WO2019230565A1 - Control device of rotating machine and method for controlling same - Google Patents

Control device of rotating machine and method for controlling same Download PDF

Info

Publication number
WO2019230565A1
WO2019230565A1 PCT/JP2019/020517 JP2019020517W WO2019230565A1 WO 2019230565 A1 WO2019230565 A1 WO 2019230565A1 JP 2019020517 W JP2019020517 W JP 2019020517W WO 2019230565 A1 WO2019230565 A1 WO 2019230565A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
phase
current
control device
signal
Prior art date
Application number
PCT/JP2019/020517
Other languages
French (fr)
Japanese (ja)
Inventor
藤井 淳
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019230565A1 publication Critical patent/WO2019230565A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • H02P25/026Synchronous motors controlled by supply frequency thereby detecting the rotor position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/32Arrangements for controlling wound field motors, e.g. motors with exciter coils

Definitions

  • the present invention relates to a control device and a control method for a rotating machine.
  • a control device for a rotating machine having a field winding in a rotor and a multiphase winding of three or more phases in a stator.
  • the control device includes a search signal superimposing unit that superimposes a search signal whose amplitude is constant and an electric phase changes at a constant period on the multiphase winding, and a field for detecting a field current flowing in the field winding.
  • the search signal is superimposed on the multiphase winding using the search signal superimposing unit, and the field current is And a position estimating unit that estimates the position of the rotor with respect to the stator.
  • the position estimation unit estimates the position of the rotor using the field current, it is not necessary to have saliency, and the initial position of the magnetic pole can be estimated easily and with high accuracy by a simple method.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a rotating machine and its control device.
  • FIG. 2 is a flowchart for estimating the rotor position
  • FIG. 3 is an explanatory diagram showing the search signal and its phase.
  • FIG. 4 is an explanatory view showing the field current when the phase of the d-axis current and the d-axis current and the search signal are superimposed when there is almost no error in the position where the rotor is temporarily set.
  • FIG. 5 is an explanatory diagram showing a current signal and a d-axis current phase when a search signal is superimposed when there is almost no error in the position where the rotor is temporarily set.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a rotating machine and its control device.
  • FIG. 2 is a flowchart for estimating the rotor position
  • FIG. 3 is an explanatory diagram showing the search signal and its phase.
  • FIG. 4 is an explanatory view showing the field current when the
  • FIG. 6 is an explanatory diagram showing the phase of the d-axis current and the d-axis current and the field current If when the search signal S is superimposed when there is an error in the position where the rotor is temporarily set.
  • FIG. 7 is an explanatory diagram showing a current signal and a d-axis current phase when a search signal is superimposed when there is an error in the position where the rotor is temporarily set.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of the rotating machine 10 and its control device 20.
  • the rotating machine 10 includes a stator 12 and a rotor 16.
  • the stator 12 includes three-phase windings 14u, 14v, and 14w.
  • the three-phase windings 14u, 14v, 14w are star-connected.
  • the three-phase windings 14u, 14v, 14w may be delta-connected.
  • the rotor 16 includes a field winding 18.
  • the control device 20 includes a current command generation unit 30, a three-phase winding current control unit 40, a field current control unit 60, and a position estimation unit 80.
  • the current command generator 30 generates a d-axis current command IdC, a q-axis current command IqC, and a field current command IfC using the torque T required for the rotating machine 10.
  • the torque T required for the rotating machine 10 is calculated using the opening degree of the accelerator pedal of the vehicle and the speed of the vehicle.
  • the three-phase winding current control unit 40 controls the voltages Vu, Vv, and Vw applied to the three-phase windings 14u, 14v, and 14w using the currents of the three-phase windings 14u, 14v, and 14w of the stator 12.
  • the three-phase winding current control unit 40 includes adders 41 and 42, difference calculators 43 and 44, PI control units 46 and 48, a three-phase voltage command conversion unit 50, a driver 52, an inverter 54, A three-phase current sensor 56 and a dq axis current converter 58 are provided.
  • the three-phase current sensor 56 measures currents Iu, Iv, and Iw flowing through the three-phase windings 14u, 14v, and 14w.
  • the dq axis current converter 58 converts the currents Iu, Iv, and Iw into a d axis current Id and a q axis current Iq.
  • the adder 41 adds the d-axis search signal IdS to the d-axis current command IdC.
  • the adder 42 adds the q-axis search signal IqS to the q-axis current command IqC.
  • the difference calculator 43 calculates a difference between the d-axis current command IdC to which the d-axis search signal IdS is added and the d-axis current Id.
  • the difference calculator 44 calculates a difference between the q-axis current command IqC to which the q-axis search signal IqS is added and the q-axis current Iq.
  • the PI control unit 46 calculates the d-axis voltage command VdC by PI control using the difference between the d-axis current command IdC to which the d-axis search signal IdS is added and the d-axis current Id.
  • the PI control unit 48 calculates the q-axis voltage command VqC by PI control using the difference between the q-axis current command IqC to which the q-axis search signal IqS is added and the q-axis current Iq.
  • the three-phase voltage command conversion unit 50 converts the d-axis voltage command VdC and the q-axis voltage command VqC into three-phase voltage commands VuC, VvC, and VwC.
  • the driver 52 uses the three-phase voltage commands VuC, VvC, and VwC to generate switching signals Swu, Swv, and Sww for turning on / off switching elements provided in the inverter 54.
  • the inverter 54 turns on and off the internal switching elements by the switching signals Swu, Swv, and Sww, and generates voltages Vu, Vv, and Vw that are applied to the three-phase windings 14u, 14v, and 14w.
  • the field current control unit 60 controls the voltage Vf applied to the field winding 18 using the field current If of the field winding 18 of the rotor 16.
  • the field current control unit 60 includes a difference calculator 62, a PI control unit 64, a driver 66, an inverter 68, and a field current sensor 70.
  • the field current sensor 70 measures the field current If flowing in the field winding 18 of the rotor 16.
  • the difference calculator 62 calculates the difference between the field current command IfC and the field current If.
  • the PI control unit 64 generates a field voltage command VfC using a difference between the field current command IfC and the field current If.
  • the driver 66 generates a switching signal Swf for the inverter 68 using the field voltage command VfC.
  • the inverter 68 turns on / off the internal switching element by the switching signal Swf, and generates a voltage Vf applied to the field winding 18.
  • the position estimation unit 80 estimates the phase ⁇ ⁇ of the initial position of the rotor 16 using the field current If.
  • the position estimation unit 80 includes a search signal superimposing unit 82, a high-pass filter 84, a zero cross detection unit 86, a rotor position estimation unit 88, a compensation unit 90, and an adder 92.
  • the search signal superimposing unit 82 generates search signals IdS and IqS for a certain period of the rising of the rotation of the rotor 16 and sends them to the adders 41 and 42 of the three-phase winding current control unit 40.
  • the search signals IdS and IqS are signals whose amplitude is constant and whose electrical phase changes at a constant cycle, for example, current signals of sine waves or cosine waves.
  • the period of the search signals IdS and IqS is, for example, 1 ms to 10 ms (100 Hz to 1 kHz), and more preferably 4 ms to 6 ms.
  • the fixed period of the rise of the rotation of the rotor 16 is, for example, a period of 3 to 4 periods, which is the number of periods of the search signals IdS and IqS.
  • the three-phase windings 14u, 14v, and 14w are applied to the three-phase windings 14u, 14v, and 14w only for a certain period of the rise of the rotation of the rotor 16, for example, the number of periods of the search signals IdS and IqS. Voltages corresponding to the search signals IdS and IqS are superimposed.
  • the high pass filter 84 extracts a current signal Ifac having a frequency component corresponding to the search signals IdS and IqS from the field current If measured by the field current sensor 70.
  • the zero cross detector 86 detects the zero cross point of the current signal Ifac.
  • the zero cross point is a point where the value of the current signal Ifac becomes zero.
  • the rotor position estimation unit 88 estimates the initial position of the rotor 16 using the position of the zero cross point and the change in the current signal Ifac before and after the zero cross point.
  • the compensation unit 90 compensates for a phase change caused by the frequencies of the search signals IdS and IqS, the time constant of the high-pass filter 84, and the time constant of the rotor 16.
  • the adder 92 calculates the phase of the initial position of the rotor 16 by adding the phase change by the compensation unit 90 to the phase ⁇ ⁇ of the initial position of the rotor 16 estimated by the rotor position estimation unit 88.
  • FIG. 2 is a flowchart for estimating the rotor position.
  • step S ⁇ b> 100 the rotor 16 is temporarily set to an arbitrary angle, and then the three-phase winding current control unit 40 and the field current control unit 60 start the rotation machine 10.
  • step S110 the search signal superimposing unit 82 applies the search signals IdS and IqS whose amplitude is constant and electrical phase changes at a constant cycle to the voltages Vu, Vv and Vw applied to the three-phase windings 14u, 14v and 14w.
  • the search signals IdS and IqS are superimposed on the currents of the three-phase windings 14u, 14v, and 14w by being generated and superimposed on the d-axis current command IdC and the q-axis current command IqC.
  • FIG. 3 is an explanatory diagram showing the search signal and its phase.
  • the lower graph in FIG. 3 is a graph showing the d-axis search signal IdS and the q-axis search signal IqS
  • the upper graph is a graph showing the phases of the search signal IdS and the search signal IqS.
  • sine wave or cosine wave current signals are used as the search signals IdS and IqS
  • the search signals IdS and IqS are signals whose amplitudes are constant and electrical phases change at a constant cycle.
  • the field current sensor 70 acquires the field current If.
  • FIG. 4 is an explanatory diagram showing the phase of the d-axis current and the d-axis current and the field current If when the search signals IdS and IqS are superimposed when there is almost no error in the position where the rotor 16 is temporarily set.
  • the lower graph of FIG. 4 shows the d-axis current of the stator 12 and its phase.
  • the upper graph in FIG. 4 shows the field current If.
  • the field winding 18 of the rotor 16 interferes only with the d-axis of the stator 12. Does not interfere with the q axis.
  • the field current If when the search signals IdS and IqS are superimposed rises while increasing or decreasing in synchronization with the d-axis search current IdS when the rotating machine 10 is started, as shown in the upper graph.
  • the position when the field current If reaches the peak values P1, P2, P3, P4, P5, and P6 in FIG. 4 and the phase at the position are acquired.
  • the peak values P1, P2, P3, P4, P5, and P6 of the field current If are the minimum value and the maximum value when the field current If increases while increasing or decreasing.
  • the position where the maximum value is obtained and the phase at that position are acquired.
  • FIG. 5 is an explanatory diagram showing the current signal Ifac and the d-axis current phase when the search signals IdS and IqS are superimposed when there is almost no error in the position where the rotor 16 is temporarily set.
  • the upper graph in FIG. 5 shows the current signal Ifac
  • the lower graph shows the d-axis current phase.
  • the current signal Ifac is synchronized with the search signal and has a substantially sine wave shape.
  • the current signal Ifac transitions from plus to minus or minus to plus near the zero cross points Z1, Z2, and Z3 at which the current signal Ifac becomes zero. Can easily obtain the positions of the zero-cross points Z1, Z2, and Z3 from the current signal Ifac value.
  • the current signal Ifac may have an offset.
  • the fact that the current signal Ifac has an offset means that a direct current component is added to the current signal Ifac and the current signal Ifac is shifted to the plus side or the minus side.
  • the graph is drawn on the assumption that there is an offset in the current signal Ifac.
  • the zero-cross detection unit 86 can easily determine the zero-cross points Z1, Z2, Z3, etc. even when the current signal Ifac has an offset.
  • the zero-cross detection unit 86 can easily obtain the phases PhZ1 and PhZ2 when the current signal Ifac becomes the zero-cross points Z1 and Z2 using the lower graph of FIG.
  • the current signal Ifac has a sine wave shape having an offset
  • the shape up to the zero cross point with respect to the peak (maximum value or minimum value) is symmetric. Therefore, the zero cross detection unit 86 can obtain the phase PhP1 of the peak P1 sandwiched between the two zero cross points Z1 and Z2 as an intermediate phase between the phase PhZ1 of the zero cross point Z1 and the phase PhZ2 of the zero cross point Z2.
