WO2019230549A1 - Method for manufacturing fluid pressure shock absorber and liquid injection device for same - Google Patents

Method for manufacturing fluid pressure shock absorber and liquid injection device for same Download PDF

Info

Publication number
WO2019230549A1
WO2019230549A1 PCT/JP2019/020431 JP2019020431W WO2019230549A1 WO 2019230549 A1 WO2019230549 A1 WO 2019230549A1 JP 2019020431 W JP2019020431 W JP 2019020431W WO 2019230549 A1 WO2019230549 A1 WO 2019230549A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
nozzle
fluid pressure
liquid injection
shock absorber
Prior art date
Application number
PCT/JP2019/020431
Other languages
French (fr)
Japanese (ja)
Inventor
博志 安田
亘 高木
崚太 杉浦
健一 黒柳
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020522136A priority Critical patent/JP7058325B2/en
Publication of WO2019230549A1 publication Critical patent/WO2019230549A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/43Filling or drainage arrangements, e.g. for supply of gas

Definitions

  • the present invention relates to a method for manufacturing a fluid pressure shock absorber suitable for injecting a working fluid into a cylinder forming a fluid pressure shock absorber such as a hydraulic shock absorber and a liquid injection device therefor.
  • An oil solution as a working fluid is injected (injected) into a cylinder forming a hydraulic shock absorber, which is a typical example of a fluid pressure shock absorber, by a liquid injection device.
  • a nozzle is arranged at the top of a cylinder, and a predetermined amount of oil is injected into the cylinder by discharging the oil downward from a liquid injection port provided in the nozzle.
  • the configuration is used (see, for example, Patent Document 1).
  • the discharged oil liquid may collide with the surface (liquid surface) of the oil liquid in the cylinder and foam. There is sex. If bubbles are generated on the surface of the oil liquid, a predetermined damping force may not be obtained in the damping force measurement (operation test) performed immediately thereafter, and a failure may be determined.
  • An object of the present invention is to provide a method of manufacturing a fluid pressure shock absorber capable of suppressing foaming when a working fluid is injected into a cylinder, and a liquid injection device therefor.
  • a manufacturing method of a fluid pressure shock absorber is a manufacturing method of a fluid pressure shock absorber in which a working fluid is enclosed, and the fluid pressure shock absorber has a hollow cylindrical shape having a bottom portion on one end side.
  • the piston rod protrudes from the other end side of the cylinder, and the manufacturing method uses an inner wall surface of the cylinder using a nozzle having a liquid injection port facing the inner wall surface of the cylinder.
  • the fluid pressure buffer injection device is a fluid pressure buffer injection device in which a working fluid is sealed.
  • the fluid pressure buffer has a bottom portion at one end.
  • An imaginary axis having a liquid port and extending in the flow direction of the working fluid through the opening surface of the liquid injection port is a relative movement direction of the nozzle and the fluid pressure buffer, and is an axial direction of the cylinder It has an angle larger than 0 degree with respect to a virtual axis extending in the direction.
  • foaming when a working fluid is injected into a cylinder can be suppressed.
  • FIG. 3 It is sectional drawing which shows the double cylinder type hydraulic buffer used as the injection object of the liquid injection apparatus of the hydraulic buffer by embodiment of this invention. It is a whole lineblock diagram showing the injection device of the hydraulic shock absorber by the embodiment of the present invention. It is sectional drawing which expands and shows the nozzle in FIG. It is the bottom view which looked at the nozzle of FIG. 3 from the lower side. It is sectional drawing of the principal part expansion which shows a cylinder and a nozzle in the state of the 1st liquid injection step of a liquid injection step. It is sectional drawing of the principal part expansion which shows a cylinder and a nozzle in the state of the 2nd liquid injection step of a liquid injection step. It is a flowchart which shows an example of the manufacturing process of a fluid pressure buffer.
  • a configuration of a hydraulic shock absorber 1 including a multi-cylinder cylinder 2 into which an oil liquid is injected (injected) by the hydraulic shock absorber injection device 11 according to the present embodiment will be described with reference to FIG.
  • a double-cylinder cylinder 2 constituting the outer shape of the hydraulic shock absorber 1 is composed of a small-diameter hollow cylindrical inner cylinder 3 and a large-diameter outer cylinder 4 arranged coaxially on the outer periphery of the inner cylinder 3.
  • a cylindrical structure is formed.
  • the bottom part which becomes the one end side of the outer cylinder 4 becomes the bottom cap 5, and is obstruct
  • the upper end side which is the other end side of the cylinder 2 is closed by the rod guide 6.
  • the upper end side of the outer cylinder 4 is open upward as in the case of the inner cylinder 3 before the rod guide 6 is attached.
  • the upper end portion 4 ⁇ / b> A of the outer cylinder 4 is extended from the upper end portion 3 ⁇ / b> A of the inner cylinder 3.
  • the inner cylinder 3 has an inner wall surface 3B
  • the outer cylinder 4 has an inner wall surface 4B.
  • a portion of the inner wall surface 4B of the outer cylinder 4 that extends upward from the upper end portion 3A of the inner cylinder 3 is an extension portion 4B1.
  • the inside of the inner cylinder 3 of the cylinder 2 serves as a piston chamber 7 for accommodating a later-described piston 9, and between the inner cylinder 3 and the outer cylinder 4, oil fluid corresponding to an entry volume of a later-described piston rod 10 is released.
  • An annular reservoir chamber 8 is formed. A predetermined amount of oil is injected into the piston chamber 7 and the reservoir chamber 8 by an injection device 11 of a hydraulic shock absorber, which will be described later, with the upper side opened before the rod guide 6 is attached.
  • a piston 9 is inserted so as to be movable in the axial direction.
  • One end side of the piston rod 10 that has entered the inner cylinder 3 in the axial direction is attached to the piston 9, and the other end side of the piston rod 10 protrudes from the cylinder 2 via the rod guide 6 so as to extend and contract.
  • the hydraulic buffer liquid injection device 11 is intended for the above-described multi-cylinder type cylinder 2, and includes an oil liquid in the piston chamber 7 in the inner cylinder 3 and the reservoir chamber 8 between the inner cylinder 3 and the outer cylinder 4. Is injected.
  • a hydraulic shock absorber injection device 11 injects (injects) oil into the cylinder 2 of the hydraulic shock absorber 1.
  • the hydraulic buffer liquid injection device 11 has an oil storage tank 12 for storing an oil liquid to be injected into the cylinder 2, and the oil storage tank 12 is connected to a downstream pump mechanism via a first conduit 13. 14.
  • the pump mechanism 14 includes a pump unit 14A connected to the oil storage tank 12 via the first pipe 13 and an actuator 14B that drives the pump unit 14A.
  • the operating range of the actuator 14B is limited by a stopper 14C. By doing so, the flow rate of the oil discharged from the pump unit 14A can be set appropriately.
  • the pump part 14A of the pump mechanism 14 is connected to a shut-off valve 18D of an elevating mechanism 18 as a moving device described later, the discharge side of which is located downstream via the second pipe 15.
  • the first conduit 13 is provided with a check valve 16 for circulating the oil only from the oil storage tank 12 toward the pump mechanism 14.
  • the second conduit 15 is provided with a check valve 17 for allowing the oil liquid to flow only from the pump mechanism 14 toward the shutoff valve 18D.
  • the elevating mechanism 18 is disposed in the vicinity of a conveyance line (not shown) through which the inner cylinder 3 and the outer cylinder 4 are conveyed before the rod guide 6 is attached.
  • the lifting mechanism 18 moves (lifts) the shut-off valve 18D, the nozzle 19 and the like upward and downward.
  • the lifting mechanism 18 includes a fixed base 18A, a lift actuator 18B attached to the fixed base 18A so that the rod 18B1 extends downward, an adjustment bracket 18C attached to the tip of the rod 18B1 of the lift actuator 18B, and an adjustment bracket.
  • the shut-off valve 18D attached to 18C, and a later-described nozzle 19 provided at the lower end of the shut-off valve 18D.
  • the shutoff valve 18D is attached so that the position can be adjusted upward and downward with respect to the adjustment bracket 18C. Thereby, since the height position of the nozzle 19 can be set as appropriate, the oil liquid can be injected also into other cylinders having different height positions (length dimensions) of the openings.
  • the shutoff valve 18 ⁇ / b> D has a valve seat and a valve body (both not shown) in the middle of the oil liquid passage communicating with the second pipe 15.
  • a nozzle mounting pipe 18D1 is provided below the shutoff valve 18D so as to extend downward.
  • a nozzle 19 is attached to the tip (lower end) of the nozzle attachment pipe 18D1.
  • the nozzle 19 is for injecting an oil liquid as a working fluid into the piston chamber 7 and the reservoir chamber 8 in the cylinder 2.
  • the nozzle 19 is attached to the lower part of the nozzle attachment pipe 18D1 of the cutoff valve 18D.
  • the nozzle 19 includes an attachment cylinder member 20, an insertion cylinder member 21, and a liquid injection port forming member 22 which will be described later.
  • the nozzle 19 has a virtual axis O1-O1 (see FIG. 3) that is coaxial with the nozzle mounting tube 18D1.
  • the outer diameter of the nozzle 19 is set to be slightly smaller than the inner diameter of the inner cylinder 3 constituting the cylinder 2. Thereby, the nozzle 19 can position the inner cylinder 3 (cylinder 2) in a regular injection position by being inserted into the inner cylinder 3.
  • the mounting cylinder member 20 of the nozzle 19 is formed in a stepped cylindrical shape from an inner cylinder portion 20A surrounding the nozzle mounting tube 18D1 and a flange portion 20B having a diameter enlarged at the base end portion (upper end portion) of the inner cylinder portion 20A.
  • An inner thread portion 20C is formed on the inner peripheral side of the inner tube portion 20A and is screwed to the tip end portion of the nozzle mounting pipe 18D1, and an inner thread portion 21C of the insertion tube member 21 is threaded on the outer periphery side.
  • An external thread portion 20D is formed.
  • the insertion cylinder member 21 has a bottom with a lower side closed from an outer cylinder part 21A surrounding the inner cylinder part 20A of the mounting cylinder member 20 and a bottom part 21B closing the distal end part (lower end part) of the outer cylinder part 21A. It is formed as a cylindrical body. An inner thread portion 21 ⁇ / b> C that is screwed into the outer thread portion 20 ⁇ / b> D of the mounting tube member 20 is formed on the inner peripheral side of the outer tube portion 21 ⁇ / b> A.
  • the insertion cylinder member 21 has a tapered surface portion 21D that is reduced in diameter toward the tip by chamfering the periphery of the bottom portion 21B.
  • the tapered surface portion 21D is a guide surface that guides the inner cylinder 3 to a normal liquid injection position by contacting the upper end portion 3A of the inner cylinder 3 when the insertion cylinder member 21 is inserted into the inner cylinder 3. Function as.
  • a plurality of inclined screw holes 21E are provided in the bottom portion 21B of the insertion cylinder member 21 so as to extend obliquely so as to be orthogonal to the tapered surface portion 21D. As shown in FIG. 4, for example, four inclined screw holes 21E are provided at intervals of 90 degrees in the circumferential direction. Note that one, two, three, or five or more inclined screw holes 21E may be provided.
  • each inclined screw hole 21E is screwed with a liquid injection port forming member 22 described later, and has the same virtual axis O2-O2 as the liquid injection port 22A.
  • This imaginary axis O2-O2 is an axis extending in the longitudinal direction of the liquid injection port forming member 22, and the angle ⁇ of the nozzle 19 (nozzle mounting tube 18D1) with respect to the imaginary axis O1-O1 is an angle greater than 0 degrees. Specifically, the angle is set to an angle larger than 0 degree and smaller than 90 degrees, preferably 15 degrees to 75 degrees (more preferably 40 degrees to 50 degrees).
  • Each inclined screw hole 21E has one end in the length direction opened in the tapered surface portion 21D of the insertion tube member 21, and the other end opened in the upper surface of the bottom portion 21B.
  • a circular counterbore 21F is formed in the tapered surface portion 21D of the insertion cylinder member 21 by recessing the outer peripheral side of each inclined screw hole 21E.
  • the counterbore 21F prevents dripping by maintaining a high surface tension of the oil when the oil remains in the counterbore 21F.
  • the counterbore hole 21F can be disposed at a position where the tip end portion of the liquid injection port forming member 22 is retracted from the tapered surface portion 21D. Thereby, when the inner cylinder 3 is guided by the tapered surface portion 21 ⁇ / b> D, it is possible to prevent the tip end portion of the liquid injection port forming member 22 from interfering with the inner cylinder 3.
  • the liquid injection port forming member 22 is provided in each inclined screw hole 21E of the insertion tube member 21.
  • the four liquid injection port forming members 22 are set screws that are screwed into the inclined screw holes 21E, and a liquid injection port 22A is provided at a position of an imaginary axis O2-O2 penetrating in the axial direction.
  • the liquid injection port 22A extending along the virtual axis O2-O2 has an angle ⁇ with respect to the virtual axis O1-O1 of the nozzle 19 that is larger than 0 degree and smaller than 90 degrees, preferably 15 to 75 degrees. It is set in a range of degrees (more preferably 40 degrees to 50 degrees).
  • a hexagonal hole 22 ⁇ / b> B having an enlarged diameter of the liquid injection port 22 ⁇ / b> A is provided on the base end side of the liquid injection port forming member 22, a hexagonal hole 22 ⁇ / b> B having an enlarged diameter of the liquid injection port 22 ⁇ / b> A is provided.
  • a hexagon wrench is inserted into the hexagon hole 22B when the liquid injection port forming member 22 is screwed into the inclined screw hole 21E.
  • the oil liquid can be discharged radially toward the inner wall surface 3B of the inner cylinder 3 and the inner wall surface 4B of the outer cylinder 4.
  • the liquid injection port 22A can inject the oil liquid along the inner wall surfaces 3B and 4B.
  • the liquid injection port forming member 22 is provided with a plurality of types having different inner diameter dimensions (passage areas) of the liquid injection port 22A, thereby pouring the oil liquid into various cylinders having different oil liquid filling amounts. Can be liquid.
  • the resistance member 23 is provided in the nozzle 19.
  • the resistance member 23 is disposed on the bottom portion 21 ⁇ / b> B in the insertion cylinder member 21.
  • the resistance member 23 stops the supply of the oil liquid to the liquid injection port 22A of each liquid injection port forming member 22, the resistance member 23 provides resistance to the oil liquid and makes it difficult for the oil liquid to flow to the liquid injection port 22A side.
  • the resistance member 23 is configured as a grid-like (mesh-like) circular plate having a large number of small holes, and is provided so as to cover each liquid injection port 22A from the upstream side.
  • the resistance member 23 since the resistance member 23 has a large number of small holes, the entire surface tension can be enhanced by the surface tension acting on each small hole. Thereby, in the state which stopped discharge of the oil liquid from each liquid injection port 22A, the flow to each liquid injection port 22A side is blocked
