WO2019230158A1 - Temperature raising device for secondary battery, computer program, and method for raising temperature of secondary battery - Google Patents

Temperature raising device for secondary battery, computer program, and method for raising temperature of secondary battery Download PDF

Info

Publication number
WO2019230158A1
WO2019230158A1 PCT/JP2019/012638 JP2019012638W WO2019230158A1 WO 2019230158 A1 WO2019230158 A1 WO 2019230158A1 JP 2019012638 W JP2019012638 W JP 2019012638W WO 2019230158 A1 WO2019230158 A1 WO 2019230158A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
temperature
battery
charge
discharging
Prior art date
Application number
PCT/JP2019/012638
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 直行
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2019230158A1 publication Critical patent/WO2019230158A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to a secondary battery temperature raising device, a computer program, and a secondary battery temperature raising method.
  • This application claims priority based on Japanese Patent Application No. 2018-105411 filed on May 31, 2018, and incorporates all the content described in the Japanese application.
  • HEV Hybrid Electric Vehicle
  • EV Electric Vehicle
  • Patent Document 1 the secondary battery for driving and the secondary battery for electrical equipment are charged and discharged to each other, thereby raising the temperature of the secondary battery for driving and using the secondary battery in a more ideal state.
  • a power supply device capable of performing the above is disclosed.
  • the secondary battery temperature raising device of the present disclosure is a secondary battery temperature raising device that heats the secondary battery by repeatedly charging and discharging bidirectionally between the secondary battery and the auxiliary secondary battery
  • the auxiliary secondary battery includes a charge / discharge control unit that has a smaller heat capacity than the secondary battery and provides a charge / discharge suspension period in the middle of charge / discharge until the temperature of the secondary battery reaches a target temperature.
  • the computer program according to the present disclosure is a computer program that causes a computer to execute a process of increasing the temperature of the secondary battery by repeatedly charging and discharging between the secondary battery and the auxiliary secondary battery in both directions.
  • a process of providing a charging / discharging suspension period in the middle of charging / discharging until the temperature of the secondary battery having a larger heat capacity than the secondary battery reaches the target temperature is executed.
  • the secondary battery temperature raising method of the present disclosure is a secondary battery temperature raising method in which the secondary battery is heated by repeatedly charging and discharging bidirectionally between the secondary battery and the auxiliary secondary battery,
  • the auxiliary secondary battery has a smaller heat capacity than the secondary battery, and the charge / discharge control unit provides a charge / discharge suspension period in the middle of charge / discharge until the temperature of the secondary battery reaches the target temperature.
  • an object of the present invention is to provide a secondary battery temperature raising device, a computer program, and a secondary battery temperature raising method capable of reliably raising the temperature of the secondary battery.
  • the secondary battery temperature raising device is a secondary battery temperature raising device that heats the secondary battery by repeatedly charging and discharging bidirectionally between the secondary battery and the auxiliary secondary battery.
  • the auxiliary secondary battery includes a charge / discharge control unit that has a heat capacity smaller than that of the secondary battery and provides a charge / discharge suspension period in the middle of charge / discharge until the temperature of the secondary battery reaches a target temperature. .
  • the computer program according to the present embodiment is a computer program that causes a computer to execute a process of repeatedly charging and discharging between the secondary battery and the auxiliary secondary battery to raise the temperature of the secondary battery.
  • a process of providing a charging / discharging suspension period in the middle of charging / discharging until the temperature of the secondary battery having a larger heat capacity than the auxiliary secondary battery reaches a target temperature is executed.
  • the secondary battery temperature raising method is a secondary battery temperature raising method in which the secondary battery is heated by repeatedly charging and discharging bidirectionally between the secondary battery and the auxiliary secondary battery.
  • the auxiliary secondary battery has a smaller heat capacity than the secondary battery, and the charge / discharge control unit provides a charge / discharge suspension period in the middle of charge / discharge until the temperature of the secondary battery reaches the target temperature.
  • the secondary battery is a battery to be heated, and the auxiliary secondary battery has a smaller heat capacity than the secondary battery.
  • the charge / discharge control unit provides a charge / discharge suspension period in the middle of charge / discharge until the temperature of the secondary battery reaches the target temperature.
  • the heat capacity of the secondary battery is larger than the heat capacity of the auxiliary secondary battery, the temperature of the secondary battery is unlikely to drop even if charging / discharging is stopped.
  • the heat capacity of the auxiliary secondary battery is smaller than the heat capacity of the secondary battery, the temperature of the auxiliary secondary battery rises quickly during charging / discharging, and the temperature drops rapidly when charging / discharging is stopped.
  • the temperature of the auxiliary secondary battery can be quickly lowered during the charging / discharging suspension period.
  • the temperature of the secondary battery can be raised toward the target temperature while preventing the temperature of the battery from reaching the upper limit value. As a result, the secondary battery can be reliably heated.
  • the charge / discharge control unit provides a charge / discharge suspension period before the temperature increase of the auxiliary secondary battery reaches a predetermined upper limit value.
  • the charge / discharge control unit provides a charge / discharge suspension period before the temperature increase of the auxiliary secondary battery reaches a predetermined upper limit value. By providing the charging / discharging suspension period, the temperature of the auxiliary secondary battery decreases, so that the temperature of the auxiliary secondary battery can be prevented from reaching the upper limit value.
  • the charge / discharge control unit is arranged after the one charge / discharge suspension period rather than the temperature increase of the secondary battery at the start of the one charge / discharge suspension period.
  • the charging / discharging suspension period is provided so that the temperature rise of the secondary battery at the start of the charging / discharging suspension period becomes larger.
  • the charge / discharge control unit increases the temperature of the secondary battery at the start time of the charge / discharge suspension period next to the one charge / discharge stop period rather than the temperature increase of the secondary battery at the start time of one charge / discharge stop period.
  • the charging / discharging suspension period is provided so that
  • the temperature of the secondary battery is unlikely to drop even if charging / discharging is stopped. Since there is a charge / discharge period between one charge / discharge stop period and the next charge / discharge stop period, the charge / discharge period in the charge / discharge period is more than the decrease in the temperature of the secondary battery in the one charge / discharge stop period.
  • the charge / discharge control unit adjusts the length of the charge / discharge suspension period according to the temperature rise of the auxiliary secondary battery or the secondary battery.
  • the charge / discharge control unit adjusts the length of the charge / discharge suspension period according to the temperature rise of the auxiliary secondary battery or the secondary battery.
  • the length of the charge / discharge suspension period can be shortened. Thereby, time until the temperature of a secondary battery reaches target temperature can be shortened.
  • the length of the charging / discharging suspension period can be increased. Thereby, it is possible to prevent the temperature of the auxiliary secondary battery from reaching the upper limit value.
  • the length of the charge / discharge suspension period can be increased. Therefore, the precision in which the temperature of a secondary battery reaches
  • the secondary battery temperature increasing device includes a heat transfer unit that transfers heat of the auxiliary secondary battery to the secondary battery.
  • the heat transfer unit transfers the heat of the auxiliary secondary battery to the secondary battery.
  • the heat transfer unit includes at least one of a heat conduction member and a heat pipe provided between the secondary battery and the auxiliary secondary battery.
  • the heat transfer unit includes at least one of a heat conduction member and a heat pipe provided between the secondary battery and the auxiliary secondary battery.
  • the heat of the auxiliary secondary battery can be transmitted to the secondary battery via at least one of the heat conducting member and the heat pipe.
  • the temperature can be raised.
  • the heat transfer unit includes a duct provided between the secondary battery and the auxiliary secondary battery, and a blower unit that sends air through the duct. Prepare.
  • the heat transfer unit includes a duct provided between the secondary battery and the auxiliary secondary battery, and a blower unit that sends air through the duct.
  • the secondary battery temperature increasing device includes a bidirectional voltage conversion unit that performs charging and discharging bidirectionally between the secondary battery and the auxiliary secondary battery, and the bidirectional voltage conversion unit includes: The charging / discharging suspension period is provided for charging / discharging.
  • the bidirectional voltage conversion unit can charge / discharge bidirectionally between the secondary battery and the auxiliary secondary battery by providing a charge / discharge suspension period.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a main part of a vehicle on which a controller 50 according to the present embodiment is mounted.
  • the vehicle includes a main battery 10 as a secondary battery, a sub battery 20 as an auxiliary secondary battery, a DC / DC converter 30 as a bidirectional voltage conversion unit, a controller 50 as a secondary battery temperature raising device, and the like.
  • the main battery 10 can be, for example, a lithium ion battery, and a plurality of cells (not shown) are connected in series or in series and parallel.
  • the main battery 10 includes a voltage sensor 11, a current sensor 12, and a temperature sensor 13.
  • the voltage sensor 11 detects the voltage of each cell and the voltage across the main battery 10, and outputs the detected voltage to the controller 50.
  • the current sensor 12 is composed of, for example, a shunt resistor or a hall sensor, and detects a charging current and a discharging current of the main battery 10.
  • the current sensor 12 outputs the detected current to the controller 50.
  • the temperature sensor 13 is composed of, for example, a thermistor and detects the temperature of each cell. The temperature sensor 13 outputs the detected temperature to the controller 50.
  • the main battery 10 can be used as an auxiliary battery.
  • the main battery 10 is used for starting a hybrid system of a vehicle in response to an operation of a start switch (ignition switch) (not shown), or for a backup memory during parking.
  • a start switch ignition switch
  • the rated voltage of the main battery 10 can be set to 12 V, for example, but is not limited thereto.
  • the sub-battery 20 can be, for example, an electric double layer capacitor (EDLC), and is used for an auxiliary power source or regeneration.
  • the rated voltage of the sub-battery 20 can be set to 48 V, for example, but is not limited thereto.
  • the sub battery 20 includes a temperature sensor 21. The temperature sensor 21 detects the temperature of the sub battery 20 and outputs the detected temperature to the controller 50.
  • the heat capacity of the sub battery 20 is smaller than that of the main battery 10.
  • the DC / DC converter 30 includes a step-up / step-down circuit and can convert a voltage bidirectionally.
  • the DC / DC converter 30 operates in the Buck mode and the Boost mode.
  • the voltage of the sub-battery 20 is stepped down to charge the main battery 10 and the sub-battery 20 is discharged.
  • the boost mode the voltage of the main battery 10 is boosted to discharge the main battery 10 and charge the sub battery 20. That is, the DC / DC converter 30 can repeatedly charge and discharge between the main battery 10 and the sub battery 20 in both directions.
  • the DC / DC converter 30 can discharge the sub-battery 20 to charge the main battery 10 and charge the sub-battery 20 to discharge the main battery 10. Further, the DC / DC converter 30 can charge and discharge bidirectionally between the main battery 10 and the sub-battery 20 by providing a charge / discharge suspension period described later.
  • the controller 50 includes a voltage acquisition unit 51, a current acquisition unit 52, a temperature acquisition unit 53, a drive unit 54, a storage unit 55, and a charge / discharge control unit 56.
  • the voltage acquisition unit 51 acquires the voltage of each of the plurality of cells of the main battery 10 and the voltage of the main battery 10.
  • the current acquisition unit 52 acquires the current (charge current and discharge current) of the main battery 10.
  • the sampling period for acquiring the voltage and current can be set to 10 ms, for example, but is not limited thereto.
  • the temperature acquisition unit 53 acquires the temperatures of the main battery 10 and the sub battery 20.
  • the drive unit 54 drives the DC / DC converter 30 based on the charge / discharge control by the charge / discharge control unit 56. Thereby, the DC / DC converter 30 can perform charge / discharge bidirectionally between the main battery 10 and the sub-battery 20.
