiment along the line IVb-IVb in FIGS. 3A and 3B. FIG. 4C is a diagram showing a virtual cut surface of an example of the solar cell element according to the first embodiment along the line IVc-IVc in FIGS. 3A and 3B. 図5は、第1実施形態に係る保護層の一構成例を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing one configuration example of the protective layer according to the first embodiment. 図6は、図2のVI部における第1実施形態に係る太陽電池モジュールの一部の一例の切断面において、太陽電池素子に光が入射する3つの経路を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing three paths through which light enters the solar cell element in the cut surface of an example of a part of the solar cell module according to the first embodiment in the VI part of FIG. 2. 図7(a)から図7(d)は、それぞれ第1実施形態に係る太陽電池素子を製造する途中の状態を例示する断面図である。FIG. 7A to FIG. 7D are cross-sectional views illustrating states in the middle of manufacturing the solar cell element according to the first embodiment. 図8は、第2実施形態に係る保護層の一構成例を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing one configuration example of the protective layer according to the second embodiment. 図9(a)は、第3実施形態に係る保護層の第1領域の一構成例を模式的に示す断面図である。図9(b)は、第3実施形態に係る保護層の第2領域の一構成例を模式的に示す断面図である。FIG. 9A is a cross-sectional view schematically showing a configuration example of the first region of the protective layer according to the third embodiment. FIG. 9B is a cross-sectional view schematically showing a configuration example of the second region of the protective layer according to the third embodiment.
 例えば、半導体基板と裏面電極との間にパッシベーション膜が存在している、いわゆるPERC型の太陽電池素子が知られている。パッシベーション膜には、例えば、原子層堆積(Atomic Layer Deposition:ALD)法などの成膜法によって形成され得る酸化アルミニウムの薄膜が適用される。 For example, a so-called PERC type solar cell element in which a passivation film exists between a semiconductor substrate and a back electrode is known. As the passivation film, for example, an aluminum oxide thin film that can be formed by a film forming method such as atomic layer deposition (ALD) is applied.
 このPERC型の太陽電池素子については、例えば、半導体基板の裏面側に裏面電極を局所的に存在させて、前面だけでなく裏面に入射する光も発電に利用することで、光電変換効率を向上させることが考えられる。換言すれば、前面および裏面の双方に入射する光を発電に利用するタイプ(両面受光型)の太陽電池素子および太陽電池モジュールが考えられる。 For this PERC type solar cell element, for example, a back electrode is locally present on the back side of the semiconductor substrate, and light incident on the back side as well as the front side is used for power generation, thereby improving photoelectric conversion efficiency. It is possible to make it. In other words, a solar cell element and a solar cell module of a type (double-sided light receiving type) that uses light incident on both the front surface and the back surface for power generation can be considered.
 ここで、両面受光型の太陽電池素子については、例えば、裏面側に微細な凹凸構造(テクスチャ)を存在させることで、裏面に照射される光の反射を低減することが考えられる。ところが、例えば、両面受光型の太陽電池素子の裏面側に微細な凹凸構造が存在していれば、太陽電池素子の裏面側でキャリアが再結合しやすく、光電変換効率が低下するおそれがある。 Here, with respect to the double-sided light receiving solar cell element, for example, it is conceivable to reduce reflection of light irradiated to the back surface by making a fine uneven structure (texture) exist on the back surface side. However, for example, if a fine concavo-convex structure is present on the back side of a double-sided light receiving solar cell element, carriers are likely to recombine on the back side of the solar cell element, and the photoelectric conversion efficiency may be reduced.
 また、例えば、半導体基板の裏面上に位置しているパッシベーション膜を保護する保護層を存在させる場合がある。保護層には、例えば、プラズマ化学気相成長(Plasma-Enhanced Chemical Vapor Deposition:PECVD)法またはスパッタリング法を用いて形成され得る窒化珪素の薄膜が適用される。ここで、例えば、太陽電池素子の裏面側では、微細な凹凸構造が存在していなければ、保護層の存在によって光の多重反射が生じ得る。ここでは、例えば、太陽光のうちの600ナノメートル(nm)以下の比較的短い波長域の光など、多重反射が生じやすい波長域の光が存在し得る。これにより、例えば、両面受光型の太陽電池素子において、裏面に照射される光のうち、半導体基板で光電変換に利用される光の割合が高まらず、光電変換効率が向上しにくい。 Also, for example, there may be a protective layer that protects the passivation film located on the back surface of the semiconductor substrate. For the protective layer, for example, a silicon nitride thin film that can be formed using a plasma-enhanced chemical vapor deposition (PECVD) method or a sputtering method is applied. Here, for example, on the back side of the solar cell element, if there is no fine uneven structure, multiple reflection of light may occur due to the presence of the protective layer. Here, for example, there may be light in a wavelength range in which multiple reflection is likely to occur, such as light in a relatively short wavelength range of 600 nanometers (nm) or less of sunlight. Thereby, for example, in the double-sided light receiving solar cell element, the ratio of the light used for photoelectric conversion in the semiconductor substrate out of the light irradiated on the back surface does not increase, and the photoelectric conversion efficiency is difficult to improve.
 そこで、本発明者らは、両面受光型の太陽電池素子および太陽電池モジュールについて、光電変換効率を向上させることができる技術を創出した。 Therefore, the present inventors have created a technology capable of improving the photoelectric conversion efficiency for the double-sided light receiving solar cell element and the solar cell module.
 これについて、以下、第1実施形態から第3実施形態のそれぞれについて図面を参照しつつ説明する。図面においては同様な構成および機能を有する部分に同じ符号が付されており、下記説明では重複説明が省略される。図面は模式的に示されたものである。図1から図9(b)には、それぞれ右手系のXYZ座標系が付されている。このXYZ座標系では、太陽電池モジュール100の前面1fsの一対の辺に沿った方向が+X方向とされ、前面1fsの他の一対の辺に沿った方向が+Y方向とされ、+X方向と+Y方向との両方に直交する前面1fsの法線方向が+Z方向とされている。 Hereinafter, each of the first to third embodiments will be described with reference to the drawings. In the drawings, parts having similar configurations and functions are denoted by the same reference numerals, and redundant description is omitted in the following description. The drawings are shown schematically. FIGS. 1 to 9B each have a right-handed XYZ coordinate system. In this XYZ coordinate system, the direction along the pair of sides of the front surface 1fs of the solar cell module 100 is the + X direction, the direction along the other pair of sides of the front surface 1fs is the + Y direction, the + X direction and the + Y direction. The normal direction of the front surface 1fs that is orthogonal to both is the + Z direction.
 <1.第1実施形態>
  <1-1.太陽電池モジュール>
 第1実施形態に係る太陽電池モジュール100について、図1から図6を参照しつつ説明する。
<1. First Embodiment>
<1-1. Solar cell module>
The solar cell module 100 according to the first embodiment will be described with reference to FIGS. 1 to 6.
 図1および図2で示されるように、太陽電池モジュール100は、主に光が入射する受光面(前面ともいう)1fsと、この前面1fsの逆側に位置する裏面1bsと、を有する。第1実施形態では、前面1fsが、+Z方向を向いている。裏面1bsが、-Z方向を向いている。例えば、+Z方向は、南中している太陽に向く方向に設定される。図1の例では、前面1fsが、長方形状の形状を有する。 As shown in FIGS. 1 and 2, the solar cell module 100 has a light receiving surface (also referred to as a front surface) 1fs on which light is mainly incident, and a back surface 1bs located on the opposite side of the front surface 1fs. In the first embodiment, the front surface 1fs faces the + Z direction. The back surface 1bs faces the −Z direction. For example, the + Z direction is set to a direction toward the sun going south. In the example of FIG. 1, the front surface 1fs has a rectangular shape.
 図1および図2で示されるように、太陽電池モジュール100は、例えば、太陽電池パネルPn1を備えている。図2で示されるように、太陽電池モジュール100は、例えば、端子ボックスJ1を備えていてもよい。端子ボックスJ1は、例えば、太陽電池パネルPn1の裏面1bs上などに位置し、太陽電池パネルPn1における発電で得られた電気を外部に出力することができる。太陽電池モジュール100は、例えば、フレーム106などを備えていてもよい。フレーム106は、例えば、太陽電池パネルPn1の外周部に沿って位置し、太陽電池パネルPn1の外周部を保護することができる。ここでは、例えば、太陽電池パネルPn1の外周部とフレーム106との間にブチル系の樹脂などの透湿度が低い封止材が充填されていてもよい。 As shown in FIGS. 1 and 2, the solar cell module 100 includes, for example, a solar cell panel Pn1. As shown in FIG. 2, the solar cell module 100 may include, for example, a terminal box J1. The terminal box J1 is located on, for example, the back surface 1bs of the solar cell panel Pn1, and can output the electricity obtained by the power generation in the solar cell panel Pn1 to the outside. The solar cell module 100 may include a frame 106, for example. The frame 106 is located along the outer periphery of the solar cell panel Pn1, for example, and can protect the outer periphery of the solar cell panel Pn1. Here, for example, a sealing material having a low moisture permeability such as a butyl resin may be filled between the outer peripheral portion of the solar cell panel Pn1 and the frame 106.
 図1および図2で示されるように、太陽電池パネルPn1は、例えば、第1保護部材101と、第2保護部材102と、太陽電池部103と、充填材104と、パッキング部105と、を備えている。ここでは、例えば、第1保護部材101と第2保護部材102とが太陽電池部103を挟むように位置している。第1保護部材101は、例えば、太陽電池パネルPn1の前面1fsを構成している状態で位置している。第2保護部材102は、例えば、太陽電池パネルPn1の裏面1bsを構成している状態で位置している。 As shown in FIGS. 1 and 2, the solar cell panel Pn1 includes, for example, a first protection member 101, a second protection member 102, a solar cell portion 103, a filler 104, and a packing portion 105. I have. Here, for example, the first protection member 101 and the second protection member 102 are positioned so as to sandwich the solar cell portion 103. The 1st protection member 101 is located in the state which comprises front surface 1fs of solar cell panel Pn1, for example. The 2nd protection member 102 is located in the state which constitutes back side 1bs of solar cell panel Pn1, for example.
 第1保護部材101は、透光性を有する部材である。この第1保護部材101は、例えば、特定範囲の波長の光に対する透光性を有する。この特定範囲の波長は、例えば、太陽電池部103が光電変換し得る光の波長を含む。これにより、例えば、前面1fsに照射される光が、第1保護部材101を太陽電池部103に向けて透過し得る。ここで、例えば、特定範囲の波長が、太陽光を構成する照射強度の高い光の波長を含んでいれば、太陽電池モジュール100の光電変換効率が向上し得る。第1保護部材101には、例えば、屈折率が1.4から1.8程度の平板状のガラス板が適用される。図1および図2で示されるように、第1保護部材101は、第1板面F1と、第2板面F2と、第1外周面S1と、を有する。第2板面F2は、第1板面F1とは逆方向を向いている状態にある。第1外周面S1は、第1板面F1と第2板面F2とを接続している状態にある。第1実施形態に係る太陽電池モジュール100では、第1板面F1は、前面1fsを構成している状態にある。第1保護部材101の厚さは、例えば、1ミリメートル(mm)から5mm程度に設定される。図1の例では、前面1fs側から平面視した場合に、第1保護部材101の外形は長方形状である。上記構成を有する第1保護部材101は、例えば、高い剛性と低い透湿度とで太陽電池部103を前面1fs側から保護することができる。 The first protective member 101 is a member having translucency. For example, the first protective member 101 has translucency with respect to light in a specific range of wavelengths. The wavelength in this specific range includes, for example, the wavelength of light that can be photoelectrically converted by the solar cell unit 103. Thereby, for example, the light applied to the front surface 1fs can transmit the first protective member 101 toward the solar cell unit 103. Here, for example, if the wavelength in the specific range includes the wavelength of light with high irradiation intensity constituting sunlight, the photoelectric conversion efficiency of the solar cell module 100 can be improved. For example, a flat glass plate having a refractive index of about 1.4 to 1.8 is applied to the first protection member 101. As shown in FIGS. 1 and 2, the first protective member 101 has a first plate surface F1, a second plate surface F2, and a first outer peripheral surface S1. The second plate surface F2 is in a state facing the opposite direction to the first plate surface F1. The first outer peripheral surface S1 is in a state of connecting the first plate surface F1 and the second plate surface F2. In the solar cell module 100 according to the first embodiment, the first plate surface F1 is in a state of constituting the front surface 1fs. The thickness of the first protective member 101 is set to, for example, about 1 millimeter (mm) to about 5 mm. In the example of FIG. 1, the outer shape of the first protective member 101 is rectangular when viewed from the front surface 1 fs side. The 1st protection member 101 which has the said structure can protect the solar cell part 103 from the front 1fs side with high rigidity and low moisture permeability, for example.
 第2保護部材102は、第1保護部材101と同様に、透光性を有する部材である。この第2保護部材102は、例えば、第1保護部材101と同様に、特定範囲の波長の光に対する透光性を有する。これにより、例えば、裏面1bsに照射される光が、第2保護部材102を太陽電池部103に向けて透過し得る。このため、例えば、前面1fsに照射される光だけでなく、裏面1bsに照射される光も、太陽電池部103における光電変換に利用される。換言すれば、太陽電池モジュール100は、前面1fsおよび裏面1bsの双方に入射する光を発電に利用するタイプ(両面受光型)の太陽電池モジュールである。第2保護部材102には、例えば、屈折率が1.4から1.8程度の平板状のガラス板が適用される。図1および図2で示されるように、第2保護部材102は、第3板面F3と、第4板面F4と、第2外周面S2と、を有する。第3板面F3は、第1保護部材101の第2板面F2と対向している状態にある。第4板面F4は、第3板面F3とは逆方向を向いている状態にある。第2外周面S2は、第3板面F3と第4板面F4とを接続している状態にある。第1実施形態に係る太陽電池モジュール100では、第4板面F4は、裏面1bsを構成している状態にある。第2保護部材102の厚さは、例えば、1mmから5mm程度に設定される。図1の例では、前面1fs側から平面透視した場合に、第2保護部材102の外形は長方形状である。上記構成を有する第2保護部材102は、例えば、高い剛性と低い透湿度とで太陽電池部103を裏面1bs側から保護することができる。 The second protective member 102 is a member having translucency, similar to the first protective member 101. For example, the second protective member 102 has a light-transmitting property with respect to light in a specific range of wavelengths, like the first protective member 101. Thereby, for example, the light applied to the back surface 1bs can be transmitted through the second protective member 102 toward the solar cell unit 103. For this reason, for example, not only the light irradiated to the front surface 1fs but also the light irradiated to the rear surface 1bs is used for photoelectric conversion in the solar cell unit 103. In other words, the solar cell module 100 is a solar cell module of a type (double-sided light receiving type) that uses light incident on both the front surface 1fs and the back surface 1bs for power generation. For example, a flat glass plate having a refractive index of about 1.4 to 1.8 is applied to the second protective member 102. As shown in FIGS. 1 and 2, the second protective member 102 has a third plate surface F3, a fourth plate surface F4, and a second outer peripheral surface S2. The third plate surface F3 is in a state of facing the second plate surface F2 of the first protective member 101. The fourth plate surface F4 is in a state facing the opposite direction to the third plate surface F3. The second outer peripheral surface S2 is in a state where the third plate surface F3 and the fourth plate surface F4 are connected. In the solar cell module 100 according to the first embodiment, the fourth plate surface F4 is in a state of constituting the back surface 1bs. The thickness of the second protective member 102 is set to about 1 mm to 5 mm, for example. In the example of FIG. 1, the outer shape of the second protective member 102 is a rectangular shape when seen in a plan view from the front surface 1 fs side. The 2nd protection member 102 which has the said structure can protect the solar cell part 103 from the back surface 1bs side with high rigidity and low moisture permeability, for example.
 太陽電池部103は、例えば、第1保護部材101と第2保護部材102との間の領域(板間領域ともいう)A0に位置している。図1で示されるように、太陽電池部103は、例えば、複数の太陽電池素子1を有する。第1実施形態では、複数の太陽電池素子1は、2次元的に並んでいる状態で位置している。図1および図2の例では、複数の太陽電池素子1は、第1保護部材101の第2板面F2に沿って位置するように平面的に配列された状態で位置している。また、太陽電池部103は、例えば、複数の第1配線材W1と、複数の第2配線材W2と、を有する。太陽電池部103は、例えば、複数(ここでは、8個)の太陽電池ストリングSt1を含む。太陽電池ストリングSt1は、例えば、複数(ここでは、7個)の太陽電池素子1と、複数の第1配線材W1と、を含む。複数の第1配線材W1は、例えば、複数の太陽電池素子1のうちの相互に隣り合う太陽電池素子1をそれぞれ電気的に接続している状態にある。複数の第2配線材W2は、複数の太陽電池ストリングSt1のうちの相互に隣り合う太陽電池ストリングSt1をそれぞれ電気的に接続している状態にある。図1の例では、-X方向の端に位置している太陽電池ストリングSt1に接続された第2配線材W2と、+X方向の端に位置している太陽電池ストリングSt1に接続された第2配線材W2と、が太陽電池モジュール100の外部に引き出されている状態で位置している。ここで、2本の第2配線材W2は、例えば、第2保護部材102を貫通するように位置している孔部を介して、太陽電池モジュール100の外部に引き出された状態で位置している。 The solar cell unit 103 is located, for example, in an area A0 (also referred to as an inter-plate area) between the first protection member 101 and the second protection member 102. As shown in FIG. 1, the solar cell unit 103 includes, for example, a plurality of solar cell elements 1. In the first embodiment, the plurality of solar cell elements 1 are positioned in a two-dimensional array. In the example of FIGS. 1 and 2, the plurality of solar cell elements 1 are positioned in a state of being planarly arranged so as to be positioned along the second plate surface F <b> 2 of the first protection member 101. The solar cell unit 103 includes, for example, a plurality of first wiring members W1 and a plurality of second wiring members W2. The solar cell unit 103 includes, for example, a plurality (eight in this example) of solar cell strings St1. The solar cell string St1 includes, for example, a plurality (here, seven) solar cell elements 1 and a plurality of first wiring members W1. The plurality of first wiring members W1 are in a state in which, for example, the solar cell elements 1 adjacent to each other among the plurality of solar cell elements 1 are electrically connected to each other. The plurality of second wiring members W2 are in a state in which solar cell strings St1 adjacent to each other among the plurality of solar cell strings St1 are electrically connected to each other. In the example of FIG. 1, the second wiring member W2 connected to the solar cell string St1 located at the end in the −X direction and the second wiring material W2 connected to the solar cell string St1 located at the end in the + X direction. The wiring member W <b> 2 is positioned in a state of being drawn out of the solar cell module 100. Here, the two second wiring members W2 are positioned in a state of being pulled out of the solar cell module 100 through, for example, a hole positioned so as to penetrate the second protective member 102. Yes.
 充填材104は、第1保護部材101と第2保護部材102との間の板間領域A0において太陽電池部103を覆うように位置している。第1実施形態では、充填材104は、例えば、第1保護部材101と第2保護部材102との間の板間領域A0に充填されるように位置している。充填材104は、例えば、前面1fs側に位置している部分(第1充填部分ともいう)104uと、裏面1bs側に位置している部分(第2充填部分ともいう)104bと、を含む。第1充填部分104uは、例えば、太陽電池部103の第1保護部材101側の全面を覆うように位置している。第2充填部分104bは、例えば、太陽電池部103の第2保護部材102側の全面を覆うように位置している。このため、太陽電池部103は、例えば、第1充填部分104uと第2充填部分104bとによって挟み込まれるように囲まれた状態にある。これにより、例えば、充填材104の存在によって太陽電池部103の姿勢が保たれ得る。 The filler 104 is positioned so as to cover the solar cell unit 103 in the inter-plate region A0 between the first protective member 101 and the second protective member 102. In the first embodiment, the filler 104 is positioned so as to be filled in the inter-plate area A0 between the first protection member 101 and the second protection member 102, for example. The filler 104 includes, for example, a portion (also referred to as a first filling portion) 104u located on the front surface 1fs side and a portion (also referred to as a second filling portion) 104b located on the back surface 1bs side. The 1st filling part 104u is located so that the whole surface by the side of the 1st protection member 101 of the solar cell part 103 may be covered, for example. The 2nd filling part 104b is located so that the whole surface by the side of the 2nd protection member 102 of the solar cell part 103 may be covered, for example. For this reason, the solar cell part 103 exists in the state enclosed so that it might be pinched | interposed by the 1st filling part 104u and the 2nd filling part 104b, for example. Thereby, the attitude | position of the solar cell part 103 can be maintained by presence of the filler 104, for example.
