WO2019230534A1 - Solar battery and method of manufacturing same - Google Patents

Solar battery and method of manufacturing same Download PDF

Info

Publication number
WO2019230534A1
WO2019230534A1 PCT/JP2019/020341 JP2019020341W WO2019230534A1 WO 2019230534 A1 WO2019230534 A1 WO 2019230534A1 JP 2019020341 W JP2019020341 W JP 2019020341W WO 2019230534 A1 WO2019230534 A1 WO 2019230534A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
group
layer
substrate
electrode
Prior art date
Application number
PCT/JP2019/020341
Other languages
French (fr)
Japanese (ja)
Inventor
有章 志田
幸宏 牧島
井 宏元
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020522127A priority Critical patent/JPWO2019230534A1/en
Publication of WO2019230534A1 publication Critical patent/WO2019230534A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell and a manufacturing method thereof. More specifically, the present invention relates to a solar cell having a long lifetime by suppressing adverse effects of water vapor and oxygen gas and a method for manufacturing the solar cell.
  • Organic solar cells having various structures have been developed, and recently, organic thin-film solar cells that are expected to be low-cost, lightweight, and flexible are attracting attention.
  • As a structure of the organic thin film solar cell a structure in which a single layer or a plurality of layers of an organic thin film having a photoelectric conversion function is arranged between two different electrodes is common. This organic thin film solar cell has an advantage that it can be reduced in weight and flexibility by using a plastic film as a substrate.
  • organic thin-film solar cells are generally considered to have lower durability than inorganic solar cells.
  • the plastic film constitutes an organic thin film solar cell because the transmission of water vapor, oxygen, etc. is not as suppressed as the glass substrate.
  • the deterioration of the organic compound and the electrode to be performed with time is large, and the durability of the solar cell is remarkably lowered, and development of an improvement technique is desired (for example, see Patent Document 3).
  • the present invention has been made in view of the above-described problems and circumstances, and a solution to that problem is to provide a solar cell with a long life and a method for manufacturing the solar cell that suppresses adverse effects of water and oxygen in the atmosphere. .
  • the present inventor captures (traps) moisture by a specific organometallic oxide, generates a water-repellent or hydrophobic compound, and acts as a desiccant. It has been found that it exerts its action, and has led to the present invention.
  • a solar cell comprising at least a first substrate, a first electrode, an organic photoelectric conversion unit, a second electrode, and a second substrate, A water vapor barrier layer is provided between the first substrate and the second substrate;
  • steam barrier layer contains the organometallic oxide which has a structure represented by following General formula (1), The solar cell characterized by the above-mentioned.
  • R [M (OR 1 ) y (O—) xy ] n —R
  • R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group.
  • R represents fluorine as a substituent. It may be a carbon chain containing atoms
  • M represents a metal atom
  • OR 1 represents a fluorinated alkoxy group
  • x represents a valence of the metal atom
  • y represents an arbitrary integer between 1 and x
  • n Represents the degree of polycondensation.
  • a solar cell according to item 1 characterized in that:
  • the metal atom represented by M is selected from Ti, Zr, Sn, Ta, Fe, Zn, Si, and Al.
  • the said organic photoelectric conversion unit has a layer containing a perovskite compound,
  • the solar cell as described in any one of Claim 1 to 3 characterized by the above-mentioned.
  • the organic photoelectric conversion unit is A layer containing a perovskite compound; An electron transport layer containing at least two kinds of organometallic oxides having different metal species and having a structure represented by the general formula (1), At least one kind of the metal atom M of the organometallic oxide is a metal atom selected from the metal atoms described in the item 3, and Item 5.
  • the organometallic oxide having the structure represented by the general formula (1) reacts with water vapor or iodine gas to release a water-repellent or hydrophobic compound or to capture iodine gas.
  • the solar cell according to any one of items 1 to 5 described above.
  • the water vapor barrier layer is provided between the first substrate and the first electrode or at a position covering the whole or a part of the constituent layers from the first electrode to the second electrode.
  • the solar cell according to any one of Items 6 to 6.
  • the water vapor barrier layer comprises a film in which a composition containing at least the organometallic oxide is subjected to sol-gel transition.
  • a method for producing a solar cell comprising a step of forming the water vapor barrier layer using a mixed liquid of a metal alkoxide or metal carboxylate and a fluorinated alcohol.
  • the water vapor barrier layer that is, an organic metal oxide or a carboxylate, it reacts with moisture and is hydrolyzed. It is presumed that water repellency or hydrophobic fluoroalcohol is generated and water repellency or hydrophobic effect is expressed, and as a result, contributes to the extension of the lifetime of the solar cell of the present invention.
  • the solar cell of the present invention is a solar cell including at least a first substrate, a first electrode, an organic photoelectric conversion unit, a second electrode, and a second substrate, and includes the first substrate and the second substrate.
  • a water vapor barrier layer is provided therebetween, and the water vapor barrier layer contains an organometallic oxide having a structure represented by the general formula (1).
  • This feature is a technical feature common to or corresponding to each of the following embodiments.
  • the value F / (the ratio of the number of fluorine atoms to the total number of carbon atoms and fluorine atoms in the organometallic oxide contained in the water vapor barrier layer is F / ( C + F) is preferably in the range of 0.05 to 1.00.
  • the metal atom represented by M is preferably selected from Ti, Zr, Sn, Ta, Fe, Zn, Si and Al.
  • the organic photoelectric conversion unit is a solar cell having a layer containing a perovskite compound.
  • the organic photoelectric conversion unit comprises a layer containing a perovskite compound, and an electron transport layer containing at least two types of organometallic oxides having different metal species having a structure represented by the general formula (1).
  • at least one kind of the metal atom M of the organometallic oxide is a metal atom selected from Ti, Zr, Sn, Ta, Fe, Zn, Si and Al, and other different organic
  • the metal atom M of the metal oxide is a solar cell in which the metal atom is a metal atom selected from Ag, Cu and Au.
  • the organometallic oxide having the structure represented by the general formula (1) according to the present invention reacts with water vapor or iodine gas to release a water-repellent or hydrophobic compound or capture iodine gas. It is preferable from the viewpoint of the effect of the present invention.
  • the water vapor barrier layer is provided in a position covering the whole or a part of the constituent layer between the first substrate and the first electrode or from the first electrode to the second electrode. Preferably there is.
  • the water vapor barrier layer according to the present invention comprises a film in which a composition containing at least the organometallic oxide is subjected to sol-gel transition from the viewpoint that a uniform and dense organic thin film can be formed.
  • the method for producing a solar cell of the present invention is preferably a production method having an aspect including a step of forming the water vapor barrier layer using a mixed liquid of a metal alkoxide or metal carboxylate and a fluorinated alcohol.
  • the water vapor barrier layer is preferably formed by a wet coating method. Further, the wet coating method is preferably an ink jet printing method.
  • the solar cell of the present invention is a solar cell comprising at least a first substrate, a first electrode, an organic photoelectric conversion unit, a second electrode, and a second substrate, wherein the first substrate and the first substrate A water vapor barrier layer is provided between the two substrates, and the water vapor barrier layer contains an organometallic oxide having a structure represented by the following general formula (1).
  • the solar cell of the present invention is particularly characterized by having a water vapor barrier layer containing a specific organometallic oxide.
  • the water vapor barrier layer according to the present invention contains an organic metal oxide having a structure represented by the general formula (1).
  • the organometallic oxide according to the present invention contains, as a main component, an organometallic oxide having a structure represented by the following general formula (1) produced from a compound represented by the following general formula (A).
  • the “main component” is preferably 70% by mass or more, more preferably 80% by mass or more, particularly preferably 70% by mass or more of the total mass of the desiccant. It means 90% by mass or more.
  • R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. However, R may be a carbon chain containing a fluorine atom as a substituent.
  • M represents a metal atom.
  • OR 1 represents a fluorinated alkoxy group.
  • x represents a valence of a metal atom
  • y represents an arbitrary integer between 1 and x.
  • R [M (OR 1 ) y (O—) xy ] n —R
  • R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. However, R may be a carbon chain containing a fluorine atom as a substituent.
  • M represents a metal atom.
  • OR 1 represents a fluorinated alkoxy group.
  • x represents a valence of a metal atom
  • y represents an arbitrary integer between 1 and x.
  • n represents the degree of polycondensation.
  • OR 1 represents a fluorinated alkoxy group.
  • R 1 represents an alkyl group, aryl group, cycloalkyl group, acyl group, alkoxy group, or heterocyclic group substituted with at least one fluorine atom. Specific examples of each substituent will be described later.
  • R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. Or what substituted at least one part of hydrogen of each group with the halogen may be used. Moreover, a polymer may be sufficient.
  • Alkyl groups are substituted or unsubstituted, and specific examples include methyl, ethyl, propyl, butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl.
  • These oligomers and polymers may also be used.
  • the alkenyl group is substituted or unsubstituted, and specific examples include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and the like, preferably having 8 or more carbon atoms. These oligomers or polymers may also be used.
  • the aryl group is substituted or unsubstituted, and specific examples include phenyl group, tolyl group, 4-cyanophenyl group, biphenyl group, o, m, p-terphenyl group, naphthyl group, anthranyl group, phenanthrenyl group, There are a fluorenyl group, a 9-phenylanthranyl group, a 9,10-diphenylanthranyl group, a pyrenyl group and the like, and those having 8 or more carbon atoms are preferable. These oligomers or polymers may also be used.
  • substituted or unsubstituted alkoxy group examples include a methoxy group, an n-butoxy group, a tert-butoxy group, a trichloromethoxy group, and a trifluoromethoxy group, and preferably those having 8 or more carbon atoms. These oligomers and polymers may also be used.
  • substituted or unsubstituted cycloalkyl group examples include a cyclopentyl group, a cyclohexyl group, a norbonane group, an adamantane group, a 4-methylcyclohexyl group, a 4-cyanocyclohexyl group, and preferably those having 8 or more carbon atoms. is there.
  • These oligomers or polymers may also be used.
  • substituted or unsubstituted heterocyclic group examples include pyrrole group, pyrroline group, pyrazole group, pyrazoline group, imidazole group, triazole group, pyridine group, pyridazine group, pyrimidine group, pyrazine group, triazine group, indole group, Benzimidazole group, purine group, quinoline group, isoquinoline group, sinoline group, quinoxaline group, benzoquinoline group, fluorenone group, dicyanofluorenone group, carbazole group, oxazole group, oxadiazole group, thiazole group, thiadiazole group, benzoxazole group Benzothiazole group, benzotriazole group, bisbenzoxazole group, bisbenzothiazole group, bisbenzimidazole group and the like. These oligomers or polymers may also be used.
  • substituted or unsubstituted acyl group examples include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, oxalyl group Group, malonyl group, succinyl group, glutaryl group, adipoyl group, pimeloyl group, suberoyl group, azelaoil group, sebacoyl group, acryloyl group, propioloyl group, methacryloyl group, crotonoyl group, isocrotonoyl group, oleoyl group, elidoyl group, maleoyl group , Fumaroyl group, citraconoyl group, mesaconoyl group, camphoroyl group, benzoyl group, phthal
  • the metal alkoxide, metal carboxylate, and fluorinated alcohol (R′-OH) are converted into the organometallic oxide according to the present invention by the following reaction scheme I.
  • (R′—OH) is exemplified by the following structures F-1 to F-16.
  • Examples of the metal alkoxide or metal carboxylate according to the present invention include the following compounds represented by M (OR) n or M (OCOR) n, and the organometallic oxide according to the present invention includes the above (R′—OH: F In combination with -1 to F-16), compounds having the structures of the following Exemplified Compound Nos. 1 to 135 (see Exemplified Compounds I, II and III below) are obtained.
  • the organometallic oxide according to the present invention is not limited to this.
  • organometallic oxide according to the present invention exhibits reactivity as shown in the following reaction scheme II and reaction scheme III.
  • “M” in the “OM” part further has a substituent, but is omitted.
  • the organic thin film formed by polycondensation of the organometallic oxide by sintering or ultraviolet irradiation has reactivity as shown in Reaction Scheme IV and Reaction Scheme V below.
  • the fluorinated alcohol produced by hydrolysis is water repellant or hydrophobic, in addition to the original drying property (desiccant property), a water repellency function is added by reaction with moisture. And has a characteristic of exhibiting a synergistic effect (synergy effect) on the sealing property.
  • iodine is trapped by reacting with corrosive iodine (I 2 ) gas to form silver iodide, and relatively stable polyiodine ions (I 3 ⁇ , I 5 ⁇ and I 7 -) is generated.
  • the method for producing an organometallic oxide for producing the organometallic oxide according to the present invention is characterized by producing using a mixed liquid of a metal alkoxide and a fluorinated alcohol. is there.
  • a fluorinated alcohol is added to a metal alkoxide or metal carboxylate, and the mixture is stirred and mixed. Then, water and a catalyst are added as necessary and reacted at a predetermined temperature.
  • a method can be mentioned.
  • a substance that can be a catalyst for the hydrolysis / polymerization reaction as shown below may be added.
  • the catalysts used for the hydrolysis / polymerization reaction of the sol-gel reaction are “the latest functional sol-gel production technology by the sol-gel method” (by Satoshi Hirashima, General Technology Center, P29) and “sol-gel”. It is a catalyst used in a general sol-gel reaction described in “Science of Law” (Sakuo Sakuo, Agne Jofusha, P154).
  • examples of the acid catalyst include inorganic and organic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, oxalic acid, tartaric acid, and toluenesulfonic acid.
  • the amount of the catalyst used is preferably 2 molar equivalents or less, more preferably 1 molar equivalent or less, per 1 mol of the metal alkoxide or metal carboxylate used as the organic metal oxide raw material.
  • the preferable amount of water added is 40 molar equivalents or less, more preferably 10 molar equivalents or less with respect to 1 mol of the metal alkoxide or metal carboxylate as the raw material of the organometallic oxide. More preferably, it is 5 molar equivalents or less.
  • the preferred reaction concentration, temperature, and time of the sol-gel reaction cannot be generally described because the type and molecular weight of the metal alkoxide or metal carboxylate used and the respective conditions are related to each other. That is, when the molecular weight of the alkoxide or metal carboxylate is high, or when the reaction concentration is high, if the reaction temperature is set high or the reaction time is too long, the reaction product is accompanied by hydrolysis and polycondensation reaction. There is a possibility that the molecular weight of the polymer increases, resulting in high viscosity or gelation. Therefore, the usual preferable reaction concentration is generally in the range of 1 to 50%, more preferably in the range of 5 to 30% in terms of the concentration by mass of solid content in the solution.
  • the reaction temperature is usually in the range of 0 to 150 ° C., preferably in the range of 1 to 100 ° C., more preferably in the range of 20 to 60 ° C., and the reaction time is A range of 1 to 50 hours is preferable.
  • the value F / (C + F) of the ratio of the number of fluorine atoms to the total number of carbon atoms and fluorine atoms in the organometallic oxide contained in the water vapor barrier layer is in the range of 0.05 to 1.00. It is preferable from the viewpoint of water repellency or hydrophobicity. That is, it is preferable that the fluorine ratio in the organometallic complex oxide according to the present invention satisfies the following formula (a).
  • the measurement significance of the formula (a) quantifies that an organic thin film produced by the sol-gel method requires a certain amount or more of fluorine atoms.
  • F and C in the above formula (a) represent the concentrations of fluorine atoms and carbon atoms, respectively.
  • a more preferable range is 0.2 ⁇ F / (C + F) ⁇ 0.6.
  • the fluorine ratio is determined by applying a sol / gel solution used for forming an organic thin film on a silicon wafer to produce a thin film, and then applying the thin film to an SEM / EDS (Energy Dispersive X-ray Spectroscopy: energy dispersive X-ray analyzer).
  • SEM / EDS Electromagnetic X-ray Spectroscopy: energy dispersive X-ray analyzer
  • concentration of fluorine atoms and carbon atoms can be determined by elemental analysis according to (1).
  • An example of the SEM / EDS apparatus is JSM-IT100 (manufactured by JEOL Ltd.).
  • SEM / EDS analysis has the feature that it can detect elements with high speed, high sensitivity and accuracy.
  • the organometallic oxide according to the present invention is not particularly limited as long as it can be produced using the sol-gel method.
  • the metal lithium introduced in “Science of Sol-Gel Method” P13, P20 , Sodium, copper, calcium, strontium, barium, zinc, boron, aluminum, gallium, yttrium, silicon, germanium, lead, phosphorus, antimony, vanadium, tantalum, tungsten, lanthanum, neodymium, titanium, zirconium, tin, and iron
  • An example is a metal oxide containing one or more selected metals.
  • the metal atom represented by M includes titanium (Ti), zirconium (Zr), tin (Sn), tantalum (Ta), iron (Fe), zinc (Zn), silicon (Si) and aluminum ( Al) is preferably selected from the viewpoint of obtaining the effects of the present invention.
  • the solar cell of the present invention is a solar cell including at least a first substrate, a first electrode, an organic photoelectric conversion unit, a second electrode, and a second substrate, wherein the first substrate and the first substrate A water vapor barrier layer is provided between the two substrates.
  • At least one of the first substrate and the first electrode or the second substrate and the second electrode needs to be light transmissive (transparent), but constitutes an organic photoelectric conversion unit.
  • the arrangement order of the constituent layers such as the electron transport layer and the hole transport layer can take various modes depending on the purpose.
  • FIG. 1 shows a basic configuration example (cross-sectional view) of a conventional solar cell 1.
  • a photoelectric conversion unit comprising at least a first substrate 2, a gas barrier layer 3 (for example, a polysilazane modified layer), a first electrode 4, a hole transport layer 5 and an electron transport layer 6. 7, a second electrode 8, a sealing layer 9, an adhesive layer 10, and a second substrate 13 composed of an Alpet AP composed of an aluminum foil 11 and a PET film 12.
  • FIG. 2 shows a conventional perovskite solar cell.
  • a layer 15 containing a perovskite compound between the electron transport layer 6 and the hole transport layer 5 is shown.
  • a perovskite solar cell is provided.
  • FIG. 3 shows an example of the solar cell of the present invention.
  • a water vapor barrier layer further containing an organometallic oxide according to the present invention is provided between the gas barrier layer 3 and the first electrode 4 provided on the first substrate.
  • the configuration is the same except that 14 is provided.
  • FIG. 4 shows one embodiment of the solar cell of the present invention.
  • the same configuration except that the water vapor barrier layer 14 containing the organometallic oxide according to the present invention is provided in such a manner as to cover the sealing layer 9. It is a thing.
  • FIG. 5 shows one embodiment of the solar cell of the present invention.
  • a water vapor barrier layer 14 containing an organometallic oxide according to the present invention is further provided between the gas barrier layer 3 and the first electrode 4 provided on the first substrate. Except for the points described above, the configuration is the same.
  • FIG. 6 shows an embodiment of the perovskite solar cell of the present invention.
  • the solar cell 1 shown in FIG. 4 has the same structure except that a layer 15 containing a perovskite compound is provided between the electron transport layer 6 and the hole transport layer 5 to form a perovskite solar cell. It is.
  • the first substrate it is sufficient if it has strength, durability, and light transmittance, and synthetic resin and glass can be used.
  • synthetic resin include thermoplastic resins such as polyethylene naphthalate (PEN) film, polyethylene terephthalate (PET), polyester, polycarbonate, polyolefin, polyimide, and fluororesin.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • polyester polycarbonate
  • polyolefin polyimide
  • fluororesin fluororesin
  • a metal foil can be used in addition to the above base material.
  • the metal foil may serve as a base material at the same time as one electrode of the flexible solar cell.
  • the metal constituting the metal foil is not particularly limited, and is preferably one having excellent durability and conductivity that can be used as an electrode.
  • metals such as aluminum, titanium, copper, and gold, stainless steel
  • An alloy such as steel (SUS) can be used. These materials may be used alone or in combination of two or more.
  • the metal which comprises the said metal foil contains stainless steel (SUS).
  • SUS stainless steel
  • the metal constituting the metal foil preferably contains aluminum.
  • aluminum By using aluminum as the metal constituting the metal foil, the difference in coefficient of linear expansion between the metal foil and the photoelectric conversion layer containing the organic / inorganic perovskite compound is reduced, thereby further suppressing the occurrence of distortion during annealing. be able to.
  • the thickness of the metal foil is not particularly limited, but a preferable lower limit is 5 ⁇ m and a preferable upper limit is 500 ⁇ m. If the thickness of the metal foil is 5 ⁇ m or more, the mechanical strength of the obtained flexible solar cell is sufficient and the handleability is improved. If the thickness is 500 ⁇ m or less, the metal foil can be bent, and the flexibility is improved. Will improve.
  • the minimum with more preferable thickness of the said metal foil is 10 micrometers, and a more preferable upper limit is 100 micrometers.
  • the metal foil When the metal foil is used as a base material for a flexible solar cell, the metal foil itself serves as an electrode and a base material, and an electrode is provided on the surface of the metal foil on the photoelectric conversion layer side through an insulating layer.
  • the form to form is considered.
  • the insulating layer is not particularly limited, but an insulating layer made of an insulating resin layer or a metal oxide layer is suitable. More specifically, the insulating layer is preferably formed using an insulating resin such as a polyimide resin or a silicone resin, or a metal oxide such as zirconia, silica, or hafnia.
  • an insulating resin such as a polyimide resin or a silicone resin
  • a metal oxide such as zirconia, silica, or hafnia.
  • the preferable lower limit of the thickness of the insulating layer is 0.1 ⁇ m, and the preferable upper limit is 10 ⁇ m. When the thickness of the insulating layer is within this range, the metal foil and the electrode can be reliably insulated.
  • the electrode formed on the surface of the metal foil on the photoelectric conversion layer side through an insulating layer is not particularly limited, and a metal electrode usually used in solar cells can be used.
  • a transparent electrode As a material of the transparent conductive layer 3 which comprises a transparent electrode, for example, tin addition indium oxide (ITO), fluorine addition tin oxide ( FTO), tin oxide (SnO 2 ), indium zinc oxide (IZO), zinc oxide (ZnO), and a polymer material having high conductivity.
  • ITO tin addition indium oxide
  • FTO fluorine addition tin oxide
  • SnO 2 tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • a polymer material having high conductivity for example, tin addition indium oxide (ITO), fluorine addition tin oxide ( FTO), tin oxide (SnO 2 ), indium zinc oxide (IZO), zinc oxide (ZnO), and a polymer material having high conductivity.
  • Examples of the polymer material include polyacetylene-based, polypyrrole-based, polythiophene-based, and polyphenylene vinylene-based polymer materials.
  • a carbon-based thin film having high conductivity can also be used.
  • Examples of the method for forming the transparent electrode include a sputtering method, a vapor deposition method, and a method of applying a dispersion.
  • the “organic photoelectric conversion unit” has a function of absorbing light and generating electrons and holes, and includes a hole transport layer, a photoelectric conversion layer, and an electron transport.
  • a single-layer structure or multilayer structure containing an organic compound in any one of various functional layers such as a layer, mixed layer, charge blocking layer, charge injection layer, and exciton diffusion prevention layer. It corresponds to.
  • the solar cell of the present invention may adopt a so-called tandem configuration having a plurality of pairs of a hole transport layer and an electron transport layer.
  • An element configured in a tandem type is particularly preferable in terms of high open-circuit voltage and high conversion efficiency.
  • a recombination layer is disposed as an intermediate layer. That is, as a typical example of the tandem element, a configuration of positive electrode / hole transport layer / electron transport layer / recombination layer / hole transport layer / electron transport layer / metal oxide layer / negative electrode is exemplified.
  • constituent layers can also be suitably formed by any of dry film forming methods such as vapor deposition and sputtering, transfer methods, printing methods, and the like.
  • the hole transport layer is a layer having a function of receiving and transporting holes to the positive electrode or the positive electrode side.
  • the hole transport layer may be a single layer or a laminate of a plurality of layers. It is preferable that at least one layer of the hole transport layer has a charge generating ability to absorb light and generate electrons and holes.
  • the hole transport layer can be formed using one or more hole transport materials.