  • the cylinder 2 When the inner cylinder 3 is mounted in the outer cylinder 4 and the cylinder 2 is assembled, the cylinder 2 is placed vertically on the transport line so that the opening faces upward. Thereby, the cylinder 2 before the rod guide 6 is attached is moved to the liquid injection position by the liquid injection device 11 of the hydraulic shock absorber by the transport line.
  • the step of disposing the cylinder 2 at the liquid injection position can be performed manually without using the transport line.
  • the pouring step shown in FIG. In this liquid injection step, the inner wall 3B of the inner cylinder 3 forming the cylinder 2 and the nozzle 19 provided with the liquid inlet 22A of each liquid inlet forming member 22 facing the inner wall 4B of the outer cylinder 4 are used. An oil solution is injected along the inner wall surface 3B of the cylinder 3 and the inner wall surface 4B of the outer cylinder 4.
  • Step 1 is executed as an insertion step for inserting a part of the nozzle 19 into the inner cylinder 3.
  • the rod 18B1 of the elevating actuator 18B constituting the elevating mechanism 18 is extended, and the nozzle 19 is lowered together with the shutoff valve 18D.
  • the nozzle 19 is lowered to the position for injecting the piston chamber 7 in the inner cylinder 3 shown in FIG. 5, specifically, to the position where the outer cylinder portion 21 ⁇ / b> A of the insertion cylinder member 21 enters the inner cylinder 3.
  • the long cylinder 2 may be slightly inclined.
  • the insertion cylinder member 21 is formed with a tapered surface portion 21D having a diameter reduced toward the lower side.
  • Step 2 the process proceeds to Step 2 as the first injection step.
  • an oil solution is injected along the inner wall surface 3 ⁇ / b> B of the inner cylinder 3.
  • the actuator 14 ⁇ / b> B of the pump mechanism 14 is reduced, and the oil liquid in the oil storage tank 12 flows into the pump portion 14 ⁇ / b> A via the first pipe 13 and the check valve 16.
  • the actuator 14B is extended to allow the oil in the pump unit 14A to pass through the second conduit 15 and the check valve 17.
  • the shut-off valve 18D Supplied to the shut-off valve 18D side.
  • the oil supplied to the shutoff valve 18D is supplied to the nozzle 19 via the nozzle mounting pipe 18D1.
  • each injection port 22A is opened obliquely toward the inner wall surface 3B of the inner cylinder 3. Therefore, as shown by a two-dot chain line (arrow A) in FIG. 5, the oil discharged from each injection port 22A collides with the inner wall surface 3B of the inner cylinder 3 at an obtuse angle, so that scattering occurs. It is possible to flow downward along the inner wall surface 3B of the inner cylinder 3 while being suppressed. As a result, the oil liquid can be injected into the piston chamber 7 while suppressing collision of the oil liquid filled in the piston chamber 7 with the surface (liquid level).
  • step 3 determines whether or not a predetermined amount of oil has been injected into the piston chamber 7. If it is determined “NO”, the determination in step 3 is repeated. On the other hand, if it determines with "YES”, it will move to step 4 as a 2nd liquid injection step.
  • a timer, a flow meter, an optical sensor, or the like is used for determining the flow rate of the oil liquid in step 3.
  • step 4 oil solution is poured into the reservoir chamber 8 between the inner cylinder 3 and the outer cylinder 4 along the other end side of the inner wall surface 4B including the range extended from the inner cylinder 3 of the outer cylinder 4. It ’s liquid.
  • the other end side of the inner wall surface 4B is a range from a position slightly lower than the upper end portion 3A of the inner wall surface 3B to the upper end portion 4A. Therefore, in the present embodiment, of the other end side of the inner wall surface 4B, the oil discharged from each liquid injection port 22A does not contact the upper end portion 3A of the inner cylinder 3, and the moving distance of the nozzle 19 is shortened.
  • the oil liquid is injected along the inner wall surface 4B at a position, that is, at a height position equivalent to the upper end portion 3A of the inner wall surface 3B.
  • step 4 the rod 18B1 of the elevating actuator 18B is reduced, and the nozzle 19 is raised to the position for injecting the liquid into the reservoir chamber 8 shown in FIG.
  • step 4 as shown by a two-dot chain line (arrow B) in FIG. 6, the oil liquid discharged from each liquid inlet 22A is the inner wall surface 4B of the outer cylinder 4 as in step 2. Therefore, it can flow downward along the inner wall surface 4B of the outer cylinder 4 while suppressing scattering. Thereby, the oil liquid can be injected into the reservoir chamber 8 while suppressing the collision of the oil liquid filled in the reservoir chamber 8 with the surface (liquid surface).
  • Step 4 the oil liquid stop process and the supply process can be omitted by raising the nozzle 19 without stopping the discharge of the oil liquid from each liquid injection port 22 ⁇ / b> A.
  • step 5 determines whether or not a predetermined amount of oil has been injected into the reservoir chamber 8. If “NO” is determined, the determination in step 5 is repeated. On the other hand, if "YES” is determined, the process proceeds to step 6 to stop the supply of the oil liquid.
  • step 5 as in step 3 described above, for example, a timer, a flow meter, an optical sensor, or the like is used to determine the flow rate of the oil.
  • the insertion cylinder member 21 of the nozzle 19 is provided with a counterbore hole 21F located on the outer peripheral side of each liquid injection port 22A.
  • Step 6 the process proceeds to Step 7, where the rod 18B1 of the elevating actuator 18B is reduced, and the nozzle 19 is raised to the standby position shown in FIG.
  • the assembly operation is returned to and the piston 9, the piston rod 10, and the rod guide 6 are assembled to the cylinder 2.
  • the hydraulic shock absorber 1 can be manufactured.
  • a damping force measurement (operation test) of the hydraulic shock absorber 1 is performed.
  • the nozzle 19 for injecting oil into the piston chamber 7 and the reservoir chamber 8 in the cylinder 2 is provided.
  • the nozzle 19 has a plurality of, for example, four liquid injection ports 22A.
  • the virtual axis O2-O2 of each liquid injection port 22A has an angle greater than 0 degrees with respect to the virtual axis O1-O1 of the nozzle 19.
  • the liquid injection is directed to the inner wall surface 3B of the inner cylinder 3 of the hollow cylinder 2 or the inner wall surface 4B of the outer cylinder 4 during the injection.
  • An oil liquid can be injected along the inner wall surface 3B of the inner cylinder 3 or the inner wall surface 4B of the outer cylinder 4 using the nozzle 19 provided with 22A.
  • a part of the nozzle 19 is inserted into the inner cylinder 3 of the cylinder 2.
  • the inner cylinder 3 (cylinder 2) can be properly connected by inserting the insertion cylinder member 21 into the inner cylinder 3. Can be placed at the injection position.
  • the insertion cylinder member 21 forming the nozzle 19 is provided with a tapered surface portion 21D having a diameter reduced toward the lower side, by bringing the tapered surface portion 21D into contact with the upper end portion 3A of the inner cylinder 3, The inner cylinder 3 can be guided to a regular liquid injection position.
  • the cylinder 2 includes an inner cylinder 3 and an outer cylinder 4 which is disposed on the outer periphery of the inner cylinder 3 and whose upper end is extended from the inner cylinder 3.
  • the liquid injection step is performed between the first liquid injection step for injecting the oil liquid along the inner wall surface 3 ⁇ / b> B of the inner cylinder 3, and the inner cylinder 3 and the outer cylinder 4.
  • counterbore holes 21F are respectively formed on the outer peripheral side of the liquid injection port 22A of each liquid injection port forming member 22 provided in the nozzle 19. Therefore, even when the oil liquid remains in each liquid inlet 22A, the oil liquid is prevented from dripping by maintaining the surface tension of the oil liquid high by the counterbore holes 21F.
  • the outer diameter of the nozzle 19 is set to be slightly smaller than the inner diameter of the inner cylinder 3 constituting the cylinder 2. Accordingly, since the nozzle 19 is inserted into the inner cylinder 3, the opening on the upper end 3 ⁇ / b> A side of the inner cylinder 3 is blocked to the extent that the oil does not flow into the reservoir chamber 8 by the nozzle 19. There is no risk of the oil liquid dripping on the chamber 8 side, and a predetermined amount of oil liquid can be injected into the inner cylinder 3.
  • the insertion tube member 21 forming the nozzle 19 is provided with the inclined screw hole 21E, and the liquid injection port forming member 22 having the liquid injection port 22A is screwed into the inclined screw hole 21E.
  • the case where the liquid port 22A is formed toward the inner wall surface 3B of the inner cylinder 3 or the inner wall surface 4B of the outer cylinder 4 is illustrated.
  • the present invention is not limited to this.
  • the nozzle is formed of a straw-like tube body, and the tip of the tube body is formed toward the inner wall surface 3B of the inner cylinder 3 or the inner wall surface 4B of the outer cylinder 4. It is good. Moreover, it is good also as a structure which forms an injection hole directly in an insertion cylinder member.
  • the nozzle 19 is provided with a liquid injection port forming member 22 having a liquid injection port 22A, and the nozzle 19 is moved upward and downward to inject oil into the piston chamber 7 and the reservoir chamber 8. It is configured to do.
  • the present invention is not limited to this.
  • the nozzle may be provided with a liquid injection port for the piston chamber and a liquid injection port for the reservoir chamber. In this case, the liquid can be injected into both the piston chamber and the reservoir chamber without moving the nozzle during the liquid injection.
  • each of the liquid injection ports 22A provided in the nozzle 19 has an example in which the virtual axis O2-O2 is set in a range of, for example, 40 degrees to 50 degrees with respect to the virtual axis O1-O1 of the nozzle 19. doing.
  • the present invention is not limited to this, and for example, each liquid injection port provided in the nozzle may be configured to be perpendicular to the inner wall surface of the cylinder. In this case, it is desirable that the flow rate of the oil liquid discharged from the liquid injection port is a flow rate of the oil liquid that does not rebound after colliding with the inner wall surface of the cylinder.
  • the liquid may be discharged in a swirling manner by tilting (twisting) the liquid injection port in the circumferential direction.
  • the liquid injection port only needs to be configured so that the oil discharged from the liquid injection port follows the inner wall surface of the cylinder.
  • one, two, three, or five or more injection ports may be provided.
  • step 4 the case where the nozzle 19 is raised in step 4 without stopping the discharge of the oil liquid from each liquid injection port 22A is illustrated.
  • the present invention is not limited to this, and an oil liquid supply stop step may be added between step 3 and step 4, and an oil liquid supply step may be added between step 4 and step 5. .
  • a case where an oil liquid is injected from the liquid injection device 11 of the hydraulic shock absorber to the cylinder 2 having a double cylinder structure from the inner cylinder 3 and the outer cylinder 4 is illustrated.
  • the present invention is not limited to this, and a hydraulic buffer injection device may be used to inject the oil into a cylinder having a triple or more cylinder structure or a single cylinder structure.
  • the nozzle 19 is moved up and down (lifted) is shown as an example, but the nozzle side may be fixed and the hydraulic shock absorber may be moved up and down. Moreover, you may move both a nozzle and a hydraulic buffer according to the liquid injection step of a cylinder and a nozzle. In other words, the virtual axis O1-O1 is also the relative movement direction between the nozzle and the hydraulic shock absorber.
  • the following modes can be considered as a method of manufacturing a fluid pressure shock absorber and a liquid injection device thereof based on the embodiment described above.
  • a first aspect of the method for manufacturing a fluid pressure shock absorber is a method for manufacturing a fluid pressure shock absorber in which a working fluid is enclosed.
  • the fluid pressure shock absorber has a hollow cylindrical shape having a bottom on one end side.
  • a cylinder is provided, and a piston rod protrudes from the other end side of the cylinder, and the manufacturing method uses a nozzle having a liquid injection port facing the inner wall surface of the cylinder, to the inner wall surface of the cylinder. It has the liquid injection step which injects working fluid along. Thereby, it is possible to inject the working fluid while suppressing the collision with the surface (liquid level) of the working fluid filled in the cylinder, and it is possible to suppress bubbling of the working fluid in the cylinder.
  • a second aspect of the method for manufacturing a fluid pressure shock absorber is the method for manufacturing a fluid pressure shock absorber according to the first aspect, wherein the liquid injection step includes a part of the nozzle in the cylinder. It has an insertion step to be inserted. Thereby, even when the long cylinder is slightly tilted and deviated from the normal liquid injection position, the cylinder can be arranged at the normal liquid injection position.
  • a third aspect of the method for manufacturing a fluid pressure shock absorber is the method for manufacturing the fluid pressure shock absorber according to the first or second aspect, wherein the cylinder is disposed on an inner cylinder and an outer periphery of the inner cylinder.
  • the other end side is an outer cylinder extended from the inner cylinder
  • the liquid injection step includes a first liquid injection step of injecting the working fluid along an inner wall surface of the inner cylinder, A second injecting step of injecting the working fluid along the other end of the inner wall surface including a range extended from the inner cylinder of the outer cylinder between the cylinder and the outer cylinder; Is to have.
  • a predetermined amount of working fluid can be injected into the inner cylinder of the cylinder and between the inner cylinder and the outer cylinder of the fluid pressure shock absorber having a double cylinder cylinder. it can.
  • a fluid pressure buffer injection device in which a working fluid is enclosed,
  • the fluid pressure shock absorber includes a cylinder having a bottom portion on one end side, and a piston rod projects from the other end side of the cylinder,
  • the liquid injection device includes a nozzle for injecting a working fluid into the cylinder, the nozzle has one or a plurality of liquid injection ports, and the virtual axis of the liquid injection port is relative to the virtual axis of the nozzle. And having an angle greater than 0 degrees.
  • a fluid pressure buffer injection device is the fluid pressure buffer injection device according to the first aspect, wherein a counterbored hole is formed on the outer peripheral side of the liquid injection port of the nozzle. It is characterized by being formed. Thereby, the dripping of the working fluid can be prevented by maintaining the surface tension of the working fluid high by the counterbore hole.
  • a third aspect of the fluid pressure buffer injection device is the fluid pressure buffer injection device according to the first or second aspect, wherein the outer diameter of the nozzle is the inner diameter of the cylinder.
  • An injection device for a fluid pressure shock absorber characterized in that it is slightly smaller than the size. Thereby, it is possible to suppress the working fluid injected into the cylinder from flowing out of the cylinder.
  • this invention is not limited to above-described embodiment, Various modifications are included.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