  • the zero cross detection unit 86 can easily obtain the phase PhP1 of the peak P1 by calculating (PhZ1 + PhZ2) / 2.
  • the offset of the current signal Ifac is sandwiched between the two zero cross points Z1 and Z2 regardless of the value.
  • the phase PhP1 of the peak P1 does not change.
  • the zero-cross detection unit 86 can easily obtain the phase at which the field current If reaches a peak by using the phase of two zero-cross points sandwiching the peak, regardless of the offset value. .
  • the rotor position estimation unit 88 estimates the initial position of the rotor 16 by utilizing the fact that the peak value of the field current If occurs at either the current phase 90 degrees or 270 degrees.
  • the rotor position estimation unit 88 determines whether the peak value of the field current If is 90 degrees or 270 degrees based on the slope of the current signal Ifac at the zero cross points Z1 and Z2. Specifically, at the zero cross point, when the slope of the current signal Ifac is negative, it is about 0 degree, when it is positive, it is about 180 degrees, and when the peak value of the current signal Ifac is a minimum value, it is about 90 degrees.
  • the maximum value to about 270 degrees, the direction of the N pole and the S pole of the rotor 16 can be specified.
  • the rotor position estimator 88 calculates the difference between the angle of the rotor 16 temporarily set in step S100 of FIG. 2 and the phase PhP1 of 90 degrees or 270 degrees of the peak P1 calculated using the phases of the two zero cross points. It is estimated that the phase ⁇ ⁇ of 16 initial positions.
  • step S150 the adder 92 adds the signal from the compensator 90 to the phase of the initial position of the rotor 16 estimated by the rotor position estimator 88 to compensate for the phase delay.
  • the phase delay can be easily calculated using the time constant of the high-pass filter 84 and the time constant of the field winding 18 of the rotor 16.
  • the time constant of the high-pass filter 84 can be calculated using the frequencies of the search signals IdS and IqS, and the inductance and capacitance of the components that make up the high-pass filter 84.
  • the time constant of the field winding 18 can be calculated using the frequencies of the search signals IdS and IqS and the inductance and capacitance of the field winding 18.
  • step S160 the position estimation unit 80 determines whether the activation of the rotating machine 10 is completed.
  • the position estimation unit 80 determines that the start of the rotating machine 10 is completed when the search signals IdS and IqS are superimposed a predetermined number of times, for example, 3 to 4 times after starting the starting of the rotating machine 10. . If the activation of the rotating machine 10 is not completed, the position estimation unit 80 returns to step S110.
  • FIG. 6 is an explanatory diagram showing the phase of the d-axis current Id and the d-axis current and the field current If when the search signals IdS and IqS are superimposed when there is an error in the position where the rotor 16 is temporarily set.
  • FIG. 7 is an explanatory diagram showing the current signal Ifac and the d-axis current phase when the search signals IdS and IqS are superimposed when there is an error in the position where the rotor 16 is temporarily set. Comparing FIG. 6 and FIG. 7 with FIG. 4 and FIG. 5, the d-axis current phase is shifted because there is an error in the position where the rotor 16 is temporarily set.
  • the difference between 90 degrees and the phase when the current signal Ifac has a peak value (minimum value) is the phase ⁇ ⁇ of the initial position of the rotor 16, that is, the phase of the position when the rotor 16 is temporarily set. That is, in the example shown in FIGS. 4 and 5, since there is almost no error in the initial position of the rotor 16, the phase of the peak value (minimum value) is about 90 degrees. On the other hand, in the example shown in FIGS. 6 and 7, since the position error of the initial position of the rotor 16 is large, the phase of the peak value (minimum value) is shifted from 90 degrees to the initial position of the rotor 16 by the position error. Thus, according to the present embodiment, the phase ⁇ ⁇ of the initial position of the rotor 16 can be easily estimated regardless of whether or not the initial position of the rotor 16 has a position error.
  • the search signals IdS and IqS are supplied to the search signal superimposing unit 82 as the three-phase windings 14u, 14v, and 14w.
  • the phase ⁇ of the position can be estimated.
  • the search signals IdS and IqS are sine wave or cosine wave current signals
  • the search signals can be given in a balanced manner to the estimated d-axis and the estimated q-axis, and the rotor 16 can be accurately obtained. Can be estimated. Further, when the search signals IdS and IqS are sine wave or cosine wave current signals, generation of high-order harmonic current in the field current If can be suppressed.
  • the phase of the field current corresponds to the position of the rotor.
  • the position estimating unit 80 can easily estimate the phase ⁇ ⁇ of the initial position of the rotor using the phase of the peak value of the field current.
  • the position estimation unit 80 extracts the current component Ifac using the high-pass filter 84, and extracts the phase of the peak value of the current component Ifac. Since the phase of the peak value of the current component Ifac and the phase of the peak value of the field current If are the same, the phase of the peak value of the field current If can be easily obtained.
  • the position estimation unit 80 sets a phase intermediate between the phases of two adjacent zero cross points where the current signal Ifc zero-crosses as a peak value phase. It is easier to obtain the phase of the zero cross point than to obtain the phase of the peak value. Even if there is an offset in the current signal, the phase of the peak value can be acquired without being affected by the offset.
  • a sine wave or cosine wave current signal is used as the search signals IdS and IqS, but a sine wave or cosine wave voltage signal may be used.
  • the search signals IdS and IqS are voltage signals
  • an adder may be provided between the PI control units 46 and 48 and the three-phase voltage command conversion unit 50 instead of the adders 41 and 42.
  • a signal other than a sine wave or cosine wave for example, a current signal or a voltage signal of a triangular wave or a rectangular wave may be used as long as the signal has a constant amplitude and an electric phase that changes at a constant cycle.
  • the current signal Ifac is obtained using the high-pass filter 84, and the phase of the peak value is obtained using the zero cross point of the current signal Ifac.
  • the field current If is analyzed to obtain the field The peak value of the current If may be obtained.
  • the zero cross detection unit 86 of the position estimation unit 80 obtains the zero cross point where the current signal Ifac becomes zero, and obtains the phase of the peak value by obtaining the middle of the two zero cross points.
  • the zero cross detector 86 may include a differentiating circuit for differentiating the current signal Ifac, and the phase of the current signal Ifac when the differential value is zero crossed may be the peak value phase. Since the peak value of the current signal Ifac is a maximum value or a minimum value, the differential value of the current signal Ifac is zero at the peak value. Therefore, the phase at which the differential value zero-crosses can be set as the peak value phase.
  • the position estimation unit 80 estimates the position of the rotor 16 within the period in which the field current If is started up when the rotating machine 10 is started, but the search is performed during normal operation after the starting of the rotating machine 10.
  • the position of the rotor 16 may be estimated by superimposing the signals IdS and IqS.
  • the position estimation unit 80 estimates the position of the rotor 16 if the position of the rotor 16 is estimated by superimposing the search signals IdS and IqS within the period in which the field current If is raised when the rotating machine 10 is started. Therefore, the phase ⁇ ⁇ of the position of the rotor 16 can be estimated without giving a special period.
  • the search signal superimposing unit 82 inputs the search signals IdS and IqS to the adders 41 and 42, whereby the search signals IdS and IvS are supplied to the currents Iu, Iv, and Iw flowing in the three-phase windings 14u, 14v, and 14w. , IqS is superimposed, but by inputting the search signals IdS, IqS to the current command generator 30, the search signals IdS, IqS are applied to the currents Iu, Iv, Iw flowing in the three-phase windings 14u, 14v, 14w. You may superimpose.
  • the stator 12 is described as including the three-phase windings 14u, 14v, and 14w, but the winding may be a multi-phase winding of three or more phases.
  • the winding may be, for example, a four-phase or five-phase winding.
  • the present invention is not limited to the above-described embodiment, and can be realized with various configurations without departing from the spirit of the present invention.
  • the technical features of the embodiments corresponding to the technical features in each embodiment described in the summary section of the invention are intended to solve part or all of the above-described problems, or part of the above-described effects. Or, in order to achieve the whole, it is possible to replace or combine as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.
  • a part of the configuration realized by hardware in the above embodiment can be realized by software.
  • at least a part of the configuration realized by software can be realized by a discrete circuit configuration.
  • the present invention can be realized as the following forms.
  • a rotating machine (3) having a multi-phase winding (14u, 14v, 14w) having three or more phases on a stator (12) is provided on the rotor (16).
  • a control device (20) of 10) is provided.
  • the control device includes a search signal superimposing unit (82) for superimposing a search signal (IdS, IqS) having a constant amplitude and a constant electric phase on the multi-phase winding, and the field winding.
  • a field current sensor (70) for detecting a flowing field current and a position of the rotor with respect to the stator are temporarily set at an arbitrary angle, and then the search signal is output to the multipoint using the search signal superimposing unit.
  • the search signal may be a sine wave or cosine wave current signal, or a sine wave or cosine wave voltage signal.
  • search signals can be given to the estimated d-axis and the estimated q-axis in a well-balanced manner, and the rotor position can be estimated with high accuracy. Further, if a current signal or voltage signal is a sine wave or cosine wave, it is possible to suppress the generation of a high-order harmonic current in the field current.
  • the position estimation unit may estimate the position of the rotor with respect to the stator using a peak value of the field current (If). Since the phase of the field current corresponds to the position of the rotor, the position estimation unit can easily estimate the phase of the initial position of the rotor using the peak value of the field current.
  • the position estimation unit may further include a filter (84) for extracting a current signal (Ifac) having a frequency component corresponding to the search signal from the field current. According to this embodiment, the peak value of the field current can be easily obtained.
  • the position estimation unit may set the phase of the peak value to an intermediate phase between two adjacent phases at which the current signal crosses zero. According to this aspect, even if there is an offset in the current signal, the peak value phase can be obtained without being affected by the offset.
  • the position estimation unit may differentiate the current signal and set a phase at which the differential value is zero-crossed as a phase of the peak value. Since the peak value of the current signal is a maximum value or a minimum value, the differential value is zero at the peak value. According to this aspect, the position estimation unit can set the phase at which the differential value obtained by differentiating the current signal zero-crosses is the phase of the peak value.
  • the position estimation unit may set the phase of the peak value to 90 degrees or 270 degrees, and may set a difference between an angle temporarily set at an arbitrary position and the phase of the peak value as an initial position of the rotor. . According to this embodiment, it is possible to determine the N pole and the S pole without taking special measures.
  • the position estimation unit may determine whether the temporarily set angle is 90 degrees or 270 degrees according to the slope of the current signal at the zero cross point. According to this embodiment, it is possible to determine the directions of the N pole and S pole of the rotor without taking special measures.
  • the position estimation unit includes a compensation unit that compensates for a phase change using the frequency of the search signal, the time constant of the filter, and the time constant of the field winding of the rotor. May be. According to this aspect, the position estimation unit compensates for the phase change using the frequency of the search signal, the time constant of the filter, and the time constant of the field winding of the rotor. The phase can be estimated with high accuracy.
  • the position estimation unit may estimate the position of the rotor within a period in which the field current is raised at the time of starting to turn on the rotating machine. According to this aspect, the phase of the initial position of the rotor can be estimated without providing a special period for estimating the position of the rotor.
  • the present invention can be realized in various forms, for example, in the form of a rotor position estimation method for a rotating machine, in addition to a rotating machine control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

