WO2019230520A1 - Abnormality diagnosis system and vibration sensor - Google Patents

Abnormality diagnosis system and vibration sensor Download PDF

Info

Publication number
WO2019230520A1
WO2019230520A1 PCT/JP2019/020277 JP2019020277W WO2019230520A1 WO 2019230520 A1 WO2019230520 A1 WO 2019230520A1 JP 2019020277 W JP2019020277 W JP 2019020277W WO 2019230520 A1 WO2019230520 A1 WO 2019230520A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
abnormality
vibration
detected
sensor
Prior art date
Application number
PCT/JP2019/020277
Other languages
French (fr)
Japanese (ja)
Inventor
公司 生田
具也 市村
義広 遠藤
愛林 劉
Original Assignee
光洋電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光洋電子工業株式会社 filed Critical 光洋電子工業株式会社
Publication of WO2019230520A1 publication Critical patent/WO2019230520A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to an abnormality diagnosis system for diagnosing abnormality of a device based on an analysis result of vibration generated in the device, and a vibration sensor used for the abnormality diagnosis system.
  • an abnormality diagnosis device that diagnoses an abnormality of a device based on an analysis result of vibration generated in the device is known (see, for example, Patent Document 1).
  • An abnormality diagnosis apparatus (evaluation apparatus) described in Patent Document 1 includes a vibration detection unit that outputs an analog signal of sound or vibration generated from mechanical equipment, an amplification unit that amplifies the analog signal output by the vibration detection unit, and an amplification AD conversion means for converting the analog signal amplified by the means into a digital signal, and frequency analysis is performed on the output of the AD conversion means to generate measured frequency spectrum data, and it is generated due to an abnormality in the mechanical equipment Arithmetic processing means for diagnosing whether there is an abnormality in the mechanical equipment based on the presence / absence of a peak on the measured frequency spectrum data with respect to the primary value, the secondary value, and the quaternary value of the frequency component.
  • the amplifying means As a sensor for realizing the vibration detecting means, the amplifying means, and the AD converting means, generally, a piezoelectric element type accelerometer, each of which is individually unitized, is used.
  • a digital output type MEMS acceleration IC (hereinafter simply referred to as an “acceleration sensor IC”) integrated with a function of measuring, quantifying and digitally outputting vibration acceleration due to advances in semiconductor MEMS (Micro Electro Mechanical Systems) technology. ) Can be obtained at a low cost, and can be manufactured at a lower cost than a piezoelectric element type accelerometer.
  • FFT Fast Fourier Transform
  • ODR Output Data Rate
  • the present invention provides an abnormality diagnosis capable of detecting an abnormality occurring in a device while suppressing an error in frequency analysis even if the sampling interval of vibration acceleration by the vibration sensor varies depending on individual differences or operating temperature environment. It is an object to provide a system and a vibration sensor used therefor.
  • the present invention is an abnormality diagnosis system for diagnosing abnormality of a device by measuring vibration generated in the device to be diagnosed, which is attached to the device and periodically determines acceleration of vibration.
  • a vibration sensor for measuring a time interval at which the acceleration is detected, a spectrum analysis means for spectrally analyzing the acceleration based on the detected value of the acceleration detected by the vibration sensor and the time interval,
  • an abnormality diagnosis system having abnormality detection means for detecting an abnormality of the device based on a spectrum for each frequency obtained by a spectrum analysis means.
  • the present invention provides a vibration sensor that is attached to a device to be diagnosed and periodically detects the acceleration of vibration and measures the time interval at which the acceleration is detected.
  • the vibration sensor According to the abnormality diagnosis system and the vibration sensor according to the present invention, even if the sampling interval of vibration acceleration by the vibration sensor fluctuates due to individual differences or operating temperature environment, an error occurring in the device is detected by suppressing frequency analysis error. It becomes possible to do.
  • Embodiments of the present invention will be described with reference to FIGS.
  • embodiment described below is shown as a suitable specific example in implementing this invention, although there are some parts which have illustrated various technical matters that are technically preferable. The technical scope of the present invention is not limited to this specific embodiment.
  • FIG. 1 is a schematic configuration diagram showing an abnormality diagnosis system 1 according to an embodiment of the present invention, together with a device 6 to be diagnosed and a programmable controller 7 that controls the device 6.
  • the abnormality diagnosis system 1 diagnoses an abnormality of the device 6 by measuring vibration generated in the device 6.
  • the abnormality diagnosis system 1 includes a sensor unit 2 attached to the device 6, a logger unit 3 that acquires and stores transmission data 200 (see FIG. 3) transmitted from the sensor unit 2, and a computer connected to the logger unit 3. 4.
  • the device 6 is a machine tool that performs predetermined machining and assembly on a workpiece in a predetermined cycle time, for example, and the electric motor 61, the movable portion 62 driven by the electric motor 61, and the operation of the movable portion 62.
  • a rolling bearing 63 and the like for smoothness are included.
  • the sensor unit 2 is fixed to the electric motor 61 and the movable unit 62 of the device 6 configured as described above or the vicinity thereof by bolts or the like.
  • the sensor unit 2 periodically detects the acceleration of vibration, detects the temperature, measures the time interval at which the acceleration is detected, and transmits these as transmission data 200 to the logger unit 3. Details of the sensor unit 2 will be described later.
  • the logger unit 3 is connected to the sensor unit 2 through the serial communication line 25d, and receives the transmission data 200 from the sensor unit 2 through serial communication via the serial communication line 25d.
  • the logger unit 3 includes a CPU (arithmetic processing unit) and a storage unit such as a ROM and a RAM.
  • the CPU executes a program stored in the storage unit, whereby a data storage unit 31, a spectrum analysis unit 32, It functions as an abnormality determination means 33, an abnormality signal output means 34, and the like.
  • the abnormality determination unit 33 and the abnormality signal output unit 34 are examples of an abnormality detection unit.
  • the data storage unit 31 is a unit that stores the transmission data 200 received from the sensor unit 2 in the storage unit.
  • the spectrum analysis unit 32 is a unit that performs spectrum analysis on the acceleration data included in the transmission data 200 transmitted from the sensor unit 2. More specifically, the spectrum analysis unit 32 performs an FFT operation on the acceleration data of the sensor unit 2 stored in the storage unit by the data storage unit 31 and calculates the intensity (acceleration) of vibration for each frequency. The FFT calculation by the spectrum analysis unit 32 will be described later.
  • the abnormality determination means 33 is a means for determining that an abnormality has occurred in the device 6 when the spectrum analysis result obtained by the spectrum analysis means 32 exceeds a threshold set by the computer 4 described later at any frequency. is there.
  • the abnormality signal output means 34 is a means for outputting an abnormality signal indicating the occurrence of the abnormality when the abnormality determination means 33 determines that an abnormality has occurred in the device 6.
  • the computer 4 is connected to the logger unit 3 by, for example, a wireless LAN or a communication line, and can perform bidirectional communication with the logger unit 3.
  • the computer 4 functions as a peak value extraction unit 41, a threshold setting unit 42, and the like when the CPU executes a program stored in advance in a hard disk or the like.
  • the peak value extraction means 41 extracts the peak value of the spectrum for each frequency obtained by the spectrum analysis means 32.
  • the “peak value” is the maximum value of the vibration intensity at the frequency in the spectrum analysis result over a predetermined period.
  • the threshold setting unit 42 sets a threshold value for determining an abnormality based on the peak value for each frequency extracted by the peak value extracting unit 41.
  • the set threshold value is transmitted to the logger unit 3, and the logger unit 3 stores this threshold value.
  • the threshold setting unit 42 sets a value obtained by adding a predetermined value to the peak value for each frequency extracted by the peak value extracting unit 41 as a threshold. If this predetermined value is small, erroneous detection of abnormality frequently occurs, and if it is too large, the abnormality cannot be detected even if an abnormality has occurred. Therefore, this predetermined value is set to a value that does not cause the vibration intensity to exceed the threshold value when the device 6 is normal and can reliably detect the occurrence of the abnormality when the abnormality occurs.
  • a display device 51 is connected to the computer 4, and is set by the analysis result by the spectrum analysis unit 32, the information of the detection value of the sensor unit 2 stored by the data storage unit 31, and the threshold setting unit 42.
  • the threshold value information can be displayed on the display screen and presented to the user.
  • the user can edit the threshold value by operating the input device 52 (a pointing device such as a keyboard or a mouse) of the computer 4.
  • the input device 52 a pointing device such as a keyboard or a mouse
  • FIG. 2 is a block diagram illustrating a schematic configuration example of the sensor unit 2.
  • the sensor unit 2 includes an acceleration sensor IC (Integrated Circuit) 21, a temperature sensor IC 22, a CPU 23, a time difference measurement counter 24, and a communication driver IC 25.
  • acceleration sensor IC Integrated Circuit
  • the acceleration sensor IC 21 is a digital output type MEMS sensor that detects vibration acceleration with a set ODR (for example, 3200 Hz) and digitally outputs a detection value corresponding to the detected vibration intensity (acceleration). That is, the acceleration sensor IC 21 includes a detection unit that simultaneously detects accelerations in three directions perpendicular to each other (X direction, Y direction, and Z direction) and a digital output unit that outputs detection values of acceleration as digital data (acceleration data). It is integrally formed by technology.
  • the acceleration sensor IC21 detects acceleration in synchronization with the clock signal CLK transmitted from the CPU 23 via the clock line 21a, and detects the detected acceleration value as digital data (acceleration data) to the CPU 23 via the data line 21b. Send.
