WO2019230280A1 - Gas barrier film and method for producing gas barrier film - Google Patents

Gas barrier film and method for producing gas barrier film Download PDF

Info

Publication number
WO2019230280A1
WO2019230280A1 PCT/JP2019/017426 JP2019017426W WO2019230280A1 WO 2019230280 A1 WO2019230280 A1 WO 2019230280A1 JP 2019017426 W JP2019017426 W JP 2019017426W WO 2019230280 A1 WO2019230280 A1 WO 2019230280A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
film
barrier layer
resin
base film
Prior art date
Application number
PCT/JP2019/017426
Other languages
French (fr)
Japanese (ja)
Inventor
美帆 宮▲崎▼
昇太 広沢
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020521802A priority Critical patent/JP7173138B2/en
Publication of WO2019230280A1 publication Critical patent/WO2019230280A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated

Definitions

  • the present invention relates to a gas barrier film and a method for producing the gas barrier film.
  • gas barrier films in which a gas barrier layer is formed on a base film are known.
  • a resin film is used as a base film, and the flexibility of the gas barrier film can be imparted by setting the thickness of the base film to 50 ⁇ m or less.
  • a resin film containing a resin, an organic solvent, and fine particles formed using a solution casting method As a base film of a gas barrier film, a resin film containing a resin, an organic solvent, and fine particles formed using a solution casting method is known (for example, see Patent Document 1 and Patent Document 2).
  • This resin film includes inorganic fine particles and organic fine particles as a matting agent.
  • the halogenated hydrocarbon solvent is used as the organic solvent of the base film using the solution casting method.
  • the fine particles intervening between the base film and the gas barrier layer are likely to fall off, and the adhesion between the base film and the gas barrier layer is likely to deteriorate. Furthermore, the fine particles intervening between the base film and the gas barrier layer tend to cause cracks and defects in the gas barrier layer, and the gas barrier property of the gas barrier film is likely to be lowered.
  • a gas barrier film capable of suppressing a decrease in adhesion between the base film and the gas barrier layer and a decrease in gas barrier property, and a method for producing the gas barrier film are provided.
  • the method for producing a gas barrier film of the present invention includes a step of forming a gas barrier layer by a vapor deposition method on a substrate film containing a resin, organic fine particles, and a halogenated hydrocarbon as an organic solvent. And content of the halogenated hydrocarbon in the base film before forming a gas barrier layer is 10 ppm or more and 1000 ppm or less.
  • the gas barrier film of the present invention includes a base film and a gas barrier layer formed on the base film.
  • a base film contains halogenated hydrocarbon as resin, organic particulates, and an organic solvent, and content of halogenated hydrocarbon in a base film is 1 ppm or more and 90 ppm or less.
  • the present invention it is possible to provide a gas barrier film capable of suppressing a decrease in adhesion between the base film and the gas barrier layer and a decrease in gas barrier property, and a method for producing the gas barrier film.
  • FIG. 1 schematic structure of a gas barrier film is shown.
  • a gas barrier film 10 shown in FIG. 1 includes a base film 11 and a gas barrier layer 12.
  • the base film 11 includes a resin 13 serving as a base and organic fine particles 14. Furthermore, the base film 11 contains a halogenated hydrocarbon as an organic solvent, and the content (mass) of the halogenated hydrocarbon is 1 ppm or more and 90 ppm or less with respect to the total mass of the base film 11.
  • the base film 11 is preferably a resin film manufactured by a so-called solution casting method, in which a dope in which a resin, an additive, or the like is dissolved or dispersed in a solvent is cast on a casting support. .
  • the base film 11 used for the gas barrier film 10 is not particularly limited in material, thickness and the like as long as it can hold the gas barrier layer 12 and can be appropriately selected according to the purpose of use.
  • the base film 11 may be formed from a plurality of materials. Examples of the base film 11 include resin films described in paragraphs [0124] to [0136] of JP2013-226758A, paragraphs [0044] to [0047] of WO2013 / 002026, and the like. Can do.
  • the base film 11 may be a single resin film or a plurality of resin films, or may be formed of a plurality of layers. Although the base film 11 is not limited to a single wafer shape and a roll shape, the roll shape which can respond
  • the thickness of the base film 11 is not particularly limited, but is preferably 5 to 100 ⁇ m, more preferably 5 to 40 ⁇ m.
  • thermoplastic resin is a resin that softens when heated to a glass transition temperature or a melting point.
  • the thermoplastic resin is easy to manufacture and is preferably optically transparent. Transparent means that the total light transmittance of visible light is 60% or more.
  • the substrate film 11 preferably has a total light transmittance of visible light of 80% or more, and more preferably 90% or more.
  • the resin 13 constituting the base film 11 include cellulose acylate resins such as cellulose (di, tri) acetate, cellulose acetate propionate, and cellulose acetate butyrate, and acrylic resins such as polymethyl methacrylate.
  • cellulose acylate resins such as cellulose (di, tri) acetate, cellulose acetate propionate, and cellulose acetate butyrate
  • acrylic resins such as polymethyl methacrylate.
  • Polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polypropylene terephthalate, polyphenylene sulfide, polyphenylene oxide, polycaprolactone, polycarbonate resins, norbornene resins, monocyclic cyclic olefin resins, cyclic conjugated diene systems Resins, vinyl alicyclic hydrocarbon resins, cyclic polyolefin resins such as hydrides thereof, polyarylate resins, polysulfones (polyethers) (Including Lufone) resin, polyethylene, polypropylene, ABS resin, polylactic acid, cellophane, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene resin, polymethylpentene, polyether ketone, polyether ketone imide, Examples thereof include polyamide resins such as nylon, fluorine resins, polyarylate
  • the resin 13 constituting the base film 11 preferably includes a norbornene resin.
  • a norbornene-based resin having a polar group is preferably included.
  • the norbornene resin is not particularly limited as long as it has a structural unit derived from norbornene. Even if it is a norbornene homopolymer, it is a copolymer of norbornene and another monomer (a monomer that can be polymerized with norbornene). There may be. In particular, a norbornene homopolymer is preferable.
  • the norbornene-based resin can be used alone or in combination of two or more.
  • Examples of the monomer constituting the norbornene resin film include norbornene, 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene, 5-ethylidene-2-norbornene, and 5-methoxy. Carbonyl-2-norbornene, 5,5-dimethyl-2-norbornene, 5-cyano-2-norbornene, 5-methyl-5-methoxycarbonyl-2-norbornene, 5-phenyl-2-norbornene, 5-phenyl-5 -Methyl-2-norbornene and the like.
  • the norbornene resin constituting the base film 11 is a homopolymer or copolymer of a monomer represented by the following general formula (A-1) or the following general formula (A-2). It is preferable.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or Represents a polar group. However, except for the case where all of R 1 to R 4 are hydrogen atoms, the structure in which R 1 and R 2 are simultaneously hydrogen atoms and the structure in which R 3 and R 4 are simultaneously hydrogen atoms are excluded.
  • p represents an integer of 0 to 2.
  • R 1 to R 4 is a polar group from the viewpoint of ensuring solubility during solution film formation of a norbornene resin. Is preferred. Further, from the viewpoint of improving the heat resistance of the base film 11, p is preferably 1 to 2. When p is from 1 to 2, the resulting resin becomes bulky and the glass transition temperature tends to be improved.
  • the halogen atom represented by R 1 to R 4 is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the hydrocarbon group having 1 to 30 carbon atoms include an alkyl group having 1 to 30 carbon atoms.
  • Examples of polar groups represented by R 1 to R 4 include a carboxy group, a hydroxy group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amino group, an amide group, a cyano group, and these groups such as a methylene group.
  • Examples include a hydrocarbon group in which a divalent organic group having polarity such as a group bonded through a linking group, a carbonyl group, an ether group, a silyl ether group, a thioether group, or an imino group is bonded as a linking group. It is done.
  • R 1 to R 4 are preferably a carboxy group, a hydroxy group, an alkoxycarbonyl group or an allyloxycarbonyl group.
  • R 1 to R 4 are preferably an alkoxycarbonyl group or an allyloxycarbonyl group from the viewpoint of ensuring solubility during solution film formation of a norbornene resin.
  • R 5 represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms.
  • R 6 represents a polar group or a halogen atom.
  • p represents an integer of 0 to 2.
  • R 5 is preferably a hydrocarbon group having 1 to 3 carbon atoms.
  • R 6 is preferably a polar group.
  • the polar group represented by R 6 is preferably a carboxy group, a hydroxy group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amino group, an amide group, or a cyano group, and a hydroxy group, an alkoxycarbonyl group, or allyloxy.
  • a carbonyl group is more preferable.
  • R 6 is preferably an alkoxycarbonyl group or an allyloxycarbonyl group from the viewpoint of ensuring solubility during solution film formation of a norbornene-based resin.
  • the halogen atom represented by R 6 is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the norbornene resin constituting the base film 11 contains a homopolymer or copolymer of the monomer represented by the general formula (A-2), thereby lowering the molecular symmetry and evaporating the solvent. It is easy to promote the diffusion movement of the molecules.
  • Examples of the copolymerizable monomer copolymerizable with the monomer represented by the general formula (A-1) or (A-2) include those represented by the general formula (A-1) or the general formula (A-2). And a copolymerizable monomer capable of ring-opening copolymerization with the monomer represented, and a copolymerizable monomer capable of addition copolymerization with the monomer represented by formula (A-1) or (A-2). It is done.
  • Examples of the copolymerizable monomer capable of ring-opening copolymerization with the monomer represented by the general formula (A-1) or (A-2) include monomers such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, and dicyclopentadiene. Can be mentioned.
  • Examples of the copolymerizable monomer that can be addition copolymerized with the monomer represented by formula (A-1) or (A-2) include unsaturated double bond-containing compounds, vinyl-based cyclic hydrocarbon compounds, (Meth) acrylate is mentioned.
  • Examples of the unsaturated double bond-containing compound include olefin compounds having 2 to 12 carbon atoms.
  • the olefinic compound preferably has 2 to 8 carbon atoms. Examples of these olefinic compounds include ethylene, propylene, and butene.
  • Examples of the vinyl-based cyclic hydrocarbon compound include vinylcyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene.
  • Examples of (meth) acrylates include alkyl (meth) acrylates having 1 to 20 carbon atoms such as methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and cyclohexyl (meth) acrylate.
  • the content of the structural unit derived from the monomer represented by the general formula (A-1) or the general formula (A-2) is the structural unit constituting the norbornene resin. It is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and particularly preferably 70 to 100 mol%, based on the total of the above.
  • Examples of the norbornene-based resin include homopolymers or copolymers of the monomer represented by the general formula (A-1) or (A-2). For example, the following (1) to (7) ).
  • the polymers (1) to (3) and the polymer (5) are preferable, and the polymer (3) and the polymer (5) are more preferable.
  • Ring-opening polymer of monomer represented by general formula (A-1) or general formula (A-2) (2) General formula (A-1) or general formula (A-2) (3) Hydrogenated (co) polymer of the ring-opening (co) polymer of (1) or (2) (4) (1) ) Or (2) ring-opened (co) polymer cyclized by Friedel-Craft reaction and then hydrogenated (co) polymer (5) General formula (A-1) or general formula (A-2) (6) Copolymer of monomer represented by unsaturated double bond and compound containing unsaturated double bond (6) Addition type (co) of monomer represented by general formula (A-1) or general formula (A-2) Polymer and hydrogenated (co) polymer thereof (7) Monomer and methacrylate or acrylic represented by general formula (A-1) or general formula (A-2) Alternating copolymer of the over door
  • the norbornene resin constituting the base film 11 is a homopolymer or copolymer of a monomer represented by the following general formula (B-1) or general formula (B-2). Is preferred.
  • the norbornene-based resin constituting the base film 11 is a polymer containing a structural unit represented by the general formula (B-2) from the viewpoint of easily obtaining a resin film having a high glass transition temperature and a high transmittance.
  • a copolymer having a structural unit represented by the general formula (B-1) and a structural unit represented by the general formula (B-2) is preferable.
  • X in the general formula (B-1) is a group represented by —CH ⁇ CH— or a group represented by —CH 2 CH 2 —.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a polar group. However, except for the case where all of R 1 to R 4 are hydrogen atoms, the structure in which R 1 and R 2 are simultaneously hydrogen atoms and the structure in which R 3 and R 4 are simultaneously hydrogen atoms are excluded.
  • p represents an integer of 0 to 2.
  • R 1 to R 4 is a polar group from the viewpoint of ensuring solubility during solution film formation of a norbornene resin. Is preferred. Further, from the viewpoint of improving the heat resistance of the base film 11, p is preferably 1 to 2. When p is from 1 to 2, the resulting resin becomes bulky and the glass transition temperature tends to be improved.
  • Examples of the halogen atom represented by R 1 to R 4 , the hydrocarbon group having 1 to 30 carbon atoms, and the polar group in the monomer represented by the general formula (B-1) include: Examples thereof are the same as R 1 to R 4 in (A-1).
  • X in the general formula (B-2) is a group represented by —CH ⁇ CH— or a group represented by —CH 2 CH 2 —.
  • R 5 represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms.
  • R 6 represents a polar group or a halogen atom.
  • p represents an integer of 0 to 2.
  • R 5 is preferably a hydrocarbon group having 1 to 3 carbon atoms.
  • Examples of the polar group represented by R 6 and the halogen atom include the same groups as those in the general formula (A-2).
  • the intrinsic viscosity [eta] inh of norbornene-based resin for example, preferably 0.2 ⁇ 5cm 3 / g, more preferably 0.3 ⁇ 3cm 3 / g, particularly preferably 0.4 ⁇ 1.5cm 3 / g .
  • the number average molecular weight (Mn) of the norbornene resin is, for example, preferably 8000 to 100,000, more preferably 10,000 to 80,000, and particularly preferably 12,000 to 50,000.
  • the weight average molecular weight (Mw) of the norbornene resin is preferably, for example, 20000 to 300000, more preferably 30000 to 250,000, and particularly preferably 40000 to 200000.
  • the norbornene-based resin has heat resistance, water resistance, chemical resistance, mechanical properties, and film formability when the intrinsic viscosity [ ⁇ ] inh, number average molecular weight, and weight average molecular weight are in the above ranges. Becomes better.
  • the intrinsic viscosity [ ⁇ ] inh of the norbornene resin can be measured by gel permeation chromatography (GPC).
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the norbornene-based resin can be measured in terms of polystyrene by gel permeation chromatography (GPC).
  • the glass transition temperature (Tg) of the norbornene resin is preferably 110 ° C. or higher.
  • the glass transition temperature (Tg) of the norbornene resin is preferably 110 to 350 ° C., more preferably 120 to 250 ° C., and particularly preferably 120 to 220 ° C. If Tg is 120 degreeC or more, the deformation
  • norbornene resin a commercially available product can be used.
  • Examples of commercially available norbornene-based resins include Arton (registered trademark) G, Arton F, Arton R, and Arton RX manufactured by JSR.
  • the organic fine particles 14 are mainly used for improving the slipperiness of the surface of the base film 11.
  • the organic fine particles 14 constituting the base film 11 are not particularly limited.
  • the organic fine particles 14 preferably have a high affinity with the resin 13 and the organic solvent constituting the base film 11. The higher the affinity with the resin 13 and the organic solvent, the more the organic fine particles 14 can be prevented from falling off the base film 11.
  • the organic fine particles 14 are higher in flexibility than the inorganic fine particles, the organic fine particles 14 can easily follow the stretching of the base film 11. Even when the film-like material for producing the base film 11 is stretched, the stretching tension applied to the periphery of the organic fine particles can be isotropically dispersed. For this reason, falling off of the organic fine particles 14 from the base film 11 can be suppressed. By suppressing the falling off of the organic fine particles 14, it is possible to suppress a decrease in adhesion between the base film 11 and the gas barrier layer 12. Furthermore, in the process of forming the gas barrier layer 12, etc., contamination of the device due to particle dropping can be suppressed.
  • organic fine particles 14 examples include (meth) acrylic acid esters, itaconic acid diesters, maleic acid diesters, vinyl esters, olefins, styrenes, (meth) acrylamides, allyl compounds, vinyl ethers, and vinyl ketones.
  • (meth) acryl means acryl or methacryl.
  • the particles made of the above polymer are referred to as polymer particles.
  • (Meth) acrylic acid esters constituting the polymer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and ethylene glycol di (meth) acrylate. , Trimethylolpropane tri (meth) acrylate and the like.
  • the itaconic acid diesters include dimethyl itaconate, diethyl itaconate, and dipropyl itaconate.
  • maleic acid diesters include dimethyl maleate, diethyl maleate, and dipropyl maleate.
  • Examples of vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl caproate, vinyl chloroacetate, vinyl methoxy acetate, vinyl phenyl acetate, vinyl benzoate, vinyl salicylate, and the like.
  • Examples of olefins include dicyclopentadiene, ethylene, propylene, 1-butene, 1-pentene, vinyl chloride, vinylidene chloride, isoprene, chloroprene, butadiene, and 2,3-dimethylbutadiene.
  • Styrenes include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, isopropyl styrene, chloromethyl styrene, methoxy styrene, acetoxy styrene, chloro styrene, dichloro styrene, bromo styrene, trifluoromethyl styrene, vinyl benzoic acid.
  • Examples include methyl ester and divinylbenzene.
  • (Meth) acrylamides include (meth) acrylamide, methyl (meth) acrylamide, ethyl (meth) acrylamide, propyl (meth) acrylamide, butyl (meth) acrylamide, tert-butyl (meth) acrylamide, and phenyl (meth) acrylamide. , Dimethyl (meth) acrylamide, methylenebisacrylamide and the like.
  • allyl compounds include allyl acetate, allyl caproate, allyl laurate, and allyl benzoate.
  • Examples of vinyl ethers include methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, methoxyethyl vinyl ether, dimethylaminoethyl vinyl ether and the like.
  • Examples of vinyl ketones include methyl vinyl ketone, phenyl vinyl ketone, methoxyethyl vinyl ketone and the like.
  • Examples of the vinyl heterocyclic compound include vinylpyridine, N-vinylimidazole, N-vinyloxazolidone, N-vinyltriazole, N-vinylpyrrolidone and the like.
  • Examples of unsaturated nitriles include acrylonitrile and methacrylonitrile.
  • Examples of the unsaturated carboxylic acids include (meth) acrylic acid, itaconic acid, itaconic acid monoester, maleic acid, maleic acid monoester and the like.
  • Organic fine particles 14 are composed of (meth) acrylic acid esters because they have high affinity with norbornene-based resins, are flexible to stress, are less likely to generate anisotropic voids, and are easy to improve adhesion to the gas barrier layer 12. It is preferable to include a polymer containing a structural unit derived from one or more selected from vinyl esters, styrenes and olefins. Furthermore, the organic fine particle 14 includes a polymer containing a structural unit derived from (meth) acrylic acid esters, a polymer containing a structural unit derived from styrenes, a structural unit derived from (meth) acrylic acid esters and styrene.
  • the organic fine particles 14 are preferably a copolymer including a structural unit derived from (meth) acrylic acid esters and a structural unit derived from styrene.
  • the organic fine particles 14 may be particles (core-shell particles) having a core-shell structure including a core layer (inner particle core) and a shell layer (particle outer shell).
  • examples of such organic fine particles 14 include core-shell particles having a low Tg core layer containing a (meth) acrylic acid ester homopolymer or copolymer and a high Tg shell layer.
  • the polymer particles constituting the organic fine particles 14 can be produced by an arbitrary method.
  • it can be produced by a method such as emulsion polymerization, suspension polymerization, dispersion polymerization or seed polymerization.
  • a method such as emulsion polymerization, suspension polymerization, dispersion polymerization or seed polymerization.
  • seed polymerization or emulsion polymerization under an aqueous medium.
  • Examples of the method for producing the organic fine particles 14 include the following polymerization methods (1) to (3).
  • the polymerization method can be appropriately selected according to the average particle diameter of the organic fine particles 14 to be produced.
  • the monomer for producing seed particles is not particularly limited, and a monomer for producing the above-described organic fine particles 14 can be used.
  • (1) One-stage polymerization method in which a monomer mixture is dispersed in an aqueous medium for polymerization (2) After the monomer is polymerized in an aqueous medium to obtain seed particles, the monomer mixture is absorbed into the seed particles -Stage polymerization method in which polymerization is performed (3) Multi-stage polymerization method that repeats the process of producing seed particles of the two-stage polymerization method
  • the absolute value ⁇ n of the refractive index difference between the organic fine particles 14 and the resin 13 is preferably 0.1 or less, and preferably 0.085 or less in order to suppress an increase in haze of the gas barrier film 10 or the base film 11. More preferably, it is 0.065 or less.
  • the average particle size of the organic fine particles 14 is preferably 0.04 to 2 ⁇ m, and more preferably 0.08 to 1 ⁇ m.
  • the average particle diameter of the organic fine particles 14 is 0.04 ⁇ m or more, it becomes easy to impart sufficient slipperiness to the gas barrier film 10 and the base film 11.
  • the average particle diameter of the organic fine particles 14 is 2 ⁇ m or less, an increase in haze is easily suppressed.
  • the average particle diameter of the organic fine particles 14 can be obtained as the average value of the equivalent circle diameters of 100 particles obtained by SEM imaging or TEM imaging of the surface of the substrate film 11 and the section.
  • the equivalent circle diameter can be obtained by converting the projected area of particles obtained by photographing into the diameter of a circle having the same area. SEM imaging or TEM imaging is performed at a magnification of 5000 times.
  • the average particle size of the organic fine particles 14 in the dispersion can be measured with a zeta potential / particle size measurement system (ELSZ-1000Z manufactured by Otsuka Electronics Co., Ltd.).
  • the average particle size of the organic fine particles 14 means the average size (average secondary particle size) of the aggregate if it is agglomerated particles, and the size of one particle if it is non-aggregated particles. Mean measured value.
  • the content of the organic fine particles 14 is preferably 0.03 to 1.0% by mass, more preferably 0.05 to 0.6% by mass, based on the total mass of the base film 11. More preferably, the content is 0.08 to 0.4% by mass. If the content of the organic fine particles 14 is 0.03% by mass or more, sufficient slipperiness is easily imparted to the base film 11, and an increase in haze can be suppressed if the content is 1.0% by mass or less.
  • the base film 11 contains 1 ppm to 90 ppm of halogenated hydrocarbon as an organic solvent. Since the base film 11 contains the halogenated hydrocarbon, the affinity between the resin 13 and the organic fine particles 14 is improved, so that the organic fine particles 14 are less likely to drop off from the base film 11. Further, the presence of the halogenated hydrocarbon on the surface of the base film 11 improves the affinity between the base film 11 and the gas barrier layer 12 and improves the adhesion between the base film 11 and the gas barrier layer 12. .
  • halogenated hydrocarbon As the halogenated hydrocarbon, it is preferable that the resin 13 constituting the base film 11 has high solubility.
  • the halogenated hydrocarbon include alkyl fluorides such as fluoromethane, fluoroethane, fluorobenzene, chloromethane, dichloromethane, trichloromethane (chloroform), tetrachloromethane, chloroethane, chloroethene, 1-chloropropane, 2-chloropropane, Alkyl chlorides such as 1-chlorobutane, 1-chloro-2-methylpropane, 2-chlorobutane, 2-chloro-2-methylpropane, chlorobenzene, chlorophenylbenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, Examples thereof include alkyl bromides such as bromomethane, tribromomethane,
  • the base film 11 may contain an organic solvent other than the halogenated hydrocarbon together with the halogenated hydrocarbon.
  • the other organic solvent preferably contains a non-halogen organic solvent such as methyl acetate, ethyl acetate, acetone, tetrahydrofuran, etc., in which the resin 13 constituting the base film 11, in particular, a norbornene resin is highly soluble.
  • the base film 11 preferably contains a linear or branched aliphatic alcohol having 1 to 4 carbon atoms as another solvent.
  • the base film 11 contains alcohol, when a resin film is produced using the solution casting method, the film-like material is easily gelled, and the film-like material is easily peeled from the support.
  • the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol and the like.
  • the base film 11 preferably contains ethanol as the other solvent because the dope has high stability, the boiling point is relatively low, and the drying property is good.
  • the measurement of the content of the organic solvent and the content of the halogenated hydrocarbon in the base film 11 can be performed using headspace gas chromatography.
  • the measurement of the content of the organic solvent and halogenated hydrocarbon by headspace gas chromatography can be performed under the following conditions.
  • Headspace device HP7694 Head Space Sampler (manufactured by Hewlett-Packard Company) -Temperature conditions: transfer line 200 ° C, loop temperature 200 ° C -Sample amount: 0.8g / 20ml vial-GC: HP5890 (manufactured by Hewlett-Packard Company) ⁇ MS: HP5971 (manufactured by Hewlett-Packard Company) -Column: HP-624 (30m x 0.25mm ID) Oven temperature: initial temperature 40 ° C. (holding time 3 minutes), temperature rising rate 10 ° C./minute, ultimate temperature 200 ° C. (holding time 5 minutes)
  • the haze of the base film 11 is preferably 4.0% or less, more preferably 2.0% or less, and further preferably 1.0% or less.
  • the haze of the base film 11 should be measured in accordance with JIS K-6714 using a haze meter (HGM-2DP, Suga Test Instruments) under conditions of 25 ° C. and 60% RH for a sample having a size of 40 mm ⁇ 80 nm. Can do.
  • the base film 11 preferably has an in-plane retardation Ro of 20 to 120 nm, more preferably 30 to 100 nm, measured in an environment of a measurement wavelength of 550 nm and 23 ° C. and 55% RH.
  • the thickness direction retardation Rt of the base film 11 is preferably 70 to 350 nm, and more preferably 100 to 320 nm.
  • the phase differences Ro and Rt of the base film 11 can be adjusted mainly by the draw ratio. In order to increase the phase differences Ro and Rt of the base film 11, it is preferable to increase the draw ratio.
  • Ro and Rt of the base film 11 are respectively defined by the following formulas.
  • Formula (1): Ro (nx ⁇ ny) ⁇ d
  • Formula (2): Rt ((nx + ny) / 2 ⁇ nz) ⁇ d
  • nx represents the refractive index in the in-plane slow axis direction (direction in which the refractive index is maximum) of the base film.
  • ny represents the refractive index in the direction orthogonal to the in-plane slow axis of the base film.
  • nz represents the refractive index in the thickness direction of the base film.
  • d represents the thickness (nm) of the base film.
  • the in-plane slow axis of the substrate film 11 refers to an axis having the maximum refractive index on the film surface.
  • the in-plane slow axis of the substrate film 11 can be confirmed by an automatic birefringence meter Axoscan (Axo Scan Mueller Polarimeter: manufactured by Axometrics).
  • the measurement of Ro and Rt of the base film 11 can be performed by the following method.
  • the substrate film is conditioned for 24 hours in an environment of 23 ° C. and 55% RH.
  • the average refractive index of the substrate film is measured with an Abbe refractometer, and the thickness d is measured using a commercially available micrometer.
  • Retardation Ro and Rt at a measurement wavelength of 550 nm of the substrate film after humidity adjustment are each 23 ° C. and 55% by using an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics). Measure under RH environment.
  • the gas barrier film 10 includes a gas barrier layer 12 (hereinafter also referred to as a vapor deposition gas barrier layer) 12 formed on a base film 11 by a vacuum film formation method.
  • the gas barrier layer 12 constituting the gas barrier film 10 has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method in accordance with the above is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less. It is preferable to have.
  • the gas barrier layer 12 formed by the vacuum film forming method is not particularly limited as long as it has a barrier property, and a conventionally known configuration can be applied.
  • a layer formed by vapor deposition of a general inorganic compound can be used.
  • inorganic compounds include oxides, nitrides, and carbides including one or more inorganic or metal materials selected from Si, Al, In, Sn, Zn, Ti, Cu, Ce, and Ta in terms of gas barrier performance. Oxynitrides, oxycarbides, and the like are preferable.
  • examples of the inorganic compound suitable for the gas-phase film-forming gas barrier layer include composites such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, aluminum oxide, titanium oxide, and aluminum silicate. Can be mentioned.
  • the gas-phase film-forming gas barrier layer containing an inorganic compound may contain an element other than the inorganic compound as a secondary component.
  • the film thickness of the vapor deposition gas barrier layer is not particularly limited, but is preferably 5 to 1000 nm. Within this range, the gas barrier layer is excellent in high gas barrier performance, bending resistance, and suitability for cutting. Further, the vapor deposition gas barrier layer may be a single layer or may have a structure in which two or more layers are laminated.
  • Examples of the vacuum film forming method for forming the gas barrier layer 12 include a vacuum deposition method, a sputtering method, an ion plating method, a plasma chemical vapor deposition method, a thermal chemical vapor deposition method, and a photochemical vapor deposition method. Examples include growth methods.
  • As the vacuum film-forming method it is preferable to use chemical vapor deposition (CVD).
  • the chemical vapor deposition method is a method in which a source gas containing a target thin film component is supplied onto a substrate, and the film is deposited by a chemical reaction on the surface of the substrate or in the gas phase.
  • the chemical vapor deposition method includes a method of generating plasma or the like for the purpose of activating a chemical reaction.
  • thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, plasma CVD using plasma as an excitation source Examples thereof include vacuum plasma CVD, which is a method (PECVD method).
  • vacuum plasma CVD method As a vacuum film forming method for forming the gas barrier layer 12, it is preferable to use a vacuum plasma CVD method.
  • material gas flows into a vacuum vessel equipped with a plasma source, and power is supplied from the power source to the plasma source to generate discharge plasma in the vacuum vessel.
  • a gas-phase film-forming gas barrier layer obtained by a vacuum plasma CVD method is preferable because a target compound can be produced by selecting conditions such as a raw material compound, decomposition gas, decomposition temperature, and input power.
  • a raw material compound it is preferable to use a compound containing silicon or a compound containing metal, such as a silicon compound, a titanium compound, and an aluminum compound.
  • a conventionally known compound applied to the vacuum plasma CVD method can be used.
  • examples of known compounds include those described in paragraphs [0028] to [0031] of JP2013-063658A, paragraphs [0078] to [0081] of JP2013 / 047002A, and the like. it can.
  • silane, tetramethoxysilane, tetraethoxysilane, hexamethyldisiloxane, etc. are mentioned. These raw material compounds may be used alone or in combination of two or more.
  • FIG. 2 shows an example of a schematic diagram of a vacuum plasma CVD apparatus applied to the vacuum plasma CVD method.
  • the vacuum plasma CVD apparatus 40 shown in FIG. 2 has a vacuum chamber 42, and a susceptor 44 is disposed on the bottom surface inside the vacuum chamber 42.
  • An anode electrode 41 is disposed on the susceptor 44.
  • a cathode electrode 43 is disposed on the ceiling side inside the vacuum chamber 42 at a position facing the susceptor 44.
  • a heat medium circulation system 46, a vacuum exhaust system 47, a gas introduction system 48, and a high-frequency power source 49 are disposed outside the vacuum chamber 42.
  • a heat medium is disposed in the heat medium circulation system 46.
  • the heat medium circulation system 46 includes a pump that moves the heat medium, a heating device that heats the heat medium, a cooling device that cools the heat medium, a temperature sensor that measures the temperature of the heat medium, and a set temperature of the heat medium.
  • a heating / cooling device 45 having a storage device for storing the information is provided.
  • the heating / cooling device 45 is configured to measure the temperature of the heat medium, heat or cool the heat medium to a stored set temperature, and supply the heat medium to the susceptor 44. Details of the vacuum plasma CVD apparatus 40 shown in FIG. 2 can be referred to paragraphs [0080] to [0098] of International Publication No. 2012/090644.
  • the gas barrier layer formed by the roll-to-roll method contains carbon atoms, silicon atoms, and oxygen atoms, the composition continuously changes in the layer thickness direction, and satisfies the following requirements (1) and (2) simultaneously. Is preferred.
  • the distance from the gas barrier layer surface in the layer thickness direction of the gas barrier layer silicon atoms
  • the carbon distribution curve showing the relationship with the ratio of the amount of carbon atoms to the total amount of oxygen atoms and carbon atoms (100 at%) (carbon atom ratio (at%)) has an extreme value, and the carbon atoms of the carbon distribution curve
  • the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the ratio is 3 at% or more.
  • the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is the following formula (A) or (B) It has the relationship represented by.
  • the total thickness of the gas barrier layer is 90 to 95. It is preferable to satisfy the relationship defined by the above formula (A) or formula (B) in a region within the range of%.
  • at least 90% or more of the film thickness of the gas barrier layer does not have to be a continuous part in the gas barrier layer, but is simply the above formula (A) or formula (B) in a part of 90% or more in the gas barrier layer. It only has to satisfy the relationship specified in.
  • the average value of the carbon atom content ratio in the gas barrier layer can be determined by the following XPS depth profile measurement.
  • the silicon distribution curve, oxygen distribution curve, silicon distribution curve, etc. in the thickness direction of the gas barrier layer are measured by X-ray photoelectron spectroscopy (XPS) and rare gas ion sputtering such as argon.
  • XPS X-ray photoelectron spectroscopy
  • rare gas ion sputtering such as argon.
  • it can be created by so-called XPS depth profile measurement in which the surface composition analysis is sequentially performed while exposing the inside of the sample.
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time).
  • the etching time is generally correlated with the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer. For this reason, the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time employed when measuring the XPS depth profile is adopted as the “distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer”. can do. Moreover, it is preferable to set it as the following measurement conditions as a sputtering method employ
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value): 10 nm
  • X-ray photoelectron spectrometer Model name "VG Theta Probe", manufactured by Thermo Fisher Scientific Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m oval
  • the carbon distribution curve is substantially continuous.
  • the carbon distribution curve is substantially continuous, specifically, the distance from the surface of the gas barrier layer in the film thickness direction of the gas barrier layer (x, unit: nm) calculated from the etching rate and the etching time. ) And the atomic ratio of carbon (C, unit: at%), the condition represented by [(dC / dx) ⁇ 0.5] is satisfied.
  • the gas barrier layer contains carbon atoms, silicon atoms, and oxygen atoms as constituent elements.
  • the composition continuously changes in the layer thickness direction, and the carbon distribution curve satisfies the requirement (1) among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy.
  • the carbon atom ratio has a configuration in which the concentration gradient continuously changes in a specific region of the gas barrier layer from the viewpoint of achieving both gas barrier properties and flexibility.
  • the carbon distribution curve in the layer has at least one extreme value. Furthermore, it is more preferred that the carbon distribution curve has at least two extreme values, and particularly preferred that it has at least three extreme values.
  • the carbon distribution curve has an extreme value, sufficient gas barrier properties can be ensured even when a film having a gas barrier layer is bent.
  • the carbon distribution curve has at least two or three extreme values, the absolute value of the difference in the thickness direction distance between one extreme value and another extreme value adjacent thereto is 200 nm or less. Is more preferable, 100 nm or less is more preferable, and 75 nm or less is particularly preferable.
  • the extreme value of the above distribution curve is the maximum or minimum value of the atomic ratio of the element to the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer.
  • the maximum value is an inflection point at which the value of the atomic ratio of the element changes from increase to decrease when the distance from the surface of the gas barrier layer is changed, and 4 points in the thickness direction from the position of the inflection point. It means that the atomic ratio value of the element at a position changed by ⁇ 20 nm decreases by 3 at% or more.
  • the minimum value is an inflection point at which the atomic ratio value of the element changes from decrease to increase when the distance from the surface of the gas barrier layer is changed, and the thickness direction from the position of the inflection point
  • the atomic ratio value of the element at the position changed by 4 to 20 nm is increased by 3 at% or more. That is, the maximum value and the minimum value are points where the atomic ratio value of the element decreases or increases by 3 at% or more in any range when the position in the thickness direction is changed in the range of 4 to 20 nm.
  • the gas barrier layer is characterized by containing carbon atoms, silicon atoms and oxygen atoms as constituent elements. Preferred embodiments of the ratio of each atom and the maximum and minimum values of the ratio of each atom will be described below. To do.
  • the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio in the carbon distribution curve is preferably 3 at% or more, and more preferably 5 at% or more. preferable.
  • the difference between the maximum value and the minimum value of the carbon atom ratio is 3 at% or more, sufficient gas barrier properties can be obtained when the manufactured gas barrier layer is bent.
  • the difference between the maximum value and the minimum value is 5 at% or more, the gas barrier property when the film having the gas barrier layer is bent is further improved.
  • the absolute value of the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) in the oxygen distribution curve is preferably 3 at% or more, and more preferably 5 at% or more. preferable.
  • the absolute value of the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) in the silicon distribution curve is preferably less than 10 at%, and more preferably less than 5 at%. preferable. If the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) is less than 10 at%, sufficient gas barrier properties and mechanical strength can be obtained for the gas barrier layer.
  • the gas barrier layer is substantially uniform in the film surface direction (direction parallel to the surface of the gas barrier layer).
  • the gas barrier layer is substantially uniform in the film surface direction means that the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon total are measured at any two measurement points on the film surface of the gas barrier layer by XPS depth profile measurement.
  • the distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement points is the same, and the difference between the maximum value and the minimum value of the atomic ratio of carbon in each carbon distribution curve Are the same as each other or a difference within 5 at%.
  • the gas barrier layer preferably includes at least one gas barrier layer that simultaneously satisfies the above requirements (1) and (2), but may include two or more layers that satisfy such a condition. Furthermore, when two or more gas barrier layers are provided, the materials of the plurality of gas barrier layers may be the same or different.
  • the silicon atom ratio to the total amount of silicon atoms, oxygen atoms and carbon atoms is preferably in the range of 19 to 40 at%, and in the range of 30 to 40 at%. It is more preferable that The oxygen atom ratio with respect to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably in the range of 33 to 67 at%, more preferably in the range of 41 to 62 at%. Furthermore, the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably in the range of 1 to 19 at%, more preferably in the range of 3 to 19 at%.
  • the thickness of the gas barrier layer is preferably in the range of 5 to 1000 nm, more preferably in the range of 10 to 800 nm, and particularly preferably in the range of 100 to 500 nm.
  • the gas barrier properties such as oxygen gas barrier properties and water vapor barrier properties are excellent, and good gas barrier properties can be obtained even in a bent state.
  • desired flatness can be realized in addition to the above effects.
  • a method for forming a gas barrier layer that simultaneously satisfies the above requirements (1) and (2) is not particularly limited, and a known method can be used.
  • paragraphs [0049] to [2012] of International Publication No. 2012/046767 can be used.
  • the method described in [0069] etc. can be referred to.
  • a discharge plasma having a discharge space between rollers to which a magnetic field is applied using a source gas containing an organosilicon compound and an oxygen gas is preferable to use chemical vapor deposition.
  • plasma chemistry is performed by using a discharge plasma treatment apparatus between rollers to which a magnetic field is applied, winding a substrate around a pair of film forming rollers, and performing plasma discharge while supplying a film forming gas between the pair of film forming rollers. It is preferable to form the gas barrier layer by a vapor deposition method. Further, when discharging while applying a magnetic field between a pair of film forming rollers, it is preferable to reverse the polarity between the pair of film forming rollers alternately. Thus, by winding a base material on a pair of film forming rollers and performing plasma discharge between the pair of film forming rollers, the distance between the base material and the discharge space changes, and plasma on the surface of the base material changes. By continuously changing the strength, it is possible to form a gas barrier layer in which the carbon atom ratio has a concentration gradient and the carbon atom ratio continuously changes in the layer.
  • the film is formed on the surface of the base material existing on one film forming roller, and simultaneously formed on the surface of the base material existing on the other film forming roller as a pair. It becomes possible. That is, since the film formation efficiency can be doubled and a film having the same configuration can be formed, the extreme value of the carbon distribution curve can be doubled, and the above requirements (1) and (2) can be efficiently performed simultaneously.
  • a filled gas barrier layer can be formed.
  • FIG. 3 is a schematic view showing an example of an inter-roller discharge plasma CVD apparatus to which a magnetic field is applied, which can be suitably used in the production of a gas barrier layer.
  • An inter-roller discharge plasma CVD apparatus (hereinafter also simply referred to as a plasma CVD apparatus) 50 to which a magnetic field shown in FIG. 3 is applied mainly includes a feeding roller 51, a transport roller 52, a transport roller 54, a transport roller 55, and a transport.
  • Roller 57, film formation roller 53 and film formation roller 56, film formation gas supply pipe 59, plasma generation power supply 63, magnetic field generator 61 installed inside film formation roller 53, film formation roller 56 are provided with a magnetic field generator 62 and a take-up roller 58.
  • a plasma CVD manufacturing apparatus In such a plasma CVD manufacturing apparatus, at least the film forming rollers 53 and 56, the film forming gas supply pipe 59, the plasma generating power source 63, and the magnetic field generating apparatuses 61 and 62 are not shown in the vacuum. Located in the chamber. In FIG. 3, electrode drums connected to a plasma generating power source 63 are installed on the film forming rollers 53 and 56. Further, in such a plasma CVD manufacturing apparatus, a vacuum chamber (not shown) is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by this vacuum pump. Yes.
  • each film forming roller generates plasma so that a pair of film forming rollers (film forming roller 53 and film forming roller 56) can function as a pair of counter electrodes.
  • the power supply 63 is connected.
  • the pair of film forming rollers 53 and 56 are preferably arranged so that their central axes are substantially parallel on the same plane.
  • a magnetic field generator 61 and a magnetic field generator 62 fixed so as not to rotate even when the film forming roller rotates are provided inside the film forming roller 53 and the film forming roller 56, respectively.
  • known rollers can be used as appropriate.
  • As the film forming roller 53 and the film forming roller 56 it is preferable to use rollers having the same diameter from the viewpoint of efficiently forming a thin film.
  • the feed roller 51 and the transport rollers 52, 54, 55, 57 used in such a plasma CVD manufacturing apparatus known rollers can be appropriately selected and used.
  • the take-up roller 58 is not particularly limited as long as it can take up the base material 60 on which the gas barrier layer is formed, and a known roller can be appropriately used.
  • the film forming gas supply pipe 59 one capable of supplying or discharging the source gas and the oxygen gas at a predetermined rate can be appropriately used.
  • the plasma generating power source 63 a conventionally known power source of a plasma generating apparatus can be used.
  • a power source AC power source or the like
  • it is more preferable that such a plasma generating power source 63 is one that can apply electric power in a range of 100 W to 10 kW and an AC frequency in a range of 50 Hz to 500 kHz.
  • the magnetic field generators 61 and 62 a known magnetic field generator can be used as appropriate.
  • a desired gas barrier layer can be produced by appropriately adjusting the conveyance speed of the substrate.
  • a film forming gas (raw material gas or the like) is supplied into the vacuum chamber, and plasma discharge is performed while a magnetic field is generated between the pair of film forming rollers 53 and 56.
  • a film gas (a raw material gas or the like) is decomposed by plasma, and a gas barrier layer is formed on the surface of the substrate 60 held by the film forming roller 53 and on the surface of the substrate 60 held by the film forming roller 56. .
  • the substrate 60 is conveyed by the feed roller 51, the conveyance rollers 52, 54, 55, 57, the take-up roller 58, the film formation rollers 53, 56, etc.
  • the gas barrier layer can be formed by a continuous film forming process using a to-roll method.
  • Deposition gas As a film forming gas used in the plasma chemical vapor deposition method, a raw material gas containing an organosilicon compound and an oxygen gas are used, and the content of the oxygen gas in the film forming gas is the same as that of the organic silicon compound in the film forming gas. It is preferable that the amount is less than the theoretical oxygen amount necessary for complete oxidation of the whole amount.
  • organosilicon compound containing at least silicon is preferable to use as a raw material gas constituting the film forming gas used for producing the gas barrier layer.
  • organosilicon compound applicable to the production of the gas barrier layer include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, and dimethylsilane.
  • organosilicon compounds hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling in film formation and gas barrier properties of the resulting gas barrier layer.
  • these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
  • the film forming gas can contain oxygen gas as a reaction gas in addition to the source gas.
  • Oxygen gas is a gas that reacts with a raw material gas to become an inorganic compound such as an oxide.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, and for example, a rare gas such as helium, argon, neon, xenon, or hydrogen gas can be used.
  • the ratio of the source gas to the oxygen gas is the oxygen gas that is theoretically necessary for completely reacting the source gas and the oxygen gas. It is preferable not to make the oxygen gas ratio excessively higher than the ratio of the amount.
  • description, such as international publication 2012/046767, can be referred, for example.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 to 100 Pa.
  • the electric power applied to the electrode drum connected to the plasma generating power source 63 for discharging between the film forming rollers 53 and 56 is the kind of the source gas. And can be adjusted as appropriate according to the pressure in the vacuum chamber.
  • the power applied to the electrode drum is preferably in the range of 0.1 to 10 kW, for example. If the applied power is in such a range, the generation of particles (illegal particles) can be suppressed, and the amount of heat generated during film formation is within the control range. Further, thermal deformation of the substrate, performance deterioration due to heat, and generation of wrinkles during film formation can be suppressed.
  • the conveyance speed (line speed) of the substrate 60 can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is within the range of 0.25 to 100 m / min. Preferably, it is more preferably in the range of 0.5 to 20 m / min. If the line speed is within the range, wrinkles due to the heat of the base material hardly occur, and the thickness of the formed gas barrier layer can be sufficiently controlled.
  • the gas barrier layer 12 is a layer formed by a method other than the vacuum film formation method (second gas barrier layer) together with the vapor phase film formation gas barrier layer (first gas barrier layer) formed by the vacuum film formation method described above. May be provided.
  • the first gas barrier layer formed by the vacuum film formation method is provided on the base film 11 side
  • the second gas barrier layer formed by a method other than the vacuum film formation method is provided on the first gas barrier layer. It is preferable. That is, it is preferable that the gas barrier film 10 has a laminated structure of [base film 11 / gas phase deposition gas barrier layer (first gas barrier layer) / second gas barrier layer].
  • Examples of the gas barrier layer formed by a method other than the vacuum film forming method include a gas barrier layer formed by a wet coating method using a coating solution containing a silicon compound.
  • Examples of the gas barrier layer formed by this wet coating method include a polysilazane modified layer formed by coating a coating liquid containing a polysilazane compound by a known wet coating method and then modifying the coating film.
  • the polysilazane compound used for forming the polysilazane modified layer is a polymer that is a precursor of silicon oxynitride having a silicon-nitrogen bond in the structure.
  • the polysilazane compound those having the structure of the following general formula (1) are preferably used.
  • each of R 1 , R 2 , and R 3 represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
  • Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as a polysilazane-containing coating solution as it is.
  • Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials.
  • a coating film using a solution containing a polysilazane compound can be formed by applying a solution containing a polysilazane compound and an additive on a substrate. Any appropriate method can be adopted as the solution coating method. Examples thereof include spin coating, roll coating, flow coating, ink jet, spray coating, printing, dip coating, casting film formation, bar coating, and gravure printing. After applying the solution, it is preferable to dry the coating film. By drying the coating film, the organic solvent contained in the coating film can be removed.