  • Examples of the hole transport material include carbazole derivatives, polyarylalkane derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic compounds.
  • Examples include tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, porphyrin compounds, phthalocyanine compounds, polythiophene derivatives, polypyrrole derivatives, polyparaphenylene vinylene derivatives, and the like.
  • Examples of the material for the hole transport layer having charge generation ability include porphyrin compounds, phthalocyanine compounds, polythiophene derivatives, polypyrrole derivatives, polyparaphenylene vinylene derivatives, and the like. Rev. 1993, 93, 449-406.
  • Examples of the method for forming the hole transport layer include a solvent coating method and a vacuum deposition method.
  • Examples of the solvent coating method include spin coating, spray coating, bar coating, and die coating.
  • the thickness of the hole transport layer is preferably in the range of 1 to 500 nm, more preferably in the range of 2 to 200 nm, and still more preferably in the range of 5 to 100 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the electron transport layer is a layer having a function of transporting electrons to the negative electrode or the negative electrode side.
  • the electron transport layer may be a single layer or a laminate of a plurality of layers. It is preferable that at least one of the electron transport layers has a charge generation capability of absorbing light and generating a charge.
  • the electron transport layer can be formed using one kind or two or more kinds of electron transport materials.
  • electron transport material examples include fullerene derivatives, paraphenylene vinylene derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, phenanthroline derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiols.
  • Pyrandoxide derivatives carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, aromatic tetracarboxylic anhydrides such as naphthalene and perylene, and imides and heterocycles derived from these, metals of 8-quinolinol derivatives
  • Examples include complexes, various metal complexes represented by metal complexes having benzoxazole or benzothiazole as a ligand, and organic silane derivatives.
  • Examples of the material for the electron transport layer having charge generation ability include fullerenes, polyparaphenylene vinylene derivatives, imides derived from perylenetetracarboxylic anhydride, and heterocycles. Examples thereof include Chem. Rev. 2007, 107, 953-1010, and those described as Electron Transport Materials.
  • Examples of the method for forming the electron transport layer include a solvent coating method and a vacuum deposition method.
  • the thickness of the electron transport layer is preferably in the range of 1 to 500 nm, more preferably in the range of 2 to 200 nm, and still more preferably in the range of 5 to 100 nm.
  • the electron transport layer may have a single-layer structure composed of one or more of the materials described above, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • Mixed organic layer A mixed organic layer containing both a hole transport material and an electron transport material can be disposed between the hole transport layer and the electron transport layer. This is preferable in terms of improving efficiency.
  • the mixing ratio is adjusted so as to increase the conversion efficiency, but is usually selected from the range of 20:80 to 80:20 in terms of mass ratio (hole transport material: electron transport material).
  • a co-evaporation method by vacuum deposition can be applied.
  • it can also be produced by applying a solvent using a solvent in which both organic materials are dissolved.
  • Specific examples of the solvent coating method are as described above.
  • a recombination layer is provided to connect a plurality of individual photoelectric conversion units in series.
  • a thin layer of a conductive material can be used as the recombination layer.
  • a metal is suitable as the conductive material, and examples of preferable metals include gold, silver, aluminum, platinum, and ruthenium oxide. Of these, silver is preferred.
  • the film thickness of the recombination layer is usually in the range of 0.01 to 5 nm, preferably in the range of 0.1 to 1 nm, particularly preferably in the range of 0.2 to 0.6 nm.
  • a recombination layer it can form by a vacuum evaporation method, sputtering method, an ion plating method, etc.
  • the organic photoelectric conversion unit according to the present invention may be provided with a layer containing a perovskite compound to form a perovskite solar cell.
  • perovskite compound refers to a compound having a perovskite structure.
  • the perovskite compound is preferably a perovskite compound (perovskite compound having an organic-inorganic hybrid structure) in which an organic substance and an inorganic substance are constituent elements of the perovskite structure.
  • the perovskite compound preferably has a structure represented by the following general formula (2) from the viewpoint of photoelectric conversion efficiency.
  • R-MX In the general formula (2), R represents an organic molecule. M represents a metal atom. X represents a halogen atom or a chalcogen atom.
  • R is an organic molecule, and is preferably a molecule represented by C 1 N m X n (wherein l, m and n all represent a positive integer).
  • R is specifically methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, trimethylamine, triethylamine, tripropylamine, Tributylamine, tripentylamine, trihexylamine, ethylmethylamine, methylpropylamine, butylmethylamine, methylpentylamine, hexylmethylamine, ethylpropylamine, ethylbutylamine, imidazole, azole, pyrrole, aziridine, azirine, azetidine, Azeto, imidazoline, carbazole and their ions (for example, methylammonium (CH 3 NH 3 ), etc.) and phenethylammonium Etc.
  • methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine and their ions and phenethylammonium are preferred, and methylamine, ethylamine, propylamine and these ions are more preferred.
  • M is a metal atom, such as lead, tin, zinc, titanium, antimony, bismuth, nickel, iron, cobalt, silver, copper, gallium, germanium, magnesium, calcium, indium, aluminum, manganese, chromium, molybdenum, europium, etc. Can be mentioned. These elements may be used independently and 2 or more types may be used together.
  • X is a halogen atom or a chalcogen atom, and examples thereof include chlorine, bromine, iodine, sulfur, and selenium. These elements may be used independently and 2 or more types may be used together.
  • the halogen atom is preferable because it contains a halogen atom in the structure so that the perovskite compound becomes soluble in an organic solvent and can be applied to an inexpensive printing method.
  • iodine is more preferable because the energy band gap of the organic-inorganic perovskite compound becomes narrow.
  • the organic photoelectric conversion unit according to the present invention includes a layer containing a perovskite compound and a metal species having a structure represented by the general formula (1).
  • An electron transport layer containing at least two different organometallic oxides, and at least one metal atom M of the organometallic oxide is Ti, Zr, Sn, Ta, Fe, Zn, Si, and It is also a peculiarity of the present invention that the solar cell is an embodiment in which the metal atom is selected from Al and the metal atom M of another different organometallic oxide is a metal atom selected from Ag, Cu and Au. From the viewpoint of manifesting the effect of this, it is preferable. In particular, for example, it is preferable to use a metal oxide containing Ti and a metal oxide containing Ag because the above-described effects can be exhibited.
  • Second electrode As the second electrode according to the present invention, for example, an oxide electrode such as ITO, IZO, IWZO, ITZO, AZO, BZO, GZO, ZnO, SnO 2 , Au, Ag, Ti, Examples include thin film metals, metal compounds, and organic metals such as Zn, Mo, Ta, AgNW, Na, NaK, Li, Mg, Al, MgAg, MgIn, AlLi, and CuI. It may be a laminate of two or more combinations.
  • oxide electrode such as ITO, IZO, IWZO, ITZO, AZO, BZO, GZO, ZnO, SnO 2 , Au, Ag, Ti
  • Examples include thin film metals, metal compounds, and organic metals such as Zn, Mo, Ta, AgNW, Na, NaK, Li, Mg, Al, MgAg, MgIn, AlLi, and CuI. It may be a laminate of two or more combinations.
  • examples of the method for forming the second electrode include formation methods by CVD, sputtering, vapor deposition, and coating.
  • the film thickness is not limited as long as it does not transmit light.
  • the solar cell of the present invention is covered with the sealing layer to protect the laminate including the photoelectric conversion layer from the atmospheric environment, particularly from gases such as water and oxygen, and has sufficient durability. It is possible to obtain a solar cell with higher photoelectric conversion efficiency and higher durability.
  • the material for the sealing layer is not particularly limited, and a known material can be used, which may be an organic material or an inorganic material.
  • the sealing layer has a water vapor transmission rate (environmental condition: 25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) of about 0.01 g / [m 2 ⁇ day] or less, oxygen transmission
  • a transparent insulating film having a gas barrier property with a degree of about 0.01 cm 3 / [m 2 ⁇ day ⁇ atm] or less, a resistivity of 1 ⁇ 10 12 ⁇ ⁇ cm or more is preferable.
  • the oxygen permeability is high such that the value is 0.001 cm 3 / [m 2 ⁇ day ⁇ atm] or less and the water vapor permeability is about 0.001 g / [m 2 ⁇ day] or less. It is preferably composed of a barrier multilayer film.
  • the “water vapor permeability” is a value measured by an infrared sensor method in accordance with JIS (Japanese Industrial Standard) -K7129 (1992), and the “oxygen permeability” is JIS-K7126 (1987). It is a value measured by the coulometric method based on the year).
  • any material may be used as long as the material can cause deterioration of the photoelectric conversion element, for example, can suppress the penetration of a gas such as water or oxygen into the organic photoelectric conversion element. it can.
  • the sealing layer is composed of an inorganic material film mainly composed of a silicon compound such as silicon nitride or silicon oxide in consideration of gas barrier properties, transparency, cleaving property during division, and the like. It is preferable.
  • the sealing layer In order to improve the brittleness of the sealing layer, not only the inorganic material film but also a film made of a composite material with an organic material or a hybrid film in which these films are laminated may be configured. .
  • the order of laminating the film made of the inorganic material and the film made of the organic material is arbitrary, but a plurality of the organic material / inorganic material may be alternately laminated. Thereby, it becomes possible to obtain a sealing layer having a favorable barrier function for avoiding damage to the organic photoelectric conversion element due to moisture and oxygen.
  • the sealing layer may be used as a first sealing layer, and a second sealing layer may be provided in which a further moisture block is provided on the upper layer of the sealing layer.
  • a second sealing layer that does not require consideration of optical characteristics such as a metal foil.
  • the metal layer include aluminum foil, duralumin foil, titanium foil, copper foil, phosphor bronze foil, SUS304 foil, invar foil, magnesium alloy foil, and mixed foils thereof.
  • these metal foil foils are thin, pinholes and defects can be made thick so that these sealing defects can be prevented.
  • a thickness of about 5 to 50 ⁇ m it is possible to prepare a foil from which pinholes and defects of the metal foil have been removed.
  • the second sealing layer it is preferable to further form an insulating layer for securing electrical insulation or preventing external damage in the opposing direction of the first sealing layer.
  • a flexible resin is suitable, for example, polyolefin such as polyethylene, polypropylene, and cyclic olefin copolymer (COP), polyamide, polyimide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and the like.
  • polyolefin such as polyethylene, polypropylene, and cyclic olefin copolymer (COP), polyamide, polyimide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and the like.
  • Polyester cellophane, cellulose diacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), triacetyl cellulose (TAC), cellulose nitrates such as cellulose nitrate, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol Polymer (EVOH), syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide, Use materials such as polyethersulfone (PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, fluororesin, acrylic resin such as polymethylmethacrylate (PMMA), polyarylates and their derivatives. it can.
  • a cycloolefin resin called Arton (registered trademark: manufactured by JSR) or Apel (registered trademark: manufactured by Mitsui Chemicals) may be used.
  • the second sealing layer and the first sealing layer are preferably connected via an adhesive, such as thermosetting or ultraviolet (UV) curing, but when metal foil is applied, thermosetting Since the mold is preferable and there is moisture intrusion from the same adhesive bulk, it is preferable that the adhesive is a material including a material or a filler that delays moisture diffusion.
  • an adhesive such as thermosetting or ultraviolet (UV) curing
  • Examples thereof include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylate.
  • photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers
  • moisture curing adhesives such as 2-cyanoacrylate.
  • fever and chemical curing types such as an epoxy type
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • the thickness is preferably in the range of 100 to 100,000 nm.
  • the laminate constituting the solar cell can be sufficiently covered with the organic sealing layer.
  • the organic sealing layer can sufficiently block water vapor entering from the side surface. More preferably, it is in the range of 500 to 50000 nm, and still more preferably in the range of 1000 to 20000 nm.
  • the thickness is in the range of 30 to 3000 nm.
  • the inorganic sealing layer can have a sufficient water vapor barrier property, and the durability of the solar cell is improved. If the thickness is 3000 nm or less, even if the thickness of the inorganic sealing layer is increased, the generated stress is small, so that peeling of the inorganic sealing layer, the electrode, the semiconductor layer, and the like can be suppressed. . More preferably, it is in the range of 50 to 1000 nm, and still more preferably in the range of 100 to 500 nm.
  • Second Substrate As the second substrate, the same substrate material as that of the first substrate can be applied.
  • a second substrate for applying a further moisture block may be provided on the upper layer of the sealing layer.
  • the metal layer may be a second substrate including aluminum foil, duralumin foil, titanium foil, copper foil, phosphor bronze foil, SUS304 foil, invar foil, magnesium alloy foil, mixed foil thereof, and the like.
  • these metal foil foils are thin, pinholes and defects may exist, and by making them thick, it becomes possible to prevent these sealing defects.
  • a foil from which pinholes and defects of the metal foil have been removed can be obtained by forming the thickness within the range of 5 to 50 ⁇ m.
  • the second substrate is further formed with an insulating layer in the direction opposite to the first sealing layer to ensure electrical insulation and prevent damage.
  • a flexible resin is suitable as a material constituting the second substrate.
  • polyolefin such as polyethylene, polypropylene, cyclic olefin copolymer (COP), polyamide, polyimide, polyethylene terephthalate.
  • PET polyesters such as polyethylene naphthalate (PEN), cellophane, cellulose diacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), triacetyl cellulose (TAC), cellulose esters such as cellulose nitrate, Polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol copolymer (EVOH), syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether Materials such as ketones, polyimides, polyethersulfone (PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, fluororesin, polymethylmethacrylate (PMMA), polyarylates and their derivatives Can be used.
  • a cycloolefin resin called Arton (registered trademark: manufactured by JSR) or Apel (registered trademark: manufactured by Mitsui Chemicals)
  • the second substrate and the first sealing layer are preferably connected via an adhesive, such as thermosetting or ultraviolet (UV) curing.
  • an adhesive such as thermosetting or ultraviolet (UV) curing.
  • a metal foil is applied, a thermosetting type is preferable.
  • the adhesive is a material including a material or a filler that delays moisture diffusion.
  • Examples thereof include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylate.
  • photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers
  • moisture curing adhesives such as 2-cyanoacrylate.
  • fever and chemical curing types such as an epoxy type
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • PET polyethylene terephthalate
  • the following polysilazane-containing liquid is applied on a transparent substrate with a wire bar so that the average film thickness after drying is 300 nm, and is dried by heat treatment for 1 minute in an atmosphere of temperature 85 ° C. and humidity 55% RH. It was. Subsequently, it was kept in an atmosphere of a temperature of 25 ° C. and a humidity of 10% RH (dew point temperature ⁇ 8 ° C.) for 10 minutes to perform a dehumidification treatment to form a polysilazane-containing layer on the transparent substrate.
  • the transparent substrate on which the polysilazane-containing layer is formed is fixed on the operation stage of the excimer irradiation apparatus MECL-M-1-200 (manufactured by M.D. Com) and modified under the following modification treatment condition 1.
  • a polysilazane modified layer having a thickness of 300 nm was formed to obtain a first gas barrier substrate (hereinafter also referred to as a flexible substrate).
  • Polysilazane-containing liquid As the polysilazane-containing liquid, a 10% by mass dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, non-catalytic type, manufactured by Merck Japan Co., Ltd.) was prepared.
  • an ITO electrode as a first electrode was formed on the flexible substrate by vacuum sputtering. Specifically, using a SnO 2 10% ITO target, the flexible substrate is conveyed to a vacuum chamber, evacuated to 1 ⁇ 10 ⁇ 4 Pa, heated to 120 ° C., and Ar gas is reduced to 0.5 Pa. Then, sputtering was performed by applying a voltage so that the physical film thickness was 300 nm.
  • the first electrode was patterned into a desired shape by photolithography.
  • Hitachi Chemical's photosensitive polyimide was spin-coated to 1 ⁇ m, pre-baked at 60 ° C. for 2 minutes, and then exposed to the flexible substrate with an exposure machine so as to have a desired shape. .
  • TMAH tetramethylammonium hydroxide
  • ITO was etched with iron chloride, rinsed with pure water, then the resist was peeled off, and further rinsed with pure water to obtain patterned ITO.
  • PDOT PSS was applied by an inkjet method as a hole transport layer. Inkjet coating was performed on the ITO electrode so as to have a thickness of 50 nm, followed by baking at 150 ° C. for 20 minutes to form a hole transport layer.
  • the sealing layer was supplied with silane gas and ammonia gas at a film forming pressure of 0.1 to 50 Pa to form a 500 nm silicon nitride film by plasma CVD.
  • the substrate formed up to the electron transport layer is placed in a vacuum chamber whose pressure is reduced to 1 ⁇ 10 ⁇ 4 Pa or less, the substrate temperature is adjusted to about 70 ° C., and the reaction gas is SiH 4 gas and NH 3 gas.
  • H 2 gas were introduced at a ratio of 2: 1: 4, and the pressure was reduced to 50 Pa, and a film was formed using a plasma CVD apparatus having a high frequency power source of 13.56 MHz.
  • the substrate temperature rose during the film formation, the film was formed while controlling the substrate cooling to 70 ° C. This formed a 500 nm SiN layer.
  • the dispersion was spin-coated with a spin coater (MS-100 manufactured by Mikasa Corporation) on a 0.5 mL DMF solution of iodine-based perovskite raw material on the electron transport layer (5000 rpm ⁇ 30 sec). Immediately after spin coating, the film was dried on a hot plate at 100 ° C. for 10 minutes. The contact part with FTO was wiped off with a cotton swab dipped in DMF, and then dried at 70 ° C. for 60 minutes to form a photoelectric conversion layer. The formation of the perovskite compound was confirmed by X-ray diffraction pattern, absorption spectrum and electron microscope observation.
  • FTO electrode Fluorine-doped tin oxide (FTO) layer provided on a glass substrate (first substrate) (Asahi Glass Fabrictech Co., Ltd., length 25 mm ⁇ width 25 mm ⁇ thickness) A portion of 1.8 mm, hereinafter referred to as “FTO electrode”) was etched with Zn powder and a 2 mol / L hydrochloric acid aqueous solution. Using a 1% by weight neutral detergent, acetone, 2-propanol (IPA), and ion-exchanged water, ultrasonic cleaning was performed in this order for 10 minutes each.
  • first substrate Asahi Glass Fabrictech Co., Ltd., length 25 mm ⁇ width 25 mm ⁇ thickness
  • the FTO electrode surface was turned up and the FTO electrode was placed in an ozone generator (ozone cleaner manufactured by Meiwa Forsys, Inc., PC-450 UV) and irradiated with ultraviolet rays for 30 minutes.
  • ozone generator ozone cleaner manufactured by Meiwa Forsys, Inc., PC-450 UV
  • a 1 M solution was prepared by dissolving lead iodide in N, N-dimethylformamide (DMF), and a film was formed on the porous electron transport layer by spin coating. Further, methylammonium iodide as an amine compound was dissolved in 2-propanol to prepare a 1% by mass solution. A layer containing CH 3 NH 3 PbI 3 , which is an organic / inorganic perovskite compound, was formed by immersing the sample formed of lead iodide in the solution. Thereafter, the obtained sample was annealed at 120 ° C. for 30 minutes to form a photoelectric conversion layer.
  • DMF N, N-dimethylformamide
  • Second electrode (aluminum electrode) Using a vacuum deposition apparatus (VTR-060M / ERH manufactured by ULVAC-KIKO Co., Ltd.) under vacuum (4-5 ⁇ 10 ⁇ 3 Pa) on the above hole transport layer Gold was vapor-deposited to 300 nm to form a second electrode.
  • VTR-060M / ERH manufactured by ULVAC-KIKO Co., Ltd. under vacuum (4-5 ⁇ 10 ⁇ 3 Pa) on the above hole transport layer Gold was vapor-deposited to 300 nm to form a second electrode.
  • a 500 nm silicon nitride film was formed by plasma CVD by supplying silane gas and ammonia gas at a film forming pressure of 0.1 to 50 Pa. Specifically, the substrate formed up to the second electrode is placed in a vacuum chamber whose pressure is reduced to 10 ⁇ 4 Pa or less, the substrate temperature is adjusted to about 70 ° C., and the reaction gas is changed to SiH 4 gas, NH 3 gas, and H Two gases were introduced at a ratio of 2: 1: 4 and the pressure was reduced to 50 Pa, and a film was formed by a plasma CVD method having a high frequency power source of 13.56 MHz. Although the substrate temperature rose during the film formation, the film was formed while controlling the substrate cooling to 70 ° C. This formed a 500 nm SiN layer.
  • Example 1 (Production of solar cell No. 4 of the present invention) On the same gas barrier flexible substrate (PET film) as in Comparative Example 1, a water vapor barrier layer containing the organometallic oxide according to the present invention was formed as follows.
  • a 3% by mass dehydrated tetrafluoropropanol (exemplary compound F-1) solution of titanium tetraisopropoxide (Ti (OiPr) 4 ) was prepared, and the humidity was 30
  • Ti (OiPr) 4 titanium tetraisopropoxide
  • an organometallic oxide thin film was prepared on a silicon wafer using a sol-gel solution.
  • the film was heated at 110 ° C. for 30 minutes, and then irradiated with ultraviolet rays for 10 minutes to form a thin film.
  • F and C represent the concentration of fluorine atom and carbon atom, respectively.
  • the sol-gel solution is applied to a polyethylene naphthalate film (PEN: manufactured by Teijin Film Solutions Co., Ltd.) having a thickness of 100 ⁇ m by an inkjet printing method so as to have a dry layer thickness of 100 nm, and heated at 110 ° C. for 30 minutes. Then, ultraviolet rays were irradiated for 10 minutes to produce an organometallic oxide layer.
  • PEN polyethylene naphthalate film
  • PEN manufactured by Teijin Film Solutions Co., Ltd.
  • a coating liquid containing perhydropolysilazane (PHPS) is applied onto the organometallic oxide layer by an ink-jet printing method so as to have a dry layer thickness of 200 nm, dried on a hot plate at 80 ° C. for 1 minute, and ultraviolet rays
  • a gas barrier substrate was prepared by applying a modification treatment of 6 J / cm 2 .
  • Such reforming treatment conditions are the same as in the comparative example.
  • a solar cell No. 1 was prepared by the same process and method as in the comparative example, except that the water vapor barrier layer containing the organometallic oxide was formed. 4 was produced.
  • Example 2 (Preparation of solar cell No. 5 of the present invention) Next, the solar cell No. 1 provided with the water vapor barrier layer containing the metal oxide according to the present invention in such a manner as to cover the sealing layer produced through the same steps as in the comparative example. 5 was produced as follows.
  • a flexible substrate is prepared by the same process and method as in Comparative Example 1, and a photoelectric conversion unit and a sealing layer including a hole transport layer and an electron transport layer are formed in the same manner, and then the present invention is formed on the sealing layer.
  • a water vapor barrier layer containing the metal oxide was formed.
  • Example 2 The same sol-gel solution as in Example 1 was applied by an inkjet printing method to a thickness of 100 nm, heated at 110 ° C. for 30 minutes, and then irradiated with ultraviolet rays for 10 minutes to produce a metal oxide layer.
  • the second substrate was bonded by the same method as in the comparative example, and solar cell No. 5 was produced.
  • Example 3 (Production of solar cell No. 6 of the present invention) Next, a solar cell No. 1 in which a water vapor barrier layer containing the metal oxide according to the present invention is provided on the gas barrier flexible substrate and the sealing layer. 6 was produced as follows. A gas barrier substrate provided with a water vapor barrier layer containing a metal oxide according to the present invention and a perhydropolysilazane modified layer was prepared in the same manner as in Example 1.
  • the organic photoelectric conversion unit was formed in the same manner as in Comparative Example 1, and then the first sealing layer was formed in the same manner as in the first example.
  • Example 2 the metal oxide layer according to the present invention was applied by an inkjet printing method to a thickness of 100 nm, heated at 110 ° C. for 30 minutes, and then irradiated with ultraviolet rays for 10 minutes.
  • the water vapor barrier layer according to the present invention was provided in such a manner as to cover the sealing layer.
  • the second substrate was bonded by vacuum lamination in the same manner as in the comparative example. 6 was produced.