  • the acceleration sensor IC 21 transmits an interrupt signal Si to the CPU 23 via the interrupt line 21c every time it detects acceleration.
  • the temperature sensor IC 22 detects the temperature in synchronization with the clock signal CLK transmitted from the CPU 23 via the clock line 22a, and transmits the detected temperature to the CPU 23 via the data line 22b as digital data (temperature data).
  • the CPU 23 includes a transmission data creating unit 230 that creates the transmission data 200 and a transmission buffer 231 in which the transmission data 200 is written.
  • the CPU 23 functions as the transmission data creation unit 230 and the like by executing a program stored in a storage unit (not shown) such as a ROM or a RAM.
  • the transmission data creating means 230 is synchronized with the clock signal CLK, the acceleration data 202 to 204 transmitted from the acceleration sensor IC 21, the temperature data 205 transmitted from the temperature sensor IC 22, and the time based on the count value acquired from the time difference measurement counter 24.
  • Transmission data 200 (see FIG. 3) including data 206 and header 201 is created.
  • the time difference measurement counter 24 counts the reference clock signal bCLK transmitted from the CPU 23 via the clock line 24a, and outputs a count value to the data bus 24c based on the data read signal transmitted via the signal line 24d.
  • the count value is reset by the count reset signal CRS transmitted from the CPU 23 via the count reset signal line 24b.
  • the time difference measurement counter 24 may be provided in the CPU 23.
  • the communication driver IC 25 receives the transmission data 200 from the transmission buffer 230 of the CPU 23 via the transmission line 25a. When a command indicating a sampling command is sent from the logger unit 3 side, the communication driver IC 25 transmits the command to the CPU 23 via the reception line 25b. The communication driver IC 25 transmits information of the transmission line 25a or the reception line 25b used from the CPU 23 via the control line 25c. The communication driver IC 25 transmits the transmission data 200 to the logger unit 3 via the serial communication line 25d.
  • FIG. 3 is a diagram illustrating an example of the data format of the transmission data 200.
  • the transmission data 200 includes a header 201 indicating the head of the transmission data 200, X-axis acceleration data 202, Y-axis acceleration data 203 and Z-axis acceleration data 204 as detected acceleration values, and temperature data.
  • 205 and time data 206 are included.
  • the time data 206 is an example of a time interval.
  • the header 201 is composed of 1 byte, and the other data 202 to 206 are composed of 2 bytes.
  • the transmission data creation means 230 receives the X-axis acceleration data 202, the Y-axis acceleration data 203, and the Z-axis acceleration data 204 as detected values of the X-axis, Y-axis, and X-axis accelerations transmitted from the acceleration sensor IC21. Then, the temperature data 205 as the detected temperature value transmitted from the temperature sensor IC 22 is received, the counter value output from the time difference measurement counter 24 is acquired as the time data 206, and the header 201 is added to these data 202 to 206. In addition, transmission data 200 is created.
  • FIG. 4 is a diagram for explaining the acceleration detected by the acceleration sensor IC21.
  • the figure shows the detected value of acceleration in the X-axis direction.
  • the acceleration sensor IC 21 detects acceleration (X-axis acceleration in FIG. 4) at a predetermined sampling interval.
  • the sampling interval is measured by the count value of the reference clock bCLK by the time difference measurement counter 24.
  • the acceleration sensor IC 21 samples, for example, X-axis acceleration data (n), X-axis acceleration data (n + 1),... At a constant cycle such as about 3200 times / second.
  • the ODR that is the reciprocal of the sampling interval varies depending on individual differences and ambient temperature due to performance variations of the clock circuit and the like due to the manufacturing process of the acceleration sensor IC21. For this reason, if a frequency analysis is performed with a preset ODR, an error occurs. Therefore, in this embodiment, the sampling interval is measured by counting the reference clock signal bCLK.
  • FIG. 5 is a diagram showing transmission data 200 sequentially written in the transmission buffer 231.
  • acceleration data 202 to 204 including the X axis (n), Y axis (n), and Z axis (n), temperature data 205 of temperature (n), and time data 206 based on the counter value (n).
  • the transmission data 200 including the header 201 is generated by the transmission data generation unit 230, and the transmission data 200 is written in the transmission buffer 231.
  • acceleration data 202 to 204 composed of X axis (n + 1), Y axis (n + 1), and Z axis (n + 1), temperature data 205 of temperature (n + 1), and time data 206 based on counter value (n + 1).
  • the transmission data 200 including the header 201 is generated by the transmission data generation unit 230, and the transmission data 200 is written in the transmission buffer 231.
  • the transmission data 200 is sequentially created and overwritten in the transmission buffer 231. That is, the transmission data creating unit 230 creates the transmission data 200 every time the interrupt signal Si is transmitted from the acceleration sensor IC 21, and writes the transmission data 200 in the transmission buffer 231.
  • the transmission data 200 written in the transmission buffer 231 is sequentially transmitted to the logger unit 3 by the communication driver IC 25.
  • time data 206 included in a predetermined number (eg, 1024) of transmission data 200 is averaged, and the average value is used as the sampling interval for the FFT calculation.
  • FIG. 6 is a flowchart showing an example of the main processing routine of the CPU 23.
  • the CPU 23 executes a command processing routine. That is, after setting the 1-second timer (S1), it is determined whether or not a command is input (S2). If a command is input (S2: Yes), the command is processed (S3). Whether or not a command has been input is determined until the one-second timer expires (S4: Yes).
  • the data flag is checked (S5).
  • the data flag is “1”
  • acceleration data 202 to 204 output from the acceleration sensor IC 21 temperature data 205 output from the temperature sensor IC 22, time data 206 based on the count value acquired from the time difference measurement counter 24, and
  • the transmission data 200 is created from the header 201, the transmission data 200 is set in the transmission buffer 230, the transmission data is transmitted to the communication driver IC 25 (S6), and the data flag is set to “0” (S7).
  • FIG. 7 is a flowchart showing an example of the interrupt processing routine of the CPU 23.
  • the CPU 23 reads the acceleration data (S11), reads the temperature data (S12), reads the counter value (S13), and then the counter The value is cleared (S14), and the data flag is set to “1” (S15).
  • This abnormality diagnosis method includes a preparation process that is a preparation stage of diagnosis and a diagnosis process that diagnoses the device 6 after the preparation process is completed.
  • the preparation process the acceleration data acquired from the sensor unit 2 is subjected to spectrum analysis, the peak value of the spectrum for each frequency obtained by the spectrum analysis is extracted, and an abnormality is determined based on the extracted peak value for each frequency. Set the threshold.
  • the diagnostic process performs a spectrum analysis on the acceleration data acquired from the sensor unit 2 and determines whether or not an abnormality has occurred in the device 6 by comparing the analyzed spectrum analysis result with the threshold value set in the threshold setting. When it is determined that an abnormality has occurred in the device 6, a signal indicating the occurrence of the abnormality is output. In the abnormality determination, when the spectrum analysis result exceeds a threshold value at any frequency, it is determined that an abnormality has occurred in the device 6.
  • a threshold value based on the result of measuring vibration over a cycle time of 1000 times or 10,000 times, for example.
  • a sensor unit 2 capable of detecting vibration intensities in three directions perpendicular to each other is used, the same diagnosis is performed for each of these three directions.
  • a plurality of sensor units 2 are attached to the device 6, the same diagnosis as described above is performed for each of the plurality of sensor units 2.
  • the abnormality determination means 33 determines that an abnormality has occurred in the device 6 when the spectrum analysis result exceeds the threshold set by the threshold setting at any frequency. Such an abnormality can occur, for example, due to wear of the rolling bearing 63, damage to the gears in the movable portion 62, or excessive wear or breakage of the cutting tool.
  • the abnormality signal output means 34 outputs an abnormality signal indicating the occurrence of the abnormality. Specifically, an abnormal signal is output from the logger unit 3 to the programmable controller 7 by the processing of the abnormal signal output means 34.
  • the alarm device 8 is connected to the programmable controller 7.
  • the alarm device 8 notifies an operator of the occurrence of an abnormality, and is, for example, a lamp or a buzzer.
  • the programmable controller 7 stores in advance a sequence program constructed so as to activate the alarm device 8 when an abnormal signal is received from the logger unit 3. Moreover, the programmable controller 7 stops control of the apparatus 6 as needed, when an abnormal signal is received from the logger part 3.
  • the acceleration sensor IC 21 periodically detects the acceleration of vibration, measures the time interval at which the acceleration is detected, and sets the detected acceleration value and time interval detected by the acceleration sensor IC 21. Based on the spectrum analysis of the acceleration based on this, even if the time difference of the individual differences of the acceleration sensor IC21 varies depending on the ambient environment temperature, the error of the spectrum analysis can be suppressed. As a result, an abnormality occurring in the device 6 can be detected. That is, when the spectrum analysis result exceeds a threshold value at any frequency, it is determined that an abnormality has occurred in the device 6. It is possible to detect various abnormalities occurring in the device 6.
  • the abnormality diagnosis system and abnormality diagnosis method of the present invention have been described based on the embodiments.
  • the present invention is not limited to the above embodiments, and can be implemented in various modes without departing from the scope of the present invention. Is possible.
  • the case where the device 6 is a machine tool has been described.
  • the present invention is not limited to this, and various devices can be diagnosed.
  • the time data is transmitted to the logger unit as transmission data together with the detection data (acceleration data, temperature data).
  • the time data may be transmitted to the logger unit separately from the detection data.
  • the present invention can be applied to a machine tool or the like that performs predetermined machining or assembly on a workpiece.