  • paragraphs [0058] to [0064] of JP-A No. 2014-151571, paragraphs [0052] to [0056] of JP-A No. 2011-183773, and the like can be referred to.
  • the modification treatment is treatment for performing a conversion reaction of the polysilazane compound to silicon oxide or silicon oxynitride.
  • a known method for the conversion reaction of the polysilazane compound can be used.
  • As the reforming treatment a conversion reaction using plasma, ozone, or ultraviolet rays that can be converted at a low temperature is preferable.
  • a conventionally known method can be used for the conversion reaction using plasma, ozone, or ultraviolet rays.
  • the modification treatment is preferably performed by irradiating the coating film of the polysilazane compound-containing liquid with vacuum ultraviolet rays (VUV) having a wavelength of 200 nm or less.
  • VUV vacuum ultraviolet rays
  • the thickness of the polysilazane modified layer formed by the wet coating method is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 300 nm.
  • the entire polysilazane modified layer or only the surface layer may be a modified layer, and the thickness of the modified layer may be 1 to 50 nm, preferably 1 to 10 nm.
  • VUV irradiation step it is preferable that at least a part of the polysilazane is modified to silicon oxynitride.
  • the illuminance of VUV in the coating film surface for receiving the coating film containing a polysilazane compound is in the range of 30 ⁇ 200mW / cm 2, and more preferably in the range of 50 ⁇ 160mW / cm 2 .
  • the illuminance of the VUV By setting the illuminance of the VUV to 30 mW / cm 2 or more, sufficient reforming efficiency can be obtained, and when it is 200 mW / cm 2 or less, the rate of damage to the coating film is extremely suppressed and damage to the substrate is also reduced. Can be made.
  • Irradiation energy amount of VUV in the surface of the coating film containing the polysilazane compound is preferably in the range of 200 ⁇ 10000mJ / cm 2, and more preferably in the range of 500 ⁇ 5000mJ / cm 2.
  • the polysilazane is sufficiently modified by setting the irradiation energy amount of VUV to 200 mJ / cm 2 or more. Moreover, by setting it as 10,000 mJ / cm ⁇ 2 > or less, it can suppress the excessive modification
  • a rare gas excimer lamp is preferably used as the vacuum ultraviolet light source. Since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process is likely to decrease. Therefore, it is preferable to perform VUV irradiation in a state where the oxygen concentration is as low as possible. That is, the oxygen concentration at the time of VUV irradiation is preferably in the range of 10 to 10,000 ppm, more preferably in the range of 50 to 5000 ppm, still more preferably in the range of 80 to 4500 ppm, and most preferably in the range of 100 to 1000 ppm.
  • dry inert gas is preferable, and dry nitrogen gas is particularly preferable from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rates of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the polysiloxane-modified layer is formed by applying a coating solution containing polysiloxane onto the polysilazane-modified layer using a wet coating method and then drying, and then irradiating the dried coating film with vacuum ultraviolet rays. be able to.
  • Examples of the coating method for the coating liquid for forming the intermediate layer include spin coating, dipping, roller blades, and spraying methods.
  • As the vacuum ultraviolet ray it is preferable to use the same VUV irradiation as the above-described polysilazane compound modification treatment.
  • the coating solution used for forming the intermediate layer mainly contains polysiloxane and an organic solvent.
  • the polysiloxane applicable to the formation of the intermediate layer is not particularly limited, but an organopolysiloxane represented by the following general formula (2) is particularly preferable.
  • R 4 to R 9 each represent the same or different organic group having 1 to 8 carbon atoms.
  • at least one group of R 4 to R 9 includes either an alkoxy group or a hydroxyl group.
  • m is an integer of 1 or more.
  • the organopolysiloxane represented by the general formula (2) it is particularly preferable that m is 1 or more and the weight average molecular weight in terms of polystyrene is 1000 to 20000. If the weight average molecular weight in terms of polystyrene of the organopolysiloxane is 1000 or more, the intermediate layer to be formed is hardly cracked and the gas barrier property can be maintained, and if it is 20000 or less, the formed intermediate layer is cured. And sufficient hardness as an intermediate layer can be obtained.
  • the dry film thickness of the intermediate layer is preferably in the range of 100 nm to 10 ⁇ m, more preferably 50 nm to 1 ⁇ m. If the thickness of the intermediate layer is 100 nm or more, sufficient gas barrier properties can be ensured. Moreover, if the film thickness of the intermediate layer is 10 ⁇ m or less, stable coating properties can be obtained when forming the intermediate layer.
  • the second gas barrier layer is preferably a laminated form of a transition metal (M2) -containing layer and an inorganic element (M1) -containing layer other than the transition metal.
  • the inorganic element (M1) -containing layer is preferably a layer formed by a wet coating method using a coating solution containing the above-described silicon compound. That is, the second gas barrier layer preferably has a laminated structure of a polysilazane modified layer and a transition metal-containing layer.
  • the second gas barrier layer composed of the laminated form of the transition metal-containing layer and the inorganic element-containing layer other than the transition metal has a mixed region containing the inorganic element M1 and the transition metal M2 at least in the thickness direction. It is preferable to have a region in which the value of the atomic ratio of the transition metal M2 to the inorganic element M1 in (M2 / M1) is in the range of 0.02 to 49 continuously in the thickness direction of 5 nm or more.
  • the transition metal-containing layer includes a region A containing a transition metal of Group 3 to Group 11 as the main component a, and an inorganic element of Group 12 to Group 14 as the main component b. It is preferable to have a mixed region containing a compound derived from the main component a and the main component b between the B region to be contained.
  • the mixed region containing the inorganic element M1 and the transition metal M2 it is preferable that oxygen is contained in addition to the transition metal M2 and the inorganic element M1.
  • the mixed region preferably contains at least one of a mixture of an oxide of a transition metal and an oxide of an inorganic element, or a composite oxide of a transition metal M2 and an inorganic element M1, and the transition metal M2 and It is more preferable to contain a composite oxide with the inorganic element M1.
  • Transition metal (M2) -containing layer A region
  • the A region in the transition metal (M2) -containing layer refers to a region containing the transition metal M2 as a main component a as a metal.
  • the transition metal M2 is not particularly limited, and any transition metal may be used alone or in combination.
  • the transition metal refers to a Group 3 element to a Group 11 element in the long-period periodic table, and the transition metal includes Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta , W, Re, Os, Ir, Pt, Au, and the like.
  • transition metal M2 examples include Nb, Ta, V, Zr, Ti, Hf, Y, La, and Ce.
  • Nb, Ta, and V which are Group 5 elements, are particularly preferable from the viewpoint of various examination results from the viewpoint of easy bonding to the inorganic element M1.
  • the transition metal M2 is a Group 5 element (particularly Nb) and the inorganic element M1 whose details will be described later is Si, a significant barrier property improvement effect can be obtained. This is presumably because the bond between Si and the Group 5 element (particularly Nb) is particularly likely to occur. Furthermore, from the viewpoint of optical properties, the transition metal M2 is particularly preferably Nb or Ta from which a compound with good transparency can be obtained.
  • the thickness of the A region is preferably in the range of 2 to 50 nm, more preferably in the range of 4 to 25 nm, and more preferably in the range of 5 to 15 nm from the viewpoint of achieving both barrier properties and optical characteristics. More preferably.
  • the B region in the inorganic element (M1) -containing layer refers to a region containing an inorganic material other than the transition metal as the main component b.
  • an inorganic element selected from metals of Group 12 to Group 14 of the long-period periodic table is preferable.
  • the inorganic element M1 is not particularly limited, and any inorganic element of Group 12 to Group 14 can be used alone or in combination. Examples thereof include Si, Al, Zn, In, and Sn. .
  • the inorganic element M1 preferably contains Si, Sn or Zn, more preferably contains Si, and particularly preferably Si alone.
  • the thickness of the region B is preferably in the range of 10 to 1000 nm, more preferably in the range of 20 to 500 nm, and in the range of 50 to 300 nm from the viewpoint of achieving both barrier properties and productivity. Is particularly preferred.
  • the mixed region contains an inorganic element M1 selected from Group 12 to Group 14 inorganic elements of the long-period periodic table and a transition metal M2 selected from Group 3 elements to Group 11 metals.
  • the mixed region may be formed as a plurality of regions having different chemical compositions of the constituent components, or may be formed as a region in which the chemical compositions of the constituent components are continuously changed. .
  • oxygen deficient composition In the mixed region, part of the composition is preferably a non-stoichiometric composition (oxygen deficient composition) in which oxygen is deficient.
  • the oxygen deficient composition means that the condition defined by the following relational expression (2) is satisfied when the composition of the mixed region is expressed by the following chemical composition formula (1).
  • As an oxygen deficiency index indicating the degree of oxygen deficiency in the mixed region [(2y + 3z) / (a + bx)] in the mixed region when the composition of the mixed region is expressed by the chemical composition formula (1) is calculated. Use the minimum value obtained.
  • M1 represents an inorganic element
  • M2 represents a transition metal
  • O represents oxygen
  • N represents nitrogen
  • x, y, and z are stoichiometric coefficients, respectively
  • a represents the maximum valence of M1
  • b represents the maximum valence of M2.
  • the composition represented by the chemical composition formula (1) is simply referred to as the composition of the mixed region.
  • the composition of the mixed region may partially include a nitride structure, and it is preferable from the viewpoint of barrier properties to include a nitride structure.
  • this formula means that the total number of bonds of the inorganic element M1 and the transition metal M2 is equal to the total number of bonds of O and N, and both the inorganic element M1 and the transition metal M2 are It is combined with either O or N.
  • the maximum valence of each element is calculated by weighted averaging with the abundance ratio of each element.
  • the combined valence is adopted as the value of a and b of each “maximum valence”.
  • the mixed region is a region where the value of x satisfies [0.02 ⁇ x ⁇ 49, (0 ⁇ y, 0 ⁇ z)]. This has the same meaning as defining the region where the value of the atomic ratio of transition metal M2 / inorganic element M1 is in the range of 0.02 to 49 and the thickness is 5 nm or more.
  • both the inorganic element M1 and the transition metal M2 are involved in direct bonding between metals. For this reason, it is considered that the presence of a mixed region satisfying this condition with a thickness of a predetermined value or more (5 nm) contributes to an improvement in barrier properties. In addition, it is considered that the closer the abundance ratio of the inorganic element M1 and the transition metal M2 is, the more the barrier region is improved.
  • the region satisfying [0.2 ⁇ x ⁇ 5] is included in a thickness of 5 nm or more, and the region satisfying [0.3 ⁇ x ⁇ 4] is included in a thickness of 5 nm or more. More preferably.
  • the mixed region preferably has at least part of its composition satisfying [(2y + 3z) / (a + bx) ⁇ 0.9], more preferably satisfying [(2y + 3z) / (a + bx) ⁇ 0.85], It is more preferable to satisfy [(2y + 3z) / (a + bx) ⁇ 0.8].
  • [(2y + 3z) / (a + bx)] in the mixed region the higher the barrier effect, but the greater the absorption of visible light. Therefore, when used in applications where transparency is desired, [(2y + 3z) / (a + bx) ⁇ 0.2] is preferable, and [(2y + 3z) / (a + bx) ⁇ 0.3]. Is more preferable, and [(2y + 3z) / (a + bx) ⁇ 0.4] is more preferable.
  • the thickness of the mixed region in which good barrier properties can be obtained is 5 nm or more as the sputtering thickness in terms of SiO 2 in the XPS analysis method described later, and this thickness is preferably 8 nm or more, preferably 10 nm. More preferably, it is more preferably 20 nm or more.
  • the thickness of the mixed region is not particularly limited from the viewpoint of barrier properties, but is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 30 nm or less from the viewpoint of optical characteristics. .
  • composition analysis by XPS analysis and measurement of the thickness of the mixed region In the second gas barrier layer composed of the laminated form of the transition metal-containing layer and the inorganic element-containing layer other than the transition metal, the mixed region of the inorganic element M1 and the transition metal M2, the composition distribution in the A region and the B region, The thickness and the like can be obtained by XPS depth profile measurement using the above-described X-ray photoelectron spectroscopy (abbreviation: XPS).
  • the gas barrier film 10 may have a protective layer containing an organic compound or the like on the upper portion (outermost surface portion) of the gas barrier layer 12.
  • an organic resin such as an organic monomer, oligomer or polymer, or an organic-inorganic composite resin using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group is preferably used. it can.
  • the protective layer is prepared by mixing an organic resin or an inorganic material with other components in a dilution solvent as necessary to prepare a coating solution. After coating this coating solution on the substrate surface by a conventionally known coating method, ionization is performed. It is preferable to form by irradiating and curing.
  • the gas barrier film 10 may have a smooth layer (underlayer, primer layer) between the base film 11 and the gas barrier layer 12.
  • a smooth layer is provided in order to planarize the rough surface of the base film 11 in which protrusions and the like exist.
  • the material for forming such a smooth layer is not limited, but preferably contains a curable resin.
  • the curable resin is not particularly limited, and examples thereof include an active energy ray curable resin that is cured by irradiation with active energy rays such as ultraviolet rays, and a thermosetting resin that is cured by heating.
  • the curable resins may be used alone or in combination of two or more. Conventionally known materials can be used as materials for the active energy ray-curable resin and the thermosetting resin.
  • the method for forming the smooth layer is not particularly limited, but a coating solution containing a curable material may be applied by a spin coating method, a spray method, a blade coating method, a dipping method, a gravure printing method or other wet coating method, or a vapor deposition method.
  • the coating film is formed by irradiation with active energy rays such as visible light, infrared rays, ultraviolet rays, X-rays, ⁇ rays, ⁇ rays, ⁇ rays, electron beams, heating, etc.
  • active energy rays such as visible light, infrared rays, ultraviolet rays, X-rays, ⁇ rays, ⁇ rays, ⁇ rays, electron beams, heating, etc.
  • a curing method is preferred.
  • the smoothness of the smooth layer is a surface roughness value defined by JIS B 0601: 2001, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less.
  • the surface roughness is measured using an AFM (Atomic Force Microscope).
  • the AMF includes a detector having a stylus with a very small tip radius, and the surface roughness is calculated from a cross-sectional curve of unevenness continuously measured by this detector.
  • the thickness of the smooth layer is not particularly limited, but is preferably in the range of 0.1 to 10 ⁇ m.
  • the gas barrier film 10 may have a bleed-out prevention layer.
  • the bleed-out prevention layer is used for the purpose of suppressing the phenomenon that unreacted oligomers migrate to the surface of the resin film by heating and contaminate the contact surface when the smooth layer is formed on the resin film. It is provided on the opposite surface of the base film 11 having a layer. As long as the bleed-out preventing layer has this function, the same configuration as that of the smoothing layer described above can be applied.
  • the gas barrier film 10 may have an anchor coat layer on the base film 11 for the purpose of improving the adhesion (adhesion) between the base film 11 and the gas barrier layer.
  • the anchor coating agent used in this anchor coat layer includes polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene / vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. Etc. can be used singly or in combination of two or more. Conventionally known additives can be added to these anchor coating agents.
  • a commercially available product may be used as the anchor coating agent. Specifically, as the siloxane-based UV curable polymer solution, a 3% isopropyl alcohol solution of “X-12-2400” manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • the above-mentioned anchor coat layer is obtained by coating an anchor coat agent on a substrate by a known method such as roll coat, gravure coat, knife coat, dip coat, spray coat, etc., and drying and removing the solvent, diluent, etc. Can be formed.
  • the gas barrier film 10 may have a desiccant layer (moisture adsorption layer).
  • a desiccant layer moisture adsorption layer
  • the material used for the desiccant layer include calcium oxide and organometallic oxide.
  • Calcium oxide is preferably used after being dispersed in a binder resin or the like, and as a commercially available product, for example, AqvaDry series manufactured by SAES Getter Co., Ltd. is preferable.
  • an organometallic oxide OleDry (registered trademark) series manufactured by Futaba Electronics Co., Ltd. or the like can be used.
  • the gas barrier film 10 can be manufactured by forming the gas barrier layer 12 on the base film 11. Therefore, the method for manufacturing the gas barrier film 10 includes a step of preparing the base film 11 and a step of forming the gas barrier layer 12 on the base film 11.
  • a base film 11 containing a resin, organic fine particles, and a halogenated hydrocarbon as an organic solvent capable of producing the gas barrier film 10 is prepared.
  • a commercially available resin film containing a resin, organic fine particles, and a halogenated hydrocarbon as an organic solvent capable of producing the gas barrier film 10 is prepared as the base film 11.
  • the above-mentioned various resin films can be used as the resin film.
  • a conventionally known method for producing a resin film can be applied to the production of the base film 11.
  • the manufacturing method of the base film 11 is not particularly limited, and a conventionally known method for manufacturing a resin film is applied as long as the base film 11 containing a resin, organic fine particles, and a halogenated hydrocarbon as an organic solvent can be manufactured. be able to.
  • the production method can adjust the content (mass) of the halogenated hydrocarbon to 10 ppm or more and 1000 ppm or less with respect to the total mass of the base film 11, Conventionally known methods for producing resin films can be applied.
  • the base film 11 containing a resin, organic fine particles, and halogenated hydrocarbon as an organic solvent in an amount of 10 ppm to 1000 ppm is preferably produced by a solution film forming method (cast method). That is, the method for producing the base film 11 preferably has the following steps 1 to 3. 1. 1. A step of obtaining a dope containing a resin, organic fine particles, and a halogenated hydrocarbon. 2. A step of casting a dope on a support, drying and peeling to obtain a film-like material. Step of stretching a film
  • the resin for preparing the dope the above-mentioned various resins can be used.
  • the resin for preparing the dope the polarities represented by the above general formula (A-1), general formula (A-2), general formula (B-1), or general formula (B-2) It is preferable to include a norbornene-based resin having a group.
  • the organic solvent for dissolving the resin is not particularly limited as long as it contains at least a halogenated hydrocarbon and can dissolve the resin constituting the base film 11.
  • a mixed solvent of the above-mentioned various halogenated hydrocarbons and another organic solvent is used as the organic solvent.
  • the method for dissolving the resin in the organic solvent is not particularly limited, and the desired resin may be dissolved in the organic solvent, or various monomers may be polymerized in the organic solvent to dissolve the resin in the organic solvent.
  • the resin concentration in the dope is preferably 5 to 60% by mass, more preferably 10 to 40% by mass, and particularly preferably 10 to 30% by mass. If the concentration of the resin in the dope is too low, the viscosity becomes low, and it becomes difficult to adjust the thickness of the base film 11. Moreover, when too high, film-forming property will be bad, and the nonuniformity of the thickness and surface shape of the base film 11 will become large.
  • the method for adding the organic fine particles into the dope is not particularly limited, and the organic fine particles may be added directly to the solvent, or an aggregate of organic fine particles may be prepared and then added to the solvent.
  • the organic fine particles are particles (polymer particles) made of the above-mentioned polymer
  • the aggregate of polymer particles is obtained by spray drying a slurry containing polymer particles, a surfactant, an inorganic powder, and an aqueous medium.
  • the aggregate of polymer particles can be prepared, for example, by the method described in JP 2010-138365 A.
  • the aggregate of polymer particles is composed of a plurality of polymer particles whose mutual connection (fusion) is suppressed. For this reason, since the aggregate of polymer particles is easily separated into polymer particles when the aggregate is dispersed in a resin or an organic solvent, it is excellent in handleability and dispersibility.
  • the method of casting the dope is not particularly limited, and a method of discharging from a casting die and casting on a support, a bar coater, a T die, a T die with a bar, a doctor blade, a roll coat, a die coat, etc. And a method of casting on a support.
  • the residual solvent amount of the entire organic solvent containing the halogenated hydrocarbon when peeling the film-like material from the support is preferably 10 to 150% by mass, and 20 to 40% by mass It is more preferable that When the amount of residual solvent at the time of peeling is 10% by mass or more, the cycloolefin resin easily flows and becomes non-oriented at the time of drying or stretching, so it is easy to reduce Ro and Rt of the obtained base film.
  • the film-like material may be stretched only in one direction (uniaxial stretching) or in two orthogonal directions (biaxial stretching).
  • the film-like material is stretched by biaxial stretching that extends in two directions of the width direction (TD direction) of the film-like material and the transport direction (MD direction) orthogonal to the width direction (TD direction).
  • the stretching ratio is preferably, for example, [TD stretching ratio / MD stretching ratio] of 1.0 to 3.0.
  • the draw ratios in the TD direction and MD direction are each preferably 1.01 to 3.5 times, more preferably 1.01 to 1.3 times. The higher the draw ratio, the greater the residual stress of the obtained base film.
  • the draw ratio is defined as [(size of stretched film after stretching) / (size of stretched film before stretching)].
  • the stretching temperature is preferably (Tg ⁇ 65) ° C. or more and (Tg + 60) ° C. or less, and (Tg ⁇ 50) ° C. or more (Tg + 50), where Tg is the glass transition temperature of the resin constituting the substrate film 11. It is more preferable that the temperature is not higher than ° C, and it is more preferable that the temperature be (Tg-30) ° C or higher and (Tg + 50) ° C or lower. When the stretching temperature is (Tg-30) ° C. or higher, the film-like product tends to have flexibility suitable for stretching, and excessive tension is not easily applied to the film-like product during stretching.
  • the stretching temperature is (Tg + 60) ° C. or less, moderate residual stress tends to remain on the stretched base film 11, and generation of bubbles due to evaporation of the solvent in the film-like material can be suppressed.
  • the temperature is preferably 100 to 220 ° C.
  • Stretching of the film-like material in the MD direction can be performed, for example, by a method (roll method) in which a difference in peripheral speed is applied to a plurality of rolls and the difference in the peripheral speed of the roll is used between them.
  • Stretching of the film-like material in the TD direction can be performed by, for example, a method (tenter method) in which both ends of the film-like material are fixed with clips or pins and the distance between the clips or pins is increased in the traveling direction.
  • the base film 11 containing a resin, organic fine particles, and a halogenated hydrocarbon as an organic solvent can be produced.
  • the content of the halogenated hydrocarbon in the base film 11 is adjusted to 10 ppm or more and 1000 ppm or less by controlling the residual amount of the organic solvent in the step of evaporating the solvent in the dope cast on the support. can do.
  • the content of the halogenated hydrocarbon in the base film 11 is 10 ppm or more and 1000 ppm or less
  • the content of the halogenated hydrocarbon contained in the base film 11 after forming the gas barrier layer is 1 ppm or more and 90 ppm or less. Easy to adjust.
  • content of the organic solvent of the base film 11 can be performed using the measuring method by the above-mentioned head space gas chromatography, and measuring conditions.
  • the gas barrier layer 12 is produced on the surface side of the base film 11 produced by the method described above.
  • the base film 11 before forming the gas barrier layer 12 contains 10 ppm or more and 1000 ppm or less of a halogenated hydrocarbon as an organic solvent.
  • the base film 11 before forming the gas barrier layer 12 contains halogenated hydrocarbons in the range of 10 ppm to 1000 ppm, thereby suppressing the removal of organic fine particles contained in the base film 11 in the production apparatus for the gas barrier layer 12. can do.
  • the gas barrier film 10 formed by forming the gas barrier layer 12 when the base film 11 before forming the gas barrier layer 12 contains 10 to 1000 ppm of halogenated hydrocarbon It becomes easy to adjust the content of the halogenated hydrocarbon to 1 ppm or more and 90 ppm or less.
  • the gas barrier film 10 at least a gas barrier layer 12 formed by a vacuum film forming method is formed. For this reason, since the base film 11 is exposed to the heating environment and the reduced pressure environment during the production of the gas barrier layer 12, the organic solvent contained in the base film 11 is vaporized, and the base film 11 The content of the organic solvent decreases. For this reason, the halogenated hydrocarbon content of the base film 11 before forming the gas barrier layer 12 needs to be sufficiently larger than the halogenated hydrocarbon content of the base film 11 in the gas barrier film 10.
  • the halogenated hydrocarbon content of the base film 11 of the gas barrier film 10 is formed.
  • an arbitrary configuration may be selected from the various gas barrier layers 12 described above, and layers other than the various gas barrier layers 12 described above may be manufactured.
  • a vacuum film-forming method for producing the gas barrier layer 12 on the base film 11 a roll-to-roll manufacturing device that unwinds the base film 11 from a roller and forms the gas barrier layer 12 on the film forming roller, It is preferable to use a manufacturing method.
  • a film forming method of the gas barrier layer 12 using a roll-to-roll manufacturing apparatus for example, a plasma CVD film forming apparatus using the roll-to-roll method having the configuration shown in FIG. 3 is preferably used.
  • a first gas barrier layer (gas phase deposition gas barrier layer) is formed by combining a layer (second gas barrier layer) formed by a method other than the vacuum deposition method with a vacuum deposition method (first gas barrier layer). ) And a second gas barrier layer (a gas barrier layer other than the vacuum film forming method) is preferably produced.
  • first gas barrier layer gas phase deposition gas barrier layer
  • second gas barrier layer a gas barrier layer other than the vacuum film forming method
  • the base film 11 having the resin 13 and the organic fine particles 14 and containing 1 to 90 ppm of halogenated hydrocarbon as an organic solvent, and the gas barrier layer 12 formed by a vapor deposition method. Can be produced.
  • a long base film 11 wound in a roll shape is produced using a solution film forming method, and the roll-like base film 11 is transferred from the production place of the base film 11 to another place.
  • the gas barrier layer 12 may be formed.
  • a base film was prepared by the following method (solution film forming method), and a gas barrier layer was formed on the base film to prepare a gas barrier film of Sample 101.
  • a main dope having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Next, Topas 5013 (manufactured by Polyplastics Co., Ltd.) (resin A) was added as a norbornene resin to the pressurized dissolution tank with stirring. Next, the fine particle dispersion A prepared above was added, and this was heated to 60 ° C., and the resin was completely dissolved while stirring. The heating temperature was raised from room temperature at 5 ° C./min, dissolved in 30 minutes, and then lowered at 3 ° C./min. The viscosity of the obtained solution was 7000 cp, and the water content was 0.50%.
  • an endless belt casting apparatus was used to uniformly cast the main dope on a stainless steel belt support at a temperature of 31 ° C. and a width of 1800 mm.
  • the temperature of the stainless steel belt was controlled at 28 ° C.
  • the conveyance speed of the stainless steel belt was 20 m / min.
  • the solvent was evaporated until the methylene chloride (MC) in the cast film was 680 ppm and ethanol (EtOH) was 150 ppm.
  • the film-like material was peeled from the stainless steel belt support with a peeling tension of 128 N / m.
  • the peeled film was stretched 1.2 times in the transport direction at 120 ° C. (Tg ⁇ 45 ° C.) while being transported by many rollers.
  • the film-like material was stretched 1.5 times in the width direction under a condition of 150 ° C. (Tg ⁇ 15 ° C.) with a tenter.
  • interposed with the tenter clip was slit with the laser cutter, and it wound up after that, and obtained the base film with a film thickness of 40 micrometers.
  • a gas barrier layer having a thickness of 100 nm was formed on the base film produced by the above method by the following method (sputtering method: condition 1).
  • a roll-to-roll type sputtering apparatus 70 shown in FIG. 4 was used for the formation of the gas barrier layer.
  • a sputtering apparatus 70 shown in FIG. A drum 73 for contacting and cooling the surface of the base film 76 is disposed at the center of the vacuum chamber 72. Further, a feeding roller 74 and a winding roller 75 for winding the base film 76 are arranged in the vacuum chamber 72. The base film 76 wound around the feed roller 74 is conveyed onto the drum 73 via the guide roll 77, and the base film 76 is further wound around the take-up roller 75 via the guide roll 78.
  • the vacuum chamber 72 has a vacuum pump 71 as a vacuum exhaust system, and the vacuum chamber 72 is exhausted from the exhaust port 79 by the vacuum pump 71.
  • the vacuum chamber 72 includes a direct current discharge power source 81 to which pulse power can be applied as a film forming system, and a cathode 82 connected to the discharge power source 81, and a target (not shown) is mounted on the cathode 82. Is done.
  • the discharge power supply 81 is connected to the controller 83.
  • the controller 83 is connected to the gas flow rate adjustment unit 84.
  • the gas flow rate adjustment unit 84 is connected to the gas flow rate adjustment unit 84 that supplies the reaction gas to the vacuum chamber 72 via the pipe 85 while adjusting the amount of reaction gas introduced into the vacuum chamber 72.
  • the vacuum chamber 72 is configured to be supplied with a constant flow rate of discharge gas (not shown).
  • condition 1 specific conditions of the gas barrier layer forming method using the sputtering method
  • Si was set as a target, and a pulse application type DC power source was prepared as a discharge power source 81.
  • the substrate film 76 was hung on the feeding roller 74 and passed to the take-up roller 75. After completing the preparation of the substrate to the sputtering apparatus 70, the door of the vacuum chamber 72 was closed, the vacuum pump 71 was started, and vacuuming and cooling of the drum were started. When the ultimate pressure reached 4 ⁇ 10 ⁇ 4 Pa and the drum temperature reached 5 ° C., the conveyance of the base film 76 was started.
  • Argon was introduced as a discharge gas
  • the discharge power supply 81 was turned on, plasma was generated on the Si target at a discharge power of 5 kW and a film formation pressure of 0.3 Pa, and pre-sputtering was performed for 3 minutes.
  • oxygen was introduced as a reaction gas.
  • the amounts of argon and oxygen gas were gradually reduced to lower the film forming pressure to 0.1 Pa.
  • a silicon oxide film was formed for a certain period of time. After the film formation was completed, the vacuum chamber 72 was returned to atmospheric pressure, and the film on which the silicon oxide film was formed was taken out.
  • a gas barrier film of Sample 102 was produced in the same manner as Sample 101 described above, except that the method for forming the gas barrier layer was changed to the following method (CVD method: Condition 2).
  • a gas barrier film of Sample 104 was produced in the same manner as Sample 103 described above, except that the method for forming the gas barrier layer was changed to the following method (CVD method + PHPS modified layer: Condition 3).
  • Sample No. described in the examples of WO2016 / 009801 was formed on the base film.
  • a gas barrier layer was formed in the same manner as in No. 28. Specifically, a roll-to-roll type structure in which two apparatuses each having a film forming roll facing the film forming part illustrated in FIG. 3 are connected (having a first film forming part and a second film forming part). An inter-roller discharge plasma CVD apparatus was used.
  • a first gas barrier layer having a thickness of 100 nm and a film thickness of 100 nm was prepared under the following film formation conditions.
  • the polysilazane-containing liquid prepared by the following method was applied on the first gas barrier layer prepared by the above method so that the dry film thickness was 300 nm, and the atmosphere (dew point 5 ° C.) was 80 ° C. for 2 minutes. Dried. And the modification
  • PHPS perhydropolysilazane
  • TDAH N, N, N ′, N′-tetramethyl-1,6-diamino) Hexane
  • a polymerization vessel equipped with a stirrer and a thermometer was charged with 800 g of deionized water in which 3 g of polyoxyethylene tridecyl ether ammonium sulfate was dissolved, and 144 g of methyl acrylate, 22 g of styrene, and 34 g of ethylene glycol dimethacrylate as a monomer mixture. And 1 g of azobisisobutyronitrile as a polymerization initiator was added. Next, the mixed solution is T.P. The mixture was stirred with a K homomixer (manufactured by Koki Kogyo Co., Ltd.) to obtain a dispersion.
  • K homomixer manufactured by Koki Kogyo Co., Ltd.
  • the above emulsion containing seed particles was added to the dispersion, and the mixture was stirred at 30 ° C. for 1 hour to allow the seed particles to absorb the monomer mixture.
  • the seed particles that have absorbed the monomer mixture are polymerized by heating at 50 ° C. for 5 hours under a nitrogen stream, and then cooled to room temperature (about 25 ° C.) to obtain a slurry containing polymer particles. Obtained.
  • the average particle diameter of the obtained polymer particles (organic fine particles) was 0.3 ⁇ m.
  • the average particle diameter of the polymer particle aggregate was 30 ⁇ m.
  • Supply speed 25ml / min
  • Atomizer speed 11000 rpm
  • Air volume 2m 3 / min -Slurry inlet temperature of spray dryer: 130 ° C
  • Polymer particle aggregate outlet temperature 70 ° C
  • the main dope was produced by changing the resin to be used to Arton-G7810 (manufactured by JSR) (resin B, with polar group). Furthermore, the drying conditions of the film cast on the stainless steel belt support were changed, and the solvent was evaporated until the methylene chloride (MC) was 610 ppm and ethanol (EtOH) was 143 ppm, thereby producing a base film. did. Further, the gas barrier layer was formed under the same condition 2 (CVD method) as that of the sample 102 described above. Except for these conditions, a gas barrier film of Sample 106 was produced in the same manner as Sample 105 described above.
  • the sample 107 was prepared in the same manner as the sample 106 described above except that the resin used was changed to Arton-R5000 (manufactured by JSR) (resin C, with polar group). A gas barrier film was prepared.
  • the fine particles D were produced by changing the average particle diameter of the polymer particles (organic fine particles) to 0.8 ⁇ m in the production of the polymer particles (fine particles C) of the sample 105.
  • methylene chloride (MC), ethanol (EtOH), methane, and toluene (Tol) were used as organic solvents, and the drying conditions of the cast film on the stainless steel belt support were changed. The solvent was evaporated until methylene chloride (MC) was 610 ppm, ethanol (EtOH) was 143 ppm, and toluene (Tol) was 10 ppm.
  • a gas barrier film of Sample 113 was prepared in the same manner as Sample 112 described above, except that the gas barrier layer was formed under the same conditions (CVD method + PHPS modified layer: Condition 3) as Sample 104 described above.
  • a gas barrier film of Sample 114 was produced in the same manner as Sample 112 described above, except that the method for forming the gas barrier layer was changed to the following method (CVD method: Condition 4).
  • a gas barrier film of Sample 119 was produced in the same manner as Sample 114 described above, except that the gas barrier layer formation conditions were changed to the following conditions (CVD method: Condition 5).
  • a gas barrier film of Sample 121 was produced in the same manner as Sample 102 described above, except that the method for preparing the fine particle dispersion was changed to the following method (fine particles E).
  • Headspace device HP7694 Head Space Sampler (manufactured by Hewlett-Packard Company) -Temperature conditions: transfer line 200 ° C, loop temperature 200 ° C -Sample amount: 0.8g / 20ml vial-GC: HP5890 (manufactured by Hewlett-Packard Company) ⁇ MS: HP5971 (manufactured by Hewlett-Packard Company) -Column: HP-624 (30m x 0.25mm ID) Oven temperature: initial temperature 40 ° C. (holding time 3 minutes), temperature rising rate 10 ° C./minute, ultimate temperature 200 ° C. (holding time 5 minutes)
  • the produced gas barrier film was cross-cut by 100 squares by a method according to JIS K 5600-5-6. And in the gas barrier film after cross-cutting, the adhesion state of the base film of each mass and the gas barrier layer was confirmed.
  • the gas barrier layer was peeled by 1/3 or less of the mass, and the adhesion of the gas barrier film was evaluated according to the following criteria (rank) from the number x of the acceptable mass in 100 masses. 4: x is 90 or more 3: x is 80 or more and less than 90 2: x is 70 or more and less than 80 1: x is less than 70
  • the produced Ca method evaluation sample was stored in a 60 ° C. and 90% RH environment. Then, light was incident on the Ca method evaluation sample after storage for 20 hours from the normal direction on the glass surface side and photographed from the opposite surface side using an area-type CCD camera to obtain an evaluation image of the Ca layer. .
  • concentration of Ca vapor deposition part of the obtained evaluation image was digitized. This evaluation was also performed on the Ca method evaluation sample after storage for 40, 60, 80, or 100 hours in a 60 ° C. and 90% RH environment, and the average of the slope with respect to the average concentration of the Ca vapor deposition portion in 20 to 100 hours. From the value, the average value (g / m 2 / day) of the water vapor transmission rate (WVTR) was calculated. And the average value of this WVTR was converted into the water vapor transmission rate (WVTR) in 40 degreeC and 90% RH environment, and the following reference
  • the sample size of the gas barrier film is 3 cm x 13 cm, and the gas barrier film is bent 100,000 times into a curved surface with a diameter of 6 mm with the U-shaped stretch tester DLDMMLH-FS manufactured by Yuasa System Equipment Co. I let you. Thereafter, using the bent central portion of the gas barrier film, a measurement sample of the Ca method was produced in the same manner as the evaluation of the water vapor permeability described above. Furthermore, after storing in a 60 ° C. and 90% RH environment for 200 hours, it is considered that the gas barrier layer has been damaged (cracked), and the gas barrier film is cracked (cracked) according to the following criteria. The occurrence of was evaluated.
  • the main configuration of the gas barrier films of the samples 101 to 125 and the evaluation results are shown in Table 1 below.
  • the forming conditions 1 to 5 of the resins A to E, the fine particles A to E, and the gas barrier layer constituting the base film shown in Table 1 are as follows.
  • Resin A Polyplastic Topas 513 (no polar group)
  • Resin B Arton-G7810 manufactured by JSR (with polar group)
  • Resin C Arton-R5000 (with polar group) manufactured by JSR
  • Resin D Cellulose (non-norbornene)
  • Resin E Acrylic resin / cellulose acylate mixture (non-norbornene)
  • Fine particle A polyphenylene sulfide fine particle (0.3 ⁇ m)
  • Fine particle B Core shell fine particle (0.3 ⁇ m)
  • Fine particle C acrylic / styrene polymer fine particle (0.3 ⁇ m)
  • Fine particle D acrylic / styrene polymer fine particle (0.8 ⁇ m)
  • Fine particles E inorganic fine particles (SiO 2 )
  • Condition 1 Sputtering method
  • Condition 2 CVD method (deposition unit vacuum 2.0 Pa)
  • Condition 3 CVD method + PHPS modified layer
  • Condition 4 CVD method (deposition unit vacuum 2.5 Pa)
  • Condition 5 CVD method (deposition unit vacuum degree 1.5 Pa)
  • the base film contains a resin, organic fine particles, and halogenated hydrocarbon of 1 ppm or more and 90 ppm or less (after gas barrier layer film formation) as an organic solvent, and is formed by a vapor phase film formation method.
  • the gas barrier films of Sample 101 to Sample 120 having the gas barrier layer all obtained results of 2 or more in each of the evaluation items of adhesion, water vapor transmission rate (WVTR), and bending resistance. Further, the gas barrier films of Sample 101 to Sample 120 were not confirmed to be contaminated in the evaluation of device contamination.
  • each evaluation should just be 2 or more, and it is preferable that it is 3 or more.
  • the inorganic fine particles used in the gas barrier film of the sample 121 have a lower affinity with the resin of the base film than the organic fine particles. For this reason, like the gas barrier film of the sample 121, when only inorganic fine particles are included, the particles easily fall off from the base film, and the base film and the gas barrier layer easily peel off. In addition, the removal of the inorganic fine particles tends to cause cracks in the gas barrier layer, so that the gas barrier property is likely to deteriorate. Furthermore, contamination in the apparatus due to dropping off of the inorganic fine particles tends to occur. Further, since the inorganic fine particles are more rigid than the organic fine particles, the flexibility of the base film is likely to be reduced, and the flex resistance of the base film is likely to be reduced.
  • the gas barrier property tends to be lowered.
  • the film formation (gas phase film formation method) of the gas barrier layer is likely to be hindered by the organic solvent present in a large amount at the interface between the base film and the gas barrier layer. For this reason, the gas barrier property tends to be lowered.
  • the gas barrier property tends to be lowered.
  • the organic film contained in the base film is small (less than 1 ppm; below the detection limit)
  • the affinity between the resin and the organic fine particles is reduced in the base film, and the organic fine particles are likely to fall off.
  • the base film and the gas barrier layer easily peel off due to the removal of the organic fine particles.
  • cracking of the gas barrier layer is likely to occur due to the removal of the organic fine particles, so that the gas barrier property is likely to be lowered.
  • the halogenated hydrocarbon is not contained as the organic solvent like the gas barrier film of the sample 124 and the gas barrier film of the sample 125, the gas barrier property and the bending resistance are likely to be lowered. Furthermore, contamination in the apparatus due to the dropping of the fine particles is likely to occur.
  • the affinity between the resin and the organic fine particles is less likely to be higher than when a halogenated hydrocarbon is included. For this reason, in the structure which does not contain a halogenated hydrocarbon as an organic solvent, the affinity between the resin and the organic fine particles tends to decrease, and the organic fine particles are likely to fall off. As a result, the removal of the organic fine particles tends to cause cracks in the gas barrier layer, and the gas barrier properties are also likely to deteriorate.
  • the gas barrier film of the sample 101 and the gas barrier film of the sample 102 differ in the formation method of the gas barrier layer between the sputtering method (condition 1) and the CVD method (condition 2), but the gas barrier film formed by any method is sufficient. It has a good gas barrier property. Therefore, in the gas barrier film, the gas barrier layer can be formed by applying an arbitrary vapor deposition method such as sputtering or CVD. However, since the gas barrier film (condition 2; CVD method) of the sample 102 has a higher gas barrier property, it is preferable to apply a vacuum deposition method such as a CVD method as a method for forming the gas barrier layer.
  • a vacuum deposition method such as a CVD method
  • the gas barrier film of sample 103 and the gas barrier film of sample 104 were formed by any method, although the method of forming the gas barrier layer was different between the CVD method (condition 2) and the CVD method + PHPS modified layer (condition 3).
  • the gas barrier film also has sufficient gas barrier properties. Therefore, if the gas barrier film has a gas barrier layer (first gas barrier layer) formed by a vapor deposition method such as a CVD method, the gas barrier layer formed by another method on the gas barrier layer. You may have.
  • the gas barrier film of sample 105 has an acrylic / styrene polymer (particle C) as fine particles.
  • the gas barrier film (particle C; acrylic / styrene polymer) of the sample 105 has a higher gas barrier property than the gas barrier film (particle B; core shell) of the sample 104. Therefore, it is preferable that a gas barrier film has a polymer containing the structural unit derived from a (meth) acrylic-type monomer and the structural unit derived from a styrene-type monomer as organic fine particles used for a base film.
  • Polymer fine particles containing structural units derived from (meth) acrylic monomers and structural units derived from styrene monomers tend to have a high affinity with halogenated hydrocarbons, which are organic solvents. Is less likely to occur, and the film-forming property and adhesion of the gas barrier layer are likely to be improved. For this reason, it is thought that the gas barrier property of a gas barrier film becomes easy to improve.
  • the gas barrier film of the sample 106 and the gas barrier film of the sample 107 are norbornene resins (resin B or resin C) having a polar group as a resin constituting the base film.
  • the gas barrier film (resin B) of the sample 106 and the gas barrier film (resin C) of the sample 107 are more closely attached to the base film and the gas barrier layer than the gas barrier film of sample 105 (resin A: norbornene-based resin having no polar group).
  • the affinity between the resin and the organic fine particles is likely to be higher than when a norbornene-based resin having no polar group is used. It is considered that the film formation and adhesion of the gas barrier layer are likely to be improved because the fine particles do not easily fall off.
  • the gas barrier film of the sample 108 contains methylene chloride (MC), ethanol (EtOH), and toluene (Tol) as organic solvents.
  • the gas barrier film of the sample 108 has the same result as the gas barrier film (MC + EtOH) of the sample 106. From this result, even when the base film contains an organic solvent other than the halogenated hydrocarbon as well as the halogenated hydrocarbon, a gas barrier film having the same characteristics can be obtained. Therefore, the gas barrier film may contain any organic solvent other than the halogenated hydrocarbon as long as it contains a halogenated hydrocarbon as the organic solvent used for the base film.
  • the gas barrier film of Sample 109, the gas barrier film of Sample 110, the gas barrier film of Sample 111, and the gas barrier film of Sample 112 are each an amount of organic solvent contained in the base film (methylene chloride (MC) content; 5 ppm to 85 ppm) is different.
  • the gas barrier film (5 ppm) of the sample 112 is the best, and the gas barrier film (9 ppm) of the sample 111 is the next best.
  • the gas barrier film (9 ppm) of the sample 111 is the best for the barrier property. From this result, the gas barrier film tends to have better adhesion and barrier properties as the amount of the halogenated hydrocarbon contained in the base film is closer to the lower limit (1 ppm).
  • the gas barrier film of the sample 113 and the gas barrier film of the sample 114 have all the evaluation results of 4, and the best result is obtained among all the samples.
  • the gas barrier film of the sample 113 and the gas barrier film of the sample 114 are formed from the gas barrier film of the sample 112 (condition 2; CVD method vacuum degree 2.0 Pa), the formation conditions of the gas barrier layer (condition 3; CVD method + PHPS modified layer, or Condition 4: CVD method, degree of vacuum 1.5 Pa) is changed. Therefore, as the gas barrier layer of the gas barrier film, the condition 3 (CVD method + PHPS modified layer) for forming the second gas barrier layer on the first gas barrier layer formed by the vapor deposition method or a vacuum with a low vacuum degree is used. It is preferable to use condition 4 (CVD method vacuum degree 1.5 Pa) formed by vapor deposition.
  • the gas barrier film of sample 115 and the gas barrier film of sample 116 use chloroform or chlorobenzene, which is a halogenated hydrocarbon, as an organic solvent for the base film.
  • chloroform or chlorobenzene which is a halogenated hydrocarbon
  • the gas barrier film can use arbitrary halogenated hydrocarbons as the organic solvent of the base film.
  • the gas barrier film of sample 114 organic solvent; methylene chloride
  • the gas barrier film preferably contains methylene chloride among the halogenated hydrocarbons as the organic solvent.
  • the gas barrier film of the sample 117 and the gas barrier film of the sample 118 are cellulose resin (resin D) or acrylic resin / cellulose resin (resin E) in which the resin constituting the base film is not a norbornene resin.
  • the base film of the gas barrier film is not limited to the norbornene-based resin, and may be composed of a resin other than the norbornene-based resin.
  • the gas barrier film of the sample 114 (resin C: norbornene-based resin having a polar group) has better results of each evaluation. From this result, it is preferable that the resin constituting the base film of the gas barrier film is a norbornene resin.
  • the gas barrier film of sample 119 has a gas barrier layer formed under condition 5 (CVD method vacuum degree 1.5 Pa), which is lower than condition 4 (CVD method vacuum degree 2.0 Pa).
  • condition 5 CVD method vacuum degree 1.5 Pa
  • condition 4 CVD method vacuum degree 2.0 Pa
  • the gas barrier film of the sample 119 the same result as the gas barrier film of the sample 112 and the sample 113 in which the gas barrier layer was formed on condition 4 (CVD method vacuum degree 2.0 Pa) was obtained. Therefore, the gas barrier film can form a gas barrier layer under any conditions as long as it is a vapor deposition method. In particular, if it is a vacuum deposition method such as a CVD method, a gas barrier layer having a good gas barrier property can be formed under arbitrary conditions.
  • the amount of organic solvent (MC content) contained in the base film is 3 ppm, and the organic solvent contained in the base film than the gas barrier film of sample 112 (MC content; 5 ppm). The amount of is small.
  • the gas barrier film of the sample 120 has lower adhesion and flex resistance than the gas barrier film of the sample 112. From this result, in the gas barrier film in which the amount of the organic solvent contained in the base film is reduced to 5 ppm, each evaluation result becomes good, but when the amount of the organic solvent is reduced to 3 ppm, each evaluation result starts to decrease. Therefore, in the gas barrier film, the amount of the organic solvent contained in the base film is preferably 3 ppm or more.
  • each evaluation result is 3 or more, so that the content of the organic solvent can be further reduced.
  • the amount of the organic solvent contained in the base film is equal to or lower than the detection limit value (less than 1 ppm) like the gas barrier film of the sample 123, the base film is If the organic solvent is contained at 1 ppm or more, it is considered that the gas barrier film has sufficient characteristics.
  • Base material 61, 62 ... Magnetic field generator, 63 ... Power source for plasma generation , 70 ... Sputtering device, 7 ... Vacuum pump, 73 ... Drum, 77,78 ... Guide roll, 79 ... Exhaust port, 81 ... Discharge power source, 82 ... Cathode, 83 ... Controller, 84. ..Gas flow rate adjustment unit, 85 ... Piping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