This control device 20 of a rotating machine 10 having a field winding 18 in a rotor 16, and having multi-phase windings 14u, 14v, 14w of three or more phases in a stator 12 is provided with: a search signal superposition unit 82 which superposes, in the multi-phase windings, search signals IdS, IqS which have constant amplitudes and in which electrical phases change in a predetermined period; a field current sensor 70 which detects a field current flowing in the field winding; and a location estimating unit 80 which, after virtually setting the location of the rotor with respect to the stator at an arbitrary angle, superposes the search signals in the multi-phase windings by using the search signal superposition unit, and estimates, by using the field current, the location of the rotor with respect to the stator.

Description

回転機の制御装置および制御方法Rotating machine control device and control method 関連出願の相互参照Cross-reference of related applications
 本願は、2018年5月31日に出願された出願番号2018-104437号の日本出願に基づく優先権を主張し、その開示の全てが参照により本願に組み込まれる。 This application claims priority based on the Japanese application No. 2018-104437 filed on May 31, 2018, the entire disclosure of which is incorporated herein by reference.
 本発明は、回転機の制御装置および制御方法に関する。 The present invention relates to a control device and a control method for a rotating machine.
 回転機においては、回転子(ロータ)の回転位置をセンサレスで検出するものが種々提案されている。例えば特開2005-39891号公報では、界磁巻線にパルスを印加したときに、電機子巻線に流れる電流を検出し、該電流を用いた演算により回転機の回転子の位置を求めている。また、回転機の電機子巻線に交番信号を注入し、交番信号と同じ周波数成分の信号を利用して回転子の磁極位置を検出する回転機の制御装置も知られている(たとえば、特開2006-136123号公報)。 Various types of rotating machines have been proposed that detect the rotational position of a rotor (rotor) without a sensor. For example, in Japanese Patent Application Laid-Open No. 2005-39891, when a pulse is applied to a field winding, the current flowing through the armature winding is detected, and the position of the rotor of the rotating machine is obtained by calculation using the current. Yes. There is also known a control device for a rotating machine that injects an alternating signal into the armature winding of the rotating machine and detects the magnetic pole position of the rotor by using a signal having the same frequency component as the alternating signal (for example, No. 2006-136123).
 しかし、界磁巻線にパルスを印加する場合、回転子の位置を求める際の精度が低いという課題があった。また、演算に用いる電流は、絶対値が必要とされるため、電流センサの精度が回転子の位置の精度に影響を与えるという課題があった。また、回転機の電機子巻線に交番信号を注入する方法では、交番信号の電圧がゼロとなるように制御する関係上、ノイズ耐性が低下し、回転子の位置の精度に懸念が残るという課題があった。 However, when applying a pulse to the field winding, there is a problem that the accuracy in obtaining the rotor position is low. Moreover, since the current used for the calculation requires an absolute value, there is a problem that the accuracy of the current sensor affects the accuracy of the rotor position. In addition, in the method of injecting the alternating signal into the armature winding of the rotating machine, noise resistance is reduced due to the control to make the voltage of the alternating signal zero, and there is concern about the accuracy of the rotor position. There was a problem.
 本発明の一形態によれば、ロータに界磁巻線を有し、ステータに3相以上の多相巻線を有する回転機の制御装置が提供される。この制御装置は、前記多相巻線に、振幅が一定、且つ電気位相が一定周期で変化するサーチ信号を重畳するサーチ信号重畳部と、前記界磁巻線に流れる界磁電流を検知する界磁電流センサと、前記ステータに対する前記ロータの位置について任意の角度で仮設定を行った上で、前記サーチ信号重畳部を用いて前記サーチ信号を前記多相巻線に重畳させ、前記界磁電流を用いて前記ステータに対する前記ロータの位置を推定する位置推定部と、を備える。この形態によれば、位置推定部は、界磁電流を用いてロータの位置を推定するので、突極性を有する必要が無く、簡素の手法で容易且つ高精度で磁極の初期位置を推定できる。 According to one aspect of the present invention, there is provided a control device for a rotating machine having a field winding in a rotor and a multiphase winding of three or more phases in a stator. The control device includes a search signal superimposing unit that superimposes a search signal whose amplitude is constant and an electric phase changes at a constant period on the multiphase winding, and a field for detecting a field current flowing in the field winding. After temporarily setting the magnetic current sensor and the position of the rotor with respect to the stator at an arbitrary angle, the search signal is superimposed on the multiphase winding using the search signal superimposing unit, and the field current is And a position estimating unit that estimates the position of the rotor with respect to the stator. According to this aspect, since the position estimation unit estimates the position of the rotor using the field current, it is not necessary to have saliency, and the initial position of the magnetic pole can be estimated easily and with high accuracy by a simple method.
図1は、回転機とその制御装置の概略構成を示す説明図であり、FIG. 1 is an explanatory diagram showing a schematic configuration of a rotating machine and its control device. 図2は、ロータ位置を推定するフローチャートであり、FIG. 2 is a flowchart for estimating the rotor position, 図3は、サーチ信号とその位相を示す説明図であり、FIG. 3 is an explanatory diagram showing the search signal and its phase. 図4は、ロータを仮設定した位置の誤差がほぼ無い場合における、d軸電流とd軸電流の位相およびサーチ信号を重畳したときの界磁電流を示す説明図であり、FIG. 4 is an explanatory view showing the field current when the phase of the d-axis current and the d-axis current and the search signal are superimposed when there is almost no error in the position where the rotor is temporarily set. 図5は、ロータを仮設定した位置の誤差がほぼ無い場合における、サーチ信号を重畳したときの電流信号およびd軸電流位相を示す説明図であり、FIG. 5 is an explanatory diagram showing a current signal and a d-axis current phase when a search signal is superimposed when there is almost no error in the position where the rotor is temporarily set. 図6は、ロータを仮設定した位置に誤差がある場合における、d軸電流とd軸電流の位相およびサーチ信号Sを重畳したときの界磁電流Ifを示す説明図であり、FIG. 6 is an explanatory diagram showing the phase of the d-axis current and the d-axis current and the field current If when the search signal S is superimposed when there is an error in the position where the rotor is temporarily set. 図7は、ロータを仮設定した位置に誤差がある場合における、サーチ信号を重畳したときの電流信号およびd軸電流位相を示す説明図である。FIG. 7 is an explanatory diagram showing a current signal and a d-axis current phase when a search signal is superimposed when there is an error in the position where the rotor is temporarily set.
 図1は、回転機10とその制御装置20の概略構成を示す説明図である。回転機10は、ステータ12と、ロータ16を備える。ステータ12は、3相巻線14u、14v、14wを備える。3相巻線14u、14v、14wは、スター結線されている。なお、3相巻線14u、14v、14wは、デルタ結線されていても良い。ロータ16は、界磁巻線18を備える。 FIG. 1 is an explanatory diagram showing a schematic configuration of the rotating machine 10 and its control device 20. The rotating machine 10 includes a stator 12 and a rotor 16. The stator 12 includes three- phase windings 14u, 14v, and 14w. The three- phase windings 14u, 14v, 14w are star-connected. The three- phase windings 14u, 14v, 14w may be delta-connected. The rotor 16 includes a field winding 18.
 制御装置20は、電流指令生成部30と、3相巻線電流制御部40と、界磁電流制御部60と、位置推定部80と、を備える。電流指令生成部30は、回転機10に要求されるトルクTを用いて、d軸電流指令IdC、q軸電流指令IqC、界磁電流指令IfCを生成する。ここで、回転機10に要求されるトルクTは、例えば、回転機10が車両に搭載される場合には、車両のアクセルペダルの開度や車両の速度を用いて算出される。 The control device 20 includes a current command generation unit 30, a three-phase winding current control unit 40, a field current control unit 60, and a position estimation unit 80. The current command generator 30 generates a d-axis current command IdC, a q-axis current command IqC, and a field current command IfC using the torque T required for the rotating machine 10. Here, for example, when the rotating machine 10 is mounted on a vehicle, the torque T required for the rotating machine 10 is calculated using the opening degree of the accelerator pedal of the vehicle and the speed of the vehicle.
 3相巻線電流制御部40は、ステータ12の3相巻線14u、14v、14wの電流を用いて、3相巻線14u、14v、14wに印加する電圧Vu、Vv、Vwを制御する。3相巻線電流制御部40は、加算器41、42と、差分演算器43、44と、PI制御部46、48と、3相電圧指令変換部50と、ドライバ52と、インバータ54と、3相電流センサ56と、dq軸電流変換部58と、を備える。 The three-phase winding current control unit 40 controls the voltages Vu, Vv, and Vw applied to the three- phase windings 14u, 14v, and 14w using the currents of the three- phase windings 14u, 14v, and 14w of the stator 12. The three-phase winding current control unit 40 includes adders 41 and 42, difference calculators 43 and 44, PI control units 46 and 48, a three-phase voltage command conversion unit 50, a driver 52, an inverter 54, A three-phase current sensor 56 and a dq axis current converter 58 are provided.
 3相電流センサ56は、3相巻線14u、14v、14wに流れる電流Iu、Iv、Iwを測定する。dq軸電流変換部58は、電流Iu、Iv、Iwを、d軸電流Idおよびq軸電流Iqに変換する。 The three-phase current sensor 56 measures currents Iu, Iv, and Iw flowing through the three- phase windings 14u, 14v, and 14w. The dq axis current converter 58 converts the currents Iu, Iv, and Iw into a d axis current Id and a q axis current Iq.
 加算器41は、d軸電流指令IdCにd軸サーチ信号IdSを加算する。加算器42は、q軸電流指令IqCにq軸サーチ信号IqSを加算する。差分演算器43は、d軸サーチ信号IdSが加算されたd軸電流指令IdCとd軸電流Idとの差分を算出する。差分演算器44は、q軸サーチ信号IqSが加算されたq軸電流指令IqCとq軸電流Iqとの差分を算出する。 The adder 41 adds the d-axis search signal IdS to the d-axis current command IdC. The adder 42 adds the q-axis search signal IqS to the q-axis current command IqC. The difference calculator 43 calculates a difference between the d-axis current command IdC to which the d-axis search signal IdS is added and the d-axis current Id. The difference calculator 44 calculates a difference between the q-axis current command IqC to which the q-axis search signal IqS is added and the q-axis current Iq.
 PI制御部46は、d軸サーチ信号IdSが加算されたd軸電流指令IdCとd軸電流Idとの差分を用いて、PI制御により、d軸電圧指令VdCを算出する。PI制御部48は、q軸サーチ信号IqSが加算されたq軸電流指令IqCとq軸電流Iqとの差分を用いて、PI制御により、q軸電圧指令VqCを算出する。 The PI control unit 46 calculates the d-axis voltage command VdC by PI control using the difference between the d-axis current command IdC to which the d-axis search signal IdS is added and the d-axis current Id. The PI control unit 48 calculates the q-axis voltage command VqC by PI control using the difference between the q-axis current command IqC to which the q-axis search signal IqS is added and the q-axis current Iq.
 3相電圧指令変換部50は、d軸電圧指令VdCとq軸電圧指令VqCを、3相の電圧指令VuC、VvC、VwCに変換する。ドライバ52は、3相の電圧指令VuC、VvC、VwCを用いて、インバータ54の内部に設けられたスイッチング素子をオン・オフするためのスイッチング信号Swu、Swv、Swwを生成する。インバータ54は、スイッチング信号Swu、Swv、Swwにより内部のスイッチング素子のオン・オフを行い、3相巻線14u、14v、14wに印加される電圧Vu、Vv、Vwを生成する。 The three-phase voltage command conversion unit 50 converts the d-axis voltage command VdC and the q-axis voltage command VqC into three-phase voltage commands VuC, VvC, and VwC. The driver 52 uses the three-phase voltage commands VuC, VvC, and VwC to generate switching signals Swu, Swv, and Sww for turning on / off switching elements provided in the inverter 54. The inverter 54 turns on and off the internal switching elements by the switching signals Swu, Swv, and Sww, and generates voltages Vu, Vv, and Vw that are applied to the three- phase windings 14u, 14v, and 14w.
 界磁電流制御部60は、ロータ16の界磁巻線18の界磁電流If用いて、界磁巻線18に印加する電圧Vfを制御する。界磁電流制御部60は、差分演算器62と、PI制御部64と、ドライバ66と、インバータ68と、界磁電流センサ70と、を備える。 The field current control unit 60 controls the voltage Vf applied to the field winding 18 using the field current If of the field winding 18 of the rotor 16. The field current control unit 60 includes a difference calculator 62, a PI control unit 64, a driver 66, an inverter 68, and a field current sensor 70.