  • Example 4 (Preparation of solar cell No. 7 of the present invention) Next, in the same manner as in Example 3, the solar cell No. 1 was formed by forming a metal oxide-containing water vapor barrier layer on the gas barrier substrate and the sealing layer by changing the amount of fluorine. 7 was produced.
  • a water vapor barrier layer containing a metal oxide produced using Exemplified Compound F-5 as the fluorinated alcohol was produced.
  • a 10% by mass dehydrated octafluoropropanol (exemplary compound F-5) solution of titanium tetraisopropoxide (Ti (OiPr) 4 ) was prepared in a glove box under a dry nitrogen atmosphere with a moisture concentration of 1 ppm or less.
  • the water vapor barrier layer containing the metal oxide layer was formed in the same manner as in Example 3 using the solution that was opened in the atmosphere of 30% humidity for 1 minute and immediately returned to the glove box as the sol-gel solution 2. Are respectively formed on the gas barrier substrate and the sealing layer. 7 was produced.
  • Example 5 (Preparation of perovskite type (III) solar cell No. 8 of the present invention) In the solar cell No. 4 in Example 4 above. In the manufacturing method of No. 7, a perovskite layer is formed between the hole transport layer and the electron transport layer in the solar cell No. The solar cell No. 2 was formed in the same manner as the solar cell N0.6 except that the solar cell No. 8 was produced.
  • Example 6 (Preparation of perovskite type (IV) solar cell No. 9 of the present invention) Conventional type perovskite type (II) solar cell No.
  • the first electrode, the photoelectric conversion layer, the hole transport layer, the second electrode, and the sealing layer were connected to the solar cell No. 1 except that the electron transport layer was formed as follows. 3 was formed by the same method.
  • the metal oxide layer according to the present invention was applied to the thickness of 100 nm by the inkjet printing method, heated at 110 ° C. for 30 minutes, and then irradiated with ultraviolet rays for 10 minutes.
  • the water vapor barrier layer according to the present invention is provided in such a manner as to cover the sealing layer. 9 was produced.
  • a silver (CH 3 CO 2 Ag) 1% by mass dehydrated tetrafluoropropanol (Exemplary Compound F-1) solution 2 was prepared, and then the molar ratio (Ti / Ag) of titanium tetraisopropoxide to silver acetate was 1
  • a 2 mm aluminum plate is anodized and the surface is blackened to prepare a light shielding mask with a light shielding part transmittance of 0%, which is in close contact with the solar cell panel, and the IV curve and short circuit current density under light irradiation ( Jsc), release voltage (Voc), maximum output ( ⁇ ), and fill factor (FF) were measured, and the light conversion efficiency and its maintenance rate or change rate were calculated.
  • FIGS. 7 to 9 show the reliability test results of Comparative Examples 1 to 3
  • FIGS. 10 to 15 show the reliability test results of Examples 1 to 6 of the present invention, respectively.
  • the “F concentration difference” described in Table I above means that the number of fluorine atoms is different in the fluorinated alcohol.
  • the comparative (conventional) examples are markedly deteriorated, and there are defects in the gas barrier substrate and defects in the sealing layer. Due to moisture permeation from the part, the photovoltaic layer made of organic material does not function, and the efficiency is reduced.
  • the cross section of the part where the color is changed is confirmed by applying black light, the gas barrier substrate and the sealing layer have defects due to foreign matters mixed during the production of the solar cell panel, and moisture penetrates from the part. It is speculated that the efficiency was reduced due to the loss of function.
  • the organometallic oxide layer according to the present invention functions as a water vapor barrier (moisture block), and it was found that the reliability of the solar cell panel was improved.
  • the concentration of the fluorinated alcohol an effect of further improving reliability is obtained, and water penetration is suppressed by improving water repellency or hydrophobicity.
  • the solar cell of the present invention is a solar cell having a long life by suppressing adverse effects of water and oxygen in the atmosphere, and is suitable for an organic thin film solar cell such as an organic thin film bulk hetero solar cell or a perovskite solar cell. Available.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention addresses the problem of providing: a solar battery which suppresses the adverse effects of water and oxygen in ambient air and has a prolonged lifetime; and a method of manufacturing the same. This solar battery at least includes a first substrate, a first electrode, an organic photoelectric conversion unit, a second electrode, and a second substrate, and is characterized by having a steam barrier layer between the first substrate and the second substrate, and by the steam barrier layer containing an organic metal oxide having a structure represented by general formula (1). General formula (1): R-[M(OR1)y(O-)x-y]n-R

Description

太陽電池及びその製造方法Solar cell and manufacturing method thereof
 本発明は、太陽電池及びその製造方法に関する。より詳しくは、水蒸気や酸素ガスの悪影響を抑制し、高寿命化した太陽電池及びその製造方法に関する。 The present invention relates to a solar cell and a manufacturing method thereof. More specifically, the present invention relates to a solar cell having a long lifetime by suppressing adverse effects of water vapor and oxygen gas and a method for manufacturing the solar cell.
 昨今、太陽電池は、単結晶シリコンやアモルファスシリコンタイプなどが普及し、ソーラーパークや個人宅まで普及するようになってきている。無機太陽電池を代表する単結晶シリコン太陽電池やアモルファスシリコン太陽電池は、高い変換効率を得られるものの、光透過性太陽電池やフレキシブル太陽電池とすることができないことから、それら多様性を求める観点から、現在、有機太陽電池が注目されており、種々の発明が開示されている(例えば、特許文献1、特許文献2、及び非特許文献1参照。)。 Recently, single-crystal silicon and amorphous silicon types have been widely used for solar cells, and have become popular in solar parks and private homes. Although single crystal silicon solar cells and amorphous silicon solar cells that represent inorganic solar cells can achieve high conversion efficiency, they cannot be made into light transmissive solar cells or flexible solar cells. At present, organic solar cells are attracting attention, and various inventions are disclosed (for example, refer to Patent Document 1, Patent Document 2, and Non-Patent Document 1).
 有機太陽電池は、各種構造のものが開発されるに至っており、最近では、低コスト、軽量、フレキシブル化が期待される有機薄膜太陽電池が注目されている。有機薄膜太陽電池の構成としては、二つの異種電極間に、光電変換機能を持った単層又は複数層の有機薄膜を配置してなるものが一般的である。この有機薄膜太陽電池は、プラスチック製フィルムを基板とすることで、軽量化及びフレキシブル化が可能であるという利点を有している。 Organic solar cells having various structures have been developed, and recently, organic thin-film solar cells that are expected to be low-cost, lightweight, and flexible are attracting attention. As a structure of the organic thin film solar cell, a structure in which a single layer or a plurality of layers of an organic thin film having a photoelectric conversion function is arranged between two different electrodes is common. This organic thin film solar cell has an advantage that it can be reduced in weight and flexibility by using a plastic film as a substrate.
 上記のような期待に応えるため、有機薄膜太陽電池の基板として、樹脂材料であるプラスチック製フィルムを用いる検討がなされている。 In order to meet the above expectations, studies have been made to use a plastic film, which is a resin material, as a substrate for an organic thin film solar cell.
 しかしながら、有機薄膜太陽電池は、一般に、無機太陽電池に比べて耐久性が低いとされている。特に、大気中から侵入する酸素や水蒸気といった腐食性のガスによる劣化を受けやすいという問題がある。このような状況下、従来用いられているガラス基板に代替して樹脂材料を用いた場合、プラスチック製フィルムは、水蒸気や酸素等の透過がガラス基板ほど抑えられないため、有機薄膜太陽電池を構成する有機化合物や電極の経時劣化が大きく、太陽電池の耐久性は著しく低下してしまうという問題があり、改善技術の開発が望まれている(例えば、特許文献3参照。)。 However, organic thin-film solar cells are generally considered to have lower durability than inorganic solar cells. In particular, there is a problem of being easily deteriorated by corrosive gases such as oxygen and water vapor entering from the atmosphere. Under such circumstances, when a resin material is used instead of the conventionally used glass substrate, the plastic film constitutes an organic thin film solar cell because the transmission of water vapor, oxygen, etc. is not as suppressed as the glass substrate. There is a problem that the deterioration of the organic compound and the electrode to be performed with time is large, and the durability of the solar cell is remarkably lowered, and development of an improvement technique is desired (for example, see Patent Document 3).
米国特許第6664137号明細書US Pat. No. 6,664,137 特開2001-156307号公報JP 2001-156307 A 特開2012-4239号公報JP 2012-4239 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、大気中の水や酸素の悪影響を抑制し、高寿命化した太陽電池及びその製造方法を提供することである。 The present invention has been made in view of the above-described problems and circumstances, and a solution to that problem is to provide a solar cell with a long life and a method for manufacturing the solar cell that suppresses adverse effects of water and oxygen in the atmosphere. .
 本発明者は、上記課題を解決すべく上記問題の原因等について検討する過程において、特定の有機金属酸化物が水分を捕獲(トラップ)し、撥水性又は疎水性化合物を生成し、乾燥剤的作用を発現することを見いだし、本発明に至った。 In the process of studying the cause of the above-mentioned problem in order to solve the above-mentioned problems, the present inventor captures (traps) moisture by a specific organometallic oxide, generates a water-repellent or hydrophobic compound, and acts as a desiccant. It has been found that it exerts its action, and has led to the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.少なくとも、第1基板、第1電極、有機光電変換ユニット、第2電極、及び第2基板を具備した太陽電池であって、
 前記第1基板と前記第2基板との間に、水蒸気バリアー層を備え、
 当該水蒸気バリアー層が、下記一般式(1)で表される構造を有する有機金属酸化物を含有することを特徴とする太陽電池。
 一般式(1):R-[M(OR(O-)x-y-R
(式中、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含む炭素鎖でもよい。Mは、金属原子を表す。ORは、フッ化アルコキシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。nは重縮合度を表す。)
1. A solar cell comprising at least a first substrate, a first electrode, an organic photoelectric conversion unit, a second electrode, and a second substrate,
A water vapor barrier layer is provided between the first substrate and the second substrate;
The said water vapor | steam barrier layer contains the organometallic oxide which has a structure represented by following General formula (1), The solar cell characterized by the above-mentioned.
General formula (1): R— [M (OR 1 ) y (O—) xy ] n —R
(In the formula, R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. However, R represents fluorine as a substituent. It may be a carbon chain containing atoms, M represents a metal atom, OR 1 represents a fluorinated alkoxy group, x represents a valence of the metal atom, y represents an arbitrary integer between 1 and x, n Represents the degree of polycondensation.)
 2.前記水蒸気バリアー層が含有する前記有機金属酸化物における炭素原子数とフッ素原子数の総数に対するフッ素原子数の比の値F/(C+F)が、0.05~1.00の範囲内であることを特徴とする第1項に記載の太陽電池。 2. The ratio F / (C + F) of the number of fluorine atoms to the total number of carbon atoms and fluorine atoms in the organometallic oxide contained in the water vapor barrier layer is in the range of 0.05 to 1.00. 2. A solar cell according to item 1, characterized in that:
 3.前記Mで表される金属原子が、Ti、Zr、Sn、Ta、Fe、Zn、Si及びAlから選択されることを特徴とする第1項又は第2項に記載の太陽電池。 3. 3. The solar cell according to claim 1, wherein the metal atom represented by M is selected from Ti, Zr, Sn, Ta, Fe, Zn, Si, and Al.
 4.前記有機光電変換ユニットが、ペロブスカイト化合物を含有する層を有することを特徴とする第1項から第3項までのいずれか一項に記載の太陽電池。 4. The said organic photoelectric conversion unit has a layer containing a perovskite compound, The solar cell as described in any one of Claim 1 to 3 characterized by the above-mentioned.
 5.前記有機光電変換ユニットが、
 ペロブスカイト化合物を含有する層と、
 前記一般式(1)で表される構造を有する金属種の異なる少なくとも2種類の有機金属酸化物を含有する電子輸送層とを有し、
 少なくとも、1種類の前記有機金属酸化物の金属原子Mが、第3項に記載の金属原子から選ばれる金属原子であり、かつ、
 他の異種の有機金属酸化物の金属原子Mが、Ag、Cu及びAuから選ばれる金属原子であることを特徴とする第3項又は第4項に記載の太陽電池。
5. The organic photoelectric conversion unit is
A layer containing a perovskite compound;
An electron transport layer containing at least two kinds of organometallic oxides having different metal species and having a structure represented by the general formula (1),
At least one kind of the metal atom M of the organometallic oxide is a metal atom selected from the metal atoms described in the item 3, and
Item 5. The solar cell according to Item 3 or 4, wherein the metal atom M of another different organometallic oxide is a metal atom selected from Ag, Cu and Au.
 6.前記一般式(1)で表される構造を有する有機金属酸化物が、水蒸気又はヨウ素ガスと反応し、撥水性若しくは疎水性の化合物を放出する、又はヨウ素ガスを捕獲する性能を有することを特徴とする第1項から第5項までのいずれか一項に記載の太陽電池。 6. The organometallic oxide having the structure represented by the general formula (1) reacts with water vapor or iodine gas to release a water-repellent or hydrophobic compound or to capture iodine gas. The solar cell according to any one of items 1 to 5 described above.
 7.前記水蒸気バリアー層が、前記第1基板と第1電極の間、又は第1電極から第2電極までの構成層の全体もしくは一部を覆う位置に具備されたことを特徴とする第1項から第6項までのいずれか一項に記載の太陽電池。 7. From the first aspect, the water vapor barrier layer is provided between the first substrate and the first electrode or at a position covering the whole or a part of the constituent layers from the first electrode to the second electrode. The solar cell according to any one of Items 6 to 6.
 8.前記水蒸気バリアー層が、少なくとも前記有機金属酸化物を含有する組成物がゾル・ゲル転移された膜からなることを特徴とする第1項から第7項までのいずれか一項に記載の太陽電池。 8. The solar cell according to any one of claims 1 to 7, wherein the water vapor barrier layer comprises a film in which a composition containing at least the organometallic oxide is subjected to sol-gel transition. .
 9.第1項から第8項までのいずれか一項に記載の太陽電池を製造する太陽電池の製造方法であって、
 前記水蒸気バリアー層を、金属アルコキシド又は金属カルボキシレートと、フッ化アルコールとの混合液を用いて形成する工程を有することを特徴とする太陽電池の製造方法。
9. A method for manufacturing a solar cell according to any one of items 1 to 8, wherein the solar cell is manufactured.
A method for producing a solar cell, comprising a step of forming the water vapor barrier layer using a mixed liquid of a metal alkoxide or metal carboxylate and a fluorinated alcohol.
 10.前記水蒸気バリアー層を、湿式塗布法により形成することを特徴とする第9項に記載の太陽電池の製造方法。 10. 10. The method for manufacturing a solar cell according to item 9, wherein the water vapor barrier layer is formed by a wet coating method.
 11.前記湿式塗布法が、インクジェット・プリント法であることを特徴とする第10項に記載の太陽電池の製造方法。 11. 11. The method for manufacturing a solar cell according to item 10, wherein the wet coating method is an inkjet printing method.
 本発明の上記手段により、外気中の水や酸素の悪影響を抑制し高寿命化した太陽電池及びその製造方法を提供することができる。 According to the above-described means of the present invention, it is possible to provide a solar cell having a long life by suppressing the adverse effects of water and oxygen in the outside air and a method for manufacturing the solar cell.
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明においては、水蒸気バリアー層に本発明に係る一般式(1)で表される構造を有する有機金属酸化物、すなわち、有機金属オキサイド又はカルボキシレートを用いることにより、水分と反応して加水分解が起こり、撥水性又は疎水性のフッ化アルコールが生成され、撥水又は疎水効果が発現し、その結果、本発明の太陽電池の高寿命化に寄与しているものと推察される。 In the present invention, by using an organic metal oxide having a structure represented by the general formula (1) according to the present invention for the water vapor barrier layer, that is, an organic metal oxide or a carboxylate, it reacts with moisture and is hydrolyzed. It is presumed that water repellency or hydrophobic fluoroalcohol is generated and water repellency or hydrophobic effect is expressed, and as a result, contributes to the extension of the lifetime of the solar cell of the present invention.
 なお、推察される反応機構の詳細については、後述する。 The details of the inferred reaction mechanism will be described later.
従来タイプの太陽電池の基本的構成を示す模式図Schematic diagram showing the basic structure of a conventional solar cell 従来タイプのペロブスカイトの基本的構成を示す模式図Schematic diagram showing the basic structure of a conventional perovskite 本発明の太陽電池の基本的構成の一例を示す模式図The schematic diagram which shows an example of the basic composition of the solar cell of this invention 本発明の太陽電池の基本的構成の他の一例を示す模式図The schematic diagram which shows another example of the basic composition of the solar cell of this invention 本発明の太陽電池の基本的構成の他の一例を示す模式図The schematic diagram which shows another example of the basic composition of the solar cell of this invention 本発明の太陽電池の基本的構成の他の一例を示す模式図The schematic diagram which shows another example of the basic composition of the solar cell of this invention 信頼性試験結果を示す図(比較例1)The figure which shows a reliability test result (comparative example 1) 信頼性試験結果を示す図(比較例2)The figure which shows a reliability test result (comparative example 2) 信頼性試験結果を示す図(比較例3)The figure which shows a reliability test result (comparative example 3) 信頼性試験結果を示す図(実施例1)The figure which shows a reliability test result (Example 1) 信頼性試験結果を示す図(実施例2)The figure which shows a reliability test result (Example 2) 信頼性試験結果を示す図(実施例3)The figure which shows a reliability test result (Example 3) 信頼性試験結果を示す図(実施例4)The figure which shows a reliability test result (Example 4). 信頼性試験結果を示す図(実施例5)The figure which shows a reliability test result (Example 5) 信頼性試験結果を示す図(実施例6)The figure which shows a reliability test result (Example 6).
 本発明の太陽電池は、少なくとも、第1基板、第1電極、有機光電変換ユニット、第2電極、及び第2基板を具備した太陽電池であって、前記第1基板と前記第2基板との間に、水蒸気バリアー層を備え、当該水蒸気バリアー層が、前記一般式(1)で表される構造を有する有機金属酸化物を含有することを特徴とする。 The solar cell of the present invention is a solar cell including at least a first substrate, a first electrode, an organic photoelectric conversion unit, a second electrode, and a second substrate, and includes the first substrate and the second substrate. A water vapor barrier layer is provided therebetween, and the water vapor barrier layer contains an organometallic oxide having a structure represented by the general formula (1).
 この特徴は、下記各実施形態に共通する又は対応する技術的特徴である。 This feature is a technical feature common to or corresponding to each of the following embodiments.
 本発明の実施形態としては、本発明の効果発現の観点から、前記水蒸気バリアー層が含有する前記有機金属酸化物における炭素原子数とフッ素原子数の総数に対するフッ素原子数の比の値F/(C+F)が、0.05~1.00の範囲内であることが好ましい。 As an embodiment of the present invention, from the viewpoint of manifesting the effect of the present invention, the value F / (the ratio of the number of fluorine atoms to the total number of carbon atoms and fluorine atoms in the organometallic oxide contained in the water vapor barrier layer is F / ( C + F) is preferably in the range of 0.05 to 1.00.
 また、前記Mで表される金属原子が、Ti、Zr、Sn、Ta、Fe、Zn、Si及びAlから選択されることが好ましい。 The metal atom represented by M is preferably selected from Ti, Zr, Sn, Ta, Fe, Zn, Si and Al.
 本発明においては、前記有機光電変換ユニットが、ペロブスカイト化合物を含有する層を有する態様の太陽電池であることも好ましい。 In the present invention, it is also preferable that the organic photoelectric conversion unit is a solar cell having a layer containing a perovskite compound.
 さらに、前記有機光電変換ユニットが、ペロブスカイト化合物を含有する層と、前記一般式(1)で表される構造を有する金属種の異なる少なくとも2種類の有機金属酸化物を含有する電子輸送層とを有し、少なくとも、1種類の前記有機金属酸化物の金属原子Mが、Ti、Zr、Sn、Ta、Fe、Zn、Si及びAlから選択される金属原子であり、かつ、他の異種の有機金属酸化物の金属原子Mが、Ag、Cu及びAuから選ばれる金属原子である態様の太陽電池であることも、本発明の特有の効果発現の観点から好ましい。 Furthermore, the organic photoelectric conversion unit comprises a layer containing a perovskite compound, and an electron transport layer containing at least two types of organometallic oxides having different metal species having a structure represented by the general formula (1). And at least one kind of the metal atom M of the organometallic oxide is a metal atom selected from Ti, Zr, Sn, Ta, Fe, Zn, Si and Al, and other different organic It is also preferable from the viewpoint of the characteristic effect of the present invention that the metal atom M of the metal oxide is a solar cell in which the metal atom is a metal atom selected from Ag, Cu and Au.
 本発明に係る前記一般式(1)で表される構造を有する有機金属酸化物が、水蒸気又はヨウ素ガスと反応し、撥水性若しくは疎水性の化合物を放出する、又はヨウ素ガスを捕獲する性能を有することが本発明の効果の観点から好ましい。 The organometallic oxide having the structure represented by the general formula (1) according to the present invention reacts with water vapor or iodine gas to release a water-repellent or hydrophobic compound or capture iodine gas. It is preferable from the viewpoint of the effect of the present invention.
 本発明の実施形態としては、前記水蒸気バリアー層が、前記第1基板と第1電極の間又は第1電極から第2電極までの構成層の全体又は一部を覆う位置に具備された形態であることが好ましい。 As an embodiment of the present invention, the water vapor barrier layer is provided in a position covering the whole or a part of the constituent layer between the first substrate and the first electrode or from the first electrode to the second electrode. Preferably there is.
 本発明に係る前記水蒸気バリアー層が、少なくとも前記有機金属酸化物を含有する組成物がゾル・ゲル転移された膜からなることが、均一で稠密な有機薄膜を形成しうる点で好ましい。 It is preferable that the water vapor barrier layer according to the present invention comprises a film in which a composition containing at least the organometallic oxide is subjected to sol-gel transition from the viewpoint that a uniform and dense organic thin film can be formed.
 本発明の太陽電池の製造方法としては、前記水蒸気バリアー層を、金属アルコキシド又は金属カルボキシレートと、フッ化アルコールとの混合液を用いて形成する工程を有する態様の製造方法であることが好ましい。また、前記水蒸気バリアー層を、湿式塗布法により形成することが好ましい。さらに、前記湿式塗布法が、インクジェット・プリント法であることが好ましい。 The method for producing a solar cell of the present invention is preferably a production method having an aspect including a step of forming the water vapor barrier layer using a mixed liquid of a metal alkoxide or metal carboxylate and a fluorinated alcohol. The water vapor barrier layer is preferably formed by a wet coating method. Further, the wet coating method is preferably an ink jet printing method.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。なお、各図の説明において、構成要素の末尾に記載した数字や記号は、各図における符号を表す。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value. In the explanation of each figure, the numerals and symbols described at the end of the constituent elements represent the symbols in each figure.
 1.太陽電池の概要
 本発明の太陽電池は、少なくとも、第1基板、第1電極、有機光電変換ユニット、第2電極、及び第2基板を具備した太陽電池であって、前記第1基板と前記第2基板との間に、水蒸気バリアー層を備え、当該水蒸気バリアー層が、下記一般式(1)で表される構造を有する有機金属酸化物を含有することを特徴とする。
1. Outline of Solar Cell The solar cell of the present invention is a solar cell comprising at least a first substrate, a first electrode, an organic photoelectric conversion unit, a second electrode, and a second substrate, wherein the first substrate and the first substrate A water vapor barrier layer is provided between the two substrates, and the water vapor barrier layer contains an organometallic oxide having a structure represented by the following general formula (1).
 本発明の太陽電池においては、特に、特定の有機金属酸化物を含有する水蒸気バリアー層を有することを特徴とする。 The solar cell of the present invention is particularly characterized by having a water vapor barrier layer containing a specific organometallic oxide.
 以下において、有機金属酸化物と太陽電池の構成及びそれらの構成要素等について詳細な説明をする。 In the following, a detailed description will be given of the configuration of organic metal oxides and solar cells and their components.