The present invention is provided with a nozzle which injects an oil liquid into a piston chamber and a reservoir chamber in a cylinder. This nozzle has a plurality of liquid injection ports, for example, four liquid injection ports. In addition, a virtual axis line of each liquid injection port has an angle greater than zero degrees with respect to a virtual axis line of the nozzle. Thus, in the step for injecting the oil liquid, by using a nozzle having liquid injection ports that are each directed to an inner wall surface of an outer tube or an inner wall surface of an inner tube of a hollow cylinder upon liquid injection, the oil liquid can be injected along the inner wall surface of the inner tube or the inner wall surface of the outer tube.

Description

流体圧緩衝器の製造方法およびその注液装置Method for manufacturing fluid pressure buffer and liquid injection device therefor
 本発明は、油圧緩衝器等の流体圧緩衝器を形成するシリンダ内に作動流体を注液するのに好適な流体圧緩衝器の製造方法およびその注液装置に関する。 The present invention relates to a method for manufacturing a fluid pressure shock absorber suitable for injecting a working fluid into a cylinder forming a fluid pressure shock absorber such as a hydraulic shock absorber and a liquid injection device therefor.
 流体圧緩衝器の代表例である油圧緩衝器を形成するシリンダ内には、注液装置によって作動流体としての油液を注液(注入)している。この油圧緩衝器の注液装置は、シリンダの上部にノズルを配置し、このノズルに設けた注液口から下向きに油液を吐出することにより、シリンダ内に所定量の油液を注液する構成としている(例えば、特許文献1参照)。 An oil solution as a working fluid is injected (injected) into a cylinder forming a hydraulic shock absorber, which is a typical example of a fluid pressure shock absorber, by a liquid injection device. In this hydraulic shock absorber injection device, a nozzle is arranged at the top of a cylinder, and a predetermined amount of oil is injected into the cylinder by discharging the oil downward from a liquid injection port provided in the nozzle. The configuration is used (see, for example, Patent Document 1).
特開2013-113402号公報JP2013-113402A
 特許文献1によるものでは、ノズルの注液口から下向きに油液を吐出しているから、この吐出された油液がシリンダ内の油液の表面(液面)に衝突して泡立ってしまう可能性がある。油液の表面に泡が発生すると、直後に行われる減衰力測定(動作テスト)において所定の減衰力が得られず、不良判定になることがある。 According to Patent Document 1, since the oil liquid is discharged downward from the injection port of the nozzle, the discharged oil liquid may collide with the surface (liquid surface) of the oil liquid in the cylinder and foam. There is sex. If bubbles are generated on the surface of the oil liquid, a predetermined damping force may not be obtained in the damping force measurement (operation test) performed immediately thereafter, and a failure may be determined.
 本発明の目的は、シリンダ内に作動流体を注液するときの泡立ちを抑制することができる流体圧緩衝器の製造方法およびその注液装置を提供することにある。 An object of the present invention is to provide a method of manufacturing a fluid pressure shock absorber capable of suppressing foaming when a working fluid is injected into a cylinder, and a liquid injection device therefor.
 本発明の一実施形態による流体圧緩衝器の製造方法は、内部に作動流体を封入した流体圧緩衝器の製造方法であって、前記流体圧緩衝器は、一端側に底部を有する中空筒状のシリンダを備えており、前記シリンダの他端側からピストンロッドが突出されており、前記製造方法は、前記シリンダの内壁面に向く注液口を備えたノズルを用いて、前記シリンダの内壁面に沿わせて作動流体を注液する注液ステップを有する。 A manufacturing method of a fluid pressure shock absorber according to an embodiment of the present invention is a manufacturing method of a fluid pressure shock absorber in which a working fluid is enclosed, and the fluid pressure shock absorber has a hollow cylindrical shape having a bottom portion on one end side. The piston rod protrudes from the other end side of the cylinder, and the manufacturing method uses an inner wall surface of the cylinder using a nozzle having a liquid injection port facing the inner wall surface of the cylinder. A liquid injection step of injecting the working fluid along
 また、本発明の一実施形態による流体圧緩衝器の注液装置は、内部に作動流体を封入した流体圧緩衝器の注液装置であって、前記流体圧緩衝器は、一端側に底部を有するシリンダを備えており、該シリンダの他端側からピストンロッドが突出されており、前記注液装置は、前記シリンダに作動流体を注液するノズルを備え、該ノズルは、一または複数の注液口を有し、該注液口の開口面を通り、前記作動流体の流通方向に伸びる仮想軸線は、前記ノズルと前記流体圧緩衝器との相対移動方向であって、前記シリンダの軸方向に伸びる仮想軸線に対して0度より大きい角度を有することを特徴とする。 The fluid pressure buffer injection device according to an embodiment of the present invention is a fluid pressure buffer injection device in which a working fluid is sealed. The fluid pressure buffer has a bottom portion at one end. A piston rod projecting from the other end of the cylinder, and the liquid injection device includes a nozzle for injecting a working fluid into the cylinder, and the nozzle includes one or a plurality of injections. An imaginary axis having a liquid port and extending in the flow direction of the working fluid through the opening surface of the liquid injection port is a relative movement direction of the nozzle and the fluid pressure buffer, and is an axial direction of the cylinder It has an angle larger than 0 degree with respect to a virtual axis extending in the direction.
 本発明の一実施形態によれば、シリンダ内に作動流体を注液するときの泡立ちを抑制することができる。 According to one embodiment of the present invention, foaming when a working fluid is injected into a cylinder can be suppressed.
本発明の実施の形態による油圧緩衝器の注液装置の注液対象となる複筒式の油圧緩衝器を示す断面図である。It is sectional drawing which shows the double cylinder type hydraulic buffer used as the injection object of the liquid injection apparatus of the hydraulic buffer by embodiment of this invention. 本発明の実施の形態による油圧緩衝器の注液装置を示す全体構成図である。It is a whole lineblock diagram showing the injection device of the hydraulic shock absorber by the embodiment of the present invention. 図2中のノズルを拡大して示す断面図である。It is sectional drawing which expands and shows the nozzle in FIG. 図3のノズルを下側から見た底面図である。It is the bottom view which looked at the nozzle of FIG. 3 from the lower side. シリンダとノズルを注液ステップの第1注液ステップの状態で示す要部拡大の断面図である。It is sectional drawing of the principal part expansion which shows a cylinder and a nozzle in the state of the 1st liquid injection step of a liquid injection step. シリンダとノズルを注液ステップの第2注液ステップの状態で示す要部拡大の断面図である。It is sectional drawing of the principal part expansion which shows a cylinder and a nozzle in the state of the 2nd liquid injection step of a liquid injection step. 流体圧緩衝器の製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of a fluid pressure buffer.
 以下、本発明の実施の形態による流体圧緩衝器の注液装置および流体圧緩衝器の製造方法として、油圧緩衝器のシリンダに油液を注液する油圧緩衝器の注液装置および油圧緩衝器の製造方法について、図1ないし図7に従って詳細に説明する。 Hereinafter, as a fluid pressure buffer injection device and a fluid pressure buffer manufacturing method according to embodiments of the present invention, a hydraulic buffer injection device and a hydraulic buffer for injecting oil into a cylinder of a hydraulic buffer The manufacturing method will be described in detail with reference to FIGS.
 本実施の形態による油圧緩衝器の注液装置11によって油液が注液(注入)された複筒式のシリンダ2を備えた油圧緩衝器1の構成について、図1を参照しつつ述べる。 A configuration of a hydraulic shock absorber 1 including a multi-cylinder cylinder 2 into which an oil liquid is injected (injected) by the hydraulic shock absorber injection device 11 according to the present embodiment will be described with reference to FIG.
 油圧緩衝器1の外形を構成する複筒式のシリンダ2は、小径な中空筒状の内筒3と、該内筒3の外周に同軸に配置された大径な外筒4とによって二重筒構造を形成している。外筒4の一端側となる底部は、ボトムキャップ5となって閉塞されている。一方、シリンダ2の他端側となる上端側は、ロッドガイド6によって閉塞されている。 A double-cylinder cylinder 2 constituting the outer shape of the hydraulic shock absorber 1 is composed of a small-diameter hollow cylindrical inner cylinder 3 and a large-diameter outer cylinder 4 arranged coaxially on the outer periphery of the inner cylinder 3. A cylindrical structure is formed. The bottom part which becomes the one end side of the outer cylinder 4 becomes the bottom cap 5, and is obstruct | occluded. On the other hand, the upper end side which is the other end side of the cylinder 2 is closed by the rod guide 6.
 ここで、図2、図5、図6に示すように、外筒4の上端側は、ロッドガイド6が取付けられる前の状態では、内筒3と同様に上側に向けて開口している。この場合、外筒4の上端部4Aは、内筒3の上端部3Aよりも延長されている。また、内筒3の内側は、内壁面3Bとなり、外筒4の内側は、内壁面4Bとなっている。そして、外筒4の内壁面4Bのうち、内筒3の上端部3Aよりも上側に延びた部分は、延長部4B1となっている。 Here, as shown in FIGS. 2, 5, and 6, the upper end side of the outer cylinder 4 is open upward as in the case of the inner cylinder 3 before the rod guide 6 is attached. In this case, the upper end portion 4 </ b> A of the outer cylinder 4 is extended from the upper end portion 3 </ b> A of the inner cylinder 3. The inner cylinder 3 has an inner wall surface 3B, and the outer cylinder 4 has an inner wall surface 4B. A portion of the inner wall surface 4B of the outer cylinder 4 that extends upward from the upper end portion 3A of the inner cylinder 3 is an extension portion 4B1.
 シリンダ2の内筒3内は、後述のピストン9を収容するためのピストン室7となり、内筒3と外筒4との間は、後述するピストンロッド10の進入体積分の油液を逃すための環状のリザーバ室8となっている。ピストン室7とリザーバ室8には、ロッドガイド6が取付けられる前の上側が開口した状態で、後述する油圧緩衝器の注液装置11によって所定量の油液が注液される。 The inside of the inner cylinder 3 of the cylinder 2 serves as a piston chamber 7 for accommodating a later-described piston 9, and between the inner cylinder 3 and the outer cylinder 4, oil fluid corresponding to an entry volume of a later-described piston rod 10 is released. An annular reservoir chamber 8 is formed. A predetermined amount of oil is injected into the piston chamber 7 and the reservoir chamber 8 by an injection device 11 of a hydraulic shock absorber, which will be described later, with the upper side opened before the rod guide 6 is attached.
 シリンダ2の内筒3内、即ち、ピストン室7には、ピストン9が軸方向に移動可能に挿嵌されている。このピストン9には、内筒3内に進入したピストンロッド10の軸方向の一端側が取付けられ、該ピストンロッド10の他端側はロッドガイド6を介してシリンダ2から伸長、縮小可能に突出している。 In the inner cylinder 3 of the cylinder 2, that is, in the piston chamber 7, a piston 9 is inserted so as to be movable in the axial direction. One end side of the piston rod 10 that has entered the inner cylinder 3 in the axial direction is attached to the piston 9, and the other end side of the piston rod 10 protrudes from the cylinder 2 via the rod guide 6 so as to extend and contract. Yes.
 次に、流体圧緩衝器の注液装置としての油圧緩衝器の注液装置11について、図2ないし図7を用いて説明する。油圧緩衝器の注液装置11は、前述した複筒式のシリンダ2を対象とし、内筒3内のピストン室7と、内筒3と外筒4との間のリザーバ室8とに油液を注液するものである。 Next, a hydraulic shock absorber injection device 11 as a fluid pressure shock absorber injection device will be described with reference to FIGS. The hydraulic buffer liquid injection device 11 is intended for the above-described multi-cylinder type cylinder 2, and includes an oil liquid in the piston chamber 7 in the inner cylinder 3 and the reservoir chamber 8 between the inner cylinder 3 and the outer cylinder 4. Is injected.
 図2において、油圧緩衝器の注液装置11は、油圧緩衝器1のシリンダ2内に油液を注液(注入)するものである。この油圧緩衝器の注液装置11は、シリンダ2に注液するための油液を貯留する貯油タンク12を有し、該貯油タンク12は、第1管路13を介して下流側のポンプ機構14に接続されている。このポンプ機構14は、第1管路13を介して貯油タンク12に接続されたポンプ部14Aと、該ポンプ部14Aを駆動するアクチュエータ14Bとからなり、該アクチュエータ14Bの作動範囲をストッパ14Cによって制限することで、ポンプ部14Aから吐出される油液の流量を適宜に設定することができる。 In FIG. 2, a hydraulic shock absorber injection device 11 injects (injects) oil into the cylinder 2 of the hydraulic shock absorber 1. The hydraulic buffer liquid injection device 11 has an oil storage tank 12 for storing an oil liquid to be injected into the cylinder 2, and the oil storage tank 12 is connected to a downstream pump mechanism via a first conduit 13. 14. The pump mechanism 14 includes a pump unit 14A connected to the oil storage tank 12 via the first pipe 13 and an actuator 14B that drives the pump unit 14A. The operating range of the actuator 14B is limited by a stopper 14C. By doing so, the flow rate of the oil discharged from the pump unit 14A can be set appropriately.
 ポンプ機構14のポンプ部14Aは、その吐出側が第2管路15を介して下流側に位置する後述の移動装置としての昇降機構18の遮断弁18Dに接続されている。ここで、第1管路13には、貯油タンク12からポンプ機構14に向けてのみ油液を流通させるチェック弁16が設けられている。第2管路15には、ポンプ機構14から遮断弁18Dに向けてのみ油液を流通させるチェック弁17が設けられている。 The pump part 14A of the pump mechanism 14 is connected to a shut-off valve 18D of an elevating mechanism 18 as a moving device described later, the discharge side of which is located downstream via the second pipe 15. Here, the first conduit 13 is provided with a check valve 16 for circulating the oil only from the oil storage tank 12 toward the pump mechanism 14. The second conduit 15 is provided with a check valve 17 for allowing the oil liquid to flow only from the pump mechanism 14 toward the shutoff valve 18D.
 昇降機構18は、ロッドガイド6が取付けられる前の状態の内筒3と外筒4が搬送される搬送ライン(図示せず)の近傍に配置されている。この昇降機構18は、遮断弁18D、ノズル19等を上,下方向に移動(昇降)するものである。昇降機構18は、固定台18Aと、ロッド18B1が下向きに延びるように固定台18Aに取付けられた昇降アクチュエータ18Bと、昇降アクチュエータ18Bのロッド18B1の先端部に取付けられた調整ブラケット18Cと、調整ブラケット18Cに取付けられた遮断弁18Dと、遮断弁18Dの下端部に設けられた後述のノズル19とにより構成されている。 The elevating mechanism 18 is disposed in the vicinity of a conveyance line (not shown) through which the inner cylinder 3 and the outer cylinder 4 are conveyed before the rod guide 6 is attached. The lifting mechanism 18 moves (lifts) the shut-off valve 18D, the nozzle 19 and the like upward and downward. The lifting mechanism 18 includes a fixed base 18A, a lift actuator 18B attached to the fixed base 18A so that the rod 18B1 extends downward, an adjustment bracket 18C attached to the tip of the rod 18B1 of the lift actuator 18B, and an adjustment bracket. The shut-off valve 18D attached to 18C, and a later-described nozzle 19 provided at the lower end of the shut-off valve 18D.