Abstract

Provided are an abnormality diagnosis system and a vibration sensor that can detect an abnormality occurring in a device while suppressing frequency analysis errors even when a sampling interval of vibration acceleration by a vibration sensor fluctuates depending on the individual difference or use temperature environment. An abnormality diagnosis system 1 is provided with: a sensor 2 that is attached to a device 6 to be diagnosed and that periodically detects vibration acceleration and measures the time interval of the acceleration detection; a spectrum analysis means 32 for executing spectrum analysis for the acceleration on the basis of the detection value of the acceleration detected by the sensor 2 and the time interval; and an abnormality detection means for detecting an abnormality of the device 6 on the basis of a spectrum for each frequency acquired by the spectrum analysis means 32.

Description

異常診断システム及び振動センサAbnormality diagnosis system and vibration sensor
 本発明は、機器に発生する振動の解析結果に基づいて当該機器の異常を診断する異常診断システム及びこれに用いられる振動センサに関する。 The present invention relates to an abnormality diagnosis system for diagnosing abnormality of a device based on an analysis result of vibration generated in the device, and a vibration sensor used for the abnormality diagnosis system.
 従来、機器に発生する振動の解析結果に基づいて当該機器の異常を診断する異常診断装置が知られている(例えば、特許文献1参照)。 Conventionally, an abnormality diagnosis device that diagnoses an abnormality of a device based on an analysis result of vibration generated in the device is known (see, for example, Patent Document 1).
 特許文献1に記載の異常診断装置(評価装置)は、機械設備から発生した音又は振動のアナログ信号を出力する振動検出手段と、振動検出手段が出力するアナログ信号を増幅する増幅手段と、増幅手段によって増幅されたアナログ信号をデジタル信号に変換するAD変換手段と、このAD変換手段の出力に対して周波数解析を行って実測周波数スペクトルデータを生成すると共に、機械設備の異常に起因して発生する周波数成分の1次値、2次値、4次値に対する実測周波数スペクトルデータ上のピークの有無により、機械設備に対する異常の有無の診断を行う演算処理手段とを備えている。 An abnormality diagnosis apparatus (evaluation apparatus) described in Patent Document 1 includes a vibration detection unit that outputs an analog signal of sound or vibration generated from mechanical equipment, an amplification unit that amplifies the analog signal output by the vibration detection unit, and an amplification AD conversion means for converting the analog signal amplified by the means into a digital signal, and frequency analysis is performed on the output of the AD conversion means to generate measured frequency spectrum data, and it is generated due to an abnormality in the mechanical equipment Arithmetic processing means for diagnosing whether there is an abnormality in the mechanical equipment based on the presence / absence of a peak on the measured frequency spectrum data with respect to the primary value, the secondary value, and the quaternary value of the frequency component.
特開2003-130763号公報Japanese Patent Laid-Open No. 2003-130763
 上記の振動検出手段、増幅手段及びAD変換手段を実現するセンサとしては、一般に、それぞれが個別にユニット化された圧電素子型加速度計が用いられている。 As a sensor for realizing the vibration detecting means, the amplifying means, and the AD converting means, generally, a piezoelectric element type accelerometer, each of which is individually unitized, is used.
 一方、近年は半導体MEMS(Micro Electro Mechanical Systems)技術の進歩により振動加速度を計測し、数値化し、デジタル出力する機能を一体としたデジタル出力型MEMS加速度IC(以下、単に「加速度センサIC」という。)が安価に入手できるようになり、圧電素子型加速度計に比べて安価に製造できるようになっている。 On the other hand, in recent years, a digital output type MEMS acceleration IC (hereinafter simply referred to as an “acceleration sensor IC”) integrated with a function of measuring, quantifying and digitally outputting vibration acceleration due to advances in semiconductor MEMS (Micro Electro Mechanical Systems) technology. ) Can be obtained at a low cost, and can be manufactured at a lower cost than a piezoelectric element type accelerometer.
 周波数解析では、例えば、一定時間間隔T秒毎にサンプリングされたデータを基にFFT(Fast Fourier Transform:高速フーリエ変換)演算を行うが、一定時間間隔Tの逆数はODR(Output Data Rate)と呼ばれ、1秒間に出力されるデータの数量を表し、大きいほど高周波領域までの計測が可能となる性能指標である。安価な加速度センサICのODRは個体毎に特性バラツキがある他、使用温度環境によっても変動する。加速度センサICに設定されたODRと実際のODRが異なると、周波数解析の際は設定したODRで演算するため、解析結果に誤差が生じてしまう。 In frequency analysis, for example, FFT (Fast Fourier Transform) is performed based on data sampled every fixed time interval T seconds, and the inverse of the fixed time interval T is called ODR (Output Data Rate). It represents the quantity of data output per second, and is a performance index that enables measurement up to a high frequency region as the value increases. The ODR of an inexpensive acceleration sensor IC has a characteristic variation for each individual and also varies depending on the operating temperature environment. If the ODR set in the acceleration sensor IC is different from the actual ODR, an error is generated in the analysis result because the calculation is performed with the set ODR in the frequency analysis.
 そこで、本発明は、振動センサによる振動の加速度のサンプリング間隔が個体差や使用温度環境によって変動しても、周波数解析の誤差を抑制して機器に発生する異常を検出することが可能な異常診断システム及びこれに用いられる振動センサを提供することを目的とする。 Therefore, the present invention provides an abnormality diagnosis capable of detecting an abnormality occurring in a device while suppressing an error in frequency analysis even if the sampling interval of vibration acceleration by the vibration sensor varies depending on individual differences or operating temperature environment. It is an object to provide a system and a vibration sensor used therefor.
 本発明は、上記の目的を達成するため、診断対象の機器に発生する振動を測定して当該機器の異常を診断する異常診断システムであって、前記機器に取り付けられ、振動の加速度を周期的に検出するとともに、前記加速度を検出した時間間隔を測定する振動センサと、前記振動センサにより検出された前記加速度の検出値及び前記時間間隔に基づいて前記加速度をスペクトル解析するスペクトル解析手段と、前記スペクトル解析手段によって得られた周波数ごとのスペクトルに基づいて前記機器の異常を検知する異常検知手段と、を有する異常診断システムを提供する。 In order to achieve the above-mentioned object, the present invention is an abnormality diagnosis system for diagnosing abnormality of a device by measuring vibration generated in the device to be diagnosed, which is attached to the device and periodically determines acceleration of vibration. A vibration sensor for measuring a time interval at which the acceleration is detected, a spectrum analysis means for spectrally analyzing the acceleration based on the detected value of the acceleration detected by the vibration sensor and the time interval, There is provided an abnormality diagnosis system having abnormality detection means for detecting an abnormality of the device based on a spectrum for each frequency obtained by a spectrum analysis means.
 また、本発明は、上記の目的を達成するため、診断対象の機器に取り付けられ、振動の加速度を周期的に検出するとともに、前記加速度を検出した時間間隔を測定する振動センサを提供する。 Further, in order to achieve the above object, the present invention provides a vibration sensor that is attached to a device to be diagnosed and periodically detects the acceleration of vibration and measures the time interval at which the acceleration is detected.
 本発明に係る異常診断システム及び振動センサによれば、振動センサによる振動加速度のサンプリング間隔が個体差や使用温度環境によって変動しても、周波数解析の誤差を抑制して機器に発生する異常を検出することが可能となる。 According to the abnormality diagnosis system and the vibration sensor according to the present invention, even if the sampling interval of vibration acceleration by the vibration sensor fluctuates due to individual differences or operating temperature environment, an error occurring in the device is detected by suppressing frequency analysis error. It becomes possible to do.
本発明の実施の形態に係る異常診断システムを、診断対象の機器、及び機器を制御するプログラマブルコントローラと共に示す概略構成図である。It is a schematic block diagram which shows the abnormality diagnosis system which concerns on embodiment of this invention with the programmable controller which controls the apparatus of diagnosis object, and an apparatus. センサ部の構成例を示すブロック図である。It is a block diagram which shows the structural example of a sensor part. センサ部が出力する送信データの一例を示す図である。It is a figure which shows an example of the transmission data which a sensor part outputs. 加速度センサICが検出する加速度を説明するための図である。It is a figure for demonstrating the acceleration which acceleration sensor IC detects. 送信バッファに順次書き込まれる送信データを示す図である。It is a figure which shows the transmission data sequentially written in a transmission buffer. センサ部のCPUのメイン処理ルーチンを示すフローチャートである。It is a flowchart which shows the main process routine of CPU of a sensor part. センサ部のCPU割込処理ルーチンを示すフローチャートである。It is a flowchart which shows the CPU interruption process routine of a sensor part.
[実施の形態]
 本発明の実施の形態について、図1乃至図7を参照して説明する。なお、以下に説明する実施の形態は、本発明を実施する上での好適な具体例として示すものであり、技術的に好ましい種々の技術的事項を具体的に例示している部分もあるが、本発明の技術的範囲は、この具体的態様に限定されるものではない。
[Embodiment]
Embodiments of the present invention will be described with reference to FIGS. In addition, although embodiment described below is shown as a suitable specific example in implementing this invention, although there are some parts which have illustrated various technical matters that are technically preferable. The technical scope of the present invention is not limited to this specific embodiment.
 図1は、本発明の実施の形態に係る異常診断システム1を、診断対象の機器6、及び機器6を制御するプログラマブルコントローラ7と共に示す概略構成図である。この異常診断システム1は、機器6に発生する振動を測定して、機器6の異常を診断する。 FIG. 1 is a schematic configuration diagram showing an abnormality diagnosis system 1 according to an embodiment of the present invention, together with a device 6 to be diagnosed and a programmable controller 7 that controls the device 6. The abnormality diagnosis system 1 diagnoses an abnormality of the device 6 by measuring vibration generated in the device 6.