 界磁電流センサ70は、ロータ16の界磁巻線18に流れる界磁電流Ifを測定する。差分演算器62は、界磁電流指令IfCと、界磁電流Ifとの差分を算出する。PI制御部64は、界磁電流指令IfCと、界磁電流Ifとの差分を用いて界磁電圧指令VfCを生成する。ドライバ66は、界磁電圧指令VfCを用いて、インバータ68のスイッチング信号Swfを生成する。インバータ68は、スイッチング信号Swfにより内部のスイッチング素子のオン・オフを行い、界磁巻線18に印加される電圧Vfを生成する。 The field current sensor 70 measures the field current If flowing in the field winding 18 of the rotor 16. The difference calculator 62 calculates the difference between the field current command IfC and the field current If. The PI control unit 64 generates a field voltage command VfC using a difference between the field current command IfC and the field current If. The driver 66 generates a switching signal Swf for the inverter 68 using the field voltage command VfC. The inverter 68 turns on / off the internal switching element by the switching signal Swf, and generates a voltage Vf applied to the field winding 18.
 位置推定部80は、界磁電流Ifを用いて、ロータ16の初期位置の位相θ^を推定する。位置推定部80は、サーチ信号重畳部82と、ハイパスフィルタ84と、ゼロクロス検知部86と、ロータ位置推定部88と、補償部90と、加算器92と、を備える。 The position estimation unit 80 estimates the phase θ ^ of the initial position of the rotor 16 using the field current If. The position estimation unit 80 includes a search signal superimposing unit 82, a high-pass filter 84, a zero cross detection unit 86, a rotor position estimation unit 88, a compensation unit 90, and an adder 92.
 サーチ信号重畳部82は、ロータ16の回転の立ち上がりの一定期間、サーチ信号IdS、IqSを生成し、3相巻線電流制御部40の加算器41、42に送る。本実施形態では、サーチ信号IdS、IqSは、振幅が一定、且つ電気位相が一定周期で変化する信号であり、例えば正弦波または余弦波の電流信号である。サーチ信号IdS、IqSの周期は、例えば、1ms~10ms(100Hz~1kHz)であり、より好ましくは4ms~6msである。ロータ16の回転の立ち上がりの一定期間は、例えば、サーチ信号IdS、IqSの周期の数で、3~4周期の期間である。このように、本実施形態では、ロータ16の回転の立ち上がりの一定期間、例えば、サーチ信号IdS、IqSの周期の数で、3~4周期の期間のみ、3相巻線14u、14v、14wにサーチ信号IdS、IqSに応じた電圧が重畳される。 The search signal superimposing unit 82 generates search signals IdS and IqS for a certain period of the rising of the rotation of the rotor 16 and sends them to the adders 41 and 42 of the three-phase winding current control unit 40. In the present embodiment, the search signals IdS and IqS are signals whose amplitude is constant and whose electrical phase changes at a constant cycle, for example, current signals of sine waves or cosine waves. The period of the search signals IdS and IqS is, for example, 1 ms to 10 ms (100 Hz to 1 kHz), and more preferably 4 ms to 6 ms. The fixed period of the rise of the rotation of the rotor 16 is, for example, a period of 3 to 4 periods, which is the number of periods of the search signals IdS and IqS. As described above, in the present embodiment, the three- phase windings 14u, 14v, and 14w are applied to the three- phase windings 14u, 14v, and 14w only for a certain period of the rise of the rotation of the rotor 16, for example, the number of periods of the search signals IdS and IqS. Voltages corresponding to the search signals IdS and IqS are superimposed.
 ハイパスフィルタ84は、界磁電流センサ70が測定した界磁電流Ifからサーチ信号IdS、IqSに対応した周波数成分の電流信号Ifacを取り出す。ゼロクロス検知部86は、電流信号Ifacのゼロクロス点を検知する。ゼロクロス点とは、電流信号Ifacの値がゼロとなる点である。ロータ位置推定部88は、ゼロクロス点の位置およびゼロクロス点前後の電流信号Ifacの変化を用いて、ロータ16の初期位置を推定する。補償部90は、サーチ信号IdS、IqSの周波数と、ハイパスフィルタ84の時定数と、ロータ16の時定数と、による位相変化を補償する。加算器92は、ロータ位置推定部88が推定したロータ16の初期位置の位相θ^に、補償部90による位相変化を加えて、ロータ16の初期位置の位相を算出する。 The high pass filter 84 extracts a current signal Ifac having a frequency component corresponding to the search signals IdS and IqS from the field current If measured by the field current sensor 70. The zero cross detector 86 detects the zero cross point of the current signal Ifac. The zero cross point is a point where the value of the current signal Ifac becomes zero. The rotor position estimation unit 88 estimates the initial position of the rotor 16 using the position of the zero cross point and the change in the current signal Ifac before and after the zero cross point. The compensation unit 90 compensates for a phase change caused by the frequencies of the search signals IdS and IqS, the time constant of the high-pass filter 84, and the time constant of the rotor 16. The adder 92 calculates the phase of the initial position of the rotor 16 by adding the phase change by the compensation unit 90 to the phase θ ^ of the initial position of the rotor 16 estimated by the rotor position estimation unit 88.
 図2は、ロータ位置を推定するフローチャートである。ステップS100では、ロータ16を任意の角度に仮設定した上で、3相巻線電流制御部40と界磁電流制御部60は、回転機10の起動を開始する。 FIG. 2 is a flowchart for estimating the rotor position. In step S <b> 100, the rotor 16 is temporarily set to an arbitrary angle, and then the three-phase winding current control unit 40 and the field current control unit 60 start the rotation machine 10.
 ステップS110では、サーチ信号重畳部82は、3相巻線14u、14v、14wに印加する電圧Vu、Vv、Vwに、振幅が一定、且つ電気位相が一定周期で変化するサーチ信号IdS、IqSを発生し、d軸電流指令IdCとq軸電流指令IqCに重畳させることで、3相巻線14u、14v、14wの電流にサーチ信号IdS、IqSを重畳させる。 In step S110, the search signal superimposing unit 82 applies the search signals IdS and IqS whose amplitude is constant and electrical phase changes at a constant cycle to the voltages Vu, Vv and Vw applied to the three- phase windings 14u, 14v and 14w. The search signals IdS and IqS are superimposed on the currents of the three- phase windings 14u, 14v, and 14w by being generated and superimposed on the d-axis current command IdC and the q-axis current command IqC.
 図3は、サーチ信号とその位相を示す説明図である。図3の下段のグラフは、d軸のサーチ信号IdSとq軸のサーチ信号IqSを示すグラフであり、上段のグラフは、サーチ信号IdSとサーチ信号IqSの位相を示すグラフである。本実施形態では、サーチ信号IdS、IqSとして正弦波または余弦波の電流信号を用い、サーチ信号IdS、IqSは、振幅が一定、且つ電気位相が一定周期で変化する信号である。 FIG. 3 is an explanatory diagram showing the search signal and its phase. The lower graph in FIG. 3 is a graph showing the d-axis search signal IdS and the q-axis search signal IqS, and the upper graph is a graph showing the phases of the search signal IdS and the search signal IqS. In the present embodiment, sine wave or cosine wave current signals are used as the search signals IdS and IqS, and the search signals IdS and IqS are signals whose amplitudes are constant and electrical phases change at a constant cycle.
 図2のステップS120では、界磁電流センサ70は、界磁電流Ifを取得する。 2, the field current sensor 70 acquires the field current If.
 図4は、ロータ16を仮設定した位置の誤差がほぼ無い場合における、d軸電流とd軸電流の位相およびサーチ信号IdS、IqSを重畳したときの界磁電流Ifを示す説明図である。図4の下段のグラフは、ステータ12のd軸電流と、その位相を示している。図4の上段のグラフは、界磁電流Ifを示している。ロータ16に界磁巻線18を有し、ステータ12に3相巻線14u、14v、14wを有する回転機10では、ロータ16の界磁巻線18は、ステータ12のd軸とのみ干渉し、q軸とは干渉しない。サーチ信号IdS、IqSを重畳したときの界磁電流Ifは、回転機10の起動時には、上段のグラフに示すように、d軸のサーチ電流IdSに同期して増減しながら上昇していく。 FIG. 4 is an explanatory diagram showing the phase of the d-axis current and the d-axis current and the field current If when the search signals IdS and IqS are superimposed when there is almost no error in the position where the rotor 16 is temporarily set. The lower graph of FIG. 4 shows the d-axis current of the stator 12 and its phase. The upper graph in FIG. 4 shows the field current If. In the rotating machine 10 having the field winding 18 on the rotor 16 and the three- phase windings 14 u, 14 v, 14 w on the stator 12, the field winding 18 of the rotor 16 interferes only with the d-axis of the stator 12. Does not interfere with the q axis. The field current If when the search signals IdS and IqS are superimposed rises while increasing or decreasing in synchronization with the d-axis search current IdS when the rotating machine 10 is started, as shown in the upper graph.
 図2のステップS130では、界磁電流Ifが図4のピーク値P1、P2、P3、P4、P5、P6となるときの位置およびその位置における位相を取得する。ここで、界磁電流Ifのピーク値P1、P2、P3、P4、P5、P6は、界磁電流Ifが増減しながら上昇していくときの極小値、極大値である。ここで、界磁電流Ifがピーク値(極小値または極大値)となったか否かは、その前後の界磁電流Ifの変化を見て判断しなければならず、判断が難しい。そこで、本実施形態では、以下に説明するように、ハイパスフィルタ84を用いて、電流信号Ifacを抽出し、電流信号Ifacがゼロとなるゼロクロス点を用いて界磁電流Ifがピーク値(極小値または極大値)となる位置およびその位置における位相を取得する。 2, the position when the field current If reaches the peak values P1, P2, P3, P4, P5, and P6 in FIG. 4 and the phase at the position are acquired. Here, the peak values P1, P2, P3, P4, P5, and P6 of the field current If are the minimum value and the maximum value when the field current If increases while increasing or decreasing. Here, it is difficult to determine whether or not the field current If has reached a peak value (minimum value or maximum value) by looking at changes in the field current If before and after that. Therefore, in the present embodiment, as will be described below, the current signal Ifac is extracted using the high-pass filter 84, and the field current If has a peak value (local minimum value) using a zero cross point at which the current signal Ifac becomes zero. Alternatively, the position where the maximum value is obtained and the phase at that position are acquired.
 図5は、ロータ16を仮設定した位置の誤差がほぼ無い場合における、サーチ信号IdS、IqSを重畳したときの電流信号Ifacおよびd軸電流位相を示す説明図である。図5の上段のグラフは、電流信号Ifacを示し、下段のグラフは、d軸電流位相を示す。電流信号Ifacは、サーチ信号と同期し、ほぼ正弦波の形状を有している。図5の上段のグラフから分かるように、電流信号Ifacがゼロとなるゼロクロス点Z1、Z2、Z3近傍では、電流信号Ifacがプラスからマイナス、あるいは、マイナスからプラスに遷移するため、ゼロクロス検知部86は、電流信号Ifac値からゼロクロス点Z1、Z2、Z3の位置を容易に取得できる。なお、なお、図5に示す様に、電流信号Ifacが、オフセットを有している場合がある。電流信号Ifacが、オフセットを有しているとは、電流信号Ifacに直流成分が加わり、電流信号Ifacがプラス側あるいはマイナス側にシフトしていることを意味する。図5では、電流信号Ifacにオフセットがあるとして、グラフを描いている。ゼロクロス検知部86は、電流信号Ifacにオフセットがある場合においても、ゼロクロス点Z1、Z2、Z3等を容易に判断できる。 FIG. 5 is an explanatory diagram showing the current signal Ifac and the d-axis current phase when the search signals IdS and IqS are superimposed when there is almost no error in the position where the rotor 16 is temporarily set. The upper graph in FIG. 5 shows the current signal Ifac, and the lower graph shows the d-axis current phase. The current signal Ifac is synchronized with the search signal and has a substantially sine wave shape. As can be seen from the upper graph in FIG. 5, the current signal Ifac transitions from plus to minus or minus to plus near the zero cross points Z1, Z2, and Z3 at which the current signal Ifac becomes zero. Can easily obtain the positions of the zero-cross points Z1, Z2, and Z3 from the current signal Ifac value. Note that, as shown in FIG. 5, the current signal Ifac may have an offset. The fact that the current signal Ifac has an offset means that a direct current component is added to the current signal Ifac and the current signal Ifac is shifted to the plus side or the minus side. In FIG. 5, the graph is drawn on the assumption that there is an offset in the current signal Ifac. The zero-cross detection unit 86 can easily determine the zero-cross points Z1, Z2, Z3, etc. even when the current signal Ifac has an offset.
 ゼロクロス検知部86は、次に、図5の下段のグラフを用いて、電流信号Ifacがゼロクロス点Z1、Z2となったときの位相PhZ1、PhZ2を容易に求めることができる。ここで、電流信号Ifacがオフセットを有する正弦波の形状を有する場合、ピーク(極大値または極小値)を中心にゼロクロス点までの形状は、対称となる。したがって、ゼロクロス検知部86は、2つのゼロクロス点Z1、Z2に挟まれたピークP1の位相PhP1を、ゼロクロス点Z1の位相PhZ1と、ゼロクロス点Z2の位相PhZ2の中間の位相として求めることができる。すなわち、ゼロクロス検知部86は、(PhZ1+PhZ2)/2の演算をすることで、ピークP1の位相PhP1を容易に求めることができる。なお、電流信号Ifacにおいて、ピークを中心に該ピークを挟む2つのゼロクロス点までの形状は、対称となるため、電流信号Ifacのオフセットがどの値でも、2つのゼロクロス点Z1、Z2に挟まれたピークP1の位相PhP1は変わらない。例えば、図5において、オフセットが小さくなった場合には、ゼロクロス点Z1の位相PhZ1は小さくなるが、ゼロクロス点Z2の位相PhZ2が大きくなるので、結果として(PhZ1+PhZ2)/2の値は、変わらない。このように、ゼロクロス検知部86は、オフセットの値がどの値であっても、ピークを挟む2つのゼロクロス点の位相を用いて、界磁電流Ifがピークとなる位相を容易に求めることができる。 Next, the zero-cross detection unit 86 can easily obtain the phases PhZ1 and PhZ2 when the current signal Ifac becomes the zero-cross points Z1 and Z2 using the lower graph of FIG. Here, when the current signal Ifac has a sine wave shape having an offset, the shape up to the zero cross point with respect to the peak (maximum value or minimum value) is symmetric. Therefore, the zero cross detection unit 86 can obtain the phase PhP1 of the peak P1 sandwiched between the two zero cross points Z1 and Z2 as an intermediate phase between the phase PhZ1 of the zero cross point Z1 and the phase PhZ2 of the zero cross point Z2. That is, the zero cross detection unit 86 can easily obtain the phase PhP1 of the peak P1 by calculating (PhZ1 + PhZ2) / 2. In addition, in the current signal Ifac, since the shape up to the two zero cross points sandwiching the peak around the peak is symmetrical, the offset of the current signal Ifac is sandwiched between the two zero cross points Z1 and Z2 regardless of the value. The phase PhP1 of the peak P1 does not change. For example, in FIG. 5, when the offset becomes small, the phase PhZ1 of the zero cross point Z1 becomes small, but the phase PhZ2 of the zero cross point Z2 becomes large. As a result, the value of (PhZ1 + PhZ2) / 2 does not change. . As described above, the zero-cross detection unit 86 can easily obtain the phase at which the field current If reaches a peak by using the phase of two zero-cross points sandwiching the peak, regardless of the offset value. .