 遮断弁18Dは、調整ブラケット18Cに対して上,下方向に位置調整が可能に取付けられている。これにより、ノズル19の高さ位置を適宜に設定できるから、開口部の高さ位置(長さ寸法)が異なる他のシリンダに対しても油液を注液することができる。遮断弁18Dは、第2管路15に連通した油液通路の途中に弁座および弁体(いずれも図示せず)を有している。また、遮断弁18Dの下部には、下向きに延びてノズル取付管18D1が設けられている。このノズル取付管18D1の先端(下端)には、ノズル19が取付けられている。 The shutoff valve 18D is attached so that the position can be adjusted upward and downward with respect to the adjustment bracket 18C. Thereby, since the height position of the nozzle 19 can be set as appropriate, the oil liquid can be injected also into other cylinders having different height positions (length dimensions) of the openings. The shutoff valve 18 </ b> D has a valve seat and a valve body (both not shown) in the middle of the oil liquid passage communicating with the second pipe 15. A nozzle mounting pipe 18D1 is provided below the shutoff valve 18D so as to extend downward. A nozzle 19 is attached to the tip (lower end) of the nozzle attachment pipe 18D1.
 次に、本実施の形態の特徴部分となるノズル19の構成およびノズル19を用いた油液の注液ステップを含む油圧緩衝器の製造方法について説明する。 Next, the structure of the nozzle 19 which is a characteristic part of the present embodiment and a method for manufacturing a hydraulic shock absorber including an oil liquid injection step using the nozzle 19 will be described.
 ノズル19は、シリンダ2内のピストン室7とリザーバ室8とに作動流体としての油液を注液するものである。ノズル19は、遮断弁18Dのノズル取付管18D1の下部に取付けられている。ノズル19は、後述の取付筒部材20、挿入筒部材21、注液口形成部材22を含んで構成されている。 The nozzle 19 is for injecting an oil liquid as a working fluid into the piston chamber 7 and the reservoir chamber 8 in the cylinder 2. The nozzle 19 is attached to the lower part of the nozzle attachment pipe 18D1 of the cutoff valve 18D. The nozzle 19 includes an attachment cylinder member 20, an insertion cylinder member 21, and a liquid injection port forming member 22 which will be described later.
 ここで、ノズル19は、ノズル取付管18D1と同軸となる仮想軸線O1-O1(図3参照)を有している。また、ノズル19の外径寸法は、シリンダ2を構成する内筒3の内径寸法よりも僅かに小さな寸法に設定されている。これにより、ノズル19は、内筒3内に挿入されることにより、内筒3(シリンダ2)を正規の注液位置に位置決めすることができる。なお、ノズルは、外径寸法が異なる複数種類を用意することにより、内径寸法が異なる他のシリンダに対しても位置決めしつつ油液を注液することができる。 Here, the nozzle 19 has a virtual axis O1-O1 (see FIG. 3) that is coaxial with the nozzle mounting tube 18D1. The outer diameter of the nozzle 19 is set to be slightly smaller than the inner diameter of the inner cylinder 3 constituting the cylinder 2. Thereby, the nozzle 19 can position the inner cylinder 3 (cylinder 2) in a regular injection position by being inserted into the inner cylinder 3. In addition, by preparing a plurality of types of nozzles having different outer diameter dimensions, it is possible to inject the oil liquid while positioning with respect to other cylinders having different inner diameter dimensions.
 ノズル19の取付筒部材20は、ノズル取付管18D1を取囲む内筒部20Aと、該内筒部20Aの基端部(上端部)を拡径した鍔部20Bとから段付き筒状に形成されている。内筒部20Aの内周側には、ノズル取付管18D1の先端部に螺合される内ねじ部20Cが形成され、外周側には、挿入筒部材21の内ねじ部21Cが螺合される外ねじ部20Dが形成されている。 The mounting cylinder member 20 of the nozzle 19 is formed in a stepped cylindrical shape from an inner cylinder portion 20A surrounding the nozzle mounting tube 18D1 and a flange portion 20B having a diameter enlarged at the base end portion (upper end portion) of the inner cylinder portion 20A. Has been. An inner thread portion 20C is formed on the inner peripheral side of the inner tube portion 20A and is screwed to the tip end portion of the nozzle mounting pipe 18D1, and an inner thread portion 21C of the insertion tube member 21 is threaded on the outer periphery side. An external thread portion 20D is formed.
 挿入筒部材21は、取付筒部材20の内筒部20Aを取囲む外筒部21Aと、該外筒部21Aの先端部(下端部)を閉塞した底部21Bとから下側が閉塞された有底の円筒体として形成されている。外筒部21Aの内周側には、取付筒部材20の外ねじ部20Dに螺合される内ねじ部21Cが形成されている。挿入筒部材21は、底部21Bの周囲を大きく面取りすることにより、先端に向けて縮径されたテーパ面部21Dを有している。このテーパ面部21Dは、挿入筒部材21が内筒3内に挿入されるときに、内筒3の上端部3Aに当接することにより、該内筒3を正規の注液位置に案内するガイド面として機能する。 The insertion cylinder member 21 has a bottom with a lower side closed from an outer cylinder part 21A surrounding the inner cylinder part 20A of the mounting cylinder member 20 and a bottom part 21B closing the distal end part (lower end part) of the outer cylinder part 21A. It is formed as a cylindrical body. An inner thread portion 21 </ b> C that is screwed into the outer thread portion 20 </ b> D of the mounting tube member 20 is formed on the inner peripheral side of the outer tube portion 21 </ b> A. The insertion cylinder member 21 has a tapered surface portion 21D that is reduced in diameter toward the tip by chamfering the periphery of the bottom portion 21B. The tapered surface portion 21D is a guide surface that guides the inner cylinder 3 to a normal liquid injection position by contacting the upper end portion 3A of the inner cylinder 3 when the insertion cylinder member 21 is inserted into the inner cylinder 3. Function as.
 さらに、挿入筒部材21の底部21Bには、テーパ面部21Dに直交するように斜めに延びて複数個の傾斜ねじ孔21Eが設けられている。図4に示すように、傾斜ねじ孔21Eは、例えば、周方向に90度の間隔をもって4個設けられている。なお、傾斜ねじ孔21Eは、1個、2個、3個または5個以上設ける構成としてもよい。 Furthermore, a plurality of inclined screw holes 21E are provided in the bottom portion 21B of the insertion cylinder member 21 so as to extend obliquely so as to be orthogonal to the tapered surface portion 21D. As shown in FIG. 4, for example, four inclined screw holes 21E are provided at intervals of 90 degrees in the circumferential direction. Note that one, two, three, or five or more inclined screw holes 21E may be provided.
 図3に示すように、各傾斜ねじ孔21Eは、後述する注液口形成部材22が螺合するもので、注液口22Aと同じ仮想軸線O2-O2を有している。この仮想軸線O2-O2は、注液口形成部材22の長手方向に対して伸びる軸線であり、ノズル19(ノズル取付管18D1)の仮想軸線O1-O1に対する角度αが、0度より大きい角度、具体的には、0度より大きく、90度より小さな角度、好ましくは15度から75度(より好ましくは40度から50度)の角度範囲に設定されている。各傾斜ねじ孔21Eは、長さ方向の一端が挿入筒部材21のテーパ面部21Dに開口し、他端が底部21Bの上面に開口している。 As shown in FIG. 3, each inclined screw hole 21E is screwed with a liquid injection port forming member 22 described later, and has the same virtual axis O2-O2 as the liquid injection port 22A. This imaginary axis O2-O2 is an axis extending in the longitudinal direction of the liquid injection port forming member 22, and the angle α of the nozzle 19 (nozzle mounting tube 18D1) with respect to the imaginary axis O1-O1 is an angle greater than 0 degrees. Specifically, the angle is set to an angle larger than 0 degree and smaller than 90 degrees, preferably 15 degrees to 75 degrees (more preferably 40 degrees to 50 degrees). Each inclined screw hole 21E has one end in the length direction opened in the tapered surface portion 21D of the insertion tube member 21, and the other end opened in the upper surface of the bottom portion 21B.
 また、挿入筒部材21のテーパ面部21Dには、各傾斜ねじ孔21Eの外周側を凹陥させることにより円形状のザグリ穴21Fが形成されている。このザグリ穴21Fは、当該ザグリ穴21F内に油液が残存したときに、油液の表面張力を高く維持することにより、垂れ落ちを防止するものである。さらに、ザグリ穴21Fは、注液口形成部材22の先端部をテーパ面部21Dから引っ込んだ位置に配置することができる。これにより、テーパ面部21Dによって内筒3を案内するときに、注液口形成部材22の先端部が内筒3に干渉するのを防止することができる。 Also, a circular counterbore 21F is formed in the tapered surface portion 21D of the insertion cylinder member 21 by recessing the outer peripheral side of each inclined screw hole 21E. The counterbore 21F prevents dripping by maintaining a high surface tension of the oil when the oil remains in the counterbore 21F. Furthermore, the counterbore hole 21F can be disposed at a position where the tip end portion of the liquid injection port forming member 22 is retracted from the tapered surface portion 21D. Thereby, when the inner cylinder 3 is guided by the tapered surface portion 21 </ b> D, it is possible to prevent the tip end portion of the liquid injection port forming member 22 from interfering with the inner cylinder 3.
 注液口形成部材22は、挿入筒部材21の各傾斜ねじ孔21Eにそれぞれ設けられている。4個の注液口形成部材22は、傾斜ねじ孔21Eに螺合するセットスクリュからなり、その仮想軸線O2-O2の位置には軸方向に貫通して注液口22Aが設けられている。このように、仮想軸線O2-O2に沿って延びた注液口22Aは、ノズル19の仮想軸線O1-O1に対する角度αが、0度より大きく、90度より小さな角度、好ましくは15度から75度(より好ましくは40度から50度)の範囲に設定されている。注液口形成部材22の基端側には、注液口22Aを拡径した六角穴22Bが設けられている。この六角穴22Bには、注液口形成部材22を傾斜ねじ孔21Eに螺合するときに六角レンチが差し込まれる。 The liquid injection port forming member 22 is provided in each inclined screw hole 21E of the insertion tube member 21. The four liquid injection port forming members 22 are set screws that are screwed into the inclined screw holes 21E, and a liquid injection port 22A is provided at a position of an imaginary axis O2-O2 penetrating in the axial direction. In this way, the liquid injection port 22A extending along the virtual axis O2-O2 has an angle α with respect to the virtual axis O1-O1 of the nozzle 19 that is larger than 0 degree and smaller than 90 degrees, preferably 15 to 75 degrees. It is set in a range of degrees (more preferably 40 degrees to 50 degrees). On the base end side of the liquid injection port forming member 22, a hexagonal hole 22 </ b> B having an enlarged diameter of the liquid injection port 22 </ b> A is provided. A hexagon wrench is inserted into the hexagon hole 22B when the liquid injection port forming member 22 is screwed into the inclined screw hole 21E.
 4個の注液口22Aは、シリンダ2内に注液する際には、内筒3の内壁面3B、外筒4の内壁面4Bに向けて放射状に油液を吐出することができる。これにより、注液口22Aは、内壁面3B,4Bに沿わせて油液を注液することができる。ここで、注液口形成部材22は、注液口22Aの内径寸法(通路面積)が異なる複数種類を用意することにより、油液の充填量等が異なる様々なシリンダに対して油液を注液することができる。 When the four liquid injection ports 22A are injected into the cylinder 2, the oil liquid can be discharged radially toward the inner wall surface 3B of the inner cylinder 3 and the inner wall surface 4B of the outer cylinder 4. Thus, the liquid injection port 22A can inject the oil liquid along the inner wall surfaces 3B and 4B. Here, the liquid injection port forming member 22 is provided with a plurality of types having different inner diameter dimensions (passage areas) of the liquid injection port 22A, thereby pouring the oil liquid into various cylinders having different oil liquid filling amounts. Can be liquid.
 抵抗部材23は、ノズル19内に設けられている。抵抗部材23は、挿入筒部材21内の底部21B上に配置されている。抵抗部材23は、各注液口形成部材22の注液口22Aへの油液の供給を停止させたときに、油液に抵抗を与えて各注液口22A側に油液が流れ難くするものである。抵抗部材23は、多数の小孔を有した格子状(メッシュ状)の円形板として構成され、各注液口22Aを上流側から覆うように設けられている。 The resistance member 23 is provided in the nozzle 19. The resistance member 23 is disposed on the bottom portion 21 </ b> B in the insertion cylinder member 21. When the resistance member 23 stops the supply of the oil liquid to the liquid injection port 22A of each liquid injection port forming member 22, the resistance member 23 provides resistance to the oil liquid and makes it difficult for the oil liquid to flow to the liquid injection port 22A side. Is. The resistance member 23 is configured as a grid-like (mesh-like) circular plate having a large number of small holes, and is provided so as to cover each liquid injection port 22A from the upstream side.
 ここで、抵抗部材23は、多数の小孔を有しているから、それぞれの小孔に表面張力が働くことによって、全体の表面張力を強化することができる。これにより、各注液口22Aからの油液の吐出を停止させた状態では、抵抗部材23による表面張力によって各注液口22A側への流れを阻止し、油液の垂れ落ちを防止することができる。 Here, since the resistance member 23 has a large number of small holes, the entire surface tension can be enhanced by the surface tension acting on each small hole. Thereby, in the state which stopped discharge of the oil liquid from each liquid injection port 22A, the flow to each liquid injection port 22A side is blocked | prevented by the surface tension by the resistance member 23, and dripping of an oil liquid is prevented. Can do.
 次に、油圧緩衝器の注液装置11を用いて油圧緩衝器1のシリンダ2内に油液を注液する注液ステップを含む油圧緩衝器の製造方法について述べる。 Next, a method of manufacturing a hydraulic shock absorber including a liquid injection step of injecting an oil liquid into the cylinder 2 of the hydraulic shock absorber 1 using the liquid pressure injection device 11 of the hydraulic shock absorber will be described.
 外筒4内に内筒3を取付けてシリンダ2を組立てたら、このシリンダ2を、開口が上方を向くように搬送ラインに縦置きで載せる。これにより、ロッドガイド6が取付けられる前のシリンダ2は、搬送ラインによって油圧緩衝器の注液装置11による注液位置に移動される。このシリンダ2を注液位置に配置する工程は、搬送ラインを用いずに、手作業で配置することもできる。 When the inner cylinder 3 is mounted in the outer cylinder 4 and the cylinder 2 is assembled, the cylinder 2 is placed vertically on the transport line so that the opening faces upward. Thereby, the cylinder 2 before the rod guide 6 is attached is moved to the liquid injection position by the liquid injection device 11 of the hydraulic shock absorber by the transport line. The step of disposing the cylinder 2 at the liquid injection position can be performed manually without using the transport line.
 油圧緩衝器の注液装置11による注液位置にシリンダ2が配置されたら、図7に示す注液ステップに移る。この注液ステップでは、シリンダ2を形成する内筒3の内壁面3B、外筒4の内壁面4Bに向く各注液口形成部材22の注液口22Aを備えたノズル19を用いて、内筒3の内壁面3B、外筒4の内壁面4Bに沿わせて油液を注液する。 When the cylinder 2 is placed at the pouring position by the pouring device 11 of the hydraulic buffer, the pouring step shown in FIG. In this liquid injection step, the inner wall 3B of the inner cylinder 3 forming the cylinder 2 and the nozzle 19 provided with the liquid inlet 22A of each liquid inlet forming member 22 facing the inner wall 4B of the outer cylinder 4 are used. An oil solution is injected along the inner wall surface 3B of the cylinder 3 and the inner wall surface 4B of the outer cylinder 4.
 即ち、注液ステップでは、ノズル19の一部を内筒3の内部に挿入する挿入ステップとしてのステップ1を実行する。このステップ1では、シリンダ2が注液位置に配置されたら、昇降機構18を構成する昇降アクチュエータ18Bのロッド18B1を伸長し、遮断弁18Dと一緒にノズル19を下降させる。この際、図5に示す内筒3内のピストン室7への注液位置、具体的には、挿入筒部材21の外筒部21Aが内筒3に進入する位置までノズル19を下降させる。 That is, in the liquid injection step, Step 1 is executed as an insertion step for inserting a part of the nozzle 19 into the inner cylinder 3. In this step 1, when the cylinder 2 is arranged at the liquid injection position, the rod 18B1 of the elevating actuator 18B constituting the elevating mechanism 18 is extended, and the nozzle 19 is lowered together with the shutoff valve 18D. At this time, the nozzle 19 is lowered to the position for injecting the piston chamber 7 in the inner cylinder 3 shown in FIG. 5, specifically, to the position where the outer cylinder portion 21 </ b> A of the insertion cylinder member 21 enters the inner cylinder 3.