The present invention provides a method for producing a gas barrier film, which is capable of suppressing decrease in adhesion between a base material film and a gas barrier layer, and which is also capable of suppressing decrease in the gas barrier properties. According to the present invention, a gas barrier film is produced by a step wherein a gas barrier layer is formed on a base material film by a vapor-phase film formation method, said base material film containing a resin, organic fine particles and a halogenated hydrocarbon that serves as an organic solvent. The content of the halogenated hydrocarbon in the base material film before the formation of the gas barrier layer is from 10 ppm to 1,000 ppm (inclusive).

Description

ガスバリアフィルム、及び、ガスバリアフィルムの製造方法Gas barrier film and method for producing gas barrier film
 本発明は、ガスバリアフィルム、及び、ガスバリアフィルムの製造方法に係わる。 The present invention relates to a gas barrier film and a method for producing the gas barrier film.
 従来から、基材フィルム上にガスバリア層が形成されたガスバリアフィルムが知られている。このガスバリアフィルムは、基材フィルムとして樹脂フィルムが用いられ、さらに、基材フィルムの厚さを50μm以下とすることで、ガスバリアフィルムにフレキシブル性を付与することができる。 Conventionally, gas barrier films in which a gas barrier layer is formed on a base film are known. In this gas barrier film, a resin film is used as a base film, and the flexibility of the gas barrier film can be imparted by setting the thickness of the base film to 50 μm or less.
 ガスバリアフィルムの基材フィルムとして、溶液流延法を用いて形成された、樹脂と有機溶媒と微粒子とを含む樹脂フィルムが知られている(例えば、特許文献1、特許文献2参照)。この樹脂フィルムでは、マット剤として無機の微粒子や有機の微粒子が含まれている。また、溶液流延法を用いた基材フィルムの有機溶媒として、ハロゲン化炭化水素溶媒が用いられている。 As a base film of a gas barrier film, a resin film containing a resin, an organic solvent, and fine particles formed using a solution casting method is known (for example, see Patent Document 1 and Patent Document 2). This resin film includes inorganic fine particles and organic fine particles as a matting agent. Moreover, the halogenated hydrocarbon solvent is used as the organic solvent of the base film using the solution casting method.
特開2006-264118号公報JP 2006-264118 A 特開2007-76207号公報JP 2007-76207 A
 しかしながら、有機溶媒と微粒子とを含む基材フィルムでは、基材フィルムとガスバリア層との間に介在する微粒子が脱落しやすいため、基材フィルムとガスバリア層との密着性が悪化しやすい。さらに、基材フィルムとガスバリア層との間に介在する微粒子により、ガスバリア層に亀裂や欠陥が発生しやすく、ガスバリアフィルムのガスバリア性が低下しやすい。 However, in a base film containing an organic solvent and fine particles, the fine particles intervening between the base film and the gas barrier layer are likely to fall off, and the adhesion between the base film and the gas barrier layer is likely to deteriorate. Furthermore, the fine particles intervening between the base film and the gas barrier layer tend to cause cracks and defects in the gas barrier layer, and the gas barrier property of the gas barrier film is likely to be lowered.
 上述した問題の解決のため、本発明においては、基材フィルムとガスバリア層との密着性の低下、及び、ガスバリア性の低下を抑制することが可能なガスバリアフィルム、及び、ガスバリアフィルムの製造方法を提供する。 In order to solve the above-described problems, in the present invention, a gas barrier film capable of suppressing a decrease in adhesion between the base film and the gas barrier layer and a decrease in gas barrier property, and a method for producing the gas barrier film are provided. provide.
 本発明のガスバリアフィルムの製造方法は、樹脂、有機微粒子、及び、有機溶媒としてハロゲン化炭化水素を含有する基材フィルム上に、ガスバリア層を気相成膜法で形成する工程を有する。そして、ガスバリア層を形成する前の基材フィルム中のハロゲン化炭化水素の含有量が10ppm以上1000ppm以下である。 The method for producing a gas barrier film of the present invention includes a step of forming a gas barrier layer by a vapor deposition method on a substrate film containing a resin, organic fine particles, and a halogenated hydrocarbon as an organic solvent. And content of the halogenated hydrocarbon in the base film before forming a gas barrier layer is 10 ppm or more and 1000 ppm or less.
 また、本発明のガスバリアフィルムは、基材フィルムと、基材フィルム上に形成されたガスバリア層とを備える。そして、基材フィルムは、樹脂、有機微粒子、及び、有機溶媒としてハロゲン化炭化水素を含有し、基材フィルム中のハロゲン化炭化水素の含有量が1ppm以上90ppm以下である。 The gas barrier film of the present invention includes a base film and a gas barrier layer formed on the base film. And a base film contains halogenated hydrocarbon as resin, organic particulates, and an organic solvent, and content of halogenated hydrocarbon in a base film is 1 ppm or more and 90 ppm or less.
 本発明によれば、基材フィルムとガスバリア層との密着性の低下、及び、ガスバリア性の低下を抑制することが可能なガスバリアフィルム、及び、ガスバリアフィルムの製造方法を提供することができる。 According to the present invention, it is possible to provide a gas barrier film capable of suppressing a decrease in adhesion between the base film and the gas barrier layer and a decrease in gas barrier property, and a method for producing the gas barrier film.
ガスバリアフィルムの概略構成を示す図である。It is a figure which shows schematic structure of a gas barrier film. 真空プラズマCVD装置の模式図である。It is a schematic diagram of a vacuum plasma CVD apparatus. ローラー間放電プラズマCVD装置の一例を示す模式図である。It is a schematic diagram which shows an example of the discharge plasma CVD apparatus between rollers. ロールトゥロール方式のスパッタリング装置の模式図である。It is a schematic diagram of a roll-to-roll type sputtering apparatus.
 以下、本発明を実施するための形態の例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.ガスバリアフィルム
2.ガスバリアフィルムの製造方法
Hereinafter, although the example of the form for implementing this invention is demonstrated, this invention is not limited to the following examples.
The description will be given in the following order.
1. 1. Gas barrier film Method for producing gas barrier film
〈1.ガスバリアフィルム〉
 以下、本発明のガスバリアフィルムの具体的な実施の形態について説明する。
 図1に、ガスバリアフィルムの概略構成を示す。図1に示すガスバリアフィルム10は、基材フィルム11とガスバリア層12とを備える。
<1. Gas barrier film>
Hereinafter, specific embodiments of the gas barrier film of the present invention will be described.
In FIG. 1, schematic structure of a gas barrier film is shown. A gas barrier film 10 shown in FIG. 1 includes a base film 11 and a gas barrier layer 12.
[基材フィルム]
 基材フィルム11は、ベースとなる樹脂13と、有機微粒子14とを有する。さらに、基材フィルム11は、ハロゲン化炭化水素を有機溶媒として含み、ハロゲン化炭化水素の含有量(質量)が基材フィルム11の全質量に対して1ppm以上90ppm以下である。基材フィルム11は、樹脂や添加剤等を溶媒に溶解又は分散したドープを、流延支持体上に流延して成膜した、いわゆる溶液流延法によって製造した樹脂フィルムであることが好ましい。
[Base film]
The base film 11 includes a resin 13 serving as a base and organic fine particles 14. Furthermore, the base film 11 contains a halogenated hydrocarbon as an organic solvent, and the content (mass) of the halogenated hydrocarbon is 1 ppm or more and 90 ppm or less with respect to the total mass of the base film 11. The base film 11 is preferably a resin film manufactured by a so-called solution casting method, in which a dope in which a resin, an additive, or the like is dissolved or dispersed in a solvent is cast on a casting support. .
 ガスバリアフィルム10に用いられる基材フィルム11としては、ガスバリア層12を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。基材フィルム11としては、従来公知の樹脂フィルムを用いることができる。基材フィルム11は、複数の材料から形成されていてもよい。基材フィルム11としては、特開2013-226758号公報の段落[0124]~[0136]、国際公開第2013/002026号の段落[0044]~[0047]等に記載された樹脂フィルムを挙げることができる。 The base film 11 used for the gas barrier film 10 is not particularly limited in material, thickness and the like as long as it can hold the gas barrier layer 12 and can be appropriately selected according to the purpose of use. As the base film 11, a conventionally known resin film can be used. The base film 11 may be formed from a plurality of materials. Examples of the base film 11 include resin films described in paragraphs [0124] to [0136] of JP2013-226758A, paragraphs [0044] to [0047] of WO2013 / 002026, and the like. Can do.
 基材フィルム11は、樹脂フィルムが単独、又は、複数用いられていてもよく、複数の層から形成されていてもよい。基材フィルム11は、枚葉形状及びロール形状に限定されないが、生産性の観点からロールトゥロール方式に対応できるロール形状が好ましい。また、基材フィルム11の厚さは、特に制限されないが、5~100μmが好ましく、5~40μmがより好ましい。 The base film 11 may be a single resin film or a plurality of resin films, or may be formed of a plurality of layers. Although the base film 11 is not limited to a single wafer shape and a roll shape, the roll shape which can respond | correspond to a roll to roll system from a viewpoint of productivity is preferable. The thickness of the base film 11 is not particularly limited, but is preferably 5 to 100 μm, more preferably 5 to 40 μm.
[樹脂]
 基材フィルム11を構成する樹脂13としては、特に限定はないが、熱可塑性樹脂を含有することが好ましい。ここで、「熱可塑性樹脂」とは、ガラス転移温度又は融点まで加熱することによって軟化する樹脂である。熱可塑性樹脂は、製造が容易であり、光学的に透明であることが好ましい。なお、透明とは、可視光の全光線透過率が60%以上であること示す。基材フィルム11は、可視光の全光線透過率が80%以上であることが好ましく、90%以上であることがより好ましい。
[resin]
Although it does not specifically limit as resin 13 which comprises the base film 11, It is preferable to contain a thermoplastic resin. Here, the “thermoplastic resin” is a resin that softens when heated to a glass transition temperature or a melting point. The thermoplastic resin is easy to manufacture and is preferably optically transparent. Transparent means that the total light transmittance of visible light is 60% or more. The substrate film 11 preferably has a total light transmittance of visible light of 80% or more, and more preferably 90% or more.
 基材フィルム11を構成する樹脂13の具体例としては、例えば、セルロース(ジ、トリ)アセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースアシレート系樹脂、ポリメチルメタクリレート等のアクリル系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート等のポリエステル系樹脂、ポリフェニレンサルファイド、ポリフェニレンオキシド、ポリカプロラクトン、ポリカーボネート系樹脂、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、及び、これらの水素化物等の環状ポリオレフィン系樹脂、ポリアリレート系樹脂、ポリスルホン(ポリエーテルスルホンも含む)系樹脂、ポリエチレン、ポリプロピレン、ABS樹脂、ポリ乳酸、セロファン、ポリ塩化ビニリデン、ポリビニルアルコール、エチレンビニルアルコール、シンジオタクティックポリスチレン系樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリエーテルケトンイミド、ナイロン等のポリアミド系樹脂、フッ素系樹脂、ポリアリレート、熱可塑性エラストマー、シリコーン等を挙げることができる。中でも、ノルボルネン系樹脂、セルロースアシレート系樹脂(以下、セルロースアシレートともいう)やアクリル系樹脂(以下、アクリル樹脂ともいう)、又はそれらの混合樹脂が挙げられる。 Specific examples of the resin 13 constituting the base film 11 include cellulose acylate resins such as cellulose (di, tri) acetate, cellulose acetate propionate, and cellulose acetate butyrate, and acrylic resins such as polymethyl methacrylate. Resins, Polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polypropylene terephthalate, polyphenylene sulfide, polyphenylene oxide, polycaprolactone, polycarbonate resins, norbornene resins, monocyclic cyclic olefin resins, cyclic conjugated diene systems Resins, vinyl alicyclic hydrocarbon resins, cyclic polyolefin resins such as hydrides thereof, polyarylate resins, polysulfones (polyethers) (Including Lufone) resin, polyethylene, polypropylene, ABS resin, polylactic acid, cellophane, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene resin, polymethylpentene, polyether ketone, polyether ketone imide, Examples thereof include polyamide resins such as nylon, fluorine resins, polyarylate, thermoplastic elastomers, and silicones. Among these, norbornene resins, cellulose acylate resins (hereinafter also referred to as cellulose acylates), acrylic resins (hereinafter also referred to as acrylic resins), or mixed resins thereof can be given.
(ノルボルネン系樹脂)
 基材フィルム11を構成する樹脂13としては、ノルボルネン系樹脂を含むことが好ましい。特に、極性基を有するノルボルネン系樹脂を含むことが好ましい。ノルボルネン系樹脂は、ノルボルネンに由来する構造単位を有していれば特に限定されず、ノルボルネン単独重合体であっても、ノルボルネンと他のモノマー(ノルボルネンと重合可能なモノマー)との共重合体であってもよい。特に、ノルボルネン単独重合体であることが好ましい。基材フィルム11において、ノルボルネン系樹脂は、1種単独で、又は2種以上を併用することができる。
(Norbornene resin)
The resin 13 constituting the base film 11 preferably includes a norbornene resin. In particular, a norbornene-based resin having a polar group is preferably included. The norbornene resin is not particularly limited as long as it has a structural unit derived from norbornene. Even if it is a norbornene homopolymer, it is a copolymer of norbornene and another monomer (a monomer that can be polymerized with norbornene). There may be. In particular, a norbornene homopolymer is preferable. In the base film 11, the norbornene-based resin can be used alone or in combination of two or more.
 ノルボルネン系樹脂フィルムを構成するモノマーとしては、例えば、ノルボルネン、5-メチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-メトキシカルボニル-2-ノルボルネン、5,5-ジメチル-2-ノルボルネン、5-シアノ-2-ノルボルネン、5-メチル-5-メトキシカルボニル-2-ノルボルネン、5-フェニル-2-ノルボルネン、5-フェニル-5-メチル-2-ノルボルネン等が挙げられる。 Examples of the monomer constituting the norbornene resin film include norbornene, 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene, 5-ethylidene-2-norbornene, and 5-methoxy. Carbonyl-2-norbornene, 5,5-dimethyl-2-norbornene, 5-cyano-2-norbornene, 5-methyl-5-methoxycarbonyl-2-norbornene, 5-phenyl-2-norbornene, 5-phenyl-5 -Methyl-2-norbornene and the like.
 また、基材フィルム11を構成するノルボルネン系樹脂は、下記一般式(A-1)、又は、下記一般式(A-2)で表されるモノマーの単独重合体、又は、共重合体であることが好ましい。 Further, the norbornene resin constituting the base film 11 is a homopolymer or copolymer of a monomer represented by the following general formula (A-1) or the following general formula (A-2). It is preferable.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 一般式(A-1)中、R、R、R及びRはそれぞれ独立して、水素原子、ハロゲン原子、置換又は非置換の炭素原子数1~30の炭化水素基、又は、極性基を表す。但し、R~Rの全てが水素原子となる場合を除いて、RとRとが同時に水素原子となる構造、及び、RとRが同時に水素原子となる構造を除く。pは、0~2の整数を表す。 In general formula (A-1), R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or Represents a polar group. However, except for the case where all of R 1 to R 4 are hydrogen atoms, the structure in which R 1 and R 2 are simultaneously hydrogen atoms and the structure in which R 3 and R 4 are simultaneously hydrogen atoms are excluded. p represents an integer of 0 to 2.
 一般式(A-1)で表されるモノマーにおいて、R~Rのうち少なくとも1つは、ノルボルネン系樹脂の溶液成膜の際の溶解性を確保する観点などから、極性基であることが好ましい。また、基材フィルム11の耐熱性を高める観点からは、pが1~2であることが好ましい。pが1~2であると、得られる樹脂が嵩高くなり、ガラス転移温度が向上しやすい。 In the monomer represented by the general formula (A-1), at least one of R 1 to R 4 is a polar group from the viewpoint of ensuring solubility during solution film formation of a norbornene resin. Is preferred. Further, from the viewpoint of improving the heat resistance of the base film 11, p is preferably 1 to 2. When p is from 1 to 2, the resulting resin becomes bulky and the glass transition temperature tends to be improved.
 一般式(A-1)で表されるモノマーにおいて、R~Rで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又は、ヨウ素原子であることが好ましい。炭素原子数1~30の炭化水素基の例には、炭素原子数1~30のアルキル基が含まれる。また、R~Rで表される極性基の例としては、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリルオキシカルボニル基、アミノ基、アミド基、シアノ基、これらの基がメチレン基等の連結基を介して結合した基、カルボニル基、エーテル基、シリルエーテル基、チオエーテル基、イミノ基等の極性を有する2価の有機基が連結基となって結合している炭化水素基等が挙げられる。R~Rは、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基又はアリルオキシカルボニル基が好ましい。特に、R~Rは、アルコキシカルボニル基又はアリルオキシカルボニル基であることが、ノルボルネン系樹脂の溶液成膜の際の溶解性を確保する観点から好ましい。 In the monomer represented by the general formula (A-1), the halogen atom represented by R 1 to R 4 is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom. Examples of the hydrocarbon group having 1 to 30 carbon atoms include an alkyl group having 1 to 30 carbon atoms. Examples of polar groups represented by R 1 to R 4 include a carboxy group, a hydroxy group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amino group, an amide group, a cyano group, and these groups such as a methylene group. Examples include a hydrocarbon group in which a divalent organic group having polarity such as a group bonded through a linking group, a carbonyl group, an ether group, a silyl ether group, a thioether group, or an imino group is bonded as a linking group. It is done. R 1 to R 4 are preferably a carboxy group, a hydroxy group, an alkoxycarbonyl group or an allyloxycarbonyl group. In particular, R 1 to R 4 are preferably an alkoxycarbonyl group or an allyloxycarbonyl group from the viewpoint of ensuring solubility during solution film formation of a norbornene resin.
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
 一般式(A-2)中、Rは、水素原子、炭素原子数1~5の炭化水素基、又は、炭素原子数1~5のアルキル基を有するアルキルシリル基を表す。Rは、極性基、又は、ハロゲン原子を表す。pは、0~2の整数を表す。 In general formula (A-2), R 5 represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms. R 6 represents a polar group or a halogen atom. p represents an integer of 0 to 2.
 一般式(A-2)で表されるモノマーにおいて、Rは、炭素原子数1~3の炭化水素基であることが好ましい。Rは、極性基であることが好ましい。Rで表される極性基としては、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリルオキシカルボニル基、アミノ基、アミド基、又は、シアノ基が好ましく、ヒドロキシ基、アルコキシカルボニル基、又は、アリルオキシカルボニル基であることがより好ましい。特に、Rは、アルコキシカルボニル基又はアリルオキシカルボニル基であることが、ノルボルネン系樹脂の溶液成膜の際の溶解性を確保する観点から好ましい。
 また、Rで表されるハロゲン原子は、フッ素原子、塩素原子、臭素原子、又は、ヨウ素原子であることが好ましい。
 基材フィルム11を構成するノルボルネン系樹脂は、一般式(A-2)で表されるモノマーの単独重合体、又は、共重合体を含むことにより、分子の対称性が低くなり、溶媒が気化した際の分子の拡散運動が促進されやすい。
In the monomer represented by the general formula (A-2), R 5 is preferably a hydrocarbon group having 1 to 3 carbon atoms. R 6 is preferably a polar group. The polar group represented by R 6 is preferably a carboxy group, a hydroxy group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amino group, an amide group, or a cyano group, and a hydroxy group, an alkoxycarbonyl group, or allyloxy. A carbonyl group is more preferable. In particular, R 6 is preferably an alkoxycarbonyl group or an allyloxycarbonyl group from the viewpoint of ensuring solubility during solution film formation of a norbornene-based resin.
The halogen atom represented by R 6 is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
The norbornene resin constituting the base film 11 contains a homopolymer or copolymer of the monomer represented by the general formula (A-2), thereby lowering the molecular symmetry and evaporating the solvent. It is easy to promote the diffusion movement of the molecules.
 以下、一般式(A-1)及び一般式(A-2)で表されるモノマーの具体例(1~34)を示す。 Specific examples (1 to 34) of the monomers represented by the general formula (A-1) and the general formula (A-2) are shown below.
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
 一般式(A-1)又は一般式(A-2)で表されるモノマーと共重合可能な共重合性モノマーの例としては、一般式(A-1)又は一般式(A-2)で表されるモノマーと開環共重合可能な共重合性モノマー、及び、一般式(A-1)又は一般式(A-2)で表されるモノマーと付加共重合可能な共重合性モノマーが挙げられる。 Examples of the copolymerizable monomer copolymerizable with the monomer represented by the general formula (A-1) or (A-2) include those represented by the general formula (A-1) or the general formula (A-2). And a copolymerizable monomer capable of ring-opening copolymerization with the monomer represented, and a copolymerizable monomer capable of addition copolymerization with the monomer represented by formula (A-1) or (A-2). It is done.
 一般式(A-1)又は一般式(A-2)で表されるモノマーと開環共重合可能な共重合性モノマーとしては、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン、ジシクロペンタジエン等のモノマーが挙げられる。
 また、一般式(A-1)又は一般式(A-2)で表されるモノマーと付加共重合可能な共重合性モノマーとしては、不飽和二重結合含有化合物、ビニル系環状炭化水素化合物、(メタ)アクリレートが挙げられる。
Examples of the copolymerizable monomer capable of ring-opening copolymerization with the monomer represented by the general formula (A-1) or (A-2) include monomers such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, and dicyclopentadiene. Can be mentioned.
Examples of the copolymerizable monomer that can be addition copolymerized with the monomer represented by formula (A-1) or (A-2) include unsaturated double bond-containing compounds, vinyl-based cyclic hydrocarbon compounds, (Meth) acrylate is mentioned.
 不飽和二重結合含有化合物としては、炭素原子数2~12のオレフィン系化合物が挙げられる。オレフィン系化合物としては、炭素原子数2~8が好ましい。これらのオレフィン系化合物としては、例えば、エチレン、プロピレン、ブテンが挙げられる。
 ビニル系環状炭化水素化合物としては、例えば、4-ビニルシクロペンテン、2-メチル-4-イソプロペニルシクロペンテン等のビニルシクロペンテン系モノマーが挙げられる。(メタ)アクリレートとしは、例えば、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の炭素原子数1~20のアルキル(メタ)アクリレートが挙げられる。
Examples of the unsaturated double bond-containing compound include olefin compounds having 2 to 12 carbon atoms. The olefinic compound preferably has 2 to 8 carbon atoms. Examples of these olefinic compounds include ethylene, propylene, and butene.
Examples of the vinyl-based cyclic hydrocarbon compound include vinylcyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene. Examples of (meth) acrylates include alkyl (meth) acrylates having 1 to 20 carbon atoms such as methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and cyclohexyl (meth) acrylate.
 ノルボルネン系樹脂を構成する重合体において、一般式(A-1)、又は、一般式(A-2)で表されるモノマーに由来する構造単位の含有量は、ノルボルネン系樹脂を構成する構造単位の合計に対して50~100モル%であることが好ましく、60~100モル%であることがより好ましく、70~100モル%であることが特に好ましい。 In the polymer constituting the norbornene resin, the content of the structural unit derived from the monomer represented by the general formula (A-1) or the general formula (A-2) is the structural unit constituting the norbornene resin. It is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and particularly preferably 70 to 100 mol%, based on the total of the above.
 ノルボルネン系樹脂としては、一般式(A-1)、又は、一般式(A-2)で表されるモノマーの単独重合体、又は、共重合体としては、例えば以下の(1)~(7)の重合体が挙げられる。これらの重合体としては、(1)~(3)の重合体、及び、(5)の重合体が好ましく、(3)の重合体、及び、(5)の重合体がより好ましい。 Examples of the norbornene-based resin include homopolymers or copolymers of the monomer represented by the general formula (A-1) or (A-2). For example, the following (1) to (7) ). As these polymers, the polymers (1) to (3) and the polymer (5) are preferable, and the polymer (3) and the polymer (5) are more preferable.
 (1)一般式(A-1)、又は、一般式(A-2)で表されるモノマーの開環重合体
 (2)一般式(A-1)、又は、一般式(A-2)で表されるモノマーと共重合性モノマーとの開環共重合体
 (3)上記(1)又は(2)の開環(共)重合体の水素添加(共)重合体
 (4)上記(1)又は(2)の開環(共)重合体をフリーデルクラフト反応により環化した後に水素添加した(共)重合体
 (5)一般式(A-1)、又は、一般式(A-2)で表されるモノマーと不飽和二重結合含有化合物との共重合体
 (6)一般式(A-1)、又は、一般式(A-2)で表されるモノマーの付加型(共)重合体、及び、その水素添加(共)重合体
 (7)一般式(A-1)、又は、一般式(A-2)で表されるモノマーとメタクリレート、又は、アクリレートとの交互共重合体
(1) Ring-opening polymer of monomer represented by general formula (A-1) or general formula (A-2) (2) General formula (A-1) or general formula (A-2) (3) Hydrogenated (co) polymer of the ring-opening (co) polymer of (1) or (2) (4) (1) ) Or (2) ring-opened (co) polymer cyclized by Friedel-Craft reaction and then hydrogenated (co) polymer (5) General formula (A-1) or general formula (A-2) (6) Copolymer of monomer represented by unsaturated double bond and compound containing unsaturated double bond (6) Addition type (co) of monomer represented by general formula (A-1) or general formula (A-2) Polymer and hydrogenated (co) polymer thereof (7) Monomer and methacrylate or acrylic represented by general formula (A-1) or general formula (A-2) Alternating copolymer of the over door
 また、基材フィルム11を構成するノルボルネン系樹脂は、下記一般式(B-1)、又は、一般式(B-2)で表されるモノマーの単独重合体、又は、共重合体であることが好ましい。基材フィルム11を構成するノルボルネン系樹脂は、ガラス転移温度が高く、かつ透過率の高い樹脂フィルムが得られやすい観点から、一般式(B-2)で表される構造単位を含む重合体、又は、一般式(B-1)で表される構造単位と一般式(B-2)で表される構造単位とを有する共重合体であることが好ましい。 Further, the norbornene resin constituting the base film 11 is a homopolymer or copolymer of a monomer represented by the following general formula (B-1) or general formula (B-2). Is preferred. The norbornene-based resin constituting the base film 11 is a polymer containing a structural unit represented by the general formula (B-2) from the viewpoint of easily obtaining a resin film having a high glass transition temperature and a high transmittance. Alternatively, a copolymer having a structural unit represented by the general formula (B-1) and a structural unit represented by the general formula (B-2) is preferable.
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
 一般式(B-1)のXは、-CH=CH-で表される基、又は、-CHCH-で表される基である。R、R、R及びRはそれぞれ独立して、水素原子、ハロゲン原子、置換又は非置換の炭素原子数1~30の炭化水素基、又は、極性基を表す。但し、R~Rの全てが水素原子となる場合を除いて、RとRとが同時に水素原子となる構造、及び、RとRが同時に水素原子となる構造を除く。pは、0~2の整数を表す。 X in the general formula (B-1) is a group represented by —CH═CH— or a group represented by —CH 2 CH 2 —. R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a polar group. However, except for the case where all of R 1 to R 4 are hydrogen atoms, the structure in which R 1 and R 2 are simultaneously hydrogen atoms and the structure in which R 3 and R 4 are simultaneously hydrogen atoms are excluded. p represents an integer of 0 to 2.
 一般式(B-1)で表されるモノマーにおいて、R~Rのうち少なくとも1つは、ノルボルネン系樹脂の溶液成膜の際の溶解性を確保する観点などから、極性基であることが好ましい。また、基材フィルム11の耐熱性を高める観点からは、pが1~2であることが好ましい。pが1~2であると、得られる樹脂が嵩高くなり、ガラス転移温度が向上しやすい。
 また、一般式(B-1)で表されるモノマーにおいて、R~Rで表されるハロゲン原子、炭素原子数1~30の炭化水素基、及び、極性基の例としては、一般式(A-1)のR~Rと同様のものを挙げることができる。
In the monomer represented by the general formula (B-1), at least one of R 1 to R 4 is a polar group from the viewpoint of ensuring solubility during solution film formation of a norbornene resin. Is preferred. Further, from the viewpoint of improving the heat resistance of the base film 11, p is preferably 1 to 2. When p is from 1 to 2, the resulting resin becomes bulky and the glass transition temperature tends to be improved.
Examples of the halogen atom represented by R 1 to R 4 , the hydrocarbon group having 1 to 30 carbon atoms, and the polar group in the monomer represented by the general formula (B-1) include: Examples thereof are the same as R 1 to R 4 in (A-1).
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
 一般式(B-2)のXは、-CH=CH-で表される基、又は、-CHCH-で表される基である。Rは、水素原子、炭素原子数1~5の炭化水素基、又は、炭素原子数1~5のアルキル基を有するアルキルシリル基を表す。Rは、極性基、又は、ハロゲン原子を表す。pは、0~2の整数を表す。 X in the general formula (B-2) is a group represented by —CH═CH— or a group represented by —CH 2 CH 2 —. R 5 represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms. R 6 represents a polar group or a halogen atom. p represents an integer of 0 to 2.
 一般式(B-2)において、Rは、炭素原子数1~3の炭化水素基であることが好ましい。また、Rで表される極性基、及び、ハロゲン原子としては、上述の一般式(A-2)と同様のものを挙げることができる。 In the general formula (B-2), R 5 is preferably a hydrocarbon group having 1 to 3 carbon atoms. Examples of the polar group represented by R 6 and the halogen atom include the same groups as those in the general formula (A-2).
 ノルボルネン系樹脂の固有粘度[η]inhは、例えば、0.2~5cm/gが好ましく、0.3~3cm/gがより好ましく、0.4~1.5cm/gが特に好ましい。
 ノルボルネン系樹脂の数平均分子量(Mn)は、例えば、8000~100000が好ましく、10000~80000がより好ましく、12000~50000が特に好ましい。
 ノルボルネン系樹脂の重量平均分子量(Mw)は、例えば、20000~300000が好ましく、30000~250000がより好ましく、40000~200000が特に好ましい。
The intrinsic viscosity [eta] inh of norbornene-based resin, for example, preferably 0.2 ~ 5cm 3 / g, more preferably 0.3 ~ 3cm 3 / g, particularly preferably 0.4 ~ 1.5cm 3 / g .
The number average molecular weight (Mn) of the norbornene resin is, for example, preferably 8000 to 100,000, more preferably 10,000 to 80,000, and particularly preferably 12,000 to 50,000.
The weight average molecular weight (Mw) of the norbornene resin is preferably, for example, 20000 to 300000, more preferably 30000 to 250,000, and particularly preferably 40000 to 200000.
 ノルボルネン系樹脂は、固有粘度[η]inh、数平均分子量、及び、重量平均分子量が上記範囲にあると、耐熱性、耐水性、耐薬品性、機械的特性、及び、フィルムとしての成形加工性が良好となる。ノルボルネン系樹脂の固有粘度[η]inhは、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。ノルボルネン系樹脂の数平均分子量(Mn)や重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算で測定することができる。 The norbornene-based resin has heat resistance, water resistance, chemical resistance, mechanical properties, and film formability when the intrinsic viscosity [η] inh, number average molecular weight, and weight average molecular weight are in the above ranges. Becomes better. The intrinsic viscosity [η] inh of the norbornene resin can be measured by gel permeation chromatography (GPC). The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the norbornene-based resin can be measured in terms of polystyrene by gel permeation chromatography (GPC).
 ノルボルネン系樹脂のガラス転移温度(Tg)は、110℃以上であることが好ましい。ノルボルネン系樹脂のガラス転移温度(Tg)は、110~350℃が好ましく、120~250℃がより好ましく、120~220℃が特に好ましい。Tgが120℃以上であれば、高温条件下で使用した際や、コーティングや印刷等の二次加工の際の変形を抑制することができる。一方、Tgが350℃以下であれば、樹脂の軟化温度の高温化による成形加工の困難化を抑制することができる。 The glass transition temperature (Tg) of the norbornene resin is preferably 110 ° C. or higher. The glass transition temperature (Tg) of the norbornene resin is preferably 110 to 350 ° C., more preferably 120 to 250 ° C., and particularly preferably 120 to 220 ° C. If Tg is 120 degreeC or more, the deformation | transformation at the time of secondary processing, such as coating and printing, when used under high temperature conditions can be suppressed. On the other hand, if Tg is 350 ° C. or lower, it is possible to suppress difficulty in molding due to an increase in the softening temperature of the resin.
 また、ノルボルネン系樹脂は、市販品を用いることもできる。ノルボルネン系樹脂の市販品としては、例えば、JSR社製のアートン(ARTON:登録商標)G、アートンF、アートンR、及びアートンRXが挙げられる。 Also, as the norbornene resin, a commercially available product can be used. Examples of commercially available norbornene-based resins include Arton (registered trademark) G, Arton F, Arton R, and Arton RX manufactured by JSR.
[有機微粒子]
 有機微粒子14は、主に基材フィルム11の表面の滑り性を高めるために用いられる。基材フィルム11を構成する有機微粒子14としては、特に限定されない。有機微粒子14は、基材フィルム11を構成する樹脂13や有機溶剤との親和性が高い方が好ましい。樹脂13や有機溶剤との親和性が高いほど、有機微粒子14の基材フィルム11からの脱落を抑制することができる。
[Organic fine particles]
The organic fine particles 14 are mainly used for improving the slipperiness of the surface of the base film 11. The organic fine particles 14 constituting the base film 11 are not particularly limited. The organic fine particles 14 preferably have a high affinity with the resin 13 and the organic solvent constituting the base film 11. The higher the affinity with the resin 13 and the organic solvent, the more the organic fine particles 14 can be prevented from falling off the base film 11.
 また、有機微粒子14は、無機微粒子よりも柔軟性が高いため、基材フィルム11の延伸に追従しやすい。基材フィルム11を作製するための膜状物を延伸する際にも、有機微粒子の周辺に加わる延伸張力を等方的に分散することができる。このため、有機微粒子14の基材フィルム11からの脱落を抑制することができる。有機微粒子14の脱落を抑制することにより、基材フィルム11とガスバリア層12との密着性の低下を抑制することができる。さらに、ガスバリア層12を形成する工程等において、粒子の脱落による装置の汚染を抑制することができる。 Further, since the organic fine particles 14 are higher in flexibility than the inorganic fine particles, the organic fine particles 14 can easily follow the stretching of the base film 11. Even when the film-like material for producing the base film 11 is stretched, the stretching tension applied to the periphery of the organic fine particles can be isotropically dispersed. For this reason, falling off of the organic fine particles 14 from the base film 11 can be suppressed. By suppressing the falling off of the organic fine particles 14, it is possible to suppress a decrease in adhesion between the base film 11 and the gas barrier layer 12. Furthermore, in the process of forming the gas barrier layer 12, etc., contamination of the device due to particle dropping can be suppressed.
 有機微粒子14としては、例えば、(メタ)アクリル酸エステル類、イタコン酸ジエステル類、マレイン酸ジエステル類、ビニルエステル類、オレフィン類、スチレン類、(メタ)アクリルアミド類、アリル化合物、ビニルエーテル類、ビニルケトン類、ビニル異節環化合物、不飽和ニトリル類、不飽和モノマー類、及び、不飽和カルボン酸類から選ばれる1種以上に由来する構造単位を含む重合体や、シリコーン系樹脂、フッ素系樹脂、ポリフェニレンスルフィド等が挙げられる。なお、(メタ)アクリルとは、アクリル、又は、メタクリルを意味する。以下、上記の重合体からなる粒子を重合体粒子と称する。 Examples of the organic fine particles 14 include (meth) acrylic acid esters, itaconic acid diesters, maleic acid diesters, vinyl esters, olefins, styrenes, (meth) acrylamides, allyl compounds, vinyl ethers, and vinyl ketones. Polymers containing structural units derived from at least one selected from the group consisting of vinyl heterocyclic compounds, unsaturated nitriles, unsaturated monomers, and unsaturated carboxylic acids, silicone resins, fluorine resins, polyphenylene sulfide Etc. In addition, (meth) acryl means acryl or methacryl. Hereinafter, the particles made of the above polymer are referred to as polymer particles.
 重合体を構成する(メタ)アクリル酸エステル類としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等が挙げられる。イタコン酸ジエステル類としては、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジプロピル等が挙げられる。マレイン酸ジエステル類としては、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル等が挙げられる。ビニルエステル類としては、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルイソブチレート、ビニルカプロエート、ビニルクロロアセテート、ビニルメトキシアセテート、ビニルフェニルアセテート、安息香酸ビニル、サリチル酸ビニル等が挙げられる。オレフィン類としては、ジシクロペンタジエン、エチレン、プロピレン、1-ブテン、1-ペンテン、塩化ビニル、塩化ビニリデン、イソプレン、クロロプレン、ブタジエン、2,3-ジメチルブタジエン等が挙げられる。スチレン類としては、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、クロルメチルスチレン、メトキシスチレン、アセトキシスチレン、クロルスチレン、ジクロルスチレン、ブロムスチレン、トリフルオロメチルスチレン、ビニル安息香酸メチルエステル、ジビニルベンゼン等が挙げられる。(メタ)アクリルアミド類としては、(メタ)アクリルアミド、メチル(メタ)アクリルアミド、エチル(メタ)アクリルアミド、プロピル(メタ)アクリルアミド、ブチル(メタ)アクリルアミド、tert-ブチル(メタ)アクリルアミド、フェニル(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、メチレンビスアクリルアミド等が挙げられる。アリル化合物としては、酢酸アリル、カプロン酸アリル、ラウリン酸アリル、安息香酸アリル等が挙げられる。ビニルエーテル類としては、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテル、ジメチルアミノエチルビニルエーテル等が挙げられる。ビニルケトン類としては、メチルビニルケトン、フェニルビニルケトン、メトキシエチルビニルケトン等が挙げられる。ビニル異節環化合物としては、ビニルピリジン、N-ビニルイミダゾール、N-ビニルオキサゾリドン、N-ビニルトリアゾール、N-ビニルピロリドン等が挙げられる。不飽和ニトリル類としては、アクリロニトリル、メタクリロニトリル等が挙げられる。不飽和カルボン酸類としては、(メタ)アクリル酸、イタコン酸、イタコン酸モノエステル、マレイン酸、マレイン酸モノエステル等が挙げられる。 (Meth) acrylic acid esters constituting the polymer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and ethylene glycol di (meth) acrylate. , Trimethylolpropane tri (meth) acrylate and the like. Examples of the itaconic acid diesters include dimethyl itaconate, diethyl itaconate, and dipropyl itaconate. Examples of maleic acid diesters include dimethyl maleate, diethyl maleate, and dipropyl maleate. Examples of vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl caproate, vinyl chloroacetate, vinyl methoxy acetate, vinyl phenyl acetate, vinyl benzoate, vinyl salicylate, and the like. . Examples of olefins include dicyclopentadiene, ethylene, propylene, 1-butene, 1-pentene, vinyl chloride, vinylidene chloride, isoprene, chloroprene, butadiene, and 2,3-dimethylbutadiene. Styrenes include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, isopropyl styrene, chloromethyl styrene, methoxy styrene, acetoxy styrene, chloro styrene, dichloro styrene, bromo styrene, trifluoromethyl styrene, vinyl benzoic acid. Examples include methyl ester and divinylbenzene. (Meth) acrylamides include (meth) acrylamide, methyl (meth) acrylamide, ethyl (meth) acrylamide, propyl (meth) acrylamide, butyl (meth) acrylamide, tert-butyl (meth) acrylamide, and phenyl (meth) acrylamide. , Dimethyl (meth) acrylamide, methylenebisacrylamide and the like. Examples of allyl compounds include allyl acetate, allyl caproate, allyl laurate, and allyl benzoate. Examples of vinyl ethers include methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, methoxyethyl vinyl ether, dimethylaminoethyl vinyl ether and the like. Examples of vinyl ketones include methyl vinyl ketone, phenyl vinyl ketone, methoxyethyl vinyl ketone and the like. Examples of the vinyl heterocyclic compound include vinylpyridine, N-vinylimidazole, N-vinyloxazolidone, N-vinyltriazole, N-vinylpyrrolidone and the like. Examples of unsaturated nitriles include acrylonitrile and methacrylonitrile. Examples of the unsaturated carboxylic acids include (meth) acrylic acid, itaconic acid, itaconic acid monoester, maleic acid, maleic acid monoester and the like.
 ノルボルネン系樹脂との親和性が高く、応力に対する柔軟性があり、異方的な空隙が生じにくくガスバリア層12との接着性を高めやすいことから、有機微粒子14は、(メタ)アクリル酸エステル類、ビニルエステル類、スチレン類、オレフィン類から選ばれる1以上に由来する構造単位を含む重合体を含むことが好ましい。さらに、有機微粒子14は、(メタ)アクリル酸エステル類に由来する構造単位を含む重合体、スチレン類に由来する構造単位を含む重合体、(メタ)アクリル酸エステル類に由来する構造単位とスチレン類に由来する構造単位とを含む共重合体であることがより好ましい。特に、有機微粒子14は、(メタ)アクリル酸エステル類に由来する構造単位とスチレン類に由来する構造単位とを含む共重合体であることが好ましい。 Organic fine particles 14 are composed of (meth) acrylic acid esters because they have high affinity with norbornene-based resins, are flexible to stress, are less likely to generate anisotropic voids, and are easy to improve adhesion to the gas barrier layer 12. It is preferable to include a polymer containing a structural unit derived from one or more selected from vinyl esters, styrenes and olefins. Furthermore, the organic fine particle 14 includes a polymer containing a structural unit derived from (meth) acrylic acid esters, a polymer containing a structural unit derived from styrenes, a structural unit derived from (meth) acrylic acid esters and styrene. More preferably, it is a copolymer containing a structural unit derived from a class. In particular, the organic fine particles 14 are preferably a copolymer including a structural unit derived from (meth) acrylic acid esters and a structural unit derived from styrene.
 有機微粒子14は、コア層(粒子内核)とシェル層(粒子外殻)とからなるコアシェル構造を有する粒子(コアシェル粒子)であってもよい。そのような有機微粒子14としては、(メタ)アクリル酸エステルの単独重合体又は共重合体を含む低Tgのコア層と、高Tgのシェル層とを有するコアシェル粒子等が含まれる。 The organic fine particles 14 may be particles (core-shell particles) having a core-shell structure including a core layer (inner particle core) and a shell layer (particle outer shell). Examples of such organic fine particles 14 include core-shell particles having a low Tg core layer containing a (meth) acrylic acid ester homopolymer or copolymer and a high Tg shell layer.
 有機微粒子14を構成する上記の重合体粒子は、任意の方法で製造することができる。例えば、乳化重合、懸濁重合、分散重合、シード重合等の方法で製造することができる。特に、粒子径の揃った粒子が得られやすいため、水性媒体下でのシード重合や乳化重合によって製造することが好ましい。 The polymer particles constituting the organic fine particles 14 can be produced by an arbitrary method. For example, it can be produced by a method such as emulsion polymerization, suspension polymerization, dispersion polymerization or seed polymerization. In particular, since it is easy to obtain particles having a uniform particle diameter, it is preferable to produce the particles by seed polymerization or emulsion polymerization under an aqueous medium.
 有機微粒子14の製造方法としては、例えば、下記(1)~(3)の重合法が挙げられる。重合法は、作製する有機微粒子14の平均粒子径に応じて適宜選択できる。なお、種粒子を製造するための単量体は特に限定されず、上述の有機微粒子14を作製するための単量体を使用することができる。
 (1)単量体混合物を水性媒体に分散させて重合させる1段重合法
 (2)単量体を水性媒体中で重合させて種粒子を得た後、単量体混合物を種粒子に吸収させて重合させる2段重合法
 (3)2段重合法の種粒子を製造する工程を繰り返す多段重合法
Examples of the method for producing the organic fine particles 14 include the following polymerization methods (1) to (3). The polymerization method can be appropriately selected according to the average particle diameter of the organic fine particles 14 to be produced. In addition, the monomer for producing seed particles is not particularly limited, and a monomer for producing the above-described organic fine particles 14 can be used.
(1) One-stage polymerization method in which a monomer mixture is dispersed in an aqueous medium for polymerization (2) After the monomer is polymerized in an aqueous medium to obtain seed particles, the monomer mixture is absorbed into the seed particles -Stage polymerization method in which polymerization is performed (3) Multi-stage polymerization method that repeats the process of producing seed particles of the two-stage polymerization method
 有機微粒子14と樹脂13との屈折率差の絶対値Δnは、ガスバリアフィルム10や基材フィルム11のヘイズの上昇を抑制するために、0.1以下であることが好ましく、0.085以下であることがより好ましく、0.065以下であることがさらに好ましい。 The absolute value Δn of the refractive index difference between the organic fine particles 14 and the resin 13 is preferably 0.1 or less, and preferably 0.085 or less in order to suppress an increase in haze of the gas barrier film 10 or the base film 11. More preferably, it is 0.065 or less.
 有機微粒子14の平均粒子径は、0.04~2μmであることが好ましく、0.08~1μmであることがより好ましい。有機微粒子14の平均粒子径が0.04μm以上であると、ガスバリアフィルム10や基材フィルム11に十分な滑り性を付与することが容易となる。有機微粒子14の平均粒子径が2μm以下であると、ヘイズの上昇を抑制しやすい。 The average particle size of the organic fine particles 14 is preferably 0.04 to 2 μm, and more preferably 0.08 to 1 μm. When the average particle diameter of the organic fine particles 14 is 0.04 μm or more, it becomes easy to impart sufficient slipperiness to the gas barrier film 10 and the base film 11. When the average particle diameter of the organic fine particles 14 is 2 μm or less, an increase in haze is easily suppressed.
 有機微粒子14の平均粒子径は、基材フィルム11の表面、及び、切片のSEM撮影、又は、TEM撮影によって得られた100個の粒子の円相当径の平均値として求めることができる。円相当径は、撮影によって得られた粒子の投影面積を、同じ面積を持つ円の直径に換算することで求められる。SEM撮影、又は、TEM撮影は、倍率5000倍で行う。なお、分散液中の有機微粒子14の平均粒子径は、ゼータ電位・粒径測定システム(大塚電子株式会社製 ELSZ-1000Z)で測定することができる。なお、有機微粒子14の平均粒子径は、凝集性の粒子であれば、凝集体の平均大きさ(平均二次粒径)を意味し、非凝集性の粒子であれば、一粒子のサイズを測定した平均値を意味する。 The average particle diameter of the organic fine particles 14 can be obtained as the average value of the equivalent circle diameters of 100 particles obtained by SEM imaging or TEM imaging of the surface of the substrate film 11 and the section. The equivalent circle diameter can be obtained by converting the projected area of particles obtained by photographing into the diameter of a circle having the same area. SEM imaging or TEM imaging is performed at a magnification of 5000 times. The average particle size of the organic fine particles 14 in the dispersion can be measured with a zeta potential / particle size measurement system (ELSZ-1000Z manufactured by Otsuka Electronics Co., Ltd.). The average particle size of the organic fine particles 14 means the average size (average secondary particle size) of the aggregate if it is agglomerated particles, and the size of one particle if it is non-aggregated particles. Mean measured value.
 有機微粒子14の含有量は、基材フィルム11の全質量に対して0.03~1.0質量%であることが好ましく、0.05~0.6質量%であることがより好ましく、0.08~0.4質量%であることがさらに好ましい。有機微粒子14の含有量が0.03質量%以上であると、基材フィルム11に十分な滑り性を付与しやすく、1.0質量%以下であればヘイズの上昇を抑制できる。 The content of the organic fine particles 14 is preferably 0.03 to 1.0% by mass, more preferably 0.05 to 0.6% by mass, based on the total mass of the base film 11. More preferably, the content is 0.08 to 0.4% by mass. If the content of the organic fine particles 14 is 0.03% by mass or more, sufficient slipperiness is easily imparted to the base film 11, and an increase in haze can be suppressed if the content is 1.0% by mass or less.
[有機溶媒]
 基材フィルム11は、有機溶媒としてハロゲン化炭化水素を1ppm以上90ppm以下含有する。基材フィルム11がハロゲン化炭化水素を含有することにより、樹脂13と有機微粒子14との親和性が向上するため、基材フィルム11から有機微粒子14が脱落しにくくなる。また、基材フィルム11の表面にハロゲン化炭化水素が存在することで、基材フィルム11とガスバリア層12との親和性が向上し、基材フィルム11とガスバリア層12との密着性が向上する。
[Organic solvent]
The base film 11 contains 1 ppm to 90 ppm of halogenated hydrocarbon as an organic solvent. Since the base film 11 contains the halogenated hydrocarbon, the affinity between the resin 13 and the organic fine particles 14 is improved, so that the organic fine particles 14 are less likely to drop off from the base film 11. Further, the presence of the halogenated hydrocarbon on the surface of the base film 11 improves the affinity between the base film 11 and the gas barrier layer 12 and improves the adhesion between the base film 11 and the gas barrier layer 12. .
(ハロゲン化炭化水素)
 ハロゲン化炭化水素としては、基材フィルム11を構成する樹脂13の溶解性が高いことが好ましい。ハロゲン化炭化水素としては、例えば、フルオロメタン、フルオロエタン、フルオロベンゼン等のフッ化アルキル、クロロメタン、ジクロロメタン、トリクロロメタン(クロロホルム)、テトラクロロメタン、クロロエタン、クロロエテン、1-クロロプロパン、2-クロロプロパン、1-クロロブタン、1-クロロ-2-メチルプロパン、2-クロロブタンン、2-クロロ-2-メチルプロパン、クロロベンゼン、クロロフェニルベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン等の塩化アルキル、ブロモメタン、トリブロモメタン、ブロモエタン、ブロモベンゼン等の臭化アルキル、ヨードメタン、トリヨードメタン、ヨードエタン、ヨードベンゼン等のヨウ化アルキルが挙げられる。
 基材フィルム11は、ノルボルネン系樹脂の溶解性が高いことから、ハロゲン化炭化水素として塩化アルキルを含むことが好ましく、特に、メチレンクロライドを含むことが好ましい。
(Halogenated hydrocarbon)