 また、充填材104は、例えば、透光性を有する。ここで、例えば、充填材104を構成する第1充填部分104uおよび第2充填部分104bの双方が透光性を有していれば、前面1fs側からの入射光および裏面1bs側からの入射光の双方が、太陽電池部103まで到達し得る。充填材104の素材には、例えば、第1保護部材101および第2保護部材102に近いかまたは略同一の屈折率を有し、特定範囲の波長の光に対する透光性が優れた素材が適用される。具体的には、充填材104の素材には、例えば、エチレン酢酸ビニル共重合体(EVA)、トリアセチルセルロース(TAC)およびポリエチレンナフタレート(PEN)などのポリエステル樹脂などのうちの1種以上の素材が適用される。ここで、例えば、第1保護部材101と第1充填部分104uとが近いかまたは略同一の屈折率を有していれば、前面1fsに照射される光は、第1保護部材101と第1充填部分104uとの界面で反射しにくく、太陽電池部103まで到達しやすい。また、例えば、第2保護部材102と第2充填部分104bとが近いかまたは略同一の屈折率を有していれば、裏面1bsに照射される光は、第2保護部材102と第2充填部分104bとの界面で反射しにくく、太陽電池部103まで到達しやすい。 Moreover, the filler 104 has translucency, for example. Here, for example, if both the first filling portion 104u and the second filling portion 104b constituting the filling material 104 have translucency, incident light from the front surface 1fs side and incident light from the back surface 1bs side. Both can reach the solar cell unit 103. As the material of the filler 104, for example, a material having a refractive index close to or substantially the same as that of the first protective member 101 and the second protective member 102 and excellent in translucency for light in a specific range of wavelengths is applied. Is done. Specifically, the material of the filler 104 includes, for example, one or more of polyester resins such as ethylene vinyl acetate copolymer (EVA), triacetyl cellulose (TAC), and polyethylene naphthalate (PEN). The material is applied. Here, for example, if the first protective member 101 and the first filling portion 104u are close or have substantially the same refractive index, the light irradiated to the front surface 1fs is the first protective member 101 and the first protective member 101u. It is difficult to reflect at the interface with the filling portion 104u and easily reaches the solar cell portion 103. Further, for example, if the second protective member 102 and the second filling portion 104b are close or have substantially the same refractive index, the light irradiated to the back surface 1bs is the second protective member 102 and the second filling member. It is difficult to reflect at the interface with the portion 104 b and easily reaches the solar cell portion 103.
 パッキング部105は、例えば、板間領域A0のうち、外部空間に対して開口している環状の部分(環状開口部ともいう)A0pに沿って位置している。第1実施形態では、パッキング部105は、例えば、太陽電池部103および充填材104を含む領域の外周部分を囲むように位置している。ここでは、パッキング部105は、例えば、第1保護部材101から第2保護部材102に至る領域を埋めるように位置している。ここで、例えば、パッキング部105が、充填材104よりも低い透湿度を有していれば、パッキング部105は、板間領域A0のうちの外周部に沿った部分を封止することができる。これにより、パッキング部105は、例えば、太陽電池モジュール100の外部から太陽電池部103に向けた水分などの侵入を低減することができる。パッキング部105の素材には、例えば、ブチル系の樹脂、ポリイソプロピレン系の樹脂またはアクリル系の樹脂などが適用される。パッキング部105の素材は、例えば、透湿度が低い素材であれば、銅もしくは半田などの金属またはガラスなどの非金属を含むものでもよい。パッキング部105は、例えば、銅箔を半田付けで接着したものであってもよいし、ガラスをレーザーなどで溶融させた後に凝固させたものであってもよい。また、パッキング部105の素材に白色または透明の樹脂を適用し、太陽電池部103における光の取込みを阻害しないようにしてもよい。 The packing part 105 is located along the annular part (it is also called annular opening part) A0p opened with respect to external space among the board | plate area | regions A0, for example. In 1st Embodiment, the packing part 105 is located so that the outer peripheral part of the area | region containing the solar cell part 103 and the filler 104 may be enclosed, for example. Here, the packing part 105 is located so that the area | region from the 1st protection member 101 to the 2nd protection member 102 may be filled up, for example. Here, for example, if the packing part 105 has a moisture permeability lower than that of the filler 104, the packing part 105 can seal a portion along the outer peripheral part of the inter-plate region A0. . Thereby, the packing part 105 can reduce the penetration | invasion of the water | moisture content etc. toward the solar cell part 103 from the exterior of the solar cell module 100, for example. For example, a butyl resin, a polyisopropylene resin, an acrylic resin, or the like is applied to the material of the packing unit 105. The material of the packing unit 105 may include a metal such as copper or solder or a non-metal such as glass as long as the material has low moisture permeability. The packing part 105 may be, for example, one obtained by bonding a copper foil by soldering, or one obtained by melting glass with a laser or the like and then solidifying it. Alternatively, a white or transparent resin may be applied to the material of the packing unit 105 so as not to hinder light capture in the solar cell unit 103.
  <1-2.太陽電池素子>
 複数の太陽電池素子1のそれぞれは、例えば、光エネルギーを電気エネルギーに変換することができる。図3(a)および図3(b)で示されるように、複数の太陽電池素子1のそれぞれは、表(おもて)面側に位置している面(第1素子面ともいう)Sf1と、この第1素子面Sf1の逆側に位置している面(第2素子面ともいう)Sf2と、を有する。図3(a)および図3(b)の例では、第1素子面Sf1が、+Z方向を向いており、第2素子面Sf2が、-Z方向を向いている。この場合には、例えば、第1素子面Sf1が主として光が入射する前面とされ、第2素子面Sf2が前面よりも光が入射しない裏面とされている。
<1-2. Solar cell element>
Each of the plurality of solar cell elements 1 can convert light energy into electrical energy, for example. As shown in FIGS. 3A and 3B, each of the plurality of solar cell elements 1 is a surface (also referred to as a first element surface) Sf1 positioned on the front (front) surface side. And a surface (also referred to as a second element surface) Sf2 located on the opposite side of the first element surface Sf1. In the example of FIGS. 3A and 3B, the first element surface Sf1 faces the + Z direction, and the second element surface Sf2 faces the −Z direction. In this case, for example, the first element surface Sf1 is a front surface on which light is mainly incident, and the second element surface Sf2 is a rear surface on which light is not incident than the front surface.
 第1実施形態では、図3(a)から図4(c)で示されるように、複数の太陽電池素子1のそれぞれは、半導体基板2と、反射防止膜3と、パッシベーション膜4と、保護層5と、前面電極6と、裏面電極7と、を備えている。太陽電池素子1では、例えば、第1素子面Sf1側の一部に前面電極6が位置しており、第2素子面Sf2側の一部に裏面電極7が位置している。このため、第1実施形態に係る太陽電池素子1は、第1素子面Sf1および第2素子面Sf2の双方に入射する光を発電に利用するタイプ(両面受光型)の太陽電池素子である。 In the first embodiment, as shown in FIGS. 3A to 4C, each of the plurality of solar cell elements 1 includes a semiconductor substrate 2, an antireflection film 3, a passivation film 4, and a protection film. A layer 5, a front electrode 6, and a back electrode 7 are provided. In the solar cell element 1, for example, the front electrode 6 is located at a part on the first element surface Sf1 side, and the back electrode 7 is located at a part on the second element surface Sf2 side. For this reason, the solar cell element 1 according to the first embodiment is a type (double-sided light receiving type) solar cell element that uses light incident on both the first element surface Sf1 and the second element surface Sf2 for power generation.
   <1-2-1.半導体基板>
 図4(a)から図4(c)で示されるように、半導体基板2は、第1面2uと、第2面2bと、側面2sと、を有する。第2面2bは、第1面2uとは逆側に位置している。側面2sは、第1面2uと第2面2bとを接続している状態で位置している。図4(a)から図4(c)の例では、第1面2uが+Z方向を向いている状態で位置し、第2面2bが-Z方向を向いている状態で位置している。
<1-2-1. Semiconductor substrate>
As shown in FIGS. 4A to 4C, the semiconductor substrate 2 has a first surface 2u, a second surface 2b, and a side surface 2s. The second surface 2b is located on the opposite side to the first surface 2u. The side surface 2s is located in a state where the first surface 2u and the second surface 2b are connected. In the example of FIGS. 4A to 4C, the first surface 2u is positioned in the + Z direction, and the second surface 2b is positioned in the −Z direction.
 半導体基板2は、例えば、第1導電型を有する領域(第1半導体領域ともいう)21と、第1導電型とは逆の第2導電型を有する領域(第2半導体領域ともいう)22と、を有する。第1半導体領域21は、例えば、半導体基板2の第2面2b側に位置している。第2半導体領域22は、例えば、半導体基板2の第1面2u側の表層部に位置している。ここで、例えば、第1導電型がp型である場合には、第2導電型がn型となる。また、例えば、第1導電型がn型である場合には、第2導電型がp型となる。これにより、半導体基板2は、第1半導体領域21と第2半導体領域22との界面に位置しているpn接合部を有する。 The semiconductor substrate 2 includes, for example, a region (also referred to as a first semiconductor region) 21 having a first conductivity type, and a region (also referred to as a second semiconductor region) 22 having a second conductivity type opposite to the first conductivity type. Have. The first semiconductor region 21 is located on the second surface 2b side of the semiconductor substrate 2, for example. For example, the second semiconductor region 22 is located in the surface layer portion of the semiconductor substrate 2 on the first surface 2u side. Here, for example, when the first conductivity type is p-type, the second conductivity type is n-type. For example, when the first conductivity type is n-type, the second conductivity type is p-type. Thereby, the semiconductor substrate 2 has a pn junction located at the interface between the first semiconductor region 21 and the second semiconductor region 22.
 ここで、例えば、半導体基板2がシリコン基板である場合を想定する。この場合には、シリコン基板として、例えば、多結晶または単結晶のシリコン基板が採用される。シリコン基板は、例えば、250マイクロメートル(μm)以下または150μm以下の厚さを有する。また、シリコン基板は、例えば、平面視して矩形状の外形を有する。このような形状を有する半導体基板2が採用されれば、複数の太陽電池素子1を並べて太陽電池モジュール100が製造される際に、太陽電池素子1同士の間の隙間が小さくなり得る。 Here, for example, it is assumed that the semiconductor substrate 2 is a silicon substrate. In this case, for example, a polycrystalline or single crystal silicon substrate is employed as the silicon substrate. The silicon substrate has, for example, a thickness of 250 micrometers (μm) or less or 150 μm or less. The silicon substrate has a rectangular outer shape in plan view, for example. If the semiconductor substrate 2 having such a shape is employed, the gap between the solar cell elements 1 can be reduced when the solar cell module 100 is manufactured by arranging the plurality of solar cell elements 1.
 ここで、例えば、第1導電型がp型であるとともに第2導電型がn型である場合には、例えば、多結晶または単結晶のシリコンの結晶に、ドーパント元素として、ボロンまたはガリウムなどの不純物を含有させることで、p型のシリコン基板が製作され得る。この場合には、p型のシリコン基板の第1面2u側の表層部にn型のドーパントとしてのリンなどの不純物を拡散させることで、n型の第2半導体領域22が生成され得る。ここでは、p型の第1半導体領域21とn型の第2半導体領域22とが積層された半導体基板2が形成され得る。 Here, for example, when the first conductivity type is p-type and the second conductivity type is n-type, for example, boron or gallium as a dopant element is added to a polycrystalline or single crystal silicon crystal. By adding impurities, a p-type silicon substrate can be manufactured. In this case, the n-type second semiconductor region 22 can be generated by diffusing impurities such as phosphorus as an n-type dopant in the surface layer portion on the first surface 2u side of the p-type silicon substrate. Here, the semiconductor substrate 2 in which the p-type first semiconductor region 21 and the n-type second semiconductor region 22 are stacked can be formed.
 ここで、半導体基板2の第1面2uは、例えば、照射された光の反射を低減するための微細な凹凸構造(テクスチャ)を有していてもよい。 Here, the first surface 2u of the semiconductor substrate 2 may have, for example, a fine uneven structure (texture) for reducing reflection of irradiated light.
 また、例えば、半導体基板2のうちの第2面2b側の表層部に、第1半導体領域21の第1導電型(例えば、p型)と同じである第1導電型を有する第3半導体領域23が存在していてもよい。ここでは、例えば、第3半導体領域23が含有しているドーパントの濃度が、第1半導体領域21が含有しているドーパントの濃度よりも高ければ、第3半導体領域23は、半導体基板2の第2面2b側において内部電界を形成するBSF(Back Surface Field)層としての役割を果たす。これにより、半導体基板2の第2面2bの近傍では、半導体基板2において光の照射に応じた光電変換によって生じる少数キャリアの再結合が低減され得る。その結果、太陽電池素子1における光電変換効率の低下が生じにくい。第3半導体領域23は、例えば、半導体基板2のうちの第2面2b側の表層部に、アルミニウムなどのドーパント元素が拡散されることで生成され得る。 Further, for example, a third semiconductor region having a first conductivity type that is the same as the first conductivity type (for example, p-type) of the first semiconductor region 21 in the surface layer portion on the second surface 2b side of the semiconductor substrate 2. 23 may exist. Here, for example, if the concentration of the dopant contained in the third semiconductor region 23 is higher than the concentration of the dopant contained in the first semiconductor region 21, the third semiconductor region 23 will be the second semiconductor substrate 2. It functions as a BSF (Back Surface Field) layer that forms an internal electric field on the two-surface 2b side. Thereby, in the vicinity of the 2nd surface 2b of the semiconductor substrate 2, the recombination of the minority carrier produced by the photoelectric conversion according to light irradiation in the semiconductor substrate 2 can be reduced. As a result, the photoelectric conversion efficiency in the solar cell element 1 is hardly reduced. The third semiconductor region 23 can be generated, for example, by diffusing a dopant element such as aluminum in the surface layer portion of the semiconductor substrate 2 on the second surface 2b side.
   <1-2-2.反射防止膜>
 反射防止膜3は、例えば、半導体基板2の第1面2u側に位置している。図3(a)から図3(c)の例では、反射防止膜3は、第1面2u上に位置している。この反射防止膜3は、例えば、太陽電池素子1の第1素子面Sf1に照射される光の反射率を低減することができる。反射防止膜3の素材としては、例えば、酸化シリコン、酸化アルミニウムまたは窒化シリコンなどが採用され得る。反射防止膜3の屈折率および厚さは、例えば、太陽光のうち、半導体基板2に吸収されて発電に寄与し得る波長範囲の光に対して、反射率が低い条件(低反射条件ともいう)を実現することが可能な値に適宜設定される。ここで、例えば、反射防止膜3の屈折率が、1.8から2.5程度とされ、反射防止膜3の厚さが、50nmから120nm程度とされる。反射防止膜3は、例えば、PECVD法またはスパッタリング法を用いて形成され得る。
<1-2-2. Antireflection film>
The antireflection film 3 is located, for example, on the first surface 2 u side of the semiconductor substrate 2. In the example of FIGS. 3A to 3C, the antireflection film 3 is located on the first surface 2u. For example, the antireflection film 3 can reduce the reflectance of the light applied to the first element surface Sf <b> 1 of the solar cell element 1. As a material of the antireflection film 3, for example, silicon oxide, aluminum oxide, silicon nitride, or the like can be employed. The refractive index and the thickness of the antireflection film 3 are, for example, a condition where the reflectance is low with respect to light in a wavelength range that can be absorbed by the semiconductor substrate 2 and contribute to power generation in sunlight (also referred to as a low reflection condition). ) Is appropriately set to a value capable of realizing. Here, for example, the refractive index of the antireflection film 3 is about 1.8 to 2.5, and the thickness of the antireflection film 3 is about 50 nm to 120 nm. The antireflection film 3 can be formed using, for example, PECVD or sputtering.
   <1-2-3.パッシベーション膜>
 パッシベーション膜4は、半導体基板2の少なくとも第2面2bの上に位置している。第1実施形態では、パッシベーション膜4は、半導体基板2の第2面2bに接している。パッシベーション膜4は、例えば、半導体基板2において光の照射に応じた光電変換で生成される少数キャリアの再結合を低減することができる。パッシベーション膜4の素材としては、例えば、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化シリコン、窒化シリコンおよび酸窒化シリコンなどから選択される1種類以上の素材が採用される。パッシベーション膜4は、例えば、1種類の素材の1層の膜であってもよいし、異なる素材の2層以上の膜が積層された状態のものであってもよい。具体的には、パッシベーション膜4として、例えば、酸化アルミニウムの1層の膜などが採用されてもよいし、酸化シリコンの膜と酸化アルミニウムの膜とがこの記載順に積層された状態のものなどが採用されてもよい。パッシベーション膜4は、例えば、ALD法で形成され得る。ここで、パッシベーション膜4は、例えば、半導体基板2の第2面2bにおけるダングリングボンドの終端化および電界効果などによって、少数キャリアの再結合を低減することができる。例えば、パッシベーション膜4の素材として酸化アルミニウムが採用される場合には、酸化アルミニウムは負の固定電荷を有する。このため、電界効果によって、半導体基板2の第2面2b側で生じる少数キャリア(この場合は電子)が、p型の第1半導体領域21とパッシベーション膜4との界面(第2面2b)から遠ざけられる。これにより、半導体基板2のうちの第2面2bの近傍における少数キャリアの再結合が低減され得る。その結果、太陽電池素子1の光電変換効率が向上し得る。パッシベーション膜4の厚さは、例えば、10nmから60nm程度とされる。パッシベーション膜4は、例えば、半導体基板2の第1面2uの上に位置していてもよい。パッシベーション膜4は、例えば、半導体基板2の第1面2uと第2面2bとを接続する側面2s上に位置していてもよい。
<1-2-3. Passivation film>
The passivation film 4 is located on at least the second surface 2 b of the semiconductor substrate 2. In the first embodiment, the passivation film 4 is in contact with the second surface 2 b of the semiconductor substrate 2. For example, the passivation film 4 can reduce recombination of minority carriers generated by photoelectric conversion in response to light irradiation in the semiconductor substrate 2. As the material for the passivation film 4, for example, one or more materials selected from aluminum oxide, zirconium oxide, hafnium oxide, silicon oxide, silicon nitride, silicon oxynitride, and the like are employed. The passivation film 4 may be, for example, a single layer film of one kind of material, or may be a state in which two or more layers of different materials are laminated. Specifically, as the passivation film 4, for example, a single layer film of aluminum oxide or the like may be employed, or a film in which a silicon oxide film and an aluminum oxide film are stacked in the order of description. It may be adopted. The passivation film 4 can be formed by, for example, an ALD method. Here, the passivation film 4 can reduce minority carrier recombination by, for example, termination of dangling bonds on the second surface 2 b of the semiconductor substrate 2 and field effect. For example, when aluminum oxide is employed as the material for the passivation film 4, the aluminum oxide has a negative fixed charge. Therefore, minority carriers (electrons in this case) generated on the second surface 2b side of the semiconductor substrate 2 due to the field effect are generated from the interface (second surface 2b) between the p-type first semiconductor region 21 and the passivation film 4. Be kept away. Thereby, recombination of minority carriers in the vicinity of the second surface 2b of the semiconductor substrate 2 can be reduced. As a result, the photoelectric conversion efficiency of the solar cell element 1 can be improved. The thickness of the passivation film 4 is, for example, about 10 nm to 60 nm. The passivation film 4 may be located on the first surface 2u of the semiconductor substrate 2, for example. The passivation film 4 may be located on the side surface 2s that connects the first surface 2u and the second surface 2b of the semiconductor substrate 2, for example.