 図2のステップS140では、ロータ位置推定部88は、界磁電流Ifのピーク値が、電流位相90度または270度のいずれかで生じることを利用して、ロータ16の初期位置を推定する。なお、ロータ位置推定部88は、界磁電流Ifのピーク値が、位相90度あるいは270度のいずれであるかを、ゼロクロス点Z1、Z2における電流信号Ifacの傾きにより決定する。具体的には、ゼロクロス点において、電流信号Ifacの傾きがマイナスであるときを約0度、プラスであるときを約180度とし、電流信号Ifacのピーク値が極小値であるときを約90度、極大値であるときを約270度とすることで、ロータ16のN極とS極の向きを特定できる。ロータ位置推定部88は、図2のステップS100で仮設定したロータ16の角度と、2つのゼロクロス点の位相を用いて算出したピークP1の位相PhP1である90度または270度との差をロータ16の初期位置の位相θ^と推定する。 2, the rotor position estimation unit 88 estimates the initial position of the rotor 16 by utilizing the fact that the peak value of the field current If occurs at either the current phase 90 degrees or 270 degrees. The rotor position estimation unit 88 determines whether the peak value of the field current If is 90 degrees or 270 degrees based on the slope of the current signal Ifac at the zero cross points Z1 and Z2. Specifically, at the zero cross point, when the slope of the current signal Ifac is negative, it is about 0 degree, when it is positive, it is about 180 degrees, and when the peak value of the current signal Ifac is a minimum value, it is about 90 degrees. By setting the maximum value to about 270 degrees, the direction of the N pole and the S pole of the rotor 16 can be specified. The rotor position estimator 88 calculates the difference between the angle of the rotor 16 temporarily set in step S100 of FIG. 2 and the phase PhP1 of 90 degrees or 270 degrees of the peak P1 calculated using the phases of the two zero cross points. It is estimated that the phase θ ^ of 16 initial positions.
 ステップS150では、加算器92は、ロータ位置推定部88が推定したロータ16の初期位置の位相に対して、補償部90からの信号を加算して、位相の遅れを補償する。位相の遅れは、ハイパスフィルタ84の時定数と、ロータ16の界磁巻線18の時定数を用いて、容易に算出できる。ハイパスフィルタ84の時定数は、サーチ信号IdS、IqSの周波数と、ハイパスフィルタ84を構成する部品のインダクタンス、キャパシタンスを用いて算出できる。界磁巻線18の時定数は、サーチ信号IdS、IqSの周波数と、界磁巻線18のインダクタンス、キャパシタンスを用いて算出できる。なお、ハイパスフィルタ84の時定数およびロータ16の界磁巻線18の時定数による位相の変化を補償しない場合には、補償部90と加算器92は、省略可能である。 In step S150, the adder 92 adds the signal from the compensator 90 to the phase of the initial position of the rotor 16 estimated by the rotor position estimator 88 to compensate for the phase delay. The phase delay can be easily calculated using the time constant of the high-pass filter 84 and the time constant of the field winding 18 of the rotor 16. The time constant of the high-pass filter 84 can be calculated using the frequencies of the search signals IdS and IqS, and the inductance and capacitance of the components that make up the high-pass filter 84. The time constant of the field winding 18 can be calculated using the frequencies of the search signals IdS and IqS and the inductance and capacitance of the field winding 18. When the phase change due to the time constant of the high-pass filter 84 and the time constant of the field winding 18 of the rotor 16 is not compensated, the compensator 90 and the adder 92 can be omitted.
 ステップS160では、位置推定部80は、回転機10の起動が完了したか否かを判断する。位置推定部80は、回転機10の起動を開始した後、サーチ信号IdS、IqSを予め定めた回数、例えば3~4回重畳させた場合には、回転機10の起動が完了したと判断する。位置推定部80は、回転機10の起動が完了していない場合には、ステップS110に戻る。 In step S160, the position estimation unit 80 determines whether the activation of the rotating machine 10 is completed. The position estimation unit 80 determines that the start of the rotating machine 10 is completed when the search signals IdS and IqS are superimposed a predetermined number of times, for example, 3 to 4 times after starting the starting of the rotating machine 10. . If the activation of the rotating machine 10 is not completed, the position estimation unit 80 returns to step S110.
 図6は、ロータ16を仮設定した位置に誤差がある場合における、d軸電流Idとd軸電流の位相およびサーチ信号IdS、IqSを重畳したときの界磁電流Ifを示す説明図である。図7は、ロータ16を仮設定した位置に誤差がある場合における、サーチ信号IdS、IqSを重畳したときの電流信号Ifacおよびd軸電流位相を示す説明図である。図6、図7と、図4、図5と、を比較すると、ロータ16を仮設定した位置に誤差があるため、d軸電流位相がずれている。 FIG. 6 is an explanatory diagram showing the phase of the d-axis current Id and the d-axis current and the field current If when the search signals IdS and IqS are superimposed when there is an error in the position where the rotor 16 is temporarily set. FIG. 7 is an explanatory diagram showing the current signal Ifac and the d-axis current phase when the search signals IdS and IqS are superimposed when there is an error in the position where the rotor 16 is temporarily set. Comparing FIG. 6 and FIG. 7 with FIG. 4 and FIG. 5, the d-axis current phase is shifted because there is an error in the position where the rotor 16 is temporarily set.
 ロータ16を仮設定した位置に誤差がある場合も、ロータ16を仮設定した位置に誤差がない場合と同様に、電流信号Ifacのゼロクロス点や電流信号Ifacがピーク値となるときの位相を求めることができる。ここで、図4、図5では、電流信号Ifacがピーク値(極小値)となるときの位相は、約90度であるが、図6、図7では、電流信号Ifacがピーク値(極小値)となるときの位相は、約90度から大きくずれている。90度と電流信号Ifacがピーク値(極小値)となるときの位相との差分が、ロータ16の初期位置の位相θ^、すなわち、ロータ16を仮設定したときの位置の位相となる。すなわち、図4、図5に示す例では、ロータ16の初期位置にほぼ誤差がないため、ピーク値(極小値)の位相は約90度となっている。一方、図6、図7に示す例では、ロータ16の初期位置の位置誤差が大きいため、ピーク値(極小値)の位相はロータ16の初期位置に位置誤差分だけ90度からずれている。このように、本実施形態によれば、ロータ16の初期位置に位置誤差があっても、無くても、ロータ16の初期位置の位相θ^を容易に推定できる。 Even when there is an error in the position where the rotor 16 is temporarily set, as in the case where there is no error in the position where the rotor 16 is temporarily set, the zero-cross point of the current signal Ifac and the phase when the current signal Ifac reaches the peak value are obtained. be able to. Here, in FIGS. 4 and 5, the phase when the current signal Ifac has a peak value (minimum value) is about 90 degrees, but in FIGS. 6 and 7, the current signal Ifac has a peak value (minimum value). ) Is greatly shifted from about 90 degrees. The difference between 90 degrees and the phase when the current signal Ifac has a peak value (minimum value) is the phase θ ^ of the initial position of the rotor 16, that is, the phase of the position when the rotor 16 is temporarily set. That is, in the example shown in FIGS. 4 and 5, since there is almost no error in the initial position of the rotor 16, the phase of the peak value (minimum value) is about 90 degrees. On the other hand, in the example shown in FIGS. 6 and 7, since the position error of the initial position of the rotor 16 is large, the phase of the peak value (minimum value) is shifted from 90 degrees to the initial position of the rotor 16 by the position error. Thus, according to the present embodiment, the phase θ ^ of the initial position of the rotor 16 can be easily estimated regardless of whether or not the initial position of the rotor 16 has a position error.
 以上、本実施形態によれば、ステータ12に対するロータ16の位置について任意の角度で仮設定を行った上で、サーチ信号重畳部82にサーチ信号IdS、IqSを3相巻線14u、14v、14wに重畳させ、界磁電流Ifを用いてステータ12に対するロータ16の位置を推定する位置推定部80を備えるので、突極性を有する必要が無く、簡素の手法で容易且つ高精度でロータ16の初期位置の位相θ^を推定できる。 As described above, according to the present embodiment, after temporarily setting the position of the rotor 16 with respect to the stator 12 at an arbitrary angle, the search signals IdS and IqS are supplied to the search signal superimposing unit 82 as the three- phase windings 14u, 14v, and 14w. The position estimation unit 80 for estimating the position of the rotor 16 with respect to the stator 12 using the field current If is provided, so that it is not necessary to have saliency, and the initial stage of the rotor 16 can be easily and accurately performed with a simple method. The phase θ of the position can be estimated.
 本実施形態によれば、サーチ信号IdS、IqSは、正弦波または余弦波の電流信号、であるので、推定d軸、推定q軸にバランス良くサーチ信号を与えることができ、高精度にロータ16の位置推定を行うことができる。また、サーチ信号IdS、IqSが正弦波または余弦波の電流信号である場合、界磁電流Ifに高次高調波電流が発生することを抑制できる。 According to the present embodiment, since the search signals IdS and IqS are sine wave or cosine wave current signals, the search signals can be given in a balanced manner to the estimated d-axis and the estimated q-axis, and the rotor 16 can be accurately obtained. Can be estimated. Further, when the search signals IdS and IqS are sine wave or cosine wave current signals, generation of high-order harmonic current in the field current If can be suppressed.
 界磁電流の位相とロータの位置とは対応している。本実施形態によれば、位置推定部80は、界磁電流のピーク値の位相を用いてロータの初期位置の位相θ^を容易に推定できる。 The phase of the field current corresponds to the position of the rotor. According to the present embodiment, the position estimating unit 80 can easily estimate the phase θ ^ of the initial position of the rotor using the phase of the peak value of the field current.
 本実施形態によれば、位置推定部80は、ハイパスフィルタ84を用いて電流成分Ifacを抽出し、電流成分Ifacのピーク値の位相を抽出する。電流成分Ifacのピーク値の位相と、界磁電流Ifのピーク値の位相は同じであるので、界磁電流Ifのピーク値の位相を容易に取得できる。 According to the present embodiment, the position estimation unit 80 extracts the current component Ifac using the high-pass filter 84, and extracts the phase of the peak value of the current component Ifac. Since the phase of the peak value of the current component Ifac and the phase of the peak value of the field current If are the same, the phase of the peak value of the field current If can be easily obtained.
 本実施形態によれば、位置推定部80は、電流信号Ifcがゼロクロスする隣接する2つのゼロクロス点の位相の中間の位相をピーク値の位相とする。ピーク値の位相を求めるよりも、ゼロクロス点の位相を求める方が容易である。また、電流信号にオフセットがあっても、オフセットの影響を受けずにピーク値の位相を取得できる。 According to the present embodiment, the position estimation unit 80 sets a phase intermediate between the phases of two adjacent zero cross points where the current signal Ifc zero-crosses as a peak value phase. It is easier to obtain the phase of the zero cross point than to obtain the phase of the peak value. Even if there is an offset in the current signal, the phase of the peak value can be acquired without being affected by the offset.
・変形例:
 上記実施形態では、サーチ信号IdS、IqSとして、正弦波または余弦波の電流信号を用いたが、正弦波または余弦波の電圧信号であってもよい。サーチ信号IdS、IqSが電圧信号の場合、加算器41、42の代わりに、PI制御部46、48と、3相電圧指令変換部50と、の間に加算器が設けられてもよい。また、振幅が一定、且つ電気位相が一定周期で変化する信号であれば、正弦波または余弦波以外の信号、例えば三角波、矩形波の電流信号あるいは電圧信号であってもよい。
・ Modification:
In the above embodiment, a sine wave or cosine wave current signal is used as the search signals IdS and IqS, but a sine wave or cosine wave voltage signal may be used. When the search signals IdS and IqS are voltage signals, an adder may be provided between the PI control units 46 and 48 and the three-phase voltage command conversion unit 50 instead of the adders 41 and 42. Further, a signal other than a sine wave or cosine wave, for example, a current signal or a voltage signal of a triangular wave or a rectangular wave may be used as long as the signal has a constant amplitude and an electric phase that changes at a constant cycle.