 異常診断システム1は、機器6に取り付けられるセンサ部2と、センサ部2から送信された送信データ200(図3参照)を取得して記憶するロガー部3と、ロガー部3に接続されたコンピュータ4とを有して構成されている。 The abnormality diagnosis system 1 includes a sensor unit 2 attached to the device 6, a logger unit 3 that acquires and stores transmission data 200 (see FIG. 3) transmitted from the sensor unit 2, and a computer connected to the logger unit 3. 4.
 機器6は、例えば所定のサイクルタイムで工作物に対して所定の加工や組み付けを行う工作機械であり、電動モータ61や、電動モータ61によって駆動される可動部62、及び可動部62の動作を円滑にするための転がり軸受63等が含まれる。このように構成された機器6の電動モータ61や可動部62もしくはその近傍にボルト等によってセンサ部2が固定される。 The device 6 is a machine tool that performs predetermined machining and assembly on a workpiece in a predetermined cycle time, for example, and the electric motor 61, the movable portion 62 driven by the electric motor 61, and the operation of the movable portion 62. A rolling bearing 63 and the like for smoothness are included. The sensor unit 2 is fixed to the electric motor 61 and the movable unit 62 of the device 6 configured as described above or the vicinity thereof by bolts or the like.
 センサ部2は、振動の加速度を周期的に検出するとともに、温度を検出し、加速度を検出した時間間隔を測定し、これらを送信データ200としてロガー部3に送信する。なお、センサ部2の詳細については後述する。 The sensor unit 2 periodically detects the acceleration of vibration, detects the temperature, measures the time interval at which the acceleration is detected, and transmits these as transmission data 200 to the logger unit 3. Details of the sensor unit 2 will be described later.
 ロガー部3は、センサ部2とシリアル通信線25dにより接続され、シリアル通信線25dを介したシリアル通信によってセンサ部2からの送信データ200を受信する。また、ロガー部3は、CPU(演算処理装置)及びROMやRAM等の記憶部を有し、CPUが記憶部に記憶されたプログラムを実行することにより、データ記憶手段31、スペクトル解析手段32、異常判定手段33、異常信号出力手段34等として機能する。異常判定手段33及び異常信号出力手段34は、異常検知手段の一例である。 The logger unit 3 is connected to the sensor unit 2 through the serial communication line 25d, and receives the transmission data 200 from the sensor unit 2 through serial communication via the serial communication line 25d. The logger unit 3 includes a CPU (arithmetic processing unit) and a storage unit such as a ROM and a RAM. The CPU executes a program stored in the storage unit, whereby a data storage unit 31, a spectrum analysis unit 32, It functions as an abnormality determination means 33, an abnormality signal output means 34, and the like. The abnormality determination unit 33 and the abnormality signal output unit 34 are examples of an abnormality detection unit.
 データ記憶手段31は、センサ部2から受信した送信データ200を記憶部に記憶する手段である。 The data storage unit 31 is a unit that stores the transmission data 200 received from the sensor unit 2 in the storage unit.
 スペクトル解析手段32は、センサ部2から送信された送信データ200に含まれる加速度データをスペクトル解析する手段である。より具体的には、スペクトル解析手段32は、データ記憶手段31によって記憶部に記憶されたセンサ部2の加速度データをFFT演算し、周波数ごとの振動の強度(加速度)を演算する。なお、スペクトル解析手段32によるFFT演算について後述する。 The spectrum analysis unit 32 is a unit that performs spectrum analysis on the acceleration data included in the transmission data 200 transmitted from the sensor unit 2. More specifically, the spectrum analysis unit 32 performs an FFT operation on the acceleration data of the sensor unit 2 stored in the storage unit by the data storage unit 31 and calculates the intensity (acceleration) of vibration for each frequency. The FFT calculation by the spectrum analysis unit 32 will be described later.
 異常判定手段33は、スペクトル解析手段32によって得られたスペクトル解析結果が、何れかの周波数において後述するコンピュータ4により設定された閾値を超えたとき、機器6に異常が発生したと判定する手段である。 The abnormality determination means 33 is a means for determining that an abnormality has occurred in the device 6 when the spectrum analysis result obtained by the spectrum analysis means 32 exceeds a threshold set by the computer 4 described later at any frequency. is there.
 異常信号出力手段34は、異常判定手段33により機器6に異常が発生したと判定されたとき、当該異常の発生を示す異常信号を出力する手段である。 The abnormality signal output means 34 is a means for outputting an abnormality signal indicating the occurrence of the abnormality when the abnormality determination means 33 determines that an abnormality has occurred in the device 6.
 コンピュータ4は、例えば無線LANや通信線によってロガー部3に接続され、ロガー部3との双方向の通信が可能である。また、コンピュータ4は、予めハードディスク等に記憶されたプログラムをCPUが実行することにより、ピーク値抽出手段41、閾値設定手段42等として機能する。 The computer 4 is connected to the logger unit 3 by, for example, a wireless LAN or a communication line, and can perform bidirectional communication with the logger unit 3. The computer 4 functions as a peak value extraction unit 41, a threshold setting unit 42, and the like when the CPU executes a program stored in advance in a hard disk or the like.
 ピーク値抽出手段41は、スペクトル解析手段32によって得られた周波数ごとのスペクトルのピーク値を抽出する。ここで、「ピーク値」とは、所定の期間にわたるスペクトル解析結果における当該周波数の振動強度の最大値である。閾値設定手段42は、ピーク値抽出手段41によって抽出された周波数ごとのピーク値に基づいて、異常と判定する閾値を設定する。設定された閾値は、ロガー部3に送信され、ロガー部3はこの閾値を記憶する。 The peak value extraction means 41 extracts the peak value of the spectrum for each frequency obtained by the spectrum analysis means 32. Here, the “peak value” is the maximum value of the vibration intensity at the frequency in the spectrum analysis result over a predetermined period. The threshold setting unit 42 sets a threshold value for determining an abnormality based on the peak value for each frequency extracted by the peak value extracting unit 41. The set threshold value is transmitted to the logger unit 3, and the logger unit 3 stores this threshold value.
 本実施の形態では、閾値設定手段42が、ピーク値抽出手段41によって抽出された周波数ごとのピーク値に所定値を加算した値を閾値として設定する。この所定値は、小さければ異常の誤検出が頻発し、大きすぎると異常が発生していてもその異常を検出することができない。したがって、この所定値は、機器6の正常時には振動強度が閾値を超えることがなく、かつ異常発生時には異常の発生を確実に検出することができる値に設定される。 In this embodiment, the threshold setting unit 42 sets a value obtained by adding a predetermined value to the peak value for each frequency extracted by the peak value extracting unit 41 as a threshold. If this predetermined value is small, erroneous detection of abnormality frequently occurs, and if it is too large, the abnormality cannot be detected even if an abnormality has occurred. Therefore, this predetermined value is set to a value that does not cause the vibration intensity to exceed the threshold value when the device 6 is normal and can reliably detect the occurrence of the abnormality when the abnormality occurs.
 また、コンピュータ4には、表示装置51が接続されており、スペクトル解析手段32による解析結果や、データ記憶手段31によって記憶されたセンサ部2の検出値の情報、及び閾値設定手段42によって設定された閾値の情報を表示画面に表示してユーザに提示することが可能である。ユーザは、コンピュータ4の入力装置52(キーボードやマウス等のポインティングデバイス)を操作して、閾値を編集することが可能である。閾値設定手段42によって設定された閾値がユーザによって編集された場合、その編集された閾値の情報は、ロガー部3に送信されて記憶される。 Further, a display device 51 is connected to the computer 4, and is set by the analysis result by the spectrum analysis unit 32, the information of the detection value of the sensor unit 2 stored by the data storage unit 31, and the threshold setting unit 42. The threshold value information can be displayed on the display screen and presented to the user. The user can edit the threshold value by operating the input device 52 (a pointing device such as a keyboard or a mouse) of the computer 4. When the threshold set by the threshold setting means 42 is edited by the user, the edited threshold information is transmitted to the logger unit 3 and stored.
 図2は、センサ部2の概略の構成例を示すブロック図である。センサ部2は、加速度センサIC(Integrated Circuit)21と、温度センサIC22と、CPU23と、時間差計測カウンタ24と、通信ドライバーIC25とを備える。 FIG. 2 is a block diagram illustrating a schematic configuration example of the sensor unit 2. The sensor unit 2 includes an acceleration sensor IC (Integrated Circuit) 21, a temperature sensor IC 22, a CPU 23, a time difference measurement counter 24, and a communication driver IC 25.
 加速度センサIC21は、振動の加速度を設定されたODR(例えば、3200Hz)で検出し、検出した振動の強度(加速度)に応じた検出値をデジタル出力するデジタル出力型MEMSセンサである。すなわち、加速度センサIC21は、互いに垂直な3方向(X方向、Y方向、Z方向)の加速度を同時に検出する検出部や加速度の検出値をデジタルデータ(加速度データ)として出力するデジタル出力部がMEMS技術によって一体に形成されている。加速度センサIC21は、CPU23からクロック線21aを介して送信されたクロック信号CLKに同期して加速度を検出し、検出した加速度の検出値をデジタルデータ(加速度データ)としてデータ線21bを介してCPU23に送信する。また、加速度センサIC21は、加速度を検出するごとに割り込み信号Siを割込線21cを介してCPU23に送信する。 The acceleration sensor IC 21 is a digital output type MEMS sensor that detects vibration acceleration with a set ODR (for example, 3200 Hz) and digitally outputs a detection value corresponding to the detected vibration intensity (acceleration). That is, the acceleration sensor IC 21 includes a detection unit that simultaneously detects accelerations in three directions perpendicular to each other (X direction, Y direction, and Z direction) and a digital output unit that outputs detection values of acceleration as digital data (acceleration data). It is integrally formed by technology. The acceleration sensor IC21 detects acceleration in synchronization with the clock signal CLK transmitted from the CPU 23 via the clock line 21a, and detects the detected acceleration value as digital data (acceleration data) to the CPU 23 via the data line 21b. Send. The acceleration sensor IC 21 transmits an interrupt signal Si to the CPU 23 via the interrupt line 21c every time it detects acceleration.
 温度センサIC22は、CPU23からクロック線22aを介して送信されたクロック信号CLKに同期して温度を検出し、検出した温度をデジタルデータ(温度データ)としてデータ線22bを介してCPU23に送信する。 The temperature sensor IC 22 detects the temperature in synchronization with the clock signal CLK transmitted from the CPU 23 via the clock line 22a, and transmits the detected temperature to the CPU 23 via the data line 22b as digital data (temperature data).