   <1-2-4.保護層>
 保護層5は、例えば、半導体基板2の第2面2b側に位置している。第1実施形態では、保護層5は、例えば、半導体基板2の第2面2b上に位置しているパッシベーション膜4上に位置している。別の観点から言えば、保護層5は、例えば、パッシベーション膜4と裏面電極7との間に位置している。そして、保護層5は、パッシベーション膜4上においてこのパッシベーション膜4を覆っている状態にある。これにより、保護層5は、例えば、パッシベーション膜4を保護することができる。換言すれば、太陽電池素子1を製造する際および太陽電池素子1を使用する際の双方において、保護層5の存在によって、太陽電池素子1の外部からパッシベーション膜4まで水分などが到達しにくい。これにより、パッシベーション膜4が劣化しにくくなる。保護層5は、例えば、半導体基板2の側面2s上に形成されてもよい。この場合には、保護層5の存在により、太陽電池素子1でリーク電流が生じにくくなる。
<1-2-4. Protective layer>
The protective layer 5 is located on the second surface 2b side of the semiconductor substrate 2, for example. In the first embodiment, the protective layer 5 is located on the passivation film 4 located on the second surface 2b of the semiconductor substrate 2, for example. If it says from another viewpoint, the protective layer 5 will be located between the passivation film 4 and the back surface electrode 7, for example. The protective layer 5 is in a state of covering the passivation film 4 on the passivation film 4. Thereby, the protective layer 5 can protect the passivation film 4, for example. In other words, when the solar cell element 1 is manufactured and when the solar cell element 1 is used, moisture and the like hardly reach from the outside of the solar cell element 1 to the passivation film 4 due to the presence of the protective layer 5. Thereby, the passivation film 4 is hardly deteriorated. The protective layer 5 may be formed on the side surface 2s of the semiconductor substrate 2, for example. In this case, the presence of the protective layer 5 makes it difficult for leak current to occur in the solar cell element 1.
 保護層5は、例えば、パッシベーション膜4上において、所望のパターンを有している状態で位置している。保護層5は、厚さ方向(ここでは+Z方向)にこの保護層5を貫通している状態の複数の孔部を有する。複数の孔部は、例えば、保護層5およびパッシベーション膜4を連続して貫通している状態の複数の孔部(貫通孔ともいう)45hのうち、保護層5を貫通している状態にある部分である。各貫通孔45hは、例えば、第2面2bに沿った周囲が閉じられた貫通孔を形成している孔部であってもよいし、第2面2bに沿った周囲の少なくとも一部が開口しているスリット状の孔部であってもよい。 The protective layer 5 is located on the passivation film 4 in a state having a desired pattern, for example. The protective layer 5 has a plurality of holes in a state of passing through the protective layer 5 in the thickness direction (here, the + Z direction). The plurality of holes are, for example, in a state of penetrating through the protective layer 5 among a plurality of holes (also referred to as through holes) 45h in a state of continuously penetrating the protective layer 5 and the passivation film 4. Part. Each through-hole 45h may be, for example, a hole forming a closed through-hole along the second surface 2b, or at least a part of the periphery along the second surface 2b is open. It may be a slit-shaped hole.
 図5で示されるように、保護層5は、母材の部分(母材部ともいう)5aと、複数の粒状体5bと、を有する。第1実施形態では、例えば、母材部5a内に複数の粒状体5bが適度に分散している状態で位置している。母材部5aの素材としては、例えば、シロキサン樹脂などが採用される。シロキサン樹脂は、Si-O-Si結合(シロキサン結合ともいう)を有するシロキサン化合物である。ここでは、例えば、パッシベーション膜4上に対する絶縁性ペーストのスクリーン印刷法などによる塗布および乾燥などを施す湿式のプロセスを用いて保護層5を形成することができる。 As shown in FIG. 5, the protective layer 5 includes a base material portion (also referred to as a base material portion) 5a and a plurality of granular bodies 5b. In the first embodiment, for example, the plurality of granular bodies 5b are positioned in a moderately dispersed state within the base material portion 5a. As a material of the base material part 5a, for example, a siloxane resin or the like is employed. A siloxane resin is a siloxane compound having a Si—O—Si bond (also referred to as a siloxane bond). Here, for example, the protective layer 5 can be formed by using a wet process in which an insulating paste is applied onto the passivation film 4 by a screen printing method and dried.
 ここで、絶縁性ペーストには、例えば、母材部5aの原料となるシロキサン樹脂と、有機溶剤と、多数の粒状体と、を含む絶縁性ペーストが適用される。ここで、シロキサン樹脂としては、例えば、アルコキシシランまたはシラザンなどを加水分解させて縮合重合させることで生成された、分子量が1万5千以下の低分子量の樹脂が採用される。有機溶剤としては、例えば、シロキサン樹脂および多数の粒状体を分散させる溶剤が採用される。このような有機溶剤には、例えば、ジエチレングリコールモノブチルエーテル、メチルセロソルブ、エチルセロソルブ、エチルアルコール、2-(4-メチルシクロヘキサ-3-エニル)プロパン-2-オールまたは2-プロパノールのうちの1種類または複数種類が適用される。多数の粒状体には、例えば、少なくとも複数の粒状体5bが含まれている。この多数の粒状体は、例えば、1000nm以下の平均粒径を有する、酸化シリコン、酸化アルミニウムまたは酸化チタンなどの絶縁性ペーストの粘度を調整するための無機フィラー(粘度調整用フィラーともいう)を含み得る。ここでいう平均粒径は、1次粒子の平均粒径でもよいし、2次粒子が凝集した2次粒子の平均粒径でもよい。ここで、例えば、絶縁性ペーストの粘度が適切に調整されることにより、複数の貫通孔45hに対応する複数の孔部を有する所望のパターンで絶縁性ペーストがパッシベーション膜4上に塗布され得る。また、ここで、例えば、多数の粒状体において、複数の粒状体5bと、粘度調整用フィラーと、が別々に存在していてもよいし、複数の粒状体5bが粘度調整用フィラーとしての機能を有していてもよい。 Here, as the insulating paste, for example, an insulating paste including a siloxane resin that is a raw material of the base material portion 5a, an organic solvent, and a large number of granular materials is applied. Here, as the siloxane resin, for example, a low molecular weight resin having a molecular weight of 15,000 or less, which is produced by hydrolyzing alkoxysilane or silazane and performing condensation polymerization, is employed. As the organic solvent, for example, a solvent in which a siloxane resin and a large number of particles are dispersed is employed. Examples of such organic solvents include diethylene glycol monobutyl ether, methyl cellosolve, ethyl cellosolve, ethyl alcohol, 2- (4-methylcyclohex-3-enyl) propan-2-ol, or 2-propanol. Or multiple types are applied. The large number of granular materials includes, for example, at least a plurality of granular materials 5b. The many granular materials include, for example, an inorganic filler (also referred to as a viscosity adjusting filler) for adjusting the viscosity of an insulating paste such as silicon oxide, aluminum oxide, or titanium oxide having an average particle diameter of 1000 nm or less. obtain. The average particle diameter here may be the average particle diameter of the primary particles or the average particle diameter of the secondary particles in which the secondary particles are aggregated. Here, for example, by appropriately adjusting the viscosity of the insulating paste, the insulating paste can be applied on the passivation film 4 in a desired pattern having a plurality of holes corresponding to the plurality of through holes 45h. Here, for example, in a large number of granules, the plurality of granules 5b and the viscosity adjusting filler may exist separately, and the plurality of granules 5b function as a viscosity adjusting filler. You may have.
 ところで、図6で示されるように、太陽電池モジュール100には、前面1fsおよび裏面1bsの双方に光が照射される。例えば、前面1fsに照射される光は、主として第1保護部材101および第1充填部分104uを透過して太陽電池素子1の第1素子面Sf1に至る光路(第1光路ともいう)Rt1を通り得る。この第1光路Rt1には、例えば、前面1fsに照射された光が、太陽電池モジュール100内で複数回反射して第1素子面Sf1に至る経路が含まれてもよい。また、例えば、前面1fsに照射される光は、太陽電池モジュール100内で1回以上反射して第2素子面Sf2に至る経路(第2光路ともいう)Rt2を通ってもよい。また、例えば、裏面1bsに照射される光は、主として、第2保護部材102および第2充填部分104bを透過して太陽電池素子1の第2素子面Sf2に至る光路(第3光路ともいう)Rt3を通り得る。ここで、例えば、前面1fsが、南中している太陽に向くように位置していれば、1日において、第1光路Rt1を通る光の光量は、第2光路Rt2を通る光の光量の50倍程度となり、第3光路Rt3を通る光の光量の5倍から10倍程度となることが想定される。このため、例えば、両面受光型の太陽電池素子1および太陽電池モジュール100では、第1光路Rt1を通る光の光電変換に利用される光の割合(第1光利用率ともいう)を高めつつ、第3光路Rt3を通る光の光電変換に利用される光の割合(第3光利用率ともいう)を高めれば、光電変換効率が向上し得る。 Incidentally, as shown in FIG. 6, the solar cell module 100 is irradiated with light on both the front surface 1fs and the back surface 1bs. For example, the light irradiated to the front surface 1fs mainly passes through an optical path (also referred to as a first optical path) Rt1 that passes through the first protective member 101 and the first filling portion 104u and reaches the first element surface Sf1 of the solar cell element 1. obtain. The first optical path Rt1 may include, for example, a path in which the light applied to the front surface 1fs is reflected a plurality of times in the solar cell module 100 and reaches the first element surface Sf1. Further, for example, the light irradiated on the front surface 1fs may pass through a path (also referred to as a second optical path) Rt2 that is reflected once or more in the solar cell module 100 and reaches the second element surface Sf2. Further, for example, the light irradiated on the back surface 1bs mainly passes through the second protective member 102 and the second filling portion 104b and reaches the second element surface Sf2 of the solar cell element 1 (also referred to as a third optical path). Rt3 can be passed. Here, for example, if the front surface 1fs is positioned so as to face the sun going south, the amount of light passing through the first optical path Rt1 per day is the amount of light passing through the second optical path Rt2. It is assumed that it is about 50 times, that is, about 5 to 10 times the amount of light passing through the third optical path Rt3. Therefore, for example, in the double-sided light receiving solar cell element 1 and the solar cell module 100, while increasing the ratio of light used for photoelectric conversion of light passing through the first optical path Rt1 (also referred to as first light utilization rate), Increasing the proportion of light used for photoelectric conversion of light passing through the third optical path Rt3 (also referred to as third light utilization rate) can improve the photoelectric conversion efficiency.
 ここで、例えば、保護層5が、反射防止膜3よりも大きな厚さを有していれば、太陽電池素子1の第2素子面Sf2側において、可視光線および近赤外線が多重反射を生じにくくすることができる。これにより、例えば、第3光路Rt3に係る第3光利用率が高まり得る。第1実施形態では、例えば、上述した絶縁性ペーストの塗布および乾燥などによって、反射防止膜3よりも明らかに大きな厚さを有する保護層5を容易に形成することができる。保護層5の厚さは、例えば、600nmから20μm程度に設定される。これにより、例えば、太陽電池素子1の第2素子面Sf2側において、太陽光のうちのエネルギー強度が高い、可視光線、近紫外線および近赤外線を含む1200nm以下の波長域の光の多重反射が生じにくくなる。また、例えば、保護層5の厚さの増大によって、保護層5のパッシベーション膜4を保護する性能が向上し得る。 Here, for example, if the protective layer 5 has a thickness larger than that of the antireflection film 3, visible light and near infrared rays hardly cause multiple reflection on the second element surface Sf 2 side of the solar cell element 1. can do. Thereby, for example, the third light utilization rate related to the third optical path Rt3 can be increased. In the first embodiment, for example, the protective layer 5 having a thickness significantly larger than that of the antireflection film 3 can be easily formed by, for example, applying and drying the insulating paste described above. The thickness of the protective layer 5 is set to, for example, about 600 nm to 20 μm. Thereby, for example, on the second element surface Sf2 side of the solar cell element 1, multiple reflection of light in a wavelength region of 1200 nm or less including visible light, near ultraviolet light, and near infrared light with high energy intensity of sunlight occurs. It becomes difficult. Further, for example, the performance of protecting the passivation film 4 of the protective layer 5 can be improved by increasing the thickness of the protective layer 5.
 また、第1実施形態では、例えば、図5で示されるように、複数の粒状体5bは、複数の第1粒状体5b1と、複数の第2粒状体5b2と、を含む。ここで、例えば、粒径と粒状体の数との関係を示す粒径分布において、複数の第1粒状体5b1は、第1の粒径の範囲(第1粒径範囲ともいう)でこの第1粒径範囲外よりも高い頻度で存在している。具体的には、例えば、複数の第1粒状体5b1の粒径分布が、第1粒径範囲内において最も高い頻度で存在していることを示すピークを示す構成が考えられる。また、ここで、例えば、粒径と粒状体の数との関係を示す粒径分布において、複数の第2粒状体5b2は、第1粒径範囲とは異なる第2の粒径の範囲(第2粒径範囲ともいう)でこの第2粒径範囲外よりも高い頻度で存在している。具体的には、例えば、複数の第2粒状体5b2の粒径分布が、第2粒径範囲内において最も高い頻度で存在していることを示すピークを示す構成が考えられる。保護層5が含む複数の粒状体5bの粒径分布の測定は、例えば、太陽電池素子1から複数の粒状体5bを抽出することで実行され得る。太陽電池素子1から複数の粒状体5bを抽出する方法には、例えば、保護層5の素材が酸化シリコンであれば、塩酸などを用いて前面電極6および裏面電極7を溶かした後に、フッ酸などを用いて保護層5および半導体基板2などを溶かす方法などが適用される。 In the first embodiment, for example, as shown in FIG. 5, the plurality of granular bodies 5b include a plurality of first granular bodies 5b1 and a plurality of second granular bodies 5b2. Here, for example, in the particle size distribution indicating the relationship between the particle size and the number of granular materials, the plurality of first granular materials 5b1 are in the first particle size range (also referred to as the first particle size range). It exists more frequently than outside the range of one particle size. Specifically, for example, a configuration showing a peak indicating that the particle size distribution of the plurality of first granular materials 5b1 is present at the highest frequency within the first particle size range is conceivable. Here, for example, in the particle size distribution indicating the relationship between the particle size and the number of particles, the plurality of second particles 5b2 have a second particle size range (first value) different from the first particle size range. 2) is also present at a higher frequency than outside the second particle size range. Specifically, for example, a configuration showing a peak indicating that the particle size distribution of the plurality of second granular bodies 5b2 exists at the highest frequency within the second particle size range is conceivable. The measurement of the particle size distribution of the plurality of granular materials 5b included in the protective layer 5 can be executed by extracting the plurality of granular materials 5b from the solar cell element 1, for example. For example, if the material of the protective layer 5 is silicon oxide, the front electrode 6 and the back electrode 7 are melted using hydrochloric acid and then hydrofluoric acid. A method of melting the protective layer 5, the semiconductor substrate 2 and the like using, for example, is applied.
 ここで、例えば、各第1粒状体5b1の屈折率が、母材部5aの屈折率よりも半導体基板2の屈折率に近ければ、保護層5が母材部5a単体で構成される場合よりも、複数の第1粒状体5b1の存在によって保護層5の屈折率が半導体基板2の屈折率に近づき得る。これにより、例えば、裏面1bs側から第2素子面Sf2に照射される光が、保護層5と半導体基板2との間の領域で反射しにくくなり、半導体基板2に入射しやすくなる。換言すれば、例えば、第3光路Rt3に係る第3光利用率が高まり得る。その結果、例えば、太陽電池素子1における光電変換効率が向上し得る。 Here, for example, if the refractive index of each first granular body 5b1 is closer to the refractive index of the semiconductor substrate 2 than the refractive index of the base material part 5a, then the protective layer 5 is formed from the base material part 5a alone. However, the refractive index of the protective layer 5 may approach the refractive index of the semiconductor substrate 2 due to the presence of the plurality of first granular bodies 5b1. Thereby, for example, the light emitted from the back surface 1bs side to the second element surface Sf2 is less likely to be reflected in the region between the protective layer 5 and the semiconductor substrate 2, and is likely to enter the semiconductor substrate 2. In other words, for example, the third light utilization rate related to the third optical path Rt3 can be increased. As a result, for example, the photoelectric conversion efficiency in the solar cell element 1 can be improved.
 ここで、半導体基板2がシリコン基板であり、保護層5の母材部5aの素材がシロキサン樹脂である場合を想定する。この場合には、例えば、半導体基板2の屈折率は3.4程度となり、母材部5aの屈折率は、酸化シリコン(SiO)の屈折率と同等な1.5程度となる。ここで、第1粒状体5b1の素材として、例えば、半導体基板2の屈折率(3.4程度)と母材部5aの屈折率(1.5程度)との間の屈折率を有する素材が採用される。具体的には、第1粒状体5b1の素材として、例えば、酸化チタン(TiO)、酸化第二鉄(Fe)、酸化ニオブ(Nb)、酸化ジルコニウム(ZrO)および酸化ハフニウム(HfO)のうちの1種以上が採用され得る。酸化チタン(TiO)の屈折率は、2.5から2.7程度である。酸化第二鉄(Fe)の屈折率は、3.0程度である。酸化ニオブ(Nb)の屈折率は、2.7程度である。酸化ジルコニウム(ZrO)の屈折率は、2.1程度である。酸化ハフニウム(HfO)の屈折率は、1.95程度である。また、例えば、パッシベーション膜4の素材が、酸化アルミニウムであれば、パッシベーション膜4の屈折率は1.76程度である。ここで、保護層5の母材部5aの素材がシロキサン樹脂であれば、パッシベーション膜4の屈折率は、母材部5aの屈折率よりも半導体基板2の屈折率に近い。 Here, it is assumed that the semiconductor substrate 2 is a silicon substrate and the base material portion 5a of the protective layer 5 is a siloxane resin. In this case, for example, the refractive index of the semiconductor substrate 2 is about 3.4, and the refractive index of the base material portion 5a is about 1.5, which is equivalent to the refractive index of silicon oxide (SiO 2 ). Here, as the material of the first granular body 5b1, for example, a material having a refractive index between the refractive index of the semiconductor substrate 2 (about 3.4) and the refractive index of the base material portion 5a (about 1.5). Adopted. Specifically, as the material of the first granular body 5b1, for example, titanium oxide (TiO 2 ), ferric oxide (Fe 2 O 3 ), niobium oxide (Nb 2 O 5 ), zirconium oxide (ZrO 2 ) and One or more of hafnium oxide (HfO 2 ) may be employed. The refractive index of titanium oxide (TiO 2 ) is about 2.5 to 2.7. The refractive index of ferric oxide (Fe 2 O 3 ) is about 3.0. The refractive index of niobium oxide (Nb 2 O 5 ) is about 2.7. The refractive index of zirconium oxide (ZrO 2 ) is about 2.1. The refractive index of hafnium oxide (HfO 2 ) is about 1.95. For example, if the material of the passivation film 4 is aluminum oxide, the refractive index of the passivation film 4 is about 1.76. Here, if the material of the base material part 5a of the protective layer 5 is a siloxane resin, the refractive index of the passivation film 4 is closer to the refractive index of the semiconductor substrate 2 than the refractive index of the base material part 5a.
 ここで、例えば、複数の第1粒状体5b1に係る第1粒径範囲の上限値が30nm以下であれば、保護層5において、太陽光のうちのエネルギー強度が高い、可視光線および近赤外線を含む1200nm以下の波長域の光の散乱が生じにくい。この現象は、第1粒径範囲を種々変化させた保護層5を観察することで確認された。この場合には、例えば、裏面1bs側から第2素子面Sf2に照射される光を保護層5内で散乱させにくい第1粒状体5b1によって、保護層5の屈折率を半導体基板2の屈折率に近づけることができる。これにより、例えば、第2素子面Sf2に照射される光が、保護層5と半導体基板2との間の領域で反射しにくくなり、半導体基板2に入射しやすくなる。換言すれば、例えば、第3光路Rt3に係る第3光利用率が高まり得る。その結果、例えば、太陽電池素子1における光電変換効率が向上し得る。 Here, for example, if the upper limit value of the first particle size range relating to the plurality of first granular bodies 5b1 is 30 nm or less, the protective layer 5 has visible light and near infrared rays having high energy intensity in sunlight. Including light in a wavelength region of 1200 nm or less is difficult to occur. This phenomenon was confirmed by observing the protective layer 5 in which the first particle size range was variously changed. In this case, for example, the refractive index of the protective layer 5 is changed to the refractive index of the semiconductor substrate 2 by the first granular body 5b1 that hardly scatters the light irradiated to the second element surface Sf2 from the back surface 1bs side in the protective layer 5. Can be approached. Thereby, for example, the light applied to the second element surface Sf <b> 2 is less likely to be reflected in the region between the protective layer 5 and the semiconductor substrate 2 and is likely to enter the semiconductor substrate 2. In other words, for example, the third light utilization rate related to the third optical path Rt3 can be increased. As a result, for example, the photoelectric conversion efficiency in the solar cell element 1 can be improved.