  • the storage unit 55 can store voltage, current and temperature data of the main battery 10, temperature data of the sub-battery 20, and details of processing performed by the controller 50.
  • FIG. 2 is a time chart showing an example of a current / voltage waveform of the main battery 10 during charging and discharging.
  • the upper diagram in FIG. 2 shows the current of the main battery 10.
  • charging is performed when the current is positive, and discharging is performed when the current is negative.
  • the main battery 10 is charged, and in the Boost mode, the main battery 10 is discharged.
  • the total time of the Buck mode time and the Boost mode time corresponds to the charge / discharge cycle.
  • the second shows the voltage of the main battery 10 and the voltage of the sub battery 20.
  • the Buck mode the main battery 10 is charged and the sub-battery 20 is discharged. Therefore, the voltage of the main battery 10 is higher than that during discharging, and the voltage of the sub-battery 20 is lower than that during charging.
  • the boost mode the main battery 10 is discharged and the sub battery 20 is charged. Therefore, the voltage of the main battery 10 is lower than that during charging, and the voltage of the sub battery 20 is higher than that during discharging. Since the voltage and current waveforms are schematically shown, they may be different from the actual waveforms.
  • the charging / discharging control unit 56 provides a charging / discharging suspension period in the middle of charging / discharging until the temperature of the main battery 10 reaches the target temperature.
  • the main battery 10 is a battery to be heated.
  • the heat capacity of the main battery 10 is larger than the heat capacity of the sub-battery 20, the temperature of the main battery 10 is unlikely to drop even if charging / discharging is stopped.
  • the heat capacity of the sub battery 20 is smaller than the heat capacity of the main battery 10, the temperature rise of the sub battery 20 is fast during charging / discharging, and the temperature drop is also quick when charging / discharging is stopped.
  • the temperature of the sub battery 20 can be quickly lowered during the charging / discharging suspension period.
  • the temperature of the main battery 10 can be raised toward the target temperature while preventing the battery from reaching the upper limit value. Thereby, the temperature rise of the main battery 10 can be performed reliably.
  • the upper limit of the temperature rise of the sub battery 20 is determined by the upper limit temperature of the sub battery 20 itself and the ambient temperature.
  • the upper limit temperature of the sub battery 20 itself is, for example, around 60 ° C.
  • the ambient temperature is ⁇ 30 ° C., the sub-battery 20 can withstand a temperature increase of 90 ° C.
  • FIG. 3 is a schematic diagram showing a first example of temperature changes of the main battery 10 and the sub battery 20 at the time of temperature rise by the controller 50 of the present embodiment.
  • the charge / discharge period Tc and the rest period 2Tc are repeated.
  • the length of the rest period (charge / discharge rest period) is twice the length of the charge / discharge period.
  • the temperature of the main battery 10 is indicated by a broken line, and the temperature of the sub battery 20 is indicated by a solid line.
  • the temperature of the sub-battery 20 reaches 0 to T1. Since the heat capacity of the main battery 10 is larger than the heat capacity of the sub-battery 20, the rate of temperature rise is slow, and the temperature of the main battery 10 reaches 0 to T2 ( ⁇ T1).
  • the temperature of the sub battery 20 reaches 0 from T1.
  • the temperature change model of the sub-battery 20 increases by the temperature T1 during the time Tc and decreases by the temperature T1 during the time 2Tc.
  • the temperature of the main battery 10 decreases by ⁇ T from T1.
  • the temperature change model of the main battery 10 rises by the temperature T2 during the time Tc and falls by the temperature ⁇ T during the time 2Tc.
  • the difference in temperature rise and temperature drop between the main battery 10 and the sub-battery 20 is due to a difference in heat capacity.
  • the temperature of the sub battery 20 can be prevented from exceeding the upper limit value, and the temperature of the main battery 10 is reliably increased. Can be made.
  • the charging / discharging control unit 56 provides a charging / discharging pause period before the temperature increase of the sub battery 20 reaches a predetermined upper limit value.
  • the temperature of the sub-battery 20 decreases, so that the temperature of the sub-battery 20 can be prevented from reaching the upper limit value.
  • the charge / discharge control unit 56 follows the one charging / discharging suspension period rather than the temperature rise of the main battery 10 at the start of one charging / discharging suspension period (for example, the first suspension period 2Tc in FIG. 3).
  • the charging / discharging suspension period is provided so that the temperature rise of the main battery 10 at the start of the charging / discharging suspension period (for example, the second suspension period 2Tc in FIG. 3) increases.
  • the temperature of the main battery 10 is unlikely to drop even if charging / discharging is stopped. Since there is a charge / discharge period (for example, the second charge / discharge period Tc in FIG. 3) between one charge / discharge pause period and the next charge / discharge pause period, the main battery 10 in the one charge / discharge pause period By providing a charge / discharge suspension period so that the temperature increase of the main battery 10 during the charge / discharge period is larger than the temperature decrease of the battery, the temperature of the main battery 10 can be increased toward the target temperature. it can.
  • a charge / discharge period for example, the second charge / discharge period Tc in FIG. 3
  • FIG. 4 is a schematic diagram showing a second example of temperature changes of the main battery 10 and the sub battery 20 at the time of temperature rise by the controller 50 of the present embodiment.
  • the suspension period is constant at Tc.
  • the length of the suspension period is adjusted.
  • the first charge / discharge period and the rest period are 2Tc and Tc, respectively
  • the second charge / discharge period and the rest period are 2Tc and Tc, respectively
  • the third charge / discharge period and the rest period are Tc and 2Tc, respectively.
  • the temperature change model of the main battery 10 and the sub battery 20 in FIG. 4 is different from the example of FIG.
  • the charge / discharge control unit 56 can adjust the length of the charge / discharge suspension period according to the temperature rise of the sub battery 20 or the main battery 10.
  • the length of the charge / discharge suspension period can be shortened.
  • the length of the first and second pause periods is Tc. Thereby, time until the temperature of the main battery 10 reaches target temperature can be shortened.
  • the length of the charging / discharging suspension period can be increased.
  • the length of the third pause period is 2Tc.
  • the length of the charging / discharging suspension period can be increased.
  • the length of the third pause period is 2Tc.
  • the temperature of the main battery 10 is raised using heat generated in the sub battery 20 while suppressing the temperature rise of the sub battery 20 by the heat transfer unit. A method will be described.
  • the heat transfer unit transfers the heat of the sub battery 20 to the main battery 10.
  • the temperature of the main battery 10 can be raised while suppressing the temperature rise of the sub battery 20, the time required for raising the temperature of the main battery 10 to the target temperature can be shortened.
  • the heat transfer unit will be described.
  • FIG. 5 is a schematic diagram showing a first example of the configuration of the main battery 10 and the sub battery 20.
  • the heat transfer unit is a heat conductive sheet as a heat conductive member provided between the main battery 10 and the sub battery 20.
  • the main battery 10 and the sub-battery 20 are examples of a square battery, but the shape is not limited to a square shape, and other shapes such as a laminate type and a can type may be used. There may be.
  • a heat conductive member is not limited to a heat conductive sheet, For example, members, such as rubber
  • FIG. 6 is a schematic diagram showing a second example of the configuration of the main battery 10 and the sub battery 20.
  • the heat transfer unit is a heat pipe provided between the main battery 10 and the sub battery 20.
  • the heat of the sub battery 20 can be transmitted to the main battery 10 via the heat pipe, the temperature of the main battery 10 can be raised while suppressing the temperature rise of the sub battery 20.
  • the structure which provides both a heat conductive member and a heat pipe may be sufficient.
  • FIG. 7 is a schematic diagram showing a third example of the configuration of the main battery 10 and the sub battery 20.
  • the heat transfer unit includes a duct provided between the main battery 10 and the sub-battery 20 and a fan as a blower that sends air through the duct.
  • FIG. 8 is a schematic diagram showing an example of the temperature rise result of the main battery 10 according to the comparative example.
  • the horizontal axis indicates time, and the vertical axis indicates temperature.
  • the temperature of the main battery 10 (broken line) and the temperature of the sub battery 20 (solid line) when charging / discharging is repeated bi-directionally between the main battery 10 and the sub battery 20 are shown. Further, the heat capacity of the sub battery 20 is smaller than the heat capacity of the main battery 10.
  • the temperature rise of the sub battery 20 having a small heat capacity is fast, the temperature of the sub battery 20 exceeds the upper limit value before the temperature of the main battery 10 reaches the target temperature. For this reason, the temperature of the main battery 10 cannot be raised to the target temperature.
  • FIG. 9 is a schematic diagram showing an example of a temperature increase result of the main battery 10 by the controller 50 of the present embodiment.
  • the temperatures of the main battery 10 and the sub battery 20 are repeatedly changed up and down.
  • the temperature peaks of the main battery 10 and the sub battery 20 are plotted. Thereby, the temperature of the main battery 10 and the sub battery 20 can be represented typically in a curve.
  • the temperature upper limit value of the sub battery 20 and the target temperature of the main battery 10 are described for convenience, and are not limited to the example of FIG.
  • the temperature of the main battery 10 can be raised toward the target temperature while preventing the temperature of the sub battery 20 from reaching the upper limit value. Thereby, the temperature rise of the main battery 10 can be performed reliably.
  • FIG. 10 is a flowchart showing an example of the processing procedure of the controller 50.
  • the controller 50 starts charging / discharging of the main battery 10 and the sub-battery 20 (S11), and determines whether charging / discharging is continued for a predetermined time (S12).
  • the predetermined time can be appropriately set according to a temperature change model based on the heat capacities of the main battery 10 and the sub battery 20.
  • the predetermined time can be, for example, 1 minute, 2 minutes, 5 minutes, or the like.
  • step S12 If charging / discharging has not been continued for a predetermined time (NO in S12), the controller 50 continues the process of step S12. When charging / discharging is continued for a predetermined time (YES in S12), the controller 50 determines whether or not the temperature of the main battery 10 has reached the target temperature (S13).
  • the controller 50 pauses charging / discharging and provides a pause period (S14).
  • the controller 50 determines whether or not a predetermined pause period has elapsed (S15).
  • the length of the predetermined suspension period can be appropriately set according to a temperature change model based on the heat capacities of the main battery 10 and the sub battery 20. Further, the length of the predetermined pause period may be a constant value, or may be adjusted according to the temperature of the main battery 10 or the sub battery 20.
  • step S15 If the predetermined suspension period has not elapsed (NO in S15), the controller 50 continues the process of step S15. When the predetermined suspension period has elapsed (YES in S15), the controller 50 continues the processing from step S11. When the temperature of the main battery 10 reaches the target temperature (YES in S13), the controller 50 ends the process. Note that after the temperature of the main battery 10 reaches the target temperature, the controller 50 can control the temperature of the main battery 10 to maintain the target temperature.
  • the controller 50 can be realized by using a general-purpose computer including a CPU (processor), a RAM (memory), and the like. That is, as shown in FIG. 10, a computer program that defines the procedure of each process is loaded into a RAM (memory) provided in the computer, and the computer program is executed by a CPU (processor), whereby the controller 50 is executed on the computer.
  • a CPU processor
  • the charge / discharge control unit 56 can be realized.
  • the controller 50 is described as an example of the secondary battery temperature raising device, but is not limited thereto.
  • the secondary battery temperature raising device may include a part or all of the main battery 10, the sub battery 20, the heat transfer unit, and the DC / DC converter 30 in addition to the controller 50.
  • the DC / DC converter 30 is a non-isolated bidirectional Buck-Boost type, but is not limited to this, and is a voltage conversion circuit capable of converting a voltage bidirectionally. What is necessary is just to be non-insulation type or insulation type.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This temperature raising device for a secondary battery includes an auxiliary secondary battery having a smaller thermal capacity than the secondary battery and is provided with a charge and discharge controlling unit that provides a charging and discharging suspension period partway in charging and discharging for the temperature of the temperature of the secondary battery to reach a target temperature.