 2.水蒸気バリアー層の基材
 (2.1)有機金属酸化物
 本発明に係る水蒸気バリアー層は、一般式(1)で表される構造を有する有機金属酸化物を含有することを特徴とする。
2. Base material of water vapor barrier layer (2.1) Organometallic oxide The water vapor barrier layer according to the present invention contains an organic metal oxide having a structure represented by the general formula (1).
 本発明に係る有機金属酸化物は、下記一般式(A)で表される化合物から製造された下記一般式(1)で表される構造を有する有機金属酸化物を主成分として含有することが好ましい。「主成分」とは、前記乾燥剤の全体の質量のうち、70質量%以上が疎水性物質を放出する前記有機金属酸化物であることが好ましく、より好ましくは80質量%以上、特に好ましくは90質量%以上であることをいう。 The organometallic oxide according to the present invention contains, as a main component, an organometallic oxide having a structure represented by the following general formula (1) produced from a compound represented by the following general formula (A). preferable. The “main component” is preferably 70% by mass or more, more preferably 80% by mass or more, particularly preferably 70% by mass or more of the total mass of the desiccant. It means 90% by mass or more.
 一般式(A) M(OR(O-R)x-y
 一般式(A)において、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含む炭素鎖でもよい。Mは、金属原子を表す。ORは、フッ化アルコキシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。
Formula (A) M (OR 1 ) y (O—R) xy
In General Formula (A), R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. However, R may be a carbon chain containing a fluorine atom as a substituent. M represents a metal atom. OR 1 represents a fluorinated alkoxy group. x represents a valence of a metal atom, and y represents an arbitrary integer between 1 and x.
 一般式(1):R-[M(OR(O-)x-y-R
 上記一般式(1)において、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含む炭素鎖でもよい。Mは、金属原子を表す。ORは、フッ化アルコキシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。nは重縮合度を表す。
General formula (1): R— [M (OR 1 ) y (O—) xy ] n —R
In the general formula (1), R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. However, R may be a carbon chain containing a fluorine atom as a substituent. M represents a metal atom. OR 1 represents a fluorinated alkoxy group. x represents a valence of a metal atom, and y represents an arbitrary integer between 1 and x. n represents the degree of polycondensation.
 上記一般式(1)において、ORはフッ化アルコキシ基を表す。Rは少なくとも一つフッ素原子に置換したアルキル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。各置換基の具体例は後述する。 In the general formula (1), OR 1 represents a fluorinated alkoxy group. R 1 represents an alkyl group, aryl group, cycloalkyl group, acyl group, alkoxy group, or heterocyclic group substituted with at least one fluorine atom. Specific examples of each substituent will be described later.
 Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。又はそれぞれの基の水素の少なくとも一部をハロゲンで置換したものでもよい。また、ポリマーでもよい。 R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. Or what substituted at least one part of hydrogen of each group with the halogen may be used. Moreover, a polymer may be sufficient.
 アルキル基は置換又は未置換のものであるが、具体例としては、メチル基、エチル基、プロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル等であるが、好ましくは炭素数が8以上のものである。また、これらのオリゴマー、ポリマーでもよい。 Alkyl groups are substituted or unsubstituted, and specific examples include methyl, ethyl, propyl, butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl. Group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, heicosyl group, docosyl, etc., preferably carbon The number is 8 or more. These oligomers and polymers may also be used.
 アルケニル基は、置換又は未置換のもので、具体例としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキシセニル基等があり、好ましくは炭素数が8以上のものである。またこれらのオリゴマー又はポリマーでもよい。 The alkenyl group is substituted or unsubstituted, and specific examples include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and the like, preferably having 8 or more carbon atoms. These oligomers or polymers may also be used.
 アリール基は置換又は未置換のもので、具体例としては、フェニル基、トリル基、4-シアノフェニル基、ビフェニル基、o,m,p-テルフェニル基、ナフチル基、アントラニル基、フェナントレニル基、フルオレニル基、9-フェニルアントラニル基、9,10-ジフェニルアントラニル基、ピレニル基等があり、好ましくは炭素数が8以上のものである。また、これらのオリゴマー又はポリマーでもよい。 The aryl group is substituted or unsubstituted, and specific examples include phenyl group, tolyl group, 4-cyanophenyl group, biphenyl group, o, m, p-terphenyl group, naphthyl group, anthranyl group, phenanthrenyl group, There are a fluorenyl group, a 9-phenylanthranyl group, a 9,10-diphenylanthranyl group, a pyrenyl group and the like, and those having 8 or more carbon atoms are preferable. These oligomers or polymers may also be used.
 置換又は未置換のアルコキシ基の具体例としては、メトキシ基、n-ブトキシ基、tert-ブトキシ基、トリクロロメトキシ基、トリフルオロメトキシ基等であり、好ましくは炭素数が8以上のものである。また、これらのオリゴマー、ポリマーでもよい。 Specific examples of the substituted or unsubstituted alkoxy group include a methoxy group, an n-butoxy group, a tert-butoxy group, a trichloromethoxy group, and a trifluoromethoxy group, and preferably those having 8 or more carbon atoms. These oligomers and polymers may also be used.
 置換又は未置換のシクロアルキル基の具体例としては、シクロペンチル基、シクロヘキシル基、ノルボナン基、アダマンタン基、4-メチルシクロヘキシル基、4-シアノシクロヘキシル基等であり好ましくは炭素数が8以上のものである。また、これらのオリゴマー又はポリマーでもよい。 Specific examples of the substituted or unsubstituted cycloalkyl group include a cyclopentyl group, a cyclohexyl group, a norbonane group, an adamantane group, a 4-methylcyclohexyl group, a 4-cyanocyclohexyl group, and preferably those having 8 or more carbon atoms. is there. These oligomers or polymers may also be used.
 置換又は未置換の複素環基の具体例としては、ピロール基、ピロリン基、ピラゾール基、ピラゾリン基、イミダゾール基、トリアゾール基、ピリジン基、ピリダジン基、ピリミジン基、ピラジン基、トリアジン基、インドール基、ベンズイミダゾール基、プリン基、キノリン基、イソキノリン基、シノリン基、キノキサリン基、ベンゾキノリン基、フルオレノン基、ジシアノフルオレノン基、カルバゾール基、オキサゾール基、オキサジアゾール基、チアゾール基、チアジアゾール基、ベンゾオキサゾール基、ベンゾチアゾール基、ベンゾトリアゾール基、ビスベンゾオキサゾール基、ビスベンゾチアゾール基、ビスベンゾイミダゾール基等がある。またこれらのオリゴマー又はポリマーでもよい。 Specific examples of the substituted or unsubstituted heterocyclic group include pyrrole group, pyrroline group, pyrazole group, pyrazoline group, imidazole group, triazole group, pyridine group, pyridazine group, pyrimidine group, pyrazine group, triazine group, indole group, Benzimidazole group, purine group, quinoline group, isoquinoline group, sinoline group, quinoxaline group, benzoquinoline group, fluorenone group, dicyanofluorenone group, carbazole group, oxazole group, oxadiazole group, thiazole group, thiadiazole group, benzoxazole group Benzothiazole group, benzotriazole group, bisbenzoxazole group, bisbenzothiazole group, bisbenzimidazole group and the like. These oligomers or polymers may also be used.
 置換又は未置換のアシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オキサリル基、マロニル基、スクシニル基、グルタリル基、アジポイル基、ピメロイル基、スベロイル基、アゼラオイル基、セバコイル基、アクリロイル基、プロピオロイル基、メタクリロイル基、クロトノイル基、イソクロトノイル基、オレオイル基、エライドイル基、マレオイル基、フマロイル基、シトラコノイル基、メサコノイル基、カンホロイル基、ベンゾイル基、フタロイル基、イソフタロイル基、テレフタロイル基、ナフトイル基、トルオイル基、ヒドロアトロポイル基、アトロポイル基、シンナモイル基、フロイル基、テノイル基、ニコチノイル基、イソニコチノイル基、グリコロイル基、ラクトイル基、グリセロイル基、タルトロノイル基、マロイル基、タルタロイル基、トロポイル基、ベンジロイル基、サリチロイル基、アニソイル基、バニロイル基、ベラトロイル基、ピペロニロイル基、プロトカテクオイル基、ガロイル基、グリオキシロイル基、ピルボイル基、アセトアセチル基、メソオキサリル基、メソオキサロ基、オキサルアセチル基、オキサルアセト基、レブリノイル基これらのアシル基にフッ素、塩素、臭素、又はヨウ素などが置換してもよい。好ましくは、アシル基の炭素は8以上である。また、これらのオリゴマー又はポリマーでもよい。 Specific examples of the substituted or unsubstituted acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, oxalyl group Group, malonyl group, succinyl group, glutaryl group, adipoyl group, pimeloyl group, suberoyl group, azelaoil group, sebacoyl group, acryloyl group, propioloyl group, methacryloyl group, crotonoyl group, isocrotonoyl group, oleoyl group, elidoyl group, maleoyl group , Fumaroyl group, citraconoyl group, mesaconoyl group, camphoroyl group, benzoyl group, phthaloyl group, isophthaloyl group, terephthaloyl group, naphthoyl group, toluoyl group, hydroatropoyl group, atropoyl group Cinnamoyl group, furoyl group, tenoyl group, nicotinoyl group, isonicotinoyl group, glycoloyl group, lactoyl group, glyceroyl group, tartronoyl group, maloyl group, tartaloyl group, tropoyl group, benzyloyl group, salicyloyl group, anisoyl group, vanilloyl group, veratroyl group , Piperoniloyl group, protocatechuyl group, galloyl group, glyoxyloyl group, pyrvoyl group, acetoacetyl group, mesooxalyl group, mesooxalo group, oxalacetyl group, oxalaceto group, levulinoyl group Fluorine, chlorine, bromine on these acyl groups Or iodine or the like may be substituted. Preferably, the carbon of the acyl group is 8 or more. These oligomers or polymers may also be used.
 本発明に係る一般式(1)で表される構造を有する有機金属酸化物を形成するための、金属アルコキシド、金属カルボキシレート及びフッ素化アルコールの具体的な組み合わせについて、以下に例示する。ただし、本発明は、これに限定されるものではない。 Specific examples of a combination of a metal alkoxide, a metal carboxylate, and a fluorinated alcohol for forming an organometallic oxide having a structure represented by the general formula (1) according to the present invention are illustrated below. However, the present invention is not limited to this.
 前記金属アルコキシド、金属カルボキシレートとフッ化アルコール(R′-OH)は以下の反応スキームIによって、本発明に係る有機金属酸化物となる。ここで、(R′-OH)としては、以下のF-1~F-16の構造が例示される。 The metal alkoxide, metal carboxylate, and fluorinated alcohol (R′-OH) are converted into the organometallic oxide according to the present invention by the following reaction scheme I. Here, (R′—OH) is exemplified by the following structures F-1 to F-16.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本発明に係る金属アルコキシド又は金属カルボキシレートは、以下のM(OR)又はM(OCOR)に示す化合物が例示され、本発明に係る有機金属酸化物は、前記(R′-OH:F-1~F-16)との組み合わせにより、下記例示化合物番号1~135の構造を有する化合物(下記例示化合物I、II及びIII参照。)となる。本発明に係る有機金属酸化物は、これに限定されるものではない。 Examples of the metal alkoxide or metal carboxylate according to the present invention include the following compounds represented by M (OR) n or M (OCOR) n, and the organometallic oxide according to the present invention includes the above (R′—OH: F In combination with -1 to F-16), compounds having the structures of the following Exemplified Compound Nos. 1 to 135 (see Exemplified Compounds I, II and III below) are obtained. The organometallic oxide according to the present invention is not limited to this.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (2.2)有機金属酸化物の反応性
 本発明に係る有機金属酸化物は、以下の反応スキームII及び反応スキームIIIに示すような反応性を示すものである。なお、焼結後の有機金属酸化物の重縮合体の構造式において、「O-M」部の「M」は、さらに置換基を有しているが、省略してある。
(2.2) Reactivity of organometallic oxide The organometallic oxide according to the present invention exhibits reactivity as shown in the following reaction scheme II and reaction scheme III. In the structural formula of the organometallic oxide polycondensate after sintering, “M” in the “OM” part further has a substituent, but is omitted.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 例えば、金属種の異なる2種の金属オキサイドが共存する場合、下記反応スキームIIIで示されるような反応性を有する。 For example, when two types of metal oxides having different metal types coexist, they have reactivity as shown in Reaction Scheme III below.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記有機金属酸化物が、焼結又は紫外線照射等により重縮合して形成された有機薄膜は、以下の反応スキームIV及び反応スキームVに示すような反応性を有する。 The organic thin film formed by polycondensation of the organometallic oxide by sintering or ultraviolet irradiation has reactivity as shown in Reaction Scheme IV and Reaction Scheme V below.
 反応スキームIVの場合、系外からの水分(HO)によって加水分解し、撥水性又は疎水性物質であるフッ素化アルコール(R′-OH)を放出する。このフッ素化アルコールによって、さらに水分の電子デバイス内部への透過を防止するものである。 In the case of Reaction Scheme IV, hydrolysis with water (H 2 O) from outside the system releases fluorinated alcohol (R′—OH), which is a water-repellent or hydrophobic substance. This fluorinated alcohol further prevents the penetration of moisture into the electronic device.
 すなわち、本発明に係る有機金属酸化物は、加水分解によって生成したフッ素化アルコールが撥水性又は疎水性のため、本来の乾燥性(デシカント性)に加え、水分との反応により撥水機能が付加されて、封止性に相乗効果(シナジー効果)を発揮するという特徴を有する。 That is, in the organometallic oxide according to the present invention, since the fluorinated alcohol produced by hydrolysis is water repellant or hydrophobic, in addition to the original drying property (desiccant property), a water repellency function is added by reaction with moisture. And has a characteristic of exhibiting a synergistic effect (synergy effect) on the sealing property.
 なお、下記構造式において、「O-M」部の「M」は、さらに置換基を有しているが、省略してある。 In the structural formula below, “M” in the “OM” part further has a substituent, but is omitted.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 反応スキームVの場合、腐食性を有するヨウ素(I)ガスと反応してヨウ素をトラップし、ヨウ化銀を生成するとともに、比較的安定なポリヨウ素イオン(I 、I 及びI )を生成する。 In Reaction Scheme V, iodine is trapped by reacting with corrosive iodine (I 2 ) gas to form silver iodide, and relatively stable polyiodine ions (I 3 , I 5 and I 7 -) is generated.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 (2.3)有機金属酸化物の製造方法
 本発明に係る有機金属酸化物を製造する有機金属酸化物の製造方法は、金属アルコキシドとフッ化アルコールの混合液を用いて製造することが特徴である。
(2.3) Method for Producing Organometallic Oxide The method for producing an organometallic oxide for producing the organometallic oxide according to the present invention is characterized by producing using a mixed liquid of a metal alkoxide and a fluorinated alcohol. is there.
 本発明に係る有機金属酸化物の製造方法は、金属アルコキシド又は金属カルボキシレートにフッ化アルコールを加え混合液として撹拌混合させた後に、必要に応じて水と触媒を添加して所定温度で反応させる方法を挙げることができる。 In the method for producing an organometallic oxide according to the present invention, a fluorinated alcohol is added to a metal alkoxide or metal carboxylate, and the mixture is stirred and mixed. Then, water and a catalyst are added as necessary and reacted at a predetermined temperature. A method can be mentioned.
 ゾル・ゲル反応をさせる際には、加水分解・重縮合反応を促進させる目的で下記に示すような加水分解・重合反応の触媒となりうるものを加えてもよい。ゾル・ゲル反応の加水分解・重合反応の触媒として使用されるものは、「最新ゾル-ゲル法による機能性薄膜作製技術」(平島碩著、株式会社総合技術センター、P29)や「ゾル-ゲル法の科学」(作花済夫著、アグネ承風社、P154)等に記載されている一般的なゾル・ゲル反応で用いられる触媒である。例えば、酸触媒としては、例えば、塩酸、硝酸、硫酸、リン酸、酢酸、シュウ酸、酒石酸、トルエンスルホン酸等の無機及び有機酸類等が挙げられる。 When the sol-gel reaction is performed, for the purpose of accelerating the hydrolysis / polycondensation reaction, a substance that can be a catalyst for the hydrolysis / polymerization reaction as shown below may be added. The catalysts used for the hydrolysis / polymerization reaction of the sol-gel reaction are “the latest functional sol-gel production technology by the sol-gel method” (by Satoshi Hirashima, General Technology Center, P29) and “sol-gel”. It is a catalyst used in a general sol-gel reaction described in “Science of Law” (Sakuo Sakuo, Agne Jofusha, P154). For example, examples of the acid catalyst include inorganic and organic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, oxalic acid, tartaric acid, and toluenesulfonic acid.
 好ましい触媒の使用量は、有機金属酸化物の原料となる金属アルコキシド又は金属カルボキシレート1モルに対して2モル当量以下、さらに好ましくは1モル当量以下ある。ゾル・ゲル反応をさせる際、好ましい水の添加量は、有機金属酸化物の原料となる金属アルコキシド又は金属カルボキシレート1モルに対して、40モル当量以下であり、より好ましくは、10モル当量以下であり、さらに好ましくは、5モル当量以下である。 The amount of the catalyst used is preferably 2 molar equivalents or less, more preferably 1 molar equivalent or less, per 1 mol of the metal alkoxide or metal carboxylate used as the organic metal oxide raw material. When the sol-gel reaction is carried out, the preferable amount of water added is 40 molar equivalents or less, more preferably 10 molar equivalents or less with respect to 1 mol of the metal alkoxide or metal carboxylate as the raw material of the organometallic oxide. More preferably, it is 5 molar equivalents or less.
 本発明において、好ましいゾル・ゲル反応の反応濃度、温度、時間は、使用する金属アルコキシド又は金属カルボキシレートの種類や分子量、それぞれの条件が相互に関わるため一概には言えない。すなわち、アルコキシド又は金属カルボキシレートの分子量が高い場合や、反応濃度の高い場合に、反応温度を高く設定したり、反応時間を長くし過ぎたりすると、加水分解、重縮合反応に伴って反応生成物の分子量が上がり、高粘度化やゲル化する可能性がある。したがって、通常の好ましい反応濃度は、おおむね溶液中の固形分の質量%濃度で1~50%の範囲内であり、5~30%の範囲内がより好ましい。また、反応温度は反応時間にもよるが通常0~150℃の範囲内であり、好ましくは1~100℃の範囲内であり、より好ましくは20~60℃の範囲内であり、反応時間は1~50時間の範囲内が好ましい。 In the present invention, the preferred reaction concentration, temperature, and time of the sol-gel reaction cannot be generally described because the type and molecular weight of the metal alkoxide or metal carboxylate used and the respective conditions are related to each other. That is, when the molecular weight of the alkoxide or metal carboxylate is high, or when the reaction concentration is high, if the reaction temperature is set high or the reaction time is too long, the reaction product is accompanied by hydrolysis and polycondensation reaction. There is a possibility that the molecular weight of the polymer increases, resulting in high viscosity or gelation. Therefore, the usual preferable reaction concentration is generally in the range of 1 to 50%, more preferably in the range of 5 to 30% in terms of the concentration by mass of solid content in the solution. In addition, although depending on the reaction time, the reaction temperature is usually in the range of 0 to 150 ° C., preferably in the range of 1 to 100 ° C., more preferably in the range of 20 to 60 ° C., and the reaction time is A range of 1 to 50 hours is preferable.
 本発明においては、水蒸気バリアー層が含有する前記有機金属酸化物における炭素原子数とフッ素原子数の総数に対するフッ素原子数の比の値F/(C+F)が、0.05~1.00の範囲内であることが、撥水性又は疎水性の観点から好ましい。すなわち、本発明に係る有機金属錯酸化物中のフッ素比率が、下記式(a)を満たすことが好ましい。 In the present invention, the value F / (C + F) of the ratio of the number of fluorine atoms to the total number of carbon atoms and fluorine atoms in the organometallic oxide contained in the water vapor barrier layer is in the range of 0.05 to 1.00. It is preferable from the viewpoint of water repellency or hydrophobicity. That is, it is preferable that the fluorine ratio in the organometallic complex oxide according to the present invention satisfies the following formula (a).
 式(a):0.05≦F/(C+F)≦1.00
 式(a)の測定意義は、ゾル・ゲル法により作製した有機薄膜がある量以上のフッ素原子を必要とすることを数値化するものである。上記式(a)中のF及びCは、それぞれフッ素原子及び炭素原子の濃度を表す。
Formula (a): 0.05 ≦ F / (C + F) ≦ 1.00
The measurement significance of the formula (a) quantifies that an organic thin film produced by the sol-gel method requires a certain amount or more of fluorine atoms. F and C in the above formula (a) represent the concentrations of fluorine atoms and carbon atoms, respectively.
 更に好ましい範囲としては、0.2≦F/(C+F)≦0.6の範囲である。 A more preferable range is 0.2 ≦ F / (C + F) ≦ 0.6.
 上記フッ素比率は、有機薄膜形成に使用するゾル・ゲル液をシリコンウェハ上に塗布して薄膜を作製した後、当該薄膜をSEM・EDS(Energy Dispersive X-ray Spectoroscopy:エネルギー分散型X線分析装置)による元素分析により、それぞれフッ素原子及び炭素原子の濃度を求めることができる。SEM・EDS装置の一例として、JSM-IT100(日本電子社製)を挙げることができる。 The fluorine ratio is determined by applying a sol / gel solution used for forming an organic thin film on a silicon wafer to produce a thin film, and then applying the thin film to an SEM / EDS (Energy Dispersive X-ray Spectroscopy: energy dispersive X-ray analyzer). The concentration of fluorine atoms and carbon atoms can be determined by elemental analysis according to (1). An example of the SEM / EDS apparatus is JSM-IT100 (manufactured by JEOL Ltd.).
 SEM・EDS分析は、高速、高感度で精度よく元素を検出できる特徴を有する。 SEM / EDS analysis has the feature that it can detect elements with high speed, high sensitivity and accuracy.
 本発明に係る有機金属酸化物は、ゾル・ゲル法を用いて作製できるものであれば特に制限はされず、例えば、「ゾル-ゲル法の科学」P13、P20に紹介されている金属、リチウム、ナトリウム、銅、カルシウム、ストロンチウム、バリウム、亜鉛、ホウ素、アルミニウム、ガリウム、イットリウム、ケイ素、ゲルマニウム、鉛、リン、アンチモン、バナジウム、タンタル、タングステン、ランタン、ネオジウム、チタン、ジルコニウム、スズ、及び鉄から選ばれる1種以上の金属を含有してなる金属酸化物を例として挙げることができる。好ましくは、前記Mで表される金属原子は、チタン(Ti)、ジルコニウム(Zr)、スズ(Sn)、タンタル(Ta)、鉄(Fe)、亜鉛(Zn)、ケイ素(Si)及びアルミニウム(Al)から選択されることが、本発明の効果を得る観点から好ましい。 The organometallic oxide according to the present invention is not particularly limited as long as it can be produced using the sol-gel method. For example, the metal, lithium introduced in “Science of Sol-Gel Method” P13, P20 , Sodium, copper, calcium, strontium, barium, zinc, boron, aluminum, gallium, yttrium, silicon, germanium, lead, phosphorus, antimony, vanadium, tantalum, tungsten, lanthanum, neodymium, titanium, zirconium, tin, and iron An example is a metal oxide containing one or more selected metals. Preferably, the metal atom represented by M includes titanium (Ti), zirconium (Zr), tin (Sn), tantalum (Ta), iron (Fe), zinc (Zn), silicon (Si) and aluminum ( Al) is preferably selected from the viewpoint of obtaining the effects of the present invention.