 上記実施形態では、ハイパスフィルタ84を用いて、電流信号Ifacを取得し、電流信号Ifacのゼロクロス点を用いて、ピーク値の位相を求めているが、界磁電流Ifを解析して、界磁電流Ifのピーク値を求めてもよい。 In the above embodiment, the current signal Ifac is obtained using the high-pass filter 84, and the phase of the peak value is obtained using the zero cross point of the current signal Ifac. However, the field current If is analyzed to obtain the field The peak value of the current If may be obtained.
 上記実施形態では、位置推定部80のゼロクロス検知部86は、電流信号Ifacがゼロとなるゼロクロス点を求め、2つのゼロクロス点の中間を求めることで、ピーク値の位相を求めている。ゼロクロス検知部86は、電流信号Ifacを微分する微分回路を備え、微分値がゼロクロスするときの電流信号Ifacの位相をピーク値の位相としても良い。電流信号Ifacのピーク値は、極大値または極小値であるため、ピーク値において、電流信号Ifacの微分値はゼロとなる。そのため、微分値がゼロクロスする位相をピーク値の位相とすることができる。 In the above embodiment, the zero cross detection unit 86 of the position estimation unit 80 obtains the zero cross point where the current signal Ifac becomes zero, and obtains the phase of the peak value by obtaining the middle of the two zero cross points. The zero cross detector 86 may include a differentiating circuit for differentiating the current signal Ifac, and the phase of the current signal Ifac when the differential value is zero crossed may be the peak value phase. Since the peak value of the current signal Ifac is a maximum value or a minimum value, the differential value of the current signal Ifac is zero at the peak value. Therefore, the phase at which the differential value zero-crosses can be set as the peak value phase.
 上記実施形態では、位置推定部80は、回転機10の起動時における界磁電流Ifを立ち上げる期間内にロータ16の位置を推定しているが、回転機10の起動後の通常運転時にサーチ信号IdS、IqSを重畳してロータ16の位置を推定してもよい。ただし、位置推定部80は、回転機10の起動時における界磁電流Ifを立ち上げる期間内にサーチ信号IdS、IqSを重畳してロータ16の位置を推定すれば、ロータ16の位置を推定するための特別な期間を付与すること無くロータ16の位置の位相θ^を推定できる。 In the above embodiment, the position estimation unit 80 estimates the position of the rotor 16 within the period in which the field current If is started up when the rotating machine 10 is started, but the search is performed during normal operation after the starting of the rotating machine 10. The position of the rotor 16 may be estimated by superimposing the signals IdS and IqS. However, the position estimation unit 80 estimates the position of the rotor 16 if the position of the rotor 16 is estimated by superimposing the search signals IdS and IqS within the period in which the field current If is raised when the rotating machine 10 is started. Therefore, the phase θ ^ of the position of the rotor 16 can be estimated without giving a special period.
 上記実施形態では、サーチ信号重畳部82は、サーチ信号IdS、IqSを加算器41、42に入力することで、3相巻線14u、14v、14wに流れる電流Iu、Iv、Iwにサーチ信号IdS、IqSを重畳しているが、サーチ信号IdS、IqSを電流指令生成部30に入力することで、3相巻線14u、14v、14wに流れる電流Iu、Iv、Iwにサーチ信号IdS、IqSを重畳してもよい。 In the above-described embodiment, the search signal superimposing unit 82 inputs the search signals IdS and IqS to the adders 41 and 42, whereby the search signals IdS and IvS are supplied to the currents Iu, Iv, and Iw flowing in the three- phase windings 14u, 14v, and 14w. , IqS is superimposed, but by inputting the search signals IdS, IqS to the current command generator 30, the search signals IdS, IqS are applied to the currents Iu, Iv, Iw flowing in the three- phase windings 14u, 14v, 14w. You may superimpose.
 上記実施形態では、ステータ12は、3相巻線14u、14v、14wを備えるものとして説明したが、巻線は、3相以上の多相巻線であってもよい。巻線は、例えば、4相、5相の巻線であってもよい。 In the above embodiment, the stator 12 is described as including the three- phase windings 14u, 14v, and 14w, but the winding may be a multi-phase winding of three or more phases. The winding may be, for example, a four-phase or five-phase winding.
 本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。例えば、上記実施形態においてハードウェアにより実現した構成の一部は、ソフトウェアにより実現することができる。また、ソフトウェアにより実現している構成の少なくとも一部は、ディスクリートな回路構成により実現することも可能である。 The present invention is not limited to the above-described embodiment, and can be realized with various configurations without departing from the spirit of the present invention. For example, the technical features of the embodiments corresponding to the technical features in each embodiment described in the summary section of the invention are intended to solve part or all of the above-described problems, or part of the above-described effects. Or, in order to achieve the whole, it is possible to replace or combine as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate. For example, a part of the configuration realized by hardware in the above embodiment can be realized by software. Further, at least a part of the configuration realized by software can be realized by a discrete circuit configuration.
 本発明は、以下の形態として実現することが可能である。 The present invention can be realized as the following forms.
 本発明の一形態によれば、ロータ(16)に界磁巻線(18)を有し、ステータ(12)に3相以上の多相巻線(14u、14v、14w)を有する回転機(10)の制御装置(20)が提供される。この制御装置は、前記多相巻線に、振幅が一定、且つ電気位相が一定周期で変化するサーチ信号(IdS、IqS)を重畳するサーチ信号重畳部(82)と、前記界磁巻線に流れる界磁電流を検知する界磁電流センサ(70)と、前記ステータに対する前記ロータの位置について任意の角度で仮設定を行った上で、前記サーチ信号重畳部を用いて前記サーチ信号を前記多相巻線に重畳させ、前記界磁電流を用いて前記ステータに対する前記ロータの位置を推定する位置推定部(80)と、を備える。この形態によれば、位置推定部は、界磁電流を用いてロータの位置を推定するので、突極性を有する必要が無く、簡素の手法で容易且つ高精度で磁極の初期位置の位相を推定できる。 According to one aspect of the present invention, a rotating machine (3) having a multi-phase winding (14u, 14v, 14w) having three or more phases on a stator (12) is provided on the rotor (16). A control device (20) of 10) is provided. The control device includes a search signal superimposing unit (82) for superimposing a search signal (IdS, IqS) having a constant amplitude and a constant electric phase on the multi-phase winding, and the field winding. A field current sensor (70) for detecting a flowing field current and a position of the rotor with respect to the stator are temporarily set at an arbitrary angle, and then the search signal is output to the multipoint using the search signal superimposing unit. A position estimation unit (80) superposed on a phase winding and estimating the position of the rotor relative to the stator using the field current. According to this aspect, since the position estimation unit estimates the position of the rotor using the field current, it is not necessary to have saliency, and the phase of the initial position of the magnetic pole is estimated easily and with high accuracy by a simple method. it can.
 上記形態において、前記サーチ信号は、正弦波または余弦波の電流信号、または、正弦波または余弦波の電圧信号であってもよい。この形態によれば、推定d軸、推定q軸にバランス良くサーチ信号を与えることができ、高精度にロータの位置推定を行うことができる。また、正弦波または余弦波の電流信号あるいは電圧信号であれば、界磁電流に高次高調波電流が発生することを抑制できる。 In the above embodiment, the search signal may be a sine wave or cosine wave current signal, or a sine wave or cosine wave voltage signal. According to this embodiment, search signals can be given to the estimated d-axis and the estimated q-axis in a well-balanced manner, and the rotor position can be estimated with high accuracy. Further, if a current signal or voltage signal is a sine wave or cosine wave, it is possible to suppress the generation of a high-order harmonic current in the field current.
 上記形態において、前記位置推定部は、前記界磁電流(If)のピーク値を用いて前記ステータに対する前記ロータの位置を推定してもよい。界磁電流の位相とロータの位置とは対応しているので、位置推定部は、界磁電流のピーク値を用いてロータの初期位置の位相を容易に推定できる。 In the above embodiment, the position estimation unit may estimate the position of the rotor with respect to the stator using a peak value of the field current (If). Since the phase of the field current corresponds to the position of the rotor, the position estimation unit can easily estimate the phase of the initial position of the rotor using the peak value of the field current.
 上記形態において、前記位置推定部は、さらに、前記界磁電流から前記サーチ信号に対応した周波数成分の電流信号(Ifac)を抽出するフィルタ(84)を備えてもよい。この形態によれば、界磁電流のピーク値を容易に取得できる。 In the above embodiment, the position estimation unit may further include a filter (84) for extracting a current signal (Ifac) having a frequency component corresponding to the search signal from the field current. According to this embodiment, the peak value of the field current can be easily obtained.
 上記形態において、前記位置推定部は、前記電流信号がゼロクロスする隣接する2つの位相の中間の位相を前記ピーク値の位相としてもよい。この形態によれば、電流信号にオフセットがあっても、オフセットの影響を受けずにピーク値の位相を取得できる。 In the above embodiment, the position estimation unit may set the phase of the peak value to an intermediate phase between two adjacent phases at which the current signal crosses zero. According to this aspect, even if there is an offset in the current signal, the peak value phase can be obtained without being affected by the offset.
 上記形態において、前記位置推定部は、前記電流信号を微分し、微分値がゼロクロスする位相を前記ピーク値の位相としてもよい。電流信号のピーク値は、極大値または極小値であるため、ピーク値において、微分値はゼロとなる。この形態によれば、位置推定部は、電流信号を微分して得られる微分値がゼロクロスする位相をピーク値の位相とすることができる。 In the above embodiment, the position estimation unit may differentiate the current signal and set a phase at which the differential value is zero-crossed as a phase of the peak value. Since the peak value of the current signal is a maximum value or a minimum value, the differential value is zero at the peak value. According to this aspect, the position estimation unit can set the phase at which the differential value obtained by differentiating the current signal zero-crosses is the phase of the peak value.
 上記形態において、前記位置推定部は、前記ピーク値の位相を90度もしくは270度とし、任意の位置で仮設定した角度と、前記ピーク値の位相との差分を前記ロータの初期位置としてもよい。この形態によれば、特別な手段を講じること無くN極、S極を判別できる。 In the above aspect, the position estimation unit may set the phase of the peak value to 90 degrees or 270 degrees, and may set a difference between an angle temporarily set at an arbitrary position and the phase of the peak value as an initial position of the rotor. . According to this embodiment, it is possible to determine the N pole and the S pole without taking special measures.
 上記形態において、前記位置推定部は、前記電流信号のゼロクロス点における傾きに応じて、仮設定した角度が90度または270度のいずれかであるかを判別してもよい。この形態によれば、特別な手段を講じること無くロータのN極、S極の向きを判別できる。 In the above embodiment, the position estimation unit may determine whether the temporarily set angle is 90 degrees or 270 degrees according to the slope of the current signal at the zero cross point. According to this embodiment, it is possible to determine the directions of the N pole and S pole of the rotor without taking special measures.
 上記形態において、前記位置推定部は、前記サーチ信号の周波数と、前記フィルタの時定数と、前記ロータの前記界磁巻線の時定数と、を用いて位相の変化を補償する補償部を備えてもよい。この形態によれば、位置推定部は、サーチ信号の周波数と、フィルタの時定数と、ロータの前記界磁巻線の時定数と、を用いて位相の変化を補償するので、ロータの位置の位相を高精度で推定できる。 In the above aspect, the position estimation unit includes a compensation unit that compensates for a phase change using the frequency of the search signal, the time constant of the filter, and the time constant of the field winding of the rotor. May be. According to this aspect, the position estimation unit compensates for the phase change using the frequency of the search signal, the time constant of the filter, and the time constant of the field winding of the rotor. The phase can be estimated with high accuracy.
 上記形態において、前記位置推定部は、前記回転機をオフからオンにする起動時における前記界磁電流を立ち上げる期間内に前記ロータの位置を推定してもよい。この形態によれば、ロータの位置を推定するための特別な期間を付与すること無くロータの初期位置の位相を推定できる。 In the above embodiment, the position estimation unit may estimate the position of the rotor within a period in which the field current is raised at the time of starting to turn on the rotating machine. According to this aspect, the phase of the initial position of the rotor can be estimated without providing a special period for estimating the position of the rotor.
 なお、本発明は、種々の形態で実現することが可能であり、例えば、回転機の制御装置の他、回転機のロータ位置推定方法等の形態で実現することができる。 Note that the present invention can be realized in various forms, for example, in the form of a rotor position estimation method for a rotating machine, in addition to a rotating machine control device.