Description

二次電池昇温装置、コンピュータプログラム及び二次電池昇温方法Secondary battery temperature increasing device, computer program, and secondary battery temperature increasing method
 本開示は、二次電池昇温装置、コンピュータプログラム及び二次電池昇温方法に関する。
 本出願は、2018年5月31日出願の日本出願第2018-105411号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to a secondary battery temperature raising device, a computer program, and a secondary battery temperature raising method.
This application claims priority based on Japanese Patent Application No. 2018-105411 filed on May 31, 2018, and incorporates all the content described in the Japanese application.
 近年、HEV(Hybrid Electric Vehicle:ハイブリッド自動車)及びEV(Electric Vehicle:電気自動車)等の車両が普及しつつある。HEV及びEVのような車両には、電装用や駆動用のため複数の二次電池が搭載されている。 In recent years, vehicles such as HEV (Hybrid Electric Vehicle) and EV (Electric Vehicle) are becoming widespread. Vehicles such as HEV and EV are equipped with a plurality of secondary batteries for electrical equipment and driving.
 特許文献1には、駆動用二次電池と電装用二次電池を相互に充放電することにより、駆動用二次電池を昇温して、二次電池をより理想に近い状態で使用することができる電源装置が開示されている。 In Patent Document 1, the secondary battery for driving and the secondary battery for electrical equipment are charged and discharged to each other, thereby raising the temperature of the secondary battery for driving and using the secondary battery in a more ideal state. A power supply device capable of performing the above is disclosed.
特開2003-92805号公報JP 2003-92805 A
 本開示の二次電池昇温装置は、二次電池と補助二次電池との間で双方向に充放電を繰り返して前記二次電池を昇温させる二次電池昇温装置であって、前記補助二次電池は、前記二次電池よりも熱容量が小さく、前記二次電池の温度が目標温度に到達するまでの充放電の途中に充放電休止期間を設ける充放電制御部を備える。 The secondary battery temperature raising device of the present disclosure is a secondary battery temperature raising device that heats the secondary battery by repeatedly charging and discharging bidirectionally between the secondary battery and the auxiliary secondary battery, The auxiliary secondary battery includes a charge / discharge control unit that has a smaller heat capacity than the secondary battery and provides a charge / discharge suspension period in the middle of charge / discharge until the temperature of the secondary battery reaches a target temperature.
 本開示のコンピュータプログラムは、コンピュータに、二次電池と補助二次電池との間で双方向に充放電を繰り返して前記二次電池を昇温させる処理を実行させるコンピュータプログラムであって、前記補助二次電池よりも熱容量が大きい前記二次電池の温度が目標温度に到達するまでの充放電の途中に充放電休止期間を設ける処理を実行させる。 The computer program according to the present disclosure is a computer program that causes a computer to execute a process of increasing the temperature of the secondary battery by repeatedly charging and discharging between the secondary battery and the auxiliary secondary battery in both directions. A process of providing a charging / discharging suspension period in the middle of charging / discharging until the temperature of the secondary battery having a larger heat capacity than the secondary battery reaches the target temperature is executed.
 本開示の二次電池昇温方法は、二次電池と補助二次電池との間で双方向に充放電を繰り返して前記二次電池を昇温させる二次電池昇温方法であって、前記補助二次電池は、前記二次電池よりも熱容量が小さく、前記二次電池の温度が目標温度に到達するまでの充放電の途中に充放電制御部が充放電休止期間を設ける。 The secondary battery temperature raising method of the present disclosure is a secondary battery temperature raising method in which the secondary battery is heated by repeatedly charging and discharging bidirectionally between the secondary battery and the auxiliary secondary battery, The auxiliary secondary battery has a smaller heat capacity than the secondary battery, and the charge / discharge control unit provides a charge / discharge suspension period in the middle of charge / discharge until the temperature of the secondary battery reaches the target temperature.
本実施の形態のコントローラを搭載した車両の要部構成の一例を示すブロック図である。It is a block diagram which shows an example of the principal part structure of the vehicle carrying the controller of this Embodiment. 充放電時のメインバッテリの電流・電圧波形の一例を示すタイムチャートである。It is a time chart which shows an example of the electric current and voltage waveform of the main battery at the time of charging / discharging. 本実施の形態のコントローラによる昇温時のメインバッテリ及びサブバッテリの温度変化の第1例を示す模式図である。It is a schematic diagram which shows the 1st example of the temperature change of the main battery and sub battery at the time of the temperature rising by the controller of this Embodiment. 本実施の形態のコントローラによる昇温時のメインバッテリ及びサブバッテリの温度変化の第2例を示す模式図である。It is a schematic diagram which shows the 2nd example of the temperature change of the main battery at the time of temperature rising by the controller of this Embodiment, and a sub battery. メインバッテリとサブバッテリとの構成の第1例を示す模式図である。It is a schematic diagram which shows the 1st example of a structure with a main battery and a sub battery. メインバッテリとサブバッテリとの構成の第2例を示す模式図である。It is a schematic diagram which shows the 2nd example of a structure with a main battery and a subbattery. メインバッテリとサブバッテリとの構成の第3例を示す模式図である。It is a schematic diagram which shows the 3rd example of a structure with a main battery and a sub battery. 比較例によるメインバッテリの昇温結果の一例を示す模式図である。It is a schematic diagram which shows an example of the temperature rising result of the main battery by a comparative example. 本実施の形態のコントローラによるメインバッテリの昇温結果の一例を示す模式図である。It is a schematic diagram which shows an example of the temperature rising result of the main battery by the controller of this Embodiment. コントローラの処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of a controller.
[本開示が解決しようとする課題]
 特許文献1の電源装置にあっては、二つの二次電池の間で充放電を行うため、両方の二次電池の温度が上昇する。しかし、昇温させるべき二次電池の熱容量が他方の二次電池の熱容量よりも大きい場合、他方の二次電池の温度が限界値に達し、昇温させるべき二次電池の温度を目標温度まで昇温することができないおそれがある。
[Problems to be solved by the present disclosure]
In the power supply device of Patent Document 1, since charging and discharging is performed between two secondary batteries, the temperature of both secondary batteries rises. However, when the heat capacity of the secondary battery to be heated is larger than the heat capacity of the other secondary battery, the temperature of the other secondary battery reaches the limit value, and the temperature of the secondary battery to be heated is reduced to the target temperature. There is a possibility that the temperature cannot be raised.
 そこで、二次電池の昇温を確実に行うことができる二次電池昇温装置、コンピュータプログラム及び二次電池昇温方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a secondary battery temperature raising device, a computer program, and a secondary battery temperature raising method capable of reliably raising the temperature of the secondary battery.
[本開示の効果]
 本開示によれば、二次電池の昇温を確実に行うことができる。
[Effects of the present disclosure]
According to the present disclosure, it is possible to reliably raise the temperature of the secondary battery.
[本願開示の実施形態の説明]
 本実施の形態に係る二次電池昇温装置は、二次電池と補助二次電池との間で双方向に充放電を繰り返して前記二次電池を昇温させる二次電池昇温装置であって、前記補助二次電池は、前記二次電池よりも熱容量が小さく、前記二次電池の温度が目標温度に到達するまでの充放電の途中に充放電休止期間を設ける充放電制御部を備える。
[Description of Embodiment of Disclosure of Present Application]
The secondary battery temperature raising device according to the present embodiment is a secondary battery temperature raising device that heats the secondary battery by repeatedly charging and discharging bidirectionally between the secondary battery and the auxiliary secondary battery. The auxiliary secondary battery includes a charge / discharge control unit that has a heat capacity smaller than that of the secondary battery and provides a charge / discharge suspension period in the middle of charge / discharge until the temperature of the secondary battery reaches a target temperature. .
 本実施の形態に係るコンピュータプログラムは、コンピュータに、二次電池と補助二次電池との間で双方向に充放電を繰り返して前記二次電池を昇温させる処理を実行させるコンピュータプログラムであって、前記補助二次電池よりも熱容量が大きい前記二次電池の温度が目標温度に到達するまでの充放電の途中に充放電休止期間を設ける処理を実行させる。 The computer program according to the present embodiment is a computer program that causes a computer to execute a process of repeatedly charging and discharging between the secondary battery and the auxiliary secondary battery to raise the temperature of the secondary battery. A process of providing a charging / discharging suspension period in the middle of charging / discharging until the temperature of the secondary battery having a larger heat capacity than the auxiliary secondary battery reaches a target temperature is executed.
 本実施の形態に係る二次電池昇温方法は、二次電池と補助二次電池との間で双方向に充放電を繰り返して前記二次電池を昇温させる二次電池昇温方法であって、前記補助二次電池は、前記二次電池よりも熱容量が小さく、前記二次電池の温度が目標温度に到達するまでの充放電の途中に充放電制御部が充放電休止期間を設ける。 The secondary battery temperature raising method according to the present embodiment is a secondary battery temperature raising method in which the secondary battery is heated by repeatedly charging and discharging bidirectionally between the secondary battery and the auxiliary secondary battery. In addition, the auxiliary secondary battery has a smaller heat capacity than the secondary battery, and the charge / discharge control unit provides a charge / discharge suspension period in the middle of charge / discharge until the temperature of the secondary battery reaches the target temperature.
 二次電池は昇温させるべき電池であり、補助二次電池は、二次電池よりも熱容量が小さい。充放電制御部は、二次電池の温度が目標温度に到達するまでの充放電の途中に充放電休止期間を設ける。 The secondary battery is a battery to be heated, and the auxiliary secondary battery has a smaller heat capacity than the secondary battery. The charge / discharge control unit provides a charge / discharge suspension period in the middle of charge / discharge until the temperature of the secondary battery reaches the target temperature.
 二次電池の熱容量は補助二次電池の熱容量よりも大きいので、充放電を停止しても二次電池の温度は降下しにくい。一方、補助二次電池の熱容量は二次電池の熱容量よりも小さいので、充放電中においては、補助二次電池の温度上昇は速く、充放電を停止すると温度下降も速い。 Since the heat capacity of the secondary battery is larger than the heat capacity of the auxiliary secondary battery, the temperature of the secondary battery is unlikely to drop even if charging / discharging is stopped. On the other hand, since the heat capacity of the auxiliary secondary battery is smaller than the heat capacity of the secondary battery, the temperature of the auxiliary secondary battery rises quickly during charging / discharging, and the temperature drops rapidly when charging / discharging is stopped.