 CPU23は、送信データ200を作成する送信データ作成手段230と、送信データ200が書き込まれる送信バッファ231とを備える。CPU23は、ROMやRAM等の記憶部(図示省略)に記憶されたプログラムを実行することにより、送信データ作成手段230等として機能する。 The CPU 23 includes a transmission data creating unit 230 that creates the transmission data 200 and a transmission buffer 231 in which the transmission data 200 is written. The CPU 23 functions as the transmission data creation unit 230 and the like by executing a program stored in a storage unit (not shown) such as a ROM or a RAM.
 送信データ作成手段230は、クロック信号CLKに同期して、加速度センサIC21から送信される加速度データ202~204、温度センサIC22から送信される温度データ205、時間差計測カウンタ24から取得するカウント値による時間データ206、及びヘッダ201からなる送信データ200(図3参照)を作成する。 The transmission data creating means 230 is synchronized with the clock signal CLK, the acceleration data 202 to 204 transmitted from the acceleration sensor IC 21, the temperature data 205 transmitted from the temperature sensor IC 22, and the time based on the count value acquired from the time difference measurement counter 24. Transmission data 200 (see FIG. 3) including data 206 and header 201 is created.
 時間差計測カウンタ24は、CPU23からクロック線24aを介して送信される基準クロック信号bCLKをカウントし、信号線24dを介して送信されたデータ読取信号に基づいてカウント値をデータバス24cに出力し、CPU23からカウントリセット信号線24bを介して送信されるカウントリセット信号CRSによってカウント値をリセットする。なお、時間差計測カウンタ24をCPU23に設けてもよい。 The time difference measurement counter 24 counts the reference clock signal bCLK transmitted from the CPU 23 via the clock line 24a, and outputs a count value to the data bus 24c based on the data read signal transmitted via the signal line 24d. The count value is reset by the count reset signal CRS transmitted from the CPU 23 via the count reset signal line 24b. The time difference measurement counter 24 may be provided in the CPU 23.
 通信ドライバーIC25は、CPU23の送信バッファ230から送信線25aを介して送信データ200を受信する。通信ドライバーIC25は、ロガー部3側からサンプリング指令を示すコマンドが送られてくると、そのコマンドを受信線25bを介してCPU23に送信する。通信ドライバーIC25は、CPU23から使用する送信線25a又は受信線25bの情報が制御線25cを介して送信される。通信ドライバーIC25は、送信データ200をシリアル通信線25dを介してロガー部3に送信する。 The communication driver IC 25 receives the transmission data 200 from the transmission buffer 230 of the CPU 23 via the transmission line 25a. When a command indicating a sampling command is sent from the logger unit 3 side, the communication driver IC 25 transmits the command to the CPU 23 via the reception line 25b. The communication driver IC 25 transmits information of the transmission line 25a or the reception line 25b used from the CPU 23 via the control line 25c. The communication driver IC 25 transmits the transmission data 200 to the logger unit 3 via the serial communication line 25d.
 図3は、送信データ200のデータフォーマットの一例を示す図である。送信データ200は、図3に示すように、送信データ200の先頭を示すヘッダ201と、加速度の検出値としてのX軸加速度データ202、Y軸加速度データ203及びZ軸加速度データ204と、温度データ205と、時間データ206とを含む。ここで時間データ206は、時間間隔の一例である。ヘッダ201は1バイト、他のデータ202~206は2バイトで構成される。 FIG. 3 is a diagram illustrating an example of the data format of the transmission data 200. As shown in FIG. 3, the transmission data 200 includes a header 201 indicating the head of the transmission data 200, X-axis acceleration data 202, Y-axis acceleration data 203 and Z-axis acceleration data 204 as detected acceleration values, and temperature data. 205 and time data 206 are included. Here, the time data 206 is an example of a time interval. The header 201 is composed of 1 byte, and the other data 202 to 206 are composed of 2 bytes.
 送信データ作成手段230は、加速度センサIC21から送信されるX軸、Y軸、X軸のそれぞれの加速度の検出値としてのX軸加速度データ202、Y軸加速度データ203及びZ軸加速度データ204を受信し、温度センサIC22から送信される温度の検出値としての温度データ205を受信し、時間差計測カウンタ24から出力されるカウンタ値を時間データ206として取得し、これらのデータ202~206にヘッダ201を付加して送信データ200を作成する。 The transmission data creation means 230 receives the X-axis acceleration data 202, the Y-axis acceleration data 203, and the Z-axis acceleration data 204 as detected values of the X-axis, Y-axis, and X-axis accelerations transmitted from the acceleration sensor IC21. Then, the temperature data 205 as the detected temperature value transmitted from the temperature sensor IC 22 is received, the counter value output from the time difference measurement counter 24 is acquired as the time data 206, and the header 201 is added to these data 202 to 206. In addition, transmission data 200 is created.
 図4は、加速度センサIC21が検出する加速度を説明するための図である。なお、同図は、X軸方向の加速度の検出値を示す。加速度センサIC21は、加速度(図4ではX軸加速度)を所定のサンプリング間隔で検出する。サンプリング間隔は、時間差計測カウンタ24による基準クロックbCLKのカウント値で測定される。加速度センサIC21は、例えば、約3200回/秒等の一定の周期でX軸加速度データ(n)、X軸加速度データ(n+1)、・・・のようにサンプリングする。サンプリング間隔の逆数のODRは、加速度センサIC21の製造プロセスに起因したクロック回路等の性能バラツキにより個体差や、使用周囲温度によって変動する。このため、予め設定したODRで周波数解析を行うと、誤差が生じることから、本実施の形態では、サンプリング間隔を基準クロック信号bCLKをカウントすることで計測している。 FIG. 4 is a diagram for explaining the acceleration detected by the acceleration sensor IC21. The figure shows the detected value of acceleration in the X-axis direction. The acceleration sensor IC 21 detects acceleration (X-axis acceleration in FIG. 4) at a predetermined sampling interval. The sampling interval is measured by the count value of the reference clock bCLK by the time difference measurement counter 24. The acceleration sensor IC 21 samples, for example, X-axis acceleration data (n), X-axis acceleration data (n + 1),... At a constant cycle such as about 3200 times / second. The ODR that is the reciprocal of the sampling interval varies depending on individual differences and ambient temperature due to performance variations of the clock circuit and the like due to the manufacturing process of the acceleration sensor IC21. For this reason, if a frequency analysis is performed with a preset ODR, an error occurs. Therefore, in this embodiment, the sampling interval is measured by counting the reference clock signal bCLK.
 図5は、送信バッファ231に順次書き込まれる送信データ200を示す図である。ある検出タイミングでは、X軸(n)、Y軸(n)、Z軸(n)からなる加速度データ202~204と、温度(n)の温度データ205と、カウンタ値(n)による時間データ206と、ヘッダ201とを含む送信データ200が送信データ作成手段230により作成され、送信データ200が送信バッファ231に書き込まれる。次のタイミングでは、X軸(n+1)、Y軸(n+1)、Z軸(n+1)からなる加速度データ202~204と、温度(n+1)の温度データ205と、カウンタ値(n+1)による時間データ206と、ヘッダ201とを含む送信データ200が送信データ作成手段230により作成され、送信データ200が送信バッファ231に書き込まれる。このようにして順次送信データ200が作成され、送信バッファ231に上書きされる。すなわち、送信データ作成手段230は、加速度センサIC21から割り込み信号Siが送信される度に送信データ200を作成し、送信データ200を送信バッファ231に書き込む。送信バッファ231に書き込まれる送信データ200は、順次通信ドライバーIC25によりロガー部3に送信される。 FIG. 5 is a diagram showing transmission data 200 sequentially written in the transmission buffer 231. At a certain detection timing, acceleration data 202 to 204 including the X axis (n), Y axis (n), and Z axis (n), temperature data 205 of temperature (n), and time data 206 based on the counter value (n). The transmission data 200 including the header 201 is generated by the transmission data generation unit 230, and the transmission data 200 is written in the transmission buffer 231. At the next timing, acceleration data 202 to 204 composed of X axis (n + 1), Y axis (n + 1), and Z axis (n + 1), temperature data 205 of temperature (n + 1), and time data 206 based on counter value (n + 1). The transmission data 200 including the header 201 is generated by the transmission data generation unit 230, and the transmission data 200 is written in the transmission buffer 231. In this way, the transmission data 200 is sequentially created and overwritten in the transmission buffer 231. That is, the transmission data creating unit 230 creates the transmission data 200 every time the interrupt signal Si is transmitted from the acceleration sensor IC 21, and writes the transmission data 200 in the transmission buffer 231. The transmission data 200 written in the transmission buffer 231 is sequentially transmitted to the logger unit 3 by the communication driver IC 25.
 スペクトル解析手段32によるFFT演算では、所定数(例えば、1024個)の送信データ200に含まれる時間データ206を平均し、その平均値をサンプリング間隔としてFFT演算に用いる。これにより加速度センサIC21の個体差や周囲温度環境によりサンプリング間隔が変動してもその影響を抑制して周波数解析を行うことができる。 In the FFT calculation by the spectrum analysis unit 32, time data 206 included in a predetermined number (eg, 1024) of transmission data 200 is averaged, and the average value is used as the sampling interval for the FFT calculation. As a result, even if the sampling interval varies due to individual differences of the acceleration sensor IC 21 or the ambient temperature environment, the influence can be suppressed and the frequency analysis can be performed.
(センサ部2の動作)
 次に、センサ部2の動作を図6及び図7のフローチャートに従って説明する。
(Operation of sensor unit 2)
Next, the operation of the sensor unit 2 will be described with reference to the flowcharts of FIGS.
 図6は、CPU23のメイン処理ルーチンの一例を示すフローチャートである。まず、CPU23は、コマンド処理ルーチンを実行する。すなわち、1秒タイマをセットした後(S1)、コマンドが入力されているか否かを判断し(S2)、コマンドが入力されている場合は(S2:Yes)、コマンドを処理する(S3)。コマンドが入力されているか否かの判断は、1秒タイマがタイムアップするまで行う(S4:Yes)。 FIG. 6 is a flowchart showing an example of the main processing routine of the CPU 23. First, the CPU 23 executes a command processing routine. That is, after setting the 1-second timer (S1), it is determined whether or not a command is input (S2). If a command is input (S2: Yes), the command is processed (S3). Whether or not a command has been input is determined until the one-second timer expires (S4: Yes).
 1秒タイマがタイムアップすると(S4:Yes)、CPU23は、データ送信処理ルーチンを実行する。 When the 1-second timer expires (S4: Yes), the CPU 23 executes a data transmission processing routine.
