WO2019230657A1 - Converter blowing method - Google Patents

Converter blowing method Download PDF

Info

Publication number
WO2019230657A1
WO2019230657A1 PCT/JP2019/020925 JP2019020925W WO2019230657A1 WO 2019230657 A1 WO2019230657 A1 WO 2019230657A1 JP 2019020925 W JP2019020925 W JP 2019020925W WO 2019230657 A1 WO2019230657 A1 WO 2019230657A1
Authority
WO
WIPO (PCT)
Prior art keywords
lance
dust
converter
blowing
amount
Prior art date
Application number
PCT/JP2019/020925
Other languages
French (fr)
Japanese (ja)
Inventor
峻秀 貞本
福山 博之
洋 仁井谷
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020522184A priority Critical patent/JP6962465B2/en
Priority to CN201980014443.7A priority patent/CN111742066B/en
Priority to KR1020207024271A priority patent/KR102343595B1/en
Publication of WO2019230657A1 publication Critical patent/WO2019230657A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/527Charging of the electric furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/466Charging device for converters

Definitions

  • This disclosure relates to a converter blowing method using an upper blowing lance.
  • blowing is performed using an upper blowing lance (hereinafter referred to as “lance” as appropriate).
  • oxygen gas is jetted from the nozzle hole provided in the lance toward the hot metal surface (molten metal surface), and the hot metal is stirred and Si, Mn, P, and C are removed by an oxidation reaction.
  • dust is generated from the converter due to the rebound and decarburization reaction of the oxygen gas sprayed from the nozzle hole of the lance.
  • the generated dust is discharged together with the exhaust gas.
  • This dust is mainly composed of iron (iron, iron oxide), and if discharged, it will lead to iron loss, so it is desirable to reduce it.
  • the shape of the hot metal surface in the converter changes when oxygen gas collides with the hot metal surface due to the acid feed rate and the lance height (nozzle tip position).
  • the lance gap which is the distance between the hot metal surface and the nozzle tip, the hot metal shape when the oxygen gas collides with the hot metal surface becomes a waterfall (reverse ⁇ -shaped cross section). It is known that the amount of dust generated can be reduced because the generated dust does not scatter and is easily taken into the hot metal. This is called hard blow.
  • the lance gap has an optimum interval for reducing the amount of dust generated while maintaining the life of the lance, and it is desired to perform blowing by the interval.
  • the optimum interval of the lance gap (hereinafter referred to as “optimum lance gap” as appropriate) is set according to the size of the converter and the acid feed rate.
  • optimum lance gap In order to set the lance gap to an optimum interval, it is necessary to grasp the height of the hot metal surface, and for example, there is a technique disclosed in Japanese Patent Application Laid-Open No. 11-52049.
  • a moving microwave transmission / reception antenna installed in the sublance hole of the upper hood of the converter after charging hot metal and scrap or can alloy (alloy iron in a drum can) in the converter
  • microwaves are transmitted toward the furnace, and the height of the hot metal surface (water surface level) is measured from the received signal.
  • the measurement of the height of the hot metal surface is performed after the hot metal is charged into the converter and before the start of blowing (before the start of blowing).
  • Japanese Patent Laid-Open No. 11-52049 there is no clear description of the time required for the measurement of the hot metal surface height. Therefore, it is difficult to measure the hot metal surface height every time the molten iron or the like is charged into the converter.
  • the estimated value of the hot metal surface height (estimated hot metal surface height) for each blowing operation when not actually measured is expressed by the following formula ( 1).
  • (Estimated hot metal surface height) ⁇ (WTn ⁇ WT 0 ) / ( ⁇ r 0 2 ) ⁇ + l 0 (1)
  • is the iron specific gravity
  • r 0 is the cross-sectional radius (inner diameter) of the converter near the hot metal surface
  • 10 is the measured value of the hot metal surface height with a microwave hot metal surface meter
  • WT 0 is with the microwave hot metal surface meter.
  • WTn is the amount of iron charged to the converter at the time of calculating the estimated hot metal surface height.
  • the cross-sectional radius of the converter changes with each blowing. For this reason, every time when blowing is repeated from the measurement of the hot metal surface height by the microwave hot metal surface meter, a difference occurs between the estimated hot metal surface height and the actual hot metal surface height. For this reason, the lance gap cannot be set to an optimum interval.
  • This disclosure has been made in view of such circumstances, and an object thereof is to provide a converter blowing method capable of performing blowing with an appropriate lance gap even when the hot metal surface height is not actually measured.
  • the lance gap can be estimated from the dust generation speed by utilizing the fact that the dust generation speed changes due to the fluctuation of the lance gap.
  • the flow of oxygen gas oxygen jet
  • the dust generation speed changes even if the lance gap is constant. . That is, it is difficult to estimate the lance gap only with the dust generation rate. Therefore, the lance gap is adjusted based on the dust generation speed that also takes into account the influence of the number of times the lance is used. This indication was made based on the above knowledge, and the summary is as follows.
  • a converter blowing method is a converter blowing method in which oxygen gas is blown from a nozzle of an upper blowing lance to a hot metal surface in a converter, and the amount of dust in exhaust gas generated during blowing And calculating the dust generation speed in the converter, and the upper limit when the lance gap, which is the distance between the hot metal surface and the tip of the upper blowing lance, is determined in advance, is an optimal interval.
  • FIG. 2B is a cross-sectional view of the tip side of the top blowing lance showing a state in which the nozzle is worn by use in the top blowing lance shown in FIG. 2A. It is a graph which shows the relationship between the variation
  • the converter blowing method according to an embodiment of the present disclosure is a blowing method used in the refining equipment 9 shown in FIGS. 1A and 1B. First, after describing the refining equipment 9 of the present embodiment, the converter blowing method of the present embodiment will be described.
  • the refining equipment 9 includes a converter 10, an upper blow lance 11 (hereinafter referred to as “lance” as appropriate), and an exhaust gas treatment device 17.
  • the lance 11 is a member for spraying oxygen gas onto the molten iron surface S in the converter 10 from a nozzle 11A described later.
  • the lance 11 has a cylindrical shape and can be moved upward and downward in the vertical direction by a lifting device (not shown). By moving the lance 11 up and down, the lower part (front end side) of the lance 11 can be inserted into or removed from the converter 10. The lance 11 can be stopped at an arbitrary height position by the lifting device.
  • the lance gap G described later can be adjusted by the vertical movement of the lance 11. Note that the arrow UP in FIG. 2A indicates the upper side in the vertical direction. An arrow AXL in FIG. 2A indicates the central axis of the lance 11.
  • the tip of the lance 11 is a nozzle portion, and a plurality of nozzles 11A are provided in the nozzle portion.
  • These nozzles 11 ⁇ / b> A are through holes having a narrowed middle portion, that is, Laval nozzles (De Laval nozzle), and a plurality of nozzles 11 ⁇ / b> A are provided on a concentric circle centered on the central axis AXL of the lance 11 at regular intervals. Yes.
  • the nozzle 11A may also be formed on the central axis AXL of the lance 11.
  • oxygen gas A supplied to the lance 11 is jetted from the nozzle 11A.
  • the jet of the oxygen gas A injected from the nozzle 11 ⁇ / b> A toward the hot metal surface S after forming the jet core, spreads at an angle with a free spread angle ⁇ , and collides with the hot metal in the converter 10.
  • a hot spot recessed in a waterfall shape is formed on the hot metal surface S (note that the hot spot is not shown in FIG. 2A).
  • the exhaust gas treatment device 17 is a device that treats exhaust gas containing dust generated from the converter 10 (gas mainly composed of CO, CO 2 , and N 2 gas) in a wet process.
  • the exhaust gas treatment device 17 includes a furnace port hood 18, an exhaust gas duct 12, a primary dust collector 13, a secondary dust collector 19 and the like.
  • the furnace port hood 18 and the exhaust gas duct 12 are provided above the converter 10.
  • a primary dust collector 13, a secondary dust collector 19, and an induction blower (not shown) are sequentially provided on the downstream side of the exhaust gas duct 12.
  • the exhaust gas from the converter 10 is sucked by an induction blower, passes through the furnace port hood 18 and the exhaust gas duct 12, and is removed by the primary dust collector 13 and the secondary dust collector 19.
  • the dust-exhausted exhaust gas passes through an induction blower, and the exhaust gas with a high CO concentration is sent as a valuable gas to a gas holder (not shown), while the exhaust gas with a low CO concentration is burned at the top through a chimney (not shown) and is discharged into the atmosphere. To be dissipated.
  • the primary dust collector 13 and the secondary dust collector 19 each collect exhaust gas by wet type, and for example, venturi scrubber is used.
  • Dust collection water (indicated by arrow W in FIGS. 1A and 1B) introduced into the primary dust collector 13 takes in dust in the exhaust gas and becomes dust collection water containing dust. Dust collection water is temporarily stored in a lower water tank 14 provided immediately below the primary dust collector 13, and then sent to a dust collection water treatment device (not shown) to remove dust in the dust collection water.
  • the exhaust gas treatment device 17 includes a dust concentration measurement device (hereinafter referred to as “measurement device” as appropriate) 20 for measuring the dust concentration.
  • the measuring device 20 includes a pump 15 that continuously collects the collected water that has passed through the primary dust collector 13, and a vibratory density meter 16 that measures the density of the collected water.
  • the collected water is continuously collected by the pump 15, and the vibration density meter 16 is used to continuously measure the dust concentration in the collected water per unit time according to the relationship with the water temperature at that time. (The amount of dust in the exhaust gas generated during blowing of the converter 10 is continuously measured).
  • the dust concentration in the exhaust gas of the converter 10 can be estimated by measuring the dust concentration in the collected water collected by the primary dust collector 13. Note that the collected water after the dust concentration measurement is returned to the lower water tank 14.
  • the converter blowing method of this embodiment is demonstrated.
  • the tip side of the lance 11 is inserted into the converter 10, and the hot metal surface S in the converter 10 is inserted from the nozzle 11 ⁇ / b> A of the lance 11.
  • This is a blowing method in which oxygen gas A is blown onto the steel and decarburized.
  • this converter blowing method is characterized by making the lance gap G (see FIG. 2A), which is the distance between the hot metal surface S and the tip of the lance 11, an optimum interval when blowing.
  • the blowing may be not only top blowing but also top bottom blowing combined with bottom blowing.
  • the converter blowing method described above includes a speed calculating step of calculating a dust generation speed GR by obtaining a dust amount in exhaust gas generated during blowing, Deviation amount calculation for obtaining the deviation amount of the dust generation speed GR calculated in the speed calculation process with respect to the relationship R1 between the number of times the lance 11 is used and the dust generation speed GR when the lance gap G is set to an optimum interval.
  • a speed calculating step of calculating a dust generation speed GR by obtaining a dust amount in exhaust gas generated during blowing
  • Deviation amount calculation for obtaining the deviation amount of the dust generation speed GR calculated in the speed calculation process with respect to the relationship R1 between the number of times the lance 11 is used and the dust generation speed GR when the lance gap G is set to an optimum interval.
  • the speed calculation step, the deviation amount calculation step, and the position adjustment step described above are processed by a computer (calculation means) of an operator who performs the converter operation. Further, the relationship R1 used in the deviation amount calculation step and the relationship R2 used in the position adjustment step are made into a database, for example.
  • the above-mentioned computer receives various information for performing the converter operation, and also controls the converter operation (for example, start and stop of blowing, adjustment of the lance gap G) and the like (that is, the computer controls It becomes a means).
  • the computer described above is a conventionally known computer including a RAM, a CPU, a ROM, an I / O, and a bus for connecting these elements, but is not limited thereto.
  • a lance 11 is inserted into the furnace from above the converter 10, and oxygen gas A is blown onto the molten iron at a high speed, thereby causing impurities such as Si, C, P, and Mn. Is removed (decarburized).
  • impurities such as Si, C, P, and Mn.
  • fine dust is generated by the rebound of the sprayed oxygen gas A on the hot metal surface S and the bubble breaking of the CO gas on the hot metal surface S accompanying the decarburization reaction.
  • the generated dust is sucked into the exhaust gas duct 12 through the furnace port hood 18 together with the exhaust gas generated from the converter 10 and is contained in the dust collection water supplied from the primary dust collector 13 while being collected through the lower water tank 14. It is sent to the processor and separated and recovered. Note that the dust generated from the converter 10 is separated from the exhaust gas by the dust water sprayed by the primary dust collector 13, and the exhaust gas is sent downstream.
  • the collected water is continuously collected by the pump 15, and the vibration density meter 16 is used to collect the collected water per unit time according to the relationship with the water temperature at that time. Perform continuous measurement of dust concentration.
  • the dust generation rate during blowing of the converter 10 can be calculated from the product of the dust concentration measured by the above method and the amount of water sprayed per unit time (the amount of water sprayed from the primary dust collector 13).
  • a hot metal surface S in the converter 10 (for example, about 400 tons of molten iron in the converter) is measured by a microwave hot metal surface meter (not shown), and is removed from the lance gap G for each use of the lance 11 and the acid supply.
  • the relationship shown in FIG. 3 is obtained by estimating the relationship with the average dust generation rate GR in the decarburization peak period when charcoal occurs preferentially.
  • the number of uses N of the lance 11 corresponds to the number of times the converter 10 is blown (the same applies hereinafter). In FIG. 3, when the lance is used about 50 times (when the number of times of use is low: black circle in FIG. 3) and when it is about 200 times (when the number of uses is high: white circles in FIG.
  • the dust generation rate GR increases linearly as the lance gap G (here, in the range of 2500 to 3000 mm) increases. Regardless of the deformation of the nozzle 11A of the lance 11, the inclination is constant.
  • the “tilt” is a gradient obtained by dividing the change amount of the dust generation speed GR by the change amount of the lance gap G (that is, the relationship R2).
  • FIG. 4 shows the dust generation rate GR at the peak of decarburization with respect to the lance usage number N when the hot metal surface S in the converter 10 is measured with a microwave hot metal surface meter and the lance gap G is set to an optimum interval. It becomes a relationship (that is, relationship R1).
  • relationship R1 relationship (that is, relationship R2).
  • the dust generation speed GR increases as the lance usage number N increases.
  • the dust generation speed GR of the converter 10 is calculated by the above-described method, and the speed calculation process, the deviation amount calculation process, and the position adjustment process are sequentially performed using the relations R1 and R2 obtained in advance.
  • the dust generation of the converter 10 calculated in the speed calculation step based on the relationship R1 between the number of times of use of the top blow lance 11 in the optimum lance gap and the dust generation speed of the converter 10 shown in FIG. Find out how much the speed GR deviates. Specifically, the difference (that is, the amount of deviation) between the value of the dust generation speed GR obtained from FIG. 4 and the value of the dust generation speed calculated in the speed calculation step is determined according to the lance usage number N.
  • the lance gap G needs to be adjusted largely.
  • the calculated dust generation rate GR is higher than the value of the dust generation rate GR corresponding to the lance usage number N shown in FIG. 4, the actual lance gap G is larger than the optimum lance gap G. (It is a soft blow), it is necessary to adjust the lance gap G small.
  • the gradient obtained by dividing the change amount of the dust generation speed GR by the change amount of the lance gap G which indicates the relationship R2 between the change amount of the lance gap G and the change amount of the dust generation speed GR, Regardless of whether or not From the relationship between the two, the adjustment amount of the lance gap G for correcting the deviation amount of the dust generation speed GR is obtained, and the lance gap G is adjusted during the blowing of the converter 10.
  • the deviation amount of the dust generation speed GR obtained in the deviation amount calculation step is divided by the above-described gradient to obtain an adjustment amount of the lance gap G corresponding to the deviation amount of the dust generation speed GR.
  • the lance gap G is adjusted by changing the height position of the lance 11 by the amount.
  • the above-described adjustment of the lance gap G (that is, the speed calculation step, the deviation amount calculation step, and the position adjustment step) may be performed once in one blowing, but may be performed multiple times as necessary. You can also
  • the lance 11 has a tendency that when the number of uses N increases, the outlet portion of the nozzle 11A wears and the outlet diameter increases.
  • the lance gap G is adjusted on the basis of the dust generation rate GR that also considers the influence of the number of times the lance 11 is used N.
  • the converter 10 can be blown with an appropriate lance gap G.
  • the amount of dust is excessive due to excessive soft blow (the lance gap G is increased), and the life of the lance 11 is significantly increased due to excessive hard blow (the lance gap G is decreased). It is possible to suppress and further prevent the decrease.
  • an Example is a result of having performed the speed calculation process of the above-mentioned embodiment of this indication, the deviation
  • the example is a result of adjusting the lance gap based on the estimated hot metal height obtained from the above-described equation (1).
  • the water leakage from the lance is caused by the water cooling structure of the lance, and is caused by wear resulting from long-term use of the lance.
  • the amount of dust generated is calculated by adding the product of the dust concentration in the collected water measured by the dust concentration measuring device and the amount of water sprayed per unit time (1 second) through one charge. The value was divided by 400 tons.
  • the average life was about 300 charges in the example with respect to 250 charges in the comparative example, which was superior to 50 charges.
  • the amount of dust generated was reduced by 0.3 to 0.7 kg / ton in the average value of the test charge for one lance in the example, compared to the average value of 15 kg / ton in all the test charges in the comparative example.
  • blowing can be performed with an appropriate lance gap, and the amount of dust generated can be reduced while maintaining the lance life.
  • the gradient obtained by dividing the change amount of the dust generation speed of the converter by the change amount of the lance gap G is used to correct the deviation amount.
  • This gradient is used based on the fact that it is constant regardless of the number of lances used N. For example, the amount of deviation can be corrected using the gradient obtained for each number of lances used.
  • the measuring apparatus 20 is equipped with the pump 15 and the vibration-type density meter 16, and collects dust collection water continuously with the pump 15, and uses the vibration-type density meter 16 and the time at that time.
  • the dust amount is obtained by continuously measuring the dust concentration in the collected water per unit time according to the relationship with the water temperature
  • the present invention is not limited to this configuration.
  • the measuring device 20 is further equipped with a thermometer, and the collected water from which the exhaust gas has been wet collected is continuously collected, passed through the vibratory density meter 16 and the thermometer, and measured with the vibratory density meter 16.
  • the dust amount may be obtained by calculating the dust concentration in the dust collection water from the difference between the density of the dust collection water and the density of pure water predicted from the temperature of the dust collection water measured with a thermometer. Specifically, the dust concentration is calculated using the following formula (2).
  • concentration or density in following formula (2) may be kg / m ⁇ 3 > of this embodiment, and may be g / L or kg / L.
  • C ( ⁇ measure ⁇ water) ⁇ ⁇ dust / ( ⁇ dust ⁇ water) (2) However, C is estimated from the dust concentration (kg / m 3 ), ⁇ measure: the density of collected dust water (kg / m 3 ) measured by the vibratory density meter 16, and ⁇ water: the temperature of the collected dust water measured by the thermometer. Density of pure water (kg / m 3 ), ⁇ dust: density of dust particles (for example, 7800 kg / m 3 ). Note that either the vibratory density meter 16 or the thermometer may be upstream or downstream. For example, in the case of using a dust concentration measuring device using ultrasonic waves or light, the dust concentration is estimated from the attenuation rate.
  • the measuring device 20 provided with the thermometer is used.
  • the density of dust in the collected water, that is, the mass can be directly measured, and the dust particle size is not affected. Therefore, the dust concentration in the dust collecting water can be measured accurately and accurately. Thereby, the blowing of the converter 10 can be carried out with a more appropriate lance gap G.
  • Appendix 2 The converter blowing method according to appendix 1, wherein a gradient obtained by dividing the amount of change in dust generation speed of the converter by the amount of change in lance gap is used to correct the deviation amount. Alchemy method.
  • the dust generation speed calculated in the speed calculation step with respect to the relationship R1 between the number of times the upper blow lance is used and the dust generation speed when the lance gap is set to an optimum interval is obtained. Since the deviation amount is obtained and the lance gap is adjusted so that the deviation amount obtained in the deviation amount calculation step is corrected from the relationship R2 between the lance gap and each change amount of the dust generation speed in the position adjustment step, an appropriate lance gap is obtained. Can be blown. As a result, excessively soft blow (larger lance gap) results in excessive dust, and excessive hard blow (smaller lance gap) significantly reduces the life of the top blow lance. Can be suppressed and further prevented.