 ここで、ノズル19の挿入筒部材21を内筒3内に挿入する場合、長尺なシリンダ2が僅かに傾いてしまう場合がある。このような場合でも、挿入筒部材21には、下側に向けて縮径したテーパ面部21Dを形成しているから、このテーパ面部21Dを内筒3の上端部3Aに当接させることにより、内筒3を正規の注液位置に案内することができる。 Here, when the insertion cylinder member 21 of the nozzle 19 is inserted into the inner cylinder 3, the long cylinder 2 may be slightly inclined. Even in such a case, the insertion cylinder member 21 is formed with a tapered surface portion 21D having a diameter reduced toward the lower side. By bringing the tapered surface portion 21D into contact with the upper end portion 3A of the inner cylinder 3, The inner cylinder 3 can be guided to a regular liquid injection position.
 ノズル19の挿入筒部材21を内筒3内に挿入したら、第1注液ステップとしてのステップ2に移る。このステップ2では、内筒3の内壁面3Bに沿わせて油液を注液する。具体的には、ポンプ機構14のアクチュエータ14Bを縮小させて貯油タンク12内の油液を第1管路13、チェック弁16を介してポンプ部14A内に流入させる。次に、ストッパ14Cによって設定された量の油液をポンプ部14A内に流入させたら、アクチュエータ14Bを伸長させることにより、ポンプ部14A内の油液を第2管路15、チェック弁17を介して遮断弁18D側に供給する。これにより、遮断弁18Dに供給された油液は、ノズル取付管18D1を介してノズル19に供給される。 When the insertion cylinder member 21 of the nozzle 19 is inserted into the inner cylinder 3, the process proceeds to Step 2 as the first injection step. In this step 2, an oil solution is injected along the inner wall surface 3 </ b> B of the inner cylinder 3. Specifically, the actuator 14 </ b> B of the pump mechanism 14 is reduced, and the oil liquid in the oil storage tank 12 flows into the pump portion 14 </ b> A via the first pipe 13 and the check valve 16. Next, when the amount of oil set by the stopper 14C flows into the pump unit 14A, the actuator 14B is extended to allow the oil in the pump unit 14A to pass through the second conduit 15 and the check valve 17. Supplied to the shut-off valve 18D side. As a result, the oil supplied to the shutoff valve 18D is supplied to the nozzle 19 via the nozzle mounting pipe 18D1.
 ノズル19では、供給される油液を各注液口形成部材22の注液口22Aから内筒3のピストン室7に向けて油液を吐出する。この場合、各注液口22Aから吐出された油液は、内筒3の内壁面3Bに衝突する。しかし、本実施の形態では、各注液口22Aは、内筒3の内壁面3Bに向けて斜めに開口している。従って、図5中に二点鎖線(矢示A)で示すように、各注液口22Aから吐出された油液は、内筒3の内壁面3Bに対して鈍角に衝突するから、飛散が抑制されつつ、内筒3の内壁面3Bに沿って下向きに流れることができる。これにより、ピストン室7に充填された油液の表面(液面)への衝突を抑えながらピストン室7に油液を注液することができる。 In the nozzle 19, the supplied oil liquid is discharged from the liquid injection port 22 </ b> A of each liquid injection port forming member 22 toward the piston chamber 7 of the inner cylinder 3. In this case, the oil discharged from each injection port 22A collides with the inner wall surface 3B of the inner cylinder 3. However, in the present embodiment, each injection port 22A is opened obliquely toward the inner wall surface 3B of the inner cylinder 3. Therefore, as shown by a two-dot chain line (arrow A) in FIG. 5, the oil discharged from each injection port 22A collides with the inner wall surface 3B of the inner cylinder 3 at an obtuse angle, so that scattering occurs. It is possible to flow downward along the inner wall surface 3B of the inner cylinder 3 while being suppressed. As a result, the oil liquid can be injected into the piston chamber 7 while suppressing collision of the oil liquid filled in the piston chamber 7 with the surface (liquid level).
 次に、ステップ3に移って、ピストン室7に所定量の油液が注液されたか否かを判定し、「NO」と判定されたら、このステップ3の判定を繰り返す。一方、「YES」と判定されたら、第2注液ステップとしてのステップ4に移る。このステップ3による油液の流量判定には、例えばタイマ、流量計、光学センサ等が用いられている。 Next, the process proceeds to step 3 to determine whether or not a predetermined amount of oil has been injected into the piston chamber 7. If it is determined “NO”, the determination in step 3 is repeated. On the other hand, if it determines with "YES", it will move to step 4 as a 2nd liquid injection step. For example, a timer, a flow meter, an optical sensor, or the like is used for determining the flow rate of the oil liquid in step 3.
 ステップ4は、内筒3と外筒4との間のリザーバ室8に、外筒4の内筒3よりも延長された範囲を含む内壁面4Bの他端側に沿わせて油液を注液するものである。この内壁面4Bの他端側とは、内壁面3Bの上端部3Aよりも僅かに低い位置から上端部4Aまでの範囲となっている。そこで、本実施の形態では、内壁面4Bの他端側のうち、各注液口22Aから吐出された油液が内筒3の上端部3Aに接触せず、ノズル19の移動距離が短くなる位置、即ち、内壁面3Bの上端部3Aと同等の高さ位置で内壁面4Bに沿わせて油液を注液している。 In step 4, oil solution is poured into the reservoir chamber 8 between the inner cylinder 3 and the outer cylinder 4 along the other end side of the inner wall surface 4B including the range extended from the inner cylinder 3 of the outer cylinder 4. It ’s liquid. The other end side of the inner wall surface 4B is a range from a position slightly lower than the upper end portion 3A of the inner wall surface 3B to the upper end portion 4A. Therefore, in the present embodiment, of the other end side of the inner wall surface 4B, the oil discharged from each liquid injection port 22A does not contact the upper end portion 3A of the inner cylinder 3, and the moving distance of the nozzle 19 is shortened. The oil liquid is injected along the inner wall surface 4B at a position, that is, at a height position equivalent to the upper end portion 3A of the inner wall surface 3B.
 ステップ4では、昇降アクチュエータ18Bのロッド18B1を縮小し、図6に示すリザーバ室8への注液位置までノズル19を上昇させる。これにより、ステップ4では、図6中に二点鎖線(矢示B)で示すように、各注液口22Aから吐出された油液は、ステップ2と同様に、外筒4の内壁面4Bに対して鈍角に衝突するから、飛散が抑制されつつ、外筒4の内壁面4Bに沿って下向きに流れることができる。これにより、リザーバ室8に充填された油液の表面(液面)への衝突を抑えながらリザーバ室8に油液を注液することができる。このステップ4では、各注液口22Aからの油液の吐出を停止することなく、ノズル19を上昇させることにより、油液の停止工程と供給工程とを省略することができる。 In step 4, the rod 18B1 of the elevating actuator 18B is reduced, and the nozzle 19 is raised to the position for injecting the liquid into the reservoir chamber 8 shown in FIG. Thereby, in step 4, as shown by a two-dot chain line (arrow B) in FIG. 6, the oil liquid discharged from each liquid inlet 22A is the inner wall surface 4B of the outer cylinder 4 as in step 2. Therefore, it can flow downward along the inner wall surface 4B of the outer cylinder 4 while suppressing scattering. Thereby, the oil liquid can be injected into the reservoir chamber 8 while suppressing the collision of the oil liquid filled in the reservoir chamber 8 with the surface (liquid surface). In Step 4, the oil liquid stop process and the supply process can be omitted by raising the nozzle 19 without stopping the discharge of the oil liquid from each liquid injection port 22 </ b> A.
 次に、ステップ5に移って、リザーバ室8に所定量の油液が注液されたか否かを判定し、「NO」と判定されたら、このステップ5の判定を繰り返す。一方、「YES」と判定されたら、ステップ6に移って油液の供給を停止する。このステップ5でも、前述したステップ3と同様に、油液の流量判定に、例えばタイマ、流量計、光学センサ等が用いられている。 Next, the process proceeds to step 5 to determine whether or not a predetermined amount of oil has been injected into the reservoir chamber 8. If “NO” is determined, the determination in step 5 is repeated. On the other hand, if "YES" is determined, the process proceeds to step 6 to stop the supply of the oil liquid. In step 5, as in step 3 described above, for example, a timer, a flow meter, an optical sensor, or the like is used to determine the flow rate of the oil.
 ステップ6で油液の供給を停止したときには、各注液口22A内に残存した油液が垂れ落ちる虞がある。これに対し、ノズル19の挿入筒部材21には、各注液口22Aの外周側に位置してザグリ穴21Fが設けられている。これにより、各注液口22A内に油液が残存しても、ザグリ穴21Fによって油液の表面張力を高く維持することにより、油液の垂れ落ちを防止することができる。 When the supply of the oil liquid is stopped in step 6, there is a possibility that the oil liquid remaining in each of the liquid injection ports 22A will drip. On the other hand, the insertion cylinder member 21 of the nozzle 19 is provided with a counterbore hole 21F located on the outer peripheral side of each liquid injection port 22A. Thereby, even if the oil liquid remains in each liquid injection port 22A, dripping of the oil liquid can be prevented by maintaining the surface tension of the oil liquid high by the counterbore holes 21F.
 そして、ステップ6で油液の供給を停止したら、ステップ7に移り、昇降アクチュエータ18Bのロッド18B1を縮小し、図1に示す待機位置までノズル19を上昇させる。 Then, when the supply of the oil liquid is stopped in Step 6, the process proceeds to Step 7, where the rod 18B1 of the elevating actuator 18B is reduced, and the nozzle 19 is raised to the standby position shown in FIG.
 注液ステップによってシリンダ2内に油液を注液したら、組立作業に戻り、シリンダ2にピストン9、ピストンロッド10、ロッドガイド6を組付ける。これにより、油圧緩衝器1を製造することができる。そして、油圧緩衝器1を製造した直後には、油圧緩衝器1の減衰力測定(動作テスト)が行われる。 When the oil solution is injected into the cylinder 2 by the injection step, the assembly operation is returned to and the piston 9, the piston rod 10, and the rod guide 6 are assembled to the cylinder 2. Thereby, the hydraulic shock absorber 1 can be manufactured. Immediately after manufacturing the hydraulic shock absorber 1, a damping force measurement (operation test) of the hydraulic shock absorber 1 is performed.
 かくして、本実施の形態によれば、シリンダ2内のピストン室7およびリザーバ室8に油液を注液するノズル19を備えている。このノズル19は、複数、例えば4個の注液口22Aを有している。この上で、各注液口22Aの仮想軸線O2-O2は、ノズル19の仮想軸線O1-O1に対して0度より大きい角度を有している。 Thus, according to the present embodiment, the nozzle 19 for injecting oil into the piston chamber 7 and the reservoir chamber 8 in the cylinder 2 is provided. The nozzle 19 has a plurality of, for example, four liquid injection ports 22A. In addition, the virtual axis O2-O2 of each liquid injection port 22A has an angle greater than 0 degrees with respect to the virtual axis O1-O1 of the nozzle 19.
 従って、油液の注液ステップでは、油液の注液は、注液の際、中空筒状をしたシリンダ2の内筒3の内壁面3Bないし外筒4の内壁面4Bに向く注液口22Aを備えたノズル19を用いて、内筒3の内壁面3Bないし外筒4の内壁面4Bに沿わせて油液を注液することができる。 Accordingly, in the liquid injection step, the liquid injection is directed to the inner wall surface 3B of the inner cylinder 3 of the hollow cylinder 2 or the inner wall surface 4B of the outer cylinder 4 during the injection. An oil liquid can be injected along the inner wall surface 3B of the inner cylinder 3 or the inner wall surface 4B of the outer cylinder 4 using the nozzle 19 provided with 22A.
 これにより、ピストン室7、リザーバ室8に油液を注液するときには、ピストン室7、リザーバ室8に充填された油液の表面(液面)への衝突を抑えながら油液を注液することができる。この結果、ピストン室7、リザーバ室8での油液の泡立ちを抑制できるから、直後に行われる減衰力測定(動作テスト)において所定の減衰力を得ることができ、作業性や信頼性を向上することができる。 As a result, when the oil liquid is injected into the piston chamber 7 and the reservoir chamber 8, the oil liquid is injected while suppressing a collision with the surface (liquid level) of the oil liquid filled in the piston chamber 7 and the reservoir chamber 8. be able to. As a result, since bubbling of the oil liquid in the piston chamber 7 and the reservoir chamber 8 can be suppressed, a predetermined damping force can be obtained in the damping force measurement (operation test) performed immediately afterward, and workability and reliability are improved. can do.
 また、注液ステップの挿入ステップ(ステップ1)では、ノズル19の一部をシリンダ2の内筒3の内部に挿入している。これにより、長尺なシリンダ2が僅かに傾いて正規の注液位置からずれている場合でも、挿入筒部材21を内筒3内に挿入することにより、内筒3(シリンダ2)を正規の注液位置に配置することができる。しかも、ノズル19を形成する挿入筒部材21には、下側に向けて縮径したテーパ面部21Dを設けているから、このテーパ面部21Dを内筒3の上端部3Aに当接させることにより、内筒3を正規の注液位置に案内することができる。 Further, in the injection step (step 1) of the liquid injection step, a part of the nozzle 19 is inserted into the inner cylinder 3 of the cylinder 2. As a result, even when the long cylinder 2 is slightly tilted and deviated from the normal injection position, the inner cylinder 3 (cylinder 2) can be properly connected by inserting the insertion cylinder member 21 into the inner cylinder 3. Can be placed at the injection position. Moreover, since the insertion cylinder member 21 forming the nozzle 19 is provided with a tapered surface portion 21D having a diameter reduced toward the lower side, by bringing the tapered surface portion 21D into contact with the upper end portion 3A of the inner cylinder 3, The inner cylinder 3 can be guided to a regular liquid injection position.
 シリンダ2は、内筒3と該内筒3の外周に配置され、上端側が内筒3よりも延長された外筒4とからなっている。この上で、注液ステップは、内筒3の内壁面3Bに沿わせて油液を注液する第1注液ステップと、内筒3と外筒4との間に、外筒4の内筒3よりも延長された範囲を含む内壁面4Bの他端側に沿わせて油液を注液する第2注液ステップとを有している。これにより、複筒式のシリンダ2を備えた油圧緩衝器1に対し、そのピストン室7とリザーバ室8に油液を注液することができる。 The cylinder 2 includes an inner cylinder 3 and an outer cylinder 4 which is disposed on the outer periphery of the inner cylinder 3 and whose upper end is extended from the inner cylinder 3. On this basis, the liquid injection step is performed between the first liquid injection step for injecting the oil liquid along the inner wall surface 3 </ b> B of the inner cylinder 3, and the inner cylinder 3 and the outer cylinder 4. A second liquid injection step of injecting the oil liquid along the other end side of the inner wall surface 4B including the range extended from the cylinder 3. As a result, it is possible to inject oil into the piston chamber 7 and the reservoir chamber 8 with respect to the hydraulic shock absorber 1 including the double cylinder type cylinder 2.
 さらに、ノズル19に設けた各注液口形成部材22の注液口22Aの外周側には、それぞれザグリ穴21Fが形成されている。従って、各注液口22A内に油液が残存した場合でも、ザグリ穴21Fによって油液の表面張力を高く維持することにより、油液の垂れ落ちを防止するものである。 Furthermore, counterbore holes 21F are respectively formed on the outer peripheral side of the liquid injection port 22A of each liquid injection port forming member 22 provided in the nozzle 19. Therefore, even when the oil liquid remains in each liquid inlet 22A, the oil liquid is prevented from dripping by maintaining the surface tension of the oil liquid high by the counterbore holes 21F.