 3.太陽電池の構成
 本発明の太陽電池は、少なくとも、第1基板、第1電極、有機光電変換ユニット、第2電極、及び第2基板を具備した太陽電池であって、前記第1基板と前記第2基板との間に、水蒸気バリアー層を備えていることを特徴とする。
3. Configuration of Solar Cell The solar cell of the present invention is a solar cell including at least a first substrate, a first electrode, an organic photoelectric conversion unit, a second electrode, and a second substrate, wherein the first substrate and the first substrate A water vapor barrier layer is provided between the two substrates.
 本発明の太陽電池においては、少なくとも、第1基板及び第1電極、又は第2基板及び第2電極のいずれかは光透過性(透明)であることを要するが、有機光電変換ユニットを構成する電子輸送層、正孔輸送層等の構成層の配置順序は、目的に応じて、種々の態様を採り得る。 In the solar cell of the present invention, at least one of the first substrate and the first electrode or the second substrate and the second electrode needs to be light transmissive (transparent), but constitutes an organic photoelectric conversion unit. The arrangement order of the constituent layers such as the electron transport layer and the hole transport layer can take various modes depending on the purpose.
 以下、図を参照して、従来タイプの太陽電池と本発明の太陽電池の各種基本的構成例について説明する。 Hereinafter, various basic configuration examples of a conventional solar cell and the solar cell of the present invention will be described with reference to the drawings.
 図1は、従来タイプの太陽電池1の基本的構成例(断面図)を示す。この基本的構成例の場合は、少なくとも、第1基板2、ガスバリアー層3(例えば、ポリシラザン改質層)、第1電極4、正孔輸送層5と電子輸送層6とからなる光電変換ユニット7、第2電極8、封止層9、接着剤層10、及びアルミニウム箔11とPETフィルム12とからなるアルペットAPで構成される第2基板13を備えた構成である。 FIG. 1 shows a basic configuration example (cross-sectional view) of a conventional solar cell 1. In the case of this basic configuration example, a photoelectric conversion unit comprising at least a first substrate 2, a gas barrier layer 3 (for example, a polysilazane modified layer), a first electrode 4, a hole transport layer 5 and an electron transport layer 6. 7, a second electrode 8, a sealing layer 9, an adhesive layer 10, and a second substrate 13 composed of an Alpet AP composed of an aluminum foil 11 and a PET film 12.
 図2は、従来タイプのペロブスカイト太陽電池を示しており、図1に示した上記従来タイプの太陽電池1において、電子輸送層6と正孔輸送層5の間にペロブスカイト化合物を含有させた層15を設けて、ペロブスカイト太陽電池にした以外は、同じ構成にしたものである。 FIG. 2 shows a conventional perovskite solar cell. In the conventional solar cell 1 shown in FIG. 1, a layer 15 containing a perovskite compound between the electron transport layer 6 and the hole transport layer 5 is shown. Are the same except that a perovskite solar cell is provided.
 図3は、本発明の太陽電池の一形態例を示す。図1に示した上記従来タイプの太陽電池1において、前記第1基板上に設けたガスバリアー層3と第1電極4の間に、更に本発明に係る有機金属酸化物を含有する水蒸気バリアー層14を設けた点以外は、同じ構成にしたものである。 FIG. 3 shows an example of the solar cell of the present invention. In the solar cell 1 of the conventional type shown in FIG. 1, a water vapor barrier layer further containing an organometallic oxide according to the present invention is provided between the gas barrier layer 3 and the first electrode 4 provided on the first substrate. The configuration is the same except that 14 is provided.
 図4は、本発明の太陽電池の一形態例を示す。図3に示した本発明の太陽電池1において、前記封止層9を被覆するような態様で、本発明に係る有機金属酸化物を含有する水蒸気バリアー層14を設けた点以外は、同じ構成にしたものである。 FIG. 4 shows one embodiment of the solar cell of the present invention. In the solar cell 1 of the present invention shown in FIG. 3, the same configuration except that the water vapor barrier layer 14 containing the organometallic oxide according to the present invention is provided in such a manner as to cover the sealing layer 9. It is a thing.
 図5は、本発明の太陽電池の一形態例を示す。図4に示した太陽電池1において、前記第1基板上に設けたガスバリアー層3と第1電極4との間に、更に本発明に係る有機金属酸化物を含有する水蒸気バリアー層14を設けた点以外は、同じ構成にしたものである。 FIG. 5 shows one embodiment of the solar cell of the present invention. In the solar cell 1 shown in FIG. 4, a water vapor barrier layer 14 containing an organometallic oxide according to the present invention is further provided between the gas barrier layer 3 and the first electrode 4 provided on the first substrate. Except for the points described above, the configuration is the same.
 図6は、本発明のペロブスカイト太陽電池の一形態例を示す。図4に示した太陽電池1において、前記電子輸送層6と正孔輸送層5の間にペロブスカイト化合物を含有させた層15を設けて、ペロブスカイト太陽電池にした点以外は、同じ構成にしたものである。 FIG. 6 shows an embodiment of the perovskite solar cell of the present invention. The solar cell 1 shown in FIG. 4 has the same structure except that a layer 15 containing a perovskite compound is provided between the electron transport layer 6 and the hole transport layer 5 to form a perovskite solar cell. It is.
 4.太陽電池の構成要素
 (4.1)第1基板
 第1基板としては、強度、耐久性、光透過性があればよく、合成樹脂及びガラスなどを使用できる。合成樹脂としては、例えば、ポリエチレンナフタレート(PEN)フィルムなどの熱可塑性樹脂、ポリエチレンテレフタレート(PET)、ポリエステル、ポリカーボネート、ポリオレフィン、ポリイミド、及びフッ素樹脂などが挙げられる。強度、耐久性、コストなどの観点から、ガラス基板を用いることが好ましい。
4). Components of Solar Cell (4.1) First Substrate As the first substrate, it is sufficient if it has strength, durability, and light transmittance, and synthetic resin and glass can be used. Examples of the synthetic resin include thermoplastic resins such as polyethylene naphthalate (PEN) film, polyethylene terephthalate (PET), polyester, polycarbonate, polyolefin, polyimide, and fluororesin. In view of strength, durability, cost, etc., it is preferable to use a glass substrate.
 第1基板としては、上記基材のほか金属箔を用いることもできる。金属箔は、フレキシブル太陽電池の一方の電極であると同時に、基材としての役割を果たしてもよい。 As the first substrate, a metal foil can be used in addition to the above base material. The metal foil may serve as a base material at the same time as one electrode of the flexible solar cell.
 上記金属箔を構成する金属としては特に限定されず、耐久性に優れ、かつ、電極として用いることができる導電性を有するものが好ましく、例えば、アルミニウム、チタン、銅、金等の金属や、ステンレス鋼(SUS)等の合金を用いることができる。これらの材料は単独で用いられてもよく、2種以上が併用されてもよい。 The metal constituting the metal foil is not particularly limited, and is preferably one having excellent durability and conductivity that can be used as an electrode. For example, metals such as aluminum, titanium, copper, and gold, stainless steel An alloy such as steel (SUS) can be used. These materials may be used alone or in combination of two or more.
 なかでも、上記金属箔を構成する金属は、ステンレス鋼(SUS)を含むことが好ましい。上記金属箔を構成する金属としてステンレス鋼(SUS)を用いることで、上記金属箔が強靱になり曲げに対する耐性が向上するため、曲げ変形に起因する光電変換効率のばらつきを抑えることができる。上記金属箔を構成する金属は、アルミニウムを含むことも好ましい。上記金属箔を構成する金属としてアルミニウムを用いることで、上記金属箔と、有機無機ペロブスカイト化合物を含有する光電変換層との線膨張係数の差が小さくなるため、アニール時の歪みの発生を更に抑えることができる。 Especially, it is preferable that the metal which comprises the said metal foil contains stainless steel (SUS). By using stainless steel (SUS) as the metal constituting the metal foil, the metal foil becomes tough and resistance to bending is improved, so that variations in photoelectric conversion efficiency due to bending deformation can be suppressed. The metal constituting the metal foil preferably contains aluminum. By using aluminum as the metal constituting the metal foil, the difference in coefficient of linear expansion between the metal foil and the photoelectric conversion layer containing the organic / inorganic perovskite compound is reduced, thereby further suppressing the occurrence of distortion during annealing. be able to.
 上記金属箔の厚さは特に限定されないが、好ましい下限は5μm、好ましい上限は500μmである。上記金属箔の厚さが5μm以上であれば、得られるフレキシブル太陽電池の機械的強度が充分となり、取り扱い性が向上し、500μm以下であれば、上記金属箔の曲げ等が可能となり、フレキシブル性が向上する。上記金属箔の厚さのより好ましい下限は10μm、より好ましい上限は100μmである。 The thickness of the metal foil is not particularly limited, but a preferable lower limit is 5 μm and a preferable upper limit is 500 μm. If the thickness of the metal foil is 5 μm or more, the mechanical strength of the obtained flexible solar cell is sufficient and the handleability is improved. If the thickness is 500 μm or less, the metal foil can be bent, and the flexibility is improved. Will improve. The minimum with more preferable thickness of the said metal foil is 10 micrometers, and a more preferable upper limit is 100 micrometers.
 上記金属箔をフレキシブル太陽電池の基材として用いる場合には、上記金属箔自体が電極と基材とを兼ねる態様のほか、上記金属箔の光電変換層側の表面に絶縁層を介して電極を形成する態様が考えられる。 When the metal foil is used as a base material for a flexible solar cell, the metal foil itself serves as an electrode and a base material, and an electrode is provided on the surface of the metal foil on the photoelectric conversion layer side through an insulating layer. The form to form is considered.
 上記絶縁層としては特に限定されないが、絶縁樹脂層又は金属酸化物層からなる絶縁層が好適である。より具体的には、ポリイミド樹脂、シリコーン樹脂等の絶縁樹脂や、ジルコニア、シリカ、ハフニア等の金属酸化物を用いて上記絶縁層を形成することが好ましい。 The insulating layer is not particularly limited, but an insulating layer made of an insulating resin layer or a metal oxide layer is suitable. More specifically, the insulating layer is preferably formed using an insulating resin such as a polyimide resin or a silicone resin, or a metal oxide such as zirconia, silica, or hafnia.
 上記絶縁層の厚さの好ましい下限は0.1μm、好ましい上限は10μmである。上記絶縁層の厚さがこの範囲内であれば、上記金属箔と電極とを確実に絶縁することができる。 The preferable lower limit of the thickness of the insulating layer is 0.1 μm, and the preferable upper limit is 10 μm. When the thickness of the insulating layer is within this range, the metal foil and the electrode can be reliably insulated.
 上記金属箔の光電変換層側の表面に絶縁層を介して形成される電極としては特に限定されず、太陽電池において通常用いられる金属電極を用いることができる。 The electrode formed on the surface of the metal foil on the photoelectric conversion layer side through an insulating layer is not particularly limited, and a metal electrode usually used in solar cells can be used.
 (4.2)第1電極
 第1電極としては透明電極を用いることが好ましい、透明電極を構成する透明導電層3の材料としては、例えば、スズ添加酸化インジウム(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(ZnO)、及び高い導電性を有する高分子材料などが挙げられる。
(4.2) 1st electrode It is preferable to use a transparent electrode as a 1st electrode, As a material of the transparent conductive layer 3 which comprises a transparent electrode, for example, tin addition indium oxide (ITO), fluorine addition tin oxide ( FTO), tin oxide (SnO 2 ), indium zinc oxide (IZO), zinc oxide (ZnO), and a polymer material having high conductivity.
 高分子材料としては、例えば、ポリアセチレン系、ポリピロール系、ポリチオフェン系、ポリフェニレンビニレン系の高分子材料が挙げられる。また、高い導電性を有する炭素系薄膜を用いることもできる。透明電極の形成方法としては、スパッタ法、蒸着法、及び分散物を塗布する方法などが挙げられる。 Examples of the polymer material include polyacetylene-based, polypyrrole-based, polythiophene-based, and polyphenylene vinylene-based polymer materials. A carbon-based thin film having high conductivity can also be used. Examples of the method for forming the transparent electrode include a sputtering method, a vapor deposition method, and a method of applying a dispersion.
 (4.3)有機光電変換ユニット
 本発明において、「有機光電変換ユニット」とは、光を吸収して電子と正孔を発生させる機能を有し、正孔輸送層、光電変換層、電子輸送層、混合層、電荷ブロック層、電荷注入層、及び励起子拡散防止層など各種機能層のいずれかの層に有機化合物を含有する単層構造体又は多層構造の積層体をいい、いわゆるバルクヘテロ層に相当する。
(4.3) Organic Photoelectric Conversion Unit In the present invention, the “organic photoelectric conversion unit” has a function of absorbing light and generating electrons and holes, and includes a hole transport layer, a photoelectric conversion layer, and an electron transport. A single-layer structure or multilayer structure containing an organic compound in any one of various functional layers such as a layer, mixed layer, charge blocking layer, charge injection layer, and exciton diffusion prevention layer. It corresponds to.
 本発明の太陽電池は、正孔輸送層と電子輸送層の組を複数組有する、いわゆるタンデム型構成を採ってもよい。タンデム型に構成された素子は、開放電圧が高く変換効率が高い点で特に好ましい。その際、中間層として再結合層が配される。すなわちタンデム型の素子の典型例として、正極/正孔輸送層/電子輸送層/再結合層/正孔輸送層/電子輸送層/金属酸化物層/負極の構成が例示される。 The solar cell of the present invention may adopt a so-called tandem configuration having a plurality of pairs of a hole transport layer and an electron transport layer. An element configured in a tandem type is particularly preferable in terms of high open-circuit voltage and high conversion efficiency. At that time, a recombination layer is disposed as an intermediate layer. That is, as a typical example of the tandem element, a configuration of positive electrode / hole transport layer / electron transport layer / recombination layer / hole transport layer / electron transport layer / metal oxide layer / negative electrode is exemplified.
 本発明では、上記の機能層以外に、必要に応じて他の構成層を設けてもよい。 In the present invention, in addition to the above functional layers, other constituent layers may be provided as necessary.
 他の構成層も、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法等いずれによっても好適に形成することができる。 Other constituent layers can also be suitably formed by any of dry film forming methods such as vapor deposition and sputtering, transfer methods, printing methods, and the like.
 以下、主な機能層について説明する。 The main functional layers are described below.
 〈1〉正孔輸送層
 正孔輸送層は、正極又は正極側へ正孔を受け取り輸送する機能を有する層である。
<1> Hole Transport Layer The hole transport layer is a layer having a function of receiving and transporting holes to the positive electrode or the positive electrode side.
 正孔輸送層は、単層であっても複数層の積層であってもよい。正孔輸送層の少なくとも一層は、光を吸収して電子と正孔を発生する電荷発生能を有していることが好ましい。正孔輸送層は、1種又は2種以上の正孔輸送材料を用いて形成することができる。 The hole transport layer may be a single layer or a laminate of a plurality of layers. It is preferable that at least one layer of the hole transport layer has a charge generating ability to absorb light and generate electrons and holes. The hole transport layer can be formed using one or more hole transport materials.
 前記正孔輸送材料としては、例えば、カルバゾール誘導体、ポリアリールアルカン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、フタロシアニン系化合物、ポリチオフェン誘導体、ポリピロール誘導体、ポリパラフェニレンビニレン誘導体、等が挙げられる。 Examples of the hole transport material include carbazole derivatives, polyarylalkane derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic compounds. Examples include tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, porphyrin compounds, phthalocyanine compounds, polythiophene derivatives, polypyrrole derivatives, polyparaphenylene vinylene derivatives, and the like.
 正孔輸送材料としては、Chem. Rev. 2007, 107, 953-1010にHole Transport materialとして記載されている化合物群が挙げられる。 As a hole transport material, Chem. Rev. 2007, 107, 953-1010, a group of compounds described as Hole Transport material.
 電荷発生能を有する正孔輸送層の材料としては、例えば、ポルフィリン系化合物、フタロシアニン系化合物、ポリチオフェン誘導体、ポリピロール誘導体、ポリパラフェニレンビニレン誘導体などが挙げられ、これらの例として、Chem. Rev. 1993, 93, 449-406に記載のものが挙げられる。 Examples of the material for the hole transport layer having charge generation ability include porphyrin compounds, phthalocyanine compounds, polythiophene derivatives, polypyrrole derivatives, polyparaphenylene vinylene derivatives, and the like. Rev. 1993, 93, 449-406.
 正孔輸送層の形成方法としては、溶剤塗布法、真空蒸着法などが挙げられる。溶剤塗布法としては、例えば、スピンコート、スプレーコート、バーコート、ダイコート等を挙げることができる。 Examples of the method for forming the hole transport layer include a solvent coating method and a vacuum deposition method. Examples of the solvent coating method include spin coating, spray coating, bar coating, and die coating.
 正孔輸送層の厚さとしては、1~500nmの範囲内であることが好ましく、2~200nmの範囲内であることがより好ましく、5~100nmの範囲内であることがさらに好ましい。正孔輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。 The thickness of the hole transport layer is preferably in the range of 1 to 500 nm, more preferably in the range of 2 to 200 nm, and still more preferably in the range of 5 to 100 nm. The hole transport layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
 〈2〉電子輸送層
 電子輸送層は、負極又は負極側へ電子を輸送する機能を有する層である。
<2> Electron Transport Layer The electron transport layer is a layer having a function of transporting electrons to the negative electrode or the negative electrode side.
 電子輸送層は、単層であっても複数層の積層であってもよい。電子輸送層の少なくとも一層は、光を吸収して電荷を発生する電荷発生能を有していることが好ましい。電子輸送層は、1種又は2種以上の電子輸送材料を用いて形成することができる。 The electron transport layer may be a single layer or a laminate of a plurality of layers. It is preferable that at least one of the electron transport layers has a charge generation capability of absorbing light and generating a charge. The electron transport layer can be formed using one kind or two or more kinds of electron transport materials.
 前記電子輸送材料は、例えば、フラーレン誘導体、パラフェニレンビニレン誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、フェナントロリン誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物及びこれらから誘導されるイミド類やヘテロ環類、8-キノリノール誘導体の金属錯体、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、有機シラン誘導体、等が挙げられる。 Examples of the electron transport material include fullerene derivatives, paraphenylene vinylene derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, phenanthroline derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiols. Pyrandoxide derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, aromatic tetracarboxylic anhydrides such as naphthalene and perylene, and imides and heterocycles derived from these, metals of 8-quinolinol derivatives Examples include complexes, various metal complexes represented by metal complexes having benzoxazole or benzothiazole as a ligand, and organic silane derivatives.
 電荷発生能を有する電子輸送層の材料としては、フラーレン類、ポリパラフェニレンビニレン誘導体、ペリレンテトラカルボン酸無水物から誘導されるイミド類やヘテロ環類、が挙げられる。それらの例としては、Chem. Rev. 2007, 107, 953-1010にElectron Transport Materialsとして記載されているものが挙げられる。 Examples of the material for the electron transport layer having charge generation ability include fullerenes, polyparaphenylene vinylene derivatives, imides derived from perylenetetracarboxylic anhydride, and heterocycles. Examples thereof include Chem. Rev. 2007, 107, 953-1010, and those described as Electron Transport Materials.
 電子輸送層の形成方法としては、溶剤塗布法、真空蒸着法などが挙げられる。 Examples of the method for forming the electron transport layer include a solvent coating method and a vacuum deposition method.
 電子輸送層の厚さとしては、1~500nmの範囲内であることが好ましく、2~200nmの範囲内であることがより好ましく、5~100nmの範囲内であることがさらに好ましい。電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。 The thickness of the electron transport layer is preferably in the range of 1 to 500 nm, more preferably in the range of 2 to 200 nm, and still more preferably in the range of 5 to 100 nm. The electron transport layer may have a single-layer structure composed of one or more of the materials described above, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
 〈3〉混合有機層
 正孔輸送層と電子輸送層の中間に、正孔輸送材料と電子輸送材料との両方を含む混合有機層を配することができ、この態様は有機薄膜太陽電池の変換効率をより向上させる点で好ましい。混合比は変換効率が高くなるように調整されるが、通常は質量比(正孔輸送材料:電子輸送材料)で20:80~80:20の範囲内から選ばれる。
<3> Mixed organic layer A mixed organic layer containing both a hole transport material and an electron transport material can be disposed between the hole transport layer and the electron transport layer. This is preferable in terms of improving efficiency. The mixing ratio is adjusted so as to increase the conversion efficiency, but is usually selected from the range of 20:80 to 80:20 in terms of mass ratio (hole transport material: electron transport material).
 正孔輸送材料及び電子輸送材料の詳細については、既述のとおりである。 Details of the hole transport material and the electron transport material are as described above.
 このような混合有機層の形成方法は、例えば、真空蒸着による共蒸着法を適用することができる。また、両方の有機材料が溶解する溶媒を用いて溶剤塗布することによって作製することも可能である。溶剤塗布法の具体例については、既に述べたとおりである。 As a method for forming such a mixed organic layer, for example, a co-evaporation method by vacuum deposition can be applied. Moreover, it can also be produced by applying a solvent using a solvent in which both organic materials are dissolved. Specific examples of the solvent coating method are as described above.
 〈4〉再結合層
 上記したようなタンデム型の素子の場合、複数の個々の光電変換ユニットを直列に接続するために、再結合層が設けられる。再結合層としては、導電材料の薄層を用いることができる。導電材料としては金属が好適であり、好ましい金属として、金、銀、アルミニウム、白金、酸化ルテニウム等が挙げられる。これらのうち、銀が好ましい。
<4> Recombination Layer In the case of the tandem element as described above, a recombination layer is provided to connect a plurality of individual photoelectric conversion units in series. As the recombination layer, a thin layer of a conductive material can be used. A metal is suitable as the conductive material, and examples of preferable metals include gold, silver, aluminum, platinum, and ruthenium oxide. Of these, silver is preferred.
 再結合層の膜厚は、通常は0.01~5nmの範囲内であり、0.1~1nmの範囲内が好ましく、0.2~0.6nmの範囲内が特に好ましい。再結合層の形成方法については、特に制限はなく、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等で形成することができる。 The film thickness of the recombination layer is usually in the range of 0.01 to 5 nm, preferably in the range of 0.1 to 1 nm, particularly preferably in the range of 0.2 to 0.6 nm. There is no restriction | limiting in particular about the formation method of a recombination layer, For example, it can form by a vacuum evaporation method, sputtering method, an ion plating method, etc.
 〈5〉その他
 本発明に係る有機光電変換ユニットには、ペロブスカイト化合物を含有する層を設けて、ペロブスカイト太陽電池にしてもよい。
<5> Others The organic photoelectric conversion unit according to the present invention may be provided with a layer containing a perovskite compound to form a perovskite solar cell.
 本発明において、「ペロブスカイト化合物」とは、ペロブスカイト構造を有する化合物をいう。ペロブスカイト化合物は、有機物及び無機物がペロブスカイト構造の構成要素となっているペロブスカイト化合物(有機無機ハイブリッド構造のペロブスカイト化合物)であることが好ましい。 In the present invention, “perovskite compound” refers to a compound having a perovskite structure. The perovskite compound is preferably a perovskite compound (perovskite compound having an organic-inorganic hybrid structure) in which an organic substance and an inorganic substance are constituent elements of the perovskite structure.
 本発明においては、ペロブスカイト化合物が、下記一般式(2)で表される構造を有することが、光電変換効率の観点から好ましい。 In the present invention, the perovskite compound preferably has a structure represented by the following general formula (2) from the viewpoint of photoelectric conversion efficiency.
 一般式(2):R-M-X
 上記一般式(2)において、Rは有機分子を表す。Mは金属原子を表す。Xはハロゲン原子又はカルコゲン原子を表す。
Formula (2): R-MX
In the general formula (2), R represents an organic molecule. M represents a metal atom. X represents a halogen atom or a chalcogen atom.
 上記一般式(2)において、Rは有機分子であり、C(l、m及びnはいずれも正の整数を表す。)で示される分子であることが好ましい。 In the general formula (2), R is an organic molecule, and is preferably a molecule represented by C 1 N m X n (wherein l, m and n all represent a positive integer).