 二次電池の温度が目標温度に到達するまでの充放電の途中に充放電休止期間を設けることにより、充放電休止期間中に補助二次電池の温度を速く下げることができ、補助二次電池の温度が上限値に達するのを防止しつつ、二次電池の温度を目標温度に向かって上昇させることができる。これにより、二次電池の昇温を確実に行うことができる。 By providing a charging / discharging suspension period in the middle of charging / discharging until the temperature of the secondary battery reaches the target temperature, the temperature of the auxiliary secondary battery can be quickly lowered during the charging / discharging suspension period. The temperature of the secondary battery can be raised toward the target temperature while preventing the temperature of the battery from reaching the upper limit value. As a result, the secondary battery can be reliably heated.
 本実施の形態に係る二次電池昇温装置において、前記充放電制御部は、前記補助二次電池の温度上昇が所定の上限値に到達する前に充放電休止期間を設ける。 In the secondary battery temperature raising device according to the present embodiment, the charge / discharge control unit provides a charge / discharge suspension period before the temperature increase of the auxiliary secondary battery reaches a predetermined upper limit value.
 充放電制御部は、補助二次電池の温度上昇が所定の上限値に到達する前に充放電休止期間を設ける。充放電休止期間を設けることにより、補助二次電池の温度は下降するので、補助二次電池の温度が上限値に達することを防止することができる。 The charge / discharge control unit provides a charge / discharge suspension period before the temperature increase of the auxiliary secondary battery reaches a predetermined upper limit value. By providing the charging / discharging suspension period, the temperature of the auxiliary secondary battery decreases, so that the temperature of the auxiliary secondary battery can be prevented from reaching the upper limit value.
 本実施の形態に係る二次電池昇温装置において、前記充放電制御部は、一の充放電休止期間の開始時点での前記二次電池の温度上昇よりも前記一の充放電休止期間の次の充放電休止期間の開始時点での前記二次電池の温度上昇が大きくなるように充放電休止期間を設ける。 In the secondary battery temperature increasing device according to the present embodiment, the charge / discharge control unit is arranged after the one charge / discharge suspension period rather than the temperature increase of the secondary battery at the start of the one charge / discharge suspension period. The charging / discharging suspension period is provided so that the temperature rise of the secondary battery at the start of the charging / discharging suspension period becomes larger.
 充放電制御部は、一の充放電休止期間の開始時点での二次電池の温度上昇よりも当該一の充放電休止期間の次の充放電休止期間の開始時点での二次電池の温度上昇が大きくなるように充放電休止期間を設ける。 The charge / discharge control unit increases the temperature of the secondary battery at the start time of the charge / discharge suspension period next to the one charge / discharge stop period rather than the temperature increase of the secondary battery at the start time of one charge / discharge stop period. The charging / discharging suspension period is provided so that
 二次電池の熱容量は補助二次電池の熱容量よりも大きいので、充放電を停止しても二次電池の温度は降下しにくい。一の充放電休止期間と次の充放電休止期間との間に充放電期間が存在するので、一の充放電休止期間での二次電池の温度の下降分よりも当該充放電期間での二次電池の温度の上昇分が大きくなるように充放電休止期間を設けることにより、二次電池の温度を目標温度に向かって上昇させることができる。 Since the heat capacity of the secondary battery is larger than the heat capacity of the auxiliary secondary battery, the temperature of the secondary battery is unlikely to drop even if charging / discharging is stopped. Since there is a charge / discharge period between one charge / discharge stop period and the next charge / discharge stop period, the charge / discharge period in the charge / discharge period is more than the decrease in the temperature of the secondary battery in the one charge / discharge stop period. By providing the charging / discharging suspension period so that the temperature rise of the secondary battery is increased, the temperature of the secondary battery can be raised toward the target temperature.
 本実施の形態に係る二次電池昇温装置において、前記充放電制御部は、前記補助二次電池又は前記二次電池の温度上昇に応じて充放電休止期間の長さを調整する。 In the secondary battery temperature increasing device according to the present embodiment, the charge / discharge control unit adjusts the length of the charge / discharge suspension period according to the temperature rise of the auxiliary secondary battery or the secondary battery.
 充放電制御部は、補助二次電池又は二次電池の温度上昇に応じて充放電休止期間の長さを調整する。 The charge / discharge control unit adjusts the length of the charge / discharge suspension period according to the temperature rise of the auxiliary secondary battery or the secondary battery.
 例えば、補助二次電池の温度と所定の上限値との差が大きい場合(上限値に達するまでの余裕が十分ある場合)、充放電休止期間の長さを短くすることができる。これにより、二次電池の温度が目標温度に達するまでの時間を短縮することができる。 For example, when the difference between the temperature of the auxiliary secondary battery and the predetermined upper limit value is large (when there is enough room to reach the upper limit value), the length of the charge / discharge suspension period can be shortened. Thereby, time until the temperature of a secondary battery reaches target temperature can be shortened.
 また、補助二次電池の温度と所定の上限値との差が小さい場合(上限値に達するまでの余裕があまりない場合)、充放電休止期間の長さを長くすることができる。これにより、補助二次電池の温度が上限値に達することを防止することができる。 Also, when the difference between the temperature of the auxiliary secondary battery and the predetermined upper limit value is small (when there is not enough room to reach the upper limit value), the length of the charging / discharging suspension period can be increased. Thereby, it is possible to prevent the temperature of the auxiliary secondary battery from reaching the upper limit value.
 また、二次電池の温度と目標温度との差が小さい場合、充放電休止期間の長さを長くすることができる。これにより、二次電池の温度が目標温度に到達する精度、あるいは目標温度を維持する精度を向上させることができる。 Also, when the difference between the temperature of the secondary battery and the target temperature is small, the length of the charge / discharge suspension period can be increased. Thereby, the precision in which the temperature of a secondary battery reaches | attains target temperature, or the precision which maintains target temperature can be improved.
 本実施の形態に係る二次電池昇温装置は、前記補助二次電池の熱を前記二次電池へ伝える熱伝達部を備える。 The secondary battery temperature increasing device according to the present embodiment includes a heat transfer unit that transfers heat of the auxiliary secondary battery to the secondary battery.
 熱伝達部は、補助二次電池の熱を二次電池へ伝える。これにより、補助二次電池の温度上昇を抑制しつつ二次電池の温度を上昇させることができるので、二次電池の温度を目標温度まで昇温するのに要する時間を短縮することができる。 The heat transfer unit transfers the heat of the auxiliary secondary battery to the secondary battery. Thereby, since the temperature of the secondary battery can be raised while suppressing the temperature rise of the auxiliary secondary battery, the time required for raising the temperature of the secondary battery to the target temperature can be shortened.
 本実施の形態に係る二次電池昇温装置において、前記熱伝達部は、前記二次電池と前記補助二次電池との間に設けられた熱伝導部材及びヒートパイプの少なくとも一つを含む。 In the secondary battery temperature increasing device according to the present embodiment, the heat transfer unit includes at least one of a heat conduction member and a heat pipe provided between the secondary battery and the auxiliary secondary battery.
 熱伝達部は、二次電池と補助二次電池との間に設けられた熱伝導部材及びヒートパイプの少なくとも一つを含む。これにより、補助二次電池の熱を、熱伝導部材及びヒートパイプの少なくとも一つを介して二次電池へ伝達することができるので、補助二次電池の温度上昇を抑制しつつ二次電池の温度を上昇させることができる。 The heat transfer unit includes at least one of a heat conduction member and a heat pipe provided between the secondary battery and the auxiliary secondary battery. As a result, the heat of the auxiliary secondary battery can be transmitted to the secondary battery via at least one of the heat conducting member and the heat pipe. The temperature can be raised.
 本実施の形態に係る二次電池昇温装置において、前記熱伝達部は、前記二次電池と前記補助二次電池との間に設けられたダクトと、該ダクトを通じて空気を送る送風部とを備える。 In the secondary battery temperature increasing device according to the present embodiment, the heat transfer unit includes a duct provided between the secondary battery and the auxiliary secondary battery, and a blower unit that sends air through the duct. Prepare.
 熱伝達部は、二次電池と補助二次電池との間に設けられたダクトと、ダクトを通じて空気を送る送風部とを備える。これにより、補助二次電池の熱を、ダクトを通じて二次電池の方へ伝達することができるので、補助二次電池の温度上昇を抑制しつつ二次電池の温度を上昇させることができる。 The heat transfer unit includes a duct provided between the secondary battery and the auxiliary secondary battery, and a blower unit that sends air through the duct. Thereby, since the heat of the auxiliary secondary battery can be transmitted to the secondary battery through the duct, the temperature of the secondary battery can be increased while suppressing the temperature increase of the auxiliary secondary battery.
 本実施の形態に係る二次電池昇温装置は、前記二次電池と前記補助二次電池との間で双方向に充放電を行う双方向電圧変換ユニットを備え、前記双方向電圧変換ユニットは、前記充放電休止期間を設けて充放電を行う。 The secondary battery temperature increasing device according to the present embodiment includes a bidirectional voltage conversion unit that performs charging and discharging bidirectionally between the secondary battery and the auxiliary secondary battery, and the bidirectional voltage conversion unit includes: The charging / discharging suspension period is provided for charging / discharging.
 双方向電圧変換ユニットは、充放電休止期間を設けて、二次電池と補助二次電池との間で双方向に充放電を行うことができる。 The bidirectional voltage conversion unit can charge / discharge bidirectionally between the secondary battery and the auxiliary secondary battery by providing a charge / discharge suspension period.
[本願開示の実施形態の詳細]
 以下、本実施の形態の二次電池昇温装置を図面に基づいて説明する。図1は本実施の形態のコントローラ50を搭載した車両の要部構成の一例を示すブロック図である。車両は、二次電池としてのメインバッテリ10、補助二次電池としてのサブバッテリ20、双方向電圧変換ユニットとしてのDC/DCコンバータ30、及び二次電池昇温装置としてのコントローラ50などを備える。
[Details of Embodiment of Disclosure of Present Application]
Hereinafter, the secondary battery temperature rising apparatus of this Embodiment is demonstrated based on drawing. FIG. 1 is a block diagram illustrating an example of a configuration of a main part of a vehicle on which a controller 50 according to the present embodiment is mounted. The vehicle includes a main battery 10 as a secondary battery, a sub battery 20 as an auxiliary secondary battery, a DC / DC converter 30 as a bidirectional voltage conversion unit, a controller 50 as a secondary battery temperature raising device, and the like.