 ところで、半導体基板2は、素材の使用量の低減に伴う薄型化によって、第1面2uから第2面2bに向けた半導体基板2の厚さ方向(第1厚さ方向ともいう)にこの半導体基板2を透過する光が生じ得る。例えば、半導体基板2がシリコン基板であれば、シリコンの光吸収係数に応じて、太陽光の1000nm以上の波長域の近赤外線が半導体基板2を透過しやすい。 By the way, the semiconductor substrate 2 is thinned in accordance with a reduction in the amount of the material used, so that the semiconductor substrate 2 extends in the thickness direction (also referred to as the first thickness direction) of the semiconductor substrate 2 from the first surface 2u to the second surface 2b. Light that passes through the substrate 2 may be generated. For example, if the semiconductor substrate 2 is a silicon substrate, near-infrared rays in the wavelength region of 1000 nm or more of sunlight are likely to pass through the semiconductor substrate 2 according to the light absorption coefficient of silicon.
 そこで、例えば、保護層5において、複数の第2粒状体5b2が、第1面2uから第2面2bに向けた半導体基板2の厚さ方向(第1厚さ方向)にこの半導体基板2を透過する光を散乱させる状態にあってもよい。第1実施形態では、第1厚さ方向は、-Z方向である。光の散乱は、例えば、複数の第2粒状体5b2が、母材部5aとは異なる屈折率を有することで生じ得るミー散乱を含む。ここでは、例えば、半導体基板2を透過した光が、保護層5内に存在する複数の第2粒状体5b2によって散乱し、色々な角度で半導体基板2に再入射し得る。この場合には、例えば、再入射された光は、半導体基板2における光電変換に利用され得る。これにより、例えば、半導体基板2の第1面2uに照射される光のうち、半導体基板2における光電変換に利用される光の割合が向上し得る。換言すれば、例えば、第1光路Rt1に係る第1光利用率が高まり得る。その結果、例えば、太陽電池素子1における光電変換効率が向上し得る。ここでは、例えば、半導体基板2がシリコン基板であれば、保護層5において、複数の第2粒状体5b2が、第1厚さ方向に半導体基板2を透過する近赤外線を散乱させる状態が考えられる。この場合には、例えば、半導体基板2を透過した近赤外線は、保護層5内に存在する複数の第2粒状体5b2によって散乱し、色々な角度で半導体基板2に再入射して、半導体基板2における光電変換に利用され得る。 Therefore, for example, in the protective layer 5, the plurality of second granular bodies 5 b 2 are arranged in the thickness direction (first thickness direction) of the semiconductor substrate 2 from the first surface 2 u to the second surface 2 b. You may be in the state which scatters the light to permeate | transmit. In the first embodiment, the first thickness direction is the −Z direction. The light scattering includes Mie scattering that can occur, for example, when the plurality of second granular materials 5b2 have a refractive index different from that of the base material portion 5a. Here, for example, light transmitted through the semiconductor substrate 2 can be scattered by the plurality of second granular bodies 5b2 existing in the protective layer 5 and re-enter the semiconductor substrate 2 at various angles. In this case, for example, the re-incident light can be used for photoelectric conversion in the semiconductor substrate 2. Thereby, for example, the ratio of the light used for photoelectric conversion in the semiconductor substrate 2 out of the light irradiated to the first surface 2u of the semiconductor substrate 2 can be improved. In other words, for example, the first light utilization rate related to the first optical path Rt1 can be increased. As a result, for example, the photoelectric conversion efficiency in the solar cell element 1 can be improved. Here, for example, if the semiconductor substrate 2 is a silicon substrate, in the protective layer 5, a plurality of second granular bodies 5 b 2 may scatter near infrared rays that pass through the semiconductor substrate 2 in the first thickness direction. . In this case, for example, the near infrared light transmitted through the semiconductor substrate 2 is scattered by the plurality of second granular bodies 5b2 existing in the protective layer 5, and re-enters the semiconductor substrate 2 at various angles, so that the semiconductor substrate 2 2 can be used for photoelectric conversion.
 ここで、例えば、複数の第2粒状体5b2に係る第2粒径範囲の下限値が、30nmよりも高い値に設定される場合が考えられる。この場合には、保護層5において、太陽光のうちのエネルギー強度が高い、可視光線および近赤外線を含む1200nm以下の波長域の光の散乱が生じ得る。ここで、例えば、第2粒径範囲の下限値が大きくなる程、保護層5において、太陽光のうちのエネルギー強度が高い光線における比較的短波長の近紫外線および可視光線の散乱が生じにくくなる。これにより、例えば、保護層5は、第1素子面Sf1に照射された光のうちの半導体基板2を透過した近赤外線などの光を散乱させつつ、第2素子面Sf2に照射された光のうちの近紫外線および可視光線を半導体基板2に向けて透過させることが可能となる。このため、例えば、第1光路Rt1に係る第1光利用率と、第3光路Rt3に係る第3光利用率と、をバランスよく高めることが可能となる。また、例えば、第1光路Rt1に係る第1光利用率および第3光路Rt3に係る第3光利用率の何れをどの程度重点的に高めるのかについて、適宜設定することも可能となる。 Here, for example, a case where the lower limit value of the second particle size range related to the plurality of second granular materials 5b2 is set to a value higher than 30 nm is conceivable. In this case, in the protective layer 5, scattering of light in a wavelength region of 1200 nm or less including visible light and near infrared light having high energy intensity in sunlight can occur. Here, for example, as the lower limit value of the second particle size range increases, the protective layer 5 is less likely to scatter relatively short-wavelength near-ultraviolet rays and visible rays in light with high energy intensity among sunlight. . Thereby, for example, the protective layer 5 scatters light such as near-infrared light transmitted through the semiconductor substrate 2 out of light irradiated on the first element surface Sf1, and also irradiates the light irradiated on the second element surface Sf2. It is possible to transmit near-ultraviolet rays and visible rays to the semiconductor substrate 2. For this reason, for example, it is possible to improve the first light utilization rate related to the first optical path Rt1 and the third light utilization rate related to the third optical path Rt3 in a balanced manner. For example, it is possible to appropriately set which one of the first light utilization rate related to the first optical path Rt1 and the third light utilization rate related to the third optical path Rt3 is to be increased.
 ここで、例えば、半導体基板2において、第1面2uに照射される光のうちの予め設定された閾値以上の割合の光が第1厚さ方向に透過し得る波長域を、第1波長域とする。また、例えば、半導体基板2が吸収可能な光の波長域を、第2波長域とする。この場合に、例えば、保護層5において複数の第2粒状体5b2が生じさせる光の散乱の度合いが、第1波長域と第2波長域とが重なる波長域においてピークを示す状態にあってもよい。この状態では、例えば、半導体基板2を透過した光が、保護層5内に存在する複数の第2粒状体5b2によって散乱し、色々な角度で半導体基板2に再入射しやすくなる。これにより、例えば、太陽電池素子1における光電変換効率が向上し得る。ここでは、閾値として、例えば、40%程度の値が採用され得る。また、第1波長域は、例えば、半導体基板2の光吸収係数と厚さとに応じた波長域となる。第2波長域は、例えば、半導体基板2の光吸収係数に応じた波長域となる。 Here, for example, in the semiconductor substrate 2, a wavelength range in which a proportion of light that is equal to or greater than a preset threshold among the light applied to the first surface 2 u can be transmitted in the first thickness direction is the first wavelength range. And Further, for example, a wavelength range of light that can be absorbed by the semiconductor substrate 2 is set as a second wavelength range. In this case, for example, even if the degree of light scattering generated by the plurality of second granular bodies 5b2 in the protective layer 5 is in a state where it shows a peak in the wavelength region where the first wavelength region and the second wavelength region overlap. Good. In this state, for example, the light transmitted through the semiconductor substrate 2 is scattered by the plurality of second granular bodies 5b2 present in the protective layer 5, and easily reenters the semiconductor substrate 2 at various angles. Thereby, for example, the photoelectric conversion efficiency in the solar cell element 1 can be improved. Here, for example, a value of about 40% can be adopted as the threshold value. Further, the first wavelength range is a wavelength range corresponding to the light absorption coefficient and thickness of the semiconductor substrate 2, for example. The second wavelength range is, for example, a wavelength range corresponding to the light absorption coefficient of the semiconductor substrate 2.
 例えば、半導体基板2がシリコン基板であれば、シリコン基板の厚さ(板厚ともいう)に応じて、第1波長域が、900nmから1000nm程度以上の波長域となり、第2波長域が、1120nm程度以下の波長域となる。ここで、例えば、保護層5の素材が、屈折率が1.5程度の酸化シリコンであり、第2粒状体5b2の素材が、屈折率が2.7程度の酸化チタンである場合を想定する。この場合には、例えば、シリコン基板の板厚と、第1波長域の下限値と、第1波長域と第2波長域とが重なる波長域において光の散乱の度合いがピークを示すために必要である複数の第2粒状体5b2の粒径の下限値と、が計算上、次のような関係となる。 For example, if the semiconductor substrate 2 is a silicon substrate, the first wavelength range is a wavelength range of about 900 nm to about 1000 nm or more according to the thickness (also referred to as plate thickness) of the silicon substrate, and the second wavelength range is 1120 nm. The wavelength range is less than about. Here, for example, it is assumed that the material of the protective layer 5 is silicon oxide having a refractive index of about 1.5, and the material of the second granular material 5b2 is titanium oxide having a refractive index of about 2.7. . In this case, for example, it is necessary to show the peak of the degree of light scattering in the wavelength range where the thickness of the silicon substrate, the lower limit value of the first wavelength range, and the first wavelength range and the second wavelength range overlap. And the lower limit value of the particle size of the plurality of second granular bodies 5b2 is as follows in the calculation.
 例えば、板厚が50μmの場合に、第1波長域の下限値が930nm程度となり、複数の第2粒状体5b2の粒径の下限値が350nm程度となる。例えば、板厚が100μmの場合に、第1波長域の下限値が970nm程度となり、複数の第2粒状体5b2の粒径の下限値が361nm程度となる。例えば、板厚が115μmの場合に、第1波長域の下限値が980nm程度となり、複数の第2粒状体5b2の粒径の下限値が364nm程度となる。例えば、板厚が140μmの場合に、第1波長域の下限値が990nm程度となり、複数の第2粒状体5b2の粒径の下限値が367nm程度となる。例えば、板厚が170μmの場合に、第1波長域の下限値が1000nm程度となり、複数の第2粒状体5b2の粒径の下限値が370nm程度となる。例えば、板厚が215μmの場合に、第1波長域の下限値が1010nm程度となり、複数の第2粒状体5b2の粒径の下限値が373nm程度となる。このため、例えば、半導体基板2に適用されるシリコン基板の実用的な厚さを考慮すれば、複数の第2粒状体5b2の粒径の下限値として350nm程度以上が採用され得る。ここで、例えば、第2粒状体5b2の素材の屈折率が2.7よりも小さな値(例えば、2.5程度もしくは2.2程度など)であれば、第2粒状体5b2の素材の屈折率が2.7である場合よりも、複数の第2粒状体5b2の粒径の下限値が大きくてもよい。ここで、例えば、第2粒状体5b2の素材の屈折率が2.7よりも大きな値であれば、第2粒状体5b2の素材の屈折率が2.7である場合よりも、複数の第2粒状体5b2の粒径の下限値が大きくてもよい。具体的には、第2粒状体5b2の素材の屈折率が3であれば、粒径の下限値として220nm程度以上の値が採用されてもよい。換言すれば、複数の第2粒状体5b2に係る第2粒径範囲の下限値として、220nm以上の値が採用され得る。 For example, when the plate thickness is 50 μm, the lower limit value of the first wavelength region is about 930 nm, and the lower limit value of the particle diameters of the plurality of second granular bodies 5b2 is about 350 nm. For example, when the plate thickness is 100 μm, the lower limit of the first wavelength region is about 970 nm, and the lower limit of the particle size of the plurality of second granular bodies 5b2 is about 361 nm. For example, when the plate thickness is 115 μm, the lower limit value of the first wavelength region is about 980 nm, and the lower limit value of the particle size of the plurality of second granular materials 5b2 is about 364 nm. For example, when the plate thickness is 140 μm, the lower limit value of the first wavelength region is about 990 nm, and the lower limit value of the particle diameters of the plurality of second granular bodies 5b2 is about 367 nm. For example, when the plate thickness is 170 μm, the lower limit value of the first wavelength region is about 1000 nm, and the lower limit value of the particle size of the plurality of second granular materials 5b2 is about 370 nm. For example, when the plate thickness is 215 μm, the lower limit value of the first wavelength region is about 1010 nm, and the lower limit value of the particle size of the plurality of second granular bodies 5b2 is about 373 nm. For this reason, considering the practical thickness of the silicon substrate applied to the semiconductor substrate 2, for example, about 350 nm or more can be adopted as the lower limit value of the particle size of the plurality of second granular bodies 5b2. Here, for example, if the refractive index of the material of the second granular body 5b2 is a value smaller than 2.7 (for example, about 2.5 or about 2.2), the refraction of the material of the second granular body 5b2 is performed. The lower limit value of the particle diameters of the plurality of second granular bodies 5b2 may be larger than when the rate is 2.7. Here, for example, if the refractive index of the material of the second granular material 5b2 is a value larger than 2.7, a plurality of second granular materials 5b2 than the case where the refractive index of the material of the second granular material 5b2 is 2.7. The lower limit value of the particle size of the two granular bodies 5b2 may be large. Specifically, if the refractive index of the material of the second granular body 5b2 is 3, a value of about 220 nm or more may be adopted as the lower limit value of the particle size. In other words, a value of 220 nm or more can be adopted as the lower limit value of the second particle size range related to the plurality of second granular materials 5b2.
 また、ここで、例えば、複数の第2粒状体5b2に係る第2粒径範囲の上限値は、保護層5の厚さの半分以下程度の値が採用され得る。これにより、例えば、保護層5によるパッシベーション膜4を保護する性能が確保され得る。例えば、保護層5の厚さが20μmである場合には、第2粒径範囲の上限値は10μmであってもよい。 Here, for example, as the upper limit value of the second particle size range related to the plurality of second granular bodies 5b2, a value about half or less of the thickness of the protective layer 5 can be adopted. Thereby, for example, the performance of protecting the passivation film 4 by the protective layer 5 can be ensured. For example, when the thickness of the protective layer 5 is 20 μm, the upper limit value of the second particle size range may be 10 μm.
 また、ここで、例えば、図5で示されるように、複数の第2粒状体5b2が、保護層5の厚さ方向(第2厚さ方向ともいう)において並んでいる2つ以上の第2粒状体5b2を含んでいてもよい。第1実施形態では、第2厚さ方向は、-Z方向である。ここでは、例えば、保護層5の第2厚さ方向において、1つ目の第2粒状体5b2によって散乱された光のうちの第2厚さ方向に向かう光が、2つ目の第2粒状体5b2によって散乱され得る。これにより、例えば、半導体基板2を透過した光のうち、半導体基板2に再入射される光の量が増加し得る。その結果、例えば、太陽電池素子1における光電変換効率が向上し得る。 Here, for example, as shown in FIG. 5, a plurality of second granular bodies 5b2 are arranged in the thickness direction of the protective layer 5 (also referred to as the second thickness direction). The granular material 5b2 may be included. In the first embodiment, the second thickness direction is the −Z direction. Here, for example, in the second thickness direction of the protective layer 5, light traveling in the second thickness direction out of the light scattered by the first second granular body 5 b 2 is the second second granular shape. It can be scattered by the body 5b2. Thereby, for example, the amount of light re-entering the semiconductor substrate 2 out of the light transmitted through the semiconductor substrate 2 can be increased. As a result, for example, the photoelectric conversion efficiency in the solar cell element 1 can be improved.
   <1-2-5.前面電極>
 図3(a)および図4(a)から図4(c)で示されるように、前面電極6は、例えば、半導体基板2の第1面2u側に位置している。第1実施形態では、前面電極6は、半導体基板2の第1面2u上に位置している。前面電極6は、例えば、第1出力取出電極6aと、第1集電電極6bと、を有する。
<1-2-5. Front electrode>
As shown in FIG. 3A and FIG. 4A to FIG. 4C, the front electrode 6 is located on the first surface 2u side of the semiconductor substrate 2, for example. In the first embodiment, the front electrode 6 is located on the first surface 2 u of the semiconductor substrate 2. The front electrode 6 includes, for example, a first output extraction electrode 6a and a first current collecting electrode 6b.
 第1出力取出電極6aは、半導体基板2の第1面2u側に位置している。第1出力取出電極6aは、例えば、半導体基板2における光の照射に応じた光電変換によって得られたキャリアを太陽電池素子1の外部に取り出すことができる。図3(a)および図4(a)から図4(c)の例では、半導体基板2の第1面2u側に、2本の第1出力取出電極6aが存在している。各第1出力取出電極6aは、第1面2uに沿った長手方向を有する。この長手方向は+Y方向である。第1出力取出電極6aの短手方向の長さ(幅ともいう)は、例えば1.3mmから2.5mm程度とされる。第1出力取出電極6aの少なくとも一部は、第1集電電極6bと交差して電気的に接続されている状態にある。 The first output extraction electrode 6 a is located on the first surface 2 u side of the semiconductor substrate 2. The 1st output extraction electrode 6a can take out the carrier obtained by the photoelectric conversion according to the irradiation of the light in the semiconductor substrate 2, for example to the exterior of the solar cell element 1. FIG. In the example of FIG. 3A and FIG. 4A to FIG. 4C, two first output extraction electrodes 6a are present on the first surface 2u side of the semiconductor substrate 2. Each first output extraction electrode 6a has a longitudinal direction along the first surface 2u. This longitudinal direction is the + Y direction. The length (also referred to as width) of the first output extraction electrode 6a in the short direction is, for example, about 1.3 mm to 2.5 mm. At least a part of the first output extraction electrode 6a is in a state of being electrically connected across the first collector electrode 6b.
 第1集電電極6bは、半導体基板2の第1面2u側に位置している。第1集電電極6bは、例えば、半導体基板2において光の照射に応じた光電変換によって得られたキャリアを集めることができる。図3(a)および図4(a)の例では、半導体基板2の第1面2u側に、複数本の第1集電電極6bが存在している。各第1集電電極6bは、第1面2uに沿った長手方向を有する。この長手方向は+X方向である。換言すれば、複数本の第1集電電極6bは、いわゆるフィンガー状の形態を有する。各第1集電電極6bは、例えば、20μmから200μm程度の幅を有する線状の電極である。換言すれば、各第1集電電極6bの幅は、第1出力取出電極6aの幅よりも小さい。複数本の第1集電電極6bは、例えば、互いに1mmから3mm程度の間隔を空けて並んでいる状態で位置している。前面電極6の厚さは、例えば、10μmから40μm程度とされる。 The first current collecting electrode 6 b is located on the first surface 2 u side of the semiconductor substrate 2. The first current collecting electrode 6b can collect, for example, carriers obtained by photoelectric conversion according to light irradiation in the semiconductor substrate 2. In the example of FIG. 3A and FIG. 4A, a plurality of first current collecting electrodes 6 b exist on the first surface 2 u side of the semiconductor substrate 2. Each first current collecting electrode 6b has a longitudinal direction along the first surface 2u. This longitudinal direction is the + X direction. In other words, the plurality of first current collecting electrodes 6b have a so-called finger shape. Each first current collecting electrode 6b is a linear electrode having a width of about 20 μm to 200 μm, for example. In other words, the width of each first collector electrode 6b is smaller than the width of the first output extraction electrode 6a. The plurality of first current collecting electrodes 6b are positioned, for example, in a state where they are aligned with an interval of about 1 mm to 3 mm. The thickness of the front electrode 6 is, for example, about 10 μm to 40 μm.
 上記構成を有する前面電極6は、例えば、第1金属ペーストをスクリーン印刷などによって所望の形状に塗布した後に、この第1金属ペーストを焼成することで形成され得る。第1金属ペーストは、例えば、銀を主成分とする金属粒子、有機ビヒクルおよびガラスフリットを含有している。主成分とは、含有成分のうち含有される比率(含有率ともいう)が最も大きい(高い)成分のことを意味する。ここでは、例えば、反射防止膜3上に第1金属ペーストが所望の形状で塗布される。そして、この第1金属ペーストが焼成される際に、この第1金属ペーストが、反射防止膜3の焼成貫通を生じる。これにより、半導体基板2の第1面2uに接続している状態にある前面電極6が形成され得る。 The front electrode 6 having the above-described configuration can be formed by, for example, applying the first metal paste to a desired shape by screen printing or the like and then firing the first metal paste. The first metal paste contains, for example, metal particles mainly composed of silver, an organic vehicle, and glass frit. The main component means a component having the largest (high) content ratio (also referred to as a content ratio). Here, for example, the first metal paste is applied in a desired shape on the antireflection film 3. And when this 1st metal paste is baked, this 1st metal paste produces the baking penetration of the anti-reflective film 3. FIG. Thereby, the front electrode 6 in a state of being connected to the first surface 2u of the semiconductor substrate 2 can be formed.