 Rは、具体的には、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、エチルメチルアミン、メチルプロピルアミン、ブチルメチルアミン、メチルペンチルアミン、ヘキシルメチルアミン、エチルプロピルアミン、エチルブチルアミン、イミダゾール、アゾール、ピロール、アジリジン、アジリン、アゼチジン、アゼト、イミダゾリン、カルバゾール及びこれらのイオン(例えば、メチルアンモニウム(CHNH)等)やフェネチルアンモニウム等が挙げられる。なかでも、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン及びこれらのイオンやフェネチルアンモニウムが好ましく、メチルアミン、エチルアミン、プロピルアミン及びこれらのイオンがより好ましい。 R is specifically methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, trimethylamine, triethylamine, tripropylamine, Tributylamine, tripentylamine, trihexylamine, ethylmethylamine, methylpropylamine, butylmethylamine, methylpentylamine, hexylmethylamine, ethylpropylamine, ethylbutylamine, imidazole, azole, pyrrole, aziridine, azirine, azetidine, Azeto, imidazoline, carbazole and their ions (for example, methylammonium (CH 3 NH 3 ), etc.) and phenethylammonium Etc. Of these, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine and their ions and phenethylammonium are preferred, and methylamine, ethylamine, propylamine and these ions are more preferred.
 Mは金属原子であり、鉛、スズ、亜鉛、チタン、アンチモン、ビスマス、ニッケル、鉄、コバルト、銀、銅、ガリウム、ゲルマニウム、マグネシウム、カルシウム、インジウム、アルミニウム、マンガン、クロム、モリブデン、ユウロピウム等が挙げられる。これらの元素は単独で用いられてもよく、2種以上が併用されてもよい。 M is a metal atom, such as lead, tin, zinc, titanium, antimony, bismuth, nickel, iron, cobalt, silver, copper, gallium, germanium, magnesium, calcium, indium, aluminum, manganese, chromium, molybdenum, europium, etc. Can be mentioned. These elements may be used independently and 2 or more types may be used together.
 Xはハロゲン原子又はカルコゲン原子であり、例えば、塩素、臭素、ヨウ素、硫黄、セレン等が挙げられる。これらの元素は単独で用いられてもよく、2種以上が併用されてもよい。なかでも、構造中にハロゲン原子を含有することで、上記ペロブスカイト化合物が有機溶媒に可溶になり、安価な印刷法等への適用が可能になることから、ハロゲン原子が好ましい。更に、上記有機無機ペロブスカイト化合物のエネルギーバンドギャップが狭くなることから、ヨウ素がより好ましい。 X is a halogen atom or a chalcogen atom, and examples thereof include chlorine, bromine, iodine, sulfur, and selenium. These elements may be used independently and 2 or more types may be used together. Among these, the halogen atom is preferable because it contains a halogen atom in the structure so that the perovskite compound becomes soluble in an organic solvent and can be applied to an inexpensive printing method. Furthermore, iodine is more preferable because the energy band gap of the organic-inorganic perovskite compound becomes narrow.
 なお、本発明の太陽電池をペロブスカイト太陽電池とする場合は、本発明に係る有機光電変換ユニットが、ペロブスカイト化合物を含有する層と、前記一般式(1)で表される構造を有する金属種の異なる少なくとも2種類の有機金属酸化物を含有する電子輸送層とを有し、少なくとも、1種類の前記有機金属酸化物の金属原子Mが、Ti、Zr、Sn、Ta、Fe、Zn、Si及びAlから選ばれる金属原子であり、かつ、他の異種の有機金属酸化物の金属原子Mが、Ag、Cu及びAuから選ばれる金属原子である態様の太陽電池であることも、本発明の特有の効果発現の観点から、好ましい。特に、例えば、Tiを含む金属酸化物とAgを含む金属酸化物を使用することが、上述したような作用効果が発現され得る点で、好ましい。 When the solar cell of the present invention is a perovskite solar cell, the organic photoelectric conversion unit according to the present invention includes a layer containing a perovskite compound and a metal species having a structure represented by the general formula (1). An electron transport layer containing at least two different organometallic oxides, and at least one metal atom M of the organometallic oxide is Ti, Zr, Sn, Ta, Fe, Zn, Si, and It is also a peculiarity of the present invention that the solar cell is an embodiment in which the metal atom is selected from Al and the metal atom M of another different organometallic oxide is a metal atom selected from Ag, Cu and Au. From the viewpoint of manifesting the effect of this, it is preferable. In particular, for example, it is preferable to use a metal oxide containing Ti and a metal oxide containing Ag because the above-described effects can be exhibited.
 (4.3)第2電極
 本発明に係る第2電極としては、例えば、ITO、IZO、IWZO、ITZO、AZO、BZO、GZO、ZnO、SnOなど酸化物電極や、Au、Ag、Ti、Zn、Mo、Ta、AgNW、Na、NaK、Li、Mg、Al、MgAg、MgIn、AlLi、CuIなどの薄膜金属や金属化合物又は有機金属が挙げられる。2種類以上の組み合わせの積層であっても構わない。
(4.3) Second electrode As the second electrode according to the present invention, for example, an oxide electrode such as ITO, IZO, IWZO, ITZO, AZO, BZO, GZO, ZnO, SnO 2 , Au, Ag, Ti, Examples include thin film metals, metal compounds, and organic metals such as Zn, Mo, Ta, AgNW, Na, NaK, Li, Mg, Al, MgAg, MgIn, AlLi, and CuI. It may be a laminate of two or more combinations.
 また、第2電極の形成方法としては、CVD法、スパッタ、蒸着、及び塗布などによる形成方法が挙げられる。膜厚も光透過しない膜厚であればよく、限定されるものではない。 Also, examples of the method for forming the second electrode include formation methods by CVD, sputtering, vapor deposition, and coating. The film thickness is not limited as long as it does not transmit light.
 (4.4)封止層
 本発明の太陽電池は、封止層で覆うことにより、光電変換層を含む積層体を大気環境、特に水や酸素等のガスから保護して充分な耐久性を得ることができ、より光電変換効率が高く、より耐久性に優れた太陽電池とすることができる。
(4.4) Sealing layer The solar cell of the present invention is covered with the sealing layer to protect the laminate including the photoelectric conversion layer from the atmospheric environment, particularly from gases such as water and oxygen, and has sufficient durability. It is possible to obtain a solar cell with higher photoelectric conversion efficiency and higher durability.
 封止層の材料としては、特に限定されず、公知の材料を用いることができ、有機材料でも無機材料でもよい。 The material for the sealing layer is not particularly limited, and a known material can be used, which may be an organic material or an inorganic material.
 通常、封止層の性能としては、水蒸気透過度(環境条件:25±0.5℃、相対湿度(90±2)%RH)が約0.01g/[m・day]以下、酸素透過度が約0.01cm/[m・day・atm]以下、抵抗率が1×1012Ω・cm以上、ガスバリアー性を有する透明絶縁膜であることが好ましい。 Usually, the sealing layer has a water vapor transmission rate (environmental condition: 25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) of about 0.01 g / [m 2 · day] or less, oxygen transmission A transparent insulating film having a gas barrier property with a degree of about 0.01 cm 3 / [m 2 · day · atm] or less, a resistivity of 1 × 10 12 Ω · cm or more is preferable.
 特に、酸素透過度が0.001cm/[m・day・atm]以下の値であり、かつ、水蒸気透過度が約0.001g/[m・day]以下の値となるようなハイバリアー性の多層膜で構成されていることが好ましい。なお、「水蒸気透過度」とは、JIS(日本工業規格)-K7129(1992年)に準拠した赤外センサー法により測定された値であり、「酸素透過度」とは、JIS-K7126(1987年)に準拠したクーロメトリック法により測定された値である。 In particular, the oxygen permeability is high such that the value is 0.001 cm 3 / [m 2 · day · atm] or less and the water vapor permeability is about 0.001 g / [m 2 · day] or less. It is preferably composed of a barrier multilayer film. The “water vapor permeability” is a value measured by an infrared sensor method in accordance with JIS (Japanese Industrial Standard) -K7129 (1992), and the “oxygen permeability” is JIS-K7126 (1987). It is a value measured by the coulometric method based on the year).
 上述した封止層の形成材料としては、光電変換素子の劣化を招く、例えば、水や酸素等のガスの有機光電変換素子への浸入を抑制できる材料であれば、任意の材料を用いることができる。 As the material for forming the sealing layer described above, any material may be used as long as the material can cause deterioration of the photoelectric conversion element, for example, can suppress the penetration of a gas such as water or oxygen into the organic photoelectric conversion element. it can.
 例えば、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素、酸化アルミニウム、窒化アルミニウム、酸化チタン、酸化ジルコニウム、酸化ニオブ、酸化モリブデン等の無機材料からなる被膜で構成することができる。有機光電変換素子では、ガスバリアー性や透明性、分割時の割断性などを考慮して、封止層が窒化ケイ素や酸化ケイ素などのケイ素化合物を主原料とする無機材料被膜で構成されていることが好ましい。 For example, it can be composed of a coating made of an inorganic material such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, aluminum oxide, aluminum nitride, titanium oxide, zirconium oxide, niobium oxide, molybdenum oxide. In the organic photoelectric conversion element, the sealing layer is composed of an inorganic material film mainly composed of a silicon compound such as silicon nitride or silicon oxide in consideration of gas barrier properties, transparency, cleaving property during division, and the like. It is preferable.
 なお、封止層の脆弱性を改良するためには、上記無機材料被膜だけでなく、有機材料との複合材料からなる被膜、又はこれらの被膜を積層したハイブリッド被膜を併せて構成してもよい。この場合、無機材料からなる被膜及び有機材料からなる被膜の積層順序は任意であるが、有機材料/無機材料でも、両者を交互に複数積層してもよい。これにより、有機光電変換素子を水分や酸素によるダメージを回避するための、良好なバリアー機能有する封止層を得ることが可能となる。 In order to improve the brittleness of the sealing layer, not only the inorganic material film but also a film made of a composite material with an organic material or a hybrid film in which these films are laminated may be configured. . In this case, the order of laminating the film made of the inorganic material and the film made of the organic material is arbitrary, but a plurality of the organic material / inorganic material may be alternately laminated. Thereby, it becomes possible to obtain a sealing layer having a favorable barrier function for avoiding damage to the organic photoelectric conversion element due to moisture and oxygen.
 また、上記封止層を第1の封止層として、当該封止層の上層に更なる水分ブロックを施す第2に封止層を設けてもよい。例えば金属ホイルなどの光学特性を考慮しなくてかまわない第2の封止層を形成することが好ましい。また、金属層はアルミニウム箔、ジュラルミン箔、チタン箔、銅箔、リン青銅箔、SUS304箔、インバー箔、マグネシウム合金箔、またそれら混合箔などが挙げられる。通常これら金属ホイル箔は薄いと、ピンホールや欠陥が、厚くすることでそれら封止欠陥を防止することを可能とする。好ましくは、5~50μm程度の厚さに形成することで、金属箔のピンホールや欠陥を除去した箔を用意する事が可能となる。 Alternatively, the sealing layer may be used as a first sealing layer, and a second sealing layer may be provided in which a further moisture block is provided on the upper layer of the sealing layer. For example, it is preferable to form a second sealing layer that does not require consideration of optical characteristics such as a metal foil. Examples of the metal layer include aluminum foil, duralumin foil, titanium foil, copper foil, phosphor bronze foil, SUS304 foil, invar foil, magnesium alloy foil, and mixed foils thereof. Usually, when these metal foil foils are thin, pinholes and defects can be made thick so that these sealing defects can be prevented. Preferably, by forming a thickness of about 5 to 50 μm, it is possible to prepare a foil from which pinholes and defects of the metal foil have been removed.
 また、同第2の封止層では、第1の封止層の対向方向に、電気絶縁性確保する、又は外傷防止のための絶縁層を更に形成することが好ましい。 In the second sealing layer, it is preferable to further form an insulating layer for securing electrical insulation or preventing external damage in the opposing direction of the first sealing layer.
 具体的には、フレキシブル性のある樹脂が好適であり、例えば、ポリエチレンやポリプロピレン、環状オレフィン共重合体(COP)等のポリオレフィン、ポリアミド、ポリイミド、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、セロファン、セルロースジアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、トリアセチルセルロース(TAC)、セルロースナイトレート等のセルロースエステル類、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール共重合体(EVOH)、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、フッ素樹脂、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリアリレート類等の材料とそれらの誘導体を用いることができる。さらに、例えば、アートン(登録商標:JSR社製)、又は、アペル(登録商標:三井化学社製)と呼ばれるシクロオレフィン系樹脂を用いることもできる。 Specifically, a flexible resin is suitable, for example, polyolefin such as polyethylene, polypropylene, and cyclic olefin copolymer (COP), polyamide, polyimide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and the like. Polyester, cellophane, cellulose diacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), triacetyl cellulose (TAC), cellulose nitrates such as cellulose nitrate, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol Polymer (EVOH), syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide, Use materials such as polyethersulfone (PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, fluororesin, acrylic resin such as polymethylmethacrylate (PMMA), polyarylates and their derivatives. it can. Furthermore, for example, a cycloolefin resin called Arton (registered trademark: manufactured by JSR) or Apel (registered trademark: manufactured by Mitsui Chemicals) may be used.
 また、第2の封止層と第1の封止層は接着剤を介して接続されることが好ましく、熱硬化や紫外線(UV)硬化などあるが、金属箔を適用する場合は、熱硬化型が好ましく、更には同接着剤バルクからの水分侵入があるため、好ましくは、同接着剤は水分拡散を遅延するような、材料又はフィラーなどを含む材料であることが好ましい。 In addition, the second sealing layer and the first sealing layer are preferably connected via an adhesive, such as thermosetting or ultraviolet (UV) curing, but when metal foil is applied, thermosetting Since the mold is preferable and there is moisture intrusion from the same adhesive bulk, it is preferable that the adhesive is a material including a material or a filler that delays moisture diffusion.
 例えば、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Examples thereof include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylate. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 有機封止層の場合、その厚さは100~100000nmの範囲内であることが好ましい。厚さが100nm以上であれば、有機封止層によって太陽電池を構成する積層体を充分に覆いつくすことができる。厚さが100000nm以下であれば、有機封止層は側面から浸入してくる水蒸気を充分にブロックすることができる。より好ましくは、500~50000nmの範囲内であり、更に好ましいくは、1000~20000nmの範囲内である。 In the case of an organic sealing layer, the thickness is preferably in the range of 100 to 100,000 nm. When the thickness is 100 nm or more, the laminate constituting the solar cell can be sufficiently covered with the organic sealing layer. When the thickness is 100,000 nm or less, the organic sealing layer can sufficiently block water vapor entering from the side surface. More preferably, it is in the range of 500 to 50000 nm, and still more preferably in the range of 1000 to 20000 nm.
 無機封止層の場合、その厚さは、30~3000nmの範囲内である。厚さが30nm以上であれば、無機封止層が充分な水蒸気バリアー性を有することができ、太陽電池の耐久性が向上する。厚さが3000nm以下であれば、無機封止層の厚さが増した場合であっても、発生する応力が小さいため、無機封止層、電極、半導体層等の剥離を抑制することができる。より好ましくは、50~1000nmの範囲内であり、更に好ましくは、100~500nmの範囲内である。 In the case of the inorganic sealing layer, the thickness is in the range of 30 to 3000 nm. When the thickness is 30 nm or more, the inorganic sealing layer can have a sufficient water vapor barrier property, and the durability of the solar cell is improved. If the thickness is 3000 nm or less, even if the thickness of the inorganic sealing layer is increased, the generated stress is small, so that peeling of the inorganic sealing layer, the electrode, the semiconductor layer, and the like can be suppressed. . More preferably, it is in the range of 50 to 1000 nm, and still more preferably in the range of 100 to 500 nm.
 (4.5)第2基板
 第2基板としては、前記第1基板と同様の基板材料を適用することができる。
(4.5) Second Substrate As the second substrate, the same substrate material as that of the first substrate can be applied.
 また、前記封止層の上層に更なる水分ブロックを施す第2基板を設けてもよい。例えば金属ホイルなどの光学特性を考慮しなくてかまわない第2基板を形成することが好ましい。また、金属層はアルミニウム箔、ジュラルミン箔、チタン箔、銅箔、リン青銅箔、SUS304箔、インバー箔、マグネシウム合金箔、またそれら混合箔などを含む第2基板が挙げられる。通常、これら金属ホイル箔は薄いと、ピンホールや欠陥が存在する場合があり、厚くすることでそれら封止欠陥を防止することを可能とする。好ましくは、5~50μmの範囲内の厚さに形成することで、金属箔のピンホールや欠陥を除去した箔を得ることができる。 Further, a second substrate for applying a further moisture block may be provided on the upper layer of the sealing layer. For example, it is preferable to form a second substrate that does not require consideration of optical characteristics such as a metal foil. The metal layer may be a second substrate including aluminum foil, duralumin foil, titanium foil, copper foil, phosphor bronze foil, SUS304 foil, invar foil, magnesium alloy foil, mixed foil thereof, and the like. Usually, when these metal foil foils are thin, pinholes and defects may exist, and by making them thick, it becomes possible to prevent these sealing defects. Preferably, a foil from which pinholes and defects of the metal foil have been removed can be obtained by forming the thickness within the range of 5 to 50 μm.
 また、同第2基板は第1の封止層の対向方向に、電気絶縁性を確保し、外傷防止を目的とした絶縁層を更に形成することが好ましい。 In addition, it is preferable that the second substrate is further formed with an insulating layer in the direction opposite to the first sealing layer to ensure electrical insulation and prevent damage.
 具体的には、第2基板を構成する材料としては、可撓性のある樹脂が好適であり、例えば、ポリエチレンやポリプロピレン、環状オレフィン共重合体(COP)等のポリオレフィン、ポリアミド、ポリイミド、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、セロファン、セルロースジアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、トリアセチルセルロース(TAC)、セルロースナイトレート等のセルロースエステル類、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール共重合体(EVOH)、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、フッ素樹脂、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリアリレート類等の材料とそれらの誘導体を用いることができる。さらに、例えば、アートン(登録商標:JSR社製)、又は、アペル(登録商標:三井化学社製)と呼ばれるシクロオレフィン系樹脂を用いることもできる。 Specifically, a flexible resin is suitable as a material constituting the second substrate. For example, polyolefin such as polyethylene, polypropylene, cyclic olefin copolymer (COP), polyamide, polyimide, polyethylene terephthalate. (PET), polyesters such as polyethylene naphthalate (PEN), cellophane, cellulose diacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), triacetyl cellulose (TAC), cellulose esters such as cellulose nitrate, Polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol copolymer (EVOH), syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether Materials such as ketones, polyimides, polyethersulfone (PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, fluororesin, polymethylmethacrylate (PMMA), polyarylates and their derivatives Can be used. Furthermore, for example, a cycloolefin resin called Arton (registered trademark: manufactured by JSR) or Apel (registered trademark: manufactured by Mitsui Chemicals) may be used.
 また、第2基板と第1の封止層は接着剤を介して接続されることが好ましく、熱硬化や紫外線(UV)硬化などあるが、金属箔を適用する場合は、熱硬化型が好ましく、更には同接着剤バルクからの水分侵入があるため、好ましくは、同接着剤は水分拡散を遅延するような、材料又はフィラーなどを含む材料であることが好ましい。 In addition, the second substrate and the first sealing layer are preferably connected via an adhesive, such as thermosetting or ultraviolet (UV) curing. However, when a metal foil is applied, a thermosetting type is preferable. Furthermore, since there is moisture intrusion from the bulk of the adhesive, it is preferable that the adhesive is a material including a material or a filler that delays moisture diffusion.
 例えば、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Examples thereof include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylate. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 《太陽電池の作製》
 〔比較例1〕
 (従来タイプの太陽電池No.1の作製)
 下記工程(1)~(7)に従って、太陽電池No.1を作製した。
<< Production of solar cells >>
[Comparative Example 1]
(Preparation of conventional solar cell No. 1)
In accordance with the following steps (1) to (7), the solar cell no. 1 was produced.
 (1)ガスバリアー性のフレキシブル基板の作製
 透明基板として、5cm×5cmのサイズで、厚さ125μmのポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム株式会社製、極高透明品PET Type K)を準備した。
(1) Production of gas-barrier flexible substrate As a transparent substrate, a polyethylene terephthalate (PET) film having a size of 5 cm × 5 cm and a thickness of 125 μm (manufactured by Teijin DuPont Films Co., Ltd., ultra-high transparency PET Type K) is prepared. did.
 下記ポリシラザン含有液を、ワイヤーバーにて、乾燥後の平均膜厚が300nmとなるように透明基板上に塗布し、温度85℃、湿度55%RHの雰囲気下で1分間加熱処理して乾燥させた。次いで、温度25℃、湿度10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行って、透明基板上にポリシラザン含有層を形成した。 The following polysilazane-containing liquid is applied on a transparent substrate with a wire bar so that the average film thickness after drying is 300 nm, and is dried by heat treatment for 1 minute in an atmosphere of temperature 85 ° C. and humidity 55% RH. It was. Subsequently, it was kept in an atmosphere of a temperature of 25 ° C. and a humidity of 10% RH (dew point temperature −8 ° C.) for 10 minutes to perform a dehumidification treatment to form a polysilazane-containing layer on the transparent substrate.
 次に、ポリシラザン含有層を形成した透明基板を、エキシマ照射装置MECL-M-1-200(株式会社エム・ディ・コム製)の稼動ステージ上に固定し、下記の改質処理条件1で改質処理を行い、300nmからなるポリシラザン改質層を形成し、第1ガスバリアー性基板(以下、フレキシブル基板ともいう。)を得た。 Next, the transparent substrate on which the polysilazane-containing layer is formed is fixed on the operation stage of the excimer irradiation apparatus MECL-M-1-200 (manufactured by M.D. Com) and modified under the following modification treatment condition 1. A polysilazane modified layer having a thickness of 300 nm was formed to obtain a first gas barrier substrate (hereinafter also referred to as a flexible substrate).
 〈ポリシラザン含有液〉
 ポリシラザン含有液としては、パーヒドロポリシラザン(アクアミカ NN120-10、無触媒タイプ、メルクジャパン(株)製)の10質量%ジブチルエーテル溶液を調製した。
<Polysilazane-containing liquid>
As the polysilazane-containing liquid, a 10% by mass dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, non-catalytic type, manufactured by Merck Japan Co., Ltd.) was prepared.
 〈改質処理条件1〉
 照射波長:172nm
 ランプ封入ガス:Xe
 エキシマランプ光強度:130mW/cm(172nm)
 試料と光源の距離:1mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:0.5体積%
 エキシマランプ照射時間:5秒
 次に、5cm×5cmのPETからなるフレキシブル基板をウェット洗浄法によってクリーニングした。詳細には、アルカリ洗剤を5%に希釈し、希釈された洗剤溶液を60℃に加熱し、加熱された洗剤溶液にフレキシブル基板を浸漬させ、フレキシブル基板に対してスクラブ洗浄を実施し、フレキシブル基板に付着した異物を除去した。続いて、フレキシブル基板に対してウルトラソニック洗浄、純粋リンス、窒素ブロー及びIR(InfraRed)乾燥を順次実施した。続いて、ガラス基板に対して、UV(UltraViolet)照射を実施し、フレキシブル基板に付着した有機物を除去した。続いて、オーブンを用いてフレキシブル基板を乾燥させた。前記したクリーニング処理及び乾燥処理によって、フレキシブル基板を準備した。
<Reforming treatment condition 1>
Irradiation wavelength: 172 nm
Lamp filled gas: Xe
Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 1mm
Stage heating temperature: 70 ° C
Oxygen concentration in the irradiation device: 0.5% by volume
Excimer lamp irradiation time: 5 seconds Next, a flexible substrate made of PET of 5 cm × 5 cm was cleaned by a wet cleaning method. Specifically, the alkaline detergent is diluted to 5%, the diluted detergent solution is heated to 60 ° C., the flexible substrate is immersed in the heated detergent solution, and scrub cleaning is performed on the flexible substrate. Foreign matter adhering to was removed. Subsequently, ultrasonic cleaning, pure rinsing, nitrogen blowing, and IR (InfraRed) drying were sequentially performed on the flexible substrate. Subsequently, UV (UltraViolet) irradiation was performed on the glass substrate to remove organic substances attached to the flexible substrate. Subsequently, the flexible substrate was dried using an oven. A flexible substrate was prepared by the cleaning process and the drying process described above.