 データ送信処理ルーチンでは、データフラッグを調べる(S5)。データフラグが「1」の場合は、加速度センサIC21から出力される加速度データ202~204と、温度センサIC22から出力される温度データ205と、時間差計測カウンタ24から取得したカウント値による時間データ206と、ヘッダ201とから送信データ200を作成し、送信データ200を送信バッファ230にセットし、送信データを通信ドライバーIC25に送信し(S6)、データフラグを「0」にする(S7)。 In the data transmission processing routine, the data flag is checked (S5). When the data flag is “1”, acceleration data 202 to 204 output from the acceleration sensor IC 21, temperature data 205 output from the temperature sensor IC 22, time data 206 based on the count value acquired from the time difference measurement counter 24, and The transmission data 200 is created from the header 201, the transmission data 200 is set in the transmission buffer 230, the transmission data is transmitted to the communication driver IC 25 (S6), and the data flag is set to “0” (S7).
 図7は、CPU23の割込処理ルーチンの一例を示すフローチャートである。加速度センサIC21から割込線21cを介して割り込み信号Siが送信されると、CPU23は、加速度データを読み取り(S11)、温度データを読み取り(S12)、カウンタ値を読み取った後(S13)、カウンタ値をクリアし(S14)、データフラグを「1」にする(S15)。 FIG. 7 is a flowchart showing an example of the interrupt processing routine of the CPU 23. When the interrupt signal Si is transmitted from the acceleration sensor IC 21 via the interrupt line 21c, the CPU 23 reads the acceleration data (S11), reads the temperature data (S12), reads the counter value (S13), and then the counter The value is cleared (S14), and the data flag is set to “1” (S15).
(異常診断方法)
 次に、この異常診断システム1における異常診断方法について説明する。
(Abnormal diagnosis method)
Next, an abnormality diagnosis method in the abnormality diagnosis system 1 will be described.
 この異常診断方法は、診断の準備段階である準備処理と、準備処理の完了後に機器6の診断を行う診断処理とを有している。準備処理は、センサ部2から取得された加速度データをスペクトル解析し、スペクトル解析により得られた周波数ごとのスペクトルのピーク値を抽出し、抽出された周波数ごとのピーク値に基づいて異常と判定する閾値を設定する。 This abnormality diagnosis method includes a preparation process that is a preparation stage of diagnosis and a diagnosis process that diagnoses the device 6 after the preparation process is completed. In the preparation process, the acceleration data acquired from the sensor unit 2 is subjected to spectrum analysis, the peak value of the spectrum for each frequency obtained by the spectrum analysis is extracted, and an abnormality is determined based on the extracted peak value for each frequency. Set the threshold.
 診断処理は、センサ部2から取得された加速度データをスペクトル解析し、解析されたスペクトル解析結果と閾値設定で設定された閾値との比較によって機器6に異常が発生したか否かを判定し、機器6に異常が発生したと判定されたとき、当該異常の発生を示す信号を出力する。異常判定では、スペクトル解析結果が何れかの周波数において閾値を超えたとき、機器6に異常が発生したと判定する。 The diagnostic process performs a spectrum analysis on the acceleration data acquired from the sensor unit 2 and determines whether or not an abnormality has occurred in the device 6 by comparing the analyzed spectrum analysis result with the threshold value set in the threshold setting. When it is determined that an abnormality has occurred in the device 6, a signal indicating the occurrence of the abnormality is output. In the abnormality determination, when the spectrum analysis result exceeds a threshold value at any frequency, it is determined that an abnormality has occurred in the device 6.
 なお、機器6の異常の誤検出を防ぐために、例えば1000回あるいは10000回以上のサイクルタイムにわたって振動を測定した結果に基づいて閾値を設定することが望ましい。また、センサ部2として、互いに垂直な3方向の振動強度を検出することが可能なものを用いた場合には、これら3方向のそれぞれについて同様の診断を行う。またさらに、機器6に複数のセンサ部2を取り付けた場合には、複数のセンサ部2のそれぞれについて、上記と同様の診断を行う。 In order to prevent erroneous detection of an abnormality in the device 6, it is desirable to set a threshold value based on the result of measuring vibration over a cycle time of 1000 times or 10,000 times, for example. Further, when a sensor unit 2 capable of detecting vibration intensities in three directions perpendicular to each other is used, the same diagnosis is performed for each of these three directions. Furthermore, when a plurality of sensor units 2 are attached to the device 6, the same diagnosis as described above is performed for each of the plurality of sensor units 2.
 このように、異常判定手段33は、スペクトル解析結果が何れかの周波数において閾値設定で設定された閾値を超えたとき、機器6に異常が発生したと判定する。このような異常は、例えば転がり軸受63の摩耗や、可動部62における歯車の損傷、あるいは刃具の過度な摩耗や折損等により発生し得る。そして、機器6に異常が発生したと判定されたとき、異常信号出力手段34は、異常の発生を示す異常信号を出力する。具体的には、異常信号出力手段34の処理によってロガー部3からプログラマブルコントローラ7に異常信号が出力される。 As described above, the abnormality determination means 33 determines that an abnormality has occurred in the device 6 when the spectrum analysis result exceeds the threshold set by the threshold setting at any frequency. Such an abnormality can occur, for example, due to wear of the rolling bearing 63, damage to the gears in the movable portion 62, or excessive wear or breakage of the cutting tool. When it is determined that an abnormality has occurred in the device 6, the abnormality signal output means 34 outputs an abnormality signal indicating the occurrence of the abnormality. Specifically, an abnormal signal is output from the logger unit 3 to the programmable controller 7 by the processing of the abnormal signal output means 34.
 プログラマブルコントローラ7には、警報装置8が接続されている。警報装置8は、異常の発生を作業者等に報知するものであり、例えばランプやブザーである。プログラマブルコントローラ7には、ロガー部3から異常信号を受け付けたときに警報装置8を作動させるように構築されたシーケンスプログラムが予め記憶されている。また、プログラマブルコントローラ7は、ロガー部3から異常信号を受け付けたとき、必要に応じて機器6の制御を停止する。 The alarm device 8 is connected to the programmable controller 7. The alarm device 8 notifies an operator of the occurrence of an abnormality, and is, for example, a lamp or a buzzer. The programmable controller 7 stores in advance a sequence program constructed so as to activate the alarm device 8 when an abnormal signal is received from the logger unit 3. Moreover, the programmable controller 7 stops control of the apparatus 6 as needed, when an abnormal signal is received from the logger part 3. FIG.
(実施の形態の作用及び効果)
 以上説明した実施の形態によれば、加速度センサIC21が振動の加速度を周期的に検出するとともに、加速度を検出した時間間隔を測定し、加速度センサIC21により検出された加速度の検出値及び時間間隔に基づいて加速度をスペクトル解析することにより、時間間隔が加速度センサIC21の個体差は周囲環境温度によって変動してもスペクトル解析の誤差を抑制できる。この結果、機器6に発生する異常を検出することが可能になる。すなわち、スペクトル解析結果が何れかの周波数において閾値を超えたとき、機器6に異常が発生したと判定される。機器6に発生する多様な異常の発生を検出することが可能となる。
(Operation and effect of the embodiment)
According to the embodiment described above, the acceleration sensor IC 21 periodically detects the acceleration of vibration, measures the time interval at which the acceleration is detected, and sets the detected acceleration value and time interval detected by the acceleration sensor IC 21. Based on the spectrum analysis of the acceleration based on this, even if the time difference of the individual differences of the acceleration sensor IC21 varies depending on the ambient environment temperature, the error of the spectrum analysis can be suppressed. As a result, an abnormality occurring in the device 6 can be detected. That is, when the spectrum analysis result exceeds a threshold value at any frequency, it is determined that an abnormality has occurred in the device 6. It is possible to detect various abnormalities occurring in the device 6.
(付記)
 以上、本発明の異常診断システム及び異常診断方法を実施の形態に基づいて説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。例えば、上記実施の形態では、機器6が工作機械である場合について説明したが、これに限らず、様々な機器を診断対象とすることが可能である。また、上記実施の形態では、時間データを検出データ(加速度データ、温度データ)とともに送信データとしてロガー部に送信したが、時間データを検出データとは別にロガー部に送信してもよい。また、時間データとともに送信する検出データとして加速度データのみとしてもよい。
(Appendix)
As described above, the abnormality diagnosis system and abnormality diagnosis method of the present invention have been described based on the embodiments. However, the present invention is not limited to the above embodiments, and can be implemented in various modes without departing from the scope of the present invention. Is possible. For example, in the above-described embodiment, the case where the device 6 is a machine tool has been described. However, the present invention is not limited to this, and various devices can be diagnosed. In the above embodiment, the time data is transmitted to the logger unit as transmission data together with the detection data (acceleration data, temperature data). However, the time data may be transmitted to the logger unit separately from the detection data. Moreover, it is good also as only acceleration data as detection data transmitted with time data.
 本発明は、工作物に対して所定の加工や組み付け等を行う工作機械等に適用することができる。 The present invention can be applied to a machine tool or the like that performs predetermined machining or assembly on a workpiece.
1…異常診断システム
2…センサ部
3…ロガー部
4…コンピュータ
6…機器
21…加速度センサIC
22…温度センサIC
23…CPU
24…時間差計測カウンタ
25…通信ドライバーIC
31…データ記憶手段
32…スペクトル解析手段
33…異常判定手段
34…異常信号出力手段
41…ピーク値抽出手段
42…閾値設定手段
200…送信データ
230…送信データ作成手段
231…送信バッファ
bCLK…基準クロック信号
CRS…カウンタリセット信号
CLK…クロック信号
Si…割り込み信号
DESCRIPTION OF SYMBOLS 1 ... Abnormality diagnosis system 2 ... Sensor part 3 ... Logger part 4 ... Computer 6 ... Equipment 21 ... Acceleration sensor IC
22 ... Temperature sensor IC
23 ... CPU
24 ... Time difference measurement counter 25 ... Communication driver IC
31 ... Data storage means 32 ... Spectrum analysis means 33 ... Abnormality determination means 34 ... Abnormal signal output means 41 ... Peak value extraction means 42 ... Threshold setting means 200 ... Transmission data 230 ... Transmission data creation means 231 ... Transmission buffer bCLK ... Reference clock Signal CRS ... Counter reset signal CLK ... Clock signal Si ... Interrupt signal