Abstract

A converter blowing method for blowing oxygen gas onto a molten pig iron surface in a converter from a nozzle of a top-blown lance. The converter blowing method comprises: a rate calculation step of calculating a dust generation rate in the converter by determining the amount of dust in exhaust gas generated during blowing; an error amount calculation step of calculating an error amount in the dust generation rate calculated in the rate calculation step, with respect to a predetermined relationship R1 between the number of use of the top-blown lance and the dust generation rate when a lance gap, which is the distance between the molten pig iron surface and the tip of the top-blown lance, is made an optimum interval; and a position adjusting step of adjusting the lance gap during the blowing in order to correct the error amount determined in the error amount calculation step from a predetermined relationship R2 between a change amount of the lance gap and a change amount of the dust generation rate.

Description

転炉吹錬方法Converter blowing method
 本開示は、上吹きランスを用いた転炉吹錬方法に関する。 This disclosure relates to a converter blowing method using an upper blowing lance.
 転炉においては、上吹きランス(以下、適宜「ランス」と記載する。)を用いて吹錬が行われている。この吹錬では、ランスに設けられたノズル孔から溶銑面(湯面)に向けて酸素ガスが噴射されて、溶銑の撹拌と、酸化反応によるSi、Mn、PやCの除去が行われる。吹錬時には、ランスのノズル孔から噴射された酸素ガスの溶銑面における跳ね返りや脱炭反応によって、転炉からはダストが発生する。発生したダストは、排ガスと共に排出される。このダストは鉄分(鉄、酸化鉄)を主体としており、排出すると鉄分のロスに繋がるため低減することが望ましい。 In the converter, blowing is performed using an upper blowing lance (hereinafter referred to as “lance” as appropriate). In this blowing, oxygen gas is jetted from the nozzle hole provided in the lance toward the hot metal surface (molten metal surface), and the hot metal is stirred and Si, Mn, P, and C are removed by an oxidation reaction. During blowing, dust is generated from the converter due to the rebound and decarburization reaction of the oxygen gas sprayed from the nozzle hole of the lance. The generated dust is discharged together with the exhaust gas. This dust is mainly composed of iron (iron, iron oxide), and if discharged, it will lead to iron loss, so it is desirable to reduce it.
 上吹きランスを用いて吹錬するに際しては、送酸速度とランス高さ(ノズル先端位置)によって、酸素ガスが溶銑面に衝突するときに、転炉内の溶銑面の形状が変化する。
 一定の送酸速度では、溶銑面とノズル先端との距離であるランスギャップを小さくするほど、酸素ガスが溶銑面に衝突するときの溶銑の形状が滝壺状(断面逆Ω状)となり、発生したダストが飛散せず溶銑内に取り込まれやすくなるため、ダストの発生量を低減することができることが知られている。これをハードブローという。
 一方、ランスギャップを小さくし過ぎると、ノズルが溶銑面からの熱影響を強く受けるため、ノズルの損耗が激しくなって、ランスの寿命が短くなることが知られている。このようにランスの寿命が短くなることで、ランスの交換頻度が高くなるため操業に悪影響を及ぼす。
When blowing with an upper blowing lance, the shape of the hot metal surface in the converter changes when oxygen gas collides with the hot metal surface due to the acid feed rate and the lance height (nozzle tip position).
At a constant acid feed rate, the smaller the lance gap, which is the distance between the hot metal surface and the nozzle tip, the hot metal shape when the oxygen gas collides with the hot metal surface becomes a waterfall (reverse Ω-shaped cross section). It is known that the amount of dust generated can be reduced because the generated dust does not scatter and is easily taken into the hot metal. This is called hard blow.
On the other hand, it is known that if the lance gap is made too small, the nozzle is strongly affected by the heat from the hot metal surface, and therefore the wear of the nozzle becomes severe and the life of the lance is shortened. Thus, since the life of the lance is shortened, the frequency of lance replacement is increased, which adversely affects the operation.
 以上のことから、ランスギャップには、ランスの寿命を維持しつつダストの発生量を低減する最適な間隔があり、その間隔によって吹錬を行うことが望まれる。ランスギャップの最適な間隔(以下、適宜「最適ランスギャップ」と記載する。)は、転炉のサイズや送酸速度に応じて設定されるものである。
 ランスギャップを最適な間隔に設定するには、溶銑面の高さを把握する必要があり、その方法としては、例えば、特開平11-52049号公報に開示の技術がある。具体的には、転炉内に、溶銑と、スクラップ又は缶合金(ドラム缶等に入れた合金鉄)を装入した後、転炉上部フードのサブランス孔に設置された移動型のマイクロ波送受信アンテナより、炉内に向けてマイクロ波を送信し、受信した信号から溶銑面の高さ(湯面レベル)を測定する方法である。
From the above, the lance gap has an optimum interval for reducing the amount of dust generated while maintaining the life of the lance, and it is desired to perform blowing by the interval. The optimum interval of the lance gap (hereinafter referred to as “optimum lance gap” as appropriate) is set according to the size of the converter and the acid feed rate.
In order to set the lance gap to an optimum interval, it is necessary to grasp the height of the hot metal surface, and for example, there is a technique disclosed in Japanese Patent Application Laid-Open No. 11-52049. Specifically, a moving microwave transmission / reception antenna installed in the sublance hole of the upper hood of the converter after charging hot metal and scrap or can alloy (alloy iron in a drum can) in the converter In this method, microwaves are transmitted toward the furnace, and the height of the hot metal surface (water surface level) is measured from the received signal.
 溶銑面の高さの測定は、転炉に溶銑等を装入した後、吹錬を開始するまでの間(吹錬の開始前)に行っている。特開平11-52049号公報には、溶銑面高さの測定に要する時間について明確な記載はないが、装入直後の溶銑面は揺動しているため正確な高さの把握には揺動が小さくなるまで待つ必要があり、生産性に影響を及ぼすことから、転炉に溶銑等を装入するごとに毎回、溶銑面高さを測定するのは困難である。 The measurement of the height of the hot metal surface is performed after the hot metal is charged into the converter and before the start of blowing (before the start of blowing). In Japanese Patent Laid-Open No. 11-52049, there is no clear description of the time required for the measurement of the hot metal surface height. Therefore, it is difficult to measure the hot metal surface height every time the molten iron or the like is charged into the converter.
 そこで、マイクロ波溶銑面計により実測したときの溶銑面高さの測定値を基に、実測しないときの吹錬ごとの溶銑面高さの推定値(推定溶銑面高さ)を、下記式(1)を用いて算出している。
(推定溶銑面高さ)={(WTn-WT)/(ρπr )}+l  ・・・(1)
 ここで、ρは鉄比重、rは溶銑面付近の転炉の断面半径(内径)、lはマイクロ波溶銑面計による溶銑面高さの測定値、WTはマイクロ波溶銑面計による測定時の転炉への装入鉄量、WTnは推定溶銑面高さ算出時の転炉への装入鉄量、である。
Therefore, based on the measurement value of the hot metal surface height when actually measured with a microwave hot metal surface meter, the estimated value of the hot metal surface height (estimated hot metal surface height) for each blowing operation when not actually measured is expressed by the following formula ( 1).
(Estimated hot metal surface height) = {(WTn−WT 0 ) / (ρπr 0 2 )} + l 0 (1)
Here, ρ is the iron specific gravity, r 0 is the cross-sectional radius (inner diameter) of the converter near the hot metal surface, 10 is the measured value of the hot metal surface height with a microwave hot metal surface meter, and WT 0 is with the microwave hot metal surface meter. The amount of iron charged to the converter at the time of measurement, WTn is the amount of iron charged to the converter at the time of calculating the estimated hot metal surface height.
 しかし、転炉の内面に張り付いた耐火物は損耗と補修が繰り返されるため、転炉の断面半径が吹錬ごとに変化する。このため、マイクロ波溶銑面計による溶銑面高さの測定から吹錬を重ねるごとに、推定溶銑面高さと実際の溶銑面高さとに乖離が生じてしまう。このため、ランスギャップを最適な間隔に設定できなくなっていた。 However, since the refractory stuck to the inner surface of the converter is repeatedly worn and repaired, the cross-sectional radius of the converter changes with each blowing. For this reason, every time when blowing is repeated from the measurement of the hot metal surface height by the microwave hot metal surface meter, a difference occurs between the estimated hot metal surface height and the actual hot metal surface height. For this reason, the lance gap cannot be set to an optimum interval.
 本開示はかかる事情に鑑みてなされたもので、溶銑面高さを実測しないときも適切なランスギャップで吹錬を実施可能な転炉吹錬方法を提供することを目的とする。 This disclosure has been made in view of such circumstances, and an object thereof is to provide a converter blowing method capable of performing blowing with an appropriate lance gap even when the hot metal surface height is not actually measured.
 本開示者らは、転炉内に上吹きランスを装入して吹錬を行う方法において、最適なランスギャップを設定する方法を鋭意検討した結果、下記の知見を見出した。
 ランスギャップの変動によりダストの発生速度が変化することを利用して、ダスト発生速度からランスギャップを推定できる。
 ただし、上吹きランスの使用回数が増えると、ランス(ノズル形状)の変形によって噴射される酸素ガスの流れ(酸素ジェット)が変化するため、ランスギャップが一定であってもダスト発生速度が変化する。即ち、ダストの発生速度のみではランスギャップの推定は困難である。
 そこで、ランスの使用回数の影響も考慮したダスト発生速度をもとに、ランスギャップを調整する。
 本開示は、以上の知見をもとになされたものであり、その要旨は以下の通りである。
As a result of earnestly examining a method for setting an optimal lance gap in a method of charging an upper blowing lance into a converter and performing blowing, the present inventors have found the following knowledge.
The lance gap can be estimated from the dust generation speed by utilizing the fact that the dust generation speed changes due to the fluctuation of the lance gap.
However, as the number of times the top blow lance is used increases, the flow of oxygen gas (oxygen jet) changes due to the deformation of the lance (nozzle shape), so the dust generation speed changes even if the lance gap is constant. . That is, it is difficult to estimate the lance gap only with the dust generation rate.
Therefore, the lance gap is adjusted based on the dust generation speed that also takes into account the influence of the number of times the lance is used.
This indication was made based on the above knowledge, and the summary is as follows.