 (2)第1電極の作製
 次に、第1電極であるITO電極を真空スパッタ法にて上記フレキシブル基板上に形成した。具体的にはSnO10%のITOターゲットを用い、上記フレキシブル基板を真空チャンバーに搬送、1×10-4Paへ真空引きし、120℃に加熱しながら、Arガスを0.5Paになるよう導入し、電圧印加して物理膜厚が300nmになるようスパッタリングを行った。
(2) Production of first electrode Next, an ITO electrode as a first electrode was formed on the flexible substrate by vacuum sputtering. Specifically, using a SnO 2 10% ITO target, the flexible substrate is conveyed to a vacuum chamber, evacuated to 1 × 10 −4 Pa, heated to 120 ° C., and Ar gas is reduced to 0.5 Pa. Then, sputtering was performed by applying a voltage so that the physical film thickness was 300 nm.
 次に、第1電極を所望の形状にフォトリソ法でパターニングを行った。先ずは日立化成製の感光性ポリイミドを1μmになるようスピン塗布し、プリベイクとして60℃で2分間の仮乾燥を行ったのち、所望の形状になるよう露光機で同フレキシブル基板に露光を施した。 Next, the first electrode was patterned into a desired shape by photolithography. First, Hitachi Chemical's photosensitive polyimide was spin-coated to 1 μm, pre-baked at 60 ° C. for 2 minutes, and then exposed to the flexible substrate with an exposure machine so as to have a desired shape. .
 次に、2.4%に希釈したテトラメチル・アンモニウム・ヒドロキシド(TMAH)で現像を行い、純水リンスを行った後、240℃で本焼成を45分間行った。 Next, development was carried out with tetramethylammonium hydroxide (TMAH) diluted to 2.4%, followed by rinsing with pure water, followed by firing at 240 ° C. for 45 minutes.
 その後、塩化鉄でITOをエッチングし、純水リンスを行った後、レジスト剥離を行い、更に純水リンスを行うことで、パターニングITOを得た。 Thereafter, ITO was etched with iron chloride, rinsed with pure water, then the resist was peeled off, and further rinsed with pure water to obtain patterned ITO.
 (3)正孔輸送層の形成
 次に、正孔輸送層としてPDOT:PSSをインクジェット法で塗布を行った。前記ITO電極上に50nmになるようインクジェット塗布を行い、150℃で20分ベークすることで正孔輸送層を形成した。
(3) Formation of hole transport layer Next, PDOT: PSS was applied by an inkjet method as a hole transport layer. Inkjet coating was performed on the ITO electrode so as to have a thickness of 50 nm, followed by baking at 150 ° C. for 20 minutes to form a hole transport layer.
 (4)電子輸送層の形成
 次に、電子輸送層として、ポリ(3-ヘキシルチオフェン)(P3HT)、とフェニルC61酪酸メチルエステル(PCBM)をクロロベンゼンにて溶解させ、P3HT、PCBMがそれぞれ約1.25質量%、約1.0質量%になるよう調液し、同溶液をグローブボックス内でインクジェットカートリッジに導入することで、光電変換層材料を作製した。そして、同調液材料を同じくインクジェット法で200nmになるよう塗布形成し、同様に150℃で20分ベークすることで電子輸送層を形成した。
(4) Formation of Electron Transport Layer Next, as the electron transport layer, poly (3-hexylthiophene) (P3HT) and phenyl C61 butyric acid methyl ester (PCBM) are dissolved in chlorobenzene, and P3HT and PCBM are each about 1 The liquid was prepared so as to be .25% by mass and about 1.0% by mass, and the solution was introduced into the ink jet cartridge in the glove box to produce a photoelectric conversion layer material. Then, the tuning liquid material was applied and formed to 200 nm by the same inkjet method, and similarly, the electron transport layer was formed by baking at 150 ° C. for 20 minutes.
 (5)第2電極の形成
 次に、上記電子注入層上に第2電極として銀(Ag)を300nm蒸着することで第2電極を形成した。
(5) Formation of 2nd electrode Next, 300 nm of silver (Ag) was vapor-deposited as a 2nd electrode on the said electron injection layer, and the 2nd electrode was formed.
 (6)封止層の形成
 次に、封止層を0.1~50Paの成膜圧力でシランガスとアンモニアガスを供給して500nmの窒化ケイ素膜をプラズマCVD法にて形成した。具体的には、電子輸送層までは形成した基板を1×10-4Pa以下に減圧した真空チャンバーに入れ、基板温度を約70℃に調整し、上記反応ガスをSiHガスとNHガスとHガスを2:1:4の割合で導入し、50Paと減圧した中で、13.56MHzの高周波電源を有するプラズマCVD装置を用いて成膜した。成膜時に基板温度が上昇するが、70℃になるよう基板冷却をコントロールしながら成膜した。これにより500nmのSiN層を形成した。
(6) Formation of Sealing Layer Next, the sealing layer was supplied with silane gas and ammonia gas at a film forming pressure of 0.1 to 50 Pa to form a 500 nm silicon nitride film by plasma CVD. Specifically, the substrate formed up to the electron transport layer is placed in a vacuum chamber whose pressure is reduced to 1 × 10 −4 Pa or less, the substrate temperature is adjusted to about 70 ° C., and the reaction gas is SiH 4 gas and NH 3 gas. And H 2 gas were introduced at a ratio of 2: 1: 4, and the pressure was reduced to 50 Pa, and a film was formed using a plasma CVD apparatus having a high frequency power source of 13.56 MHz. Although the substrate temperature rose during the film formation, the film was formed while controlling the substrate cooling to 70 ° C. This formed a 500 nm SiN layer.
 (7)第2基板の貼合
 第2基板として、25μmのアルミニウム箔に50μmのPETを貼合したALPETを用い、当該ALPETをフィラーとして5~10μmφのタルクを5質量%混入したエポキシ系熱硬化接着剤(巴川製紙所社製エレファンCS)を介して、上記封止層に貼合した。
(7) Bonding the second substrate As the second substrate, an epoxy-based thermosetting using ALPET in which 50 μm PET is bonded to 25 μm aluminum foil and 5% by mass of 5 to 10 μmφ talc mixed with the ALPET as a filler. It bonded to the said sealing layer through the adhesive agent (Elephan CS by the Yodogawa paper company company).
 〔比較例2〕
 (従来のペロブスカイト型(I)の太陽電池No.2の作製)
 上記比較例1の従来タイプの太陽電池No.1の作製方法において、電子輸送層、下記処方に基づくペロブスカイト層及び正孔輸送層をこの順に形成した以外は太陽電池No.1の作製方法と同じ方法で太陽電池No.2を作製した。
[Comparative Example 2]
(Preparation of Conventional Perovskite Type (I) Solar Cell No. 2)
Conventional type solar cell No. 1 of Comparative Example 1 above. 1 except that an electron transport layer, a perovskite layer and a hole transport layer based on the following formulation were formed in this order. No. 1 solar cell no. 2 was produced.
 〈ペロブスカイト層の形成方法〉
 グローブボックス内にて、ヨウ化鉛(PbI、ペロブスカイト前駆体用、東京化成工業株式会社製)0.114g、メチルアミンヨウ化水素酸塩(CHNHI、東京化成工業株式会社製)0.035g、脱水N,N-ジメチルホルムアミド(脱水DMF、和光純薬工業株式会社製)1mLを混合、室温撹拌し、0.3Mヨウ素系ペロブスカイト(CHNHPbI)原料のDMF溶液(無色透明)を調製した。
<Method for forming perovskite layer>
In the glove box, lead iodide (PbI 2 , perovskite precursor, manufactured by Tokyo Chemical Industry Co., Ltd.) 0.114 g, methylamine hydroiodide salt (CH 3 NH 3 I, manufactured by Tokyo Chemical Industry Co., Ltd.) 0.035 g and 1 mL of dehydrated N, N-dimethylformamide (dehydrated DMF, manufactured by Wako Pure Chemical Industries, Ltd.) are mixed, stirred at room temperature, and 0.3 M iodine-based perovskite (CH 3 NH 3 PbI 3 ) raw material in DMF ( Colorless and transparent) was prepared.
 ヨウ素系ペロブスカイト原料のDMF溶液0.5mLを電子輸送層上にスピンコーター(ミカサ株式会社製MS-100)を用いて前記分散液をスピンコートした(5000rpm×30sec)。スピンコート後すぐに100℃ホットプレート上で10分間乾燥した。DMFを浸み込ませた綿棒でFTOとのコンタクト部分を拭き取った後、70℃で60分間乾燥させ、光電変換層を形成した。ペロブスカイト化合物が生成していることはX線回折パターン、吸収スペクトル及び電子顕微鏡観察により確認した。 The dispersion was spin-coated with a spin coater (MS-100 manufactured by Mikasa Corporation) on a 0.5 mL DMF solution of iodine-based perovskite raw material on the electron transport layer (5000 rpm × 30 sec). Immediately after spin coating, the film was dried on a hot plate at 100 ° C. for 10 minutes. The contact part with FTO was wiped off with a cotton swab dipped in DMF, and then dried at 70 ° C. for 60 minutes to form a photoelectric conversion layer. The formation of the perovskite compound was confirmed by X-ray diffraction pattern, absorption spectrum and electron microscope observation.
 〔比較例3〕
 (従来のペロブスカイト型(II)の太陽電池No.3の作製)
 下記に示す(1)~(7)の工程を順に行い、従来タイプのペロブスカイト太陽電池を作製した。
[Comparative Example 3]
(Preparation of conventional perovskite type (II) solar cell No. 3)
The following steps (1) to (7) were sequentially performed to produce a conventional type perovskite solar cell.
 (1)第1電極(FTO電極)の作製
 ガラス基板(第1基板)上に設けられたフッ素ドープ酸化スズ(FTO)層からなる電極(旭硝子ファブリテック株式会社製、縦25mm×横25mm×厚さ1.8mm、以下、「FTO電極」という。)の一部をZn粉末と2mol/L塩酸水溶液でエッチングした。1質量%の中性洗剤、アセトン、2-プロパノール(IPA)、イオン交換水を用い、この順で各10分間超音波洗浄を行った。さらに、電子輸送層形成の直前に、FTO電極面を上にして、FTO電極をオゾン発生装置(メイワフォーシス株式会社製オゾンクリーナー、PC-450UV)に入れ、30分間紫外線照射した。
(1) Production of first electrode (FTO electrode) Electrode composed of a fluorine-doped tin oxide (FTO) layer provided on a glass substrate (first substrate) (Asahi Glass Fabrictech Co., Ltd., length 25 mm × width 25 mm × thickness) A portion of 1.8 mm, hereinafter referred to as “FTO electrode”) was etched with Zn powder and a 2 mol / L hydrochloric acid aqueous solution. Using a 1% by weight neutral detergent, acetone, 2-propanol (IPA), and ion-exchanged water, ultrasonic cleaning was performed in this order for 10 minutes each. Further, immediately before the formation of the electron transport layer, the FTO electrode surface was turned up and the FTO electrode was placed in an ozone generator (ozone cleaner manufactured by Meiwa Forsys, Inc., PC-450 UV) and irradiated with ultraviolet rays for 30 minutes.
 (2)電子輸送層の形成
 有機バインダーとしてのポリイソブチルメタクリレートと酸化チタン(平均粒子径10nmと30nmとの混合物)とを含有する酸化チタンペーストをスピンコート法により塗布した後、150℃で10分間乾燥させた。その後、高圧水銀ランプ(セン特殊光源社製、HLR100T-2)を用いて、紫外線を照射強度500mW/cmで15分間照射し、酸化チタンからなる厚さ200nmの多孔質状の電子輸送層を形成した。
(2) Formation of an electron transport layer After applying a titanium oxide paste containing polyisobutyl methacrylate as an organic binder and titanium oxide (a mixture of an average particle size of 10 nm and 30 nm) by a spin coating method, it is performed at 150 ° C. for 10 minutes. Dried. Then, using a high-pressure mercury lamp (HLR100T-2, manufactured by Sen Special Light Company), ultraviolet rays were irradiated for 15 minutes at an irradiation intensity of 500 mW / cm 2 to form a porous electron transport layer made of titanium oxide having a thickness of 200 nm. Formed.
 (3)光電変換層の形成
 ヨウ化鉛をN,N-ジメチルホルムアミド(DMF)に溶解させて1Mの溶液を調製し、上記多孔質状の電子輸送層上にスピンコート法によって製膜した。更に、アミン化合物としてヨウ化メチルアンモニウムを2-プロパノールに溶解させて1質量%の溶液を調製した。この溶液内に上記のヨウ化鉛を製膜したサンプルを浸漬させることによって有機無機ペロブスカイト化合物であるCHNHPbIを含む層を形成した。その後、得られたサンプルに対して120℃にて30分間アニール処理を行い、光電変換層を形成した。
(3) Formation of photoelectric conversion layer A 1 M solution was prepared by dissolving lead iodide in N, N-dimethylformamide (DMF), and a film was formed on the porous electron transport layer by spin coating. Further, methylammonium iodide as an amine compound was dissolved in 2-propanol to prepare a 1% by mass solution. A layer containing CH 3 NH 3 PbI 3 , which is an organic / inorganic perovskite compound, was formed by immersing the sample formed of lead iodide in the solution. Thereafter, the obtained sample was annealed at 120 ° C. for 30 minutes to form a photoelectric conversion layer.
 (4)正孔輸送層の形成
 上記光電変換層上に、Poly(4-butylphenyl-diphenyl-amine)(1-Material社製)の1質量%クロロベンゼン溶液を、スピンコート法によって50nmの厚さに積層して正孔輸送層を形成した。
(4) Formation of hole transport layer On the photoelectric conversion layer, a 1% by mass chlorobenzene solution of Poly (4-butylphenyl-diphenyl-amine) (manufactured by 1-Material) was formed to a thickness of 50 nm by spin coating. The hole transport layer was formed by laminating.
 (5)第2電極(アルミニウム電極)の形成
 真空蒸着装置(アルバック機工株式会社製VTR-060M/ERH)を用い、真空下(4~5×10-3Pa)、上記の正孔輸送層上に金を300nm蒸着して、第2電極を形成した。
(5) Formation of second electrode (aluminum electrode) Using a vacuum deposition apparatus (VTR-060M / ERH manufactured by ULVAC-KIKO Co., Ltd.) under vacuum (4-5 × 10 −3 Pa) on the above hole transport layer Gold was vapor-deposited to 300 nm to form a second electrode.
 (6)封止層の形成
 封止層を0.1~50Paの製膜圧力でシランガスとアンモニアガスを供給して500nmの窒化ケイ素膜をプラズマCVD法にて形成した。具体的には、第2電極まで形成した基板を10-4Pa以下に減圧した真空チャンバーに入れ、基板温度を約70℃に調整し、上記反応ガスをSiHガスとNHガス、及びHガスを2:1:4の割合で導入し、50Paと減圧した中で、13.56MHzの高周波電源有するプラズマCVD法にて成膜した。成膜時に基板温度が上昇するが、70℃になるよう基板冷却をコントロールしながら成膜した。これにより500nmのSiN層を形成した。
(6) Formation of Sealing Layer A 500 nm silicon nitride film was formed by plasma CVD by supplying silane gas and ammonia gas at a film forming pressure of 0.1 to 50 Pa. Specifically, the substrate formed up to the second electrode is placed in a vacuum chamber whose pressure is reduced to 10 −4 Pa or less, the substrate temperature is adjusted to about 70 ° C., and the reaction gas is changed to SiH 4 gas, NH 3 gas, and H Two gases were introduced at a ratio of 2: 1: 4 and the pressure was reduced to 50 Pa, and a film was formed by a plasma CVD method having a high frequency power source of 13.56 MHz. Although the substrate temperature rose during the film formation, the film was formed while controlling the substrate cooling to 70 ° C. This formed a 500 nm SiN layer.
 (7)第2基板の貼合
 第2基板として25μmのアルミニウム箔に50μmのPETを貼合したAlPETを用い、当該ALPETをフィラーとして5~10μmφのタルクを5質量%混入したエポキシ系熱硬化接着剤(巴川製紙所社製エレファンCS)を介して、上記封止層に貼合した。
(7) Adhesion of second substrate Epoxy-based thermosetting adhesion using AlPET in which 50 μm PET is bonded to 25 μm aluminum foil as the second substrate, and 5% by mass of 5 to 10 μmφ talc mixed with the ALPET as filler. It bonded to the said sealing layer through the agent (Yodogawa Paper Mill Co., Ltd. Elephant CS).
 〔実施例1〕
 (本発明の太陽電池No.4の作製)
 上記比較例1と同じガスバリアー性フレキシブル基板(PETフィルム)上に、本発明に係る有機金属酸化物を含有する水蒸気バリアー層を次のようにして形成した。
[Example 1]
(Production of solar cell No. 4 of the present invention)
On the same gas barrier flexible substrate (PET film) as in Comparative Example 1, a water vapor barrier layer containing the organometallic oxide according to the present invention was formed as follows.
 水分濃度1ppm以下の乾燥窒素雰囲気下のグローブボックス内で、チタンテトライソプロポキシド(Ti(OiPr))の3質量%脱水テトラフルオロプロパノール(例示化合物F-1)溶液を調液し、湿度30%の大気に1分間開放し、すぐにグローブボックス内に戻した溶液をゾル・ゲル液とした。 In a glove box under a dry nitrogen atmosphere with a moisture concentration of 1 ppm or less, a 3% by mass dehydrated tetrafluoropropanol (exemplary compound F-1) solution of titanium tetraisopropoxide (Ti (OiPr) 4 ) was prepared, and the humidity was 30 A solution that was opened to 1% atmosphere for 1 minute and immediately returned to the glove box was used as a sol-gel solution.
 当該ゾル・ゲル液のF/(C+F)を下記の方法で測定した。 F / (C + F) of the sol-gel solution was measured by the following method.
 まず、ゾル・ゲル液を、シリコンウェハ上に有機金属酸化物薄膜を作製した。次いで、110℃で30分間加熱し、その後紫外線を10分照射させて、薄膜を形成した。 First, an organometallic oxide thin film was prepared on a silicon wafer using a sol-gel solution. Next, the film was heated at 110 ° C. for 30 minutes, and then irradiated with ultraviolet rays for 10 minutes to form a thin film.
 作製した薄膜を、SEM・EDS(Energy Dispersive X-ray Spectoroscopy:エネルギー分散型X線分析装置)による元素分析により下記式(a)の値を求めた。SEM・EDS装置はJSM-IT100(日本電子社製)を用いた。 The value of the following formula (a) was calculated | required for the produced thin film by the elemental analysis by SEM * EDS (Energy Dispersive X-ray Spectroscopy: energy dispersive X-ray analyzer). JSM-IT100 (manufactured by JEOL Ltd.) was used as the SEM / EDS apparatus.
 SEM・EDS(エネルギー分散型X線分光器)による元素分析し、下記式(a)で算出される値を求めた。 Elemental analysis by SEM / EDS (energy dispersive X-ray spectrometer) was performed, and a value calculated by the following formula (a) was obtained.
 式(a): F/(C+F)
 上記式(a)において、F及びCは、それぞれフッ素原子及び炭素原子の濃度を表す。
Formula (a): F / (C + F)
In the above formula (a), F and C represent the concentration of fluorine atom and carbon atom, respectively.
 上記方法で測定したゾル・ゲル液のF/(C+F)は、0.20であった。 F / (C + F) of the sol-gel solution measured by the above method was 0.20.
 次いで、前記ゾル・ゲル液を厚さ100μmのポリエチレンナフタレートフィルム(PEN:帝人フィルムソリューション株式会社製)に乾燥層厚100nmになるように、インクジェット・プリント法で塗布し、110℃で30分間加熱し、その後、紫外線を10分照射させ有機金属酸化物層を作製した。 Next, the sol-gel solution is applied to a polyethylene naphthalate film (PEN: manufactured by Teijin Film Solutions Co., Ltd.) having a thickness of 100 μm by an inkjet printing method so as to have a dry layer thickness of 100 nm, and heated at 110 ° C. for 30 minutes. Then, ultraviolet rays were irradiated for 10 minutes to produce an organometallic oxide layer.
 次いで、パーヒドロポリシラザン(PHPS)を含有する塗布液を有機金属酸化物層上に乾燥層厚200nmになるように、インクジェット・プリント法で塗布し、ホットプレートで80℃、1分乾燥、及び紫外線改質処理を6J/cm施してガスバリアー性基板を作製した。かかる改質処理条件は比較例と同じである。 Next, a coating liquid containing perhydropolysilazane (PHPS) is applied onto the organometallic oxide layer by an ink-jet printing method so as to have a dry layer thickness of 200 nm, dried on a hot plate at 80 ° C. for 1 minute, and ultraviolet rays A gas barrier substrate was prepared by applying a modification treatment of 6 J / cm 2 . Such reforming treatment conditions are the same as in the comparative example.
 次に、上記有機金属酸化物を含有する水蒸気バリアー層を形成した以外は、比較例と同じ工程・手法で、太陽電池No.4を作製した。 Next, a solar cell No. 1 was prepared by the same process and method as in the comparative example, except that the water vapor barrier layer containing the organometallic oxide was formed. 4 was produced.
 〔実施例2〕
 (本発明の太陽電池No.5の作製)
 次に、比較例と同様の工程を経て作製した封止層を被覆するような態様で本発明に係る金属酸化物を含有する水蒸気バリアー層を設けた太陽電池No.5を次のようにして作製した。
[Example 2]
(Preparation of solar cell No. 5 of the present invention)
Next, the solar cell No. 1 provided with the water vapor barrier layer containing the metal oxide according to the present invention in such a manner as to cover the sealing layer produced through the same steps as in the comparative example. 5 was produced as follows.
 比較例1と同様の工程・手法で、フレキシブル基板を用意し、同様に正孔輸送層及び電子輸送層からなる光電変換ユニットと封止層を形成し、その後、封止層上に本発明に係る金属酸化物を含有する水蒸気バリアー層を形成した。 A flexible substrate is prepared by the same process and method as in Comparative Example 1, and a photoelectric conversion unit and a sealing layer including a hole transport layer and an electron transport layer are formed in the same manner, and then the present invention is formed on the sealing layer. A water vapor barrier layer containing the metal oxide was formed.
 実施例1と同じゾル・ゲル液を厚さが100nmになるようインクジェット・プリント法で塗布し、110℃で30分間加熱し、その後、紫外線を10分照射し金属酸化物層を作製した。 The same sol-gel solution as in Example 1 was applied by an inkjet printing method to a thickness of 100 nm, heated at 110 ° C. for 30 minutes, and then irradiated with ultraviolet rays for 10 minutes to produce a metal oxide layer.
 次に、第2基板を比較例と同様の手法にて貼合し、太陽電池No.5を作製した。 Next, the second substrate was bonded by the same method as in the comparative example, and solar cell No. 5 was produced.
 〔実施例3〕
 (本発明の太陽電池No.6の作製)
 次に、ガスバリアー性フレキシブル基板上と封止層上に本発明に係る金属酸化物を含有する水蒸気バリアー層を設けた太陽電池No.6を次のようにして作製した。
 実施例1と同様の手法で、本発明に係る金属酸化物を含有する水蒸気バリアー層とパーヒドロポリシラザン改質層を設けたガスバリアー性基板を作製した。
Example 3
(Production of solar cell No. 6 of the present invention)
Next, a solar cell No. 1 in which a water vapor barrier layer containing the metal oxide according to the present invention is provided on the gas barrier flexible substrate and the sealing layer. 6 was produced as follows.
A gas barrier substrate provided with a water vapor barrier layer containing a metal oxide according to the present invention and a perhydropolysilazane modified layer was prepared in the same manner as in Example 1.