As the halogenated hydrocarbon, it is preferable that the resin 13 constituting the base film 11 has high solubility. Examples of the halogenated hydrocarbon include alkyl fluorides such as fluoromethane, fluoroethane, fluorobenzene, chloromethane, dichloromethane, trichloromethane (chloroform), tetrachloromethane, chloroethane, chloroethene, 1-chloropropane, 2-chloropropane, Alkyl chlorides such as 1-chlorobutane, 1-chloro-2-methylpropane, 2-chlorobutane, 2-chloro-2-methylpropane, chlorobenzene, chlorophenylbenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, Examples thereof include alkyl bromides such as bromomethane, tribromomethane, bromoethane and bromobenzene, and alkyl iodides such as iodomethane, triiodomethane, iodoethane and iodobenzene.
Since the base film 11 has high solubility of the norbornene-based resin, the base film 11 preferably contains alkyl chloride as the halogenated hydrocarbon, and particularly preferably contains methylene chloride.
(他の有機溶媒)
 基材フィルム11は、ハロゲン化炭化水素と共に、ハロゲン化炭化水素以外の他の有機溶媒を含んでいてもよい。他の有機溶媒としては、基材フィルム11を構成する樹脂13、特に、ノルボルネン系樹脂の溶解性が高い、酢酸メチル、酢酸エチル、アセトン、テトラヒドロフラン等の非ハロゲン系有機溶媒を含むことが好ましい。
(Other organic solvents)
The base film 11 may contain an organic solvent other than the halogenated hydrocarbon together with the halogenated hydrocarbon. The other organic solvent preferably contains a non-halogen organic solvent such as methyl acetate, ethyl acetate, acetone, tetrahydrofuran, etc., in which the resin 13 constituting the base film 11, in particular, a norbornene resin is highly soluble.
 また、基材フィルム11は、他の溶媒として、炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含むことが好ましい。基材フィルム11にアルコールが含まれることにより、溶液流延法を用いて樹脂フィルムを作製する際に、膜状物がゲル化しやすく、膜状物の支持体からの剥離が容易になりやすい。炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール等を挙げることができる。特に、基材フィルム11は、他の溶媒として、ドープの安定性が高く、沸点が比較的低く、乾燥性がよいため、エタノールを含むことが好ましい。 The base film 11 preferably contains a linear or branched aliphatic alcohol having 1 to 4 carbon atoms as another solvent. When the base film 11 contains alcohol, when a resin film is produced using the solution casting method, the film-like material is easily gelled, and the film-like material is easily peeled from the support. Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol and the like. In particular, the base film 11 preferably contains ethanol as the other solvent because the dope has high stability, the boiling point is relatively low, and the drying property is good.
(有機溶媒含有量の測定方法)
 基材フィルム11の有機溶媒の含有量、ハロゲン化炭化水素の含有量の測定は、ヘッドスペースガスクロマトグラフィーを用いて行うことができる。ヘッドスペースガスクロマトグラフィーによる有機溶媒やハロゲン化炭化水素の含有量の測定は、以下の条件で行うことができる。
(Measurement method of organic solvent content)
The measurement of the content of the organic solvent and the content of the halogenated hydrocarbon in the base film 11 can be performed using headspace gas chromatography. The measurement of the content of the organic solvent and halogenated hydrocarbon by headspace gas chromatography can be performed under the following conditions.
(測定条件)
・ヘッドスペース装置:HP7694 Head Space Sampler(ヒューレットパッカード社製)
・温度条件:トランスファーライン200℃、ループ温度200℃
・サンプル量:0.8g/20mlバイアル
・GC:HP5890(ヒューレットパッカード社製)
・MS:HP5971(ヒューレットパッカード社製)
・カラム:HP-624(30m×内径0.25mm)
・オーブン温度:初期温度40℃(保持時間3分)、昇温速度10℃/分、到達温度200℃(保持時間5分)
(Measurement condition)
Headspace device: HP7694 Head Space Sampler (manufactured by Hewlett-Packard Company)
-Temperature conditions: transfer line 200 ° C, loop temperature 200 ° C
-Sample amount: 0.8g / 20ml vial-GC: HP5890 (manufactured by Hewlett-Packard Company)
・ MS: HP5971 (manufactured by Hewlett-Packard Company)
-Column: HP-624 (30m x 0.25mm ID)
Oven temperature: initial temperature 40 ° C. (holding time 3 minutes), temperature rising rate 10 ° C./minute, ultimate temperature 200 ° C. (holding time 5 minutes)
[基材フィルムの物性]
(ヘイズ)
 基材フィルム11のヘイズは、4.0%以下であることが好ましく、2.0%以下であることがより好ましく、1.0%以下であることがさらに好ましい。基材フィルム11のヘイズは、40mm×80nmの大きさの試料を、25℃60%RHの条件下で、ヘイズメーター(HGM-2DP、スガ試験機)を用いてJIS K-6714に従って測定することができる。
[Physical properties of base film]
(Haze)
The haze of the base film 11 is preferably 4.0% or less, more preferably 2.0% or less, and further preferably 1.0% or less. The haze of the base film 11 should be measured in accordance with JIS K-6714 using a haze meter (HGM-2DP, Suga Test Instruments) under conditions of 25 ° C. and 60% RH for a sample having a size of 40 mm × 80 nm. Can do.
(位相差Ro及びRt)
 基材フィルム11は、測定波長550nm、23℃55%RHの環境下で測定される面内方向の位相差Roが、20~120nmであることが好ましく、30~100nmであることがより好ましい。基材フィルム11の厚み方向の位相差Rtは、70~350nmであることが好ましく、100~320nmであることがより好ましい。基材フィルム11の位相差Ro及びRtは、主として延伸倍率によって調整することができる。基材フィルム11の位相差Ro及びRtを高くするためには、延伸倍率を高くすることが好ましい。
(Phase difference Ro and Rt)
The base film 11 preferably has an in-plane retardation Ro of 20 to 120 nm, more preferably 30 to 100 nm, measured in an environment of a measurement wavelength of 550 nm and 23 ° C. and 55% RH. The thickness direction retardation Rt of the base film 11 is preferably 70 to 350 nm, and more preferably 100 to 320 nm. The phase differences Ro and Rt of the base film 11 can be adjusted mainly by the draw ratio. In order to increase the phase differences Ro and Rt of the base film 11, it is preferable to increase the draw ratio.
 基材フィルム11のRo及びRtは、それぞれ下記式で定義される。
 式(1):Ro=(nx-ny)×d
 式(2):Rt=((nx+ny)/2-nz)×d
 式中、nxは、基材フィルムの面内遅相軸方向(屈折率が最大となる方向)の屈折率を表す。nyは、基材フィルムの面内遅相軸に直交する方向の屈折率を表す。nzは、基材フィルムの厚み方向の屈折率を表す。dは、基材フィルムの厚み(nm)を表す。
Ro and Rt of the base film 11 are respectively defined by the following formulas.
Formula (1): Ro = (nx−ny) × d
Formula (2): Rt = ((nx + ny) / 2−nz) × d
In the formula, nx represents the refractive index in the in-plane slow axis direction (direction in which the refractive index is maximum) of the base film. ny represents the refractive index in the direction orthogonal to the in-plane slow axis of the base film. nz represents the refractive index in the thickness direction of the base film. d represents the thickness (nm) of the base film.
 基材フィルム11の面内遅相軸とは、フィルム面において屈折率が最大となる軸をいう。基材フィルム11の面内遅相軸は、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)により確認することができる。 The in-plane slow axis of the substrate film 11 refers to an axis having the maximum refractive index on the film surface. The in-plane slow axis of the substrate film 11 can be confirmed by an automatic birefringence meter Axoscan (Axo Scan Mueller Polarimeter: manufactured by Axometrics).
 基材フィルム11のRo及びRtの測定は、以下の方法で行うことができる。
 (1)基材フィルムを23℃55%RHの環境下で24時間調湿する。この基材フィルムの平均屈折率をアッベ屈折計で測定し、厚みdを市販のマイクロメーターを用いて測定する。
 (2)調湿後の基材フィルムの測定波長550nmにおけるリターデーションRo及びRtを、それぞれ自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃55%RHの環境下で測定する。
The measurement of Ro and Rt of the base film 11 can be performed by the following method.
(1) The substrate film is conditioned for 24 hours in an environment of 23 ° C. and 55% RH. The average refractive index of the substrate film is measured with an Abbe refractometer, and the thickness d is measured using a commercially available micrometer.
(2) Retardation Ro and Rt at a measurement wavelength of 550 nm of the substrate film after humidity adjustment are each 23 ° C. and 55% by using an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics). Measure under RH environment.
[ガスバリア層]
 ガスバリアフィルム10は、基材フィルム11上に、真空成膜法で形成されたガスバリア層(以下、気相成膜ガスバリア層ともいう)12を備える。ガスバリアフィルム10を構成するガスバリア層12は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のバリア性を有することが好ましい。
[Gas barrier layer]
The gas barrier film 10 includes a gas barrier layer 12 (hereinafter also referred to as a vapor deposition gas barrier layer) 12 formed on a base film 11 by a vacuum film formation method. The gas barrier layer 12 constituting the gas barrier film 10 has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, JIS K 7129-1992. The water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a method in accordance with the above is 1 × 10 −3 g / (m 2 · 24 h) or less. It is preferable to have.
(気相成膜ガスバリア層)
 真空成膜法で形成されたガスバリア層12は、バリア性を有する層であれば、特に限定されることなく、従来公知の構成を適用することができる。例えば、一般的な無機化合物の気相成膜により形成された層を用いることができる。
(Gas phase gas barrier layer)
The gas barrier layer 12 formed by the vacuum film forming method is not particularly limited as long as it has a barrier property, and a conventionally known configuration can be applied. For example, a layer formed by vapor deposition of a general inorganic compound can be used.
 気相成膜ガスバリア層に含まれる無機化合物としては、特に限定されないが、例えば、無機材料又は金属材料の酸化物、窒化物、炭化物、酸窒化物、及び、炭化物が挙げられる。無機化合物としては、ガスバリア性能の点で、Si、Al、In、Sn、Zn、Ti、Cu、Ce及びTaから選ばれる1種以上の無機材料又は金属材料を含む、酸化物、窒化物、炭化物、酸窒化物、及び、酸炭化物等が好ましい。特に、気相成膜ガスバリア層に好適な無機化合物としては、例えば、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素、酸化アルミニウム、酸化チタン、及び、アルミニウムシリケート等の複合体が挙げられる。無機化合物を含む気相成膜ガスバリア層は、副次的な成分として、上記の無機化合物以外の元素を含有してもよい。 Although it does not specifically limit as an inorganic compound contained in a vapor-phase film-forming gas barrier layer, For example, the oxide, nitride, carbide, oxynitride, and carbide of an inorganic material or a metal material are mentioned. Inorganic compounds include oxides, nitrides, and carbides including one or more inorganic or metal materials selected from Si, Al, In, Sn, Zn, Ti, Cu, Ce, and Ta in terms of gas barrier performance. Oxynitrides, oxycarbides, and the like are preferable. In particular, examples of the inorganic compound suitable for the gas-phase film-forming gas barrier layer include composites such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, aluminum oxide, titanium oxide, and aluminum silicate. Can be mentioned. The gas-phase film-forming gas barrier layer containing an inorganic compound may contain an element other than the inorganic compound as a secondary component.
 気相成膜ガスバリア層の膜厚は、特に制限されないが、5~1000nmであること好ましい。この範囲であればガスバリア層が、高いガスバリア性能、折り曲げ耐性、断裁加工適性に優れる。また、気相成膜ガスバリア層は、単層であってもよく、2層以上積層された構成であってもよい。 The film thickness of the vapor deposition gas barrier layer is not particularly limited, but is preferably 5 to 1000 nm. Within this range, the gas barrier layer is excellent in high gas barrier performance, bending resistance, and suitability for cutting. Further, the vapor deposition gas barrier layer may be a single layer or may have a structure in which two or more layers are laminated.
 また、ガスバリア層12を形成するための真空成膜法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマ化学気相成長法、熱化学気相成長法、及び、光化学気相成長法が挙げられる。
 真空成膜法としては、化学気相成長法(Chemical Vapor Deposition:CVD)を用いることが好ましい。化学気相成長法は、基材上に、目的とする薄膜の成分を含む原料ガスを供給し、基材表面又は気相での化学反応により膜を堆積する方法である。化学気相成長法としては、化学反応を活性化する目的でプラズマ等を発生させる方法があり、例えば、熱CVD法、触媒化学気相成長法、光CVD法、プラズマを励起源としたプラズマCVD法(PECVD法)である真空プラズマCVD等が挙げられる。
Examples of the vacuum film forming method for forming the gas barrier layer 12 include a vacuum deposition method, a sputtering method, an ion plating method, a plasma chemical vapor deposition method, a thermal chemical vapor deposition method, and a photochemical vapor deposition method. Examples include growth methods.
As the vacuum film-forming method, it is preferable to use chemical vapor deposition (CVD). The chemical vapor deposition method is a method in which a source gas containing a target thin film component is supplied onto a substrate, and the film is deposited by a chemical reaction on the surface of the substrate or in the gas phase. The chemical vapor deposition method includes a method of generating plasma or the like for the purpose of activating a chemical reaction. For example, thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, plasma CVD using plasma as an excitation source Examples thereof include vacuum plasma CVD, which is a method (PECVD method).
[真空プラズマCVD法]
 ガスバリア層12を形成するための真空成膜法としては、真空プラズマCVD法を用いることが好ましい。真空プラズマCVD法は、プラズマ源を搭載した真空容器に材料ガスを流入させ、電源からプラズマ源に電力供給する事で真空容器内に放電プラズマを発生させ、プラズマで材料ガスを分解反応させ、生成された反応種を基材に堆積させる方法である。真空プラズマCVD法により得られる気相成膜ガスバリア層は、原材料である化合物、分解ガス、分解温度、投入電力等の条件を選ぶことで、目的の化合物を製造できるため好ましい。
[Vacuum plasma CVD method]
As a vacuum film forming method for forming the gas barrier layer 12, it is preferable to use a vacuum plasma CVD method. In the vacuum plasma CVD method, material gas flows into a vacuum vessel equipped with a plasma source, and power is supplied from the power source to the plasma source to generate discharge plasma in the vacuum vessel. The reactive species deposited on the substrate. A gas-phase film-forming gas barrier layer obtained by a vacuum plasma CVD method is preferable because a target compound can be produced by selecting conditions such as a raw material compound, decomposition gas, decomposition temperature, and input power.
 原材料の化合物としては、ケイ素化合物、チタン化合物、及び、アルミニウム化合物等、ケイ素を含む化合物や金属を含む化合物を用いることが好ましい。これらは真空プラズマCVD法に適用される従来公知の化合物を用いることができる。例えば、公知の化合物として、特開2013-063658号公報の段落[0028]~[0031]、特開2013-047002号公報の段落[0078]~[0081]等に記載された化合物を挙げることができる。好ましくは、シラン、テトラメトキシシラン、テトラエトキシシラン、ヘキサメチルジシロキサン等が挙げられる。
 また、これら原材料の化合物は、単独で用いてもよく、2種以上組み合わせても用いてもよい。
As a raw material compound, it is preferable to use a compound containing silicon or a compound containing metal, such as a silicon compound, a titanium compound, and an aluminum compound. For these, a conventionally known compound applied to the vacuum plasma CVD method can be used. For example, examples of known compounds include those described in paragraphs [0028] to [0031] of JP2013-063658A, paragraphs [0078] to [0081] of JP2013 / 047002A, and the like. it can. Preferably, silane, tetramethoxysilane, tetraethoxysilane, hexamethyldisiloxane, etc. are mentioned.
These raw material compounds may be used alone or in combination of two or more.
 原料ガスを分解して無機化合物を得るための分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、及び、水蒸気等が挙げられる。また、上記分解ガスを、アルゴンガス、ヘリウムガス等の不活性ガスと混合して用いてもよい。原材料の化合物を含む原料ガスと、分解ガスを適宜選択することで所望の気相成膜ガスバリア層を得ることができる。 Decomposition gases for decomposing the raw material gas to obtain inorganic compounds include hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, nitrous oxide gas, nitrogen oxide gas, Nitrogen gas, oxygen gas, water vapor, etc. are mentioned. Further, the decomposition gas may be used by mixing with an inert gas such as argon gas or helium gas. A desired vapor deposition gas barrier layer can be obtained by appropriately selecting a source gas containing a raw material compound and a decomposition gas.
[真空プラズマCVD装置]
 以下、真空プラズマCVD法について具体的に説明する。図2に、真空プラズマCVD法に適用される、真空プラズマCVD装置の模式図の一例を示す。
[Vacuum plasma CVD equipment]
Hereinafter, the vacuum plasma CVD method will be specifically described. FIG. 2 shows an example of a schematic diagram of a vacuum plasma CVD apparatus applied to the vacuum plasma CVD method.
 図2に示す真空プラズマCVD装置40は、真空槽42を有しており、真空槽42の内部の底面側には、サセプタ44が配置されている。サセプタ44上には、アノード電極41が配置されている。また、真空槽42の内部の天井側には、サセプタ44と対向する位置にカソード電極43が配置されている。真空槽42の外部には、熱媒体循環系46と、真空排気系47と、ガス導入系48と、高周波電源49とが配置されている。熱媒体循環系46内には熱媒体が配置されている。熱媒体循環系46には、熱媒体を移動させるポンプと、熱媒体を加熱する加熱装置と、熱媒体を冷却する冷却装置と、熱媒体の温度を測定する温度センサと、熱媒体の設定温度を記憶する記憶装置とを有する加熱冷却装置45が設けられている。 The vacuum plasma CVD apparatus 40 shown in FIG. 2 has a vacuum chamber 42, and a susceptor 44 is disposed on the bottom surface inside the vacuum chamber 42. An anode electrode 41 is disposed on the susceptor 44. A cathode electrode 43 is disposed on the ceiling side inside the vacuum chamber 42 at a position facing the susceptor 44. A heat medium circulation system 46, a vacuum exhaust system 47, a gas introduction system 48, and a high-frequency power source 49 are disposed outside the vacuum chamber 42. A heat medium is disposed in the heat medium circulation system 46. The heat medium circulation system 46 includes a pump that moves the heat medium, a heating device that heats the heat medium, a cooling device that cools the heat medium, a temperature sensor that measures the temperature of the heat medium, and a set temperature of the heat medium. A heating / cooling device 45 having a storage device for storing the information is provided.
 加熱冷却装置45は、熱媒体の温度を測定し、熱媒体を記憶された設定温度まで加熱又は冷却し、熱媒体をサセプタ44に供給するように構成されている。図2に記載の真空プラズマCVD装置40の詳細は、国際公開第2012/090644号の段落[0080]~[0098]等を参照することができる。 The heating / cooling device 45 is configured to measure the temperature of the heat medium, heat or cool the heat medium to a stored set temperature, and supply the heat medium to the susceptor 44. Details of the vacuum plasma CVD apparatus 40 shown in FIG. 2 can be referred to paragraphs [0080] to [0098] of International Publication No. 2012/090644.
[真空プラズマCVD法:ロールトゥロール]
 次に、真空プラズマCVD装置の別の形態として、ロールトゥロール(Roll to Roll)方式によるガスバリア層の成膜方法について説明する。ロールトゥロール方式によって成膜されるガスバリア層は、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、下記要件(1)及び(2)を同時に満たすことが好ましい。
[Vacuum plasma CVD method: roll-to-roll]
Next, as another form of the vacuum plasma CVD apparatus, a gas barrier layer deposition method by a roll-to-roll method will be described. The gas barrier layer formed by the roll-to-roll method contains carbon atoms, silicon atoms, and oxygen atoms, the composition continuously changes in the layer thickness direction, and satisfies the following requirements (1) and (2) simultaneously. Is preferred.
 (1)ガスバリア層において、X線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該ガスバリア層の層厚方向におけるガスバリア層表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する炭素原子の量の比率(炭素原子比率(at%))との関係を示す炭素分布曲線が、極値を有し、炭素分布曲線の炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が3at%以上である。 (1) In the gas barrier layer, among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy, the distance from the gas barrier layer surface in the layer thickness direction of the gas barrier layer, silicon atoms, The carbon distribution curve showing the relationship with the ratio of the amount of carbon atoms to the total amount of oxygen atoms and carbon atoms (100 at%) (carbon atom ratio (at%)) has an extreme value, and the carbon atoms of the carbon distribution curve The difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the ratio is 3 at% or more.
 (2)ガスバリア層の全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される関係を有する。
 式(A):(炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
 式(B):(酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)
(2) In the region of 90% or more of the total thickness of the gas barrier layer, the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is the following formula (A) or (B) It has the relationship represented by.
Formula (A): (carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio)
Formula (B): (oxygen average atomic ratio) <(silicon average atomic ratio) <(carbon average atomic ratio)
 なお、ガスバリア層と基材との界面領域における測定精度は、基材の構成原子のノイズ等でやや精度が低下するため、上記要件(2)においては、ガスバリア層の全層厚の90~95%の範囲内の領域で上記式(A)又は式(B)で規定する関係を満たすことが好ましい。ここで、ガスバリア層の膜厚の少なくとも90%以上とは、ガスバリア層中で連続する部分でなくてもよく、単にガスバリア層中の90%以上の部分で上記式(A)又は式(B)で規定する関係を満たしていればよい。 Note that the measurement accuracy in the interface region between the gas barrier layer and the base material is slightly reduced due to noise of constituent atoms of the base material. Therefore, in the requirement (2), the total thickness of the gas barrier layer is 90 to 95. It is preferable to satisfy the relationship defined by the above formula (A) or formula (B) in a region within the range of%. Here, at least 90% or more of the film thickness of the gas barrier layer does not have to be a continuous part in the gas barrier layer, but is simply the above formula (A) or formula (B) in a part of 90% or more in the gas barrier layer. It only has to satisfy the relationship specified in.
(X線光電子分光法による深さ方向の元素分布測定)
 ガスバリア層内における炭素原子の含有比率の平均値は、以下のXPSデプスプロファイルの測定によって求めることができる。
(Measurement of element distribution in the depth direction by X-ray photoelectron spectroscopy)
The average value of the carbon atom content ratio in the gas barrier layer can be determined by the following XPS depth profile measurement.
 ガスバリア層の層厚方向におけるケイ素分布曲線、酸素分布曲線、及び、ケイ素分布曲線等は、X線光電子分光法(XPS:X-Ray Photoelectron Spectroscopy)の測定と、アルゴン等の希ガスイオンスパッタとを併用し、試料内部を露出させながら順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定で作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間が、ガスバリア層の層厚方向におけるガスバリア層の表面からの距離におおむね相関する。このため、XPSデプスプロファイル測定の際に採用するエッチング速度とエッチング時間との関係から算出されるガスバリア層の表面からの距離を「ガスバリア層の層厚方向におけるガスバリア層の表面からの距離」として採用することができる。また、このようなXPSデプスプロファイル測定に際して採用するスパッタ法としては、以下の測定条件とすることが好ましい。 The silicon distribution curve, oxygen distribution curve, silicon distribution curve, etc. in the thickness direction of the gas barrier layer are measured by X-ray photoelectron spectroscopy (XPS) and rare gas ion sputtering such as argon. In combination, it can be created by so-called XPS depth profile measurement in which the surface composition analysis is sequentially performed while exposing the inside of the sample. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time). In this way, in the element distribution curve having the horizontal axis as the etching time, the etching time is generally correlated with the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer. For this reason, the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time employed when measuring the XPS depth profile is adopted as the “distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer”. can do. Moreover, it is preferable to set it as the following measurement conditions as a sputtering method employ | adopted in such XPS depth profile measurement.
(測定条件)
 エッチングイオン種:アルゴン(Ar
 エッチング速度(SiO熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO換算値):10nm
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名"VG Theta Probe"
 照射X線:単結晶分光AlKα
 X線のスポット及びサイズ:800×400μmの楕円形
(Measurement condition)
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
Etching interval (SiO 2 equivalent value): 10 nm
X-ray photoelectron spectrometer: Model name "VG Theta Probe", manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and size: 800 × 400 μm oval
 炭素分布曲線は実質的に連続であることが好ましい。ここで、炭素分布曲線が実質的に連続とは、具体的には、エッチング速度とエッチング時間とから算出される、ガスバリア層の膜厚方向におけるガスバリア層の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係において、[(dC/dx)≦0.5]で表される条件を満たすことをいう。 It is preferable that the carbon distribution curve is substantially continuous. Here, the carbon distribution curve is substantially continuous, specifically, the distance from the surface of the gas barrier layer in the film thickness direction of the gas barrier layer (x, unit: nm) calculated from the etching rate and the etching time. ) And the atomic ratio of carbon (C, unit: at%), the condition represented by [(dC / dx) ≦ 0.5] is satisfied.
(ガスバリア層における炭素原子プロファイル)
 ガスバリア層は、構成元素として炭素原子、ケイ素原子及び酸素原子を含む。そして、層厚方向に組成が連続的に変化し、X線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、炭素分布曲線が上記要件(1)を満たす。また、炭素原子比率がガスバリア層の特定の領域において、濃度勾配が連続的に変化する構成を有することが、ガスバリア性と屈曲性を両立する観点から好ましい。
(Carbon atom profile in gas barrier layer)
The gas barrier layer contains carbon atoms, silicon atoms, and oxygen atoms as constituent elements. The composition continuously changes in the layer thickness direction, and the carbon distribution curve satisfies the requirement (1) among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy. In addition, it is preferable that the carbon atom ratio has a configuration in which the concentration gradient continuously changes in a specific region of the gas barrier layer from the viewpoint of achieving both gas barrier properties and flexibility.
 このような炭素原子プロファイルを有するガスバリア層においては、層内における炭素分布曲線が少なくとも1つの極値を有することがより好ましい。更に、炭素分布曲線が、少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することが特に好ましい。炭素分布曲線が極値を有すると、ガスバリア層を有するフィルムを屈曲させた場合でも、ガスバリア性を十分に確保できる。また、炭素分布曲線が少なくとも2つ又は3つの極値を有する場合は、1つの極値とこれに隣接する他の極値との厚さ方向の距離の差の絶対値が200nm以下であることが好ましく、100nm以下であることがより好ましく、75nm以下であることが特に好ましい。 In the gas barrier layer having such a carbon atom profile, it is more preferable that the carbon distribution curve in the layer has at least one extreme value. Furthermore, it is more preferred that the carbon distribution curve has at least two extreme values, and particularly preferred that it has at least three extreme values. When the carbon distribution curve has an extreme value, sufficient gas barrier properties can be ensured even when a film having a gas barrier layer is bent. When the carbon distribution curve has at least two or three extreme values, the absolute value of the difference in the thickness direction distance between one extreme value and another extreme value adjacent thereto is 200 nm or less. Is more preferable, 100 nm or less is more preferable, and 75 nm or less is particularly preferable.
 なお、上記分布曲線の極値とは、ガスバリア層の厚さ方向において、ガスバリア層の表面からの距離に対する元素の原子比率の極大値又は極小値である。極大値とは、ガスバリア層の表面からの距離を変化させた場合に元素の原子比率の値が増加から減少に変わる変曲点であり、且つ、その変曲点の位置から厚さ方向に4~20nm変化させた位置の元素の原子比率の値が3at%以上減少する点のことをいう。また、極小値とは、ガスバリア層の表面からの距離を変化させた場合に元素の原子比の値が減少から増加に変わる変曲点であり、且つ、その変曲点の位置から厚さ方向に4~20nm変化させた位置の元素の原子比率の値が3at%以上増加する点のことをいう。すなわち、極大値及び極小値は、厚さ方向の位置を4~20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上減少又は増加する点である。 The extreme value of the above distribution curve is the maximum or minimum value of the atomic ratio of the element to the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer. The maximum value is an inflection point at which the value of the atomic ratio of the element changes from increase to decrease when the distance from the surface of the gas barrier layer is changed, and 4 points in the thickness direction from the position of the inflection point. It means that the atomic ratio value of the element at a position changed by ˜20 nm decreases by 3 at% or more. The minimum value is an inflection point at which the atomic ratio value of the element changes from decrease to increase when the distance from the surface of the gas barrier layer is changed, and the thickness direction from the position of the inflection point In other words, the atomic ratio value of the element at the position changed by 4 to 20 nm is increased by 3 at% or more. That is, the maximum value and the minimum value are points where the atomic ratio value of the element decreases or increases by 3 at% or more in any range when the position in the thickness direction is changed in the range of 4 to 20 nm.
(ガスバリア層における各原子プロファイル)
 ガスバリア層は、構成元素として炭素原子、ケイ素原子及び酸素原子を含有することを特徴とするが、各原子の比率と、各原子の比率の最大値及び最小値についての好ましい態様を、以下に説明する。
(Each atomic profile in the gas barrier layer)
The gas barrier layer is characterized by containing carbon atoms, silicon atoms and oxygen atoms as constituent elements. Preferred embodiments of the ratio of each atom and the maximum and minimum values of the ratio of each atom will be described below. To do.
(炭素原子比率の最大値と最小値の関係)
 ガスバリア層では、炭素分布曲線における炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が3at%以上であることが好ましく、5at%以上であることがより好ましい。炭素原子比率の最大値及び最小値の差を3at%以上とすることにより、作製したガスバリア層を屈曲させた際のガスバリア性が十分得られる。最大値及び最小値の差が5at%以上であれば、ガスバリア層を有するフィルムを屈曲させた場合におけるガスバリア性がより向上する。
(Relationship between maximum and minimum carbon atom ratio)
In the gas barrier layer, the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio in the carbon distribution curve is preferably 3 at% or more, and more preferably 5 at% or more. preferable. By setting the difference between the maximum value and the minimum value of the carbon atom ratio to 3 at% or more, sufficient gas barrier properties can be obtained when the manufactured gas barrier layer is bent. When the difference between the maximum value and the minimum value is 5 at% or more, the gas barrier property when the film having the gas barrier layer is bent is further improved.
(酸素原子比率の最大値と最小値の関係)
 ガスバリア層においては、酸素分布曲線における最大の極値(極大値)と最小の極値(極小値)との差の絶対値が3at%以上であることが好ましく、5at%以上であることがより好ましい。
(Relationship between maximum and minimum oxygen atom ratio)
In the gas barrier layer, the absolute value of the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) in the oxygen distribution curve is preferably 3 at% or more, and more preferably 5 at% or more. preferable.
(ケイ素原子比率の最大値と最小値の関係)
 ガスバリア層においては、ケイ素分布曲線における最大の極値(極大値)と最小の極値(極小値)との差の絶対値が10at%未満であることが好ましく、5at%未満であることがより好ましい。最大の極値(極大値)と最小の極値(極小値)との差が10at%未満であれば、ガスバリア層に十分なガスバリア性及び機械的強度が得られる。
(Relationship between maximum and minimum silicon atom ratio)
In the gas barrier layer, the absolute value of the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) in the silicon distribution curve is preferably less than 10 at%, and more preferably less than 5 at%. preferable. If the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) is less than 10 at%, sufficient gas barrier properties and mechanical strength can be obtained for the gas barrier layer.
 また、膜面全体の均一性やガスバリア性を向上させるためには、ガスバリア層が膜面方向(ガスバリア層の表面に平行な方向)で実質的に一様であることが好ましい。ガスバリア層が膜面方向で実質的に一様とは、XPSデプスプロファイル測定によるガスバリア層の膜面の任意の2箇所の測定箇所において、酸素分布曲線、炭素分布曲線、及び、酸素-炭素合計の分布曲線を作成した際に、任意の2箇所の測定箇所で得られる炭素分布曲線の極値の数が同じであり、且つ、各炭素分布曲線における炭素の原子比率の最大値及び最小値の差の絶対値が、互いに同じであるか、又は、5at%以内の差であることをいう。 In order to improve the uniformity of the entire film surface and the gas barrier property, it is preferable that the gas barrier layer is substantially uniform in the film surface direction (direction parallel to the surface of the gas barrier layer). The gas barrier layer is substantially uniform in the film surface direction means that the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon total are measured at any two measurement points on the film surface of the gas barrier layer by XPS depth profile measurement. When the distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement points is the same, and the difference between the maximum value and the minimum value of the atomic ratio of carbon in each carbon distribution curve Are the same as each other or a difference within 5 at%.
 ガスバリア層は、上記要件(1)及び(2)を同時に満たすガスバリア層を少なくとも1層備えることが好ましいが、そのような条件を満たす層を、2層以上を備えていてもよい。さらに、ガスバリア層を2層以上備える場合には、複数のガスバリア層の材質は、同一であってもよく、異なっていてもよい。 The gas barrier layer preferably includes at least one gas barrier layer that simultaneously satisfies the above requirements (1) and (2), but may include two or more layers that satisfy such a condition. Furthermore, when two or more gas barrier layers are provided, the materials of the plurality of gas barrier layers may be the same or different.
 また、ケイ素分布曲線、酸素分布曲線及び炭素分布曲線において、ケイ素原子、酸素原子及び炭素原子の合計量に対するケイ素原子比率は、19~40at%の範囲であることが好ましく、30~40at%の範囲であることがより好ましい。また、ガスバリア層中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する酸素原子比率は、33~67at%の範囲であることが好ましく、41~62at%の範囲であることがより好ましい。さらに、ガスバリア層中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する炭素原子比率は、1~19at%の範囲であることが好ましく、3~19at%の範囲であることがより好ましい。 In the silicon distribution curve, oxygen distribution curve and carbon distribution curve, the silicon atom ratio to the total amount of silicon atoms, oxygen atoms and carbon atoms is preferably in the range of 19 to 40 at%, and in the range of 30 to 40 at%. It is more preferable that The oxygen atom ratio with respect to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably in the range of 33 to 67 at%, more preferably in the range of 41 to 62 at%. Furthermore, the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably in the range of 1 to 19 at%, more preferably in the range of 3 to 19 at%.
 上記のガスバリア層のその他の構成については、国際公開第2012/046767号の段落[0025]~[0047]、特開2014-000782号公報の段落[0029]~[0040]等に記載された構成を適宜参照及び採用することができる。 Other configurations of the gas barrier layer described above are described in paragraphs [0025] to [0047] of International Publication No. 2012/046767, paragraphs [0029] to [0040] of JP 2014-000782 A, and the like. Can be referred to and adopted as appropriate.
(ガスバリア層の厚さ)
 ガスバリア層の厚さは、5~1000nmの範囲内であることが好ましく、10~800nmの範囲内であることがより好ましく、100~500nmの範囲内であることが特に好ましい。ガスバリア層の厚さが上記範囲内であれば、酸素ガスバリア性、水蒸気バリア性等のガスバリア性に優れ、屈曲された状態でも良好なガスバリア性が得られる。さらに、ガスバリア層の厚さの合計値が範囲内であると、上記効果に加えて所望の平面性を実現することができる。
(Gas barrier layer thickness)
The thickness of the gas barrier layer is preferably in the range of 5 to 1000 nm, more preferably in the range of 10 to 800 nm, and particularly preferably in the range of 100 to 500 nm. When the thickness of the gas barrier layer is within the above range, the gas barrier properties such as oxygen gas barrier properties and water vapor barrier properties are excellent, and good gas barrier properties can be obtained even in a bent state. Further, when the total thickness of the gas barrier layers is within the range, desired flatness can be realized in addition to the above effects.
(ガスバリア層の形成方法)
 上記要件(1)及び(2)を同時に満たすガスバリア層を形成する方法としては、特に限定されず公知の方法を用いることができるが、例えば、国際公開第2012/046767号の段落[0049]~[0069]等に記載の方法を参照することができる。
(Method for forming gas barrier layer)
A method for forming a gas barrier layer that simultaneously satisfies the above requirements (1) and (2) is not particularly limited, and a known method can be used. For example, paragraphs [0049] to [2012] of International Publication No. 2012/046767 can be used. The method described in [0069] etc. can be referred to.
 また、緻密に元素分布が制御させたガスバリア層を形成することができる観点からは、有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法を用いることが好ましい。 In addition, from the viewpoint of forming a gas barrier layer whose element distribution is precisely controlled, a discharge plasma having a discharge space between rollers to which a magnetic field is applied using a source gas containing an organosilicon compound and an oxygen gas. It is preferable to use chemical vapor deposition.
 より詳しくは、磁場を印加したローラー間放電プラズマ処理装置を用い、基材を一対の成膜ローラーに巻き回し、この一対の成膜ローラー間に成膜ガスを供給しながらプラズマ放電する、プラズマ化学気相成長法でガスバリア層を形成することが好ましい。また、一対の成膜ローラー間に磁場を印加しながら放電する際には、一対の成膜ローラー間の極性を交互に反転させることが好ましい。このように、一対の成膜ローラー上に基材を巻き回し、この一対の成膜ローラー間にプラズマ放電をすることにより、基材と放電空間との距離が変化し、基材表面でのプラズマ強度が連続的に変化することによって、炭素原子比率が濃度勾配を有し、且つ、炭素原子比率が層内で連続的に変化するガスバリア層を形成することが可能となる。 More specifically, plasma chemistry is performed by using a discharge plasma treatment apparatus between rollers to which a magnetic field is applied, winding a substrate around a pair of film forming rollers, and performing plasma discharge while supplying a film forming gas between the pair of film forming rollers. It is preferable to form the gas barrier layer by a vapor deposition method. Further, when discharging while applying a magnetic field between a pair of film forming rollers, it is preferable to reverse the polarity between the pair of film forming rollers alternately. Thus, by winding a base material on a pair of film forming rollers and performing plasma discharge between the pair of film forming rollers, the distance between the base material and the discharge space changes, and plasma on the surface of the base material changes. By continuously changing the strength, it is possible to form a gas barrier layer in which the carbon atom ratio has a concentration gradient and the carbon atom ratio continuously changes in the layer.
 また、成膜時に一方の成膜ローラー上に存在する基材の表面上に成膜しつつ、且つ、対となる他方の成膜ローラー上に存在する基材の表面上にも同時に成膜することが可能となる。すなわち、成膜効率を倍にでき、且つ、同様の構成の膜を成膜できるため、炭素分布曲線の極値を倍増させることが可能となり、効率よく上記要件(1)及び(2)を同時に満たガスバリア層を形成することが可能となる。 In addition, during film formation, the film is formed on the surface of the base material existing on one film forming roller, and simultaneously formed on the surface of the base material existing on the other film forming roller as a pair. It becomes possible. That is, since the film formation efficiency can be doubled and a film having the same configuration can be formed, the extreme value of the carbon distribution curve can be doubled, and the above requirements (1) and (2) can be efficiently performed simultaneously. A filled gas barrier layer can be formed.
(ローラー間放電プラズマCVD装置)
 上述のプラズマCVD法でガスバリア層を製造する際に用いる成膜装置は、特に制限されない。例えば、図3に示す製造装置を用いた場合には、プラズマCVD法を利用しながら、ロールトゥロール方式でガスバリア層を製造することができる。以下、図3を参照しながら、ガスバリア層の製造方法について詳細に説明する。なお、図3は、ガスバリア層の製造において好適に利用することができる、磁場を印加したローラー間放電プラズマCVD装置の一例を示す模式図である。
(Roller discharge plasma CVD equipment)
The film forming apparatus used when manufacturing the gas barrier layer by the above-mentioned plasma CVD method is not particularly limited. For example, when the manufacturing apparatus shown in FIG. 3 is used, the gas barrier layer can be manufactured by the roll-to-roll method while using the plasma CVD method. Hereinafter, the manufacturing method of the gas barrier layer will be described in detail with reference to FIG. FIG. 3 is a schematic view showing an example of an inter-roller discharge plasma CVD apparatus to which a magnetic field is applied, which can be suitably used in the production of a gas barrier layer.
 図3に示す磁場を印加したローラー間放電プラズマCVD装置(以下、単にプラズマCVD装置ともいう。)50は、主には、繰り出しローラー51と、搬送ローラー52、搬送ローラー54、搬送ローラー55及び搬送ローラー57と、成膜ローラー53及び成膜ローラー56と、成膜ガス供給管59と、プラズマ発生用電源63と、成膜ローラー53の内部に設置された磁場発生装置61と、成膜ローラー56の内部に設置された磁場発生装置62と、巻取りローラー58とを備えている。また、このようなプラズマCVD製造装置においては、少なくとも成膜ローラー53,56と、成膜ガス供給管59と、プラズマ発生用電源63と、磁場発生装置61,62とが、図示を省略した真空チャンバー内に配置されている。また、図3においては、成膜ローラー53,56にプラズマ発生用電源63に接続された電極ドラムが設置される。更に、このようなプラズマCVD製造装置において、真空チャンバー(不図示)は、真空ポンプ(不図示)に接続されており、この真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能となっている。 An inter-roller discharge plasma CVD apparatus (hereinafter also simply referred to as a plasma CVD apparatus) 50 to which a magnetic field shown in FIG. 3 is applied mainly includes a feeding roller 51, a transport roller 52, a transport roller 54, a transport roller 55, and a transport. Roller 57, film formation roller 53 and film formation roller 56, film formation gas supply pipe 59, plasma generation power supply 63, magnetic field generator 61 installed inside film formation roller 53, film formation roller 56 Are provided with a magnetic field generator 62 and a take-up roller 58. In such a plasma CVD manufacturing apparatus, at least the film forming rollers 53 and 56, the film forming gas supply pipe 59, the plasma generating power source 63, and the magnetic field generating apparatuses 61 and 62 are not shown in the vacuum. Located in the chamber. In FIG. 3, electrode drums connected to a plasma generating power source 63 are installed on the film forming rollers 53 and 56. Further, in such a plasma CVD manufacturing apparatus, a vacuum chamber (not shown) is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by this vacuum pump. Yes.
 このようなプラズマCVD製造装置においては、一対の成膜ローラー(成膜ローラー53と成膜ローラー56)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源63に接続されている。成膜ローラー53と成膜ローラー56とにプラズマ発生用電源63から電力を供給することにより、成膜ローラー53と成膜ローラー56との間の空間に放電してプラズマを発生させることができる。このようなプラズマCVD製造装置においては、一対の成膜ローラー53,56は、その中心軸が同一平面上において略平行となるように配置することが好ましい。このように、一対の成膜ローラー53,56を配置することにより、成膜レートを倍にでき、尚かつ、同様の構成の膜を形成できる。 In such a plasma CVD manufacturing apparatus, each film forming roller generates plasma so that a pair of film forming rollers (film forming roller 53 and film forming roller 56) can function as a pair of counter electrodes. The power supply 63 is connected. By supplying electric power from the plasma generation power source 63 to the film formation roller 53 and the film formation roller 56, it is possible to generate plasma by discharging into the space between the film formation roller 53 and the film formation roller 56. In such a plasma CVD manufacturing apparatus, the pair of film forming rollers 53 and 56 are preferably arranged so that their central axes are substantially parallel on the same plane. Thus, by arranging the pair of film forming rollers 53 and 56, the film forming rate can be doubled, and a film having the same configuration can be formed.
 また、成膜ローラー53及び成膜ローラー56の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置61及び磁場発生装置62がそれぞれ設けられている。 Also, a magnetic field generator 61 and a magnetic field generator 62 fixed so as not to rotate even when the film forming roller rotates are provided inside the film forming roller 53 and the film forming roller 56, respectively.
 成膜ローラー53及び成膜ローラー56としては、適宜公知のローラーを用いることができる。成膜ローラー53及び成膜ローラー56としては、効率よく薄膜を形成する観点から、直径が同一のローラーを使うことが好ましい。また、このようなプラズマCVD製造装置に用いる繰り出しローラー51及び搬送ローラー52,54,55,57としては、公知のローラーを適宜選択して用いることができる。巻取りローラー58も、ガスバリア層を形成した基材60を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。 As the film formation roller 53 and the film formation roller 56, known rollers can be used as appropriate. As the film forming roller 53 and the film forming roller 56, it is preferable to use rollers having the same diameter from the viewpoint of efficiently forming a thin film. Further, as the feed roller 51 and the transport rollers 52, 54, 55, 57 used in such a plasma CVD manufacturing apparatus, known rollers can be appropriately selected and used. The take-up roller 58 is not particularly limited as long as it can take up the base material 60 on which the gas barrier layer is formed, and a known roller can be appropriately used.
 成膜ガス供給管59としては、原料ガス及び酸素ガスを所定の速度で供給又は排出することが可能なものを適宜用いることができる。さらに、プラズマ発生用電源63としては、従来公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源63としては、効率よくプラズマCVD法を実施することが可能となることから、一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源63としては、印加電力を100W~10kWの範囲とすることができ、かつ交流の周波数を50Hz~500kHzの範囲とすることが可能なものであることがより好ましい。また、磁場発生装置61,62としては、適宜、公知の磁場発生装置を用いることができる。 As the film forming gas supply pipe 59, one capable of supplying or discharging the source gas and the oxygen gas at a predetermined rate can be appropriately used. Further, as the plasma generating power source 63, a conventionally known power source of a plasma generating apparatus can be used. As such a plasma generation power source 63, since it is possible to efficiently perform the plasma CVD method, a power source (AC power source or the like) capable of alternately reversing the polarity of the pair of film forming rollers is used. It is preferable to use it. Further, it is more preferable that such a plasma generating power source 63 is one that can apply electric power in a range of 100 W to 10 kW and an AC frequency in a range of 50 Hz to 500 kHz. . As the magnetic field generators 61 and 62, a known magnetic field generator can be used as appropriate.