 さらに、ノズル19の外径寸法は、シリンダ2を構成する内筒3の内径寸法よりも僅かに小さな寸法に設定されている。従って、ノズル19が内筒3内に挿入されることにより、内筒3の上端部3A側の開口は、ノズル19によって油液がリザーバ室8に流出しない程度に塞がれているため、リザーバ室8側に油液が垂れる虞がなく、内筒3内に所定量の油液を注液することができる。 Further, the outer diameter of the nozzle 19 is set to be slightly smaller than the inner diameter of the inner cylinder 3 constituting the cylinder 2. Accordingly, since the nozzle 19 is inserted into the inner cylinder 3, the opening on the upper end 3 </ b> A side of the inner cylinder 3 is blocked to the extent that the oil does not flow into the reservoir chamber 8 by the nozzle 19. There is no risk of the oil liquid dripping on the chamber 8 side, and a predetermined amount of oil liquid can be injected into the inner cylinder 3.
 なお、実施の形態では、ノズル19を形成する挿入筒部材21に傾斜ねじ孔21Eを設け、この傾斜ねじ孔21Eに注液口22Aを有する注液口形成部材22を螺合することにより、注液口22Aを内筒3の内壁面3Bないし外筒4の内壁面4Bに向けて形成した場合を例示している。しかし、本発明はこれに限らず、例えば、ノズルをストロー状の管体によって形成し、この管体の先端を内筒3の内壁面3Bないし外筒4の内壁面4Bに向けて形成する構成としてもよい。また、挿入筒部材に注液口を直接形成する構成としてもよい。 In the embodiment, the insertion tube member 21 forming the nozzle 19 is provided with the inclined screw hole 21E, and the liquid injection port forming member 22 having the liquid injection port 22A is screwed into the inclined screw hole 21E. The case where the liquid port 22A is formed toward the inner wall surface 3B of the inner cylinder 3 or the inner wall surface 4B of the outer cylinder 4 is illustrated. However, the present invention is not limited to this. For example, the nozzle is formed of a straw-like tube body, and the tip of the tube body is formed toward the inner wall surface 3B of the inner cylinder 3 or the inner wall surface 4B of the outer cylinder 4. It is good. Moreover, it is good also as a structure which forms an injection hole directly in an insertion cylinder member.
 実施の形態では、ノズル19に注液口22Aを有する注液口形成部材22を設け、ノズル19を上,下方向に移動させることにより、ピストン室7とリザーバ室8とに油液を注液する構成としている。しかし、本発明はこれに限るものではなく、例えば、ノズルにピストン室用の注液口とリザーバ室用の注液口とを設ける構成としてもよい。この場合には、油液の注液中にノズルを移動することなく、ピストン室とリザーバ室との両方に注液することができる。 In the embodiment, the nozzle 19 is provided with a liquid injection port forming member 22 having a liquid injection port 22A, and the nozzle 19 is moved upward and downward to inject oil into the piston chamber 7 and the reservoir chamber 8. It is configured to do. However, the present invention is not limited to this. For example, the nozzle may be provided with a liquid injection port for the piston chamber and a liquid injection port for the reservoir chamber. In this case, the liquid can be injected into both the piston chamber and the reservoir chamber without moving the nozzle during the liquid injection.
 実施の形態では、ノズル19に設けた各注液口22Aは、その仮想軸線O2-O2を、ノズル19の仮想軸線O1-O1に対し、例えば40度から50度の範囲に設定した場合を例示している。しかし、本発明はこれに限らず、例えば、ノズルに設けた各注液口は、シリンダの内壁面に対して垂直となるように設ける構成としてもよい。この場合、注液口から吐出する油液の流速は、シリンダの内壁面に衝突した後、跳ね返りがない程度の油液の流速であることが望ましい。 In the embodiment, each of the liquid injection ports 22A provided in the nozzle 19 has an example in which the virtual axis O2-O2 is set in a range of, for example, 40 degrees to 50 degrees with respect to the virtual axis O1-O1 of the nozzle 19. doing. However, the present invention is not limited to this, and for example, each liquid injection port provided in the nozzle may be configured to be perpendicular to the inner wall surface of the cylinder. In this case, it is desirable that the flow rate of the oil liquid discharged from the liquid injection port is a flow rate of the oil liquid that does not rebound after colliding with the inner wall surface of the cylinder.
 実施の形態では、4個の注液口22Aから油液を放射状に吐出する構成とした場合を例示している。しかし、本発明はこれに限らず、例えば、注液口を周方向にも傾ける(ねじる)ことにより、油液を旋回流(スワール)状に吐出する構成としてもよい。言い換えれば、注液口は、注液口から吐出する油液がシリンダの内壁面に沿うように構成されていれば良い。また、注液口は、1個、2個、3個または5個以上設ける構成としてもよい。 In the embodiment, a case where oil liquid is discharged radially from the four liquid injection ports 22A is illustrated. However, the present invention is not limited to this. For example, the liquid may be discharged in a swirling manner by tilting (twisting) the liquid injection port in the circumferential direction. In other words, the liquid injection port only needs to be configured so that the oil discharged from the liquid injection port follows the inner wall surface of the cylinder. In addition, one, two, three, or five or more injection ports may be provided.
 実施の形態では、ステップ4において、各注液口22Aからの油液の吐出を停止することなく、ノズル19を上昇させる構成とした場合を例示している。しかし、本発明はこれに限らず、ステップ3とステップ4との間に油液の供給停止ステップを追加し、ステップ4とステップ5との間に油液の供給ステップを追加する構成としてもよい。 In the embodiment, the case where the nozzle 19 is raised in step 4 without stopping the discharge of the oil liquid from each liquid injection port 22A is illustrated. However, the present invention is not limited to this, and an oil liquid supply stop step may be added between step 3 and step 4, and an oil liquid supply step may be added between step 4 and step 5. .
 さらに、実施の形態では、内筒3と外筒4とから二重筒構造をなすシリンダ2に対して油圧緩衝器の注液装置11から油液を注液した場合を例示している。しかし、本発明はこれに限るものではなく、三重以上の筒構造か、単筒構造をなすシリンダに対して油液を注液するのに油圧緩衝器の注液装置を用いる構成としてもよい。 Furthermore, in the embodiment, a case where an oil liquid is injected from the liquid injection device 11 of the hydraulic shock absorber to the cylinder 2 having a double cylinder structure from the inner cylinder 3 and the outer cylinder 4 is illustrated. However, the present invention is not limited to this, and a hydraulic buffer injection device may be used to inject the oil into a cylinder having a triple or more cylinder structure or a single cylinder structure.
 さらに、実施の形態では、ノズル19を上,下方向に移動(昇降)するものを例に示したが、ノズル側を固定し、油圧緩衝器を上下させてもよい。また、ノズルと油圧緩衝器との両方をシリンダとノズルの注液ステップに応じて動かしてもよい。言い換えると、仮想軸線O1-O1は、ノズルと油圧緩衝器との相対移動方向でもある。 Furthermore, in the embodiment, an example in which the nozzle 19 is moved up and down (lifted) is shown as an example, but the nozzle side may be fixed and the hydraulic shock absorber may be moved up and down. Moreover, you may move both a nozzle and a hydraulic buffer according to the liquid injection step of a cylinder and a nozzle. In other words, the virtual axis O1-O1 is also the relative movement direction between the nozzle and the hydraulic shock absorber.
 以上説明した実施形態に基づく流体圧緩衝器の製造方法およびその注液装置として、例えば、以下に述べる態様のものが考えられる。 For example, the following modes can be considered as a method of manufacturing a fluid pressure shock absorber and a liquid injection device thereof based on the embodiment described above.
 流体圧緩衝器の製造方法の第1の態様としては、内部に作動流体を封入した流体圧緩衝器の製造方法であって、前記流体圧緩衝器は、一端側に底部を有する中空筒状のシリンダを備えており、該シリンダの他端側からピストンロッドが突出されており、前記製造方法は、前記シリンダの内壁面に向く注液口を備えたノズルを用いて、前記シリンダの内壁面に沿わせて作動流体を注液する注液ステップを有することにある。これにより、シリンダ内に充填された作動流体の表面(液面)への衝突を抑えながら作動流体を注液することができ、シリンダ内での作動流体の泡立ちを抑制することができる。 A first aspect of the method for manufacturing a fluid pressure shock absorber is a method for manufacturing a fluid pressure shock absorber in which a working fluid is enclosed. The fluid pressure shock absorber has a hollow cylindrical shape having a bottom on one end side. A cylinder is provided, and a piston rod protrudes from the other end side of the cylinder, and the manufacturing method uses a nozzle having a liquid injection port facing the inner wall surface of the cylinder, to the inner wall surface of the cylinder. It has the liquid injection step which injects working fluid along. Thereby, it is possible to inject the working fluid while suppressing the collision with the surface (liquid level) of the working fluid filled in the cylinder, and it is possible to suppress bubbling of the working fluid in the cylinder.
 流体圧緩衝器の製造方法の第2の態様としては、第1の態様に記載の流体圧緩衝器の製造方法であって、前記注液ステップは、前記ノズルの一部が前記シリンダの内部に挿入される挿入ステップを有することにある。これにより、長尺なシリンダが僅かに傾いて正規の注液位置からずれている場合でも、シリンダを正規の注液位置に配置することができる。 A second aspect of the method for manufacturing a fluid pressure shock absorber is the method for manufacturing a fluid pressure shock absorber according to the first aspect, wherein the liquid injection step includes a part of the nozzle in the cylinder. It has an insertion step to be inserted. Thereby, even when the long cylinder is slightly tilted and deviated from the normal liquid injection position, the cylinder can be arranged at the normal liquid injection position.
 流体圧緩衝器の製造方法の第3の態様としては、第1または第2の態様に記載の流体圧緩衝器の製造方法であって、前記シリンダは、内筒と該内筒の外周に配置され、他端側が前記内筒よりも延長された外筒とからなり、注液ステップは、前記内筒の内壁面に沿わせて前記作動流体を注液する第1注液ステップと、前記内筒と前記外筒との間に、前記外筒の前記内筒よりも延長された範囲を含む内壁面の他端側に沿わせて前記作動流体を注液する第2注液ステップと、を有することにある。これにより、複筒式のシリンダを備えた流体圧緩衝器に対し、そのシリンダの前記内筒内と、前記内筒と前記外筒との間に、所定量の作動流体を注液することができる。 A third aspect of the method for manufacturing a fluid pressure shock absorber is the method for manufacturing the fluid pressure shock absorber according to the first or second aspect, wherein the cylinder is disposed on an inner cylinder and an outer periphery of the inner cylinder. The other end side is an outer cylinder extended from the inner cylinder, and the liquid injection step includes a first liquid injection step of injecting the working fluid along an inner wall surface of the inner cylinder, A second injecting step of injecting the working fluid along the other end of the inner wall surface including a range extended from the inner cylinder of the outer cylinder between the cylinder and the outer cylinder; Is to have. As a result, a predetermined amount of working fluid can be injected into the inner cylinder of the cylinder and between the inner cylinder and the outer cylinder of the fluid pressure shock absorber having a double cylinder cylinder. it can.
 また、流体圧緩衝器の注液装置の第1の態様としては、内部に作動流体を封入した流体圧緩衝器の注液装置であって、
 前記流体圧緩衝器は、一端側に底部を有するシリンダを備えており、該シリンダの他端側からピストンロッドが突出されており、
 前記注液装置は、前記シリンダに作動流体を注液するノズルを備え、該ノズルは、一または複数の注液口を有し、該注液口の仮想軸線は、前記ノズルの仮想軸線に対して0度より大きい角度を有することを特徴としている。これにより、シリンダ内に充填する作動流体の表面(液面)への衝突を抑えながら作動流体を注液することができ、シリンダ内での作動流体の泡立ちを抑制することができる。
Further, as a first aspect of the fluid pressure buffer injection device, a fluid pressure buffer injection device in which a working fluid is enclosed,
The fluid pressure shock absorber includes a cylinder having a bottom portion on one end side, and a piston rod projects from the other end side of the cylinder,
The liquid injection device includes a nozzle for injecting a working fluid into the cylinder, the nozzle has one or a plurality of liquid injection ports, and the virtual axis of the liquid injection port is relative to the virtual axis of the nozzle. And having an angle greater than 0 degrees. Thereby, it is possible to inject the working fluid while suppressing the collision of the working fluid filling the cylinder with the surface (liquid level), and it is possible to suppress foaming of the working fluid in the cylinder.
 流体圧緩衝器の注液装置の第2の態様としては、第1の態様に記載の流体圧緩衝器の注液装置であって、前記ノズルの前記注液口の外周側には、ザグリ穴が形成されていることを特徴としている。これにより、ザグリ穴によって作動流体の表面張力を高く維持することにより、作動流体の垂れ落ちを防止することができる。 A fluid pressure buffer injection device according to a second aspect of the fluid pressure buffer injection device is the fluid pressure buffer injection device according to the first aspect, wherein a counterbored hole is formed on the outer peripheral side of the liquid injection port of the nozzle. It is characterized by being formed. Thereby, the dripping of the working fluid can be prevented by maintaining the surface tension of the working fluid high by the counterbore hole.
流体圧緩衝器の注液装置の第3の態様としては、第1または第2の態様に記載の流体圧緩衝器の注液装置であって、前記ノズルの外径寸法は、前記シリンダの内径寸法よりも僅かに小さいことを特徴とする流体圧緩衝器の注液装置。これにより、シリンダ内に注液した作動流体が、シリンダ外に流出することを抑制することができる。 A third aspect of the fluid pressure buffer injection device is the fluid pressure buffer injection device according to the first or second aspect, wherein the outer diameter of the nozzle is the inner diameter of the cylinder. An injection device for a fluid pressure shock absorber, characterized in that it is slightly smaller than the size. Thereby, it is possible to suppress the working fluid injected into the cylinder from flowing out of the cylinder.
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 本願は、2018年5月29日付出願の日本国特許出願第2018-102434号に基づく優先権を主張する。2018年5月29日付出願の日本国特許出願第2018-102434号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2018-102434 filed on May 29, 2018. The entire disclosure including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-102434 filed on May 29, 2018 is incorporated herein by reference in its entirety.
 1 油圧緩衝器(流体圧緩衝器) 2 シリンダ 3 内筒 3B,4B 内壁面 4 外筒 5 ボトムキャップ(底部) 10 ピストンロッド 11 油圧緩衝器の注液装置(流体圧緩衝器の注液装置) 19 ノズル 21 挿入筒部材 21E 傾斜ねじ孔 21F ザグリ穴 22 注液口形成部材 22A 注液口 O1-O1 ノズルの仮想軸線 O2-O2 注液口の仮想軸線 α ノズルの仮想軸線に対する注液口の仮想軸線の角度 DESCRIPTION OF SYMBOLS 1 Hydraulic buffer (fluid pressure buffer) 2 Cylinder 3 Inner cylinder 3B, 4B Inner wall surface 4 Outer cylinder 5 Bottom cap (bottom part) 10 Piston rod 11 Hydraulic buffer injection device (injection device of fluid pressure buffer) 19 Nozzle 21 Insertion cylinder member 21E Inclined screw hole 21F Counterbore hole 22 Injection port forming member 22A Injection port O1-O1 Nozzle virtual axis O2-O2 Nozzle virtual axis α Virtual injection port relative to the virtual axis of the nozzle Axis angle