 メインバッテリ10は、例えば、リチウムイオン電池とすることができ、複数のセル(不図示)が直列又は直並列に接続されている。メインバッテリ10は、電圧センサ11、電流センサ12、温度センサ13を備える。電圧センサ11は、各セルの電圧、メインバッテリ10の両端の電圧を検出し、検出した電圧をコントローラ50へ出力する。電流センサ12は、例えば、シャント抵抗又はホールセンサ等で構成され、メインバッテリ10の充電電流及び放電電流を検出する。電流センサ12は、検出した電流をコントローラ50へ出力する。温度センサ13は、例えば、サーミスタで構成され、各セルの温度を検出する。温度センサ13は、検出した温度をコントローラ50へ出力する。 The main battery 10 can be, for example, a lithium ion battery, and a plurality of cells (not shown) are connected in series or in series and parallel. The main battery 10 includes a voltage sensor 11, a current sensor 12, and a temperature sensor 13. The voltage sensor 11 detects the voltage of each cell and the voltage across the main battery 10, and outputs the detected voltage to the controller 50. The current sensor 12 is composed of, for example, a shunt resistor or a hall sensor, and detects a charging current and a discharging current of the main battery 10. The current sensor 12 outputs the detected current to the controller 50. The temperature sensor 13 is composed of, for example, a thermistor and detects the temperature of each cell. The temperature sensor 13 outputs the detected temperature to the controller 50.
 メインバッテリ10は、補機用電池として使用することができ、例えば、不図示の始動スイッチ(イグニッションスイッチ)の操作に応じて車両のハイブリッドシステムの起動用に用いられ、あるいは駐車中のバックアップメモリ用の電源として用いられる。メインバッテリ10の定格電圧は、例えば、12Vとすることができるが、これに限定されるものではない。 The main battery 10 can be used as an auxiliary battery. For example, the main battery 10 is used for starting a hybrid system of a vehicle in response to an operation of a start switch (ignition switch) (not shown), or for a backup memory during parking. Used as a power source for The rated voltage of the main battery 10 can be set to 12 V, for example, but is not limited thereto.
 サブバッテリ20は、例えば、電気二重層キャパシタ(EDLC)とすることができ、補助用の電源、あるいは回生などに用いられる。サブバッテリ20の定格電圧は、例えば、48Vとすることができるが、これに限定されるものではない。サブバッテリ20は、温度センサ21を備える。温度センサ21は、サブバッテリ20の温度を検出し、検出した温度をコントローラ50へ出力する。 The sub-battery 20 can be, for example, an electric double layer capacitor (EDLC), and is used for an auxiliary power source or regeneration. The rated voltage of the sub-battery 20 can be set to 48 V, for example, but is not limited thereto. The sub battery 20 includes a temperature sensor 21. The temperature sensor 21 detects the temperature of the sub battery 20 and outputs the detected temperature to the controller 50.
 サブバッテリ20の熱容量は、メインバッテリ10の熱容量よりも小さい。 The heat capacity of the sub battery 20 is smaller than that of the main battery 10.
 DC/DCコンバータ30は、昇降圧回路を備え、双方向に電圧を変換することができる。DC/DCコンバータ30は、Buckモード及びBoostモードで動作する。Buckモードでは、サブバッテリ20の電圧を降圧してメインバッテリ10を充電するとともに、サブバッテリ20を放電する。Boostモードではメインバッテリ10の電圧を昇圧してメインバッテリ10を放電するとともにサブバッテリ20を充電する。すなわち、DC/DCコンバータ30は、メインバッテリ10とサブバッテリ20との間で双方向に充放電を繰り返すことができる。 The DC / DC converter 30 includes a step-up / step-down circuit and can convert a voltage bidirectionally. The DC / DC converter 30 operates in the Buck mode and the Boost mode. In the buck mode, the voltage of the sub-battery 20 is stepped down to charge the main battery 10 and the sub-battery 20 is discharged. In the boost mode, the voltage of the main battery 10 is boosted to discharge the main battery 10 and charge the sub battery 20. That is, the DC / DC converter 30 can repeatedly charge and discharge between the main battery 10 and the sub battery 20 in both directions.
 すなわち、DC/DCコンバータ30は、サブバッテリ20を放電させてメインバッテリ10を充電し、サブバッテリ20を充電してメインバッテリ10を放電させることができる。また、DC/DCコンバータ30は、後述の充放電休止期間を設けて、メインバッテリ10とサブバッテリ20との間で双方向に充放電を行うことができる。 That is, the DC / DC converter 30 can discharge the sub-battery 20 to charge the main battery 10 and charge the sub-battery 20 to discharge the main battery 10. Further, the DC / DC converter 30 can charge and discharge bidirectionally between the main battery 10 and the sub-battery 20 by providing a charge / discharge suspension period described later.
 コントローラ50は、電圧取得部51、電流取得部52、温度取得部53、駆動部54、記憶部55及び充放電制御部56を備える。 The controller 50 includes a voltage acquisition unit 51, a current acquisition unit 52, a temperature acquisition unit 53, a drive unit 54, a storage unit 55, and a charge / discharge control unit 56.
 電圧取得部51は、メインバッテリ10の複数のセルそれぞれの電圧、及びメインバッテリ10の電圧を取得する。電流取得部52は、メインバッテリ10の電流(充電電流及び放電電流)を取得する。なお、電圧、電流を取得するサンプリング周期は、例えば、10msとすることができるが、これに限定されるものではない。温度取得部53は、メインバッテリ10及びサブバッテリ20の温度を取得する。 The voltage acquisition unit 51 acquires the voltage of each of the plurality of cells of the main battery 10 and the voltage of the main battery 10. The current acquisition unit 52 acquires the current (charge current and discharge current) of the main battery 10. The sampling period for acquiring the voltage and current can be set to 10 ms, for example, but is not limited thereto. The temperature acquisition unit 53 acquires the temperatures of the main battery 10 and the sub battery 20.
 駆動部54は、充放電制御部56による充放電制御に基づいて、DC/DCコンバータ30を駆動する。これにより、DC/DCコンバータ30は、メインバッテリ10とサブバッテリ20との間で双方向に充放電を行うことができる。 The drive unit 54 drives the DC / DC converter 30 based on the charge / discharge control by the charge / discharge control unit 56. Thereby, the DC / DC converter 30 can perform charge / discharge bidirectionally between the main battery 10 and the sub-battery 20.
 記憶部55は、メインバッテリ10の電圧、電流及び温度のデータ、サブバッテリ20の温度のデータ並びにコントローラ50が行う処理の内容などを記憶することができる。 The storage unit 55 can store voltage, current and temperature data of the main battery 10, temperature data of the sub-battery 20, and details of processing performed by the controller 50.
 図2は充放電時のメインバッテリ10の電流・電圧波形の一例を示すタイムチャートである。図2の上段の図はメインバッテリ10の電流を示す。便宜上、電流が正の場合を充電とし、負の場合を放電としている。Buckモードではメインバッテリ10を充電し、Boostモードではメインバッテリ10を放電している。Buckモードの時間とBoostモードの時間の合計時間が充放電周期に相当する。 FIG. 2 is a time chart showing an example of a current / voltage waveform of the main battery 10 during charging and discharging. The upper diagram in FIG. 2 shows the current of the main battery 10. For convenience, charging is performed when the current is positive, and discharging is performed when the current is negative. In the Buck mode, the main battery 10 is charged, and in the Boost mode, the main battery 10 is discharged. The total time of the Buck mode time and the Boost mode time corresponds to the charge / discharge cycle.
 図2の下段の図はメインバッテリ10の電圧及びサブバッテリ20の電圧を示す。Buckモードではメインバッテリ10を充電し、サブバッテリ20を放電するので、メインバッテリ10の電圧は放電時より高くなり、サブバッテリ20の電圧は充電時より低くなる。また、Boostモードではメインバッテリ10を放電し、サブバッテリ20を充電するので、メインバッテリ10の電圧は充電時より低くなり、サブバッテリ20の電圧は放電時より高くなる。なお、電圧、電流の波形は模式的に図示しているので、実際の波形とは異なる場合がある。 2 shows the voltage of the main battery 10 and the voltage of the sub battery 20. In the Buck mode, the main battery 10 is charged and the sub-battery 20 is discharged. Therefore, the voltage of the main battery 10 is higher than that during discharging, and the voltage of the sub-battery 20 is lower than that during charging. In the boost mode, the main battery 10 is discharged and the sub battery 20 is charged. Therefore, the voltage of the main battery 10 is lower than that during charging, and the voltage of the sub battery 20 is higher than that during discharging. Since the voltage and current waveforms are schematically shown, they may be different from the actual waveforms.
 充放電制御部56は、メインバッテリ10の温度が目標温度に到達するまでの充放電の途中に充放電休止期間を設ける。メインバッテリ10は昇温させるべきバッテリである。 The charging / discharging control unit 56 provides a charging / discharging suspension period in the middle of charging / discharging until the temperature of the main battery 10 reaches the target temperature. The main battery 10 is a battery to be heated.
 メインバッテリ10の熱容量はサブバッテリ20の熱容量よりも大きいので、充放電を停止してもメインバッテリ10の温度は降下しにくい。一方、サブバッテリ20の熱容量はメインバッテリ10の熱容量よりも小さいので、充放電中においては、サブバッテリ20の温度上昇は速く、充放電を停止すると温度下降も速い。 Since the heat capacity of the main battery 10 is larger than the heat capacity of the sub-battery 20, the temperature of the main battery 10 is unlikely to drop even if charging / discharging is stopped. On the other hand, since the heat capacity of the sub battery 20 is smaller than the heat capacity of the main battery 10, the temperature rise of the sub battery 20 is fast during charging / discharging, and the temperature drop is also quick when charging / discharging is stopped.
 メインバッテリ10の温度が目標温度に到達するまでの充放電の途中に充放電休止期間を設けることにより、充放電休止期間中にサブバッテリ20の温度を速く下げることができ、サブバッテリ20の温度が上限値に達するのを防止しつつ、メインバッテリ10の温度を目標温度に向かって上昇させることができる。これにより、メインバッテリ10の昇温を確実に行うことができる。 By providing a charging / discharging suspension period in the middle of charging / discharging until the temperature of the main battery 10 reaches the target temperature, the temperature of the sub battery 20 can be quickly lowered during the charging / discharging suspension period. The temperature of the main battery 10 can be raised toward the target temperature while preventing the battery from reaching the upper limit value. Thereby, the temperature rise of the main battery 10 can be performed reliably.
 なお、サブバッテリ20の温度上昇の上限は、サブバッテリ20自体の上限温度と周囲の温度によって定まる。例えば、サブバッテリ20としてEDLCを用いる場合、サブバッテリ20自体の上限温度は、例えば、60℃付近となる。周囲温度が-30℃の場合には、サブバッテリ20は、90℃の温度上昇に耐えることができることになる。 In addition, the upper limit of the temperature rise of the sub battery 20 is determined by the upper limit temperature of the sub battery 20 itself and the ambient temperature. For example, when EDLC is used as the sub battery 20, the upper limit temperature of the sub battery 20 itself is, for example, around 60 ° C. When the ambient temperature is −30 ° C., the sub-battery 20 can withstand a temperature increase of 90 ° C.
 図3は本実施の形態のコントローラ50による昇温時のメインバッテリ10及びサブバッテリ20の温度変化の第1例を示す模式図である。図3では、充放電期間Tcと休止期間2Tcとが繰り返される。休止期間(充放電休止期間)の長さは充放電期間の長さの2倍である。充放電期間Tcには、図2に例示した充放電周期が複数回含まれる。例えば、充放電期間Tcを2分とし、充放電周期を1msとすると、1回の充放電期間Tcの間に、充放電が2×60×1000=12万回行われることになる。メインバッテリ10の温度を破線で示し、サブバッテリ20の温度を実線で示す。 FIG. 3 is a schematic diagram showing a first example of temperature changes of the main battery 10 and the sub battery 20 at the time of temperature rise by the controller 50 of the present embodiment. In FIG. 3, the charge / discharge period Tc and the rest period 2Tc are repeated. The length of the rest period (charge / discharge rest period) is twice the length of the charge / discharge period. The charge / discharge period Tc includes the charge / discharge cycle illustrated in FIG. 2 a plurality of times. For example, if the charging / discharging period Tc is 2 minutes and the charging / discharging period is 1 ms, charging / discharging is performed 2 × 60 × 1000 = 120,000 times during one charging / discharging period Tc. The temperature of the main battery 10 is indicated by a broken line, and the temperature of the sub battery 20 is indicated by a solid line.