 本開示の一態様の転炉吹錬方法は、上吹きランスのノズルから転炉内の溶銑面に酸素ガスを吹き付ける転炉吹錬方法であって、吹錬中に発生する排ガス中のダスト量を求めて前記転炉におけるダスト発生速度を算出する速度算出工程と、予め求めた、前記溶銑面と前記上吹きランスの先端との距離であるランスギャップを最適な間隔にした際の、前記上吹きランスの使用回数と前記ダスト発生速度との関係R1に対する、前記速度算出工程で算出した前記ダスト発生速度のずれ量を求めるずれ量算出工程と、予め求めた、前記ランスギャップの変化量と前記ダスト発生速度の変化量との関係R2から、前記ずれ量算出工程で求めた前記ずれ量を補正するために、前記吹錬中に前記ランスギャップを調整する位置調整工程と、を有する。 A converter blowing method according to an aspect of the present disclosure is a converter blowing method in which oxygen gas is blown from a nozzle of an upper blowing lance to a hot metal surface in a converter, and the amount of dust in exhaust gas generated during blowing And calculating the dust generation speed in the converter, and the upper limit when the lance gap, which is the distance between the hot metal surface and the tip of the upper blowing lance, is determined in advance, is an optimal interval. A deviation amount calculating step for obtaining a deviation amount of the dust generation speed calculated in the speed calculation step with respect to a relationship R1 between the number of times the blow lance is used and the dust generation speed, a change amount of the lance gap obtained in advance, A position adjustment step of adjusting the lance gap during the blowing to correct the deviation amount obtained in the deviation amount calculation step from the relationship R2 with the amount of change in dust generation speed.
 本開示によれば、溶銑面高さを実測しないときも適切なランスギャップで吹錬を実施可能な転炉吹錬方法を提供することができる。 According to the present disclosure, it is possible to provide a converter blowing method capable of performing blowing with an appropriate lance gap even when the hot metal surface height is not actually measured.
本開示の一実施形態に係る転炉吹錬方法を適用する精錬設備の説明図である。It is explanatory drawing of the refining equipment to which the converter blowing method which concerns on one Embodiment of this indication is applied. 図1Aに示される精錬設備のダスト濃度測定機器の説明図である。It is explanatory drawing of the dust concentration measuring apparatus of the refining equipment shown by FIG. 1A. 図1Aに示される精錬設備で用いられる上吹きランスの先端側の断面図である。It is sectional drawing of the front end side of the upper blowing lance used with the refining equipment shown by FIG. 1A. 図2Aに示される上吹きランスにおいて、使用によりノズルが摩耗した状態を示す上吹きランスの先端側の断面図である。FIG. 2B is a cross-sectional view of the tip side of the top blowing lance showing a state in which the nozzle is worn by use in the top blowing lance shown in FIG. 2A. 上吹きランスの各使用回数におけるランスギャップの変化量と転炉におけるダスト発生速度の変化量との関係を示すグラフである。It is a graph which shows the relationship between the variation | change_quantity of the lance gap in each use frequency of an upper blowing lance, and the variation | change_quantity of the dust generation speed in a converter. ランスギャップを最適な間隔にした際の、上吹きランスの使用回数と転炉におけるダスト発生速度との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of use of an upper blowing lance, and the dust generation speed in a converter when making a lance gap into the optimal space | interval.
 以下、本開示の一実施形態について、図面を参照しながら説明する。 Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings.
 本開示の一実施形態に係る転炉吹錬方法は、図1A及び図1Bに示される精錬設備9で用いられる吹錬方法である。まず、本実施形態の精錬設備9について説明した後で、本実施形態の転炉吹錬方法について説明する。 The converter blowing method according to an embodiment of the present disclosure is a blowing method used in the refining equipment 9 shown in FIGS. 1A and 1B. First, after describing the refining equipment 9 of the present embodiment, the converter blowing method of the present embodiment will be described.
 図1A及び図1Bに示されるように、精錬設備9は、転炉10と、上吹きランス11(以下、適宜「ランス」と記載する。)と、排ガス処理装置17と、を備えている。 1A and 1B, the refining equipment 9 includes a converter 10, an upper blow lance 11 (hereinafter referred to as “lance” as appropriate), and an exhaust gas treatment device 17.
 図2Aに示されるように、ランス11は、後述するノズル11Aから転炉10内の溶銑面Sに酸素ガスを吹き付けるための部材である。このランス11は、筒状とされており、図示しない昇降装置によって鉛直方向の上方及び下方に移動可能とされている。ランス11を上下動させることで、ランス11の下部(先端側)を転炉10内に対し挿入又は抜去させることができる。また、ランス11は、昇降装置によって任意の高さ位置で停止させることができる。このランス11の上下動によって後述するランスギャップGを調整することができる。なお、図2Aにおける矢印UPは、鉛直方向の上方を示している。また、図2Aにおける矢印AXLは、ランス11の中心軸を示している。 As shown in FIG. 2A, the lance 11 is a member for spraying oxygen gas onto the molten iron surface S in the converter 10 from a nozzle 11A described later. The lance 11 has a cylindrical shape and can be moved upward and downward in the vertical direction by a lifting device (not shown). By moving the lance 11 up and down, the lower part (front end side) of the lance 11 can be inserted into or removed from the converter 10. The lance 11 can be stopped at an arbitrary height position by the lifting device. The lance gap G described later can be adjusted by the vertical movement of the lance 11. Note that the arrow UP in FIG. 2A indicates the upper side in the vertical direction. An arrow AXL in FIG. 2A indicates the central axis of the lance 11.
 また、ランス11の先端部は、ノズル部とされており、このノズル部には複数のノズル11Aが設けられている。これらのノズル11Aは、中間部が絞られた形状の貫通孔、すなわち、ラバルノズル(De Laval nozzle)であり、ランス11の中心軸AXLを中心とした同心円上に一定間隔をあけて複数設けられている。なお、ノズル11Aに関しては、ランス11の中心軸AXL上にも形成されてもよい。 Further, the tip of the lance 11 is a nozzle portion, and a plurality of nozzles 11A are provided in the nozzle portion. These nozzles 11 </ b> A are through holes having a narrowed middle portion, that is, Laval nozzles (De Laval nozzle), and a plurality of nozzles 11 </ b> A are provided on a concentric circle centered on the central axis AXL of the lance 11 at regular intervals. Yes. The nozzle 11A may also be formed on the central axis AXL of the lance 11.
 図2Aに示されるように、ランス11に供給された酸素ガスAがノズル11Aから噴射されるようになっている。ここで、ノズル11Aから溶銑面Sへ向けて噴射された酸素ガスAの噴流は、ジェットコアを形成したのちに、自由広がり角度をφとする角度で広がり、転炉10内の溶銑に衝突して溶銑面Sに滝壺状に凹んだ火点が形成される(なお、図2Aでは火点の図示を省略している)。 As shown in FIG. 2A, oxygen gas A supplied to the lance 11 is jetted from the nozzle 11A. Here, the jet of the oxygen gas A injected from the nozzle 11 </ b> A toward the hot metal surface S, after forming the jet core, spreads at an angle with a free spread angle φ, and collides with the hot metal in the converter 10. Thus, a hot spot recessed in a waterfall shape is formed on the hot metal surface S (note that the hot spot is not shown in FIG. 2A).
 図1Aに示されるように、排ガス処理装置17は、転炉10から発生したダストを含む排ガス(CO、CO、Nガスを主成分とするガス)を湿式で処理する装置である。この排ガス処理装置17は、炉口フード18、排ガスダクト12、一次集塵機13及び二次集塵機19等を備える。 As shown in FIG. 1A, the exhaust gas treatment device 17 is a device that treats exhaust gas containing dust generated from the converter 10 (gas mainly composed of CO, CO 2 , and N 2 gas) in a wet process. The exhaust gas treatment device 17 includes a furnace port hood 18, an exhaust gas duct 12, a primary dust collector 13, a secondary dust collector 19 and the like.
 炉口フード18及び排ガスダクト12は、転炉10の上方に設けられている。また、排ガスダクト12の下流側には、一次集塵機13、二次集塵機19及び図示しない誘引送風機が順次設けられている。転炉10の排ガスは誘引送風機で吸引され、炉口フード18及び排ガスダクト12を通って、一次集塵機13及び二次集塵機19で除塵される。さらに、除塵された排ガスは誘引送風機を経由し、CO濃度の高い排ガスは有価ガスとして図示しないガスホルダーに送られ、一方CO濃度の低い排ガスは図示しない煙突を通って頂部で燃焼されて大気中に放散される。 The furnace port hood 18 and the exhaust gas duct 12 are provided above the converter 10. In addition, a primary dust collector 13, a secondary dust collector 19, and an induction blower (not shown) are sequentially provided on the downstream side of the exhaust gas duct 12. The exhaust gas from the converter 10 is sucked by an induction blower, passes through the furnace port hood 18 and the exhaust gas duct 12, and is removed by the primary dust collector 13 and the secondary dust collector 19. Further, the dust-exhausted exhaust gas passes through an induction blower, and the exhaust gas with a high CO concentration is sent as a valuable gas to a gas holder (not shown), while the exhaust gas with a low CO concentration is burned at the top through a chimney (not shown) and is discharged into the atmosphere. To be dissipated.
 一次集塵機13と二次集塵機19はそれぞれ、排ガスを湿式集塵するものであり、例えばベンチュリスクラバーが用いられる。 The primary dust collector 13 and the secondary dust collector 19 each collect exhaust gas by wet type, and for example, venturi scrubber is used.
 一次集塵機13に導入された集塵水(図1A及び図1Bにおいて矢印Wで示す)は排ガス中のダストを取り込み、ダストを含む集塵水となる。集塵水は一次集塵機13の直下に設けられた下部水槽14に一時的に貯留され、その後、図示しない集塵水処理装置へ送られ、集塵水中のダストが除去される。 Dust collection water (indicated by arrow W in FIGS. 1A and 1B) introduced into the primary dust collector 13 takes in dust in the exhaust gas and becomes dust collection water containing dust. Dust collection water is temporarily stored in a lower water tank 14 provided immediately below the primary dust collector 13, and then sent to a dust collection water treatment device (not shown) to remove dust in the dust collection water.
 また、図1Bに示されるように、排ガス処理装置17は、ダスト濃度を測定するためのダスト濃度測定装置(以下、適宜「測定装置」と記載する。)20を備えている。この測定装置20は、一次集塵機13を通過した集塵水を連続的に採取するポンプ15と、集塵水の密度を測定するための振動式密度計16とを備えている。この測定装置20では、ポンプ15により集塵水が連続的に採取され、振動式密度計16を用いて、その時の水温との関係により単位時間当たりの集塵水中のダスト濃度の連続測定が行われる(転炉10の吹錬中に発生する排ガス中のダスト量の連続測定が行われる)。ここで、転炉10で発生するダストの大部分、少なくとも90%以上が、一次集塵機13で除去される。このため、一次集塵機13で集塵された集塵水中のダスト濃度を測定すれば、転炉10の排ガス中のダスト濃度を推定することができる。
 なお、ダスト濃度測定後の集塵水は下部水槽14へ戻されるようになっている。