Claims (11)

  1.  ロータ(16)に界磁巻線(18)を有し、ステータ(12)に3相以上の多相巻線(14u、14v、14w)を有する回転機(10)の制御装置(20)であって、
     前記多相巻線に、振幅が一定、且つ電気位相が一定周期で変化するサーチ信号(IdS、IqS)を重畳するサーチ信号重畳部(82)と、
     前記界磁巻線に流れる界磁電流を検知する界磁電流センサ(70)と、
     前記ステータに対する前記ロータの位置について任意の角度で仮設定を行った上で、前記サーチ信号重畳部を用いて前記サーチ信号を前記多相巻線に重畳させ、前記界磁電流を用いて前記ステータに対する前記ロータの位置を推定する位置推定部(80)と、
     を備える、制御装置。
    A control device (20) for a rotating machine (10) having a field winding (18) in a rotor (16) and a multiphase winding (14u, 14v, 14w) of three or more phases in a stator (12). There,
    A search signal superimposing unit (82) for superimposing a search signal (IdS, IqS) in which the amplitude is constant and the electric phase changes at a constant period on the multiphase winding;
    A field current sensor (70) for detecting a field current flowing in the field winding;
    After temporarily setting the position of the rotor with respect to the stator at an arbitrary angle, the search signal is superimposed on the multiphase winding using the search signal superimposing unit, and the stator is generated using the field current. A position estimation unit (80) for estimating the position of the rotor with respect to
    A control device comprising:
  2.  請求項1に記載の制御装置であって、
     前記サーチ信号は、正弦波または余弦波の電流信号、または、正弦波または余弦波の電圧信号である、制御装置。
    The control device according to claim 1,
    The search device is a control device that is a sine wave or cosine wave current signal or a sine wave or cosine wave voltage signal.
  3.  請求項2に記載の制御装置であって、
     前記位置推定部は、前記界磁電流(If)のピーク値を用いて前記ステータに対する前記ロータの位置を推定する、制御装置。
    The control device according to claim 2,
    The said position estimation part is a control apparatus which estimates the position of the said rotor with respect to the said stator using the peak value of the said field current (If).
  4.  請求項3に記載の制御装置であって、
     前記位置推定部は、さらに、前記界磁電流から前記サーチ信号に対応した周波数成分の電流信号(Ifac)を抽出するフィルタ(84)を備える、制御装置。
    The control device according to claim 3,
    The position estimation unit further includes a filter (84) that extracts a current signal (Ifac) having a frequency component corresponding to the search signal from the field current.
  5.  請求項4に記載の制御装置であって、
     前記位置推定部は、前記電流信号がゼロクロスする隣接する2つの位相の中間の位相を前記ピーク値の位相とする、制御装置。
    The control device according to claim 4,
    The said position estimation part is a control apparatus which makes the phase of the peak value the intermediate | middle phase of two adjacent phases where the said current signal carries out zero crossing.
  6.  請求項4に記載の制御装置であって、
     前記位置推定部は、前記電流信号を微分し、微分値がゼロクロスする位相を前記ピーク値の位相とする、制御装置。
    The control device according to claim 4,
    The said position estimation part is a control apparatus which differentiates the said electric current signal, and makes the phase where a differential value zero-crosses be the phase of the said peak value.
  7.  請求項5または6に記載の制御装置であって、
     前記位置推定部は、前記ピーク値の位相を90度もしくは270度とし、任意の位置で仮設定した角度と、前記ピーク値の位相との差分を前記ロータの初期位置とする、制御装置。
    The control device according to claim 5 or 6,
    The position estimating unit sets the phase of the peak value to 90 degrees or 270 degrees, and sets a difference between an angle temporarily set at an arbitrary position and the phase of the peak value as an initial position of the rotor.
  8.  請求項7に記載の制御装置であって、
     前記位置推定部は、前記電流信号のゼロクロス点における傾きに応じて、仮設定した角度が90度または270度のいずれかであるかを判別する、制御装置。
    The control device according to claim 7,
    The said position estimation part is a control apparatus which discriminate | determines whether the temporarily set angle is either 90 degree | times or 270 degree | times according to the inclination in the zero crossing point of the said current signal.
  9.  請求項7または8に記載の制御装置であって、
     前記位置推定部は、前記サーチ信号の周波数と、前記フィルタの時定数と、前記ロータの前記界磁巻線の時定数と、を用いて位相の変化を補償する補償部を備える、制御装置。
    The control device according to claim 7 or 8, comprising:
    The position estimation unit includes a compensation unit that compensates for a phase change using a frequency of the search signal, a time constant of the filter, and a time constant of the field winding of the rotor.
  10.  請求項1から請求項9のいずれか一項に記載の制御装置であって、
     前記位置推定部は、前記回転機をオフからオンにする起動時における前記界磁電流を立ち上げる期間内に前記ロータの位置を推定する、制御装置。
    The control device according to any one of claims 1 to 9,
    The said position estimation part is a control apparatus which estimates the position of the said rotor within the period which raises the said field current at the time of starting which turns on the said rotary machine from the on.
  11.  ロータ(16)に界磁巻線(18)を有し、ステータ(12)に3相以上の多相巻線(14u、14v、14w)を有する回転機(10)の制御方法であって、
     前記ステータに対する前記ロータの位置について任意の角度で仮設定を行い、
     前記多相巻線に、振幅が一定、且つ電気位相が一定周期で変化するサーチ信号(IdS、IqS)を重畳し、
     前記界磁巻線に流れる界磁電流を検知し、
     前記界磁電流を用いて前記ステータに対する前記ロータの位置を推定し、
     前記回転機を制御する、
     制御方法。
    A control method for a rotating machine (10) having a field winding (18) in a rotor (16) and a multiphase winding (14u, 14v, 14w) having three or more phases in a stator (12),
    Temporarily set the rotor position relative to the stator at an arbitrary angle,
    A search signal (IdS, IqS) in which the amplitude is constant and the electrical phase changes at a constant period is superimposed on the multiphase winding,
    Detecting a field current flowing in the field winding,
    Estimating the position of the rotor relative to the stator using the field current;
    Controlling the rotating machine,
    Control method.
PCT/JP2019/020517 2018-05-31 2019-05-23 Control device of rotating machine and method for controlling same WO2019230565A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018104437A JP7073915B2 (en) 2018-05-31 2018-05-31 Rotating machine control device and control method
JP2018-104437 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230565A1 true WO2019230565A1 (en) 2019-12-05