Claims (10)

  1.  診断対象の機器に発生する振動を測定して当該機器の異常を診断する異常診断システムであって、
     前記機器に取り付けられ、振動の加速度を周期的に検出するとともに、前記加速度を検出した時間間隔を測定する振動センサと、
     前記振動センサにより検出された前記加速度の検出値及び前記時間間隔に基づいて前記加速度をスペクトル解析するスペクトル解析手段と、
     前記スペクトル解析手段によって得られた周波数ごとのスペクトルに基づいて前記機器の異常を検知する異常検知手段と、
     を有する異常診断システム。
    An abnormality diagnosis system for diagnosing abnormality of the device by measuring vibration generated in the device to be diagnosed,
    A vibration sensor attached to the device for periodically detecting acceleration of vibration and measuring a time interval at which the acceleration is detected;
    Spectrum analysis means for spectrally analyzing the acceleration based on the detected value of the acceleration detected by the vibration sensor and the time interval;
    An abnormality detection means for detecting an abnormality of the device based on a spectrum for each frequency obtained by the spectrum analysis means;
    An abnormality diagnosis system having
  2.  前記スペクトル解析手段は、所定の数の前記時間間隔を平均したサンプリング間隔で前記振動をスペクトル解析する、請求項1に記載の異常診断システム。 The abnormality diagnosis system according to claim 1, wherein the spectrum analysis means performs spectrum analysis of the vibration at a sampling interval obtained by averaging a predetermined number of the time intervals.
  3.  前記振動センサは、前記加速度の検出値と前記時間間隔とを含む送信データを、前記スペクトル解析手段に出力する、請求項1又は2に記載の異常診断システム。 The abnormality diagnosis system according to claim 1 or 2, wherein the vibration sensor outputs transmission data including the detected value of the acceleration and the time interval to the spectrum analyzing means.
  4.  前記振動センサは、前記機器の温度を前記振動の加速度と同じタイミングで検出し、前記温度の検出値と前記加速度の検出値と前記時間間隔とを含む送信データを、前記スペクトル解析手段に出力する、請求項3に記載の異常診断システム。 The vibration sensor detects the temperature of the device at the same timing as the acceleration of the vibration, and outputs transmission data including the detected value of the temperature, the detected value of the acceleration, and the time interval to the spectrum analyzing unit. The abnormality diagnosis system according to claim 3.
  5.  前記振動センサは、前記検出値をデジタルデータで出力するデジタル出力型MEMSセンサである、請求項1から4のいずれか1項に記載の異常診断システム。 The abnormality diagnosis system according to any one of claims 1 to 4, wherein the vibration sensor is a digital output type MEMS sensor that outputs the detection value as digital data.
  6.  何れかの周波数において加速度の検出値が閾値を超えた場合に、異の発生を示す異常信号を出力する出力手段をさらに備えた、請求項1から5のいずれか1項に記載の異常診断システム。 The abnormality diagnosis system according to any one of claims 1 to 5, further comprising an output unit that outputs an abnormality signal indicating occurrence of a difference when a detected acceleration value exceeds a threshold value at any frequency. .
  7.  診断対象の機器に取り付けられ、振動の加速度を周期的に検出するとともに、前記加速度を検出した時間間隔を測定する振動センサ。 A vibration sensor that is attached to the device to be diagnosed and periodically detects the acceleration of vibration and measures the time interval at which the acceleration is detected.
  8.  前記加速度の検出値と前記時間間隔とを含む送信データを出力する、請求項7に記載の振動センサ。 The vibration sensor according to claim 7, wherein transmission data including the detected acceleration value and the time interval is output.
  9.  前記機器の温度を前記振動の加速度と同じタイミングで検出し、前記温度の検出値と前記加速度の検出値と前記時間間隔とを含む送信データを出力する、請求項8に記載の振動センサ。 The vibration sensor according to claim 8, wherein the temperature of the device is detected at the same timing as the acceleration of the vibration, and transmission data including the detected value of the temperature, the detected value of the acceleration, and the time interval is output.
  10.  前記検出値をデジタルデータで出力するデジタル出力型MEMSセンサである、請求項7から9のいずれか1項に記載の振動センサ。
     