 比較例1と同じように有機光電変換ユニットを形成し、次いで第1の封止層を同じく第1の実施例と同様の手法で形成した。 The organic photoelectric conversion unit was formed in the same manner as in Comparative Example 1, and then the first sealing layer was formed in the same manner as in the first example.
 次に、実施例2と同じく、本発明に係る金属酸化物層をインクジェット・プリント法にて厚さが100nmになるよう塗布を行い、110℃で30分間加熱し、その後紫外線を10分照射させて、封止層を被覆するような態様で本発明に係る水蒸気バリアー層を設けた。その後、第2基板を比較例と同様の手法にて真空ラミネートにて貼合し、太陽電池No.6を作製した。 Next, as in Example 2, the metal oxide layer according to the present invention was applied by an inkjet printing method to a thickness of 100 nm, heated at 110 ° C. for 30 minutes, and then irradiated with ultraviolet rays for 10 minutes. Thus, the water vapor barrier layer according to the present invention was provided in such a manner as to cover the sealing layer. Thereafter, the second substrate was bonded by vacuum lamination in the same manner as in the comparative example. 6 was produced.
 〔実施例4〕
 (本発明の太陽電池No.7の作製)
 次に、実施例3と同じく、ガスバリアー性基板上と封止層にフッ素量を変えて生成した金属酸化物含有水蒸気バリアー層を形成した太陽電池No.7を作製した。
Example 4
(Preparation of solar cell No. 7 of the present invention)
Next, in the same manner as in Example 3, the solar cell No. 1 was formed by forming a metal oxide-containing water vapor barrier layer on the gas barrier substrate and the sealing layer by changing the amount of fluorine. 7 was produced.
 具体的には、フッ化アルコールとして例示化合物F-5を用いて製造された金属酸化物を含有する水蒸気バリアー層を作製した。具体的には水分濃度1ppm以下の乾燥窒素雰囲気下のグローブボックス内で、チタニウムテトライソプロポキシド(Ti(OiPr))の10質量%脱水オクタフルオロプロパノール(例示化合物F-5)溶液を調液し、湿度30%の大気に1分間開放し、すぐにグローブボックス内に戻した溶液をゾル・ゲル液2とし、実施例3と同様の手法にて、金属酸化物層を含有する水蒸気バリアー層をガスバリアー性基板上と封止層にそれぞれ形成することで、太陽電池No.7を作製した。 Specifically, a water vapor barrier layer containing a metal oxide produced using Exemplified Compound F-5 as the fluorinated alcohol was produced. Specifically, a 10% by mass dehydrated octafluoropropanol (exemplary compound F-5) solution of titanium tetraisopropoxide (Ti (OiPr) 4 ) was prepared in a glove box under a dry nitrogen atmosphere with a moisture concentration of 1 ppm or less. The water vapor barrier layer containing the metal oxide layer was formed in the same manner as in Example 3 using the solution that was opened in the atmosphere of 30% humidity for 1 minute and immediately returned to the glove box as the sol-gel solution 2. Are respectively formed on the gas barrier substrate and the sealing layer. 7 was produced.
 上記形成で用いたゾル・ゲル液2におけるF/(C+F)は、上記と同様の方法で測定した結果、0.42であった。 F / (C + F) in the sol-gel solution 2 used in the above formation was 0.42 as a result of measurement by the same method as described above.
 〔実施例5〕
 (本発明のペロブスカイト型(III)の太陽電池No.8の作製)
 上記実施例4の太陽電池No.7の作製方法において、正孔輸送層と電子輸送層の間に、ペロブスカイト層を比較例2の太陽電池No.2と同様に形成した以外は太陽電池N0.6の作製方法と同じ方法で、太陽電池No.8を作製した。
Example 5
(Preparation of perovskite type (III) solar cell No. 8 of the present invention)
In the solar cell No. 4 in Example 4 above. In the manufacturing method of No. 7, a perovskite layer is formed between the hole transport layer and the electron transport layer in the solar cell No. The solar cell No. 2 was formed in the same manner as the solar cell N0.6 except that the solar cell No. 8 was produced.
 〔実施例6〕
 (本発明のペロブスカイト型(IV)の太陽電池No.9の作製)
 比較例3の従来タイプのペロブスカイトタイプ(II)の太陽電池No.3の製造方法において、電子輸送層の形成を下記のように形成した以外は、第1電極、光電変換層、正孔輸送層、第2電極及び封止層を太陽電池No.3と同じ方法で形成した。
Example 6
(Preparation of perovskite type (IV) solar cell No. 9 of the present invention)
Conventional type perovskite type (II) solar cell No. In the manufacturing method of No. 3, the first electrode, the photoelectric conversion layer, the hole transport layer, the second electrode, and the sealing layer were connected to the solar cell No. 1 except that the electron transport layer was formed as follows. 3 was formed by the same method.
 その後、実施例2の太陽電池No.5の作製と同様にして、本発明に係る金属酸化物層をインクジェット・プリント法にて厚さが100nmになるよう塗布を行い110℃で30分間加熱し、その後、紫外線を10分照射させて、封止層を被覆するような態様で本発明に係る水蒸気バリアー層を設けて、太陽電池No.9を作製した。 After that, the solar cell No. 5, the metal oxide layer according to the present invention was applied to the thickness of 100 nm by the inkjet printing method, heated at 110 ° C. for 30 minutes, and then irradiated with ultraviolet rays for 10 minutes. The water vapor barrier layer according to the present invention is provided in such a manner as to cover the sealing layer. 9 was produced.
 (電子輸送層の形成)
 水分濃度1ppm以下の乾燥窒素雰囲気下のグローブボックス内で、チタンテトライソプロポキシド(Ti(OiPr))の3質量%脱水テトラフルオロプロパノール(例示化合物F-1)溶液1を調製し、さらに酢酸銀(CHCOAg)を1質量%脱水テトラフルオロプロパノール(例示化合物F-1)溶液2を調製し、その後これらをチタンテトライソプロポキシドと酢酸銀のモル比率(Ti/Ag)が1.0/0.1になるように混合・撹拌し、湿度30%の大気に1分間開放し、すぐにグローブボックス内に戻した溶液をゾル・ゲル液とした。
(Formation of electron transport layer)
In a glove box under a dry nitrogen atmosphere with a moisture concentration of 1 ppm or less, a 3 mass% dehydrated tetrafluoropropanol (exemplary compound F-1) solution 1 of titanium tetraisopropoxide (Ti (OiPr) 4 ) was prepared, and acetic acid was further added. A silver (CH 3 CO 2 Ag) 1% by mass dehydrated tetrafluoropropanol (Exemplary Compound F-1) solution 2 was prepared, and then the molar ratio (Ti / Ag) of titanium tetraisopropoxide to silver acetate was 1 The solution which was mixed and stirred so as to be 0.0 / 0.1, opened in an atmosphere of 30% humidity for 1 minute, and immediately returned to the inside of the glove box was used as a sol-gel solution.
 《太陽電池の評価》
 上記実施例及び比較例として得られた各種太陽電池について、以下の評価を行った。
<Evaluation of solar cells>
The following evaluation was performed about the various solar cells obtained as the said Example and comparative example.
 (1)光変換効率等の測定
 ソーラーシミュレーターを用いて、入射光放射照度1000W/m、スペクトルAir Mass(AM)1.5Gの疑似太陽光スペクトルの照射を25℃の環境下で行った。
(1) Measurement of light conversion efficiency, etc. Using a solar simulator, irradiation of a pseudo solar spectrum with an incident light irradiance of 1000 W / m 2 and a spectrum Air Mass (AM) 1.5 G was performed in an environment of 25 ° C.
 ソーラーシミュレーターは、パルス光型であるシャープ製SHSS-01を使用し、光源にはXeランプとHaランプで構成されている装置を使用し、パネルには、2cm×2cmの開口したt=0.2mmのアルミ板をアルマイト処理し、表面黒色化することで、遮光部の透過率が0%となる遮光マスクを用意し、太陽電池パネルに密着させ、光照射下のIVカーブと短絡電流密度(Jsc)、解放電圧(Voc)、最大出力(η)とフィルファクタ(FF)を測定し、光変換効率及びその維持率又は変化率を算出した。 The solar simulator uses SHSS-01 made by Sharp, which is a pulsed light type, uses a device composed of an Xe lamp and an Ha lamp as a light source, and has a 2 cm × 2 cm opening t = 0. A 2 mm aluminum plate is anodized and the surface is blackened to prepare a light shielding mask with a light shielding part transmittance of 0%, which is in close contact with the solar cell panel, and the IV curve and short circuit current density under light irradiation ( Jsc), release voltage (Voc), maximum output (η), and fill factor (FF) were measured, and the light conversion efficiency and its maintenance rate or change rate were calculated.
 (2)信頼性試験
 IEC規格に基づく、85℃・85%の条件下、上記と同様な方法で、光照射試験を3000時間行うことで、光照射による劣化特性を評価した。
(2) Reliability test Under the conditions of 85 ° C. and 85% based on the IEC standard, the light irradiation test was performed for 3000 hours in the same manner as described above to evaluate the deterioration characteristics due to light irradiation.
 以上の評価結果を、表I及び図7~図15に示す。図7~図9は、比較例1~比較例3の信頼性試験結果であり、図10~図15は、本発明の実施例1~6の信頼性試験結果をそれぞれ示してある。 The above evaluation results are shown in Table I and FIGS. 7 to 9 show the reliability test results of Comparative Examples 1 to 3, and FIGS. 10 to 15 show the reliability test results of Examples 1 to 6 of the present invention, respectively.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上記表Iに記載の「F濃度違い」とは、フッ化アルコールにおいて、フッ素原子数が異なることを意味する。 The “F concentration difference” described in Table I above means that the number of fluorine atoms is different in the fluorinated alcohol.
 綜合評価欄の記号×、○及び◎は、それぞれ、長期間実用上問題あり、特に問題なし及び良好を意味する。 The symbols x, ○ and ◎ in the comprehensive evaluation column mean that there is a problem in practical use for a long time, and that there is no problem and good in particular.
 表I及び図7~図15に示した結果から明らかなように、比較(従来)例(図7~図9)は劣化が顕著であり、ガスバリアー性基板の欠陥部や封止層の欠陥部からの水分浸透により、有機物からなる光電発電層が機能せず、効率が減少してしまっている。これを、ブラックライトを当て、色変化している部位の断面を確認すると、太陽電池パネル作製時に混入した異物により、ガスバリアー性基板及び封止層も欠陥を有し、同部位から水分浸透してしまい、機能を損ない効率が減少してしまっていたと推察される。 As is apparent from the results shown in Table I and FIGS. 7 to 15, the comparative (conventional) examples (FIGS. 7 to 9) are markedly deteriorated, and there are defects in the gas barrier substrate and defects in the sealing layer. Due to moisture permeation from the part, the photovoltaic layer made of organic material does not function, and the efficiency is reduced. When the cross section of the part where the color is changed is confirmed by applying black light, the gas barrier substrate and the sealing layer have defects due to foreign matters mixed during the production of the solar cell panel, and moisture penetrates from the part. It is speculated that the efficiency was reduced due to the loss of function.
 しかしながら、本発明の実施例(図10~図15)では、効率減少が抑制され、特に実施例3(太陽電池No.6)や実施例4(太陽電池No.7)では顕著であり、欠陥を補修するかのように水蒸気バリアー性(耐水性)が向上していることが明確だった。 However, in the examples of the present invention (FIGS. 10 to 15), the decrease in efficiency is suppressed, particularly in Example 3 (solar cell No. 6) and Example 4 (solar cell No. 7), It was clear that the water vapor barrier property (water resistance) was improved as if repairing.
 本結果からも、本発明に係る有機金属酸化物層が水蒸気バリアー(水分ブロック)として機能していることは明白であり、太陽電池パネルにおける信頼性を向上していることが分かった。また、フッ化アルコール濃度を向上させることにより、更なる信頼性向上の効果を得ており、撥水性又は疎水性の向上による水分浸透抑制をしていることも明白である。 From this result, it was clear that the organometallic oxide layer according to the present invention functions as a water vapor barrier (moisture block), and it was found that the reliability of the solar cell panel was improved. In addition, it is obvious that by improving the concentration of the fluorinated alcohol, an effect of further improving reliability is obtained, and water penetration is suppressed by improving water repellency or hydrophobicity.
 本発明の太陽電池は、大気中の水や酸素の悪影響を抑制し、高寿命化した太陽電池であり、有機薄膜バルクヘテロ型太陽電池、又はペロプスカイト型太陽電池等の有機薄膜太陽電池に好適に利用できる。 The solar cell of the present invention is a solar cell having a long life by suppressing adverse effects of water and oxygen in the atmosphere, and is suitable for an organic thin film solar cell such as an organic thin film bulk hetero solar cell or a perovskite solar cell. Available.
 1 太陽電池
 2 第1基板
 3 ガスバリアー層
 4 第1電極
 5 電子輸送層
 6 正孔輸送層
 7 光電変換ユニット
 8 第2電極
 9 封止層
10 接着剤層
11 アルミニウム箔
12 PETフィルム
13 第2基板
14 水蒸気バリアー層
15 ペロブスカイト層
DESCRIPTION OF SYMBOLS 1 Solar cell 2 1st board | substrate 3 Gas barrier layer 4 1st electrode 5 Electron transport layer 6 Hole transport layer 7 Photoelectric conversion unit 8 2nd electrode 9 Sealing layer 10 Adhesive layer 11 Aluminum foil 12 PET film 13 2nd board | substrate 14 Water vapor barrier layer 15 Perovskite layer

Claims (11)

  1.  少なくとも、第1基板、第1電極、有機光電変換ユニット、第2電極、及び第2基板を具備した太陽電池であって、
     前記第1基板と前記第2基板との間に、水蒸気バリアー層を備え、
     当該水蒸気バリアー層が、下記一般式(1)で表される構造を有する有機金属酸化物を含有することを特徴とする太陽電池。
     一般式(1):R-[M(OR(O-)x-y-R
    (式中、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含む炭素鎖でもよい。Mは、金属原子を表す。ORは、フッ化アルコキシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。nは重縮合度を表す。)
    A solar cell comprising at least a first substrate, a first electrode, an organic photoelectric conversion unit, a second electrode, and a second substrate,
    A water vapor barrier layer is provided between the first substrate and the second substrate;
    The said water vapor | steam barrier layer contains the organometallic oxide which has a structure represented by following General formula (1), The solar cell characterized by the above-mentioned.
    General formula (1): R— [M (OR 1 ) y (O—) xy ] n —R
    (In the formula, R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. However, R represents fluorine as a substituent. It may be a carbon chain containing atoms, M represents a metal atom, OR 1 represents a fluorinated alkoxy group, x represents a valence of the metal atom, y represents an arbitrary integer between 1 and x, n Represents the degree of polycondensation.)
  2.  前記水蒸気バリアー層が含有する前記有機金属酸化物における炭素原子数とフッ素原子数の総数に対するフッ素原子数の比の値F/(C+F)が、0.05~1.00の範囲内であることを特徴とする請求項1に記載の太陽電池。 The ratio F / (C + F) of the number of fluorine atoms to the total number of carbon atoms and fluorine atoms in the organometallic oxide contained in the water vapor barrier layer is in the range of 0.05 to 1.00. The solar cell according to claim 1.
  3.  前記Mで表される金属原子が、Ti、Zr、Sn、Ta、Fe、Zn、Si及びAlから選択されることを特徴とする請求項1又は請求項2に記載の太陽電池。 3. The solar cell according to claim 1, wherein the metal atom represented by M is selected from Ti, Zr, Sn, Ta, Fe, Zn, Si, and Al.
  4.  前記有機光電変換ユニットが、ペロブスカイト化合物を含有する層を有することを特徴とする請求項1から請求項3までのいずれか一項に記載の太陽電池。 The solar cell according to any one of claims 1 to 3, wherein the organic photoelectric conversion unit has a layer containing a perovskite compound.
  5.  前記有機光電変換ユニットが、
     ペロブスカイト化合物を含有する層と、
     前記一般式(1)で表される構造を有する金属種の異なる少なくとも2種類の有機金属酸化物を含有する電子輸送層とを有し、
     少なくとも、1種類の前記有機金属酸化物の金属原子Mが、請求項3に記載の金属原子から選ばれる金属原子であり、かつ、
     他の異種の有機金属酸化物の金属原子Mが、Ag、Cu及びAuから選ばれる金属原子であることを特徴とする請求項3又は請求項4に記載の太陽電池。
    The organic photoelectric conversion unit is
    A layer containing a perovskite compound;
    An electron transport layer containing at least two kinds of organometallic oxides having different metal species and having a structure represented by the general formula (1),
    At least one metal atom M of the organometallic oxide is a metal atom selected from the metal atoms according to claim 3, and
    5. The solar cell according to claim 3, wherein the metal atom M of another different organometallic oxide is a metal atom selected from Ag, Cu, and Au.
  6.  前記一般式(1)で表される構造を有する有機金属酸化物が、水蒸気又はヨウ素ガスと反応し、撥水性若しくは疎水性の化合物を放出する、又はヨウ素ガスを捕獲する性能を有することを特徴とする請求項1から請求項5までのいずれか一項に記載の太陽電池。 The organometallic oxide having the structure represented by the general formula (1) reacts with water vapor or iodine gas to release a water-repellent or hydrophobic compound or to capture iodine gas. The solar cell according to any one of claims 1 to 5.
  7.  前記水蒸気バリアー層が、前記第1基板と第1電極の間又は第1電極から第2電極までの構成層の全体又は一部を覆う位置に具備されたことを特徴とする請求項1から請求項6までのいずれか一項に記載の太陽電池。 The water vapor barrier layer is provided between the first substrate and the first electrode or at a position covering the whole or a part of the constituent layers from the first electrode to the second electrode. The solar cell according to any one of Items 6 to 6.
  8.  前記水蒸気バリアー層が、少なくとも前記有機金属酸化物を含有する組成物がゾル・ゲル転移された膜からなることを特徴とする請求項1から請求項7までのいずれか一項に記載の太陽電池。 The solar cell according to any one of claims 1 to 7, wherein the water vapor barrier layer is a film in which a composition containing at least the organometallic oxide is subjected to sol-gel transition. .
  9.  請求項1から請求項8までのいずれか一項に記載の太陽電池を製造する太陽電池の製造方法であって、
     前記水蒸気バリアー層を、金属アルコキシド又は金属カルボキシレートと、フッ化アルコールとの混合液を用いて形成する工程を有することを特徴とする太陽電池の製造方法。
    It is a manufacturing method of the solar cell which manufactures the solar cell as described in any one of Claim 1- Claim 8, Comprising:
    A method for producing a solar cell, comprising a step of forming the water vapor barrier layer using a mixed liquid of a metal alkoxide or metal carboxylate and a fluorinated alcohol.
  10.  前記水蒸気バリアー層を、湿式塗布法により形成することを特徴とする請求項9に記載の太陽電池の製造方法。 The method for producing a solar cell according to claim 9, wherein the water vapor barrier layer is formed by a wet coating method.
  11.  前記湿式塗布法が、インクジェット・プリント法であることを特徴とする請求項10に記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 10, wherein the wet coating method is an inkjet printing method.
PCT/JP2019/020341 2018-06-01 2019-05-22 Solar battery and method of manufacturing same WO2019230534A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020522127A JPWO2019230534A1 (en) 2018-06-01 2019-05-22 Solar cells and their manufacturing methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018106077 2018-06-01
JP2018-106077 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019230534A1 true WO2019230534A1 (en) 2019-12-05

Family

ID=68698841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020341 WO2019230534A1 (en) 2018-06-01 2019-05-22 Solar battery and method of manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2019230534A1 (en)
WO (1) WO2019230534A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022218089A1 (en) * 2021-04-13 2022-10-20 宁德时代新能源科技股份有限公司 Perovskite solar cell and preparation method therefor, and electrical device
WO2022244413A1 (en) * 2021-05-21 2022-11-24 パナソニックホールディングス株式会社 Solar cell and method for manufacturing solar cell
JP2023072638A (en) * 2021-11-12 2023-05-24 カウナス ユニバーシティ オブ テクノロジー Photovoltaic devices containing cyclobutane-based hole transporting materials
JP7497941B2 (ja) 2021-11-12 2024-06-11 カウナス ユニバーシティ オブ テクノロジー シクロブタンベースの正孔輸送材料を含む光起電デバイス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150094562A (en) * 2015-07-27 2015-08-19 이화여자대학교 산학협력단 Metal nanoparticle-containg bilayer organic photoelectronic device and preparing method of the same
JP2015225785A (en) * 2014-05-28 2015-12-14 国立大学法人山形大学 Sealing method for organic electroluminescence element
JP2016157777A (en) * 2015-02-24 2016-09-01 株式会社東芝 Salar battery and manufacturing method for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225785A (en) * 2014-05-28 2015-12-14 国立大学法人山形大学 Sealing method for organic electroluminescence element
JP2016157777A (en) * 2015-02-24 2016-09-01 株式会社東芝 Salar battery and manufacturing method for the same
KR20150094562A (en) * 2015-07-27 2015-08-19 이화여자대학교 산학협력단 Metal nanoparticle-containg bilayer organic photoelectronic device and preparing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022218089A1 (en) * 2021-04-13 2022-10-20 宁德时代新能源科技股份有限公司 Perovskite solar cell and preparation method therefor, and electrical device
WO2022244413A1 (en) * 2021-05-21 2022-11-24 パナソニックホールディングス株式会社 Solar cell and method for manufacturing solar cell
JP2023072638A (en) * 2021-11-12 2023-05-24 カウナス ユニバーシティ オブ テクノロジー Photovoltaic devices containing cyclobutane-based hole transporting materials
JP7497941B2 (ja) 2021-11-12 2024-06-11 カウナス ユニバーシティ オブ テクノロジー シクロブタンベースの正孔輸送材料を含む光起電デバイス

Also Published As

Publication number Publication date
JPWO2019230534A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP6984546B2 (en) Solar cells and their manufacturing methods
Chang et al. High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition
JP5761030B2 (en) Barrier film manufacturing method
JP5515847B2 (en) Method for producing gas barrier film
JP5447022B2 (en) Gas barrier film, production method thereof, and organic photoelectric conversion element using the gas barrier film
EP2610013A1 (en) Method for manufacturing gas barrier film, and organic photoelectric conversion element
JP2011068124A (en) Gas barrier film, method for producing the same, and organic photoelectric conversion element using the same
JP2011068042A (en) Barrier film, method of forming the same and organic photoelectric transducer
WO2019230534A1 (en) Solar battery and method of manufacturing same
JP5691457B2 (en) Gas barrier film and method for producing gas barrier film
JP2012191194A (en) Photoelectric conversion element, solar cell, solar cell module, and method for manufacturing the same
JP5935263B2 (en) Gas barrier film, method for producing gas barrier film, and organic electronic device having gas barrier film
JP2020127007A (en) Photoelectric conversion element, solar battery module, power supply module, and electronic apparatus
JP5585592B2 (en) Gas barrier film, method for producing gas barrier film, organic photoelectric conversion element having gas barrier film, and solar cell having the element
JP2011143551A (en) Gas barrier film, method of manufacturing the same and organic photoelectric conversion element
JP2020102602A (en) Photoelectric conversion element and photoelectric conversion element module
JP5640976B2 (en) Gas barrier film and method for producing the same, and photoelectric conversion element using the same
JP5696667B2 (en) Organic photoelectric conversion element
JP2011073417A (en) Barrier film, method of producing barrier film, and organic photoelectric conversion element
JP5975142B2 (en) Gas barrier film, method for producing the same, and organic photoelectric conversion element using the same
JP5600981B2 (en) Gas barrier film, method for producing organic device, and organic device
JP5736644B2 (en) Gas barrier film, method for producing the same, and organic photoelectric conversion element using the same
JP5594099B2 (en) Method for producing gas barrier film
CN117981491A (en) Photoelectric conversion element and compound
JP5888314B2 (en) Gas barrier film and electronic device using the gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020522127

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811077

Country of ref document: EP

Kind code of ref document: A1