Further, as shown in FIG. 1B, the exhaust gas treatment device 17 includes a dust concentration measurement device (hereinafter referred to as “measurement device” as appropriate) 20 for measuring the dust concentration. The measuring device 20 includes a pump 15 that continuously collects the collected water that has passed through the primary dust collector 13, and a vibratory density meter 16 that measures the density of the collected water. In this measuring device 20, the collected water is continuously collected by the pump 15, and the vibration density meter 16 is used to continuously measure the dust concentration in the collected water per unit time according to the relationship with the water temperature at that time. (The amount of dust in the exhaust gas generated during blowing of the converter 10 is continuously measured). Here, at least 90% or more of the dust generated in the converter 10 is removed by the primary dust collector 13. For this reason, the dust concentration in the exhaust gas of the converter 10 can be estimated by measuring the dust concentration in the collected water collected by the primary dust collector 13.
Note that the collected water after the dust concentration measurement is returned to the lower water tank 14.
 次に、本実施形態の転炉吹錬方法について説明する。
 本実施形態の転炉吹錬方法は、図1A及び図1Bに示されるように、転炉10内にランス11の先端側を挿入し、ランス11のノズル11Aから転炉10内の溶銑面Sに酸素ガスAを吹き付けて脱炭処理する吹錬方法である。そして、この転炉吹錬方法は、吹錬を行う際に、溶銑面Sとランス11の先端との距離であるランスギャップG(図2A参照)を最適な間隔にすることを特徴としている。なお、吹錬は、上吹きのみでなく、底吹きを併用した上底吹きでもよい。
Next, the converter blowing method of this embodiment is demonstrated.
In the converter blowing method of the present embodiment, as shown in FIGS. 1A and 1B, the tip side of the lance 11 is inserted into the converter 10, and the hot metal surface S in the converter 10 is inserted from the nozzle 11 </ b> A of the lance 11. This is a blowing method in which oxygen gas A is blown onto the steel and decarburized. And this converter blowing method is characterized by making the lance gap G (see FIG. 2A), which is the distance between the hot metal surface S and the tip of the lance 11, an optimum interval when blowing. Note that the blowing may be not only top blowing but also top bottom blowing combined with bottom blowing.
 詳細には、上記した転炉吹錬方法は、吹錬中に発生する排ガス中のダスト量を求めてダスト発生速度GRを算出する速度算出工程と、
 予め求めた、ランスギャップGを最適な間隔にした際の、ランス11の使用回数とダスト発生速度GRとの関係R1に対する、速度算出工程で算出したダスト発生速度GRのずれ量を求めるずれ量算出工程と、
 予め求めた、ランスギャップGの変化量とダスト発生速度GRの変化量との関係R2から、ずれ量算出工程で求めたずれ量を補正するために、上記吹錬中にランスギャップGを調整する位置調整工程と、
 を有する方法である。
Specifically, the converter blowing method described above includes a speed calculating step of calculating a dust generation speed GR by obtaining a dust amount in exhaust gas generated during blowing,
Deviation amount calculation for obtaining the deviation amount of the dust generation speed GR calculated in the speed calculation process with respect to the relationship R1 between the number of times the lance 11 is used and the dust generation speed GR when the lance gap G is set to an optimum interval. Process,
In order to correct the deviation amount obtained in the deviation amount calculating step from the relationship R2 between the variation amount of the lance gap G and the variation amount of the dust generation speed GR obtained in advance, the lance gap G is adjusted during the blowing. Position adjustment process;
It is the method which has.
 なお、上記した速度算出工程、ずれ量算出工程、及び、位置調整工程は、転炉操業を行う作業者のコンピュータ(演算手段)で処理される。また、ずれ量算出工程で使用する関係R1と位置調整工程で使用する関係R2は、例えば、データベース化されている。なお、上記したコンピュータは、転炉操業を行うための各種情報を受信し、転炉操業の制御(例えば、吹錬の開始や停止、ランスギャップGの調整)等も行う(すなわち、コンピュータが制御手段となる)。
 なお、上記したコンピュータは、RAM、CPU、ROM、I/O、及び、これらの要素を接続するバスを備えた従来公知のものであるが、これに限定されるものではない。
The speed calculation step, the deviation amount calculation step, and the position adjustment step described above are processed by a computer (calculation means) of an operator who performs the converter operation. Further, the relationship R1 used in the deviation amount calculation step and the relationship R2 used in the position adjustment step are made into a database, for example. The above-mentioned computer receives various information for performing the converter operation, and also controls the converter operation (for example, start and stop of blowing, adjustment of the lance gap G) and the like (that is, the computer controls It becomes a means).
The computer described above is a conventionally known computer including a RAM, a CPU, a ROM, an I / O, and a bus for connecting these elements, but is not limited thereto.
 まず、上記したダスト発生速度、関係R1、及び、関係R2の各算出方法について説明する。 First, each calculation method of the above-described dust generation speed, relation R1, and relation R2 will be described.
 転炉操業においては、図1Aに示されるように、転炉10上方より炉内にランス11が挿入され、溶銑に高速で酸素ガスAが吹き付けられることにより、Si、C、P、Mnといった不純物が除去される(脱炭処理される)。その際、吹き付けられた酸素ガスAの溶銑面Sでの跳ね返りや、脱炭反応に伴ったCOガスの溶銑面Sでの破泡によって、微細なダストが発生する。
 発生したダストは、転炉10から発生した排ガスと共に炉口フード18を通して排ガスダクト12内に吸引され、一次集塵機13から供給される集塵水中に含有されながら、下部水槽14を介して集塵水処理装置へ送られ、分離回収される。なお、一次集塵機13での集塵水の散布により、転炉10から発生したダストは排ガスと分離され、排ガスは下流側へ送られる。
In the converter operation, as shown in FIG. 1A, a lance 11 is inserted into the furnace from above the converter 10, and oxygen gas A is blown onto the molten iron at a high speed, thereby causing impurities such as Si, C, P, and Mn. Is removed (decarburized). At that time, fine dust is generated by the rebound of the sprayed oxygen gas A on the hot metal surface S and the bubble breaking of the CO gas on the hot metal surface S accompanying the decarburization reaction.
The generated dust is sucked into the exhaust gas duct 12 through the furnace port hood 18 together with the exhaust gas generated from the converter 10 and is contained in the dust collection water supplied from the primary dust collector 13 while being collected through the lower water tank 14. It is sent to the processor and separated and recovered. Note that the dust generated from the converter 10 is separated from the exhaust gas by the dust water sprayed by the primary dust collector 13, and the exhaust gas is sent downstream.
(転炉10におけるダスト発生速度の算出方法)
 図1Bに示されるように、測定装置20では、ポンプ15により集塵水を連続的に採取し、振動式密度計16を用いて、その時の水温との関係により単位時間当たりの集塵水中のダスト濃度の連続測定を行う。上記した方法で測定したダスト濃度と、集塵水の単位時間当たりの散水量(一次集塵機13からの散水量)との積から、転炉10の吹錬中におけるダスト発生速度を算出できる。
(Calculation method of dust generation rate in converter 10)
As shown in FIG. 1B, in the measuring device 20, the collected water is continuously collected by the pump 15, and the vibration density meter 16 is used to collect the collected water per unit time according to the relationship with the water temperature at that time. Perform continuous measurement of dust concentration. The dust generation rate during blowing of the converter 10 can be calculated from the product of the dust concentration measured by the above method and the amount of water sprayed per unit time (the amount of water sprayed from the primary dust collector 13).
(関係R2の算出方法)
 図示しないマイクロ波溶銑面計により転炉10(例えば、転炉の溶銑量400トン程度)内の溶銑面Sを測定し、ランス11の使用回数ごとのランスギャップGと、送酸に対して脱炭が優先的に起こる時期である脱炭最盛期の平均ダスト発生速度GRとの関係を見積もると、図3に示す関係が得られる。このランス11の使用回数Nは、転炉10の吹錬の回数に対応している(以下同様)。なお、図3では、ランスの使用回数が50回程度の場合(使用回数が少ない場合:図3中の黒丸印)と、200回程度の場合(使用回数が多い場合:図3中の白丸印)について図示しているが、50~200回の範囲内においても、同様の挙動を示している。
 図3に示されるように、ダスト発生速度GRは、ランスギャップG(ここでは、2500~3000mmの範囲)の上昇に伴って直線的に増加し、その関係は、ランス使用回数Nの増加に伴うランス11のノズル11Aの変形によらず、傾きが一定となっている。なお、ここでいう「傾き」とは、ダスト発生速度GRの変化量をランスギャップGの変化量で除した勾配である(すなわち、関係R2)。
(Calculation method of relation R2)
A hot metal surface S in the converter 10 (for example, about 400 tons of molten iron in the converter) is measured by a microwave hot metal surface meter (not shown), and is removed from the lance gap G for each use of the lance 11 and the acid supply. The relationship shown in FIG. 3 is obtained by estimating the relationship with the average dust generation rate GR in the decarburization peak period when charcoal occurs preferentially. The number of uses N of the lance 11 corresponds to the number of times the converter 10 is blown (the same applies hereinafter). In FIG. 3, when the lance is used about 50 times (when the number of times of use is low: black circle in FIG. 3) and when it is about 200 times (when the number of uses is high: white circles in FIG. 3) ), The same behavior is shown even within the range of 50 to 200 times.
As shown in FIG. 3, the dust generation rate GR increases linearly as the lance gap G (here, in the range of 2500 to 3000 mm) increases. Regardless of the deformation of the nozzle 11A of the lance 11, the inclination is constant. Here, the “tilt” is a gradient obtained by dividing the change amount of the dust generation speed GR by the change amount of the lance gap G (that is, the relationship R2).
(関係R1の算出方法)
 マイクロ波溶銑面計により転炉10内の溶銑面Sを測定し、ランスギャップGを最適な間隔にした際の、ランス使用回数Nに対する脱炭最盛期のダスト発生速度GRは、図4に示す関係(すなわち、関係R1)となる。
 図4に示されるように、ランスギャップGを最適値に設定した場合、ランス使用回数Nの増加に伴ってダスト発生速度GRが増加している。なお、図4に示す曲線は、ダスト発生速度をyとし、ランス使用回数をxとすると、y=6.9492x0.0698、となっている。
(Calculation method of relation R1)
FIG. 4 shows the dust generation rate GR at the peak of decarburization with respect to the lance usage number N when the hot metal surface S in the converter 10 is measured with a microwave hot metal surface meter and the lance gap G is set to an optimum interval. It becomes a relationship (that is, relationship R1).
As shown in FIG. 4, when the lance gap G is set to an optimum value, the dust generation speed GR increases as the lance usage number N increases. The curve shown in FIG. 4 is y = 6.9492x 0.0698 , where y is the dust generation speed and x is the number of times the lance is used.
 上記した方法で転炉10のダスト発生速度GRを算出し、予め求めた関係R1と関係R2を用いて、速度算出工程、ずれ量算出工程、及び、位置調整工程を順次行う。 The dust generation speed GR of the converter 10 is calculated by the above-described method, and the speed calculation process, the deviation amount calculation process, and the position adjustment process are sequentially performed using the relations R1 and R2 obtained in advance.
(速度算出工程)
 まず、前記した式(1)によって求めた推定溶銑面高さを基に、最適なランスギャップGになるようにランス高さを設定して、転炉10の吹錬を実施し、前記した吹錬方法を用い、脱炭最盛期に発生する排ガス中の平均ダスト発生量(ダスト量)を求めて、転炉10のダスト発生速度GRを算出する。
(Speed calculation process)
First, based on the estimated hot metal surface height obtained by the above equation (1), the lance height is set so that the optimum lance gap G is obtained, and the converter 10 is blown, Using the smelting method, the average dust generation amount (dust amount) in the exhaust gas generated during the decarburization peak period is obtained, and the dust generation rate GR of the converter 10 is calculated.
(ずれ量算出工程)
 前記した図4に示す、予め求めた、最適ランスギャップでの上吹きランス11の使用回数と、転炉10のダスト発生速度との関係R1から、速度算出工程で算出した転炉10のダスト発生速度GRがどれだけずれているかを求める。具体的には、ランス使用回数Nに応じて図4から求められるダスト発生速度GRの値と、速度算出工程で算出したダスト発生速度の値との差(即ち、ずれ量)を求める。
 ここで、算出したダスト発生速度GRの値が、図4に示すランス使用回数Nに応じたダスト発生速度GRの値よりも低位の場合は、最適ランスギャップGに対して実際のランスギャップGが小さい(ハードブローである)ことを示しているため、ランスギャップGを大きく調整する必要がある。一方、算出したダスト発生速度GRの値が、図4に示すランス使用回数Nに応じたダスト発生速度GRの値よりも高位の場合は、最適ランスギャップGに対して実際のランスギャップGが大きい(ソフトブローである)ことを示しているため、ランスギャップGを小さく調整する必要がある。
(Deviation amount calculation process)
The dust generation of the converter 10 calculated in the speed calculation step based on the relationship R1 between the number of times of use of the top blow lance 11 in the optimum lance gap and the dust generation speed of the converter 10 shown in FIG. Find out how much the speed GR deviates. Specifically, the difference (that is, the amount of deviation) between the value of the dust generation speed GR obtained from FIG. 4 and the value of the dust generation speed calculated in the speed calculation step is determined according to the lance usage number N.
Here, when the calculated value of the dust generation speed GR is lower than the value of the dust generation speed GR corresponding to the lance usage number N shown in FIG. Since it shows that it is small (hard blow), the lance gap G needs to be adjusted largely. On the other hand, when the calculated dust generation rate GR is higher than the value of the dust generation rate GR corresponding to the lance usage number N shown in FIG. 4, the actual lance gap G is larger than the optimum lance gap G. (It is a soft blow), it is necessary to adjust the lance gap G small.
(位置調整工程)
 前記した図3に示す、予め求めた、ランスギャップGの変化量とダスト発生速度GRの変化量との関係R2から、ずれ量算出工程で求めたずれ量を補正するために、吹錬中にランスギャップGを調整する。なお、本実施形態では、吹錬による脱炭最盛期中にダスト発生速度GRを求めると共にランスギャップGが調整される。
(Position adjustment process)
In order to correct the deviation amount obtained in the deviation amount calculation step from the relationship R2 between the variation amount of the lance gap G and the variation amount of the dust generation speed GR, which is obtained in advance as shown in FIG. Adjust the lance gap G. In the present embodiment, the dust generation speed GR is obtained and the lance gap G is adjusted during the maximum decarburization period by blowing.
 前記したように、ランスギャップGの変化量とダスト発生速度GRの変化量との関係R2を示す、ダスト発生速度GRの変化量をランスギャップGの変化量で除した勾配は、ランス使用回数Nによらず略一定である。この両者の関係から、ダスト発生速度GRのずれ量を補正するためのランスギャップGの調整量を求め、転炉10の吹錬中にランスギャップGを調整する。 As described above, the gradient obtained by dividing the change amount of the dust generation speed GR by the change amount of the lance gap G, which indicates the relationship R2 between the change amount of the lance gap G and the change amount of the dust generation speed GR, Regardless of whether or not From the relationship between the two, the adjustment amount of the lance gap G for correcting the deviation amount of the dust generation speed GR is obtained, and the lance gap G is adjusted during the blowing of the converter 10.
 具体的には、ずれ量算出工程で求めたダスト発生速度GRのずれ量を、上記した勾配で除して、ダスト発生速度GRのずれ量に対応したランスギャップGの調整量を求め、この調整量分だけランス11の高さ位置を変更してランスギャップGを調整する。
 なお、上記したランスギャップGの調整(即ち、速度算出工程、ずれ量算出工程、及び、位置調整工程)は、1回の吹錬で1回実施すればよいが、必要に応じて複数回実施することもできる。
Specifically, the deviation amount of the dust generation speed GR obtained in the deviation amount calculation step is divided by the above-described gradient to obtain an adjustment amount of the lance gap G corresponding to the deviation amount of the dust generation speed GR. The lance gap G is adjusted by changing the height position of the lance 11 by the amount.
The above-described adjustment of the lance gap G (that is, the speed calculation step, the deviation amount calculation step, and the position adjustment step) may be performed once in one blowing, but may be performed multiple times as necessary. You can also
 ここで、図2Bに示されるように、ランス11は、使用回数Nが増えると、ノズル11Aの出口部が摩耗して、出口径が増大する傾向がある。ノズル11Aの出口径が拡がるとノズル出口でのエネルギーロスが発生し、ジェットコア長さが短くなるため、酸素ガスAの勢いが低下する。しかし、本実施形態の転炉吹錬方法では、ランス11の使用回数Nの影響も考慮したダスト発生速度GRをもとに、ランスギャップGを調整するため、マイクロ波溶銑面計を用いて溶銑面高さを実測しないときでも、適切なランスギャップGで転炉10の吹錬を実施できる。これにより、過度にソフトブローになる(ランスギャップGが大きくなる)ことでダスト量が過多になることや、過度にハードブローになる(ランスギャップGが小さくなる)ことでランス11の寿命を著しく低下させることを抑制、更には防止できる。 Here, as shown in FIG. 2B, the lance 11 has a tendency that when the number of uses N increases, the outlet portion of the nozzle 11A wears and the outlet diameter increases. When the outlet diameter of the nozzle 11A increases, energy loss occurs at the nozzle outlet, and the jet core length becomes shorter, so the momentum of the oxygen gas A decreases. However, in the converter blowing method of the present embodiment, the lance gap G is adjusted on the basis of the dust generation rate GR that also considers the influence of the number of times the lance 11 is used N. Even when the surface height is not actually measured, the converter 10 can be blown with an appropriate lance gap G. As a result, the amount of dust is excessive due to excessive soft blow (the lance gap G is increased), and the life of the lance 11 is significantly increased due to excessive hard blow (the lance gap G is decreased). It is possible to suppress and further prevent the decrease.
 次に、本開示の作用効果を確認するために行った実施例について説明する。
 ここでは、溶銑量が400トン、最適ランスギャップGが3000mmの条件で、転炉の吹錬を行うに際し、実施例と比較例の各方法を適用した結果について説明する。
 なお、実施例は、本開示の前記した実施形態の速度算出工程、ずれ量算出工程、及び、位置調整工程を順次行い、ダスト発生速度GRに合わせてランスギャップGを調整した結果であり、比較例は、前記した式(1)から得られる推定溶銑高さを基にランスギャップを調整した結果である。
Next, examples performed for confirming the effects of the present disclosure will be described.
Here, the results of applying each method of the example and the comparative example when performing the blowing of the converter under the conditions of the hot metal amount of 400 tons and the optimum lance gap G of 3000 mm will be described.
In addition, an Example is a result of having performed the speed calculation process of the above-mentioned embodiment of this indication, the deviation | shift amount calculation process, and the position adjustment process one by one, and adjusting the lance gap G according to the dust generation speed GR. The example is a result of adjusting the lance gap based on the estimated hot metal height obtained from the above-described equation (1).
 評価は、ランス1本分の試験を試行回数1(N=1)とした10回分(N=10)の実施回数において、ランスからの水漏れが発生するまでのチャージ数の平均値である平均寿命と、測定したダスト発生量(ダスト量)を用いて行った。なお、ランスからの水漏れは、ランスが水冷構造となっていることに起因するものであり、ランスの長期使用に伴う損耗により発生するものである。また、ダスト発生量は、ダスト濃度測定装置で測定した集塵水中のダスト濃度と、集塵水の単位時間(1秒)当たりの散水量との積を、1チャージ通して加算して、溶銑量400トンで除した値とした。
 平均寿命は、比較例の250チャージに対して、実施例では約300チャージとなり、50チャージ優位となった。
 ダスト発生量は、比較例の全試験チャージの平均値15kg/トンに対して、実施例ではランス1本分の試験チャージの平均値で0.3~0.7kg/トン低減できた。
The evaluation is the average value of the number of charges until water leakage from the lance occurs in the number of trials for 10 times (N = 10) where the number of trials for one lance is 1 (N = 1). It was carried out using the lifetime and the measured dust generation amount (dust amount). The water leakage from the lance is caused by the water cooling structure of the lance, and is caused by wear resulting from long-term use of the lance. The amount of dust generated is calculated by adding the product of the dust concentration in the collected water measured by the dust concentration measuring device and the amount of water sprayed per unit time (1 second) through one charge. The value was divided by 400 tons.
The average life was about 300 charges in the example with respect to 250 charges in the comparative example, which was superior to 50 charges.
The amount of dust generated was reduced by 0.3 to 0.7 kg / ton in the average value of the test charge for one lance in the example, compared to the average value of 15 kg / ton in all the test charges in the comparative example.
 以上のことから、本開示の転炉吹錬方法を適用することで、適切なランスギャップで吹錬を実施でき、ランスの寿命を維持しつつダストの発生量を低減できることを確認できた。 From the above, it was confirmed that by applying the converter blowing method of the present disclosure, blowing can be performed with an appropriate lance gap, and the amount of dust generated can be reduced while maintaining the lance life.
 以上、本開示を、実施の形態を参照して説明してきたが、本開示は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本開示の転炉吹錬方法を構成する場合も本開示の権利範囲に含まれる。 As described above, the present disclosure has been described with reference to the embodiment. However, the present disclosure is not limited to the configuration described in the above-described embodiment, and the matters described in the claims are not limited. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the converter blowing method of the present disclosure is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present disclosure.
 前記実施形態においては、関係R1と関係R2にそれぞれ、過去の操業実績であるデータから算出された近似式を用いた場合について説明したが、これに限定されるものではなく、例えば、過去の操業実績であるデータベース化されたデータを用いてもよい。 In the said embodiment, although the case where the approximate expression calculated from the data which are the past operation results was used for relation R1 and relation R2, respectively was demonstrated, it is not limited to this, For example, it is the past operation. Data in a database that is a record may be used.
 また、前記実施形態においては、ずれ量の補正に、転炉のダスト発生速度の変化量をランスギャップGの変化量で除した勾配を用いた。この勾配は、ランス使用回数Nによらず一定であることに基づいて使用したが、例えば、ランス使用回数ごとに得られた勾配を用いて、ずれ量を補正することもできる。 In the above embodiment, the gradient obtained by dividing the change amount of the dust generation speed of the converter by the change amount of the lance gap G is used to correct the deviation amount. This gradient is used based on the fact that it is constant regardless of the number of lances used N. For example, the amount of deviation can be corrected using the gradient obtained for each number of lances used.
 さらに、前記実施形態においては、測定装置20が、ポンプ15と振動式密度計16を備えており、ポンプ15により集塵水を連続的に採取し、振動式密度計16を用いて、その時の水温との関係により単位時間当たりの集塵水中のダスト濃度の連続測定を行ってダスト量を求めているが、本発明はこの構成に限定されない。例えば、測定装置20に更に温度計を備えさせて、排ガスを湿式集塵した集塵水を連続的に採取し、振動式密度計16及び温度計を通過させ、振動式密度計16で測定した集塵水の密度と、温度計で測定した集塵水の温度から予測される純水の密度との差より、集塵水中のダスト濃度を算出してダスト量を求めてもよい。具体的には、下記式(2)を用いてダスト濃度を算出する。なお、下記式(2)における濃度又は密度の単位は、本実施形態のkg/mであってもよいし、g/L又はkg/Lであってもよい。
C=(ρmeasure-ρwater)×ρdust/(ρdust-ρwater)  ・・・(2)
但し、C:ダスト濃度(kg/m)、ρmeasure:振動式密度計16で測定した集塵水の密度(kg/m)、ρwater:温度計で測定した集塵水の温度から予測される純水の密度(kg/m)、ρdust:ダスト粒子の密度(例えば7800kg/m)。
 なお、振動式密度計16と温度計は、どちらが上流でも下流でも構わない。
 例えば、超音波や光を用いたダスト濃度測定装置を用いる場合、減衰率からダスト濃度を推定するため、ダスト粒径に影響を受けるが、上記温度計を備えさせた測定装置20を用いることで、集塵水中のダストの密度、すなわち質量を直接測定することができ、ダスト粒径に影響を受けることがない。したがって、精度よく正確に集塵水中のダスト濃度を測定することができるようになる。これにより、より適切なランスギャップGで転炉10の吹錬を実施できるようになる。
Furthermore, in the said embodiment, the measuring apparatus 20 is equipped with the pump 15 and the vibration-type density meter 16, and collects dust collection water continuously with the pump 15, and uses the vibration-type density meter 16 and the time at that time. Although the dust amount is obtained by continuously measuring the dust concentration in the collected water per unit time according to the relationship with the water temperature, the present invention is not limited to this configuration. For example, the measuring device 20 is further equipped with a thermometer, and the collected water from which the exhaust gas has been wet collected is continuously collected, passed through the vibratory density meter 16 and the thermometer, and measured with the vibratory density meter 16. The dust amount may be obtained by calculating the dust concentration in the dust collection water from the difference between the density of the dust collection water and the density of pure water predicted from the temperature of the dust collection water measured with a thermometer. Specifically, the dust concentration is calculated using the following formula (2). In addition, the unit of the density | concentration or density in following formula (2) may be kg / m < 3 > of this embodiment, and may be g / L or kg / L.
C = (ρmeasure−ρwater) × ρdust / (ρdust−ρwater) (2)
However, C is estimated from the dust concentration (kg / m 3 ), ρmeasure: the density of collected dust water (kg / m 3 ) measured by the vibratory density meter 16, and ρwater: the temperature of the collected dust water measured by the thermometer. Density of pure water (kg / m 3 ), ρdust: density of dust particles (for example, 7800 kg / m 3 ).
Note that either the vibratory density meter 16 or the thermometer may be upstream or downstream.
For example, in the case of using a dust concentration measuring device using ultrasonic waves or light, the dust concentration is estimated from the attenuation rate. Therefore, although it is affected by the particle size of the dust, the measuring device 20 provided with the thermometer is used. The density of dust in the collected water, that is, the mass can be directly measured, and the dust particle size is not affected. Therefore, the dust concentration in the dust collecting water can be measured accurately and accurately. Thereby, the blowing of the converter 10 can be carried out with a more appropriate lance gap G.
 以上の実施形態に関し、更に以下の付記を開示する。 Regarding the above embodiment, the following additional notes are disclosed.
  (付記1)
 転炉内に上吹きランスを装入して吹錬を行う方法において、
 前記転炉の吹錬中に発生する排ガス中のダスト量を測定してダスト発生速度を算出する速度算出工程と、
 予め求めた、前記転炉内の湯面と前記上吹きランスの先端との距離であるランスギャップを最適な間隔にした際の、前記上吹きランスの使用回数と前記転炉のダスト発生速度との関係R1に対する、前記速度算出工程で算出した前記転炉のダスト発生速度のずれ量を求めるずれ量算出工程と、
 予め求めた、前記ランスギャップの変化量と前記転炉のダスト発生速度の変化量との関係R2から、前記ずれ量算出工程で求めた前記ずれ量を補正するために、前記転炉の吹錬中における前記ランスギャップを調整する位置調整工程とを有することを特徴とする転炉吹錬方法。
(Appendix 1)
In the method of charging with the top blowing lance in the converter,
A speed calculating step of calculating a dust generation speed by measuring an amount of dust in exhaust gas generated during blowing of the converter;
The number of times of use of the upper blowing lance and the dust generation rate of the converter when the lance gap, which is the distance between the molten metal surface in the converter and the tip of the upper blowing lance, is set to an optimum interval, A deviation amount calculating step for obtaining a deviation amount of the dust generation speed of the converter calculated in the speed calculating step with respect to the relationship R1;
In order to correct the deviation amount obtained in the deviation amount calculation step from the relationship R2 between the change amount of the lance gap and the change amount of dust generation speed of the converter, which is obtained in advance, the blowing of the converter And a position adjusting step for adjusting the lance gap in the converter.
  (付記2)
 付記1に記載の転炉吹錬方法において、前記ずれ量の補正に、前記転炉のダスト発生速度の変化量を前記ランスギャップの変化量で除した勾配を用いることを特徴とする転炉吹錬方法。
(Appendix 2)
The converter blowing method according to appendix 1, wherein a gradient obtained by dividing the amount of change in dust generation speed of the converter by the amount of change in lance gap is used to correct the deviation amount. Alchemy method.
 上記転炉吹錬方法は、ずれ量算出工程で、ランスギャップを最適な間隔にした際の上吹きランスの使用回数とダスト発生速度との関係R1に対する、速度算出工程で算出したダスト発生速度のずれ量を求め、位置調整工程で、ランスギャップとダスト発生速度の各変化量の関係R2から、ずれ量算出工程で求めたずれ量を補正するようにランスギャップを調整するので、適切なランスギャップで吹錬を実施できる。
 これにより、過度にソフトブローになる(ランスギャップが大きくなる)ことでダスト量が過多になることや、過度にハードブローになる(ランスギャップが小さくなる)ことで上吹きランスの寿命を著しく低下させることを抑制、更には防止できる。
In the converter blowing method, in the deviation amount calculation step, the dust generation speed calculated in the speed calculation step with respect to the relationship R1 between the number of times the upper blow lance is used and the dust generation speed when the lance gap is set to an optimum interval is obtained. Since the deviation amount is obtained and the lance gap is adjusted so that the deviation amount obtained in the deviation amount calculation step is corrected from the relationship R2 between the lance gap and each change amount of the dust generation speed in the position adjustment step, an appropriate lance gap is obtained. Can be blown.
As a result, excessively soft blow (larger lance gap) results in excessive dust, and excessive hard blow (smaller lance gap) significantly reduces the life of the top blow lance. Can be suppressed and further prevented.
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.
 10  転炉
 11  上吹きランス
 11A ノズル
 16  振動式密度計(密度計)
 G   ランスギャップ
 GR  ダスト発生速度
 N   ランス使用回数
DESCRIPTION OF SYMBOLS 10 Converter 11 Top blowing lance 11A Nozzle 16 Vibrating density meter (density meter)
G Lance gap GR Dust generation speed N Number of lance usage

Claims (3)

  1.  上吹きランスのノズルから転炉内の溶銑面に酸素ガスを吹き付ける転炉吹錬方法であって、
     吹錬中に発生する排ガス中のダスト量を求めて前記転炉におけるダスト発生速度を算出する速度算出工程と、
     予め求めた、前記溶銑面と前記上吹きランスの先端との距離であるランスギャップを最適な間隔にした際の、前記上吹きランスの使用回数と前記ダスト発生速度との関係R1に対する、前記速度算出工程で算出した前記ダスト発生速度のずれ量を求めるずれ量算出工程と、
     予め求めた、前記ランスギャップの変化量と前記ダスト発生速度の変化量との関係R2から、前記ずれ量算出工程で求めた前記ずれ量を補正するために、前記吹錬中に前記ランスギャップを調整する位置調整工程と、
     を有する転炉吹錬方法。
    A converter blowing method in which oxygen gas is blown from the nozzle of the top blowing lance to the hot metal surface in the converter,
    A speed calculating step of calculating the dust generation speed in the converter by obtaining the amount of dust in the exhaust gas generated during blowing,
    The speed with respect to the relationship R1 between the number of times the upper blowing lance is used and the dust generation speed when the lance gap, which is the distance between the hot metal surface and the tip of the upper blowing lance, is set to an optimum interval. A deviation amount calculating step for obtaining a deviation amount of the dust generation speed calculated in the calculating step;
    In order to correct the deviation amount obtained in the deviation amount calculation step from the relationship R2 between the change amount of the lance gap and the change amount of the dust generation speed obtained in advance, the lance gap is changed during the blowing. A position adjustment process to be adjusted;
    A converter blowing method.
  2.  前記ずれ量の補正に、前記ダスト発生速度の変化量を前記ランスギャップの変化量で除した勾配を用いる、請求項1に記載の転炉吹錬方法。 The converter blowing method according to claim 1, wherein a gradient obtained by dividing the amount of change in the dust generation rate by the amount of change in the lance gap is used to correct the deviation amount.
  3.  前記速度算出工程では、前記排ガスを湿式集塵した集塵水を連続的に採取し、密度計及び温度計を通過させ、前記密度計で測定した集塵水の密度と、前記温度計で測定した集塵水の温度から予測される純水の密度との差より、集塵水中のダスト濃度を算出して前記ダスト量を求める、請求項1又は請求項2に記載の転炉吹錬方法。 In the speed calculation step, the collected dust obtained by wet collection of the exhaust gas is continuously collected, passed through a density meter and a thermometer, and measured by the density meter and the density of the collected dust. The converter blowing method according to claim 1 or 2, wherein the dust amount is obtained by calculating a dust concentration in the dust collection water from a difference from a density of pure water predicted from a temperature of the collected dust collection water. .
PCT/JP2019/020925 2018-05-28 2019-05-27 Converter blowing method WO2019230657A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020522184A JP6962465B2 (en) 2018-05-28 2019-05-27 Converter blowing method
CN201980014443.7A CN111742066B (en) 2018-05-28 2019-05-27 Converter blowing method
KR1020207024271A KR102343595B1 (en) 2018-05-28 2019-05-27 How to blow the converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018101370 2018-05-28
JP2018-101370 2018-05-28