Family

ID=68698803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020517 WO2019230565A1 (en) 2018-05-31 2019-05-23 Control device of rotating machine and method for controlling same

Country Status (2)

Country Link
JP (1) JP7073915B2 (en)
WO (1) WO2019230565A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009558A1 (en) * 2022-07-06 2024-01-11 住友電気工業株式会社 Winding switching device and winding switching system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039891A (en) * 2003-07-15 2005-02-10 Toshiba Mitsubishi-Electric Industrial System Corp Control unit of synchronous machine
JP2006136123A (en) * 2004-11-05 2006-05-25 Mitsubishi Electric Corp Magnetic pole position detecting device for winding field-type synchronous machine
JP2017153258A (en) * 2016-02-25 2017-08-31 カルソニックカンセイ株式会社 Compressor motor control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039891A (en) * 2003-07-15 2005-02-10 Toshiba Mitsubishi-Electric Industrial System Corp Control unit of synchronous machine
JP2006136123A (en) * 2004-11-05 2006-05-25 Mitsubishi Electric Corp Magnetic pole position detecting device for winding field-type synchronous machine
JP2017153258A (en) * 2016-02-25 2017-08-31 カルソニックカンセイ株式会社 Compressor motor control device

Also Published As

Publication number Publication date
JP2019213257A (en) 2019-12-12
JP7073915B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
US9438153B2 (en) Rotary electric machine control device
US8988027B2 (en) Motor control apparatus and motor control method
JP5761243B2 (en) Motor control device and magnetic pole position estimation method
US8159161B2 (en) Motor control device
JP4059039B2 (en) Control device for synchronous motor
US8350507B2 (en) Controller of rotary electric machine
JP4674525B2 (en) Magnetic pole position estimation method and motor control apparatus
JP6324627B2 (en) AC rotating machine control device and electric power steering control device
US9048778B2 (en) Rotor phase/speed estimating device for an AC motor
KR20030010480A (en) Motor controller
WO2016121237A1 (en) Inverter control device and motor drive system
JP5493536B2 (en) Electric motor control device
WO2019230565A1 (en) Control device of rotating machine and method for controlling same
JP7304891B2 (en) Rotating machine control device and electric vehicle control device
KR102409792B1 (en) Control device of permanent magnet synchronization electric motor, microcomputer, electric motor system, and driving method of permanent magnet synchronization electric motor
JP2018125955A (en) Motor controller
JP6422796B2 (en) Synchronous machine control device and drive system
JP2019213247A (en) Control device of rotary electric machine
WO2023228885A1 (en) Driving control device, driving control system, and state estimation method
JP7472397B2 (en) Power conversion device, estimator, and estimation method
JP7447835B2 (en) motor control device
JP2023174499A (en) Drive control device, drive control system and state estimation method
JP5482625B2 (en) Rotating machine control device
JP5573713B2 (en) Rotating machine control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811636

Country of ref document: EP

Kind code of ref document: A1