 また、前面電極6は、例えば、第1集電電極6bと同様の形状の補助電極6cを有していてもよい。この補助電極6cは、例えば、半導体基板2の+X方向の端部および-X方向の端部のそれぞれに沿って位置していることで、第1集電電極6b同士を電気的に接続し得る。 The front electrode 6 may have an auxiliary electrode 6c having the same shape as the first current collecting electrode 6b, for example. For example, the auxiliary electrode 6c is located along each of the end in the + X direction and the end in the −X direction of the semiconductor substrate 2 so that the first current collecting electrodes 6b can be electrically connected to each other. .
   <1-2-6.裏面電極>
 図3(b)および図4(a)から図4(c)で示されるように、裏面電極7は、例えば、半導体基板2の第2面2bの側に位置している。裏面電極7は、例えば、第2出力取出電極7aと、第2集電電極7bと、を有する。
<1-2-6. Back electrode>
As shown in FIGS. 3B and 4A to 4C, the back electrode 7 is located on the second surface 2b side of the semiconductor substrate 2, for example. The back electrode 7 includes, for example, a second output extraction electrode 7a and a second current collecting electrode 7b.
 第2出力取出電極7aは、半導体基板2の第2面2b側に位置している。この第2出力取出電極7aは、例えば、太陽電池素子1において光電変換によって得られたキャリアを太陽電池素子1の外部に取り出すための電極である。図3(b)、図4(a)および図4(c)の例では、半導体基板2の第2面2b側の保護層5上に、2本の第2出力取出電極7aが存在している。各第2出力取出電極7aは、第2面2bに沿った長手方向を有する。この長手方向は+Y方向である。そして、各第2出力取出電極7aは、長手方向としての+Y方向に沿って並んでいるN個(Nは2以上の整数)の島状の電極部(島状電極部ともいう)によって構成されている。ここでは、N個は4個である。換言すれば、半導体基板2の第2面2b側には、それぞれ第2出力取出電極7aの長手方向(ここでは+Y方向)に沿って並んでいる2列の島状電極部が存在している。そして、第2出力取出電極7aは、長手方向に交差している幅方向を有する。この幅方向は+X方向である。第2出力取出電極7aの厚さは、例えば、10μmから40μm程度とされる。第2出力取出電極7aの幅は、例えば、1.3mmから7mm程度とされる。第2出力取出電極7aの少なくとも一部は、第2集電電極7bと接触して電気的に接続されている状態にある。 The second output extraction electrode 7 a is located on the second surface 2 b side of the semiconductor substrate 2. This 2nd output extraction electrode 7a is an electrode for taking out the carrier obtained by photoelectric conversion in the solar cell element 1 to the exterior of the solar cell element 1, for example. 3B, 4A, and 4C, two second output extraction electrodes 7a exist on the protective layer 5 on the second surface 2b side of the semiconductor substrate 2. Yes. Each second output extraction electrode 7a has a longitudinal direction along the second surface 2b. This longitudinal direction is the + Y direction. Each of the second output extraction electrodes 7a is composed of N (N is an integer of 2 or more) island-shaped electrode portions (also referred to as island-shaped electrode portions) arranged along the + Y direction as the longitudinal direction. ing. Here, N is four. In other words, on the second surface 2b side of the semiconductor substrate 2, there are two rows of island-like electrode portions arranged along the longitudinal direction (here, the + Y direction) of the second output extraction electrode 7a. . The second output extraction electrode 7a has a width direction that intersects the longitudinal direction. This width direction is the + X direction. The thickness of the second output extraction electrode 7a is, for example, about 10 μm to 40 μm. The width of the second output extraction electrode 7a is, for example, about 1.3 mm to 7 mm. At least a part of the second output extraction electrode 7a is in contact with and electrically connected to the second collector electrode 7b.
 上記構成を有する第2出力取出電極7aは、例えば、第2金属ペーストをスクリーン印刷などによって所望の形状に塗布した後に、この第2金属ペーストを焼成することで形成され得る。第2金属ペーストは、例えば、銀を主成分とする金属粒子、有機ビヒクルおよびガラスフリットを含有している。ここでは、例えば、保護層5上に第2金属ペーストが所望の形状で塗布される。 The second output extraction electrode 7a having the above-described configuration can be formed by, for example, applying the second metal paste into a desired shape by screen printing or the like and then firing the second metal paste. The second metal paste contains, for example, metal particles mainly composed of silver, an organic vehicle, and glass frit. Here, for example, the second metal paste is applied on the protective layer 5 in a desired shape.
 第2集電電極7bは、半導体基板2の第2面2b側に位置している。この第2集電電極7bは、例えば、半導体基板2において光の照射に応じた光電変換によって得られたキャリアを集めることができる。図3(b)および図4(a)の例では、半導体基板2の第2面2b側に、複数本の第2集電電極7bが存在している。各第2集電電極7bは、第2面2bに沿った長手方向を有する。この長手方向は+X方向である。換言すれば、複数本の第2集電電極7bも、上述した複数の第1集電電極6bと同様に、いわゆるフィンガー状の形態を有する。各第2集電電極7bは、例えば、50μmから200μm程度の幅を有する線状の電極である。換言すれば、各第2集電電極7bの幅は、第2出力取出電極7aの幅よりも小さい。複数本の第2集電電極7bは、例えば、互いに1mmから3mm程度の間隔を空けて並んでいる状態で位置している。 The second current collecting electrode 7b is located on the second surface 2b side of the semiconductor substrate 2. For example, the second collector electrode 7b can collect carriers obtained by photoelectric conversion in the semiconductor substrate 2 according to light irradiation. In the example of FIG. 3B and FIG. 4A, a plurality of second current collecting electrodes 7b are present on the second surface 2b side of the semiconductor substrate 2. Each second current collecting electrode 7b has a longitudinal direction along the second surface 2b. This longitudinal direction is the + X direction. In other words, the plurality of second current collecting electrodes 7b also have a so-called finger-like form, similar to the plurality of first current collecting electrodes 6b described above. Each second current collecting electrode 7b is a linear electrode having a width of about 50 μm to 200 μm, for example. In other words, the width of each second current collecting electrode 7b is smaller than the width of the second output extraction electrode 7a. The plurality of second current collecting electrodes 7b are located, for example, in a state where they are aligned with an interval of about 1 mm to 3 mm.
 第2集電電極7bは、例えば、第1部分7b1と、第2部分7b2と、を有する。第1部分7b1は、保護層5の第1領域Ar1の上に位置している。第2部分7b2は、パッシベーション膜4および保護層5を連続して貫通している状態の複数の貫通孔45h内のそれぞれにおいて半導体基板2に電気的に接続している状態で位置している。第1部分7b1の厚さは、例えば、10μmから40μm程度とされる。第1部分7b1と、第2部分7b2と、は電気的に接続されている状態にある。 The second current collecting electrode 7b has, for example, a first portion 7b1 and a second portion 7b2. The first portion 7b1 is located on the first region Ar1 of the protective layer 5. The second portion 7b2 is located in a state where it is electrically connected to the semiconductor substrate 2 in each of the plurality of through holes 45h in a state of continuously passing through the passivation film 4 and the protective layer 5. The thickness of the first portion 7b1 is, for example, about 10 μm to 40 μm. The first portion 7b1 and the second portion 7b2 are in an electrically connected state.
 上記構成を有する第2集電電極7bは、例えば、第3金属ペーストをスクリーン印刷などによって所望の形状に塗布した後に、この第3金属ペーストを焼成することで形成され得る。第3金属ペーストは、例えば、アルミニウムを主成分とする金属粒子、有機ビヒクルおよびガラスフリットを含有している。ここでは、例えば、保護層5上および保護層5の複数の孔部内に第3金属ペーストが塗布される。そして、この第3金属ペーストが焼成される際に、保護層5の複数の孔部内に位置している第3金属ペーストがパッシベーション膜4の焼成貫通を生じる。これにより、複数の貫通孔45h内に位置している状態にある第2部分7b2が形成され得る。この場合には、例えば、第3金属ペースト中のアルミニウムが半導体基板2の第2面2bの表層部内に拡散し、BSF層としての第3半導体領域23が生成され得る。一方、保護層5上に位置している第3金属ペーストは、保護層5の存在により、パッシベーション膜4の焼成貫通を生じることなく、保護層5上に第1部分7b1が形成され得る。その結果、裏面電極7が形成され得る。 The second current collecting electrode 7b having the above-described configuration can be formed by, for example, applying the third metal paste into a desired shape by screen printing or the like and then firing the third metal paste. The third metal paste contains, for example, metal particles mainly composed of aluminum, an organic vehicle, and glass frit. Here, for example, the third metal paste is applied on the protective layer 5 and in the plurality of holes of the protective layer 5. And when this 3rd metal paste is baked, the 3rd metal paste located in the several hole part of the protective layer 5 produces baking penetration of the passivation film 4. FIG. Thereby, the 2nd part 7b2 in the state located in the some through-hole 45h can be formed. In this case, for example, aluminum in the third metal paste diffuses into the surface layer portion of the second surface 2b of the semiconductor substrate 2, and the third semiconductor region 23 as a BSF layer can be generated. On the other hand, in the third metal paste located on the protective layer 5, the first portion 7 b 1 can be formed on the protective layer 5 without causing the firing of the passivation film 4 due to the presence of the protective layer 5. As a result, the back electrode 7 can be formed.
   <1-2-7.太陽電池素子同士の接続>
 図3(a)および図3(b)で示されるように、例えば、1つの太陽電池素子1の第1出力取出電極6aと、この1つの太陽電池素子1の隣の他の1つの太陽電池素子1の第2出力取出電極7aとが、第1配線材W1によって電気的に接続されている状態にある。図3(a)および図3(b)の例では、各太陽電池素子1に取り付けられる第1配線材W1の外縁が仮想的に二点鎖線で描かれている。第1配線材W1には、例えば、線状または帯状の導電性を有する金属が適用される。具体的には、例えば、0.1mmから0.2mm程度の厚さと1mmから2mm程度の幅とを有する銅箔の全面に半田が被覆されたものが第1配線材W1に適用される。第1配線材W1は、例えば、半田付けで第1出力取出電極6aおよび第2出力取出電極7aに電気的に接続されている状態で位置している。
<1-2-7. Connection between solar cell elements>
As shown in FIGS. 3A and 3B, for example, the first output extraction electrode 6 a of one solar cell element 1 and another solar cell adjacent to the one solar cell element 1. The second output extraction electrode 7a of the element 1 is in a state of being electrically connected by the first wiring member W1. In the example of FIG. 3A and FIG. 3B, the outer edge of the first wiring member W1 attached to each solar cell element 1 is virtually drawn with a two-dot chain line. For the first wiring member W1, for example, a metal having a linear or belt-like conductivity is applied. Specifically, for example, a copper foil having a thickness of about 0.1 mm to about 0.2 mm and a width of about 1 mm to about 2 mm covered with solder is applied to the first wiring member W1. The first wiring member W1 is positioned in a state where it is electrically connected to the first output extraction electrode 6a and the second output extraction electrode 7a, for example, by soldering.
  <1-3.絶縁性ペーストの製造方法>
 保護層5の形成に用いる絶縁性ペーストは、例えば、シロキサン樹脂の前駆体と、水と、触媒と、有機溶剤と、多数の粒状体と、を混合することで作製され得る。
<1-3. Manufacturing method of insulating paste>
The insulating paste used for forming the protective layer 5 can be produced, for example, by mixing a siloxane resin precursor, water, a catalyst, an organic solvent, and a large number of granular materials.
 具体的には、まず、シロキサン樹脂の前駆体と、水と、触媒と、有機溶剤と、を容器内で混合することで混合溶液を作製する工程(混合工程ともいう)を実施する。 Specifically, first, a step of preparing a mixed solution (also referred to as a mixing step) is performed by mixing a siloxane resin precursor, water, a catalyst, and an organic solvent in a container.
 ここで、シロキサン樹脂の前駆体としては、例えば、Si-O結合を有するシラン化合物またはSi-N結合を有するシラザン化合物などが採用される。これらの化合物は、加水分解を生じる性質(加水分解性ともいう)を有する。また、シロキサン樹脂の前駆体は、加水分解して縮合重合することでシロキサン樹脂となる。シラン化合物は、次の一般式1で表される。 Here, as the precursor of the siloxane resin, for example, a silane compound having a Si—O bond or a silazane compound having a Si—N bond is employed. These compounds have a property of causing hydrolysis (also referred to as hydrolyzability). The precursor of the siloxane resin is converted into a siloxane resin by hydrolysis and condensation polymerization. The silane compound is represented by the following general formula 1.
 (R1)4-dSi(OR2)  ・・・ 一般式1。 (R1) 4-d Si (OR2) d .
 一般式1におけるdは、1、2、3および4のうちの何れか1つの整数である。一般式1におけるR1およびR2は、メチル基およびエチル基などのアルキル基あるいはフェニル基などといった炭素水素基を示す。 D in the general formula 1 is an integer of any one of 1, 2, 3, and 4. R1 and R2 in the general formula 1 represent a carbon hydrogen group such as an alkyl group such as a methyl group and an ethyl group or a phenyl group.
 ここで、シラン化合物は、例えば、少なくともR1がアルキル基を含むシラン化合物(アルキル基系のシラン化合物ともいう)を含む。具体的には、アルキル基系のシラン化合物としては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリエトキシメチルシラン、ジエトキシジメチルシラン、トリメトキシプロピルシラン、トリエトキシプロピルシラン、ヘキシルトリメトキシシラン、トリエトキシヘキシルシラン、トリエトキシオクチルシランおよびデシルトリメトキシシランなどが挙げられる。 Here, the silane compound includes, for example, a silane compound in which at least R1 includes an alkyl group (also referred to as an alkyl group-based silane compound). Specifically, as the alkyl group-based silane compound, for example, methyltrimethoxysilane, dimethyldimethoxysilane, triethoxymethylsilane, diethoxydimethylsilane, trimethoxypropylsilane, triethoxypropylsilane, hexyltrimethoxysilane, Examples include triethoxyhexylsilane, triethoxyoctylsilane, and decyltrimethoxysilane.
 ここで、例えば、アルキル基が、メチル基、エチル基またはプロピル基であれば、シロキサン樹脂の前駆体が加水分解する際に炭素数が少なく揮発しやすい副生成物としてのアルコールが生成され得る。これにより、後述する副生成物除去工程で副生成物を除去しやすくなる。その結果、例えば、保護層5を形成する際に、副生成物の蒸発による空孔の発生が起こりにくく、保護層5が緻密となり、保護層5のバリア性が向上し得る。また、加水分解によって生成された副生成物は低粘度の液体であるので、副生成物除去工程までの絶縁性ペーストの製造工程において混合溶液がゲル化しにくい。 Here, for example, if the alkyl group is a methyl group, an ethyl group, or a propyl group, an alcohol as a by-product that has a small number of carbon atoms and easily volatilizes can be generated when the precursor of the siloxane resin is hydrolyzed. Thereby, it becomes easy to remove a by-product in a by-product removing step described later. As a result, for example, when the protective layer 5 is formed, vacancies are hardly generated due to evaporation of by-products, the protective layer 5 becomes dense, and the barrier property of the protective layer 5 can be improved. Moreover, since the by-product produced | generated by hydrolysis is a low-viscosity liquid, in a manufacturing process of the insulating paste until a by-product removal process, a mixed solution is hard to gelatinize.
 ここで、例えば、シロキサン樹脂の前駆体がフェニル基を有する場合には、シロキサン樹脂の前駆体は、事前に加水分解して縮合重合するとともにフェニル基の加水分解および縮合重合で生じた副生成物が除去されたシロキサン樹脂の状態で混合されてもよい。これにより、例えば、シロキサン樹脂の加水分解反応による絶縁性ペーストの粘度の変動が低減され得る。また、例えば、副生成物が除去された状態で、シロキサン樹脂と有機溶剤と多数の粒状体とを混合して絶縁性ペーストを生成すれば、絶縁性ペーストに含有される副生成物の量が低減される。この場合には、例えば、スクリーン印刷法によって絶縁性ペーストの塗布を行う場合には、スクリーン製版の乳剤が副生成物によって溶解されにくい。その結果、スクリーン製版のパターンの寸法が変動しにくくなる。 Here, for example, when the precursor of the siloxane resin has a phenyl group, the precursor of the siloxane resin undergoes hydrolysis and condensation polymerization in advance, and by-products generated by hydrolysis and condensation polymerization of the phenyl group It may be mixed in the state of the siloxane resin from which is removed. Thereby, the fluctuation | variation of the viscosity of the insulating paste by the hydrolysis reaction of a siloxane resin can be reduced, for example. Also, for example, if an insulating paste is produced by mixing a siloxane resin, an organic solvent, and a large number of granular materials in a state where the by-products are removed, the amount of by-products contained in the insulating paste is reduced. Reduced. In this case, for example, when the insulating paste is applied by a screen printing method, the emulsion of the screen plate making is hardly dissolved by the by-product. As a result, the dimensions of the screen plate making pattern are less likely to vary.
 また、シラン化合物は、例えば、R1およびR2がフェニル基およびアルキル基の双方を含んでいるシラン化合物を含む。このようなシラン化合物としては、例えば、トリメトキシフェニルシラン、ジメトキシジフェニルシラン、メトキシトリフェニルシラン、トリエトキシフェニルシラン、ジエトキシジフェニルシラン、エトキシトリフェニルシラン、トリイソプロポキシフェニルシラン、ジイソプロポキシジフェニルシランおよびイソプロポキシトリフェニルシランなどが挙げられる。 Further, the silane compound includes, for example, a silane compound in which R1 and R2 include both a phenyl group and an alkyl group. Examples of such silane compounds include trimethoxyphenylsilane, dimethoxydiphenylsilane, methoxytriphenylsilane, triethoxyphenylsilane, diethoxydiphenylsilane, ethoxytriphenylsilane, triisopropoxyphenylsilane, and diisopropoxydiphenylsilane. And isopropoxytriphenylsilane.
 これらのシラン化合物のうち、例えば、2つ以上のOR結合を含むシラン化合物が採用されれば、シラン化合物が加水分解した後に縮合重合を生じることで生成されるシロキサン結合(Si-O-Si結合)の数が増加し得る。これにより、保護層5を構成する酸化シリコンにおけるシロキサン結合のネットワークが多くなり、保護層5のバリア性が向上し得る。また、例えば、シラザン化合物は、無機シラザン化合物および有機シラザン化合物の何れであってもよい。ここで、無機シラザン化合物としては、例えば、ポリシラザンが挙げられる。有機シラザン化合物としては、例えば、ヘキサメチルジシラザン、テトラメチルシクロジシラザンまたはテトラフェニルシクロジシラザンなどが挙げられる。 Among these silane compounds, for example, when a silane compound containing two or more OR bonds is employed, a siloxane bond (Si—O—Si bond) formed by condensation polymerization after the silane compound is hydrolyzed. ) May increase. Thereby, the network of the siloxane bond in the silicon oxide which comprises the protective layer 5 increases, and the barrier property of the protective layer 5 can improve. For example, the silazane compound may be either an inorganic silazane compound or an organic silazane compound. Here, examples of the inorganic silazane compound include polysilazane. Examples of the organic silazane compound include hexamethyldisilazane, tetramethylcyclodisilazane, and tetraphenylcyclodisilazane.
 水は、例えば、シロキサン樹脂の前駆体を加水分解させることができる。例えば、水として、純水を用いる。例えば、シラン化合物のSi-OCHの結合に対して水が反応すれば、Si-OH結合とHO-CH(メチルアルコール)とを生じる。 Water can, for example, hydrolyze a precursor of a siloxane resin. For example, pure water is used as water. For example, when water reacts with a Si—OCH 3 bond of a silane compound, a Si—OH bond and HO—CH 3 (methyl alcohol) are generated.
 有機溶剤は、例えば、シロキサン樹脂の前駆体と水とを混合させることができる。また、有機溶剤は、例えば、シロキサン樹脂および多数の粒状体を分散させる役目も果たし得る。有機溶剤としては、例えば、ジエチレングリコールモノブチルエーテル、メチルセロソルブ、エチルセロソルブ、エチルアルコール、2-(4-メチルシクロヘキサ-3-エニル)プロパン-2-オールまたは2-プロパノールなどが用いられる。ここでは、これらの有機溶剤のうちの1種類の有機溶剤および2種類以上の有機溶剤を混合した有機溶剤の何れが用いられてもよい。 As the organic solvent, for example, a siloxane resin precursor and water can be mixed. Moreover, the organic solvent can also play the role which disperse | distributes a siloxane resin and many granular materials, for example. Examples of the organic solvent include diethylene glycol monobutyl ether, methyl cellosolve, ethyl cellosolve, ethyl alcohol, 2- (4-methylcyclohex-3-enyl) propan-2-ol or 2-propanol. Here, any one of these organic solvents and an organic solvent obtained by mixing two or more organic solvents may be used.
 触媒は、例えば、シロキサン樹脂の前駆体が加水分解および縮合重合を生じる際に、反応の速度を制御することができる。例えば、シロキサン樹脂の前駆体に含まれるSi-OR結合(例えば、Rはアルキル基)に加水分解および縮合重合を生じさせて、2つ以上のSi-OHからSi-O-Si結合とHO(水)とを生じさせる反応の速度が調整され得る。触媒としては、例えば、塩酸、硝酸、硫酸、ホウ酸、燐酸、フッ化水素酸および酢酸などから選択される、1種以上の無機酸または1種以上の有機酸が用いられる。また、触媒として、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化カルシウムおよびピリジンなどのうち、1種以上の無機塩基または1種以上の有機塩基が用いられてもよい。さらに、触媒は、例えば、無機酸と有機酸とを組み合わせたものでもよく、無機塩基と有機塩基とを組み合わせたものであってもよい。 The catalyst can control the rate of the reaction, for example, when the siloxane resin precursor undergoes hydrolysis and condensation polymerization. For example, the Si—OR bond (for example, R is an alkyl group) contained in the siloxane resin precursor is subjected to hydrolysis and condensation polymerization, so that two or more Si—OH can be converted into Si—O—Si bond and H 2. The rate of reaction to produce O (water) can be adjusted. As the catalyst, for example, one or more inorganic acids or one or more organic acids selected from hydrochloric acid, nitric acid, sulfuric acid, boric acid, phosphoric acid, hydrofluoric acid, and acetic acid are used. Further, as the catalyst, for example, one or more inorganic bases or one or more organic bases among ammonia, sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide, pyridine, and the like may be used. Further, the catalyst may be, for example, a combination of an inorganic acid and an organic acid, or a combination of an inorganic base and an organic base.
 混合工程で混合する各材料の比率については、例えば、混合した材料の総質量(100質量%)に対して、シロキサン樹脂の前駆体が10質量%から90質量%、水が5質量%から40質量%(または10質量%から20質量%)、触媒が1ppmから1000ppm、有機溶剤が5質量%から50質量%とされる。上記比率が採用されれば、シロキサン樹脂の前駆体を加水分解して縮合重合したシロキサン樹脂を、絶縁性ペーストに適切な質量比で含有させることができる。さらに、ゲル化による絶縁性ペーストの粘度の過度な増加が生じにくい。 About the ratio of each material mixed at a mixing process, the precursor of a siloxane resin is 10 mass% to 90 mass%, and water is 5 mass% to 40 with respect to the total mass (100 mass%) of the mixed material, for example. The mass% (or 10 mass% to 20 mass%), the catalyst is 1 ppm to 1000 ppm, and the organic solvent is 5 mass% to 50 mass%. If the said ratio is employ | adopted, the siloxane resin which hydrolyzed the siloxane resin precursor and condensed and polymerized can be contained in an insulating paste by suitable mass ratio. Furthermore, an excessive increase in the viscosity of the insulating paste due to gelation is unlikely to occur.
 このような混合工程では、シロキサン樹脂の前駆体と水とが反応して、シロキサン樹脂の前駆体の加水分解が始まる。また、加水分解したシロキサン樹脂の前駆体が縮合重合を生じて、シロキサン樹脂が生成され始める。 In such a mixing step, the siloxane resin precursor and water react to start hydrolysis of the siloxane resin precursor. Also, the hydrolyzed siloxane resin precursor undergoes condensation polymerization, and siloxane resin begins to be produced.
 次に、混合工程で作製した混合溶液を、例えば、ミックスローターまたはスターラーなどを用いて攪拌する工程(第1攪拌工程ともいう)を実施する。ここでは、混合溶液を攪拌すると、シロキサン樹脂の前駆体の加水分解がさらに進行する。また、加水分解したシロキサン樹脂の前駆体が縮合重合を生じ、シロキサン樹脂が生成され続ける。例えば、ミックスローターで攪拌を実施する場合には、ミックスローターの回転ローラーの回転数が400rpmから600rpm程度とされ、攪拌時間が30分間から90分間程度とされる。このような設定であれば、シロキサン樹脂の前駆体、水、触媒および有機溶剤を均一に混合することができる。第1攪拌工程では、例えば、混合溶液が加熱されれば、シロキサン樹脂の前駆体の加水分解および縮合重合が進行しやすい。これにより、例えば、第1攪拌工程よりも後の工程において混合溶液の粘度が安定しやすい。また、例えば、シロキサン樹脂の前駆体の加水分解および縮合重合が進行しやすく、攪拌時間の短縮によって生産性が向上し得る。 Next, a step of stirring the mixed solution prepared in the mixing step using, for example, a mix rotor or a stirrer (also referred to as a first stirring step) is performed. Here, when the mixed solution is stirred, hydrolysis of the precursor of the siloxane resin further proceeds. Also, the hydrolyzed siloxane resin precursor undergoes condensation polymerization, and the siloxane resin continues to be produced. For example, when stirring is performed with a mix rotor, the rotation speed of the rotating roller of the mix rotor is set to about 400 rpm to 600 rpm, and the stirring time is set to about 30 minutes to 90 minutes. With such a setting, the siloxane resin precursor, water, catalyst and organic solvent can be mixed uniformly. In the first stirring step, for example, if the mixed solution is heated, hydrolysis and condensation polymerization of the precursor of the siloxane resin easily proceed. Thereby, for example, the viscosity of the mixed solution tends to be stable in a step after the first stirring step. Further, for example, hydrolysis and condensation polymerization of the precursor of the siloxane resin can easily proceed, and productivity can be improved by shortening the stirring time.
 次に、第1攪拌工程で攪拌された混合溶液から副生成物を除去する工程(副生成物除去工程ともいう)を実施する。ここでは、例えば、シロキサン樹脂の前駆体と水との反応によって発生したアルコールなどの有機成分の副生成物、水および触媒を揮発させる。これにより、例えば、絶縁性ペーストを保管する際、または絶縁性ペーストを連続して塗布する際に、副生成物としての有機成分の揮発に起因した絶縁性ペーストの粘度の変動が低減される。また、スクリーン印刷法を用いて絶縁性ペーストを塗布する際には、スクリーン製版の乳剤が副生成物としての有機成分によって溶解されにくくなる。これにより、スクリーン製版のパターンの寸法の変動が低減され得る。また、副生成物除去工程でも、加水分解したシロキサン樹脂の前駆体がさらに縮合重合を生じ、シロキサン樹脂が生成され続ける。また、副生成物除去工程では、水および触媒を揮発させるため、その後は、シロキサン樹脂の前駆体の縮合重合の反応が低減され、混合溶液の粘度の変動が低減され得る。 Next, a step of removing by-products from the mixed solution stirred in the first stirring step (also referred to as a by-product removing step) is performed. Here, for example, by-products of organic components such as alcohol generated by the reaction between the precursor of the siloxane resin and water, water and the catalyst are volatilized. Thereby, for example, when the insulating paste is stored or when the insulating paste is continuously applied, fluctuations in the viscosity of the insulating paste due to the volatilization of the organic component as a by-product are reduced. Further, when the insulating paste is applied using the screen printing method, the emulsion of the screen plate making becomes difficult to be dissolved by the organic component as a by-product. Thereby, the fluctuation | variation of the dimension of the pattern of screen plate-making can be reduced. In the byproduct removal step, the hydrolyzed siloxane resin precursor further undergoes condensation polymerization, and the siloxane resin continues to be generated. In the byproduct removal step, water and the catalyst are volatilized, and thereafter, the condensation polymerization reaction of the precursor of the siloxane resin is reduced, and the fluctuation of the viscosity of the mixed solution can be reduced.
 副生成物除去工程では、例えば、ホットプレートまたは乾燥炉などを用いて、処理温度が室温から90℃程度(または50℃から90℃程度でもよい)であり且つ処理時間が10分間から600分間程度である条件で、攪拌後の混合溶液に処理を施す。処理温度が上記温度範囲内であれば副生成物が揮発によって除去され得る。副生成物除去工程では、例えば、加水分解の反応で生成されたメチルアルコールなどの有機成分だけでなく、添加した触媒なども揮発によって除去され得る。ここで、例えば、減圧下で副生成物除去工程を実施すれば、副生成物である有機成分および触媒が揮発しやすく、処理時間が短縮され得る。また、例えば、副生成物除去工程において、第1攪拌工程で加水分解せずに残存したシロキサン樹脂の前駆体をさらに加水分解させてもよい。 In the by-product removing step, for example, using a hot plate or a drying furnace, the processing temperature is about room temperature to about 90 ° C. (or about 50 ° C. to about 90 ° C.), and the processing time is about 10 minutes to about 600 minutes. The mixed solution after stirring is processed under the conditions as follows. By-products can be removed by volatilization if the processing temperature is within the above temperature range. In the byproduct removal step, for example, not only an organic component such as methyl alcohol produced by the hydrolysis reaction but also an added catalyst can be removed by volatilization. Here, for example, if the by-product removing step is performed under reduced pressure, the organic components and catalysts that are by-products are likely to volatilize, and the processing time can be shortened. Further, for example, in the byproduct removal step, the precursor of the siloxane resin remaining without being hydrolyzed in the first stirring step may be further hydrolyzed.
 次に、上記副生成物除去工程で副生成物が除去された混合溶液に多数の粒状体を添加する工程(粒状体添加工程ともいう)を実施する。ここで、多数の粒状体は、例えば、上述した複数の粒状体5bを含む。この複数の粒状体5bは、上述した複数の第1粒状体5b1と複数の第2粒状体5b2とを含む。さらに、多数の粒状体には、混合溶液の粘度を調整するための複数のフィラー(粘度調整用フィラー)が含まれてもよい。この複数のフィラーの素材には、例えば、酸化シリコンなどの無機材料が適用される。ここで、複数のフィラーには、例えば、有機被膜で覆われた表面を有するフィラーが適用されてもよい。この有機被膜の素材には、例えば、主鎖中における炭素原子の数が6つ以上または主鎖中における炭素原子の数とシリコン原子の数との合計数が6つ以上である構造を有し、シロキサン樹脂とは異なる素材が適用され得る。粒状体添加工程では、多数の粒状体は、例えば、作製後の絶縁性ペーストに3質量%から30質量%(5質量%から25質量%でもよい)含まれるように混合溶液に添加される。 Next, a step of adding a large number of granular materials to the mixed solution from which the by-products have been removed in the by-product removing step (also referred to as a granular material adding step) is performed. Here, the multiple granular materials include, for example, the plurality of granular materials 5b described above. The plurality of granules 5b include the plurality of first granules 5b1 and the plurality of second granules 5b2 described above. Furthermore, a plurality of granular materials may include a plurality of fillers (viscosity adjusting fillers) for adjusting the viscosity of the mixed solution. For example, an inorganic material such as silicon oxide is applied to the plurality of filler materials. Here, for example, a filler having a surface covered with an organic coating may be applied to the plurality of fillers. The organic coating material has, for example, a structure in which the number of carbon atoms in the main chain is 6 or more, or the total number of carbon atoms and silicon atoms in the main chain is 6 or more. A material different from the siloxane resin can be applied. In the granular material addition step, a large number of granular materials are added to the mixed solution so that the insulating paste after the production includes, for example, 3% by mass to 30% by mass (may be 5% by mass to 25% by mass).
 次に、複数の粒状体が添加された混合溶液を、例えば、自転・公転ミキサーなどを用いて攪拌する工程(第2攪拌工程ともいう)を実施する。ここで、例えば、自転・公転ミキサーで混合溶液を攪拌する場合には、自転部および公転部の回転数が800rpmから1000rpmとされ、攪拌時間が1分間から10分間とされる。これにより、混合溶液の中に複数の粒状体を均一に分散させることができる。 Next, a step (also referred to as a second stirring step) of stirring the mixed solution to which the plurality of granular materials are added using, for example, a rotation / revolution mixer or the like is performed. Here, for example, when the mixed solution is agitated by a rotation / revolution mixer, the rotation speed of the rotation part and the revolution part is set to 800 rpm to 1000 rpm, and the stirring time is set to 1 minute to 10 minutes. Thereby, a some granular material can be uniformly disperse | distributed in a mixed solution.
 次に、第2攪拌工程で攪拌された後の混合溶液を、例えば、室温で2時間から24時間程度保管することで、混合溶液の粘度を安定させる工程(粘度安定化工程ともいう)を実施する。第2攪拌工程で混合溶液の粘度が安定する場合は、粘度安定化工程を省略してもよい。 Next, a step of stabilizing the viscosity of the mixed solution (also referred to as a viscosity stabilization step) is performed by storing the mixed solution after stirring in the second stirring step, for example, at room temperature for about 2 to 24 hours. To do. When the viscosity of the mixed solution is stabilized in the second stirring step, the viscosity stabilization step may be omitted.
 以上の一連の工程によって、絶縁性ペーストを作製することができる。 An insulating paste can be produced by the series of steps described above.
 上記の一連の工程では、例えば、混合工程で多数の粒状体も同時に混合してもよい。これにより、粒状体添加工程および第2攪拌工程が不要となり、絶縁性ペーストの生産性が向上する。また、例えば、絶縁性ペーストをスプレー法などで塗布する場合には、副生成物除去工程を省略してもよい。また、例えば、アルキル基を有するシロキサン樹脂を混合工程で生成し、フェニル基を有するシロキサン樹脂を粒状体添加工程で添加してもよい。 In the above series of steps, for example, a large number of granular materials may be mixed at the same time in the mixing step. Thereby, the granule addition step and the second stirring step become unnecessary, and the productivity of the insulating paste is improved. Further, for example, when the insulating paste is applied by a spray method or the like, the byproduct removal step may be omitted. Further, for example, a siloxane resin having an alkyl group may be generated in the mixing step, and the siloxane resin having a phenyl group may be added in the granular material adding step.
  <1-4.太陽電池素子の製造方法>
 太陽電池素子1の製造方法の一例について、図7(a)から図7(d)を参照しつつ説明する。
<1-4. Manufacturing method of solar cell element>
An example of a method for manufacturing the solar cell element 1 will be described with reference to FIGS. 7 (a) to 7 (d).
 まず、図7(a)で示されるように、半導体基板2を準備する。半導体基板2には、例えば、単結晶シリコンまたは多結晶シリコンの基板が適用される。半導体基板2は、例えば、既存のチョクラルスキー法(CZ法)または鋳造法などを用いて形成される。ここで、例えば、半導体基板2が、p型の多結晶シリコンの基板であれば、鋳造法などを用いて多結晶シリコンのインゴットを作製する際に、ドーパント元素として、ボロンなどを添加することで、インゴットの抵抗率を1オームセンチメートル(Ω・cm)から5Ω・cm程度に調整する。次に、そのインゴットを、例えば、1辺が約160mmの正方形状の底面を有する直方体状にカットし、さらに200μm程度の厚さにスライスして半導体基板2を作製する。ここで、半導体基板2の表面に対して、例えば、水酸化ナトリウム、水酸化カリウム、フッ酸またはフッ硝酸などの水溶液でごく微量のエッチングを施して、半導体基板2の切断面の機械的なダメージを受けた層および汚染された層を除去する。また、ここで、半導体基板2の第1面2uに、湿式または乾式のエッチングで、テクスチャを形成してもよい。湿式のエッチングには、例えば、水酸化ナトリウムなどのアルカリ性の水溶液またはフッ硝酸などの酸性の水溶液を用いたエッチングが適用される。乾式エッチングには、例えば、反応性イオンエッチング(Reactive Ion Etching:RIE)法などを用いたエッチングが適用される。 First, as shown in FIG. 7A, a semiconductor substrate 2 is prepared. For example, a substrate made of single crystal silicon or polycrystalline silicon is applied to the semiconductor substrate 2. The semiconductor substrate 2 is formed using, for example, an existing Czochralski method (CZ method) or a casting method. Here, for example, if the semiconductor substrate 2 is a p-type polycrystalline silicon substrate, boron or the like is added as a dopant element when a polycrystalline silicon ingot is produced using a casting method or the like. The resistivity of the ingot is adjusted from 1 ohm centimeter (Ω · cm) to about 5 Ω · cm. Next, the ingot is cut into, for example, a rectangular parallelepiped shape having a square bottom surface with a side of about 160 mm, and further sliced to a thickness of about 200 μm to produce the semiconductor substrate 2. Here, for example, a very small amount of etching is performed on the surface of the semiconductor substrate 2 with an aqueous solution such as sodium hydroxide, potassium hydroxide, hydrofluoric acid, or hydrofluoric acid to mechanically damage the cut surface of the semiconductor substrate 2. The received layer and the contaminated layer are removed. Here, the texture may be formed on the first surface 2u of the semiconductor substrate 2 by wet or dry etching. For wet etching, for example, etching using an alkaline aqueous solution such as sodium hydroxide or an acidic aqueous solution such as hydrofluoric acid is applied. For example, etching using a reactive ion etching (RIE) method or the like is applied to the dry etching.
 次に、図7(b)で示されるように、例えば、テクスチャを有する半導体基板2の第1面2uの表層部に、n型の半導体領域である第2半導体領域22を生成する。第2半導体領域22は、例えば、ペースト状にした五酸化二リン(P)を半導体基板2の第1面2uに塗布してリンを熱拡散させる塗布熱拡散法、ガス状にしたオキシ塩化リン(POCl)を拡散源とした気相熱拡散法などを用いて生成され得る。第2半導体領域22は、例えば、0.1μmから2μm程度の深さと40Ω/□から200Ω/□程度のシート抵抗値とを有する。ここで、例えば、気相熱拡散法では、POClなどの拡散源のガスを含む雰囲気中で600℃から800℃程度の温度において、半導体基板2に5分間から30分間程度の熱処理を施すことでリンシリコンガラス(PSG)を半導体基板2の第1面2u上に形成する。その後、アルゴンまたは窒素などの不活性ガスの雰囲気中で800℃から900℃程度の高い温度において、半導体基板2に10分間から40分間程度の熱処理を施す。これにより、PSGから半導体基板2の第1面2u側の表層部にリンが拡散し、半導体基板2の第1面2u側の表層部に第2半導体領域22が生成される。 Next, as illustrated in FIG. 7B, for example, the second semiconductor region 22 that is an n-type semiconductor region is generated in the surface layer portion of the first surface 2 u of the textured semiconductor substrate 2. The second semiconductor region 22 is formed into a gaseous state, for example, by applying a paste of phosphorous pentoxide (P 2 O 5 ) to the first surface 2u of the semiconductor substrate 2 to thermally diffuse phosphorus. It can be produced using a vapor phase thermal diffusion method using phosphorus oxychloride (POCl 3 ) as a diffusion source. The second semiconductor region 22 has, for example, a depth of about 0.1 μm to 2 μm and a sheet resistance value of about 40Ω / □ to 200Ω / □. Here, for example, in the vapor phase thermal diffusion method, the semiconductor substrate 2 is subjected to heat treatment for about 5 minutes to 30 minutes at a temperature of about 600 ° C. to 800 ° C. in an atmosphere containing a diffusion source gas such as POCl 3. Then, phosphor silicon glass (PSG) is formed on the first surface 2 u of the semiconductor substrate 2. Thereafter, heat treatment is performed on the semiconductor substrate 2 for about 10 minutes to 40 minutes at a high temperature of about 800 ° C. to 900 ° C. in an atmosphere of an inert gas such as argon or nitrogen. Thereby, phosphorus diffuses from the PSG to the surface layer portion on the first surface 2 u side of the semiconductor substrate 2, and the second semiconductor region 22 is generated in the surface layer portion on the first surface 2 u side of the semiconductor substrate 2.
 ここで、例えば、第2面2b側にも第2半導体領域が生成されていれば、フッ硝酸の水溶液に半導体基板2の第2面2b側の部分を浸すことで、第2面2b側に形成された第2半導体領域をエッチングで除去する。これにより、例えば、半導体基板2の第2面2bにp型の導電型を有する第1半導体領域21が露出し得る。その後、例えば、第2半導体領域22の生成時に半導体基板2の第1面2u上に付着したPSGをエッチングで除去する。このとき、例えば、半導体基板2の側面2sに形成された第2半導体領域も併せて除去してもよい。ところで、例えば、半導体基板2の第2面2b側に予め拡散マスクを形成しておき、気相熱拡散法などで第2半導体領域22を生成した後に、拡散マスクを除去してもよい。この場合には、第2面2b側に第2半導体領域は生成されない。 Here, for example, if the second semiconductor region is also generated on the second surface 2b side, the second surface 2b side of the semiconductor substrate 2 is immersed in an aqueous solution of fluoric nitric acid so that the second surface 2b side is immersed. The formed second semiconductor region is removed by etching. Thereby, for example, the first semiconductor region 21 having p-type conductivity may be exposed on the second surface 2 b of the semiconductor substrate 2. Thereafter, for example, PSG attached on the first surface 2u of the semiconductor substrate 2 during the generation of the second semiconductor region 22 is removed by etching. At this time, for example, the second semiconductor region formed on the side surface 2s of the semiconductor substrate 2 may also be removed. By the way, for example, a diffusion mask may be formed in advance on the second surface 2b side of the semiconductor substrate 2, and the diffusion mask may be removed after the second semiconductor region 22 is generated by a vapor phase thermal diffusion method or the like. In this case, the second semiconductor region is not generated on the second surface 2b side.
 次に、図7(c)で示されるように、少なくとも半導体基板2の第2面2b上に、例えば、酸化アルミニウムなどを主として含有するパッシベーション膜4を形成する。パッシベーション膜4は、例えば、ALD法またはPECVD法などで形成され得る。ここで、例えば、ALD法が用いられれば、半導体基板2の表面がパッシベーション膜4によって、より隙間なく緻密に覆われ得る。ALD法を用いたパッシベーション膜4の形成工程では、まず、成膜装置のチャンバー内に第2半導体領域22が形成された半導体基板2が載置される。そして、半導体基板2が100℃から250℃の温度域で加熱された状態で、アルミニウム原料の供給、アルミニウム原料の排気による除去、酸化剤の供給および酸化剤の排気による除去、の4工程を複数回繰り返す。これにより、半導体基板2の上に、酸化アルミニウムを主に含有するパッシベーション膜4が形成される。ここで、アルミニウム原料には、例えば、トリメチルアルミニウム(TMA)またはトリエチルアルミニウム(TEA)などが適用される。酸化剤には、例えば、水またはオゾンガスなどが適用される。ALD法を用いれば、半導体基板2の第2面2bだけでなく、半導体基板2の側面2sを含む半導体基板2の全周囲にパッシベーション膜4が形成され得る。ここで、例えば、半導体基板2の第2面2b上のパッシベーション膜4に耐酸レジストを塗布した後に、フッ酸などを用いたエッチングでパッシベーション膜4の不要な部分を除去してもよい。 Next, as shown in FIG. 7C, a passivation film 4 mainly containing, for example, aluminum oxide is formed on at least the second surface 2 b of the semiconductor substrate 2. The passivation film 4 can be formed by, for example, an ALD method or a PECVD method. Here, for example, if the ALD method is used, the surface of the semiconductor substrate 2 can be more densely covered with the passivation film 4 without a gap. In the step of forming the passivation film 4 using the ALD method, first, the semiconductor substrate 2 on which the second semiconductor region 22 is formed is placed in the chamber of the film forming apparatus. Then, in a state where the semiconductor substrate 2 is heated in a temperature range of 100 ° C. to 250 ° C., a plurality of four steps of supplying the aluminum raw material, removing the aluminum raw material by exhaust, supplying the oxidizing agent, and removing the oxidizing agent by exhausting are performed Repeat once. As a result, a passivation film 4 mainly containing aluminum oxide is formed on the semiconductor substrate 2. Here, for example, trimethylaluminum (TMA) or triethylaluminum (TEA) is applied as the aluminum raw material. For example, water or ozone gas is applied as the oxidizing agent. If the ALD method is used, the passivation film 4 can be formed not only on the second surface 2 b of the semiconductor substrate 2 but also on the entire periphery of the semiconductor substrate 2 including the side surface 2 s of the semiconductor substrate 2. Here, for example, after applying an acid resistant resist to the passivation film 4 on the second surface 2b of the semiconductor substrate 2, an unnecessary portion of the passivation film 4 may be removed by etching using hydrofluoric acid or the like.
 また、図7(c)で示されるように、少なくとも半導体基板2の第1面2u上に、例えば、窒化シリコンなどを含有する反射防止膜3を形成する。反射防止膜3は、例えば、PECVD法またはスパッタリング法を用いて形成される。PECVD法を用いる場合は、事前に半導体基板2を反射防止膜3の成膜中の温度よりも高い温度まで加熱しておく。その後、例えば、シラン(SiH)とアンモニア(NH)との混合ガスを、窒素(N)ガスで希釈し、反応圧力を50Paから200Pa程度にして、グロー放電分解でプラズマ化させたものを、加熱された半導体基板2上に堆積させる。これにより、半導体基板2の第1面2u上に反射防止膜3が形成される。ここでは、成膜温度は、例えば、350℃から650℃程度とされる。グロー放電に必要な高周波電源の周波数は、例えば、10kHzから500kHz程度とされる。混合ガスの流量は、反応室の大きさなどに応じて適宜決定される。混合ガスの流量は、例えば、150ミリリットル/分(sccm)から6000ミリリットル/分(sccm)程度の範囲とされる。アンモニアガスの流量Bをシランガスの流量Aで除した値(B/A)は、例えば、0.5から15の範囲とされる。 Further, as shown in FIG. 7C, an antireflection film 3 containing, for example, silicon nitride is formed on at least the first surface 2u of the semiconductor substrate 2. The antireflection film 3 is formed using, for example, a PECVD method or a sputtering method. When the PECVD method is used, the semiconductor substrate 2 is heated in advance to a temperature higher than the temperature during the formation of the antireflection film 3. Thereafter, for example, a mixed gas of silane (SiH 4 ) and ammonia (NH 3 ) is diluted with nitrogen (N 2 ) gas, the reaction pressure is changed from 50 Pa to 200 Pa, and plasma is generated by glow discharge decomposition. Is deposited on the heated semiconductor substrate 2. Thereby, the antireflection film 3 is formed on the first surface 2 u of the semiconductor substrate 2. Here, the film formation temperature is, for example, about 350 ° C. to 650 ° C. The frequency of the high-frequency power source necessary for glow discharge is, for example, about 10 kHz to 500 kHz. The flow rate of the mixed gas is appropriately determined according to the size of the reaction chamber. The flow rate of the mixed gas is, for example, in the range of about 150 ml / min (sccm) to about 6000 ml / min (sccm). A value (B / A) obtained by dividing the flow rate B of ammonia gas by the flow rate A of silane gas is, for example, in the range of 0.5 to 15.
 次に、図7(c)で示されるように、半導体基板2の第2面2b上に形成されたパッシベーション膜4の上に、酸化シリコンなどを含有する保護層5を形成する。保護層5は、例えば、半導体基板2の第2面2b上に形成されたパッシベーション膜4上に、絶縁性ペーストがスクリーン印刷法などの塗布法によって所望のパターンを有するように塗布された上で、この絶縁性ペーストが乾燥されることで形成され得る。ここでは、上述した複数の粒状体5bを含有している絶縁性ペーストが採用される。保護層5は、例えば、半導体基板2の側面2s上において、直接、パッシベーション膜4上またはパッシベーション膜4上に形成された反射防止膜3上にも形成されてもよい。この場合には、保護層5の存在によって、例えば、太陽電池素子1におけるリーク電流が低減され得る。 Next, as shown in FIG. 7C, a protective layer 5 containing silicon oxide or the like is formed on the passivation film 4 formed on the second surface 2 b of the semiconductor substrate 2. The protective layer 5 is, for example, applied on the passivation film 4 formed on the second surface 2b of the semiconductor substrate 2 so that an insulating paste has a desired pattern by a coating method such as a screen printing method. The insulating paste can be formed by drying. Here, the insulating paste containing the plurality of granular materials 5b described above is employed. For example, the protective layer 5 may be formed directly on the passivation film 4 or on the antireflection film 3 formed on the passivation film 4 on the side surface 2 s of the semiconductor substrate 2. In this case, the presence of the protective layer 5 can reduce, for example, a leakage current in the solar cell element 1.
 次に、図7(d)で示されるように、スクリーン印刷などを用いて、上述した第1金属ペーストPa1、第2金属ペーストPa2および第3金属ペーストPa3を塗布して焼成することで、図3(a)から図4(c)で示されるように、前面電極6と裏面電極7とを形成する。 Next, as shown in FIG. 7D, the above-described first metal paste Pa1, second metal paste Pa2, and third metal paste Pa3 are applied and baked using screen printing or the like. As shown in FIG. 3 (a) to FIG. 4 (c), the front electrode 6 and the back electrode 7 are formed.
 具体的には、例えば、反射防止膜3上に第1金属ペーストPa1を塗布して、焼成することで、第1出力取出電極6aおよび第1集電電極6bを含む前面電極6を形成する。例えば、スクリーン印刷によって第1金属ペーストを塗布するのであれば、前面電極6に含まれる第1出力取出電極6a、第1集電電極6bおよび補助電極6cを1つの工程で形成することができる。ここでは、例えば、第1金属ペーストPa1の塗布後、所定の温度でこの第1金属ペーストPa1中の溶剤を蒸散させることで第1金属ペーストPa1を乾燥させてもよい。第1金属ペーストPa1の焼成は、例えば、焼成炉内の最高温度が600℃から850℃とされ、加熱時間が数十秒間から数十分間程度とされる条件で行われる。これにより、第1金属ペーストPa1は、反射防止膜3の焼成貫通を生じて、半導体基板2の第1面2u側に前面電極6が形成される。 Specifically, for example, the front electrode 6 including the first output extraction electrode 6a and the first collector electrode 6b is formed by applying the first metal paste Pa1 on the antireflection film 3 and baking it. For example, if the first metal paste is applied by screen printing, the first output extraction electrode 6a, the first current collecting electrode 6b, and the auxiliary electrode 6c included in the front electrode 6 can be formed in one step. Here, for example, after the application of the first metal paste Pa1, the first metal paste Pa1 may be dried by evaporating the solvent in the first metal paste Pa1 at a predetermined temperature. Firing of the first metal paste Pa1 is performed, for example, under the condition that the maximum temperature in the firing furnace is 600 ° C. to 850 ° C. and the heating time is about several tens of seconds to several tens of minutes. As a result, the first metal paste Pa <b> 1 causes firing through the antireflection film 3, and the front electrode 6 is formed on the first surface 2 u side of the semiconductor substrate 2.
 また、例えば、保護層5上に第2金属ペーストPa2を塗布して、焼成することで、裏面電極7のうちの第2出力取出電極7aを形成する。第2金属ペーストPa2の塗布は、例えば、スクリーン印刷などを用いて実行される。ここでは、例えば、第2金属ペーストPa2の塗布後、所定の温度でこの第2金属ペーストPa2中の溶剤を蒸散させることで第2金属ペーストPa2を乾燥させてもよい。第2金属ペーストの焼成は、例えば、焼成炉内の最高温度が600℃から850℃とされ、加熱時間が数十秒間から数十分間程度とされる条件で行われる。これにより、半導体基板2の第2面2b側に第2出力取出電極7aが形成される。 Also, for example, the second output extraction electrode 7a of the back electrode 7 is formed by applying the second metal paste Pa2 on the protective layer 5 and baking it. Application | coating of 2nd metal paste Pa2 is performed using screen printing etc., for example. Here, for example, after the application of the second metal paste Pa2, the second metal paste Pa2 may be dried by evaporating the solvent in the second metal paste Pa2 at a predetermined temperature. Firing of the second metal paste is performed, for example, under the condition that the maximum temperature in the firing furnace is 600 ° C. to 850 ° C. and the heating time is about several tens of seconds to several tens of minutes. Thereby, the second output extraction electrode 7 a is formed on the second surface 2 b side of the semiconductor substrate 2.
 また、例えば、保護層5上に第3金属ペーストPa3を塗布して、焼成することで、裏面電極7のうちの第2集電電極7bを形成する。第3金属ペーストPa3の塗布は、例えば、スクリーン印刷などを用いて実行される。ここでは、第3金属ペーストPa3を、予め塗布された第2金属ペーストPa2の一部と接触するように、半導体基板2の第2面2b側に塗布する。このとき、第2面2b上のパッシベーション膜4上に形成された保護層5上の一部分およびこの保護層5の複数の孔部内に、第3金属ペーストPa3を塗布する。ここで、例えば、第3金属ペーストPa3の塗布後、所定の温度でこの第3金属ペーストPa3中の溶剤を蒸散させることで第3金属ペーストPa3を乾燥させてもよい。第3金属ペーストPa3の焼成は、例えば、焼成炉内の最高温度が600℃から850℃とされ、加熱時間が数十秒間から数十分間程度とされる条件で行われる。第3金属ペーストPa3の焼成は、例えば、焼成炉内の最高温度が600℃から850℃とされ、加熱時間が数十秒間から数十分間程度とされる条件で行われる。これにより、保護層5上の第3金属ペーストPa3の焼成によって第2集電電極7bの第1部分7b1が形成される。このとき、保護層5上にある第3金属ペーストPa3は、保護層5でブロックされる。また、保護層5の複数の孔部内の第3金属ペーストPa3の焼成によって、第3金属ペーストPa3は、パッシベーション膜4の焼成貫通を生じて、第1半導体領域21と電気的に接続する。これにより、半導体基板2の第2面2b側に第2集電電極7bの第2部分7b2が形成される。このとき、第2部分7b2の形成に伴い、第3半導体領域23も生成される。 Also, for example, the second current collecting electrode 7b of the back electrode 7 is formed by applying the third metal paste Pa3 on the protective layer 5 and baking it. Application | coating of 3rd metal paste Pa3 is performed using screen printing etc., for example. Here, the third metal paste Pa3 is applied to the second surface 2b side of the semiconductor substrate 2 so as to be in contact with a part of the second metal paste Pa2 previously applied. At this time, the third metal paste Pa3 is applied to a part on the protective layer 5 formed on the passivation film 4 on the second surface 2b and a plurality of holes of the protective layer 5. Here, for example, after applying the third metal paste Pa3, the third metal paste Pa3 may be dried by evaporating the solvent in the third metal paste Pa3 at a predetermined temperature. For example, the third metal paste Pa3 is fired under the condition that the maximum temperature in the firing furnace is 600 ° C. to 850 ° C. and the heating time is several tens of seconds to several tens of minutes. For example, the third metal paste Pa3 is fired under the condition that the maximum temperature in the firing furnace is 600 ° C. to 850 ° C. and the heating time is several tens of seconds to several tens of minutes. Thereby, the 1st part 7b1 of the 2nd current collection electrode 7b is formed by baking of 3rd metal paste Pa3 on the protective layer 5. FIG. At this time, the third metal paste Pa3 on the protective layer 5 is blocked by the protective layer 5. In addition, by firing the third metal paste Pa3 in the plurality of holes of the protective layer 5, the third metal paste Pa3 causes firing of the passivation film 4 and is electrically connected to the first semiconductor region 21. Thereby, the second portion 7b2 of the second collector electrode 7b is formed on the second surface 2b side of the semiconductor substrate 2. At this time, the third semiconductor region 23 is also generated with the formation of the second portion 7b2.
 このようにして、第2出力取出電極7aと第2集電電極7bとを含む裏面電極7が形成され得る。 In this way, the back electrode 7 including the second output extraction electrode 7a and the second collector electrode 7b can be formed.
  <1-5.第1実施形態のまとめ>
 第1実施形態に係る太陽電池素子1では、例えば、保護層5が、反射防止膜3よりも大きな厚さを有する。このため、例えば、太陽電池素子1の第2素子面Sf2側において、可視光線および近赤外線の多重反射を生じにくくすることができる。これにより、例えば、第3光路Rt3に係る第3光利用率が高まり得る。また、例えば、保護層5の厚さの増大によって、保護層5によるパッシベーション膜4を保護する性能が向上し得る。また、例えば、保護層5が、母材部5aと、この母材部5aよりも半導体基板2に近い屈折率を有する複数の第1粒状体5b1と、を有することで、保護層5が母材部5a単体で構成される場合よりも、保護層5の屈折率が半導体基板2の屈折率に近づき得る。これにより、例えば、裏面1bs側から第2素子面Sf2に照射される光が、保護層5と半導体基板2との間の領域で反射しにくく、半導体基板2に入射しやすくなる。換言すれば、例えば、第3光路Rt3に係る第3光利用率が高まり得る。その結果、例えば、太陽電池素子1における光電変換効率が向上し得る。
<1-5. Summary of First Embodiment>
In the solar cell element 1 according to the first embodiment, for example, the protective layer 5 has a larger thickness than the antireflection film 3. For this reason, for example, on the second element surface Sf2 side of the solar cell element 1, multiple reflections of visible light and near infrared light can be made difficult to occur. Thereby, for example, the third light utilization rate related to the third optical path Rt3 can be increased. Further, for example, by increasing the thickness of the protective layer 5, the performance of protecting the passivation film 4 by the protective layer 5 can be improved. Further, for example, the protective layer 5 includes the base material portion 5a and the plurality of first granular bodies 5b1 having a refractive index closer to the semiconductor substrate 2 than the base material portion 5a, so that the protective layer 5 is the base material. The refractive index of the protective layer 5 can approach the refractive index of the semiconductor substrate 2 as compared with the case where the material portion 5a is constituted alone. Thereby, for example, the light emitted from the back surface 1bs side to the second element surface Sf2 is not easily reflected in the region between the protective layer 5 and the semiconductor substrate 2, and is likely to enter the semiconductor substrate 2. In other words, for example, the third light utilization rate related to the third optical path Rt3 can be increased. As a result, for example, the photoelectric conversion efficiency in the solar cell element 1 can be improved.
 また、第1実施形態に係る太陽電池モジュール100では、例えば、母材部5aの屈折率と充填材104の屈折率とが略同一であれば、充填材104と半導体基板2との間に位置している保護層5の屈折率が、充填材104の屈折率と半導体基板2の屈折率との間となる。これにより、例えば、裏面1bsに照射される光が、充填材104と保護層5との間の領域および保護層5と半導体基板2との間の領域で反射しにくく、半導体基板2に入射しやすくなる。その結果、例えば、太陽電池モジュール100における光電変換効率が向上し得る。 In the solar cell module 100 according to the first embodiment, for example, if the refractive index of the base material portion 5a and the refractive index of the filler 104 are substantially the same, the position between the filler 104 and the semiconductor substrate 2 is set. The refractive index of the protective layer 5 is between the refractive index of the filler 104 and the refractive index of the semiconductor substrate 2. Thereby, for example, the light irradiated to the back surface 1bs is not easily reflected in the region between the filler 104 and the protective layer 5 and the region between the protective layer 5 and the semiconductor substrate 2, and enters the semiconductor substrate 2. It becomes easy. As a result, for example, the photoelectric conversion efficiency in the solar cell module 100 can be improved.
 <2.他の実施形態>
 本開示は上述の第1実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更および改良などが可能である。
<2. Other embodiments>
The present disclosure is not limited to the first embodiment described above, and various modifications and improvements can be made without departing from the scope of the present disclosure.
  <2-1.第2実施形態>
 上記第1実施形態において、複数の第2粒状体5b2の形状として、例えば、粒子状、層形状、扁平状、中空状および繊維状などの何れの形状が採用されてもよい。例えば、図8で示されるように、複数の第2粒状体5b2が、断面が細長い形状を有する場合が考えられる。この場合には、例えば、第2粒状体5b2が、長手方向に垂直な方向の仮想的な切断面が約数十nmの径と、1μmから数μm以下程度の長手方向の長さと、を有する形態が考えられる。ここでは、例えば、母材部5a内に細長い形状を有する第2粒状体5b2が存在していれば、保護層5内では、第2粒状体5b2の長手方向における長さに応じた波長域の光の散乱が生じ得る。このため、例えば、保護層5の厚さの過剰な増大を招くことなく、半導体基板2を透過する光を散乱させることが可能な複数の第2粒状体5b2を保護層5内に存在させることが可能となる。これにより、例えば、保護層5の厚さの過剰な増大による、材料使用量の増加および保護層5の割れの発生が低減され得る。その結果、例えば、太陽電池素子1における光電変換効率が容易に向上し得る。
<2-1. Second Embodiment>
In the first embodiment, as the shape of the plurality of second granular bodies 5b2, for example, any shape such as a particle shape, a layer shape, a flat shape, a hollow shape, and a fiber shape may be adopted. For example, as shown in FIG. 8, a case where the plurality of second granular bodies 5b2 have an elongated cross section is conceivable. In this case, for example, the second granular body 5b2 has a virtual cut surface in a direction perpendicular to the longitudinal direction having a diameter of about several tens of nanometers and a length in the longitudinal direction of about 1 μm to several μm or less. Possible forms. Here, for example, if the second granular material 5b2 having an elongated shape is present in the base material portion 5a, the wavelength region corresponding to the length in the longitudinal direction of the second granular material 5b2 is present in the protective layer 5. Light scattering can occur. Therefore, for example, a plurality of second granular bodies 5b2 that can scatter light transmitted through the semiconductor substrate 2 without causing an excessive increase in the thickness of the protective layer 5 are present in the protective layer 5. Is possible. Thereby, for example, an increase in the amount of material used and an occurrence of cracks in the protective layer 5 due to an excessive increase in the thickness of the protective layer 5 can be reduced. As a result, for example, the photoelectric conversion efficiency in the solar cell element 1 can be easily improved.
  <2-2.第3実施形態>
 上記第1実施形態および上記第2実施形態のそれぞれにおいて、保護層5の第1領域Ar1は、例えば、図9(a)で示されるように、複数の第2粒状体5b2を有し、保護層5の第1領域Ar1とは異なる第2領域Ar2は、図9(b)で示されるように、複数の第1粒状体5b1を有していてもよい。この場合には、例えば、保護層5のうち、第2集電電極7bの存在によって太陽電池素子1の裏面1bs側からの光が入射しにくい第1領域Ar1では、前面1fs側から半導体基板2を透過する光が、複数の第2粒状体5b2の存在によって散乱して半導体基板2に再入射しすい。また、例えば、保護層5のうち、太陽電池素子1の裏面1bs側から光が入射しやすい第2領域Ar2では、裏面1bs側から入射した光が複数の第1粒状体5b1の存在によって半導体基板2に入射されやすい。その結果、例えば、太陽電池素子1における光電変換効率が向上し得る。また、半導体基板2は吸収しないが、太陽電池モジュール100を支持する架台または屋根材もしくはアスファルトなどの架台を設置した土台が吸収することによって、太陽電池素子1の温度が上昇するような光(例えば、波長が2μmを超えるような遠赤外線など)を保護層5によって反射して、発電環境の温度上昇を低減することもできる。このようにすることで、太陽電池モジュール100の温度上昇が抑えられ、実発電量が増加し得る。
<2-2. Third Embodiment>
In each of the first embodiment and the second embodiment, the first region Ar1 of the protective layer 5 includes, for example, a plurality of second granular bodies 5b2 as shown in FIG. The second region Ar2 different from the first region Ar1 of the layer 5 may have a plurality of first granular bodies 5b1 as shown in FIG. 9B. In this case, for example, in the first region Ar1 in the protective layer 5 where light from the back surface 1bs side of the solar cell element 1 is difficult to enter due to the presence of the second current collecting electrode 7b, the semiconductor substrate 2 from the front surface 1fs side. Is scattered by the presence of the plurality of second granular bodies 5b2 and re-enters the semiconductor substrate 2. Further, for example, in the second region Ar2 in which light is likely to enter from the back surface 1bs side of the solar cell element 1 in the protective layer 5, the light incident from the back surface 1bs side is caused by the presence of the plurality of first granular bodies 5b1. 2 is easy to enter. As a result, for example, the photoelectric conversion efficiency in the solar cell element 1 can be improved. In addition, although the semiconductor substrate 2 does not absorb, light that increases the temperature of the solar cell element 1 (for example, the temperature of the solar cell element 1 increases due to absorption by a base that supports the solar cell module 100 or a base on which a base such as roofing material or asphalt is installed) Further, far infrared rays having a wavelength exceeding 2 μm or the like) can be reflected by the protective layer 5 to reduce the temperature rise of the power generation environment. By doing in this way, the temperature rise of the solar cell module 100 can be suppressed and the actual power generation amount can be increased.
 ここでは、例えば、保護層5の第1領域Ar1には、複数の第1粒状体5b1が存在していても存在していなくてもよい。保護層5の第2領域Ar2には、複数の第2粒状体5b2が存在していてもよい。この場合には、保護層5の第2領域Ar2における、複数の第1粒状体5b1の密度および複数の第2粒状体5b2の密度は適宜設定され得る。ここで、例えば、第2領域Ar2における複数の第2粒状体5b2の密度を増加させれば、第1素子面Sf1に照射される光は、半導体基板2を透過しても、保護層5における複数の第2粒状体5b2の存在によって散乱されて、半導体基板2に再入射しやすい。換言すれば、例えば、第1光路Rt1に係る第1光利用率が高まり得る。また、例えば、第2領域Ar2における複数の第1粒状体5b1の密度を増加させれば、裏面1bs側から第2素子面Sf2に照射される光が、保護層5と半導体基板2との間の領域で反射しにくく、半導体基板2に入射しやすくなる。換言すれば、例えば、第3光路Rt3に係る第3光利用率が高まり得る。その結果、例えば、太陽電池素子1における光電変換効率が向上し得る。 Here, for example, in the first region Ar1 of the protective layer 5, the plurality of first granular bodies 5b1 may or may not exist. In the second region Ar2 of the protective layer 5, a plurality of second granular bodies 5b2 may exist. In this case, the density of the plurality of first granules 5b1 and the density of the plurality of second granules 5b2 in the second region Ar2 of the protective layer 5 can be set as appropriate. Here, for example, if the density of the plurality of second granular bodies 5b2 in the second region Ar2 is increased, even if the light irradiated to the first element surface Sf1 is transmitted through the semiconductor substrate 2, It is scattered by the presence of the plurality of second granular bodies 5 b 2 and easily reenters the semiconductor substrate 2. In other words, for example, the first light utilization rate related to the first optical path Rt1 can be increased. Further, for example, if the density of the plurality of first granular bodies 5b1 in the second region Ar2 is increased, the light radiated from the back surface 1bs side to the second element surface Sf2 is between the protective layer 5 and the semiconductor substrate 2. It is difficult to reflect in this area, and it is easy to enter the semiconductor substrate 2. In other words, for example, the third light utilization rate related to the third optical path Rt3 can be increased. As a result, for example, the photoelectric conversion efficiency in the solar cell element 1 can be improved.
 <3.その他>
 上記第1実施形態から上記第3実施形態のそれぞれにおいて、複数の第2粒状体5b2は、例えば、粘度調整用フィラーとしての機能を有していてもよい。また、複数の第1粒状体5b1は、例えば、粘度調整用フィラーとしての機能を有していてもよい。また、例えば、保護層5に、複数の第1粒状体5b1および複数の第2粒状体5b2とは別の粘度調整用フィラーが、含まれていても含まれていなくてもよい。
<3. Other>
In each of the first to third embodiments, the plurality of second granular bodies 5b2 may have a function as a viscosity adjusting filler, for example. Moreover, the some 1st granule 5b1 may have a function as a filler for viscosity adjustment, for example. For example, the protective layer 5 may or may not contain a viscosity adjusting filler different from the plurality of first granular bodies 5b1 and the plurality of second granular bodies 5b2.
 上記第1実施形態から上記第3実施形態のそれぞれにおいて、複数本の第2集電電極7bは、いわゆるフィンガー状の形態の代わりに、例えば、いわゆるハニカム状の形態など、その他の形態を有していてもよい。 In each of the first embodiment to the third embodiment, the plurality of second current collecting electrodes 7b have other forms such as a so-called honeycomb form instead of the so-called finger form. It may be.
 上記第1実施形態から上記第3実施形態のそれぞれにおいて、例えば、パッキング部105が存在していなくてもよい。パッキング部105は、太陽電池モジュール100の仕様によっては、第1保護部材101と第2保護部材102とで挟まれている部材として必ずしも必要なものではない。例えば、太陽電池モジュール100の強度を補強する部材であるアルミフレームまたは太陽電池モジュール100の側面をシールする樹脂などが、パッキング部105の機能を兼ねるような構成となっていてもよい。 In each of the first to third embodiments, for example, the packing unit 105 may not be present. Depending on the specifications of the solar cell module 100, the packing unit 105 is not necessarily required as a member sandwiched between the first protective member 101 and the second protective member 102. For example, an aluminum frame that is a member that reinforces the strength of the solar cell module 100 or a resin that seals the side surface of the solar cell module 100 may serve as the function of the packing unit 105.
 上記第1実施形態から上記第3実施形態のそれぞれにおいて、半導体基板2は、例えば、単結晶または多結晶のシリコンではなく、非晶質のシリコンを用いたシリコン基板であってもよい。 In each of the first to third embodiments, the semiconductor substrate 2 may be, for example, a silicon substrate using amorphous silicon instead of single crystal or polycrystalline silicon.
 上記第1実施形態から上記第3実施形態のそれぞれにおいて、半導体基板2は、例えば、シリコン基板ではなく、銅とインジウムとガリウムとセレンとの4種類の元素(いわゆるCIGS)、またはカドミウムとテルルとの2種類の元素(いわゆるCdTe)などを用いた化合物半導体を有する基板であってもよい。 In each of the first embodiment to the third embodiment, the semiconductor substrate 2 is not a silicon substrate, for example, four kinds of elements (so-called CIGS) of copper, indium, gallium, and selenium, or cadmium and tellurium. A substrate having a compound semiconductor using the two types of elements (so-called CdTe) may be used.
 上記第1実施形態から上記第3実施形態のそれぞれにおいて、複数の粒状体5bの素材として、例えば、酸化チタンよりも柔らかい酸化ジルコニウムを用いれば、絶縁性ペーストの塗布によってパッシベーション膜4に損傷が生じにくい。 In each of the first to third embodiments, if, for example, zirconium oxide softer than titanium oxide is used as the material of the plurality of granular bodies 5b, the passivation film 4 is damaged by the application of the insulating paste. Hateful.
 上記第1実施形態から上記第3実施形態および各種変形例をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせることが可能であることは、言うまでもない。 Needless to say, it is possible to combine all or part of the first to third embodiments and various modifications, as appropriate, within a consistent range.
 1 太陽電池素子
 1bs 裏面
 1fs 前面
 2 半導体基板
 2b 第2面
 2s 側面
 2u 第1面
 3 反射防止膜
 4 パッシベーション膜
 5 保護層
 5a 母材部
 5b 粒状体
 5b1 第1粒状体
 5b2 第2粒状体
 6 前面電極
 6a 第1出力取出電極
 6b 第1集電電極
 6c 補助電極
 7 裏面電極
 7a 第2出力取出電極
 7b 第2集電電極
 7b1 第1部分
 7b2 第2部分
 45h 貫通孔
 100 太陽電池モジュール
 101 第1保護部材
 102 第2保護部材
 103 太陽電池部
 104 充填材
 A0 板間領域
 Ar1 第1領域
 Ar2 第2領域
DESCRIPTION OF SYMBOLS 1 Solar cell element 1bs Back surface 1fs Front surface 2 Semiconductor substrate 2b 2nd surface 2s Side surface 2u 1st surface 3 Antireflection film 4 Passivation film 5 Protective layer 5a Base material part 5b Granule 5b1 1st granule 5b2 2nd granule 6 Front Electrode 6a 1st output extraction electrode 6b 1st current collection electrode 6c Auxiliary electrode 7 Back electrode 7a 2nd output extraction electrode 7b 2nd current collection electrode 7b1 1st part 7b2 2nd part 45h Through-hole 100 Solar cell module 101 1st protection Member 102 Second protective member 103 Solar cell portion 104 Filler A0 Inter-plate region Ar1 First region Ar2 Second region

Claims (9)

  1.  第1面、該第1面の逆側に位置している第2面および前記第1面と前記第2面とを接続している状態で位置している側面を有する半導体基板と、
     該半導体基板の前記第1面の側に位置している反射防止膜と、
     前記第2面の上に位置しているパッシベーション膜と、
     該パッシベーション膜の上に位置し、前記反射防止膜よりも大きな厚さを有する保護層と、
     該保護層の第1領域の上に位置している第1部分と、前記パッシベーション膜および前記保護層を連続して貫通している状態の貫通孔内において前記半導体基板に電気的に接続している状態で位置している第2部分と、を有する電極と、を備え、
     前記保護層は、母材部と複数の粒状体とを有し、
     該複数の粒状体は、第1粒径範囲で該第1粒径範囲外よりも高い頻度で存在している複数の第1粒状体と、前記第1粒径範囲とは異なる第2粒径範囲で該第2粒径範囲外よりも高い頻度で存在している複数の第2粒状体と、を含み、
     各前記第1粒状体の屈折率は、前記母材部の屈折率よりも前記半導体基板の屈折率に近い、太陽電池素子。
    A semiconductor substrate having a first surface, a second surface positioned on the opposite side of the first surface, and a side surface positioned in a state where the first surface and the second surface are connected;
    An antireflection film located on the first surface side of the semiconductor substrate;
    A passivation film located on the second surface;
    A protective layer located on the passivation film and having a thickness larger than that of the antireflection film;
    Electrically connected to the semiconductor substrate in a first hole located above the first region of the protective layer, and in a through hole in a state of continuously passing through the passivation film and the protective layer; An electrode having a second portion located in a state of being
    The protective layer has a base material portion and a plurality of granules,
    The plurality of granular materials are a plurality of first granular materials present in a first particle size range at a frequency higher than outside the first particle size range, and a second particle size different from the first particle size range. A plurality of second granular bodies present in a range at a frequency higher than outside the second particle size range,
    The refractive index of each said 1st granule is a solar cell element closer to the refractive index of the said semiconductor substrate than the refractive index of the said base material part.
  2.  請求項1に記載の太陽電池素子であって、
     前記複数の第2粒状体は、前記第1面から前記第2面に向けた前記半導体基板の第1厚さ方向に該半導体基板を透過する光を散乱させる状態にある、太陽電池素子。
    The solar cell element according to claim 1,
    The plurality of second granular materials are solar cell elements in a state in which light transmitted through the semiconductor substrate is scattered in a first thickness direction of the semiconductor substrate from the first surface toward the second surface.
  3.  請求項2に記載の太陽電池素子であって、
     前記第1面に照射される光のうちの予め設定された閾値以上の割合の光が前記第1厚さ方向に前記半導体基板を透過する第1波長域と、前記半導体基板が吸収可能な光の第2波長域と、が重なる波長域において、前記複数の第2粒状体が生じさせる光の散乱の度合いがピークを示す状態にある、太陽電池素子。
    The solar cell element according to claim 2,
    A first wavelength region in which a proportion of light that is greater than or equal to a preset threshold value of light irradiated on the first surface is transmitted through the semiconductor substrate in the first thickness direction, and light that can be absorbed by the semiconductor substrate The solar cell element in a state where the degree of light scattering generated by the plurality of second granular materials exhibits a peak in a wavelength range overlapping with the second wavelength range.
  4.  請求項3に記載の太陽電池素子であって、
     前記第2粒径範囲の下限値は、220nm以上である、太陽電池素子。
    The solar cell element according to claim 3, wherein
    The lower limit of the second particle size range is a solar cell element that is 220 nm or more.
  5.  請求項2から請求項4の何れか1つの請求項に記載の太陽電池素子であって、
     前記複数の第2粒状体は、前記保護層の第2厚さ方向において並んでいる2つ以上の粒状体を含む、太陽電池素子。
    The solar cell element according to any one of claims 2 to 4, wherein
    The plurality of second granular bodies are solar cell elements including two or more granular bodies arranged in a second thickness direction of the protective layer.
  6.  請求項2から請求項5の何れか1つの請求項に記載の太陽電池素子であって、
     前記複数の第2粒状体は、細長い形状を有する、太陽電池素子。
    A solar cell element according to any one of claims 2 to 5,
    The plurality of second granular bodies are solar cell elements having an elongated shape.
  7.  請求項1から請求項6の何れか1つの請求項に記載の太陽電池素子であって、
     前記第1粒径範囲の上限値は、30nm以下である、太陽電池素子。
    The solar cell element according to any one of claims 1 to 6,
    The upper limit of the first particle size range is a solar cell element that is 30 nm or less.
  8.  請求項1から請求項7の何れか1つの請求項に記載の太陽電池素子であって、
     前記保護層の前記第1領域は、前記複数の第2粒状体を有し、
     前記保護層のうちの前記第1領域とは異なる第2領域は、前記複数の第1粒状体を有する、太陽電池素子。
    The solar cell element according to any one of claims 1 to 7,
    The first region of the protective layer has the plurality of second granular bodies,
    The 2nd area | region different from the said 1st area | region of the said protective layer is a solar cell element which has the said some 1st granule.
  9.  透光性を有する第1保護部材と、
     透光性を有する第2保護部材と、
     前記第1保護部材と前記第2保護部材との間に位置している太陽電池部と、
     前記第1保護部材と前記第2保護部材との間において、前記太陽電池部を前記第1保護部材側および前記第2保護部材側から覆うように位置している、透光性を有する充填材と、を備え、
     前記太陽電池部は、請求項1から請求項8の何れか1つの請求項に記載の複数の太陽電池素子を有する、太陽電池モジュール。
    A first protective member having translucency;
    A second protective member having translucency;
    A solar cell portion located between the first protective member and the second protective member;
    A translucent filler located between the first protective member and the second protective member so as to cover the solar cell portion from the first protective member side and the second protective member side. And comprising
    The said solar cell part is a solar cell module which has a some solar cell element as described in any one of Claims 1-8.
PCT/JP2019/021007 2018-05-29 2019-05-28 Solar battery element and solar battery module WO2019230686A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020522197A JPWO2019230686A1 (en) 2018-05-29 2019-05-28 Solar cell elements and solar cell modules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-102720 2018-05-29
JP2018102720 2018-05-29

Publications (1)

Publication Number Publication Date
WO2019230686A1 true WO2019230686A1 (en) 2019-12-05

Family

ID=68698115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021007 WO2019230686A1 (en) 2018-05-29 2019-05-28 Solar battery element and solar battery module

Country Status (2)

Country Link
JP (1) JPWO2019230686A1 (en)
WO (1) WO2019230686A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057561A1 (en) * 2012-10-11 2014-04-17 三洋電機株式会社 Solar cell module
JP2017069247A (en) * 2015-09-28 2017-04-06 京セラ株式会社 Insulating paste, manufacturing method of the same, and manufacturing method of solar cell element
US20170334771A1 (en) * 2016-05-18 2017-11-23 Corey S. Thompson Antireflective nanoparticle coatings and methods of fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057561A1 (en) * 2012-10-11 2014-04-17 三洋電機株式会社 Solar cell module
JP2017069247A (en) * 2015-09-28 2017-04-06 京セラ株式会社 Insulating paste, manufacturing method of the same, and manufacturing method of solar cell element
US20170334771A1 (en) * 2016-05-18 2017-11-23 Corey S. Thompson Antireflective nanoparticle coatings and methods of fabrication

Also Published As

Publication number Publication date
JPWO2019230686A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
KR102610317B1 (en) Novel carbosiloxane polymer composition, method of making and use thereof
JP6648986B2 (en) Solar cell element and solar cell module
JP6229099B1 (en) Insulating paste, method for producing insulating paste, method for producing solar cell element, and solar cell element
JP7284862B2 (en) SOLAR CELL AND MANUFACTURING METHOD THEREOF, PHOTOVOLTAIC MODULE
US11195961B2 (en) Solar cell element
JP5539299B2 (en) Manufacturing method of solar cell module
KR20100068833A (en) Manufacturing method of solar cell and etching paste
US10749047B2 (en) Solar cell element and method for manufacturing solar cell element
CN108713255B (en) Solar cell element
JPWO2014196253A1 (en) Method for forming p-type selective emitter
KR101464002B1 (en) Manufacturing method of solar cell
JP2015138959A (en) Photovoltaic device and photovoltaic device manufacturing method
JP5968244B2 (en) Photoelectric conversion module and manufacturing method thereof
JP6863853B2 (en) Solar cell elements and solar cell modules
WO2019230686A1 (en) Solar battery element and solar battery module
JP7073566B1 (en) Solar cells and photovoltaic modules
JP6162076B2 (en) Solar cell module and manufacturing method thereof
WO2019230469A1 (en) Solar battery element
JP6539010B1 (en) Solar cell element
JP5611272B2 (en) Manufacturing method of solar cell module
US20190245107A1 (en) Solar cell element
KR20120052049A (en) Solar cell module
TW201324831A (en) Manufacturing method of solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522197

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812445

Country of ref document: EP

Kind code of ref document: A1