Publications (1)

Publication Number Publication Date
WO2019230657A1 true WO2019230657A1 (en) 2019-12-05

Family

ID=68696986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020925 WO2019230657A1 (en) 2018-05-28 2019-05-27 Converter blowing method

Country Status (5)

Country Link
JP (1) JP6962465B2 (en)
KR (1) KR102343595B1 (en)
CN (1) CN111742066B (en)
TW (1) TWI700373B (en)
WO (1) WO2019230657A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060824A (en) * 2000-08-22 2002-02-28 Nkk Corp Blowing method into converter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273688B2 (en) * 2000-11-16 2009-06-03 Jfeスチール株式会社 Converter blowing method
JP5929632B2 (en) * 2012-08-27 2016-06-08 新日鐵住金株式会社 Converter refining method
JP5696719B2 (en) * 2012-12-20 2015-04-08 Jfeスチール株式会社 Converter off-gas dust concentration measurement method
JP5822053B2 (en) * 2013-09-30 2015-11-24 Jfeスチール株式会社 Control device and control method for converter blowing equipment
TWI674323B (en) * 2016-11-01 2019-10-11 日商日本製鐵股份有限公司 Steel member manufacturing method and steel member
CN106755734B (en) * 2016-12-14 2018-08-14 山东钢铁股份有限公司 A kind of deoxidation slagging method of LF refining furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060824A (en) * 2000-08-22 2002-02-28 Nkk Corp Blowing method into converter

Also Published As

Publication number Publication date
CN111742066B (en) 2022-06-28
TW202003864A (en) 2020-01-16
KR102343595B1 (en) 2021-12-28
JP6962465B2 (en) 2021-11-05
TWI700373B (en) 2020-08-01
JPWO2019230657A1 (en) 2021-01-07
CN111742066A (en) 2020-10-02
KR20200109373A (en) 2020-09-22

Similar Documents

Publication Publication Date Title
JP5553179B2 (en) Reduction method of spitting in converter decarburization refining.
JP5510508B2 (en) Top blowing lance for hot metal blowing and decarburization method for hot metal and dephosphorization
WO2019230657A1 (en) Converter blowing method
JP2010031338A (en) Method for operating converter
JP6604460B2 (en) Converter operation method
JP6421731B2 (en) Converter operation method
JP2011084789A (en) Converter blowing method
JP5915568B2 (en) Method of refining hot metal in converter type refining furnace
JP6658365B2 (en) Hot metal refining method
JP2011179041A (en) Method for removing metal in converter
JP7052585B2 (en) Dephosphorization method for molten steel
JP5929632B2 (en) Converter refining method
JP3402133B2 (en) Top blowing lance for refining and refining method
JP3697944B2 (en) Converter blowing method
JP2015129319A (en) Method for judging change of operational condition in dephosphorization treatment of molten pig iron
JP6939828B2 (en) Acid feeding refining method for molten iron
JP2848010B2 (en) Top blowing lance for refining molten metal
JP5573721B2 (en) Method for suppressing refractory melt damage in vacuum degassing equipment
JP2002060824A (en) Blowing method into converter
JP3849571B2 (en) Converter blowing method
JP6399067B2 (en) Gas blowing method with bottom blow tuyere and steel refining method
JP2011111647A (en) Bottom-blowing converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522184

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207024271

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810759

Country of ref document: EP

Kind code of ref document: A1