     
    The vibration sensor according to claim 7, wherein the vibration sensor is a digital output type MEMS sensor that outputs the detection value as digital data.

PCT/JP2019/020277 2018-05-28 2019-05-22 Abnormality diagnosis system and vibration sensor WO2019230520A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-101589 2018-05-28
JP2018101589A JP2019207126A (en) 2018-05-28 2018-05-28 Abnormality diagnosis system and oscillation sensor

Publications (1)

Publication Number Publication Date
WO2019230520A1 true WO2019230520A1 (en) 2019-12-05

Family

ID=68698597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020277 WO2019230520A1 (en) 2018-05-28 2019-05-22 Abnormality diagnosis system and vibration sensor

Country Status (2)

Country Link
JP (1) JP2019207126A (en)
WO (1) WO2019230520A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111397725A (en) * 2020-03-20 2020-07-10 符霞 Automatic monitoring system and method for intelligent vibration frequency spectrum sensor
CN112461376A (en) * 2020-12-07 2021-03-09 爱沃泰科技(深圳)有限公司 Self-adaptive infrared sensor signal sampling algorithm
CN116067433A (en) * 2023-03-07 2023-05-05 广东智云工程科技有限公司 Vibration wire data acquisition method and acquisition instrument thereof
JP7299655B1 (en) 2022-03-30 2023-06-28 鈴鹿エンヂニヤリング株式会社 Evaluation method of kneading state and kneading machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7340499B2 (en) * 2020-07-20 2023-09-07 三菱重工機械システム株式会社 Conveyance device
CN111947904A (en) * 2020-07-31 2020-11-17 上海卫星工程研究所 Micro-vibration-based on-orbit health monitoring method, system, medium and equipment for spacecraft structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228919A (en) * 1986-03-31 1987-10-07 Ebara Res Co Ltd Vibration measuring instrument for rotary machine
JPH0720576U (en) * 1984-03-23 1995-04-11 サンドストランド・コーポレイション Counting circuit
JP2004093185A (en) * 2002-08-29 2004-03-25 Nsk Ltd Abnormality diagnostic device and method for rotator
JP2009276305A (en) * 2008-05-19 2009-11-26 Mitsutoyo Corp Mems acceleration sensor
CN107560717A (en) * 2016-11-04 2018-01-09 洛阳师范学院 Motor oscillating measuring instrument based on MEMS sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720576U (en) * 1984-03-23 1995-04-11 サンドストランド・コーポレイション Counting circuit
JPS62228919A (en) * 1986-03-31 1987-10-07 Ebara Res Co Ltd Vibration measuring instrument for rotary machine
JP2004093185A (en) * 2002-08-29 2004-03-25 Nsk Ltd Abnormality diagnostic device and method for rotator
JP2009276305A (en) * 2008-05-19 2009-11-26 Mitsutoyo Corp Mems acceleration sensor
CN107560717A (en) * 2016-11-04 2018-01-09 洛阳师范学院 Motor oscillating measuring instrument based on MEMS sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAYANO JUNICHIRO ET AL.: "Spectral component of heart rate variability as an index of automatic nervous function", SEIBUTSU BUTSURI, vol. 28, no. 4, 25 July 1988 (1988-07-25), pages 32 - 36, XP055662651 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111397725A (en) * 2020-03-20 2020-07-10 符霞 Automatic monitoring system and method for intelligent vibration frequency spectrum sensor
CN112461376A (en) * 2020-12-07 2021-03-09 爱沃泰科技(深圳)有限公司 Self-adaptive infrared sensor signal sampling algorithm
JP7299655B1 (en) 2022-03-30 2023-06-28 鈴鹿エンヂニヤリング株式会社 Evaluation method of kneading state and kneading machine
CN116067433A (en) * 2023-03-07 2023-05-05 广东智云工程科技有限公司 Vibration wire data acquisition method and acquisition instrument thereof
CN116067433B (en) * 2023-03-07 2023-06-09 广东智云工程科技有限公司 Vibration wire data acquisition method and acquisition instrument thereof

Also Published As

Publication number Publication date
JP2019207126A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2019230520A1 (en) Abnormality diagnosis system and vibration sensor
CN110419012B (en) Diagnostic device, diagnostic system, diagnostic method, and program
US20180232294A1 (en) Control device, monitoring system, and recording medium
EP3605036B1 (en) Vibration analyser, and machine component diagnosis system
CN110543147B (en) Analysis device, analysis method, and computer-readable medium storing analysis program
JP2006218618A (en) Inspection method of device for working instruments
JP2013221877A (en) Abnormality inspection method and abnormality inspection device
JP6998781B2 (en) Failure diagnosis system
JP2018155494A (en) Bearing abnormality diagnosis system and bearing abnormality diagnosis method
WO2018169069A1 (en) Diagnosis device, diagnosis system, diagnosis method, and program
JPWO2019167180A1 (en) Abnormal type determination device and abnormality type determination method
EP3598087A1 (en) State monitoring system for rotary machine, state monitoring method for rotary machine, program, and recording medium
CN111006718A (en) Intelligent motor monitoring system and method
JP2009133810A (en) Vibration monitoring device
US8400930B2 (en) Communication quality diagnostic unit
CN110573845B (en) Method for detecting defects in a vibration sensor, associated device and computer program
TWI755794B (en) Abnormality diagnosis method, abnormality diagnosis apparatus, and abnormality diagnosis program
JPWO2020075296A1 (en) Condition monitoring device
JP2008087093A (en) Abnormality detecting device for machine tool
JP6784140B2 (en) Abnormality diagnosis device and abnormality diagnosis method
JP2011027685A (en) Device and method for monitoring of control rod operation
US20210041286A1 (en) Self-diagnosis method for vibration sensor and vibration sensor system equipped with self-diagnosis function
JP7181162B2 (en) Diagnostic device, diagnostic system and diagnostic method
JP2021012070A (en) Current sensor device and current monitoring system
WO2022131170A1 (en) Anomaly detection device, anomaly detection method, anomaly detection program, and system for detecting anomaly in bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810561

Country of ref document: EP

Kind code of ref document: A1