 図3に示すように、最初の充放電期間Tcにおいて、サブバッテリ20の温度は0からT1に達する。メインバッテリ10の熱容量はサブバッテリ20の熱容量よりも大きいので、温度上昇の速度は遅くなり、メインバッテリ10の温度は0からT2(<T1)に達する。 As shown in FIG. 3, in the first charge / discharge period Tc, the temperature of the sub-battery 20 reaches 0 to T1. Since the heat capacity of the main battery 10 is larger than the heat capacity of the sub-battery 20, the rate of temperature rise is slow, and the temperature of the main battery 10 reaches 0 to T2 (<T1).
 最初の休止期間2Tcにおいて、サブバッテリ20の温度はT1から0に達する。ここでは、サブバッテリ20の温度変化のモデルを時間Tcの間に温度T1だけ上昇し、時間2Tcの間に温度T1だけ下降するものと仮定している。また、最初の休止期間2Tcにおいて、メインバッテリ10の温度はT1からΔTだけ下降する。ここでは、メインバッテリ10の温度変化のモデルを時間Tcの間に温度T2だけ上昇し、時間2Tcの間に温度ΔTだけ下降するものと仮定している。メインバッテリ10とサブバッテリ20の温度上昇及び温度下降の違いは熱容量の差などによるものである。 In the first suspension period 2Tc, the temperature of the sub battery 20 reaches 0 from T1. Here, it is assumed that the temperature change model of the sub-battery 20 increases by the temperature T1 during the time Tc and decreases by the temperature T1 during the time 2Tc. Further, in the first suspension period 2Tc, the temperature of the main battery 10 decreases by ΔT from T1. Here, it is assumed that the temperature change model of the main battery 10 rises by the temperature T2 during the time Tc and falls by the temperature ΔT during the time 2Tc. The difference in temperature rise and temperature drop between the main battery 10 and the sub-battery 20 is due to a difference in heat capacity.
 図3に示すように、充放電期間Tcと休止期間2Tcのサイクルを繰り返すことにより、サブバッテリ20の温度は上限値を超えないようにすることができるとともに、メインバッテリ10の温度を確実に上昇させることができる。 As shown in FIG. 3, by repeating the cycle of the charging / discharging period Tc and the rest period 2Tc, the temperature of the sub battery 20 can be prevented from exceeding the upper limit value, and the temperature of the main battery 10 is reliably increased. Can be made.
 上述のように、充放電制御部56は、サブバッテリ20の温度上昇が所定の上限値に到達する前に充放電休止期間を設ける。充放電休止期間を設けることにより、サブバッテリ20の温度は下降するので、サブバッテリ20の温度が上限値に達することを防止することができる。 As described above, the charging / discharging control unit 56 provides a charging / discharging pause period before the temperature increase of the sub battery 20 reaches a predetermined upper limit value. By providing the charging / discharging suspension period, the temperature of the sub-battery 20 decreases, so that the temperature of the sub-battery 20 can be prevented from reaching the upper limit value.
 また、充放電制御部56は、一の充放電休止期間(例えば、図3の1回目の休止期間2Tc)の開始時点でのメインバッテリ10の温度上昇よりも当該一の充放電休止期間の次の充放電休止期間(例えば、図3の2回目の休止期間2Tc)の開始時点でのメインバッテリ10の温度上昇が大きくなるように充放電休止期間を設ける。 In addition, the charge / discharge control unit 56 follows the one charging / discharging suspension period rather than the temperature rise of the main battery 10 at the start of one charging / discharging suspension period (for example, the first suspension period 2Tc in FIG. 3). The charging / discharging suspension period is provided so that the temperature rise of the main battery 10 at the start of the charging / discharging suspension period (for example, the second suspension period 2Tc in FIG. 3) increases.
 メインバッテリ10の熱容量はサブバッテリ20の熱容量よりも大きいので、充放電を停止してもメインバッテリ10の温度は降下しにくい。一の充放電休止期間と次の充放電休止期間との間に充放電期間(例えば、図3の2回目の充放電期間Tc)が存在するので、一の充放電休止期間でのメインバッテリ10の温度の下降分よりも当該充放電期間でのメインバッテリ10の温度の上昇分が大きくなるように充放電休止期間を設けることにより、メインバッテリ10の温度を目標温度に向かって上昇させることができる。 Since the heat capacity of the main battery 10 is larger than the heat capacity of the sub-battery 20, the temperature of the main battery 10 is unlikely to drop even if charging / discharging is stopped. Since there is a charge / discharge period (for example, the second charge / discharge period Tc in FIG. 3) between one charge / discharge pause period and the next charge / discharge pause period, the main battery 10 in the one charge / discharge pause period By providing a charge / discharge suspension period so that the temperature increase of the main battery 10 during the charge / discharge period is larger than the temperature decrease of the battery, the temperature of the main battery 10 can be increased toward the target temperature. it can.
 図4は本実施の形態のコントローラ50による昇温時のメインバッテリ10及びサブバッテリ20の温度変化の第2例を示す模式図である。図3の例では、休止期間はTcで一定であったが、図4の例では、休止期間の長さを調整する。図4の例では、1回目の充放電期間と休止期間はそれぞれ2Tc及びTcであり、2回目の充放電期間と休止期間はそれぞれ2Tc及びTcであり、3回目の充放電期間と休止期間はそれぞれTc及び2Tcである。なお、図4におけるメインバッテリ10及びサブバッテリ20の温度変化のモデルは、図3の例と異なるものとする。 FIG. 4 is a schematic diagram showing a second example of temperature changes of the main battery 10 and the sub battery 20 at the time of temperature rise by the controller 50 of the present embodiment. In the example of FIG. 3, the suspension period is constant at Tc. However, in the example of FIG. 4, the length of the suspension period is adjusted. In the example of FIG. 4, the first charge / discharge period and the rest period are 2Tc and Tc, respectively, the second charge / discharge period and the rest period are 2Tc and Tc, respectively, and the third charge / discharge period and the rest period are Tc and 2Tc, respectively. Note that the temperature change model of the main battery 10 and the sub battery 20 in FIG. 4 is different from the example of FIG.
 充放電制御部56は、サブバッテリ20又はメインバッテリ10の温度上昇に応じて充放電休止期間の長さを調整することができる。 The charge / discharge control unit 56 can adjust the length of the charge / discharge suspension period according to the temperature rise of the sub battery 20 or the main battery 10.
 例えば、サブバッテリ20の温度と所定の上限値との差が大きい場合(上限値に達するまでの余裕が十分ある場合)、充放電休止期間の長さを短くすることができる。図4の例では、1回目及び2回目の休止期間の長さをTcとしている。これにより、メインバッテリ10の温度が目標温度に達するまでの時間を短縮することができる。 For example, when the difference between the temperature of the sub-battery 20 and the predetermined upper limit value is large (when there is enough room to reach the upper limit value), the length of the charge / discharge suspension period can be shortened. In the example of FIG. 4, the length of the first and second pause periods is Tc. Thereby, time until the temperature of the main battery 10 reaches target temperature can be shortened.
 また、サブバッテリ20の温度と所定の上限値との差が小さい場合(上限値に達するまでの余裕があまりない場合)、充放電休止期間の長さを長くすることができる。図4の例では、3回目の休止期間の長さを2Tcとしている。これにより、サブバッテリ20の温度が上限値に達することを防止することができる。 Also, when the difference between the temperature of the sub-battery 20 and the predetermined upper limit value is small (when there is not much room for reaching the upper limit value), the length of the charging / discharging suspension period can be increased. In the example of FIG. 4, the length of the third pause period is 2Tc. Thereby, it is possible to prevent the temperature of the sub battery 20 from reaching the upper limit value.
 また、メインバッテリ10の温度と目標温度との差が小さい場合、充放電休止期間の長さを長くすることができる。図4の例では、3回目の休止期間の長さを2Tcとしている。これにより、メインバッテリ10の温度変化の度合いを少なくすることができるので、メインバッテリ10の温度が目標温度に到達する精度、あるいは目標温度を維持する精度を向上させることができる。 Further, when the difference between the temperature of the main battery 10 and the target temperature is small, the length of the charging / discharging suspension period can be increased. In the example of FIG. 4, the length of the third pause period is 2Tc. Thereby, since the degree of the temperature change of the main battery 10 can be reduced, the accuracy of the temperature of the main battery 10 reaching the target temperature or the accuracy of maintaining the target temperature can be improved.
 次に、メインバッテリ10とサブバッテリ20の熱容量の差を考慮し、熱伝達部によりサブバッテリ20の温度上昇を抑制しつつサブバッテリ20での発熱を利用してメインバッテリ10の温度を上昇させる方法について説明する。 Next, in consideration of the difference in heat capacity between the main battery 10 and the sub battery 20, the temperature of the main battery 10 is raised using heat generated in the sub battery 20 while suppressing the temperature rise of the sub battery 20 by the heat transfer unit. A method will be described.
 すなわち、熱伝達部は、サブバッテリ20の熱をメインバッテリ10へ伝える。これにより、サブバッテリ20の温度上昇を抑制しつつメインバッテリ10の温度を上昇させることができるので、メインバッテリ10の温度を目標温度まで昇温するのに要する時間を短縮することができる。以下、熱伝達部の具体例について説明する。 That is, the heat transfer unit transfers the heat of the sub battery 20 to the main battery 10. Thereby, since the temperature of the main battery 10 can be raised while suppressing the temperature rise of the sub battery 20, the time required for raising the temperature of the main battery 10 to the target temperature can be shortened. Hereinafter, a specific example of the heat transfer unit will be described.
 図5はメインバッテリ10とサブバッテリ20との構成の第1例を示す模式図である。図5の例では、熱伝達部は、メインバッテリ10とサブバッテリ20との間に設けられた熱伝導部材としての熱伝導シートである。これにより、サブバッテリ20の熱を、熱伝導シートを介してメインバッテリ10へ伝達することができるので、サブバッテリ20の温度上昇を抑制しつつメインバッテリ10の温度を上昇させることができる。なお、図の例では、メインバッテリ10とサブバッテリ20とを角型バッテリの例を挙げているが、形状が角型に限定されるものではなく、ラミネート型、缶型などの他の形状であってもよい。また、熱伝導部材は、熱伝導シートに限定されず、例えば、ゴム、ゲル(ペースト状)等の部材でもよい。 FIG. 5 is a schematic diagram showing a first example of the configuration of the main battery 10 and the sub battery 20. In the example of FIG. 5, the heat transfer unit is a heat conductive sheet as a heat conductive member provided between the main battery 10 and the sub battery 20. Thereby, since the heat of the sub battery 20 can be transmitted to the main battery 10 via the heat conductive sheet, the temperature of the main battery 10 can be increased while suppressing the temperature increase of the sub battery 20. In the example shown in the figure, the main battery 10 and the sub-battery 20 are examples of a square battery, but the shape is not limited to a square shape, and other shapes such as a laminate type and a can type may be used. There may be. Moreover, a heat conductive member is not limited to a heat conductive sheet, For example, members, such as rubber | gum and a gel (paste shape), may be sufficient.