Claims (6)

  1.  内部に作動流体を封入した流体圧緩衝器の製造方法であって、
     前記流体圧緩衝器は、一端側に底部を有する中空筒状のシリンダを備えており、該シリンダの他端側からピストンロッドが突出されており、
     前記製造方法は、
     前記シリンダの内壁面に向く注液口を備えたノズルを用いて、前記シリンダの内壁面に沿わせて作動流体を注液する注液ステップを有する流体圧緩衝器の製造方法。
    A manufacturing method of a fluid pressure buffer in which a working fluid is enclosed,
    The fluid pressure shock absorber includes a hollow cylindrical cylinder having a bottom on one end side, and a piston rod protrudes from the other end side of the cylinder,
    The manufacturing method includes:
    A method for producing a fluid pressure shock absorber, comprising: a liquid injection step of injecting a working fluid along an inner wall surface of the cylinder using a nozzle having a liquid injection port facing the inner wall surface of the cylinder.
  2.  請求項1に記載の流体圧緩衝器の製造方法であって、
     前記注液ステップは、前記ノズルの一部が前記シリンダの内部に挿入される挿入ステップを有する流体圧緩衝器の製造方法。
    It is a manufacturing method of the fluid pressure buffer according to claim 1,
    The liquid injection step is a method of manufacturing a fluid pressure shock absorber, which includes an insertion step in which a part of the nozzle is inserted into the cylinder.
  3.  請求項1または2に記載の流体圧緩衝器の製造方法であって、
     前記シリンダは、内筒と、該内筒の外周に配置され、他端側が前記内筒よりも延長された外筒とからなり、
     注液ステップは、前記内筒の内壁面に沿わせて前記作動流体を注液する第1注液ステップと、
     前記内筒と前記外筒との間に、前記外筒の前記内筒よりも延長された範囲を含む内壁面の他端側に沿わせて前記作動流体を注液する第2注液ステップと、を有する流体圧緩衝器の製造方法。
    A method for producing a fluid pressure shock absorber according to claim 1 or 2,
    The cylinder includes an inner cylinder and an outer cylinder disposed on the outer periphery of the inner cylinder, the other end extending from the inner cylinder,
    The liquid injection step includes a first liquid injection step of injecting the working fluid along the inner wall surface of the inner cylinder,
    A second injecting step of injecting the working fluid along the other end of the inner wall surface including a range extended from the inner cylinder of the outer cylinder between the inner cylinder and the outer cylinder; A method of manufacturing a fluid pressure shock absorber.
  4.  内部に作動流体を封入した流体圧緩衝器の注液装置であって、
     前記流体圧緩衝器は、一端側に底部を有するシリンダを備えており、該シリンダの他端側からピストンロッドが突出されており、
     前記注液装置は、
     前記シリンダに作動流体を注液するノズルと、
     前記ノズルを前記流体圧緩衝器内へ進入させるために、前記ノズルと前記流体圧緩衝器を相対移動させる移動装置とを備え、
     前記ノズルは、一または複数の注液口を有し、
     該注液口の開口面を通り、前記作動流体の流通方向に伸びる仮想軸線は、前記ノズルと前記流体圧緩衝器との相対移動方向であって、前記シリンダの軸方向に伸びる仮想軸線に対して0度より大きい角度を有することを特徴とする流体圧緩衝器の注液装置。
    An injection device for a fluid pressure buffer in which a working fluid is enclosed,
    The fluid pressure shock absorber includes a cylinder having a bottom portion on one end side, and a piston rod projects from the other end side of the cylinder,
    The liquid injection device is
    A nozzle for injecting a working fluid into the cylinder;
    A moving device for relatively moving the nozzle and the fluid pressure shock absorber to allow the nozzle to enter the fluid pressure shock absorber;
    The nozzle has one or a plurality of liquid injection ports,
    The imaginary axis extending in the flow direction of the working fluid through the opening surface of the liquid injection port is a relative movement direction of the nozzle and the fluid pressure buffer, and is relative to the imaginary axis extending in the axial direction of the cylinder. An injection device for a fluid pressure shock absorber having an angle greater than 0 degrees.
  5.  請求項4に記載の流体圧緩衝器の注液装置であって、
     前記ノズルの前記注液口の外周側には、ザグリ穴が形成されていることを特徴とする流体圧緩衝器の注液装置。
    A fluid injection device for a fluid pressure shock absorber according to claim 4,
    A fluid injection device for a fluid pressure buffer, wherein a counterbore hole is formed on an outer peripheral side of the liquid injection port of the nozzle.
  6.  請求項4または5に記載の流体圧緩衝器の注液装置であって、
     前記ノズルの外径寸法は、前記シリンダの内径寸法よりも僅かに小さいことを特徴とする流体圧緩衝器の注液装置。
    A fluid injection device for a fluid pressure shock absorber according to claim 4 or 5,
    The fluid pressure buffer injection device according to claim 1, wherein an outer diameter of the nozzle is slightly smaller than an inner diameter of the cylinder.
PCT/JP2019/020431 2018-05-29 2019-05-23 Method for manufacturing fluid pressure shock absorber and liquid injection device for same WO2019230549A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020522136A JP7058325B2 (en) 2018-05-29 2019-05-23 Manufacturing method of fluid pressure shock absorber and its injecting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-102434 2018-05-29
JP2018102434 2018-05-29

Publications (1)

Publication Number Publication Date
WO2019230549A1 true WO2019230549A1 (en) 2019-12-05

Family

ID=68698807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020431 WO2019230549A1 (en) 2018-05-29 2019-05-23 Method for manufacturing fluid pressure shock absorber and liquid injection device for same

Country Status (2)

Country Link
JP (1) JP7058325B2 (en)
WO (1) WO2019230549A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249623A1 (en) * 2021-05-26 2022-12-01 日立Astemo株式会社 Shock absorber and method for manufacturing shock absorber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018838Y1 (en) * 1968-03-08 1975-06-09
JP2001097488A (en) * 1999-10-01 2001-04-10 Hitachi Zosen Corp Liquid filling method and apparatus
JP2003237734A (en) * 2002-02-14 2003-08-27 Nissan Chem Ind Ltd Liquid filling up nozzle
JP2007112490A (en) * 2005-10-21 2007-05-10 Hitachi Chem Co Ltd Liquid filling nozzle
JP2013113402A (en) * 2011-11-30 2013-06-10 Hitachi Automotive Systems Ltd Lubricating device for hydraulic shock absorber
JP2014137056A (en) * 2013-01-18 2014-07-28 Yachiyo Industry Co Ltd Liquid injection nozzle for on-vehicle device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018838Y1 (en) * 1968-03-08 1975-06-09
JP2001097488A (en) * 1999-10-01 2001-04-10 Hitachi Zosen Corp Liquid filling method and apparatus
JP2003237734A (en) * 2002-02-14 2003-08-27 Nissan Chem Ind Ltd Liquid filling up nozzle
JP2007112490A (en) * 2005-10-21 2007-05-10 Hitachi Chem Co Ltd Liquid filling nozzle
JP2013113402A (en) * 2011-11-30 2013-06-10 Hitachi Automotive Systems Ltd Lubricating device for hydraulic shock absorber
JP2014137056A (en) * 2013-01-18 2014-07-28 Yachiyo Industry Co Ltd Liquid injection nozzle for on-vehicle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249623A1 (en) * 2021-05-26 2022-12-01 日立Astemo株式会社 Shock absorber and method for manufacturing shock absorber
JP7390523B2 (en) 2021-05-26 2023-12-01 日立Astemo株式会社 Buffer and buffer manufacturing method

Also Published As

Publication number Publication date
JPWO2019230549A1 (en) 2021-04-08
JP7058325B2 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
KR102100525B1 (en) Filling device for fluid tank
WO2019230549A1 (en) Method for manufacturing fluid pressure shock absorber and liquid injection device for same
IT1391204B1 (en) ANTI-THEFT DEVICE, PARTICULARLY FOR THE PREVENTION OF FUEL EXTRACTION FROM TANKS
JP2008180310A (en) Method of changing damping characteristic of multi-cylinder shock absorber
JP6231193B2 (en) Universal shut-off valve
WO2020217602A1 (en) Production method for cylinder device
JP2013189240A (en) Liquid injecting device
WO2018179207A1 (en) Hydraulic shock absorber for elevators
KR20110047407A (en) Safety injection tank
ITPD20080235A1 (en) VALVE DEVICE FOR FILLING CONTAINERS, IN PARTICULAR TANKS INTENDED TO CONTAIN LIQUEFIED GAS
ITPD20080234A1 (en) DEVICE FOR PREVENTING THE OCCUPANCY OF CONTAINERS, IN PARTICULAR TANKS INTENDED TO CONTAIN LIQUEFIED GASES
JP5859826B2 (en) Lubricator for hydraulic shock absorber
KR200468258Y1 (en) Portable oil container
KR101274432B1 (en) Device for reducing re-injection of injection valve
JP5359717B2 (en) Filling valve
KR200387629Y1 (en) A valve for going out gas
JP2019043559A (en) Nozzle for filling up oil automatically
KR100901641B1 (en) Valve device for fuel tank
EP4071379A1 (en) Shock absorber
KR102449490B1 (en) Valve for preventing contamination and reducing operating costs due to leakage of fluid by blocking excess inflow of fluid due to residual power of the pump
KR20170126154A (en) System for preventing overflow during oil supply
KR101525322B1 (en) Safety injection tank having function for delaying gas leakage
JP2023043094A (en) Filling device and filling method
KR101549373B1 (en) flow measuring device
CN111595406B (en) Leak protection type level gauge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522136

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811558

Country of ref document: EP

Kind code of ref document: A1