 図3に示すプラズマCVD装置50を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、磁場発生装置の強度、真空チャンバー内の圧力(減圧度)、成膜ローラーの直径、基材の搬送速度等を適宜調整することにより、所望のガスバリア層を製造することができる。 Using the plasma CVD apparatus 50 shown in FIG. 3, for example, the type of source gas, the power of the electrode drum of the plasma generator, the strength of the magnetic field generator, the pressure in the vacuum chamber (decompression degree), the diameter of the film forming roller, A desired gas barrier layer can be produced by appropriately adjusting the conveyance speed of the substrate.
 図3に示すプラズマCVD装置50において、成膜ガス(原料ガス等)を真空チャンバー内に供給し、一対の成膜ローラー53,56間に、磁場を発生させながらプラズマ放電を行うことにより、成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー53が保持する基材60の表面上、及び、成膜ローラー56が保持する基材60の表面上に、ガスバリア層が形成される。なお、このような成膜に際しては、基材60が繰り出しローラー51、搬送ローラー52,54,55,57、巻取りローラー58、及び、成膜ローラー53,56等で搬送されることにより、ロールトゥロール方式の連続的な成膜プロセスでガスバリア層を形成することができる。 In the plasma CVD apparatus 50 shown in FIG. 3, a film forming gas (raw material gas or the like) is supplied into the vacuum chamber, and plasma discharge is performed while a magnetic field is generated between the pair of film forming rollers 53 and 56. A film gas (a raw material gas or the like) is decomposed by plasma, and a gas barrier layer is formed on the surface of the substrate 60 held by the film forming roller 53 and on the surface of the substrate 60 held by the film forming roller 56. . In such film formation, the substrate 60 is conveyed by the feed roller 51, the conveyance rollers 52, 54, 55, 57, the take-up roller 58, the film formation rollers 53, 56, etc. The gas barrier layer can be formed by a continuous film forming process using a to-roll method.
(成膜ガス)
 プラズマ化学気相成長法に用いる成膜ガスとしては、有機ケイ素化合物を含む原料ガスと酸素ガスとを用い、その成膜ガス中の酸素ガスの含有量が、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。
(Deposition gas)
As a film forming gas used in the plasma chemical vapor deposition method, a raw material gas containing an organosilicon compound and an oxygen gas are used, and the content of the oxygen gas in the film forming gas is the same as that of the organic silicon compound in the film forming gas. It is preferable that the amount is less than the theoretical oxygen amount necessary for complete oxidation of the whole amount.
 ガスバリア層の作製に用いる成膜ガスを構成する原料ガスとしては、少なくともケイ素を含有する有機ケイ素化合物を用いることが好ましい。ガスバリア層の作製に適用可能な有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等が挙げられる。これらの有機ケイ素化合物の中でも、成膜での取り扱い及び得られるガスバリア層のガスバリア性等の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。また、これらの有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。 It is preferable to use an organosilicon compound containing at least silicon as a raw material gas constituting the film forming gas used for producing the gas barrier layer. Examples of the organosilicon compound applicable to the production of the gas barrier layer include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, and dimethylsilane. , Trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, octamethylcyclotetrasiloxane, etc. . Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling in film formation and gas barrier properties of the resulting gas barrier layer. Moreover, these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
 成膜ガスは、原料ガスの他に反応ガスとして、酸素ガスを含有することができる。酸素ガスは、原料ガスと反応して酸化物等の無機化合物となるガスである。また、成膜ガスとしては、原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガスや水素ガスを用いることができる。 The film forming gas can contain oxygen gas as a reaction gas in addition to the source gas. Oxygen gas is a gas that reacts with a raw material gas to become an inorganic compound such as an oxide. Further, as a film forming gas, a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber. Further, as a film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, and for example, a rare gas such as helium, argon, neon, xenon, or hydrogen gas can be used.
 成膜ガスが有機ケイ素化合物を含む原料ガスと酸素ガスとを含有する場合、原料ガスと酸素ガスとの比率は、原料ガスと酸素ガスとを完全に反応させるために理論上必要となる酸素ガスの量の比率よりも、酸素ガスの比率を過剰にし過ぎないことが好ましい。これについては、例えば、国際公開第2012/046767号等の記載を参照することができる。 When the film forming gas contains a source gas containing an organosilicon compound and an oxygen gas, the ratio of the source gas to the oxygen gas is the oxygen gas that is theoretically necessary for completely reacting the source gas and the oxygen gas. It is preferable not to make the oxygen gas ratio excessively higher than the ratio of the amount. About this, description, such as international publication 2012/046767, can be referred, for example.
(真空度)
 真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5~100Paの範囲とすることが好ましい。
(Degree of vacuum)
The pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 to 100 Pa.
(ローラー成膜)
 図3に示すプラズマCVD装置50を用いたプラズマCVD法において、成膜ローラー53,56間に放電するために、プラズマ発生用電源63に接続された電極ドラムに印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができる。電極ドラムに印加する電力としては、例えば、0.1~10kWの範囲内とすることが好ましい。このような範囲の印加電力であれば、パーティクル(不正粒子)の発生を抑制することができ、成膜時に発生する熱量も制御範囲内であるため、成膜時の基材表面温度の上昇による、基材の熱変形、熱による性能劣化や成膜時の皺の発生を抑制することができる。
(Roller film formation)
In the plasma CVD method using the plasma CVD apparatus 50 shown in FIG. 3, the electric power applied to the electrode drum connected to the plasma generating power source 63 for discharging between the film forming rollers 53 and 56 is the kind of the source gas. And can be adjusted as appropriate according to the pressure in the vacuum chamber. The power applied to the electrode drum is preferably in the range of 0.1 to 10 kW, for example. If the applied power is in such a range, the generation of particles (illegal particles) can be suppressed, and the amount of heat generated during film formation is within the control range. Further, thermal deformation of the substrate, performance deterioration due to heat, and generation of wrinkles during film formation can be suppressed.
 プラズマCVD装置50において、基材60の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲内とすることが好ましく、0.5~20m/minの範囲内とすることがより好ましい。ライン速度が範囲内であれば、基材の熱に起因する皺も発生し難く、形成されるガスバリア層の厚さも十分に制御可能となる。 In the plasma CVD apparatus 50, the conveyance speed (line speed) of the substrate 60 can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is within the range of 0.25 to 100 m / min. Preferably, it is more preferably in the range of 0.5 to 20 m / min. If the line speed is within the range, wrinkles due to the heat of the base material hardly occur, and the thickness of the formed gas barrier layer can be sufficiently controlled.
[第2ガスバリア層;湿式塗布法]
 また、ガスバリア層12としては、上述の真空成膜法で形成された気相成膜ガスバリア層(第1ガスバリア層)と共に、真空成膜法以外の方法で形成された層(第2ガスバリア層)を備えていてもよい。この場合には、基材フィルム11側に真空成膜法で形成された第1ガスバリア層を有し、第1ガスバリア層上に真空成膜法以外の方法で形成された第2ガスバリア層を備えることが好ましい。すなわち、ガスバリアフィルム10が、[基材フィルム11/気相成膜ガスバリア層(第1ガスバリア層)/第2ガスバリア層]の積層構成を有することが好ましい。
[Second gas barrier layer; wet coating method]
The gas barrier layer 12 is a layer formed by a method other than the vacuum film formation method (second gas barrier layer) together with the vapor phase film formation gas barrier layer (first gas barrier layer) formed by the vacuum film formation method described above. May be provided. In this case, the first gas barrier layer formed by the vacuum film formation method is provided on the base film 11 side, and the second gas barrier layer formed by a method other than the vacuum film formation method is provided on the first gas barrier layer. It is preferable. That is, it is preferable that the gas barrier film 10 has a laminated structure of [base film 11 / gas phase deposition gas barrier layer (first gas barrier layer) / second gas barrier layer].
 真空成膜法以外の方法によって形成されたガスバリア層としては、ケイ素化合物を含む塗布液を用いて、湿式塗布法によって形成されたガスバリア層が挙げられる。この湿式塗布法によって形成されたガスバリア層としては、ポリシラザン化合物を含む塗布液を公知の湿式塗布法により塗布した後、塗膜に改質処理を行って形成したポリシラザン改質層が挙げられる。 Examples of the gas barrier layer formed by a method other than the vacuum film forming method include a gas barrier layer formed by a wet coating method using a coating solution containing a silicon compound. Examples of the gas barrier layer formed by this wet coating method include a polysilazane modified layer formed by coating a coating liquid containing a polysilazane compound by a known wet coating method and then modifying the coating film.
(ポリシラザン改質層)
 ポリシラザン改質層の形成に用いるポリシラザン化合物とは、構造内にケイ素-窒素結合を持つ酸窒化ケイ素の前駆体となるポリマーである。ポリシラザン化合物としては、下記一般式(1)の構造を有するものが好ましく用いられる。
(Polysilazane modified layer)
The polysilazane compound used for forming the polysilazane modified layer is a polymer that is a precursor of silicon oxynitride having a silicon-nitrogen bond in the structure. As the polysilazane compound, those having the structure of the following general formula (1) are preferably used.
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
 式中、R、R、及びRは、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、又はアルコキシ基を表す。 In the formula, each of R 1 , R 2 , and R 3 represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
 ポリシラザン改質層の膜としての緻密性の観点からは、R、R及びRの全てが水素原子であるパーヒドロポリシラザンを用いることが好ましい。その他、ポリシラザンの詳細については、特開2013-255910号公報の段落[0024]~[0040]、特開2013-188942号公報の段落[0037]~[0043]、特開2013-151123号公報の段落[0014]~[0021]、特開2013-052569号公報の段落[0033]~[0045]、特開2013-129557号公報の段落[0062]~[0075]、特開2013-226758号公報の段落[0037]~[0064]等を参照することができる。 From the viewpoint of denseness as a film of the polysilazane modified layer, it is preferable to use perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms. In addition, for details of polysilazane, paragraphs [0024] to [0040] of JP2013-255910A, paragraphs [0037] to [0043] of JP2013-188942A, and JP2013-151123A. Paragraphs [0014] to [0021], Paragraphs [0033] to [0045] of JP 2013-052569 A, Paragraphs [0062] to [0075] of JP 2013-129557 A, JP 2013-226758 A. Paragraphs [0037] to [0064] and the like can be referred to.
 ポリシラザンは、有機溶媒に溶解した溶液の状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ社製のNN120-20、NAX120-20、NL120-20等が挙げられる。 Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as a polysilazane-containing coating solution as it is. Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials.
(ポリシラザン改質層の形成方法)
 ポリシラザン化合物を含有する溶液を用いた塗膜は、ポリシラザン化合物と添加剤等を含有する溶液を、基材上に塗布して形成することができる。溶液の塗布法としては、任意の適切な方法を採用できる。例えば、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。溶液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜に含まれる有機溶媒を除去することができる。塗膜の形成方法については、特開2014-151571号公報の段落[0058]~[0064]、特開2011-183773号公報の段落[0052]~[0056]等を参照することができる。
(Polysilazane modified layer forming method)
A coating film using a solution containing a polysilazane compound can be formed by applying a solution containing a polysilazane compound and an additive on a substrate. Any appropriate method can be adopted as the solution coating method. Examples thereof include spin coating, roll coating, flow coating, ink jet, spray coating, printing, dip coating, casting film formation, bar coating, and gravure printing. After applying the solution, it is preferable to dry the coating film. By drying the coating film, the organic solvent contained in the coating film can be removed. Regarding the method for forming a coating film, paragraphs [0058] to [0064] of JP-A No. 2014-151571, paragraphs [0052] to [0056] of JP-A No. 2011-183773, and the like can be referred to.
(改質処理)
 改質処理とは、ポリシラザン化合物の酸化ケイ素又は酸化窒化珪素への転化反応を行うための処理である。改質処理は、ポリシラザン化合物の転化反応についての公知の方法を用いることができる。改質処理としては、低温で転化反応が可能な、プラズマやオゾンや紫外線を使う転化反応が好ましい。プラズマやオゾンや紫外線を使う転化反応は、従来公知の方法を用いることができる。改質処理は、ポリシラザン化合物含有液の塗膜に、波長200nm以下の真空紫外線(VUV)を照射して行うことが好ましい。
(Modification process)
The modification treatment is treatment for performing a conversion reaction of the polysilazane compound to silicon oxide or silicon oxynitride. For the modification treatment, a known method for the conversion reaction of the polysilazane compound can be used. As the reforming treatment, a conversion reaction using plasma, ozone, or ultraviolet rays that can be converted at a low temperature is preferable. A conventionally known method can be used for the conversion reaction using plasma, ozone, or ultraviolet rays. The modification treatment is preferably performed by irradiating the coating film of the polysilazane compound-containing liquid with vacuum ultraviolet rays (VUV) having a wavelength of 200 nm or less.
 湿式塗布法により形成するポリシラザン改質層の厚さは、1~500nmの範囲が好ましい、より好ましくは10~300nmの範囲である。ポリシラザン改質層は、全体又は表面の層のみが改質層であってもよく、改質層の厚さが1~50nm、好ましくは1~10nmであってもよい。 The thickness of the polysilazane modified layer formed by the wet coating method is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 300 nm. The entire polysilazane modified layer or only the surface layer may be a modified layer, and the thickness of the modified layer may be 1 to 50 nm, preferably 1 to 10 nm.
(真空紫外線処理)
 ポリシラザン化合物を含む塗膜にVUVを照射する工程では、ポリシラザンの少なくとも一部が酸窒化ケイ素に改質されることが好ましい。VUV照射工程において、ポリシラザン化合物を含む塗膜が受ける塗膜面でのVUVの照度は30~200mW/cmの範囲であることが好ましく、50~160mW/cmの範囲であることがより好ましい。VUVの照度を30mW/cm以上とすることで、改質効率を十分に得ることができ、200mW/cm以下では、塗膜への損傷発生率を極めて抑え、基材への損傷も低減させることができる。
(Vacuum UV treatment)
In the step of irradiating the coating film containing the polysilazane compound with VUV, it is preferable that at least a part of the polysilazane is modified to silicon oxynitride. In VUV irradiation step, it is preferable that the illuminance of VUV in the coating film surface for receiving the coating film containing a polysilazane compound is in the range of 30 ~ 200mW / cm 2, and more preferably in the range of 50 ~ 160mW / cm 2 . By setting the illuminance of the VUV to 30 mW / cm 2 or more, sufficient reforming efficiency can be obtained, and when it is 200 mW / cm 2 or less, the rate of damage to the coating film is extremely suppressed and damage to the substrate is also reduced. Can be made.
 ポリシラザン化合物を含む塗膜の表面におけるVUVの照射エネルギー量は、200~10000mJ/cmの範囲であることが好ましく、500~5000mJ/cmの範囲であることがより好ましい。VUVの照射エネルギー量を200mJ/cm以上とすることで、ポリシラザンの改質が十分に行われる。また、10000mJ/cm以下とすることにより、過剰改質を抑えてポリシラザン改質層のクラックや、基材の熱変形の発生を極力抑えることができる。 Irradiation energy amount of VUV in the surface of the coating film containing the polysilazane compound is preferably in the range of 200 ~ 10000mJ / cm 2, and more preferably in the range of 500 ~ 5000mJ / cm 2. The polysilazane is sufficiently modified by setting the irradiation energy amount of VUV to 200 mJ / cm 2 or more. Moreover, by setting it as 10,000 mJ / cm < 2 > or less, it can suppress the excessive modification | reformation and can suppress the generation | occurrence | production of the crack of a polysilazane modified layer and the thermal deformation of a base material as much as possible.
 真空紫外線の光源としては、希ガスエキシマランプが好ましく用いられる。
 真空紫外線は酸素による吸収があるため、紫外線照射工程での効率が低下しやすいことから、VUVの照射は、可能な限り酸素濃度の低い状態で行うことが好ましい。すなわち、VUV照射時の酸素濃度は、10~10000ppmの範囲とすることが好ましく、より好ましくは50~5000ppmの範囲、さらに好ましく80~4500ppmの範囲、最も好ましくは100~1000ppmの範囲である。
A rare gas excimer lamp is preferably used as the vacuum ultraviolet light source.
Since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process is likely to decrease. Therefore, it is preferable to perform VUV irradiation in a state where the oxygen concentration is as low as possible. That is, the oxygen concentration at the time of VUV irradiation is preferably in the range of 10 to 10,000 ppm, more preferably in the range of 50 to 5000 ppm, still more preferably in the range of 80 to 4500 ppm, and most preferably in the range of 100 to 1000 ppm.
 また、VUV照射時に用いられる照射雰囲気を満たすガスとしては、乾燥不活性ガスが好ましく、特にコストの観点から乾燥窒素ガスが好ましい。酸素濃度の調整は、照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。 Further, as the gas satisfying the irradiation atmosphere used at the time of VUV irradiation, dry inert gas is preferable, and dry nitrogen gas is particularly preferable from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rates of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
 これらの改質処理は、例えば、特開2012-086394号公報の段落[0055]~[0091]、特開2012-006154号公報の段落[0049]~[0085]、特開2011-251460号公報の段落[0046]~[0074]等に記載の内容を参照することができる。 These reforming treatments are, for example, paragraphs [0055] to [0091] of JP2012-086394A, paragraphs [0049] to [0085] of JP2012-006154A, JP2011-251460A. The contents described in paragraphs [0046] to [0074] of FIG.
(中間層)
 ポリシラザン改質層を積層する場合には、各ポリシラザン改質層の間に中間層を設けることが好ましい。中間層としては、ポリシロキサン改質層を適用することが好ましい。ポリシロキサン改質層は、ポリシロキサンを含有する塗布液を、湿式塗布法を用いてポリシラザン改質層上に塗布して乾燥した後、その乾燥した塗膜に真空紫外線を照射することによって形成することができる。
(Middle layer)
When laminating a polysilazane modified layer, it is preferable to provide an intermediate layer between the polysilazane modified layers. As the intermediate layer, it is preferable to apply a polysiloxane modified layer. The polysiloxane-modified layer is formed by applying a coating solution containing polysiloxane onto the polysilazane-modified layer using a wet coating method and then drying, and then irradiating the dried coating film with vacuum ultraviolet rays. be able to.
 中間層形成用の塗布液の塗布方法としては、スピンコート、ディッピング、ローラーブレード、スプレー法等が挙げられる。真空紫外線としては、上述したポリシラザン化合物の改質処理と同様のVUV照射を用いることが好ましい。 Examples of the coating method for the coating liquid for forming the intermediate layer include spin coating, dipping, roller blades, and spraying methods. As the vacuum ultraviolet ray, it is preferable to use the same VUV irradiation as the above-described polysilazane compound modification treatment.
 中間層を形成するために用いる塗布液は、主に、ポリシロキサン及び有機溶媒を含有する。中間層の形成に適用可能なポリシロキサンとしては、特に制限はないが、下記一般式(2)で表されるオルガノポリシロキサンが特に好ましい。 The coating solution used for forming the intermediate layer mainly contains polysiloxane and an organic solvent. The polysiloxane applicable to the formation of the intermediate layer is not particularly limited, but an organopolysiloxane represented by the following general formula (2) is particularly preferable.
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
 上記一般式(2)において、R~Rは、各々同一又は異なる炭素数1~8の有機基を表す。ここで、R~Rの少なくとも1つの基は、アルコキシ基及び水酸基のいずれかを含む。mは1以上の整数である。 In the general formula (2), R 4 to R 9 each represent the same or different organic group having 1 to 8 carbon atoms. Here, at least one group of R 4 to R 9 includes either an alkoxy group or a hydroxyl group. m is an integer of 1 or more.
 上記一般式(2)で表されるオルガノポリシロキサンにおいて、mが1以上で、かつ、ポリスチレン換算の重量平均分子量が1000~20000であることが特に好ましい。オルガノポリシロキサンのポリスチレン換算の重量平均分子量が、1000以上であれば、形成する中間層に亀裂が生じ難く、ガスバリア性を維持することができ、20000以下であれば、形成される中間層の硬化が充分となり、中間層として十分な硬度が得られる。 In the organopolysiloxane represented by the general formula (2), it is particularly preferable that m is 1 or more and the weight average molecular weight in terms of polystyrene is 1000 to 20000. If the weight average molecular weight in terms of polystyrene of the organopolysiloxane is 1000 or more, the intermediate layer to be formed is hardly cracked and the gas barrier property can be maintained, and if it is 20000 or less, the formed intermediate layer is cured. And sufficient hardness as an intermediate layer can be obtained.
 中間層の乾燥膜厚としては、100nm~10μmの範囲が好ましく、50nm~1μmであることがより好ましい。中間層の膜厚が100nm以上であれば、十分なガスバリア性を確保することができる。また、中間層の膜厚が10μm以下であれば、中間層形成時に安定した塗布性を得ることができる。 The dry film thickness of the intermediate layer is preferably in the range of 100 nm to 10 μm, more preferably 50 nm to 1 μm. If the thickness of the intermediate layer is 100 nm or more, sufficient gas barrier properties can be ensured. Moreover, if the film thickness of the intermediate layer is 10 μm or less, stable coating properties can be obtained when forming the intermediate layer.
 その他、ポリシロキサンの詳細については、特開2013-151123号公報の段落[0028]~[0032]、特開2013-086501号公報の段落[0050]~[0064]、特開2013-059927号公報の段落[0063]~[0081]、特開2013-226673号公報の段落[0119]~[0139]等を参照することができる。 In addition, for details of polysiloxane, paragraphs [0028] to [0032] in JP2013-151123A, paragraphs [0050] to [0064] in JP2013-086501A, and JP2013-059927A. Paragraphs [0063] to [0081], Paragraphs [0119] to [0139] of JP 2013-226673 A, and the like can be referred to.
[第2ガスバリア層;遷移金属含有層]
 また、第2ガスバリア層としては、遷移金属(M2)含有層と、遷移金属以外の無機元素(M1)含有層との積層形態であることが好ましい。無機元素(M1)含有層としては、上述のケイ素化合物を含む塗布液を用いて湿式塗布法によって形成された層が好ましい。すなわち、第2ガスバリア層は、ポリシラザン改質層と遷移金属含有層との積層構造であることが好ましい。
[Second gas barrier layer; transition metal-containing layer]
The second gas barrier layer is preferably a laminated form of a transition metal (M2) -containing layer and an inorganic element (M1) -containing layer other than the transition metal. The inorganic element (M1) -containing layer is preferably a layer formed by a wet coating method using a coating solution containing the above-described silicon compound. That is, the second gas barrier layer preferably has a laminated structure of a polysilazane modified layer and a transition metal-containing layer.
 遷移金属含有層と遷移金属以外の無機元素含有層との積層形態からなる第2ガスバリア層は、少なくとも厚さ方向において、無機元素M1と遷移金属M2とを含有する混合領域を有し、混合領域における無機元素M1に対する遷移金属M2の原子数比の値(M2/M1)が、0.02~49の範囲内にある領域を、厚さ方向に連続して5nm以上有することが好ましい。 The second gas barrier layer composed of the laminated form of the transition metal-containing layer and the inorganic element-containing layer other than the transition metal has a mixed region containing the inorganic element M1 and the transition metal M2 at least in the thickness direction. It is preferable to have a region in which the value of the atomic ratio of the transition metal M2 to the inorganic element M1 in (M2 / M1) is in the range of 0.02 to 49 continuously in the thickness direction of 5 nm or more.
 さらに、上記第2ガスバリア層において遷移金属含有層は、第3族~第11族の遷移金属を主成分aとして含有するA領域と、第12族~第14族の無機元素を主成分bとして含有するB領域との間に、主成分a及び主成分bに由来する化合物を含有する混合領域を有することが好ましい。 Further, in the second gas barrier layer, the transition metal-containing layer includes a region A containing a transition metal of Group 3 to Group 11 as the main component a, and an inorganic element of Group 12 to Group 14 as the main component b. It is preferable to have a mixed region containing a compound derived from the main component a and the main component b between the B region to be contained.
 無機元素M1と遷移金属M2とを含有する混合領域では、遷移金属M2と無機元素M1に加えて酸素が含有されていることが好ましい。また、この混合領域は、遷移金属の酸化物と無機元素の酸化物との混合物、又は、遷移金属M2と無機元素M1との複合酸化物の少なくとも一方を含有することが好ましく、遷移金属M2と無機元素M1との複合酸化物を含有することがより好ましい。 In the mixed region containing the inorganic element M1 and the transition metal M2, it is preferable that oxygen is contained in addition to the transition metal M2 and the inorganic element M1. The mixed region preferably contains at least one of a mixture of an oxide of a transition metal and an oxide of an inorganic element, or a composite oxide of a transition metal M2 and an inorganic element M1, and the transition metal M2 and It is more preferable to contain a composite oxide with the inorganic element M1.
(遷移金属(M2)含有層:A領域)
 遷移金属(M2)含有層におけるA領域とは、金属として遷移金属M2を主成分aとして含有する領域をいう。
 遷移金属M2としては、特に制限されず、任意の遷移金属が単独で又は組み合わせて用いられる。ここで、遷移金属とは、長周期型周期表の第3族元素から第11族元素を指し、遷移金属としては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、及びAu等が挙げられる。
(Transition metal (M2) -containing layer: A region)
The A region in the transition metal (M2) -containing layer refers to a region containing the transition metal M2 as a main component a as a metal.
The transition metal M2 is not particularly limited, and any transition metal may be used alone or in combination. Here, the transition metal refers to a Group 3 element to a Group 11 element in the long-period periodic table, and the transition metal includes Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta , W, Re, Os, Ir, Pt, Au, and the like.
 良好なバリア性が得られる遷移金属M2としては、Nb、Ta、V、Zr、Ti、Hf、Y、La、Ce等が挙げられる。これらのなかでも、種々の検討結果から、特に第5族元素であるNb、Ta、Vが、無機元素M1に対する結合が生じやすい観点から好ましい。 Examples of the transition metal M2 that can provide good barrier properties include Nb, Ta, V, Zr, Ti, Hf, Y, La, and Ce. Among these, Nb, Ta, and V, which are Group 5 elements, are particularly preferable from the viewpoint of various examination results from the viewpoint of easy bonding to the inorganic element M1.
 特に、遷移金属M2が第5族元素(特に、Nb)であって、詳細を後述する無機元素M1がSiである場合には、著しいバリア性の向上効果を得ることができる。これは、Siと第5族元素(特に、Nb)との結合が特に生じやすいためであると考えられる。さらに、光学特性の観点から、遷移金属M2は、透明性が良好な化合物が得られるNb、Taが特に好ましい。 In particular, when the transition metal M2 is a Group 5 element (particularly Nb) and the inorganic element M1 whose details will be described later is Si, a significant barrier property improvement effect can be obtained. This is presumably because the bond between Si and the Group 5 element (particularly Nb) is particularly likely to occur. Furthermore, from the viewpoint of optical properties, the transition metal M2 is particularly preferably Nb or Ta from which a compound with good transparency can be obtained.
 A領域の厚さとしては、バリア性と光学特性との両立の観点から、2~50nmの範囲であることが好ましく、4~25nmの範囲であることがより好ましく、5~15nmの範囲であることがさらに好ましい。 The thickness of the A region is preferably in the range of 2 to 50 nm, more preferably in the range of 4 to 25 nm, and more preferably in the range of 5 to 15 nm from the viewpoint of achieving both barrier properties and optical characteristics. More preferably.
(無機元素(M1)含有層:B領域)
 無機元素(M1)含有層におけるB領域とは、遷移金属以外の無機材料を主成分bとして含有する領域をいう。無機元素M1としては、長周期型周期表の第12族~第14族の金属から選択される無機元素が好ましい。無機元素M1としては、特に制限されず、第12族~第14族の任意の無機元素を単独で又は組み合わせて用いることができるが、例えば、Si、Al、Zn、In及びSn等が挙げられる。無機元素M1としては、Si、Sn又はZnを含むことが好ましく、Siを含むことがより好ましく、Si単独であることが特に好ましい。
 B領域の厚さは、バリア性と生産性との両立の観点から、10~1000nmの範囲であることが好ましく、20~500nmの範囲であることがより好ましく、50~300nmの範囲であることが特に好ましい。
(Inorganic element (M1) containing layer: B region)
The B region in the inorganic element (M1) -containing layer refers to a region containing an inorganic material other than the transition metal as the main component b. As the inorganic element M1, an inorganic element selected from metals of Group 12 to Group 14 of the long-period periodic table is preferable. The inorganic element M1 is not particularly limited, and any inorganic element of Group 12 to Group 14 can be used alone or in combination. Examples thereof include Si, Al, Zn, In, and Sn. . The inorganic element M1 preferably contains Si, Sn or Zn, more preferably contains Si, and particularly preferably Si alone.
The thickness of the region B is preferably in the range of 10 to 1000 nm, more preferably in the range of 20 to 500 nm, and in the range of 50 to 300 nm from the viewpoint of achieving both barrier properties and productivity. Is particularly preferred.
(混合領域)
 混合領域は、長周期型周期表の第12族~第14族の無機元素から選択される無機元素M1、及び、第3族元素から第11族の金属から選択される遷移金属M2が含有されている領域であって、無機元素M1に対する遷移金属M2の原子数比の値(M2/M1)が、0.02~49の範囲内である領域を、厚さ方向に連続して5nm以上有する領域である。ここで、混合領域は、構成成分の化学組成が相互に異なる複数の領域として形成されていてもよく、また、構成成分の化学組成が連続して変化している領域として形成されていてもよい。
(Mixed area)
The mixed region contains an inorganic element M1 selected from Group 12 to Group 14 inorganic elements of the long-period periodic table and a transition metal M2 selected from Group 3 elements to Group 11 metals. A region in which the value of the atomic ratio of the transition metal M2 to the inorganic element M1 (M2 / M1) is within the range of 0.02 to 49, and has a thickness of 5 nm or more continuously in the thickness direction. It is an area. Here, the mixed region may be formed as a plurality of regions having different chemical compositions of the constituent components, or may be formed as a region in which the chemical compositions of the constituent components are continuously changed. .
(酸素欠損組成)
 上記混合領域において、一部の組成は、酸素が欠損した非化学量論的組成(酸素欠損組成)であることが好ましい。酸素欠損組成とは、混合領域の組成を下記化学組成式(1)で表したとき、下記関係式(2)で規定する条件を満たすことをいう。
 化学組成式(1):(M1)(M2)
 関係式(2):(2y+3z)/(a+bx)<1.0
 また、混合領域における酸素欠損程度を表す酸素欠損度指標としては、混合領域の組成を上記化学組成式(1)で表したときの混合領域における[(2y+3z)/(a+bx)]を算出して得られる値の最小値を用いる。
(Oxygen deficient composition)
In the mixed region, part of the composition is preferably a non-stoichiometric composition (oxygen deficient composition) in which oxygen is deficient. The oxygen deficient composition means that the condition defined by the following relational expression (2) is satisfied when the composition of the mixed region is expressed by the following chemical composition formula (1).
Chemical composition formula (1): (M1) (M2) x O y N z
Relational expression (2): (2y + 3z) / (a + bx) <1.0
As an oxygen deficiency index indicating the degree of oxygen deficiency in the mixed region, [(2y + 3z) / (a + bx)] in the mixed region when the composition of the mixed region is expressed by the chemical composition formula (1) is calculated. Use the minimum value obtained.
 なお、下記組成式(1)及び関係式(2)において、M1は無機元素、M2は遷移金属、Oは酸素、Nは窒素を表す。x、y、zは、それぞれ化学量論係数であり、aはM1の最大価数、bはM2の最大価数を表す。また、以降の説明では、特別の区別が必要ない場合、上記化学組成式(1)で表す組成を、単に混合領域の組成と言う。 In the following composition formula (1) and relational formula (2), M1 represents an inorganic element, M2 represents a transition metal, O represents oxygen, and N represents nitrogen. x, y, and z are stoichiometric coefficients, respectively, a represents the maximum valence of M1, and b represents the maximum valence of M2. Moreover, in the following description, when special distinction is not necessary, the composition represented by the chemical composition formula (1) is simply referred to as the composition of the mixed region.
 上述したように、無機元素M1と遷移金属M2との混合領域の組成は、式(1)である[(M1)(M2)]で示される。この組成からも明らかなように、上記混合領域の組成は、一部窒化物の構造を含んでいてもよく、窒化物の構造を含んでいる方がバリア性の観点から好ましい。 As described above, the composition of the mixed area of the inorganic elements M1 and the transition metal M2, represented by a formula (1) [(M1) ( M2) x O y N z]. As is clear from this composition, the composition of the mixed region may partially include a nitride structure, and it is preferable from the viewpoint of barrier properties to include a nitride structure.
 無機元素M1の最大価数をa、遷移金属M2の最大価数をb、Oの価数を2、Nの価数を3とすると、上記混合領域の組成(一部が窒化物となっていてもよい)が化学量論的組成になっている場合は、[(2y+3z)/(a+bx)=1.0]となる。この場合、この式は、無機元素M1及び遷移金属M2の結合手の合計と、O、Nの結合手の合計とが同数であることを意味し、無機元素M1と遷移金属M2とがともに、O及びNのいずれか一方と結合していることになる。なお、無機元素M1として2種以上が併用される場合や、遷移金属M2として2種以上が併用される場合には、各元素の最大価数を各元素の存在比率によって加重平均することにより算出される複合価数を、それぞれの「最大価数」のa及びbの値として採用する。 Assuming that the maximum valence of the inorganic element M1 is a, the maximum valence of the transition metal M2 is b, the valence of O is 2, and the valence of N is 3, the composition of the mixed region (part of which is nitride) May be stoichiometric composition, [(2y + 3z) / (a + bx) = 1.0]. In this case, this formula means that the total number of bonds of the inorganic element M1 and the transition metal M2 is equal to the total number of bonds of O and N, and both the inorganic element M1 and the transition metal M2 are It is combined with either O or N. In addition, when two or more kinds are used together as the inorganic element M1, or when two or more kinds are used together as the transition metal M2, the maximum valence of each element is calculated by weighted averaging with the abundance ratio of each element. The combined valence is adopted as the value of a and b of each “maximum valence”.
 一方、混合領域において、関係式(2)で示す[(2y+3z)/(a+bx)<1.0]となる場合には、無機元素M1及び遷移金属M2の結合手の合計に対して、O、Nの結合手の合計が不足していることを意味する。この様な状態が上記の「酸素欠損」である。酸素欠損状態においては、無機元素M1及び遷移金属M2の余った結合手は互いに結合する可能性を有している。無機元素M1や遷移金属M2の金属同士が直接結合すると、金属の間にOやNを介して結合した場合よりも緻密で高密度な構造が形成される。その結果として、バリア性が向上すると考えられる。 On the other hand, in the mixed region, when [(2y + 3z) / (a + bx) <1.0] shown by the relational expression (2), O, with respect to the total number of bonds of the inorganic element M1 and the transition metal M2 This means that the total number of N bonds is insufficient. Such a state is the above-mentioned “oxygen deficiency”. In the oxygen deficient state, the remaining bonds of the inorganic element M1 and the transition metal M2 have a possibility of bonding to each other. When the metals of the inorganic element M1 and the transition metal M2 are directly bonded to each other, a denser and higher-density structure is formed than when the metals are bonded via O or N. As a result, it is considered that the barrier property is improved.
 また、混合領域は、xの値が、[0.02≦x≦49、(0<y、0≦z)]を満たす領域である。これは、遷移金属M2/無機元素M1の原子数比率の値が0.02~49の範囲内にあり、厚さが5nm以上である領域と定義する、としたことと同一の意味を有する。 The mixed region is a region where the value of x satisfies [0.02 ≦ x ≦ 49, (0 <y, 0 ≦ z)]. This has the same meaning as defining the region where the value of the atomic ratio of transition metal M2 / inorganic element M1 is in the range of 0.02 to 49 and the thickness is 5 nm or more.
 この領域では、無機元素M1及び遷移金属M2の双方が金属同士の直接結合に関与する。このため、この条件を満たす混合領域が所定値以上(5nm)の厚さで存在すると、バリア性の向上に寄与すると考えられる。なお、無機元素M1及び遷移金属M2の存在比率が近いほどバリア性の向上に寄与すると考えられることから、混合領域は、[0.1≦x≦10]を満たす領域を5nm以上の厚さで含むことが好ましく、[0.2≦x≦5]を満たす領域を5nm以上の厚さで含むことがより好ましく、[0.3≦x≦4]を満たす領域を5nm以上の厚さで含むことが更に好ましい。 In this region, both the inorganic element M1 and the transition metal M2 are involved in direct bonding between metals. For this reason, it is considered that the presence of a mixed region satisfying this condition with a thickness of a predetermined value or more (5 nm) contributes to an improvement in barrier properties. In addition, it is considered that the closer the abundance ratio of the inorganic element M1 and the transition metal M2 is, the more the barrier region is improved. Preferably, the region satisfying [0.2 ≦ x ≦ 5] is included in a thickness of 5 nm or more, and the region satisfying [0.3 ≦ x ≦ 4] is included in a thickness of 5 nm or more. More preferably.
 ここで、上述した混合領域の範囲内に、関係式(2)で示す[(2y+3z)/(a+bx)<1.0]の関係を満たす領域が存在すれば、バリア性の向上効果が発揮されることが確認される。混合領域は、その組成の少なくとも一部が[(2y+3z)/(a+bx)≦0.9]を満たすことが好ましく、[(2y+3z)/(a+bx)≦0.85]を満たすことがより好ましく、[(2y+3z)/(a+bx)≦0.8]を満たすことがさらに好ましい。ここで、混合領域における[(2y+3z)/(a+bx)]の値が小さくなるほど、バリア性の向上効果は高くなるが、可視光の吸収が大きくなる。従って、透明性が望まれる用途に使用する場合には、[(2y+3z)/(a+bx)≧0.2]であることが好ましく、[(2y+3z)/(a+bx)≧0.3]であることがより好ましく、[(2y+3z)/(a+bx)≧0.4]であることがさらに好ましい。 Here, if there is a region satisfying the relationship of [(2y + 3z) / (a + bx) <1.0] represented by the relational expression (2) within the range of the mixed region described above, the effect of improving the barrier property is exhibited. It is confirmed that The mixed region preferably has at least part of its composition satisfying [(2y + 3z) / (a + bx) ≦ 0.9], more preferably satisfying [(2y + 3z) / (a + bx) ≦ 0.85], It is more preferable to satisfy [(2y + 3z) / (a + bx) ≦ 0.8]. Here, the smaller the value of [(2y + 3z) / (a + bx)] in the mixed region, the higher the barrier effect, but the greater the absorption of visible light. Therefore, when used in applications where transparency is desired, [(2y + 3z) / (a + bx) ≧ 0.2] is preferable, and [(2y + 3z) / (a + bx) ≧ 0.3]. Is more preferable, and [(2y + 3z) / (a + bx) ≧ 0.4] is more preferable.
 なお、良好なバリア性が得られる混合領域の厚さは、後述するXPS分析法におけるSiO換算のスパッタ厚さとして、5nm以上であり、この厚さは、8nm以上であることが好ましく、10nm以上であることがより好ましく、20nm以上であることがさらに好ましい。混合領域の厚さは、バリア性の観点からは特に上限はないが、光学特性の観点から、100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることがさらに好ましい。 In addition, the thickness of the mixed region in which good barrier properties can be obtained is 5 nm or more as the sputtering thickness in terms of SiO 2 in the XPS analysis method described later, and this thickness is preferably 8 nm or more, preferably 10 nm. More preferably, it is more preferably 20 nm or more. The thickness of the mixed region is not particularly limited from the viewpoint of barrier properties, but is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 30 nm or less from the viewpoint of optical characteristics. .
(XPS分析法による組成分析と混合領域の厚さの測定)
 遷移金属含有層と遷移金属以外の無機元素含有層との積層形態からなる第2ガスバリア層において、無機元素M1と遷移金属M2との混合領域や、A領域及びB領域における組成分布や各領域の厚さ等は、上述のX線光電子分光法(X-Ray Photoelectron Spectroscopy、略称:XPS)を用いた、XPSデプスプロファイル測定により求めることができる。
(Composition analysis by XPS analysis and measurement of the thickness of the mixed region)
In the second gas barrier layer composed of the laminated form of the transition metal-containing layer and the inorganic element-containing layer other than the transition metal, the mixed region of the inorganic element M1 and the transition metal M2, the composition distribution in the A region and the B region, The thickness and the like can be obtained by XPS depth profile measurement using the above-described X-ray photoelectron spectroscopy (abbreviation: XPS).
[その他の層;保護層]
 ガスバリアフィルム10は、ガスバリア層12の上部(最表面部)に、有機化合物等を含む保護層を有していてもよい。保護層に用いられる有機化合物としては、有機モノマー、オリゴマー、ポリマー等の有機樹脂、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂を好ましく用いることができる。さらに、上記した中間層としてのポリシロキサン改質層を、保護層として用いることが特に好ましい。
[Other layers; protective layer]
The gas barrier film 10 may have a protective layer containing an organic compound or the like on the upper portion (outermost surface portion) of the gas barrier layer 12. As the organic compound used in the protective layer, an organic resin such as an organic monomer, oligomer or polymer, or an organic-inorganic composite resin using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group is preferably used. it can. Furthermore, it is particularly preferable to use the above-described modified polysiloxane layer as the intermediate layer as a protective layer.
 保護層は、有機樹脂や無機材料に、必要に応じて他の成分を希釈溶剤に配合して塗布液を調製し、この塗布液を基材表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することが好ましい。 The protective layer is prepared by mixing an organic resin or an inorganic material with other components in a dilution solvent as necessary to prepare a coating solution. After coating this coating solution on the substrate surface by a conventionally known coating method, ionization is performed. It is preferable to form by irradiating and curing.
[その他の層;平滑層]
 ガスバリアフィルム10は、基材フィルム11とガスバリア層12との間に平滑層(下地層、プライマー層)を有していてもよい。平滑層は突起等が存在する基材フィルム11の粗面を平坦化するために設けられる。このような平滑層を形成するための材料は限定されないが、硬化性樹脂を含むことが好ましい。
[Other layers; smooth layers]
The gas barrier film 10 may have a smooth layer (underlayer, primer layer) between the base film 11 and the gas barrier layer 12. A smooth layer is provided in order to planarize the rough surface of the base film 11 in which protrusions and the like exist. The material for forming such a smooth layer is not limited, but preferably contains a curable resin.
 硬化性樹脂としては特に限定されず、紫外線等の活性エネルギー線の照射により硬化する活性エネルギー線硬化性樹脂や、加熱により硬化する熱硬化性樹脂等が挙げられる。硬化性樹脂は、単独でも2種以上組み合わせて用いてもよい。活性エネルギー線硬化性樹脂及び熱硬化性樹脂の材料としては、従来公知の材料を用いることができる。 The curable resin is not particularly limited, and examples thereof include an active energy ray curable resin that is cured by irradiation with active energy rays such as ultraviolet rays, and a thermosetting resin that is cured by heating. The curable resins may be used alone or in combination of two or more. Conventionally known materials can be used as materials for the active energy ray-curable resin and the thermosetting resin.
 平滑層の形成方法は、特に制限はないが、硬化性材料を含む塗布液をスピンコーティング法、スプレー法、ブレードコーティング法、ディップ法、グラビア印刷法等のウエットコーティング法、又は、蒸着法等のドライコーティング法により塗布して塗膜を形成した後、可視光線、赤外線、紫外線、X線、α線、β線、γ線、電子線等の活性エネルギー線の照射、加熱等により、塗膜を硬化させる方法が好ましい。 The method for forming the smooth layer is not particularly limited, but a coating solution containing a curable material may be applied by a spin coating method, a spray method, a blade coating method, a dipping method, a gravure printing method or other wet coating method, or a vapor deposition method. After coating by dry coating method to form a coating film, the coating film is formed by irradiation with active energy rays such as visible light, infrared rays, ultraviolet rays, X-rays, α rays, β rays, γ rays, electron beams, heating, etc. A curing method is preferred.
 平滑層の平滑性は、JIS B 0601:2001で規定される表面粗さの値で、最大断面高さRt(p)が、10nm以上30nm以下であることが好ましい。表面粗さは、AFM(原子間力顕微鏡)を用いて測定される。AMFは、極小の先端半径の触針を持つ検出器を備え、この検出器で連続測定した凹凸の断面曲線から表面粗さが算出される。平滑層の厚さとしては、特に制限されないが、0.1~10μmの範囲が好ましい。 The smoothness of the smooth layer is a surface roughness value defined by JIS B 0601: 2001, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less. The surface roughness is measured using an AFM (Atomic Force Microscope). The AMF includes a detector having a stylus with a very small tip radius, and the surface roughness is calculated from a cross-sectional curve of unevenness continuously measured by this detector. The thickness of the smooth layer is not particularly limited, but is preferably in the range of 0.1 to 10 μm.
 平滑層の詳細については、特開2014-141056号公報の段落[0125]~[0143]、特開2014-141055号公報の段落[0138]~[0150]、特開2013-226757号公報の段落[0131]~[0143]等を参照して採用することができる。 For details of the smooth layer, paragraphs [0125] to [0143] of JP-A No. 2014-141056, paragraphs [0138] to [0150] of JP-A No. 2014-141555, and paragraphs of JP-A No. 2013-226757 It can be adopted with reference to [0131] to [0143].
[その他の層;ブリードアウト層]
 ガスバリアフィルム10は、ブリードアウト防止層を有していてもよい。ブリードアウト防止層は、樹脂フィルム上に上記平滑層を形成した場合に、加熱によって未反応のオリゴマー等が樹脂フィルムの表面へ移行して、接触する面を汚染する現象を抑制する目的で、平滑層を有する基材フィルム11の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に上記した平滑層と同じ構成を適用することができる。
[Other layers; Bleed-out layer]
The gas barrier film 10 may have a bleed-out prevention layer. The bleed-out prevention layer is used for the purpose of suppressing the phenomenon that unreacted oligomers migrate to the surface of the resin film by heating and contaminate the contact surface when the smooth layer is formed on the resin film. It is provided on the opposite surface of the base film 11 having a layer. As long as the bleed-out preventing layer has this function, the same configuration as that of the smoothing layer described above can be applied.
[その他の層;アンカーコート層]
 ガスバリアフィルム10は、基材フィルム11とガスバリア層との接着性(密着性)の向上を目的として、基材フィルム11上にアンカーコート層を有していてもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレン・ビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、及び、アルキルチタネート等を、1種又は2種以上併せて使用することができる。これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。上記アンカーコート剤は、市販品を使用してもよい。具体的には、シロキサン系UV硬化性ポリマー溶液として、信越化学工業社製、「X-12-2400」の3%イソプロピルアルコール溶液を用いることができる。
[Other layers; Anchor coat layer]
The gas barrier film 10 may have an anchor coat layer on the base film 11 for the purpose of improving the adhesion (adhesion) between the base film 11 and the gas barrier layer. The anchor coating agent used in this anchor coat layer includes polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene / vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. Etc. can be used singly or in combination of two or more. Conventionally known additives can be added to these anchor coating agents. A commercially available product may be used as the anchor coating agent. Specifically, as the siloxane-based UV curable polymer solution, a 3% isopropyl alcohol solution of “X-12-2400” manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
 上記のアンカーコート層は、アンカーコート剤をロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により、基材上にコーティングし、溶剤、希釈剤等を乾燥除去することにより形成することができる。 The above-mentioned anchor coat layer is obtained by coating an anchor coat agent on a substrate by a known method such as roll coat, gravure coat, knife coat, dip coat, spray coat, etc., and drying and removing the solvent, diluent, etc. Can be formed.
[その他の層;デシカント層]
 ガスバリアフィルム10は、デシカント層(水分吸着層)を有してもよい。デシカント層に用いられる材料としては、例えば、酸化カルシウムや有機金属酸化物等が挙げられる。酸化カルシウムは、バインダ樹脂等に分散させて用いることが好ましく、市販品としては、例えば、サエスゲッター社のAqvaDryシリーズ等が好ましい。また、有機金属酸化物としては、双葉電子工業社製のOleDry(登録商標)シリーズ等を用いることができる。
[Other layers; Desiccant layer]
The gas barrier film 10 may have a desiccant layer (moisture adsorption layer). Examples of the material used for the desiccant layer include calcium oxide and organometallic oxide. Calcium oxide is preferably used after being dispersed in a binder resin or the like, and as a commercially available product, for example, AqvaDry series manufactured by SAES Getter Co., Ltd. is preferable. Moreover, as an organometallic oxide, OleDry (registered trademark) series manufactured by Futaba Electronics Co., Ltd. or the like can be used.
〈2.ガスバリアフィルムの製造方法〉
 次に、ガスバリアフィルムの製造方法について説明する。
 なお、以下のガスバリアフィルムの製造方法においては、製造されるガスバリアフィルムの一例として、上述の図1に示す構成のガスバリアフィルム10の製造方法について説明する。ガスバリアフィルム10の各構成については、上述のガスバリアフィルムの実施形態と同様の構成を適用することができる。
<2. Manufacturing method of gas barrier film>
Next, the manufacturing method of a gas barrier film is demonstrated.
In addition, in the manufacturing method of the following gas barrier films, the manufacturing method of the gas barrier film 10 of the structure shown in the above-mentioned FIG. 1 is demonstrated as an example of the manufactured gas barrier film. About each structure of the gas barrier film 10, the structure similar to embodiment of the above-mentioned gas barrier film is applicable.
 ガスバリアフィルム10は、基材フィルム11上にガスバリア層12を形成することで製造することができる。従って、ガスバリアフィルム10の製造方法は、基材フィルム11を準備する工程と、基材フィルム11上にガスバリア層12を形成する工程とを有する。 The gas barrier film 10 can be manufactured by forming the gas barrier layer 12 on the base film 11. Therefore, the method for manufacturing the gas barrier film 10 includes a step of preparing the base film 11 and a step of forming the gas barrier layer 12 on the base film 11.
 基材フィルム11を準備する工程としては、ガスバリアフィルム10を作製することが可能な、樹脂、有機微粒子、及び、有機溶媒としてハロゲン化炭化水素を含有する基材フィルム11を作製する。或いは、ガスバリアフィルム10を作製することが可能な、樹脂、有機微粒子、及び、有機溶媒としてハロゲン化炭化水素を含有する市販の樹脂フィルムを基材フィルム11として準備する。樹脂フィルムとしては、上述の各種樹脂フィルムを用いることができる。また、基材フィルム11の作製には、従来公知の樹脂フィルムの作製方法を適用することができる。 As a step of preparing the base film 11, a base film 11 containing a resin, organic fine particles, and a halogenated hydrocarbon as an organic solvent capable of producing the gas barrier film 10 is prepared. Alternatively, a commercially available resin film containing a resin, organic fine particles, and a halogenated hydrocarbon as an organic solvent capable of producing the gas barrier film 10 is prepared as the base film 11. The above-mentioned various resin films can be used as the resin film. In addition, a conventionally known method for producing a resin film can be applied to the production of the base film 11.
[基材フィルムの製造方法]
 基材フィルム11の製造方法は、特に限定されず、樹脂、有機微粒子、及び、有機溶媒としてハロゲン化炭化水素を含有する基材フィルム11を製造できれば、従来公知の樹脂フィルムの製造方法を適用することができる。特に、ガスバリア層12を形成する前の基材フィルム11において、ハロゲン化炭化水素の含有量(質量)を基材フィルム11の全質量に対して10ppm以上1000ppm以下に調整できる製造方法であれば、従来公知の樹脂フィルムの製造方法を適用することができる。
[Process for producing base film]
The manufacturing method of the base film 11 is not particularly limited, and a conventionally known method for manufacturing a resin film is applied as long as the base film 11 containing a resin, organic fine particles, and a halogenated hydrocarbon as an organic solvent can be manufactured. be able to. In particular, in the base film 11 before forming the gas barrier layer 12, if the production method can adjust the content (mass) of the halogenated hydrocarbon to 10 ppm or more and 1000 ppm or less with respect to the total mass of the base film 11, Conventionally known methods for producing resin films can be applied.
 樹脂、有機微粒子、及び、有機溶媒としてハロゲン化炭化水素を10ppm以上1000ppm以下含有する基材フィルム11は、溶液成膜法(キャスト法)で製造されることが好ましい。即ち、基材フィルム11の製造方法は、下記1~3の工程を有することが好ましい。
 1.樹脂と、有機微粒子と、ハロゲン化炭化水素とを含むドープを得る工程
 2.ドープを支持体上に流延し、乾燥及び剥離して膜状物を得る工程
 3.膜状物を延伸する工程
The base film 11 containing a resin, organic fine particles, and halogenated hydrocarbon as an organic solvent in an amount of 10 ppm to 1000 ppm is preferably produced by a solution film forming method (cast method). That is, the method for producing the base film 11 preferably has the following steps 1 to 3.
1. 1. A step of obtaining a dope containing a resin, organic fine particles, and a halogenated hydrocarbon. 2. A step of casting a dope on a support, drying and peeling to obtain a film-like material. Step of stretching a film
(1.樹脂と、有機微粒子と、ハロゲン化炭化水素とを含むドープを得る工程)
 樹脂と、有機微粒子と、ハロゲン化炭化水素とを含むドープを得る工程(ドープ調製工程)では、樹脂と、有機微粒子とを、有機溶媒に溶解させて、ドープを調製する。
(1. Obtaining dope containing resin, organic fine particles, and halogenated hydrocarbon)
In the step of obtaining a dope containing resin, organic fine particles, and halogenated hydrocarbon (dope preparation step), the resin and organic fine particles are dissolved in an organic solvent to prepare a dope.
 ドープを調製するための樹脂としては、上述の各種樹脂を使用することができる。ドープを調製するための樹脂としては、上述の一般式(A-1)、一般式(A-2)、一般式(B-1)、又は、一般式(B-2)で表される極性基を有するノルボルネン系樹脂を含むことが好ましい。 As the resin for preparing the dope, the above-mentioned various resins can be used. As the resin for preparing the dope, the polarities represented by the above general formula (A-1), general formula (A-2), general formula (B-1), or general formula (B-2) It is preferable to include a norbornene-based resin having a group.
 樹脂を溶解するための有機溶媒は、少なくともハロゲン化炭化水素を含み、基材フィルム11を構成する樹脂を溶解することができれば、特に限定されない。有機溶媒として好ましくは、上述の各種ハロゲン化炭化水素と、他の有機溶媒との混合溶媒を用いる。 The organic solvent for dissolving the resin is not particularly limited as long as it contains at least a halogenated hydrocarbon and can dissolve the resin constituting the base film 11. Preferably, a mixed solvent of the above-mentioned various halogenated hydrocarbons and another organic solvent is used as the organic solvent.
 樹脂の有機溶媒への溶解方法は、特に限定されず、有機溶媒に対して所望の樹脂を溶解してもよく、有機溶媒中で各種モノマーを重合させて樹脂を有機溶媒に溶解させてもよい。ドープ中の樹脂濃度は、5~60質量%であることが好ましく、10~40質量%であることがより好ましく、10~30質量%であることが特に好ましい。ドープ中の樹脂の濃度が低すぎると粘度が低くなり、基材フィルム11の厚さの調節が困難となる。また、高すぎると成膜性が悪く、基材フィルム11の厚さや表面形状のムラが大きくなる。 The method for dissolving the resin in the organic solvent is not particularly limited, and the desired resin may be dissolved in the organic solvent, or various monomers may be polymerized in the organic solvent to dissolve the resin in the organic solvent. . The resin concentration in the dope is preferably 5 to 60% by mass, more preferably 10 to 40% by mass, and particularly preferably 10 to 30% by mass. If the concentration of the resin in the dope is too low, the viscosity becomes low, and it becomes difficult to adjust the thickness of the base film 11. Moreover, when too high, film-forming property will be bad, and the nonuniformity of the thickness and surface shape of the base film 11 will become large.
 ドープ中への有機微粒子の添加方法は、特に限定されず、有機微粒子を直接、溶媒に添加してもよいし、有機微粒子の集合体を調製した後、溶媒に添加してもよい。特に、有機微粒子が上述の重合体からなる粒子(重合体粒子)である場合、重合体粒子の集合体を調製した後に溶媒に添加することが好ましい。重合体粒子の集合体は、重合体粒子と、界面活性剤と、無機粉末と、水性媒体とを含むスラリーを噴霧乾燥することで得られる。また、重合体粒子の集合体の調製は、例えば、特開2010-138365号公報に記載の方法で行うことができる。重合体粒子の集合体は、相互の連結(融着)が抑制された複数の重合体粒子から構成される。このため、重合体粒子の集合体は、樹脂や有機溶媒に集合体を分散させた際に、容易に重合体粒子に別れるため、取り扱い性や分散性に優れる。 The method for adding the organic fine particles into the dope is not particularly limited, and the organic fine particles may be added directly to the solvent, or an aggregate of organic fine particles may be prepared and then added to the solvent. In particular, when the organic fine particles are particles (polymer particles) made of the above-mentioned polymer, it is preferable to add the polymer particles to a solvent after preparing an aggregate of the polymer particles. The aggregate of polymer particles is obtained by spray drying a slurry containing polymer particles, a surfactant, an inorganic powder, and an aqueous medium. The aggregate of polymer particles can be prepared, for example, by the method described in JP 2010-138365 A. The aggregate of polymer particles is composed of a plurality of polymer particles whose mutual connection (fusion) is suppressed. For this reason, since the aggregate of polymer particles is easily separated into polymer particles when the aggregate is dispersed in a resin or an organic solvent, it is excellent in handleability and dispersibility.
(2.ドープを支持体上に流延し、乾燥及び剥離して膜状物を得る工程)
 ドープを支持体上に流延し、乾燥及び剥離して膜状物を得る工程では、上述の方法で調製したドープを、支持体上に流延する。そして、支持体上に流延されたドープを乾燥させた後、支持体から剥離して膜状物を得る。
(2. Casting a dope on a support, drying and peeling to obtain a film-like product)
In the step of casting a dope on a support, drying and peeling to obtain a film-like material, the dope prepared by the above method is cast on the support. Then, after the dope cast on the support is dried, it is peeled off from the support to obtain a film-like material.
 ドープを流延する方法は、特に限定されず、流延ダイから吐出させて支持体上に流延する方法や、バーコーター、Tダイ、バー付きTダイ、ドクターブレード、ロールコート、ダイコート等を用いて支持体上に流延する方法が挙げられる。 The method of casting the dope is not particularly limited, and a method of discharging from a casting die and casting on a support, a bar coater, a T die, a T die with a bar, a doctor blade, a roll coat, a die coat, etc. And a method of casting on a support.
 次に、支持体上に流延したドープ中の溶媒を蒸発させ、乾燥させる。そして、乾燥されたドープを支持体から剥離して、膜状物を得る。支持体から膜状物を剥離する際のハロゲン化炭化水素を含む有機溶媒全体の残留溶媒量(剥離時の残留溶媒量)は、10~150質量%であることが好ましく、20~40質量%であることがより好ましい。剥離時の残留溶媒量が10質量%以上であると、乾燥又は延伸時にシクロオレフィン系樹脂が流動しやすく無配向になりやすいため、得られる基材フィルムのRoやRtを低減しやすい。剥離時の残留溶媒量が150質量%以下であると、ドープを剥離する際に要する力が過剰に大きくなりにくいので、ドープの破断を抑制しやすい。
 なお、ドープの残留溶媒量は、下記式で定義される。以下においても同様である。
 ドープの残留溶媒量(質量%)=(ドープの乾燥処理前質量-ドープの乾燥処理後質量)/ドープの乾燥処理後質量×100
Next, the solvent in the dope cast on the support is evaporated and dried. Then, the dried dope is peeled from the support to obtain a film. The residual solvent amount of the entire organic solvent containing the halogenated hydrocarbon when peeling the film-like material from the support (residual solvent amount at the time of peeling) is preferably 10 to 150% by mass, and 20 to 40% by mass It is more preferable that When the amount of residual solvent at the time of peeling is 10% by mass or more, the cycloolefin resin easily flows and becomes non-oriented at the time of drying or stretching, so it is easy to reduce Ro and Rt of the obtained base film. If the amount of residual solvent at the time of peeling is 150% by mass or less, the force required for peeling off the dope is not excessively increased, so that the dope breakage can be easily suppressed.
The residual solvent amount of the dope is defined by the following formula. The same applies to the following.
Residual solvent amount of dope (% by mass) = (mass before dope drying process−mass after dope drying process) / mass after dope drying process × 100
(3.膜状物を延伸する工程)
 得られた膜状物を延伸する工程では、膜状物の延伸は、1方向のみに行ってもよく(1軸延伸)、直交する2方向に行ってもよい(2軸延伸)。好ましくは、膜状物の幅方向(TD方向)と、幅方向(TD方向)に直交する搬送方向(MD方向)との2方向に延伸する2軸延伸によって膜状物を延伸する。
(3. Step of stretching a film-like product)
In the step of stretching the obtained film-like material, the film-like material may be stretched only in one direction (uniaxial stretching) or in two orthogonal directions (biaxial stretching). Preferably, the film-like material is stretched by biaxial stretching that extends in two directions of the width direction (TD direction) of the film-like material and the transport direction (MD direction) orthogonal to the width direction (TD direction).
 延伸倍率は、例えば、[TD方向の延伸倍率/MD方向の延伸倍率]を、1.0~3.0とすることが好ましい。TD方向とMD方向の延伸倍率は、それぞれ1.01~3.5倍とすることが好ましく、それぞれ1.01~1.3倍とすることがより好ましい。延伸倍率が高いほど、得られる基材フィルムの残留応力が大きくなりやすい。延伸倍率は、[(延伸後のフィルムの延伸方向大きさ)/(延伸前のフィルムの延伸方向大きさ)]として定義される。 The stretching ratio is preferably, for example, [TD stretching ratio / MD stretching ratio] of 1.0 to 3.0. The draw ratios in the TD direction and MD direction are each preferably 1.01 to 3.5 times, more preferably 1.01 to 1.3 times. The higher the draw ratio, the greater the residual stress of the obtained base film. The draw ratio is defined as [(size of stretched film after stretching) / (size of stretched film before stretching)].
 延伸温度は、基材フィルム11を構成する樹脂のガラス転移温度をTgとしたとき、(Tg-65)℃以上(Tg+60)℃以下であることが好ましく、(Tg-50)℃以上(Tg+50)℃以下であることがより好ましく、(Tg-30)℃以上(Tg+50)℃以下であることがさらに好ましい。延伸温度が(Tg-30)℃以上であると、膜状物が延伸に適した柔軟性を有しやすく、延伸時の膜状物に過剰な張力が加わりにくい。このため、基材フィルム11に過剰な残留応力が残りにくく、RoやRtも過剰に増大しにくい。また、延伸温度が(Tg+60)℃以下であると、延伸後の基材フィルム11に適度な残留応力が残りやすく、膜状物中の溶媒の気化による気泡の発生も抑制できる。延伸温度の具体例としては、ノルボルネン系樹脂を用いた場合には、100~220℃とすることが好ましい。 The stretching temperature is preferably (Tg−65) ° C. or more and (Tg + 60) ° C. or less, and (Tg−50) ° C. or more (Tg + 50), where Tg is the glass transition temperature of the resin constituting the substrate film 11. It is more preferable that the temperature is not higher than ° C, and it is more preferable that the temperature be (Tg-30) ° C or higher and (Tg + 50) ° C or lower. When the stretching temperature is (Tg-30) ° C. or higher, the film-like product tends to have flexibility suitable for stretching, and excessive tension is not easily applied to the film-like product during stretching. For this reason, it is difficult for excessive residual stress to remain on the base film 11, and it is difficult for Ro and Rt to increase excessively. Further, when the stretching temperature is (Tg + 60) ° C. or less, moderate residual stress tends to remain on the stretched base film 11, and generation of bubbles due to evaporation of the solvent in the film-like material can be suppressed. As a specific example of the stretching temperature, when a norbornene resin is used, the temperature is preferably 100 to 220 ° C.
 膜状物のMD方向の延伸は、例えば複数のロールに周速差をつけ、その間でロール周速差を利用する方法(ロール法)で行うことができる。膜状物のTD方向の延伸は、例えば膜状物の両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げる方法(テンター法)で行うことができる。 Stretching of the film-like material in the MD direction can be performed, for example, by a method (roll method) in which a difference in peripheral speed is applied to a plurality of rolls and the difference in the peripheral speed of the roll is used between them. Stretching of the film-like material in the TD direction can be performed by, for example, a method (tenter method) in which both ends of the film-like material are fixed with clips or pins and the distance between the clips or pins is increased in the traveling direction.
 以上の工程により、樹脂、有機微粒子、及び、有機溶媒としてハロゲン化炭化水素を含有する基材フィルム11を作製することができる。基材フィルム11中のハロゲン化炭化水素の含有量は、支持体上に流延されたドープ中の溶媒を蒸発させる工程において、有機溶媒の残留量を制御することで、10ppm以上1000ppm以下に調整することができる。基材フィルム11中のハロゲン化炭化水素の含有量が10ppm以上1000ppm以下であることにより、ガスバリア層を形成した後の基材フィルム11に含まれるハロゲン化炭化水素の含有量を、1ppm以上90ppm以下に調整しやすい。なお、基材フィルム11の有機溶媒の含有量は、上述のヘッドスペースガスクロマトグラフィーによる測定方法、及び、測定条件を用いて行うことができる。 Through the above steps, the base film 11 containing a resin, organic fine particles, and a halogenated hydrocarbon as an organic solvent can be produced. The content of the halogenated hydrocarbon in the base film 11 is adjusted to 10 ppm or more and 1000 ppm or less by controlling the residual amount of the organic solvent in the step of evaporating the solvent in the dope cast on the support. can do. When the content of the halogenated hydrocarbon in the base film 11 is 10 ppm or more and 1000 ppm or less, the content of the halogenated hydrocarbon contained in the base film 11 after forming the gas barrier layer is 1 ppm or more and 90 ppm or less. Easy to adjust. In addition, content of the organic solvent of the base film 11 can be performed using the measuring method by the above-mentioned head space gas chromatography, and measuring conditions.
[ガスバリア層の製造方法]
 次に、上述の方法で作製した基材フィルム11の表面側にガスバリア層12を作製する。ガスバリア層12を形成する前の基材フィルム11は、有機溶媒としてのハロゲン化炭化水素を10ppm以上1000ppm以下含有する。ガスバリア層12を形成する前の基材フィルム11が、ハロゲン化炭化水素を10ppm以上1000ppm以下含有することにより、ガスバリア層12の製造装置内での基材フィルム11に含まれる有機微粒子の脱落を抑制することができる。また、ガスバリア層12を形成する前の基材フィルム11が、ハロゲン化炭化水素を10ppm以上1000ppm以下含有することにより、ガスバリア層12を形成して作製したガスバリアフィルム10において、基材フィルム11中のハロゲン化炭化水素の含有量を1ppm以上90ppm以下に調整することが容易となる。
[Production method of gas barrier layer]
Next, the gas barrier layer 12 is produced on the surface side of the base film 11 produced by the method described above. The base film 11 before forming the gas barrier layer 12 contains 10 ppm or more and 1000 ppm or less of a halogenated hydrocarbon as an organic solvent. The base film 11 before forming the gas barrier layer 12 contains halogenated hydrocarbons in the range of 10 ppm to 1000 ppm, thereby suppressing the removal of organic fine particles contained in the base film 11 in the production apparatus for the gas barrier layer 12. can do. In addition, in the gas barrier film 10 formed by forming the gas barrier layer 12 when the base film 11 before forming the gas barrier layer 12 contains 10 to 1000 ppm of halogenated hydrocarbon, It becomes easy to adjust the content of the halogenated hydrocarbon to 1 ppm or more and 90 ppm or less.
 ガスバリアフィルム10では、少なくとも、真空成膜法で形成されたガスバリア層12を形成する。このため、ガスバリア層12の作製中において、基材フィルム11が、加熱環境下、及び、減圧環境下に曝されるため、基材フィルム11中に含まれる有機溶媒が気化し、基材フィルム11の有機溶媒の含有量が低下する。このため、ガスバリア層12を形成する前の基材フィルム11のハロゲン化炭化水素含有量が、ガスバリアフィルム10における基材フィルム11のハロゲン化炭化水素含有量よりも十分に大きい必要がある。従って、ガスバリアフィルム10の基材フィルム11中のハロゲン化炭化水素の含有量を1ppm以上90ppm以下に調整するためには、ガスバリア層12を形成する前の基材フィルム11のハロゲン化炭化水素含有量を10ppm以上1000ppm以下とする必要がある。 In the gas barrier film 10, at least a gas barrier layer 12 formed by a vacuum film forming method is formed. For this reason, since the base film 11 is exposed to the heating environment and the reduced pressure environment during the production of the gas barrier layer 12, the organic solvent contained in the base film 11 is vaporized, and the base film 11 The content of the organic solvent decreases. For this reason, the halogenated hydrocarbon content of the base film 11 before forming the gas barrier layer 12 needs to be sufficiently larger than the halogenated hydrocarbon content of the base film 11 in the gas barrier film 10. Therefore, in order to adjust the halogenated hydrocarbon content in the base film 11 of the gas barrier film 10 to 1 ppm or more and 90 ppm or less, the halogenated hydrocarbon content of the base film 11 before the gas barrier layer 12 is formed. Must be 10 ppm or more and 1000 ppm or less.
 真空成膜法で作製するガスバリア層12の種類及び成膜方法は、上述の各種ガスバリア層12から任意の構成を選択すればよく、上述の各種ガスバリア層12以外の層を作製してもよい。
 また、基材フィルム11にガスバリア層12を作製する真空成膜法としては、基材フィルム11をローラーから巻き出して、成膜ローラー上でガスバリア層12を形成するロールトゥロール方式の製造装置、製造方法を用いることが好ましい。ロールトゥロール方式の製造装置を用いたガスバリア層12の成膜方法としては、例えば、上述の図3に示す構成のロールトゥロール方式を用いたプラズマCVD成膜装置を用いることが好ましい。
As the type and the film forming method of the gas barrier layer 12 manufactured by the vacuum film forming method, an arbitrary configuration may be selected from the various gas barrier layers 12 described above, and layers other than the various gas barrier layers 12 described above may be manufactured.
Moreover, as a vacuum film-forming method for producing the gas barrier layer 12 on the base film 11, a roll-to-roll manufacturing device that unwinds the base film 11 from a roller and forms the gas barrier layer 12 on the film forming roller, It is preferable to use a manufacturing method. As a film forming method of the gas barrier layer 12 using a roll-to-roll manufacturing apparatus, for example, a plasma CVD film forming apparatus using the roll-to-roll method having the configuration shown in FIG. 3 is preferably used.
 また、真空成膜法で作製する(第1ガスバリア層)に、真空成膜法以外の方法で形成された層(第2ガスバリア層)を組み合わせて、第1ガスバリア層(気相成膜ガスバリア層)と第2ガスバリア層(真空成膜法以外のガスバリア層)との積層構成を有するガスバリア層12を作製することが好ましい。第2ガスバリア層の成膜には、上述の湿式塗布法等のその他の成膜方法を適用することができる。 Further, a first gas barrier layer (gas phase deposition gas barrier layer) is formed by combining a layer (second gas barrier layer) formed by a method other than the vacuum deposition method with a vacuum deposition method (first gas barrier layer). ) And a second gas barrier layer (a gas barrier layer other than the vacuum film forming method) is preferably produced. For the film formation of the second gas barrier layer, other film formation methods such as the wet coating method described above can be applied.
 以上の工程により、樹脂13と、有機微粒子14とを有し、1ppm以上90ppm以下のハロゲン化炭化水素を有機溶媒として含む基材フィルム11、及び、気相成膜法で形成されたガスバリア層12を備えるガスバリアフィルム10を作製することができる。なお、基材フィルム11の作製と、ガスバリア層12の作製とは、連続して行う必要はない。例えば、溶液成膜法を用いてロール状に巻回された長尺の基材フィルム11を作製し、ロール状の基材フィルム11を基材フィルム11の作製場所から他の場に移送してガスバリア層12を形成してもよい。 Through the above steps, the base film 11 having the resin 13 and the organic fine particles 14 and containing 1 to 90 ppm of halogenated hydrocarbon as an organic solvent, and the gas barrier layer 12 formed by a vapor deposition method. Can be produced. In addition, it is not necessary to perform preparation of the base film 11 and preparation of the gas barrier layer 12 continuously. For example, a long base film 11 wound in a roll shape is produced using a solution film forming method, and the roll-like base film 11 is transferred from the production place of the base film 11 to another place. The gas barrier layer 12 may be formed.
 実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically described by way of examples, but the present invention is not limited thereto.
〈試料101のガスバリアフィルムの作製〉
 以下の方法(溶液成膜法)で、基材フィルムを作製し、さらに、基材フィルム上にガスバリア層を形成して、試料101のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 101>
A base film was prepared by the following method (solution film forming method), and a gas barrier layer was formed on the base film to prepare a gas barrier film of Sample 101.
[基材フィルムの作製]
(微粒子分散液の調製)
 平均粒子径0.3μmのポリフェニレンスルフィド粒子(東レ社製トレパールPPS)(微粒子A)1.0質量部と、100質量部のメチレンクロライドとを、ディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散して、微粒子分散液Aを得た。
[Preparation of base film]
(Preparation of fine particle dispersion)
1.0 part by mass of polyphenylene sulfide particles (Torepal PPS manufactured by Toray Industries Inc.) (fine particles A) having an average particle size of 0.3 μm and 100 parts by mass of methylene chloride were stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin. Thus, a fine particle dispersion A was obtained.
(ドープの調製)
 次に、下記組成の主ドープを調製した。
 まず、加圧溶解タンクにメチレンクロライド、及び、エタノールを加えた。次に、加圧溶解タンクに、ノルボルネン系樹脂としてTopas5013(ポリプラスチック社製)(樹脂A)を撹拌しながら加えた。次に、上記調製した微粒子分散液Aを加えて、これを60℃に加熱し、撹拌しながら、樹脂を完全に溶解した。加熱温度は、室温から5℃/minで昇温し、30分間で溶解した後、3℃/minで降温した。
 得られた溶液の粘度は、7000cpであり、含水率は0.50%であった。これを、フィルターカートリッジSHP150(ロキテクノ社製)を使用して、濾過流量300L/m・h、濾圧1.0×10Paで濾過し、主ドープを得た。
(Preparation of dope)
Next, a main dope having the following composition was prepared.
First, methylene chloride and ethanol were added to the pressure dissolution tank. Next, Topas 5013 (manufactured by Polyplastics Co., Ltd.) (resin A) was added as a norbornene resin to the pressurized dissolution tank with stirring. Next, the fine particle dispersion A prepared above was added, and this was heated to 60 ° C., and the resin was completely dissolved while stirring. The heating temperature was raised from room temperature at 5 ° C./min, dissolved in 30 minutes, and then lowered at 3 ° C./min.
The viscosity of the obtained solution was 7000 cp, and the water content was 0.50%. This was filtered using a filter cartridge SHP150 (manufactured by Loki Techno Co.) at a filtration flow rate of 300 L / m 2 · h and a filtration pressure of 1.0 × 10 6 Pa to obtain a main dope.
(主ドープの組成)
 ノルボルネン系樹脂(Topas5013;樹脂A、極性基無し):100質量部
 メチレンクロライド(MC):270質量部
 エタノール(EtOH):20質量部
 微粒子分散液A(ポリフェニレンスルフィド粒子;微粒子A):30質量部
(Main dope composition)
Norbornene-based resin (Topas 5013; resin A, no polar group): 100 parts by mass Methylene chloride (MC): 270 parts by mass Ethanol (EtOH): 20 parts by mass Fine particle dispersion A (polyphenylene sulfide particles; fine particles A): 30 parts by mass
(成膜)
 次に、無端ベルト流延装置を用い、主ドープを温度31℃、1800mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は28℃に制御した。ステンレスベルトの搬送速度は20m/minとした。
(Film formation)
Next, an endless belt casting apparatus was used to uniformly cast the main dope on a stainless steel belt support at a temperature of 31 ° C. and a width of 1800 mm. The temperature of the stainless steel belt was controlled at 28 ° C. The conveyance speed of the stainless steel belt was 20 m / min.
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中のメチレンクロライド(MC)が680ppm、エタノール(EtOH)が150ppmになるまで溶媒を蒸発させた。次に、剥離張力128N/mで、ステンレスベルト支持体上から膜状物を剥離した。剥離した膜状物を多数のローラーで搬送させながら、120℃(Tg-45℃)で搬送方向に1.2倍に延伸した。次に、膜状物をテンターで、150℃(Tg-15℃)の条件下で幅方向に1.5倍延伸した。その後、テンタークリップで挟んだ端部をレーザーカッターでスリットし、その後、巻き取り、膜厚40μmの基材フィルムを得た。 On the stainless steel belt support, the solvent was evaporated until the methylene chloride (MC) in the cast film was 680 ppm and ethanol (EtOH) was 150 ppm. Next, the film-like material was peeled from the stainless steel belt support with a peeling tension of 128 N / m. The peeled film was stretched 1.2 times in the transport direction at 120 ° C. (Tg−45 ° C.) while being transported by many rollers. Next, the film-like material was stretched 1.5 times in the width direction under a condition of 150 ° C. (Tg−15 ° C.) with a tenter. Then, the edge part pinched | interposed with the tenter clip was slit with the laser cutter, and it wound up after that, and obtained the base film with a film thickness of 40 micrometers.
[ガスバリア層の形成]
 上記方法で作製した、基材フィルム上に、以下の方法(スパッタリング法:条件1)で、厚さ100nmのガスバリア層を形成した。
[Formation of gas barrier layer]
A gas barrier layer having a thickness of 100 nm was formed on the base film produced by the above method by the following method (sputtering method: condition 1).
 ガスバリア層の形成には、図4に示すロールトゥロール方式のスパッタリング装置70を用いた。図4に示すスパッタリング装置70は、真空槽72を有する。真空槽72中央部には基材フィルム76の表面に接触して冷却するためのドラム73が配置されている。また、真空槽72には基材フィルム76が巻回されるための繰り出しローラー74及び巻取りローラー75が配置されている。繰り出しローラー74に巻かれた基材フィルム76はガイドロール77を介してドラム73上に搬送され、さらに基材フィルム76はガイドロール78を介して巻取りローラー75に巻かれる。真空槽72は、真空排気系として真空ポンプ71を有し、排気口79から真空ポンプ71によって真空槽72内の排気が行われる。また、真空槽72は、成膜系としてパルス電力を印加できる直流方式の放電電源81と、放電電源81に接続されたカソード82とを有し、カソード82上にターゲット(図示せず)が装着される。放電電源81は制御器83に接続されている。制御器83は、ガス流量調整ユニット84に接続されている。ガス流量調整ユニット84は、真空槽72への反応ガスの導入量を調整しつつ、配管85を介して反応ガスを真空槽72に供給するガス流量調整ユニット84に接続されている。また、真空槽72には一定流量の放電ガスが供給されるよう構成されている(図示せず)。以下、スパッタリング法(条件1)を用いたガスバリア層の形成方法の具体的な条件を示す。 For the formation of the gas barrier layer, a roll-to-roll type sputtering apparatus 70 shown in FIG. 4 was used. A sputtering apparatus 70 shown in FIG. A drum 73 for contacting and cooling the surface of the base film 76 is disposed at the center of the vacuum chamber 72. Further, a feeding roller 74 and a winding roller 75 for winding the base film 76 are arranged in the vacuum chamber 72. The base film 76 wound around the feed roller 74 is conveyed onto the drum 73 via the guide roll 77, and the base film 76 is further wound around the take-up roller 75 via the guide roll 78. The vacuum chamber 72 has a vacuum pump 71 as a vacuum exhaust system, and the vacuum chamber 72 is exhausted from the exhaust port 79 by the vacuum pump 71. The vacuum chamber 72 includes a direct current discharge power source 81 to which pulse power can be applied as a film forming system, and a cathode 82 connected to the discharge power source 81, and a target (not shown) is mounted on the cathode 82. Is done. The discharge power supply 81 is connected to the controller 83. The controller 83 is connected to the gas flow rate adjustment unit 84. The gas flow rate adjustment unit 84 is connected to the gas flow rate adjustment unit 84 that supplies the reaction gas to the vacuum chamber 72 via the pipe 85 while adjusting the amount of reaction gas introduced into the vacuum chamber 72. The vacuum chamber 72 is configured to be supplied with a constant flow rate of discharge gas (not shown). Hereinafter, specific conditions of the gas barrier layer forming method using the sputtering method (condition 1) will be described.
 ターゲットとしてSiをセットし、放電電源81としてパルス印加方式の直流電源を用意した。基材フィルム76を繰り出しローラー74に掛け、巻取りローラー75まで通した。スパッタリング装置70への基材の準備が終了後、真空槽72の扉を閉めて真空ポンプ71を起動し、真空引きとドラムの冷却を開始した。到達圧力が4×10-4Pa、ドラム温度が5℃になったところで、基材フィルム76の搬送を開始した。放電ガスとしてアルゴンを導入して放電電源81をONし、放電電力5kW、成膜圧力0.3PaでSiターゲット上にプラズマを発生させ、3分間プレスパッタを行った。この後、反応ガスとして酸素を導入した。放電が安定してからアルゴン及び酸素ガスの量を徐々に減らして成膜圧力を0.1Paまで下げた。0.1Paでの放電の安定を確認してから、一定時間酸化ケイ素の成膜を行った。成膜終了後、真空槽72を大気圧に戻して酸化ケイ素を成膜したフィルムを取り出した。 Si was set as a target, and a pulse application type DC power source was prepared as a discharge power source 81. The substrate film 76 was hung on the feeding roller 74 and passed to the take-up roller 75. After completing the preparation of the substrate to the sputtering apparatus 70, the door of the vacuum chamber 72 was closed, the vacuum pump 71 was started, and vacuuming and cooling of the drum were started. When the ultimate pressure reached 4 × 10 −4 Pa and the drum temperature reached 5 ° C., the conveyance of the base film 76 was started. Argon was introduced as a discharge gas, the discharge power supply 81 was turned on, plasma was generated on the Si target at a discharge power of 5 kW and a film formation pressure of 0.3 Pa, and pre-sputtering was performed for 3 minutes. Thereafter, oxygen was introduced as a reaction gas. After the discharge was stabilized, the amounts of argon and oxygen gas were gradually reduced to lower the film forming pressure to 0.1 Pa. After confirming the stability of discharge at 0.1 Pa, a silicon oxide film was formed for a certain period of time. After the film formation was completed, the vacuum chamber 72 was returned to atmospheric pressure, and the film on which the silicon oxide film was formed was taken out.
〈試料102のガスバリアフィルムの作製〉
 ガスバリア層の形成方法を下記の方法(CVD法:条件2)に変更した以外は、上述の試料101と同様の方法で試料102のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 102>
A gas barrier film of Sample 102 was produced in the same manner as Sample 101 described above, except that the method for forming the gas barrier layer was changed to the following method (CVD method: Condition 2).
 [ガスバリア層の作製]
 基材フィルム上に、WO2016/009801の実施例に記載された試料No.28と同様の方法でガスバリア層を形成した。具体的には、図3に記載の成膜部に対向する成膜ロールを有する装置を、2台つなげた構成(第1成膜部、第2成膜部を有する)のロールトゥロール型のローラー間放電プラズマCVD装置を用いた。有効成膜幅を1000mmとし、下記の成膜条件で厚さ100nmのガスバリア層を作製した。
[Production of gas barrier layer]
Sample No. described in the examples of WO2016 / 009801 was formed on the base film. A gas barrier layer was formed in the same manner as in No. 28. Specifically, a roll-to-roll type structure in which two apparatuses each having a film forming roll facing the film forming part illustrated in FIG. 3 are connected (having a first film forming part and a second film forming part). An inter-roller discharge plasma CVD apparatus was used. An effective film formation width was 1000 mm, and a gas barrier layer having a thickness of 100 nm was produced under the following film formation conditions.
(プラズマCVD成膜条件)
・搬送速度:6.0m/min、
・第1成膜部の原料ガス(HMDSO)供給量:150sccm(Standard Cubic Centimeter per Minute)
・第1成膜部の酸素ガス供給量:400sccm
・第1成膜部の真空度:2.0Pa
・第1成膜部の印加電力:4.0kW
・第2成膜部の原料ガス(HMDSO)供給量:150sccm
・第2成膜部の酸素ガス供給量:400sccm
・第2成膜部の真空度:2.0Pa
・第2成膜部の印加電力:4.0kW
・電源周波数:84kHz
・全成膜ロールの温度:30℃
(Plasma CVD film formation conditions)
-Conveying speed: 6.0 m / min,
-Source gas (HMDSO) supply amount of the first film forming unit: 150 sccm (Standard Cubic Centimeter per Minute)
-Oxygen gas supply amount of the first film forming unit: 400 sccm
-Vacuum degree of the first film forming part: 2.0 Pa
-Applied power of the first film forming unit: 4.0 kW
-Source gas (HMDSO) supply amount of the second film forming unit: 150 sccm
-Oxygen gas supply amount of the second film forming unit: 400 sccm
-Vacuum degree of the second film forming part: 2.0 Pa
-Applied power of the second film forming unit: 4.0 kW
・ Power supply frequency: 84 kHz
-Temperature of all film forming rolls: 30 ° C
〈試料103のガスバリアフィルムの作製〉
 基材フィルムの作製において、微粒子分散液の調製方法を下記の方法(微粒子B)に変更し、さらに、ステンレスベルト支持体上に流延(キャスト)したフィルムの乾燥条件を変更し、メチレンクロライド(MC)が640ppm、エタノール(EtOH)が175ppmになるまで溶媒を蒸発させた以外は、上述の試料101と同様の方法で試料103のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 103>
In the production of the base film, the method for preparing the fine particle dispersion was changed to the following method (fine particles B), and the drying conditions of the film cast on the stainless belt support were changed, and methylene chloride ( A gas barrier film of Sample 103 was produced in the same manner as Sample 101 described above except that the solvent was evaporated until MC was 640 ppm and ethanol (EtOH) was 175 ppm.
[微粒子分散液の調製]
 平均粒子径0.3μmのコアシェル粒子(アイカ工業製スタフィロイド)(微粒子B)1.0質量部と、100質量部のメチレンクロライドとを、ディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散して、微粒子分散液Bを得た。
[Preparation of fine particle dispersion]
1.0 part by mass of core-shell particles having an average particle size of 0.3 μm (Stabiloid made by Aika Kogyo) (fine particles B) and 100 parts by mass of methylene chloride were stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin. Thus, a fine particle dispersion B was obtained.
〈試料104のガスバリアフィルムの作製〉
 ガスバリア層の形成方法を下記の方法(CVD法+PHPS改質層:条件3)に変更した以外は、上述の試料103と同様の方法で試料104のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 104>
A gas barrier film of Sample 104 was produced in the same manner as Sample 103 described above, except that the method for forming the gas barrier layer was changed to the following method (CVD method + PHPS modified layer: Condition 3).
 [ガスバリア層の作製]
 基材フィルム上に、WO2016/009801の実施例に記載された試料No.28と同様の方法でガスバリア層を形成した。具体的には、図3に記載の成膜部に対向する成膜ロールを有する装置を、2台つなげた構成(第1成膜部、第2成膜部を有する)のロールトゥロール型のローラー間放電プラズマCVD装置を用いた。有効成膜幅を1000mmとし、下記の成膜条件で膜厚100nmの第1ガスバリア層を作製した。
[Production of gas barrier layer]
Sample No. described in the examples of WO2016 / 009801 was formed on the base film. A gas barrier layer was formed in the same manner as in No. 28. Specifically, a roll-to-roll type structure in which two apparatuses each having a film forming roll facing the film forming part illustrated in FIG. 3 are connected (having a first film forming part and a second film forming part). An inter-roller discharge plasma CVD apparatus was used. A first gas barrier layer having a thickness of 100 nm and a film thickness of 100 nm was prepared under the following film formation conditions.
 さらに、上記の方法で作製した第1ガスバリア層上に、下記の方法で調製したポリシラザン含有液を乾燥膜厚が300nmとなるように塗布し、大気中(露点5℃)において80℃で2分間乾燥した。そして、乾燥後の塗膜に改質エネルギー6.0J/cmの改質処理を行い、ポリシラザン改質層からなる第2ガスバリア層を作製した。 Furthermore, the polysilazane-containing liquid prepared by the following method was applied on the first gas barrier layer prepared by the above method so that the dry film thickness was 300 nm, and the atmosphere (dew point 5 ° C.) was 80 ° C. for 2 minutes. Dried. And the modification | reformation process of the modification energy 6.0J / cm < 2 > was performed to the coating film after drying, and the 2nd gas barrier layer which consists of a polysilazane modified layer was produced.
(プラズマCVD成膜条件)
・搬送速度:6.0m/min、
・第1成膜部の原料ガス(HMDSO)供給量:150sccm(Standard Cubic Centimeter per Minute)
・第1成膜部の酸素ガス供給量:400sccm
・第1成膜部の真空度:2.0Pa
・第1成膜部の印加電力:4.0kW
・第2成膜部の原料ガス(HMDSO)供給量:150sccm
・第2成膜部の酸素ガス供給量:400sccm
・第2成膜部の真空度:2.0Pa
・第2成膜部の印加電力:4.0kW
・電源周波数:84kHz
・全成膜ロールの温度:30℃
(Plasma CVD film formation conditions)
-Conveying speed: 6.0 m / min,
-Source gas (HMDSO) supply amount of the first film forming unit: 150 sccm (Standard Cubic Centimeter per Minute)
-Oxygen gas supply amount of the first film forming unit: 400 sccm
-Vacuum degree of the first film forming part: 2.0 Pa
-Applied power of the first film forming unit: 4.0 kW
-Source gas (HMDSO) supply amount of the second film forming unit: 150 sccm
-Oxygen gas supply amount of the second film forming unit: 400 sccm
-Vacuum degree of the second film forming part: 2.0 Pa
-Applied power of the second film forming unit: 4.0 kW
・ Power supply frequency: 84 kHz
-Temperature of all film forming rolls: 30 ° C
(ポリシラザン含有液の調製)
 パーヒドロポリシラザン(PHPS)を20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、アミン触媒(N,N,N',N'-テトラメチル-1,6-ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらに乾燥膜厚調整のためジブチルエーテルで適宜希釈し、ポリシラザン含有液を調製した。
(Preparation of polysilazane-containing liquid)
A dibutyl ether solution containing 20% by mass of perhydropolysilazane (PHPS) (manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diamino) Hexane (TMDAH))-containing perhydropolysilazane 20% by mass dibutyl ether solution (manufactured by AZ Electronic Materials Co., Ltd., NAX120-20) was mixed at a ratio of 4: 1 (mass ratio), and further dried film thickness For adjustment, the solution was appropriately diluted with dibutyl ether to prepare a polysilazane-containing liquid.
〈試料105のガスバリアフィルムの作製〉
 基材フィルムの作製において、下記の方法で作製した重合体粒子(アクリル/スチレン重合体粒子:微粒子C)を作製し、さらに、ステンレスベルト支持体上に流延(キャスト)したフィルムの乾燥条件を変更し、メチレンクロライド(MC)が610ppm、エタノール(EtOH)が143ppmになるまで溶媒を蒸発させた以外は、上述の試料104と同様の方法で試料105のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 105>
In the production of the base film, polymer particles (acrylic / styrene polymer particles: fine particles C) produced by the following method were produced, and the drying conditions of the film cast (cast) on the stainless steel belt support were changed. A gas barrier film of Sample 105 was prepared in the same manner as Sample 104 described above, except that the solvent was evaporated until methylene chloride (MC) was 610 ppm and ethanol (EtOH) was 143 ppm.
[微粒子分散液の調製]
(種粒子の製造)
 撹拌機、温度計を備えた重合器に、脱イオン水1000gを入れ、そこにメタクリル酸メチル200g、t-ドデシルメルカプタン6gを加え、撹拌下で窒素置換しながら70℃まで加熱した。溶液の温度を70℃に保ち、重合開始剤として過硫酸カリウム1gを溶解した脱イオン水20gを加えた後、10時間重合させた。得られたエマルジョン中の重合体粒子の平均粒子径は、0.44μmであった。
[Preparation of fine particle dispersion]
(Manufacture of seed particles)
In a polymerization vessel equipped with a stirrer and a thermometer, 1000 g of deionized water was added, 200 g of methyl methacrylate and 6 g of t-dodecyl mercaptan were added, and the mixture was heated to 70 ° C. while purging with nitrogen under stirring. The temperature of the solution was maintained at 70 ° C., and 20 g of deionized water in which 1 g of potassium persulfate was dissolved was added as a polymerization initiator, and then polymerization was performed for 10 hours. The average particle size of the polymer particles in the obtained emulsion was 0.44 μm.
(重合体粒子の製造)
 撹拌機、温度計を備えた重合器に、ポリオキシエチレントリデシルエーテル硫酸アンモニウム3gを溶解した脱イオン水800gを入れ、そこに単量体混合物としてアクリル酸メチル144g、スチレン22g、エチレングリコールジメタクリレート34g、及び、重合開始剤としてアゾビスイソブチロニトリル1gの混合液を入れた。次に、混合液をT.Kホモミキサー(特殊機化工業社製)で撹拌して、分散液を得た。
(Manufacture of polymer particles)
A polymerization vessel equipped with a stirrer and a thermometer was charged with 800 g of deionized water in which 3 g of polyoxyethylene tridecyl ether ammonium sulfate was dissolved, and 144 g of methyl acrylate, 22 g of styrene, and 34 g of ethylene glycol dimethacrylate as a monomer mixture. And 1 g of azobisisobutyronitrile as a polymerization initiator was added. Next, the mixed solution is T.P. The mixture was stirred with a K homomixer (manufactured by Koki Kogyo Co., Ltd.) to obtain a dispersion.
 さらに、分散液に種粒子を含む上記エマルジョン60gを加え、30℃で1時間撹拌して種粒子に単量体混合物を吸収させた。次に、単量体混合物を吸収した種粒子を窒素気流下で50℃、5時間加温することで重合させた後、室温(約25℃)まで冷却することで重合体粒子を含むスラリーを得た。得られた重合体粒子(有機微粒子)の平均粒子径は、0.3μmであった。 Further, 60 g of the above emulsion containing seed particles was added to the dispersion, and the mixture was stirred at 30 ° C. for 1 hour to allow the seed particles to absorb the monomer mixture. Next, the seed particles that have absorbed the monomer mixture are polymerized by heating at 50 ° C. for 5 hours under a nitrogen stream, and then cooled to room temperature (about 25 ° C.) to obtain a slurry containing polymer particles. Obtained. The average particle diameter of the obtained polymer particles (organic fine particles) was 0.3 μm.
(重合体粒子の集合体の製造)
 冷却後、得られたスラリーにスノーテックスO-40(日産化学工業社製:コロイダルシリカ(無機粉末)として固形分40%、粒子径:0.02-0.03μm)50gを加え、T.Kホモミキサー(特殊機化工業社製)で10分間攪拌した。このスラリーを噴霧乾燥機としての坂本技研社製のスプレードライヤー(型式:アトマイザーテイクアップ方式、型番:TRS-3WK)を用いて、次の条件下で噴霧乾燥して重合体粒子集合体を得た。重合体粒子集合体の平均粒子径は、30μmであった。
・供給速度:25ml/min
・アトマイザー回転数:11000rpm
・風量:2m/min
・噴霧乾燥機のスラリー入口温度:130℃
・重合体粒子集合体出口温度:70℃
(Manufacture of polymer particle aggregates)
After cooling, 50 g of Snowtex O-40 (manufactured by Nissan Chemical Industries, Ltd .: 40% solid content as colloidal silica (inorganic powder), particle size: 0.02-0.03 μm) was added to the resulting slurry. The mixture was stirred for 10 minutes with a K homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.). This slurry was spray-dried under the following conditions using a spray dryer (model: atomizer take-up method, model number: TRS-3WK) manufactured by Sakamoto Giken Co., Ltd. as a spray dryer to obtain a polymer particle aggregate. . The average particle diameter of the polymer particle aggregate was 30 μm.
・ Supply speed: 25ml / min
・ Atomizer speed: 11000 rpm
・ Air volume: 2m 3 / min
-Slurry inlet temperature of spray dryer: 130 ° C
-Polymer particle aggregate outlet temperature: 70 ° C
〈試料106のガスバリアフィルムの作製〉
 上述の試料101の基材フィルムの作製において、使用する樹脂をArton-G7810(JSR社製)(樹脂B、極性基有り)に変更して主ドープを作製した。さらに、ステンレスベルト支持体上に流延(キャスト)したフィルムの乾燥条件を変更し、メチレンクロライド(MC)が610ppm、エタノール(EtOH)が143ppmになるまで溶媒を蒸発させて、基材フィルムを作製した。また、ガスバリア層を上述の試料102と同様の条件2(CVD法)で形成した。これらの条件以外は、上述の試料105と同様の方法で試料106のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 106>
In the production of the base film of the sample 101 described above, the main dope was produced by changing the resin to be used to Arton-G7810 (manufactured by JSR) (resin B, with polar group). Furthermore, the drying conditions of the film cast on the stainless steel belt support were changed, and the solvent was evaporated until the methylene chloride (MC) was 610 ppm and ethanol (EtOH) was 143 ppm, thereby producing a base film. did. Further, the gas barrier layer was formed under the same condition 2 (CVD method) as that of the sample 102 described above. Except for these conditions, a gas barrier film of Sample 106 was produced in the same manner as Sample 105 described above.
〈試料107のガスバリアフィルムの作製〉
 上述の試料101の基材フィルムの作製において、使用する樹脂をArton-R5000(JSR社製)(樹脂C、極性基有り)に変更した以外は、上述の試料106と同様の方法で試料107のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 107>
In the preparation of the base film of the sample 101 described above, the sample 107 was prepared in the same manner as the sample 106 described above except that the resin used was changed to Arton-R5000 (manufactured by JSR) (resin C, with polar group). A gas barrier film was prepared.
〈試料108のガスバリアフィルムの作製〉
 基材フィルムの作製において、使用する微粒子を微粒子D(アクリル/スチレン重合体粒子、0.8μm)に変更し、さらに、有機溶媒の含有量を下記のよう変更した以外は、上述の試料107と同様の方法で試料108のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 108>
In the production of the base film, the sample 107 and the sample 107 described above were used except that the fine particles used were changed to fine particles D (acrylic / styrene polymer particles, 0.8 μm), and the content of the organic solvent was changed as follows. A gas barrier film of Sample 108 was produced in the same manner.
 微粒子Dは、試料105の重合体粒子(微粒子C)の作製において、重合体粒子(有機微粒子)の平均粒子径を0.8μmに変更して作製した。
 主ドープの調製において、有機溶媒として、メチレンクロライド(MC)、エタノール(EtOH)、メタン、及び、トルエン(Tol)を使用し、ステンレスベルト支持体上に流延(キャスト)したフィルムの乾燥条件を変更し、メチレンクロライド(MC)が610ppm、エタノール(EtOH)が143ppm、トルエン(Tol)が10ppmになるまで溶媒を蒸発させた。
The fine particles D were produced by changing the average particle diameter of the polymer particles (organic fine particles) to 0.8 μm in the production of the polymer particles (fine particles C) of the sample 105.
In the preparation of the main dope, methylene chloride (MC), ethanol (EtOH), methane, and toluene (Tol) were used as organic solvents, and the drying conditions of the cast film on the stainless steel belt support were changed. The solvent was evaporated until methylene chloride (MC) was 610 ppm, ethanol (EtOH) was 143 ppm, and toluene (Tol) was 10 ppm.
〈試料109のガスバリアフィルムの作製〉
 基材フィルムの作製において、ステンレスベルト支持体上に流延(キャスト)したフィルムの乾燥条件を変更し、メチレンクロライド(MC)が930ppm、エタノール(EtOH)が720ppmになるまで溶媒を蒸発させた以外は、上述の試料108と同様の方法で試料109のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 109>
In the production of the base film, the drying conditions of the cast film on the stainless belt support were changed, and the solvent was evaporated until methylene chloride (MC) was 930 ppm and ethanol (EtOH) was 720 ppm. Prepared a gas barrier film of Sample 109 in the same manner as Sample 108 described above.
〈試料110のガスバリアフィルムの作製〉
 基材フィルムの作製において、ステンレスベルト支持体上に流延(キャスト)したフィルムの乾燥条件を変更し、メチレンクロライド(MC)が210ppm、エタノール(EtOH)が90ppmになるまで溶媒を蒸発させた以外は、上述の試料109と同様の方法で試料110のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 110>
In the production of the base film, the drying conditions of the cast film on the stainless belt support were changed, and the solvent was evaporated until the methylene chloride (MC) was 210 ppm and the ethanol (EtOH) was 90 ppm. Prepared a gas barrier film of Sample 110 in the same manner as Sample 109 described above.
〈試料111のガスバリアフィルムの作製〉
 基材フィルムの作製において、巻取ったフィルムを巻き出し、160℃の条件下で多数のローラーで搬送させ、メチレンクロライド(MC)が55ppm、エタノール(EtOH)が30ppmになるまで搬送速度を調整することで乾燥させ、その後巻き取った以外は、上述の試料110と同様の方法で試料111のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 111>
In production of the base film, the wound film is unwound and transported by a number of rollers at 160 ° C., and the transport speed is adjusted until methylene chloride (MC) is 55 ppm and ethanol (EtOH) is 30 ppm. A gas barrier film of Sample 111 was produced in the same manner as Sample 110 described above, except that the sample was dried.
〈試料112のガスバリアフィルムの作製〉
 基材フィルムの作製において、巻取ったフィルムを巻き出し、180℃の条件下で多数のローラーで搬送させ、メチレンクロライド(MC)が13ppm、エタノール(EtOH)が12ppmになるまで搬送速度を調整することで乾燥させ、その後巻き取った以外は、上述の試料111と同様の方法で試料112のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 112>
In production of the base film, the wound film is unwound and transported by a number of rollers at 180 ° C., and the transport speed is adjusted until methylene chloride (MC) is 13 ppm and ethanol (EtOH) is 12 ppm. A gas barrier film of Sample 112 was produced in the same manner as Sample 111 described above except that the sample was dried and then wound up.
〈試料113のガスバリアフィルムの作製〉
 ガスバリア層を上述の試料104と同様の条件(CVD法+PHPS改質層:条件3)で形成した以外は、上述の試料112と同様の方法で試料113のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 113>
A gas barrier film of Sample 113 was prepared in the same manner as Sample 112 described above, except that the gas barrier layer was formed under the same conditions (CVD method + PHPS modified layer: Condition 3) as Sample 104 described above.
〈試料114のガスバリアフィルムの作製〉
 ガスバリア層の形成方法を下記の方法(CVD法:条件4)に変更した以外は、上述の試料112と同様の方法で試料114のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 114>
A gas barrier film of Sample 114 was produced in the same manner as Sample 112 described above, except that the method for forming the gas barrier layer was changed to the following method (CVD method: Condition 4).
[ガスバリア層の作製]
 第1成膜部の真空度を2.5Pa、第2成膜部の真空度を2.5Paに変更した以外は、試料102のガスバリア層の形成条件(CVD法:条件2)と同様の方法で、基材フィルム上にガスバリア層を形成した。
[Production of gas barrier layer]
Except for changing the vacuum degree of the first film forming unit to 2.5 Pa and changing the vacuum degree of the second film forming unit to 2.5 Pa, the same method as the formation conditions (CVD method: condition 2) of the gas barrier layer of the sample 102 Thus, a gas barrier layer was formed on the base film.
〈試料115のガスバリアフィルムの作製〉
 主ドープの調製において、有機溶媒として、クロロホルムを使用し、ステンレスベルト支持体上に流延(キャスト)したフィルムの乾燥条件を変更し、クロロホルムが55ppmになるまで溶媒を蒸発させた以外は、上述の試料114と同様の方法で試料115のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 115>
In the preparation of the main dope, except that chloroform was used as the organic solvent, the drying conditions of the film cast (cast) on the stainless belt support were changed, and the solvent was evaporated until chloroform reached 55 ppm. A gas barrier film of Sample 115 was produced in the same manner as Sample 114.
〈試料116のガスバリアフィルムの作製〉
 主ドープの調製において、有機溶媒として、クロロベンゼン(MCB)を使用し、ステンレスベルト支持体上に流延(キャスト)したフィルムの乾燥条件を変更し、クロロベンゼン(MCB)が55ppmになるまで溶媒を蒸発させた以外は、上述の試料114と同様の方法で試料116のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 116>
In preparing the main dope, use chlorobenzene (MCB) as the organic solvent, change the drying conditions of the cast film on the stainless steel belt support, and evaporate the solvent until the chlorobenzene (MCB) reaches 55 ppm. A gas barrier film of Sample 116 was produced in the same manner as Sample 114 described above, except that it was changed.
〈試料117のガスバリアフィルムの作製〉
 特許第6264373号の実施例に記載された光学フィルム106と同様の方法で基材フィルム(樹脂D;セルロースアセテートプロピオネート、微粒子A;ポリフェニレンスルフィド、有機溶媒;メチレンクロライド(MC)、メタノール(MtOH))を作製し、さらに、ステンレスベルト支持体上に流延(キャスト)したフィルムの乾燥条件を変更し、メチレンクロライド(MC)が15ppmに、メタノール(MtOH)が8ppmになるまで溶媒を蒸発させた以外は、上述の試料114と同様の方法で試料117のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 117>
A base film (resin D; cellulose acetate propionate, fine particles A; polyphenylene sulfide, organic solvent; methylene chloride (MC), methanol (MtOH) in the same manner as the optical film 106 described in Examples of Japanese Patent No. 6264373 )), And the drying conditions of the cast film on the stainless steel belt support were changed, and the solvent was evaporated until methylene chloride (MC) was 15 ppm and methanol (MtOH) was 8 ppm. Except for the above, a gas barrier film of Sample 117 was produced in the same manner as Sample 114 described above.
〈試料118のガスバリアフィルムの作製〉
 特許第6264373号の実施例に記載された光学フィルム206と同様の方法で基材フィルム(樹脂E;アクリル樹脂とセルロースアセテートプロピオネートとの混合樹脂、微粒子A;ポリフェニレンスルフィド、有機溶媒;メチレンクロライド(MC))を作製し、さらに、ステンレスベルト支持体上に流延(キャスト)したフィルムの乾燥条件を変更し、メチレンクロライド(MC)が15ppm、エタノール(EtOH)が15ppmになるまで溶媒を蒸発させた以外は、上述の試料114と同様の方法で試料118のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 118>
A base film (resin E; mixed resin of acrylic resin and cellulose acetate propionate, fine particles A; polyphenylene sulfide, organic solvent; methylene chloride) in the same manner as the optical film 206 described in Examples of Japanese Patent No. 6264373 (MC)), and the drying conditions of the cast film on the stainless belt support were changed, and the solvent was evaporated until methylene chloride (MC) was 15 ppm and ethanol (EtOH) was 15 ppm. A gas barrier film of Sample 118 was produced in the same manner as Sample 114 described above, except that it was changed.
〈試料119のガスバリアフィルムの作製〉
 ガスバリア層の形成条件を下記の条件(CVD法:条件5)に変更した以外は、上述の試料114と同様の方法で試料119のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 119>
A gas barrier film of Sample 119 was produced in the same manner as Sample 114 described above, except that the gas barrier layer formation conditions were changed to the following conditions (CVD method: Condition 5).
[ガスバリア層の作製]
 第1成膜部の真空度を1.5Pa、第2成膜部の真空度を1.5Paに変更した以外は、試料102のガスバリア層の形成条件(CVD法:条件2)と同様の方法で、基材フィルム上にガスバリア層を形成した。
[Production of gas barrier layer]
Except for changing the vacuum degree of the first film forming unit to 1.5 Pa and the vacuum degree of the second film forming unit to 1.5 Pa, the same method as the formation conditions (CVD method: condition 2) of the gas barrier layer of the sample 102 Thus, a gas barrier layer was formed on the base film.
〈試料120のガスバリアフィルムの作製〉
 基材フィルムの作製において、ステンレスベルト支持体上に流延(キャスト)したフィルムの乾燥条件を変更し、メチレンクロライド(MC)が10ppm、エタノール(EtOH)が10ppmになるまで溶媒を蒸発させた以外は、上述の試料109と同様の方法で試料120のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 120>
In the production of the base film, the drying conditions of the cast film on the stainless belt support were changed, and the solvent was evaporated until the methylene chloride (MC) was 10 ppm and the ethanol (EtOH) was 10 ppm. Prepared a gas barrier film of Sample 120 by the same method as Sample 109 described above.
〈試料121のガスバリアフィルムの作製〉
 基材フィルムの作製において、微粒子分散液の調製方法を下記の方法(微粒子E)に変更した以外は、上述の試料102と同様の方法で試料121のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 121>
In the production of the base film, a gas barrier film of Sample 121 was produced in the same manner as Sample 102 described above, except that the method for preparing the fine particle dispersion was changed to the following method (fine particles E).
[微粒子分散液の調製]
 平均粒子径0.3μmのシリカ粒子(CIKナノテック社製SiO)(微粒子E)1.0質量部と、100質量部のメチレンクロライドとを、ディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散して、微粒子分散液Eを得た。
[Preparation of fine particle dispersion]
Silica particles having an average particle size of 0.3 μm (SiO 2 manufactured by CIK Nanotech) (fine particles E) 1.0 part by mass and 100 parts by mass of methylene chloride were stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin. Thus, a fine particle dispersion E was obtained.
〈試料122のガスバリアフィルムの作製〉
 基材フィルムの作製において、ステンレスベルト支持体上に流延(キャスト)したフィルムの乾燥条件を変更し、メチレンクロライド(MC)が2900ppm、エタノール(EtOH)が2500ppmになるまで溶媒を蒸発させた以外は、上述の試料107と同様の方法で試料122のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 122>
In the production of the base film, the drying conditions of the cast film on the stainless belt support were changed, and the solvent was evaporated until the methylene chloride (MC) was 2900 ppm and the ethanol (EtOH) was 2500 ppm. Prepared a gas barrier film of Sample 122 by the same method as Sample 107 described above.
〈試料123のガスバリアフィルムの作製〉
 基材フィルムの作製において、ステンレスベルト支持体上に流延(キャスト)したフィルムの乾燥条件を変更し、メチレンクロライド(MC)が5ppm、エタノール(EtOH)が5ppmになるまで溶媒を蒸発させた以外は、上述の試料107と同様の方法で試料123のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 123>
In the production of the base film, the drying conditions of the cast film on the stainless belt support were changed, and the solvent was evaporated until the methylene chloride (MC) was 5 ppm and the ethanol (EtOH) was 5 ppm. Prepared a gas barrier film of Sample 123 by the same method as Sample 107 described above.
〈試料124のガスバリアフィルムの作製〉
 主ドープの調製において、微粒子として試料105と同様の方法で作製した重合体粒子(微粒子C)を使用し、有機溶媒としてトルエン(Tol)を使用し、ステンレスベルト支持体上に流延(キャスト)したフィルムの乾燥条件を変更し、トルエン(Tol)が55ppmになるまで溶媒を蒸発させた以外は、上述の試料115と同様の方法で試料124のガスバリアフィルムを作製した。
<Preparation of Gas Barrier Film of Sample 124>
In the preparation of the main dope, polymer particles (fine particles C) produced by the same method as sample 105 are used as the fine particles, toluene (Tol) is used as the organic solvent, and cast onto a stainless belt support (cast). A gas barrier film of Sample 124 was produced in the same manner as Sample 115 described above, except that the drying conditions of the film were changed and the solvent was evaporated until toluene (Tol) was 55 ppm.
〈試料125のガスバリアフィルムの作製〉
 主ドープの調製において、有機溶媒としてトルエン(Tol)を使用し、ステンレスベルト支持体上に流延(キャスト)したフィルムの乾燥条件を変更し、トルエン(Tol)が55ppmになるまで溶媒を蒸発させた以外は、上述の試料115と同様の方法で試料125のガスバリアフィルムを作製した。
<Preparation of gas barrier film of sample 125>
In the preparation of the main dope, toluene (Tol) was used as the organic solvent, the drying conditions of the cast film on the stainless belt support were changed, and the solvent was evaporated until toluene (Tol) was 55 ppm. Except for the above, a gas barrier film of Sample 125 was produced in the same manner as Sample 115 described above.
〈評価方法〉
[バリア成膜後の基材フィルム中の有機溶媒の含有量]
 ドープを乾燥した後の基材フィルムの溶媒含有量、及び、ガスバリア層を形成した後の基材フィルム中の溶媒含有量を、ヘッドスペースガスクロマトグラフィーを用いて定量した。ヘッドスペースガスクロマトグラフィー測定は、以下の条件で行った。
<Evaluation methods>
[Content of organic solvent in base film after barrier film formation]
The solvent content of the base film after drying the dope and the solvent content in the base film after forming the gas barrier layer were quantified using headspace gas chromatography. Headspace gas chromatography measurement was performed under the following conditions.
(条件)
・ヘッドスペース装置:HP7694 Head Space Sampler(ヒューレットパッカード社製)
・温度条件:トランスファーライン200℃、ループ温度200℃
・サンプル量:0.8g/20mlバイアル
・GC:HP5890(ヒューレットパッカード社製)
・MS:HP5971(ヒューレットパッカード社製)
・カラム:HP-624(30m×内径0.25mm)
・オーブン温度:初期温度40℃(保持時間3分)、昇温速度10℃/分、到達温度200℃(保持時間5分)
(conditions)
Headspace device: HP7694 Head Space Sampler (manufactured by Hewlett-Packard Company)
-Temperature conditions: transfer line 200 ° C, loop temperature 200 ° C
-Sample amount: 0.8g / 20ml vial-GC: HP5890 (manufactured by Hewlett-Packard Company)
・ MS: HP5971 (manufactured by Hewlett-Packard Company)
-Column: HP-624 (30m x 0.25mm ID)
Oven temperature: initial temperature 40 ° C. (holding time 3 minutes), temperature rising rate 10 ° C./minute, ultimate temperature 200 ° C. (holding time 5 minutes)
[密着性]
 作製したガスバリアフィルムに対し、JIS K 5600-5-6に準拠した方法で100マスのクロスカットを行った。そして、クロスカット後のガスバリアフィルムにおいて、各マスの基材フィルムとガスバリア層との密着状態を確認した。ガスバリア層の剥離が1/3以下のマスを合格とし、100マス中の合格マスの数xから、ガスバリアフィルムの密着性を下記の基準(ランク)で評価した。
 4:xが90以上
 3:xが80以上90未満
 2:xが70以上80未満
 1:xが70未満
[Adhesion]
The produced gas barrier film was cross-cut by 100 squares by a method according to JIS K 5600-5-6. And in the gas barrier film after cross-cutting, the adhesion state of the base film of each mass and the gas barrier layer was confirmed. The gas barrier layer was peeled by 1/3 or less of the mass, and the adhesion of the gas barrier film was evaluated according to the following criteria (rank) from the number x of the acceptable mass in 100 masses.
4: x is 90 or more 3: x is 80 or more and less than 90 2: x is 70 or more and less than 80 1: x is less than 70
[水蒸気透過度(WVTR)]
 ガラス基板上の20mm×20mmの面積に、日本電子(株)製真空蒸着装置JEE-400を用いてカルシウム(Ca:腐食性金属)を蒸着し、厚さ80nmのCa層を作製した。次に、接着剤(スリーボンド製1655)を用いて、Ca層を形成したガラス基板上に、作製したガスバリアフィルムを貼合して封止し、Ca法評価試料を作製した。なお、接着剤を貼合したガスバリアフィルムは接着剤の水分及びガスバリアフィルム表面の吸着水を除去するため1昼夜グローブボックス(GB)内に放置した。
[Water vapor transmission rate (WVTR)]
Calcium (Ca: corrosive metal) was vapor-deposited on an area of 20 mm × 20 mm on a glass substrate using a vacuum vapor deposition apparatus JEE-400 manufactured by JEOL Ltd. to produce a Ca layer having a thickness of 80 nm. Next, the produced gas barrier film was bonded and sealed on the glass substrate on which the Ca layer was formed using an adhesive (manufactured by ThreeBond 1655) to produce a Ca method evaluation sample. In addition, the gas barrier film bonded with the adhesive was left in a glove box (GB) for one day and night in order to remove moisture of the adhesive and adsorbed water on the surface of the gas barrier film.
 次に、作製したCa法評価試料を、60℃90%RH環境で保管した。そして、20時間保管後のCa法評価試料に、ガラス面側の法線方向から光を入射し、反対面側からエリア型のCCDカメラを用いて撮影して、Ca層の評価画像を得た。 Next, the produced Ca method evaluation sample was stored in a 60 ° C. and 90% RH environment. Then, light was incident on the Ca method evaluation sample after storage for 20 hours from the normal direction on the glass surface side and photographed from the opposite surface side using an area-type CCD camera to obtain an evaluation image of the Ca layer. .
 次に、得られた評価画像のCa蒸着部の平均濃度を数値化した。この評価を、60℃90%RH環境で40、60、80、又は、100時間保管した後のCa法評価試料にも行い、20~100時間におけるCa蒸着部の平均濃度の時間に対する傾きの平均値から、水蒸気透過度(WVTR)の平均値(g/m/day)を算出した。そして、このWVTRの平均値を40℃、90%RH環境における水蒸気透過度(WVTR)に換算し、下記の基準(ランク)で評価した。この際に用いた換算計数は1/25である。
 4:1×10-4未満
 3:1×10-4以上、1×10-3未満
 2:1×10-3以上、1×10-2未満
 1:1×10-2以上
Next, the average density | concentration of Ca vapor deposition part of the obtained evaluation image was digitized. This evaluation was also performed on the Ca method evaluation sample after storage for 40, 60, 80, or 100 hours in a 60 ° C. and 90% RH environment, and the average of the slope with respect to the average concentration of the Ca vapor deposition portion in 20 to 100 hours. From the value, the average value (g / m 2 / day) of the water vapor transmission rate (WVTR) was calculated. And the average value of this WVTR was converted into the water vapor transmission rate (WVTR) in 40 degreeC and 90% RH environment, and the following reference | standard (rank) evaluated. The conversion factor used at this time is 1/25.
4: 1 × 10 −4 or less 3: 1 × 10 −4 or more, 1 × 10 −3 or less 2: 1 × 10 −3 or more, 1 × 10 −2 or less 1: 1 × 10 −2 or more
[耐屈曲性]
 ガスバリアフィルムの試料サイズを3cm×13cmとし、ユアサシステム機器社製のU字伸縮試験機DLDMLH-FSを用いて、ガスバリア面が外側を向く状態で、ガスバリアフィルムを直径6mmの曲面に10万回屈曲させた。その後、ガスバリアフィルムの屈曲中心部分を用いて、上述の水蒸気透過度の評価と同様にCa法の測定試料を作製した。さらに、60℃90%RH環境で200時間保存後に、腐食(腐食すじ)が発生した部分のガスバリア層に傷(クラック)が発生しているとみなし、下記の基準でガスバリアフィルムの傷(クラック)の発生を評価した。
 4:腐食すじ発生無し(クラック発生無し)
 3:腐食すじ1本以上3未満発生(クラック発生が1カ所以上3カ所未満)
 2:腐食すじ3本以上10未満発生(クラック発生が3カ所以上10カ所未満)
 1:腐食すじ10本以上(クラック発生が10カ所以上)
[Flexibility]
The sample size of the gas barrier film is 3 cm x 13 cm, and the gas barrier film is bent 100,000 times into a curved surface with a diameter of 6 mm with the U-shaped stretch tester DLDMMLH-FS manufactured by Yuasa System Equipment Co. I let you. Thereafter, using the bent central portion of the gas barrier film, a measurement sample of the Ca method was produced in the same manner as the evaluation of the water vapor permeability described above. Furthermore, after storing in a 60 ° C. and 90% RH environment for 200 hours, it is considered that the gas barrier layer has been damaged (cracked), and the gas barrier film is cracked (cracked) according to the following criteria. The occurrence of was evaluated.
4: No corrosion streaking (no cracking)
3: 1 or more corrosion streaks are generated and less than 3 (crack generation is 1 or more and less than 3)
2: Corrosion streaks 3 or more and less than 10 (crack generation is 3 or more and less than 10)
1: 10 or more corrosion lines (10 or more cracks)
[装置汚染]
 上述の試料101~125のガスバリア層の形成条件において、基材フィルムの長さ100mにガスバリア層を成膜した後、装置を大気開放し、CVDロール及び装置外内壁を確認して、装置内の汚染の有無を確認した。装置内に汚染がない場合を○、汚染がある場合を×として評価した。また、汚染がある場合(×)には、汚染として検出された物質の分析を行った。
[Device contamination]
Under the gas barrier layer formation conditions of samples 101 to 125 described above, after forming the gas barrier layer with a base film length of 100 m, the apparatus was opened to the atmosphere, the CVD roll and the inner wall of the apparatus were confirmed, The presence or absence of contamination was confirmed. The case where there was no contamination in the apparatus was evaluated as ○, and the case where there was contamination was evaluated as ×. When there was contamination (x), the substance detected as contamination was analyzed.
 上記試料101~125のガスバリアフィルムの主要な構成、及び、各評価結果を下記表1に示す。なお、表1に示す、基材フィルムを構成する樹脂A~E、微粒子A~E、及び、ガスバリア層の形成条件1~5は、以下の通りである。 The main configuration of the gas barrier films of the samples 101 to 125 and the evaluation results are shown in Table 1 below. The forming conditions 1 to 5 of the resins A to E, the fine particles A to E, and the gas barrier layer constituting the base film shown in Table 1 are as follows.
[樹脂]
・樹脂A: ポリプラスチック社製 Topas513(極性基無し)
・樹脂B: JSR社製 Arton-G7810(極性基あり)
・樹脂C: JSR社製 Arton-R5000(極性基あり)
・樹脂D: セルロース(非ノルボルネン)
・樹脂E: アクリル樹脂/セルロースアシレート混合(非ノルボルネン)
[resin]
Resin A: Polyplastic Topas 513 (no polar group)
Resin B: Arton-G7810 manufactured by JSR (with polar group)
Resin C: Arton-R5000 (with polar group) manufactured by JSR
Resin D: Cellulose (non-norbornene)
Resin E: Acrylic resin / cellulose acylate mixture (non-norbornene)
[微粒子]
・微粒子A:ポリフェニレンスルフィド微粒子(0.3μm)
・微粒子B:コアシェル微粒子(0.3μm)
・微粒子C:アクリル/スチレン重合体微粒子(0.3μm)
・微粒子D:アクリル/スチレン重合体微粒子(0.8μm)
・微粒子E:無機微粒子(SiO
[Fine particles]
Fine particle A: polyphenylene sulfide fine particle (0.3 μm)
Fine particle B: Core shell fine particle (0.3 μm)
Fine particle C: acrylic / styrene polymer fine particle (0.3 μm)
Fine particle D: acrylic / styrene polymer fine particle (0.8 μm)
Fine particles E: inorganic fine particles (SiO 2 )
[ガスバリア層]
・条件1:スパッタ法
・条件2:CVD法(成膜部真空度2.0Pa)
・条件3:CVD法+PHPS改質層
・条件4:CVD法(成膜部真空度2.5Pa)
・条件5:CVD法(成膜部真空度1.5Pa)
[Gas barrier layer]
・ Condition 1: Sputtering method ・ Condition 2: CVD method (deposition unit vacuum 2.0 Pa)
・ Condition 3: CVD method + PHPS modified layer ・ Condition 4: CVD method (deposition unit vacuum 2.5 Pa)
Condition 5: CVD method (deposition unit vacuum degree 1.5 Pa)
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 表1に示すように、基材フィルムが、樹脂、有機微粒子、及び、有機溶媒として1ppm以上90ppm以下(ガスバリア層成膜後)のハロゲン化炭化水素を含有し、気相成膜法で形成されたガスバリア層を備える試料101~試料120のガスバリアフィルムは、密着性、水蒸気透過度(WVTR)、及び、耐屈曲性の各評価項目において、すべて2以上となる結果が得られた。さらに、試料101~試料120のガスバリアフィルムは、装置汚染の評価においても、汚染が確認されなかった。なお、ガスバリアフィルムとしては、各評価が2以上であればよく、3以上であることが好ましい。 As shown in Table 1, the base film contains a resin, organic fine particles, and halogenated hydrocarbon of 1 ppm or more and 90 ppm or less (after gas barrier layer film formation) as an organic solvent, and is formed by a vapor phase film formation method. In addition, the gas barrier films of Sample 101 to Sample 120 having the gas barrier layer all obtained results of 2 or more in each of the evaluation items of adhesion, water vapor transmission rate (WVTR), and bending resistance. Further, the gas barrier films of Sample 101 to Sample 120 were not confirmed to be contaminated in the evaluation of device contamination. In addition, as a gas barrier film, each evaluation should just be 2 or more, and it is preferable that it is 3 or more.
 一方、有機微粒子を備えずに、無機微粒子のみを備える試料121のガスバリアフィルムでは、密着性、水蒸気透過度(WVTR)、及び、耐屈曲性の各項目において、すべての評価が1となっている。さらに、装置内の汚染も発生している。この汚染物質を分析した結果、無機微粒子の材料であるSiOが主体であることが確認された。 On the other hand, in the gas barrier film of the sample 121 having only inorganic fine particles without organic fine particles, all evaluations are 1 in each of the items of adhesion, water vapor permeability (WVTR), and bending resistance. . In addition, contamination within the device has also occurred. As a result of analyzing this pollutant, it was confirmed that SiO 2 which is a material of inorganic fine particles was mainly.
 試料121のガスバリアフィルムに使用されている無機微粒子は、有機微粒子に比べて基材フィルムの樹脂との親和性が低い。このため、試料121のガスバリアフィルムのように、無機微粒子のみを含む場合には、基材フィルムから粒子の脱落が起こりやすく、基材フィルムとガスバリア層とが剥離しやすい。さらに、無機微粒子の脱落により、ガスバリア層にクラックが発生しやすくなるため、ガスバリア性が低下しやすい。さらに、無機微粒子の脱落による装置内の汚染が発生しやすい。
 また、無機微粒子は、有機微粒子よりも剛直なため、基材フィルムの柔軟性が低下しやすく、基材フィルムの耐屈曲性が低下しやすい。
The inorganic fine particles used in the gas barrier film of the sample 121 have a lower affinity with the resin of the base film than the organic fine particles. For this reason, like the gas barrier film of the sample 121, when only inorganic fine particles are included, the particles easily fall off from the base film, and the base film and the gas barrier layer easily peel off. In addition, the removal of the inorganic fine particles tends to cause cracks in the gas barrier layer, so that the gas barrier property is likely to deteriorate. Furthermore, contamination in the apparatus due to dropping off of the inorganic fine particles tends to occur.
Further, since the inorganic fine particles are more rigid than the organic fine particles, the flexibility of the base film is likely to be reduced, and the flex resistance of the base film is likely to be reduced.
 試料122のガスバリアフィルムのように、基材フィルムに含まれる有機溶媒の量が過剰な場合には、ガスバリア性が低下しやすい。基材フィルムに過剰な有機溶媒が含まれる場合には、基材フィルムとガスバリア層との界面に多量に存在する有機溶媒によってガスバリア層の成膜(気相成膜法)が阻害されやすい。このため、ガスバリア性が低下しやすい。 When the amount of the organic solvent contained in the base film is excessive like the gas barrier film of the sample 122, the gas barrier property tends to be lowered. When the base film contains an excessive organic solvent, the film formation (gas phase film formation method) of the gas barrier layer is likely to be hindered by the organic solvent present in a large amount at the interface between the base film and the gas barrier layer. For this reason, the gas barrier property tends to be lowered.
 また、試料123のガスバリアフィルムのように、基材フィルムに含まれる有機溶媒の量が少なすぎる場合にも、ガスバリア性が低下しやすい。基材フィルムに含まれる有機溶媒が少ない(1ppm未満;検出限界値以下)場合には、基材フィルムにおいて樹脂と有機微粒子との親和性が低下し、有機微粒子の脱落が発生しやすくなる。この結果、有機微粒子の脱落により、基材フィルムとガスバリア層とが剥離しやすくなる。また、有機微粒子の脱落によってガスバリア層にクラックが発生しやすくなるため、ガスバリア性が低下しやすい。 Also, like the gas barrier film of the sample 123, when the amount of the organic solvent contained in the base film is too small, the gas barrier property tends to be lowered. When the organic film contained in the base film is small (less than 1 ppm; below the detection limit), the affinity between the resin and the organic fine particles is reduced in the base film, and the organic fine particles are likely to fall off. As a result, the base film and the gas barrier layer easily peel off due to the removal of the organic fine particles. In addition, cracking of the gas barrier layer is likely to occur due to the removal of the organic fine particles, so that the gas barrier property is likely to be lowered.
 試料124のガスバリアフィルムや、試料125のガスバリアフィルムのように、有機溶媒としてハロゲン化炭化水素を含有しない場合には、ガスバリア性と、耐屈曲性が低下しやすい。さらに、微粒子の脱落による装置内の汚染が発生しやすい。
 基材フィルム中において、有機溶媒としてハロゲン化炭化水素を含まない構成では、ハロゲン化炭化水素を含む場合に比べ、樹脂と有機微粒子との親和性が高くなりにくい。このため、有機溶媒としてハロゲン化炭化水素を含まない構成では、樹脂と有機微粒子との親和性が低下しやすく、有機微粒子の脱落が発生しやすくなる。この結果、有機微粒子の脱落によって、ガスバリア層にクラックが発生しやすく、ガスバリア性も低下しやすい。
When the halogenated hydrocarbon is not contained as the organic solvent like the gas barrier film of the sample 124 and the gas barrier film of the sample 125, the gas barrier property and the bending resistance are likely to be lowered. Furthermore, contamination in the apparatus due to the dropping of the fine particles is likely to occur.
In the base film, in a configuration that does not contain a halogenated hydrocarbon as an organic solvent, the affinity between the resin and the organic fine particles is less likely to be higher than when a halogenated hydrocarbon is included. For this reason, in the structure which does not contain a halogenated hydrocarbon as an organic solvent, the affinity between the resin and the organic fine particles tends to decrease, and the organic fine particles are likely to fall off. As a result, the removal of the organic fine particles tends to cause cracks in the gas barrier layer, and the gas barrier properties are also likely to deteriorate.
 試料101のガスバリアフィルムと試料102のガスバリアフィルムとは、ガスバリア層の形成方法が、スパッタ法(条件1)とCVD法(条件2)とで異なるが、いずれの方法で形成されたガスバリアフィルムも十分なガスバリア性を有している。従って、ガスバリアフィルムにおいては、スパッタ法やCVD法等の任意の気相成膜法を適用してガスバリア層を形成することができる。但し、試料102のガスバリアフィルム(条件2;CVD法)の方が高いガスバリア性を得られていることから、ガスバリア層の形成方法としては、CVD法等の真空蒸着法を適用することが好ましい。 The gas barrier film of the sample 101 and the gas barrier film of the sample 102 differ in the formation method of the gas barrier layer between the sputtering method (condition 1) and the CVD method (condition 2), but the gas barrier film formed by any method is sufficient. It has a good gas barrier property. Therefore, in the gas barrier film, the gas barrier layer can be formed by applying an arbitrary vapor deposition method such as sputtering or CVD. However, since the gas barrier film (condition 2; CVD method) of the sample 102 has a higher gas barrier property, it is preferable to apply a vacuum deposition method such as a CVD method as a method for forming the gas barrier layer.
 試料103のガスバリアフィルムと試料104のガスバリアフィルムとは、ガスバリア層の形成方法が、CVD法(条件2)とCVD法+PHPS改質層(条件3)とで異なるが、いずれの方法で形成されたガスバリアフィルムも十分なガスバリア性を有している。従って、ガスバリアフィルムにおいては、CVD法等の気相成膜法により形成されたガスバリア層(第1ガスバリア層)を有していれば、このガスバリア層上にさらに他の方法で形成されたガスバリア層を有していてもよい。 The gas barrier film of sample 103 and the gas barrier film of sample 104 were formed by any method, although the method of forming the gas barrier layer was different between the CVD method (condition 2) and the CVD method + PHPS modified layer (condition 3). The gas barrier film also has sufficient gas barrier properties. Therefore, if the gas barrier film has a gas barrier layer (first gas barrier layer) formed by a vapor deposition method such as a CVD method, the gas barrier layer formed by another method on the gas barrier layer. You may have.
 試料105のガスバリアフィルムは、微粒子としてアクリル/スチレン重合体(粒子C)を有する。試料105のガスバリアフィルム(粒子C;アクリル/スチレン重合体)は、試料104のガスバリアフィルム(粒子B;コアシェル)よりも、高いガスバリア性が得られている。よって、ガスバリアフィルムは、基材フィルムに用いる有機微粒子として、(メタ)アクリル系単量体由来の構造単位とスチレン系単量体由来の構造単位とを含む重合体を有することが好ましい。(メタ)アクリル系単量体由来の構造単位とスチレン系単量体由来の構造単位とを含む重合体微粒子は、有機溶媒であるハロゲン化炭化水素との親和性が高くなりやすく、微粒子の脱落が起こりにくく、ガスバリア層の成膜性や密着性が向上しやすくなる。このため、ガスバリアフィルムのガスバリア性が向上しやすくなると考えられる。 The gas barrier film of sample 105 has an acrylic / styrene polymer (particle C) as fine particles. The gas barrier film (particle C; acrylic / styrene polymer) of the sample 105 has a higher gas barrier property than the gas barrier film (particle B; core shell) of the sample 104. Therefore, it is preferable that a gas barrier film has a polymer containing the structural unit derived from a (meth) acrylic-type monomer and the structural unit derived from a styrene-type monomer as organic fine particles used for a base film. Polymer fine particles containing structural units derived from (meth) acrylic monomers and structural units derived from styrene monomers tend to have a high affinity with halogenated hydrocarbons, which are organic solvents. Is less likely to occur, and the film-forming property and adhesion of the gas barrier layer are likely to be improved. For this reason, it is thought that the gas barrier property of a gas barrier film becomes easy to improve.
 試料106のガスバリアフィルムと試料107のガスバリアフィルムとは、基材フィルムを構成する樹脂が、極性基有りのノルボルネン系樹脂(樹脂B、又は、樹脂C)である。試料106のガスバリアフィルム(樹脂B)及び試料107のガスバリアフィルム(樹脂C)は、試料105のガスバリアフィルム(樹脂A:極性基無しのノルボルネン系樹脂)に比べ、基材フィルムとガスバリア層との密着性が向上している。基材フィルムを構成する樹脂として、極性基を有するノルボルネン系樹脂を用いることにより、極性基を有していないノルボルネン系樹脂を用いた場合に比べ、樹脂と有機微粒子との親和性が高くなりやすく、微粒子の脱落が起こりにくいため、ガスバリア層の成膜性や密着性が向上しやすくなると考えられる。 The gas barrier film of the sample 106 and the gas barrier film of the sample 107 are norbornene resins (resin B or resin C) having a polar group as a resin constituting the base film. The gas barrier film (resin B) of the sample 106 and the gas barrier film (resin C) of the sample 107 are more closely attached to the base film and the gas barrier layer than the gas barrier film of sample 105 (resin A: norbornene-based resin having no polar group). Improved. By using a norbornene-based resin having a polar group as a resin constituting the base film, the affinity between the resin and the organic fine particles is likely to be higher than when a norbornene-based resin having no polar group is used. It is considered that the film formation and adhesion of the gas barrier layer are likely to be improved because the fine particles do not easily fall off.
 試料108のガスバリアフィルムは、有機溶媒として、メチレンクロライド(MC)、エタノール(EtOH)、及び、トルエン(Tol)を含む。試料108のガスバリアフィルムは、試料106のガスバリアフィルム(MC+EtOH)と同様の結果が得られている。この結果から、基材フィルムは、有機溶媒としては、ハロゲン化炭化水素と共にハロゲン化炭化水素以外の他の有機溶媒を含んでいても、同様の特性のガスバリアフィルムが得られる。よって、ガスバリアフィルムは、基材フィルムに用いられる有機溶媒として、ハロゲン化炭化水素を含んでいれば、ハロゲン化炭化水素以外の任意の有機溶媒を含んでいてもよい。 The gas barrier film of the sample 108 contains methylene chloride (MC), ethanol (EtOH), and toluene (Tol) as organic solvents. The gas barrier film of the sample 108 has the same result as the gas barrier film (MC + EtOH) of the sample 106. From this result, even when the base film contains an organic solvent other than the halogenated hydrocarbon as well as the halogenated hydrocarbon, a gas barrier film having the same characteristics can be obtained. Therefore, the gas barrier film may contain any organic solvent other than the halogenated hydrocarbon as long as it contains a halogenated hydrocarbon as the organic solvent used for the base film.
 試料109のガスバリアフィルム、試料110のガスバリアフィルム、試料111のガスバリアフィルム、及び、試料112のガスバリアフィルムは、それぞれ、基材フィルムに含まれる有機溶媒の量(メチレンクロライド(MC)含有量;5ppm~85ppm)が異なる。各ガスバリアフィルムにおいて、密着性は試料112のガスバリアフィルム(5ppm)が最もよく、試料111のガスバリアフィルム(9ppm)が次によい。また、バリア性は、試料111のガスバリアフィルム(9ppm)が最もよい。この結果から、ガスバリアフィルムは、基材フィルムに含まれるハロゲン化炭化水素の量が下限値(1ppm)に近いほど、密着性やバリア性がよくなる傾向が見られる。 The gas barrier film of Sample 109, the gas barrier film of Sample 110, the gas barrier film of Sample 111, and the gas barrier film of Sample 112 are each an amount of organic solvent contained in the base film (methylene chloride (MC) content; 5 ppm to 85 ppm) is different. In each gas barrier film, the gas barrier film (5 ppm) of the sample 112 is the best, and the gas barrier film (9 ppm) of the sample 111 is the next best. Moreover, the gas barrier film (9 ppm) of the sample 111 is the best for the barrier property. From this result, the gas barrier film tends to have better adhesion and barrier properties as the amount of the halogenated hydrocarbon contained in the base film is closer to the lower limit (1 ppm).
 試料113のガスバリアフィルムと試料114のガスバリアフィルムは、全ての評価結果が4であり、全試料中で最もよい結果が得られている。試料113のガスバリアフィルムと試料114のガスバリアフィルムは、試料112のガスバリアフィルム(条件2;CVD法真空度2.0Pa)から、ガスバリア層の形成条件(条件3;CVD法+PHPS改質層、又は、条件4;CVD法、真空度1.5Pa)が変更されている。従って、ガスバリアフィルムのガスバリア層としては、気相成膜法で形成された第1ガスバリア層上に第2ガスバリア層を形成する条件3(CVD法+PHPS改質層)、又は、低真空度の真空蒸着法で形成する条件4(CVD法真空度1.5Pa)を用いることが好ましい。 The gas barrier film of the sample 113 and the gas barrier film of the sample 114 have all the evaluation results of 4, and the best result is obtained among all the samples. The gas barrier film of the sample 113 and the gas barrier film of the sample 114 are formed from the gas barrier film of the sample 112 (condition 2; CVD method vacuum degree 2.0 Pa), the formation conditions of the gas barrier layer (condition 3; CVD method + PHPS modified layer, or Condition 4: CVD method, degree of vacuum 1.5 Pa) is changed. Therefore, as the gas barrier layer of the gas barrier film, the condition 3 (CVD method + PHPS modified layer) for forming the second gas barrier layer on the first gas barrier layer formed by the vapor deposition method or a vacuum with a low vacuum degree is used. It is preferable to use condition 4 (CVD method vacuum degree 1.5 Pa) formed by vapor deposition.
 試料115のガスバリアフィルムと試料116のガスバリアフィルムは、基材フィルムの有機溶媒として、ハロゲン化炭化水素であるクロロホルム、又は、クロロベンゼンが使用されている。いずれのガスバリアフィルムも各評価で2以上の結果が得られている。この結果から、ガスバリアフィルムは、基材フィルムの有機溶媒として任意のハロゲン化炭化水素を用いることができる。但し、試料114のガスバリアフィルム(有機溶媒;メチレンクロライド)の方が、各評価の結果が良好である。従って、ガスバリアフィルムは有機溶媒として、ハロゲン化炭化水素の中でもメチレンクロライドを含むことが好ましい。 The gas barrier film of sample 115 and the gas barrier film of sample 116 use chloroform or chlorobenzene, which is a halogenated hydrocarbon, as an organic solvent for the base film. In any gas barrier film, two or more results were obtained in each evaluation. From this result, the gas barrier film can use arbitrary halogenated hydrocarbons as the organic solvent of the base film. However, the gas barrier film of sample 114 (organic solvent; methylene chloride) has better evaluation results. Accordingly, the gas barrier film preferably contains methylene chloride among the halogenated hydrocarbons as the organic solvent.
 試料117のガスバリアフィルムと試料118のガスバリアフィルムは、基材フィルムを構成する樹脂がノルボルネン系樹脂ではない、セルロース系樹脂(樹脂D)、又は、アクリル系樹脂/セルロース系樹脂(樹脂E)である。いずれの樹脂を含むガスバリアフィルムも各評価で3以上の結果が得られている。この結果から、ガスバリアフィルムの基材フィルムは、ノルボルネン系樹脂に限定されず、ノルボルネン系樹脂以外の他の樹脂で構成されていてもよい。但し、試料114のガスバリアフィルム(樹脂C;極性基有りのノルボルネン系樹脂)の方が、各評価の結果が良好である。この結果から、ガスバリアフィルムの基材フィルムを構成する樹脂は、ノルボルネン系樹脂であることが好ましい。 The gas barrier film of the sample 117 and the gas barrier film of the sample 118 are cellulose resin (resin D) or acrylic resin / cellulose resin (resin E) in which the resin constituting the base film is not a norbornene resin. . As for the gas barrier film containing any resin, a result of 3 or more was obtained in each evaluation. From this result, the base film of the gas barrier film is not limited to the norbornene-based resin, and may be composed of a resin other than the norbornene-based resin. However, the gas barrier film of the sample 114 (resin C: norbornene-based resin having a polar group) has better results of each evaluation. From this result, it is preferable that the resin constituting the base film of the gas barrier film is a norbornene resin.
 試料119のガスバリアフィルムは、条件4(CVD法真空度2.0Pa)よりもさらに低真空度の条件5(CVD法真空度1.5Pa)でガスバリア層が形成されている。試料119のガスバリアフィルムは、条件4(CVD法真空度2.0Pa)でガスバリア層が形成された試料112や試料113のガスバリアフィルムと同様の結果が得られている。従って、ガスバリアフィルムは、気相成膜法で有れば任意の条件でガスバリア層を形成することができる。特に、CVD法等の真空蒸着法であれば、任意の条件で良好なガスバリア性を有するガスバリア層を形成することができる。 The gas barrier film of sample 119 has a gas barrier layer formed under condition 5 (CVD method vacuum degree 1.5 Pa), which is lower than condition 4 (CVD method vacuum degree 2.0 Pa). As for the gas barrier film of the sample 119, the same result as the gas barrier film of the sample 112 and the sample 113 in which the gas barrier layer was formed on condition 4 (CVD method vacuum degree 2.0 Pa) was obtained. Therefore, the gas barrier film can form a gas barrier layer under any conditions as long as it is a vapor deposition method. In particular, if it is a vacuum deposition method such as a CVD method, a gas barrier layer having a good gas barrier property can be formed under arbitrary conditions.
 試料120のガスバリアフィルムは、基材フィルムに含まれる有機溶媒の量(MC含有量)が3ppmであり、試料112のガスバリアフィルム(MC含有量;5ppm)よりも、基材フィルムに含まれる有機溶媒の量が少ない。試料120のガスバリアフィルムでは、試料112のガスバリアフィルムに比べ、密着性と耐屈曲性が低下している。この結果から、基材フィルムに含まれる有機溶媒の量を5ppmまで減らしたガスバリアフィルムでは、各評価結果が良好となるが、有機溶媒の量を3ppmまで減らすと、各評価結果が低下しはじめる。従って、ガスバリアフィルムにおいて、基材フィルムに含まれる有機溶媒の量は、3ppm以上であることが好ましい。但し、基材フィルムに含まれる有機溶媒の量が3ppmであっても、各評価結果が3以上であるため、さらに有機溶媒の含有量を低下させることが可能である。一方、試料123のガスバリアフィルムのように、基材フィルムに含まれる有機溶媒の量が検出限界値以下(1ppm未満)となると、各評価結果が悪化していることを考慮すると、基材フィルムが有機溶媒を1ppm以上含有すればガスバリアフィルムが十分な特性を有すると考えられる。 In the gas barrier film of sample 120, the amount of organic solvent (MC content) contained in the base film is 3 ppm, and the organic solvent contained in the base film than the gas barrier film of sample 112 (MC content; 5 ppm). The amount of is small. The gas barrier film of the sample 120 has lower adhesion and flex resistance than the gas barrier film of the sample 112. From this result, in the gas barrier film in which the amount of the organic solvent contained in the base film is reduced to 5 ppm, each evaluation result becomes good, but when the amount of the organic solvent is reduced to 3 ppm, each evaluation result starts to decrease. Therefore, in the gas barrier film, the amount of the organic solvent contained in the base film is preferably 3 ppm or more. However, even if the amount of the organic solvent contained in the base film is 3 ppm, each evaluation result is 3 or more, so that the content of the organic solvent can be further reduced. On the other hand, when the amount of the organic solvent contained in the base film is equal to or lower than the detection limit value (less than 1 ppm) like the gas barrier film of the sample 123, the base film is If the organic solvent is contained at 1 ppm or more, it is considered that the gas barrier film has sufficient characteristics.
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。 The present invention is not limited to the configuration described in the above embodiment, and various modifications and changes can be made without departing from the configuration of the present invention.
 10・・・ガスバリアフィルム、11,76・・・基材フィルム、12・・・ガスバリア層、13・・・樹脂、14・・・有機微粒子、40・・・真空プラズマCVD装置、41・・・アノード電極、42,72・・・真空槽、43・・・カソード電極、44・・・サセプタ、45・・・加熱冷却装置、46・・・熱媒体循環系、47・・・真空排気系、48・・・ガス導入系、49・・・高周波電源、50・・・プラズマCVD装置、51,74・・・繰り出しローラー、52,54,55,57・・・搬送ローラー、53,56・・・成膜ローラー、58,75・・・巻き取りロール、59・・・成膜ガス供給管、60・・・基材、61,62・・・磁場発生装置、63・・・プラズマ発生用電源、70・・・スパッタリング装置、71・・・真空ポンプ、73・・・ドラム、77,78・・・ガイドロール、79・・・排気口、81・・・放電電源、82・・・カソード、83・・・制御器、84・・・ガス流量調整ユニット、85・・・配管 DESCRIPTION OF SYMBOLS 10 ... Gas barrier film 11, 76 ... Base film, 12 ... Gas barrier layer, 13 ... Resin, 14 ... Organic fine particle, 40 ... Vacuum plasma CVD apparatus, 41 ... Anode electrode, 42, 72 ... vacuum chamber, 43 ... cathode electrode, 44 ... susceptor, 45 ... heating / cooling device, 46 ... heat medium circulation system, 47 ... vacuum exhaust system, 48 ... Gas introduction system, 49 ... High frequency power supply, 50 ... Plasma CVD apparatus, 51,74 ... Feeding roller, 52,54,55,57 ... Conveying roller, 53,56 ... Deposition roller, 58, 75 ... take-up roll, 59 ... Deposition gas supply pipe, 60 ... Base material, 61, 62 ... Magnetic field generator, 63 ... Power source for plasma generation , 70 ... Sputtering device, 7 ... Vacuum pump, 73 ... Drum, 77,78 ... Guide roll, 79 ... Exhaust port, 81 ... Discharge power source, 82 ... Cathode, 83 ... Controller, 84. ..Gas flow rate adjustment unit, 85 ... Piping

Claims (10)

  1.  樹脂、有機微粒子、及び、有機溶媒としてハロゲン化炭化水素を含有する基材フィルム上に、ガスバリア層を気相成膜法で形成する工程を有し、
     前記ガスバリア層を形成する前の前記基材フィルム中の前記ハロゲン化炭化水素の含有量が10ppm以上1000ppm以下である
     ガスバリアフィルムの製造方法。
    A step of forming a gas barrier layer by a vapor deposition method on a base film containing a resin, organic fine particles, and a halogenated hydrocarbon as an organic solvent;
    The manufacturing method of the gas barrier film whose content of the said halogenated hydrocarbon in the said base film before forming the said gas barrier layer is 10 ppm or more and 1000 ppm or less.
  2.  前記有機微粒子として、(メタ)アクリル系単量体由来の構造単位とスチレン系単量体由来の構造単位とを含む重合体を有する請求項1に記載のガスバリアフィルムの製造方法。 The method for producing a gas barrier film according to claim 1, wherein the organic fine particles have a polymer containing a structural unit derived from a (meth) acrylic monomer and a structural unit derived from a styrene monomer.
  3.  前記ハロゲン化炭化水素として、メチレンクロライドを含む請求項1又は2に記載のガスバリアフィルムの製造方法。 The method for producing a gas barrier film according to claim 1 or 2, wherein the halogenated hydrocarbon contains methylene chloride.
  4.  前記ガスバリア層を形成する真空成膜法として、真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマ化学気相成長法、熱化学気相成長法、及び、光化学気相成長法から選ばれる1種以上の方法を用いる請求項1から3のいずれかに記載のガスバリアフィルムの製造方法。 As the vacuum film forming method for forming the gas barrier layer, one kind selected from a vacuum vapor deposition method, a sputtering method, an ion plating method, a plasma chemical vapor deposition method, a thermal chemical vapor deposition method, and a photochemical vapor deposition method. The manufacturing method of the gas barrier film in any one of Claim 1 to 3 using the above method.
  5.  前記樹脂として、極性基を有するノルボルネン系樹脂を含む請求項1から4のいずれかに記載のガスバリアフィルムの製造方法。 The method for producing a gas barrier film according to any one of claims 1 to 4, wherein the resin includes a norbornene-based resin having a polar group.
  6.  前記ガスバリア層を形成した後の前記基材フィルム中の前記ハロゲン化炭化水素の含有量が1ppm以上90ppm以下である請求項1から5のいずれかに記載のガスバリアフィルムの製造方法。 The method for producing a gas barrier film according to any one of claims 1 to 5, wherein a content of the halogenated hydrocarbon in the base film after forming the gas barrier layer is 1 ppm or more and 90 ppm or less.
  7.  基材フィルムと、
     前記基材フィルム上に形成されたガスバリア層と、を備え、
     前記基材フィルムは、樹脂、有機微粒子、及び、有機溶媒としてハロゲン化炭化水素を含有し、
     前記基材フィルム中のハロゲン化炭化水素の含有量が1ppm以上90ppm以下である
     ガスバリアフィルム。
    A base film;
    A gas barrier layer formed on the base film,
    The base film contains a resin, organic fine particles, and a halogenated hydrocarbon as an organic solvent,
    A gas barrier film, wherein the content of the halogenated hydrocarbon in the substrate film is 1 ppm or more and 90 ppm or less.
  8.  前記有機微粒子として、(メタ)アクリル系単量体由来の構造単位とスチレン系単量体由来の構造単位とを含む重合体を有する請求項7に記載のガスバリアフィルム。 The gas barrier film according to claim 7, wherein the organic fine particles have a polymer containing a structural unit derived from a (meth) acrylic monomer and a structural unit derived from a styrene monomer.
  9.  前記ハロゲン化炭化水素として、メチレンクロライドを含む請求項7又は8に記載のガスバリアフィルム。 The gas barrier film according to claim 7 or 8, comprising methylene chloride as the halogenated hydrocarbon.
  10.  前記樹脂として、極性基を有するノルボルネン系樹脂を含む請求項7から9のいずれかに記載のガスバリアフィルム。 The gas barrier film according to any one of claims 7 to 9, comprising a norbornene-based resin having a polar group as the resin.
PCT/JP2019/017426 2018-05-31 2019-04-24 Gas barrier film and method for producing gas barrier film WO2019230280A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020521802A JP7173138B2 (en) 2018-05-31 2019-04-24 GAS BARRIER FILM AND METHOD FOR MANUFACTURING GAS BARRIER FILM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018104806 2018-05-31
JP2018-104806 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230280A1 true WO2019230280A1 (en) 2019-12-05

Family

ID=68697468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017426 WO2019230280A1 (en) 2018-05-31 2019-04-24 Gas barrier film and method for producing gas barrier film

Country Status (2)

Country Link
JP (1) JP7173138B2 (en)
WO (1) WO2019230280A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264118A (en) * 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd Plastic film, gas-barrier film, and image display element using it
JP2007076207A (en) * 2005-09-15 2007-03-29 Fujifilm Corp Gas barrier film and organic electroluminescence element and image display element using it
JP2013083795A (en) * 2011-10-11 2013-05-09 Konica Minolta Advanced Layers Inc Antiglare film, antiglare film manufacturing method, polarizer and image display unit
JP2016097500A (en) * 2014-11-18 2016-05-30 コニカミノルタ株式会社 Gas barrier film, method for producing the same and base material for plasma chemical vapor deposition method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264118A (en) * 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd Plastic film, gas-barrier film, and image display element using it
JP2007076207A (en) * 2005-09-15 2007-03-29 Fujifilm Corp Gas barrier film and organic electroluminescence element and image display element using it
JP2013083795A (en) * 2011-10-11 2013-05-09 Konica Minolta Advanced Layers Inc Antiglare film, antiglare film manufacturing method, polarizer and image display unit
JP2016097500A (en) * 2014-11-18 2016-05-30 コニカミノルタ株式会社 Gas barrier film, method for producing the same and base material for plasma chemical vapor deposition method

Also Published As

Publication number Publication date
JP7173138B2 (en) 2022-11-16
JPWO2019230280A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
JP6638182B2 (en) Laminated films and flexible electronic devices
JP2017124633A (en) Laminate, gas barrier film and apparatus for manufacturing laminate
JP2011063851A (en) Gas barrier coating and gas barrier film
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
WO2014203892A1 (en) Gas barrier film and method for producing same
WO2018168671A1 (en) Gas barrier coating, gas barrier film, method for producing gas barrier coating, and method for producing gas barrier film
WO2014178332A1 (en) Gas barrier film and method for producing same
JP7211740B2 (en) Gas barrier films and flexible electronic devices
KR20160146900A (en) Gas barrier film and electronic device using same
WO2019188771A1 (en) Laminate film
JP6998734B2 (en) Laminates and devices containing them
WO2015186434A1 (en) Gas barrier film
WO2019230280A1 (en) Gas barrier film and method for producing gas barrier film
JP2011036778A (en) Method for producing barrier film
JP2002210860A (en) Release film and manufacturing method therefor
JP5782671B2 (en) Water repellent release film forming method
WO2015147221A1 (en) Gas barrier film and manufacturing method for gas barrier film
JP2015231667A (en) Functional film
JP6354302B2 (en) Gas barrier film
JPWO2015083706A1 (en) Gas barrier film and method for producing the same
WO2015025782A1 (en) Device for producing gas barrier film and method for producing gas barrier film
JP6983040B2 (en) Gas barrier film and devices containing it
WO2015108086A1 (en) Gas barrier film and electronic device comprising same
JPWO2015053189A1 (en) Gas barrier film and method for producing the same
JP2014023993A (en) Method and device for manufacturing gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020521802

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19810818

Country of ref document: EP

Kind code of ref document: A1