 図6はメインバッテリ10とサブバッテリ20との構成の第2例を示す模式図である。図6の例では、熱伝達部は、メインバッテリ10とサブバッテリ20との間に設けられたヒートパイプである。これにより、サブバッテリ20の熱を、ヒートパイプを介してメインバッテリ10へ伝達することができるので、サブバッテリ20の温度上昇を抑制しつつメインバッテリ10の温度を上昇させることができる。なお、熱伝導部材とヒートパイプの両方を設ける構成でもよい。 FIG. 6 is a schematic diagram showing a second example of the configuration of the main battery 10 and the sub battery 20. In the example of FIG. 6, the heat transfer unit is a heat pipe provided between the main battery 10 and the sub battery 20. Thereby, since the heat of the sub battery 20 can be transmitted to the main battery 10 via the heat pipe, the temperature of the main battery 10 can be raised while suppressing the temperature rise of the sub battery 20. In addition, the structure which provides both a heat conductive member and a heat pipe may be sufficient.
 図7はメインバッテリ10とサブバッテリ20との構成の第3例を示す模式図である。図7の例では、熱伝達部は、メインバッテリ10とサブバッテリ20との間に設けられたダクトと、ダクトを通じて空気を送る送風部としてのファンとを備える。これにより、サブバッテリ20の熱を、ダクトを通じてメインバッテリ10の方へ伝達することができるので、サブバッテリ20の温度上昇を抑制しつつメインバッテリ10の温度を上昇させることができる。なお、ファンの他にブロアを設ける構成でもよい。 FIG. 7 is a schematic diagram showing a third example of the configuration of the main battery 10 and the sub battery 20. In the example of FIG. 7, the heat transfer unit includes a duct provided between the main battery 10 and the sub-battery 20 and a fan as a blower that sends air through the duct. Thereby, since the heat of the sub battery 20 can be transmitted to the main battery 10 through the duct, the temperature of the main battery 10 can be increased while suppressing the temperature increase of the sub battery 20. In addition, the structure which provides a blower other than a fan may be sufficient.
 上述のように、サブバッテリ20で消費される熱をメインバッテリ10の昇温に利用することにより、温度上昇に必要なメインバッテリ10からの持出電力を抑制することができる。このことは、例えば、車載アプリケーションで想定される始動電力の供給性を向上するようなアプリケーションでは重要であり、結果として目標温度までの昇温に要する時間を短縮することができ、車両を始動するまでの時間を短縮することができる。 As described above, by using the heat consumed by the sub-battery 20 to raise the temperature of the main battery 10, it is possible to suppress the power taken out from the main battery 10 necessary for the temperature rise. This is important, for example, in an application that improves the supply of starting power assumed in an in-vehicle application. As a result, it is possible to shorten the time required to raise the temperature to the target temperature and start the vehicle. Can be shortened.
 次に、本実施の形態のコントローラ50によるメインバッテリ10の昇温結果と比較例として本実施の形態に依拠しない場合のメインバッテリ10の昇温結果とを対比して説明する。 Next, the temperature increase result of the main battery 10 by the controller 50 of the present embodiment and the temperature increase result of the main battery 10 when not relying on the present embodiment will be described as a comparative example.
 図8は比較例によるメインバッテリ10の昇温結果の一例を示す模式図である。図中、横軸は時間を示し、縦軸は温度を示す。メインバッテリ10とサブバッテリ20との間で双方向に充放電を繰り返した場合のメインバッテリ10の温度(破線)、及びサブバッテリ20の温度(実線)を示す。また、サブバッテリ20の熱容量はメインバッテリ10の熱容量よりも小さい。図8に示すように、熱容量が小さいサブバッテリ20の温度上昇が速いので、メインバッテリ10の温度が目標温度に到達する前に、サブバッテリ20の温度が上限値を超えてしまう。このため、メインバッテリ10の温度を目標温度まで昇温させることができない。 FIG. 8 is a schematic diagram showing an example of the temperature rise result of the main battery 10 according to the comparative example. In the figure, the horizontal axis indicates time, and the vertical axis indicates temperature. The temperature of the main battery 10 (broken line) and the temperature of the sub battery 20 (solid line) when charging / discharging is repeated bi-directionally between the main battery 10 and the sub battery 20 are shown. Further, the heat capacity of the sub battery 20 is smaller than the heat capacity of the main battery 10. As shown in FIG. 8, since the temperature rise of the sub battery 20 having a small heat capacity is fast, the temperature of the sub battery 20 exceeds the upper limit value before the temperature of the main battery 10 reaches the target temperature. For this reason, the temperature of the main battery 10 cannot be raised to the target temperature.
 図9は本実施の形態のコントローラ50によるメインバッテリ10の昇温結果の一例を示す模式図である。本実施の形態では、充放電期間の間に充放電休止期間を設けるので、メインバッテリ10及びサブバッテリ20の温度は上下に繰り返し変化する。図9では、便宜上、メインバッテリ10及びサブバッテリ20の温度のピークをプロットしたものを表す。これにより、メインバッテリ10及びサブバッテリ20の温度を模式的に曲線状に表すことができる。また、サブバッテリ20の温度上限値、メインバッテリ10の目標温度は便宜上記載したものであり、図9の例に限定されない。 FIG. 9 is a schematic diagram showing an example of a temperature increase result of the main battery 10 by the controller 50 of the present embodiment. In the present embodiment, since the charging / discharging suspension period is provided between the charging / discharging periods, the temperatures of the main battery 10 and the sub battery 20 are repeatedly changed up and down. In FIG. 9, for the sake of convenience, the temperature peaks of the main battery 10 and the sub battery 20 are plotted. Thereby, the temperature of the main battery 10 and the sub battery 20 can be represented typically in a curve. Moreover, the temperature upper limit value of the sub battery 20 and the target temperature of the main battery 10 are described for convenience, and are not limited to the example of FIG.
 図9に示すように、本実施の形態によれば、サブバッテリ20の温度が上限値に達するのを防止しつつ、メインバッテリ10の温度を目標温度に向かって上昇させることができる。これにより、メインバッテリ10の昇温を確実に行うことができる。 As shown in FIG. 9, according to the present embodiment, the temperature of the main battery 10 can be raised toward the target temperature while preventing the temperature of the sub battery 20 from reaching the upper limit value. Thereby, the temperature rise of the main battery 10 can be performed reliably.
 図10はコントローラ50の処理手順の一例を示すフローチャートである。コントローラ50は、メインバッテリ10及びサブバッテリ20の充放電を開始し(S11)、所定時間だけ充放電を継続したか否かを判定する(S12)。なお、所定時間は、メインバッテリ10及びサブバッテリ20の熱容量に基づく温度変化モデルに応じて適宜設定することができる。所定時間は、例えば、1分、2分、5分などとすることができる。 FIG. 10 is a flowchart showing an example of the processing procedure of the controller 50. The controller 50 starts charging / discharging of the main battery 10 and the sub-battery 20 (S11), and determines whether charging / discharging is continued for a predetermined time (S12). The predetermined time can be appropriately set according to a temperature change model based on the heat capacities of the main battery 10 and the sub battery 20. The predetermined time can be, for example, 1 minute, 2 minutes, 5 minutes, or the like.
 所定時間だけ充放電を継続していない場合(S12でNO)、コントローラ50は、ステップS12の処理を続ける。所定時間だけ充放電を継続した場合(S12でYES)、コントローラ50は、メインバッテリ10の温度が目標温度に到達したか否かを判定する(S13)。 If charging / discharging has not been continued for a predetermined time (NO in S12), the controller 50 continues the process of step S12. When charging / discharging is continued for a predetermined time (YES in S12), the controller 50 determines whether or not the temperature of the main battery 10 has reached the target temperature (S13).
 メインバッテリ10の温度が目標温度に到達していない場合(S13でNO)、コントローラ50は、充放電を休止して休止期間を設ける(S14)。コントローラ50は、所定の休止期間が経過したか否かを判定する(S15)。なお、所定の休止期間の長さは、メインバッテリ10及びサブバッテリ20の熱容量に基づく温度変化モデルに応じて適宜設定することができる。また、所定の休止期間の長さは、一定値でもよく、あるいはメインバッテリ10又はサブバッテリ20の温度に応じて調整してもよい。 If the temperature of the main battery 10 has not reached the target temperature (NO in S13), the controller 50 pauses charging / discharging and provides a pause period (S14). The controller 50 determines whether or not a predetermined pause period has elapsed (S15). Note that the length of the predetermined suspension period can be appropriately set according to a temperature change model based on the heat capacities of the main battery 10 and the sub battery 20. Further, the length of the predetermined pause period may be a constant value, or may be adjusted according to the temperature of the main battery 10 or the sub battery 20.
 所定の休止期間が経過していない場合(S15でNO)、コントローラ50は、ステップS15の処理を続ける。所定の休止期間が経過した場合(S15でYES)、コントローラ50は、ステップS11以降の処理を続ける。メインバッテリ10の温度が目標温度に到達した場合(S13でYES)、コントローラ50は、処理を終了する。なお、メインバッテリ10の温度が目標温度に到達した後は、コントローラ50は、メインバッテリ10の温度が目標温度を維持するように制御することができる。 If the predetermined suspension period has not elapsed (NO in S15), the controller 50 continues the process of step S15. When the predetermined suspension period has elapsed (YES in S15), the controller 50 continues the processing from step S11. When the temperature of the main battery 10 reaches the target temperature (YES in S13), the controller 50 ends the process. Note that after the temperature of the main battery 10 reaches the target temperature, the controller 50 can control the temperature of the main battery 10 to maintain the target temperature.
 本実施の形態のコントローラ50は、CPU(プロセッサ)、RAM(メモリ)などを備えた汎用コンピュータを用いて実現することもできる。すなわち、図10に示すような、各処理の手順を定めたコンピュータプログラムをコンピュータに備えられたRAM(メモリ)にロードし、コンピュータプログラムをCPU(プロセッサ)で実行することにより、コンピュータ上でコントローラ50又は充放電制御部56を実現することができる。 The controller 50 according to the present embodiment can be realized by using a general-purpose computer including a CPU (processor), a RAM (memory), and the like. That is, as shown in FIG. 10, a computer program that defines the procedure of each process is loaded into a RAM (memory) provided in the computer, and the computer program is executed by a CPU (processor), whereby the controller 50 is executed on the computer. Alternatively, the charge / discharge control unit 56 can be realized.
 上述の実施の形態では、二次電池昇温装置として、コントローラ50を例に挙げて説明したが、これに限定されない。例えば、二次電池昇温装置は、コントローラ50に加えて、メインバッテリ10、サブバッテリ20、熱伝達部及びDC/DCコンバータ30のいずれか一部又は全部を備える構成でもよい。 In the above-described embodiment, the controller 50 is described as an example of the secondary battery temperature raising device, but is not limited thereto. For example, the secondary battery temperature raising device may include a part or all of the main battery 10, the sub battery 20, the heat transfer unit, and the DC / DC converter 30 in addition to the controller 50.
 上述の実施の形態では、DC/DCコンバータ30は、非絶縁の双方向Buck-Boost型であるが、これに限定されるものではなく、双方向に電圧を変換することができる電圧変換回路であればよく、また非絶縁型又は絶縁型のいずれでもよい。 In the above-described embodiment, the DC / DC converter 30 is a non-isolated bidirectional Buck-Boost type, but is not limited to this, and is a voltage conversion circuit capable of converting a voltage bidirectionally. What is necessary is just to be non-insulation type or insulation type.
 開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The disclosed embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10 メインバッテリ
 11 電圧センサ
 12 電流センサ
 13 温度センサ
 20 サブバッテリ
 21 温度センサ
 30 DC/DCコンバータ
 50 コントローラ
 51 電圧取得部
 52 電流取得部
 53 温度取得部
 54 駆動部
 55 記憶部
 56 充放電制御部
 
DESCRIPTION OF SYMBOLS 10 Main battery 11 Voltage sensor 12 Current sensor 13 Temperature sensor 20 Sub battery 21 Temperature sensor 30 DC / DC converter 50 Controller 51 Voltage acquisition part 52 Current acquisition part 53 Temperature acquisition part 54 Drive part 55 Storage part 56 Charge / discharge control part

Claims (10)

  1.  二次電池と補助二次電池との間で双方向に充放電を繰り返して前記二次電池を昇温させる二次電池昇温装置であって、
     前記補助二次電池は、前記二次電池よりも熱容量が小さく、
     前記二次電池の温度が目標温度に到達するまでの充放電の途中に充放電休止期間を設ける充放電制御部を備える二次電池昇温装置。
    A secondary battery temperature raising device that raises the temperature of the secondary battery by repeatedly charging and discharging bidirectionally between the secondary battery and the auxiliary secondary battery,
    The auxiliary secondary battery has a smaller heat capacity than the secondary battery,
    A secondary battery temperature raising apparatus comprising a charge / discharge control unit that provides a charge / discharge suspension period during charge / discharge until the temperature of the secondary battery reaches a target temperature.
  2.  前記充放電制御部は、
     前記補助二次電池の温度上昇が所定の上限値に到達する前に充放電休止期間を設ける請求項1に記載の二次電池昇温装置。
    The charge / discharge control unit
    The secondary battery temperature raising device according to claim 1, wherein a charging / discharging pause period is provided before the temperature rise of the auxiliary secondary battery reaches a predetermined upper limit value.
  3.  前記充放電制御部は、
     一の充放電休止期間の開始時点での前記二次電池の温度上昇よりも前記一の充放電休止期間の次の充放電休止期間の開始時点での前記二次電池の温度上昇が大きくなるように充放電休止期間を設ける請求項1又は請求項2に記載の二次電池昇温装置。
    The charge / discharge control unit
    The temperature rise of the secondary battery at the start time of the next charge / discharge pause period after the charge / discharge pause period is larger than the temperature rise of the secondary battery at the start time of the charge / discharge pause period. The secondary battery temperature raising device according to claim 1, wherein a charging / discharging suspension period is provided in the battery.
  4.  前記充放電制御部は、
     前記補助二次電池又は前記二次電池の温度上昇に応じて充放電休止期間の長さを調整する請求項1から請求項3のいずれか一項に記載の二次電池昇温装置。
    The charge / discharge control unit
    The secondary battery temperature increasing device according to any one of claims 1 to 3, wherein a length of a charging / discharging suspension period is adjusted according to a temperature rise of the auxiliary secondary battery or the secondary battery.
  5.  前記補助二次電池の熱を前記二次電池へ伝える熱伝達部を備える請求項1から請求項4のいずれか一項に記載の二次電池昇温装置。 The secondary battery temperature increasing device according to any one of claims 1 to 4, further comprising a heat transfer unit that transfers heat of the auxiliary secondary battery to the secondary battery.
  6.  前記熱伝達部は、
     前記二次電池と前記補助二次電池との間に設けられた熱伝導部材及びヒートパイプの少なくとも一つを含む請求項5に記載の二次電池昇温装置。
    The heat transfer unit is
    The secondary battery temperature increasing device according to claim 5, comprising at least one of a heat conduction member and a heat pipe provided between the secondary battery and the auxiliary secondary battery.
  7.  前記熱伝達部は、
     前記二次電池と前記補助二次電池との間に設けられたダクトと、
     該ダクトを通じて空気を送る送風部と
     を備える請求項5に記載の二次電池昇温装置。
    The heat transfer unit is
    A duct provided between the secondary battery and the auxiliary secondary battery;
    The secondary battery temperature increasing device according to claim 5, further comprising: a blower that sends air through the duct.
  8.  前記二次電池と前記補助二次電池との間で双方向に充放電を行う双方向電圧変換ユニットを備え、
     前記双方向電圧変換ユニットは、
     前記充放電休止期間を設けて充放電を行う請求項1から請求項7のいずれか一項に記載の二次電池昇温装置。
    A bidirectional voltage conversion unit that performs charge and discharge bidirectionally between the secondary battery and the auxiliary secondary battery;
    The bidirectional voltage conversion unit includes:
    The secondary battery temperature rising apparatus as described in any one of Claims 1-7 which performs charging / discharging by providing the said charging / discharging rest period.
  9.  コンピュータに、二次電池と補助二次電池との間で双方向に充放電を繰り返して前記二次電池を昇温させる処理を実行させるコンピュータプログラムであって、
     前記補助二次電池よりも熱容量が大きい前記二次電池の温度が目標温度に到達するまでの充放電の途中に充放電休止期間を設ける処理を実行させるコンピュータプログラム。
    A computer program for causing a computer to execute a process of increasing the temperature of the secondary battery by repeatedly charging and discharging bidirectionally between the secondary battery and the auxiliary secondary battery,
    The computer program which performs the process which provides a charging / discharging rest period in the middle of charging / discharging until the temperature of the said secondary battery whose heat capacity is larger than the said auxiliary secondary battery reaches target temperature.
  10.  二次電池と補助二次電池との間で双方向に充放電を繰り返して前記二次電池を昇温させる二次電池昇温方法であって、
     前記補助二次電池は、前記二次電池よりも熱容量が小さく、
     前記二次電池の温度が目標温度に到達するまでの充放電の途中に充放電制御部が充放電休止期間を設ける二次電池昇温方法。
     
    A secondary battery temperature raising method for raising the temperature of the secondary battery by repeatedly charging and discharging bidirectionally between the secondary battery and the auxiliary secondary battery,
    The auxiliary secondary battery has a smaller heat capacity than the secondary battery,
    A secondary battery temperature raising method in which a charge / discharge control unit provides a charge / discharge suspension period during charge / discharge until the temperature of the secondary battery reaches a target temperature.
PCT/JP2019/012638 2018-05-31 2019-03-26 Temperature raising device for secondary battery, computer program, and method for raising temperature of secondary battery WO2019230158A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018105411 2018-05-31
JP2018-105411 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230158A1 true WO2019230158A1 (en) 2019-12-05

Family

ID=68696724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012638 WO2019230158A1 (en) 2018-05-31 2019-03-26 Temperature raising device for secondary battery, computer program, and method for raising temperature of secondary battery

Country Status (1)

Country Link
WO (1) WO2019230158A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350370A (en) * 1999-06-04 2000-12-15 Nec Mobile Energy Kk Battery pack power supply
JP2007311290A (en) * 2006-05-22 2007-11-29 Toyota Motor Corp Power supply
JP2011167027A (en) * 2010-02-15 2011-08-25 Toyota Motor Corp Electric power output device
JP2013518550A (en) * 2010-01-28 2013-05-20 エルジー・ケム・リミテッド Battery pack system for improving operating performance using internal battery resistance
JP2013149471A (en) * 2012-01-19 2013-08-01 Toshiba Corp Secondary battery control device
JP2017011904A (en) * 2015-06-23 2017-01-12 三菱自動車工業株式会社 Electric motor car

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350370A (en) * 1999-06-04 2000-12-15 Nec Mobile Energy Kk Battery pack power supply
JP2007311290A (en) * 2006-05-22 2007-11-29 Toyota Motor Corp Power supply
JP2013518550A (en) * 2010-01-28 2013-05-20 エルジー・ケム・リミテッド Battery pack system for improving operating performance using internal battery resistance
JP2011167027A (en) * 2010-02-15 2011-08-25 Toyota Motor Corp Electric power output device
JP2013149471A (en) * 2012-01-19 2013-08-01 Toshiba Corp Secondary battery control device
JP2017011904A (en) * 2015-06-23 2017-01-12 三菱自動車工業株式会社 Electric motor car

Similar Documents

Publication Publication Date Title
JP5577775B2 (en) Electric vehicle power supply
US9350177B2 (en) Equalization circuit, power supply system, and vehicle
CN106887878B (en) Auxiliary battery recharging system for vehicle and control method thereof
JP2008278635A (en) Battery charging device for electric vehicle and method therefor
JP5344047B2 (en) Secondary battery output control device
US20190305393A1 (en) Power supply system of vehicle
JP5835136B2 (en) In-vehicle charging controller
JP5338799B2 (en) Battery heating system
CN102447140A (en) Lithium-ion battery controlling apparatus
WO2016111106A1 (en) Battery system
JP2015149818A (en) Electric power control device for vehicle
JP5977658B2 (en) Charge control device
CN112440825A (en) Method for charging a vehicle battery of a motor vehicle
US10998748B2 (en) Electric power supply system and control method therefor
JP2019221063A5 (en)
JP5582173B2 (en) Charger
WO2020049943A1 (en) Secondary battery temperature-raising device, computer program, and secondary battery temperature-raising method
JP6034728B2 (en) Power system
JP2017216785A (en) Power supply system, mobile body, and control method
WO2019230158A1 (en) Temperature raising device for secondary battery, computer program, and method for raising temperature of secondary battery
JP4871180B2 (en) Storage device control device
JP5822779B2 (en) Power storage system and charge / discharge control method thereof
JP6939452B2 (en) Solar system
JP2013070547A (en) Power conversion device
JP2019193500A (en) On-vehicle auxiliary power control device and on-vehicle auxiliary power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP