WO2019230137A1 - Surface-treated metal material, surface-treated metal material production method, and electronic component - Google Patents

Surface-treated metal material, surface-treated metal material production method, and electronic component Download PDF

Info

Publication number
WO2019230137A1
WO2019230137A1 PCT/JP2019/011000 JP2019011000W WO2019230137A1 WO 2019230137 A1 WO2019230137 A1 WO 2019230137A1 JP 2019011000 W JP2019011000 W JP 2019011000W WO 2019230137 A1 WO2019230137 A1 WO 2019230137A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thickness
metal material
treated metal
upper layer
Prior art date
Application number
PCT/JP2019/011000
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 智
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Publication of WO2019230137A1 publication Critical patent/WO2019230137A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Definitions

  • the present invention relates to a surface-treated metal material, a method for producing the surface-treated metal material, and an electronic component.
  • copper or copper alloy is used as a base material for electronic parts such as connectors and terminals used in various electronic equipment such as automobiles, home appliances, OA equipment, etc., and these are rust-proof, corrosion-resistant, and improved in electrical characteristics.
  • the plating process is performed for the purpose of such functional improvement.
  • plating such as Au, Ag, Cu, Sn, Ni, solder, and Pd.
  • Sn plating materials plated with Sn or Sn alloy are from the viewpoint of cost, contact reliability, solderability, etc. Widely used in connectors, terminals, switches, outer lead parts of lead frames, and the like.
  • Patent Document 1 a lower layer, an intermediate layer, and an upper layer are sequentially provided on a base material, a predetermined metal is used for the lower layer, the intermediate layer, and the upper layer, and a predetermined thickness and composition are provided. It is described that a metal material for electronic parts having wear resistance and high durability can be produced.
  • Conventional surface-treated metal materials have various plating layers formed on the surface of the substrate with a predetermined thickness as described above to improve the performance as electronic component materials. In particular, contact resistance and insertion force are suppressed. There is room for improvement in terms of improvement.
  • the present invention has been made to solve the above-described problems, and provides a surface-treated metal material in which contact resistance and insertion force are well suppressed.
  • the inventor provided a lower layer, an intermediate layer, and an upper layer in order on the base material, using predetermined metals for the lower layer, the intermediate layer, and the upper layer, each having a predetermined thickness, and from the upper layer side surface. It has been found that a surface-treated metal material capable of solving the problem can be obtained by controlling a predetermined area ratio in EDS analysis.
  • the present invention completed on the basis of the above knowledge is, in one aspect, a base material, a lower layer made of Ni formed on the base material, and a Ni 3 Sn 4 alloy formed on the lower layer.
  • An intermediate layer formed on the intermediate layer, and an upper layer formed of an Ag 3 Sn alloy; the lower layer has a thickness of 0.5 ⁇ m or more and 3.0 ⁇ m or less;
  • the upper layer thickness is 0.25 ⁇ m or more and 0.55 ⁇ m or less, and the Ag 3 Sn area ratio is 97% or more by EDS analysis from the upper layer side surface, and the upper layer side surface has a thickness of 97% or more and 0.20 ⁇ m or less.
  • It is a surface-treated metal material having an oxide film thickness of less than 2 nm.
  • the surface-treated metal material of the present invention has a thickness of the lower layer of 0.5 to 2.0 ⁇ m, a thickness of the middle layer of 0.05 to 0.15 ⁇ m, and a thickness of the upper layer. It is 0.3 ⁇ m or more and 0.45 ⁇ m or less.
  • the thickness ratio of the upper layer to the middle layer: the upper layer / middle layer is 1.0 to 2.5.
  • the density of particles having a particle size of 0.04 ⁇ m or less is 30% or more by frequency analysis in the EBSD analysis from the upper surface.
  • P and N are attached to the surface of the upper layer, and the amount of P and N attached is respectively P: 1 ⁇ 10 ⁇ 11 to 4 ⁇ 10 ⁇ 8 mol / cm 2 , N: 2 ⁇ 10 ⁇ 12 to 8 ⁇ 10 ⁇ 9 mol / cm 2 It is.
  • the photoelectron detection intensity caused by the 2S orbital electrons of P detected is I (P2s), and the 1S orbital electrons of N
  • the resulting photoelectron detection intensity is I (N1s)
  • 0.1 ⁇ I (P2s) / I (N1s) ⁇ 1 is satisfied.
  • the photoelectron detection intensity caused by the 2S orbital electrons of P detected is I (P2s), and the 1S orbital electrons of N
  • the resulting photoelectron detection intensity is I (N1s)
  • 1 ⁇ I (P2s) / I (N1s) ⁇ 50 is satisfied.
  • a Ni underlayer having a thickness of 0.5 to 3.0 ⁇ m, an Ag layer having a thickness of 0.2 to 0.35 ⁇ m, and 0.1 to 0.00 ⁇ m are formed on the substrate.
  • a step of providing a Sn layer having a thickness of 2 ⁇ m in this order and plating so that the thickness ratio of the Sn layer and the Ag layer is Sn layer / Ag layer 1.0 to 2.5; And a step of performing a reflow treatment at 785 to 825 ° C. for 25 to 30 seconds after the plating treatment.
  • the present invention is an electronic component including the surface-treated metal material of the present invention.
  • the present inventor has observed the surface of the surface-treated metal material and confirmed that unreacted Sn and Ag remain and the deterioration of the characteristics due to this. And the plating structure (composition and thickness) for suppressing the residue of unreacted Sn and Ag on the surface of a surface treatment metal material as much as possible, and the reflow process conditions for that were discovered.
  • the surface-treated metal material according to the embodiment of the present invention will be described.
  • a lower layer 12 is formed on a base material 11
  • an intermediate layer 13 is formed on the lower layer 12
  • an upper layer 14 is formed on the intermediate layer 13.
  • Base material Although it does not specifically limit as the base material 11, for example, metal base materials, such as copper and a copper alloy, Fe-type material, stainless steel, titanium and a titanium alloy, aluminum, and an aluminum alloy, can be used.
  • the lower layer 12 is made of Ni and has a thickness of 0.5 ⁇ m or more and 3.0 ⁇ m or less.
  • the formation of the hard lower layer 12 improves the thin film lubrication effect and reduces adhesion wear, and the lower layer 12 prevents the constituent metal of the base material 11 from diffusing into the upper layer 14.
  • the thickness of the lower layer 12 is less than 0.5 ⁇ m, the thin film lubrication effect by the hard lower layer is lowered and adhesion wear is increased, and the constituent metal of the base material 11 is easily diffused into the upper layer 14. There is a risk of wettability degradation.
  • the thickness of the lower layer 12 exceeds 3.0 ⁇ m, bending workability may be deteriorated.
  • the thickness of the lower layer 12 is preferably 0.5 ⁇ m or more and 2.0 ⁇ m or less.
  • the middle layer 13 is made of a Ni 3 Sn 4 alloy and has a thickness of 0.03 ⁇ m or more and 0.20 ⁇ m or less. Since the middle layer 13 is made of a Ni 3 Sn 4 alloy, it has excellent corrosion resistance against gases such as chlorine gas, sulfurous acid gas, and hydrogen sulfide gas, and prevents the constituent metals of the base material 11 from diffusing into the upper layer 14. Improve durability such as heat resistance test and suppressing solder wettability degradation. If the thickness of the middle layer 13 is less than 0.03 ⁇ m, the film becomes soft and adhesion wear may increase. On the other hand, when the thickness of the middle layer 13 exceeds 0.20 ⁇ m, the bending workability may be deteriorated.
  • the thickness of the middle layer is preferably 0.05 ⁇ m or more and 0.15 ⁇ m or less.
  • the upper layer 14 is made of an Ag 3 Sn alloy and has a thickness of 0.25 ⁇ m or more and 0.55 ⁇ m or less. Since the upper layer 14 is made of an Ag 3 Sn alloy, corrosion resistance to gases such as chlorine gas, sulfurous acid gas, and hydrogen sulfide gas is improved, and contact resistance is reduced. If the thickness of the upper layer 14 is less than 0.25 ⁇ m, the composition of the base material 11 and the lower layer 12 is likely to diffuse to the upper layer 14 side and heat resistance may deteriorate. Further, the upper layer 14 is worn by fine sliding, and the lower layer 12 having a high contact resistance is easily exposed, so the resistance to fine sliding wear is poor, and the contact resistance is likely to increase by fine sliding.
  • the thickness of the upper layer 14 exceeds 0.55 ⁇ m, the thin film lubrication effect by the hard base material 11 or the lower layer 12 may be reduced, and adhesion wear may be increased. Further, the mechanical durability is lowered, and there is a possibility that plating scraping is likely to occur.
  • the thickness of the upper layer is preferably 0.3 ⁇ m or more and 0.45 ⁇ m or less.
  • the surface-treated metal material according to the embodiment of the present invention has an Ag 3 Sn area ratio of 97% or more by EDS analysis from the surface on the upper layer 14 side.
  • the Ag 3 Sn area ratio is preferably 98% or more, and more preferably 99% or more.
  • the thickness of the oxide film on the upper layer 14 side surface is controlled to be less than 2 nm. With such a configuration, the contact resistance of the surface-treated metal material is improved.
  • the lower limit of the thickness of the oxide film on the surface of the upper layer 14 is not particularly limited, but may be 0.3 nm, for example.
  • the thickness ratio of the upper layer 14 and the middle layer 13: the upper layer / middle layer is preferably 1.0 to 2.5. With such a configuration, it is possible to improve the low whisker property and durability, and the fine sliding wear resistance.
  • the density of particles having a particle size of 0.04 ⁇ m or less is preferably 30% or more by frequency analysis in the EBSD analysis from the surface on the upper layer 14 side. With such a configuration, it is possible to improve the low whisker property and durability, and the fine sliding wear resistance.
  • a connector may be produced using the connector terminal formed in this way, and an FFC or FPC may be produced using an FFC terminal or an FPC terminal.
  • the surface-treated metal material according to the embodiment of the present invention is provided with a female terminal connection portion on one side of a mounting portion attached to the housing and a substrate connection portion on the other side, and the substrate connection portion is formed on the substrate. You may use for the press-fit type terminal which press-fits to a through-hole and attaches to this board
  • both the male terminal and the female terminal may be the surface-treated metal material according to the embodiment of the present invention, or only one of the male terminal and the female terminal.
  • the low insertion property is further improved by using both the male terminal and the female terminal as the surface-treated metal material according to the embodiment of the present invention.
  • ⁇ Method for producing surface-treated metal material> (Film formation and reflow treatment)
  • wet (electrical, electroless) plating, dry (sputtering, ion plating, etc.) plating, or the like can be used.
  • a Ni underlayer having a thickness of 0.5 to 3.0 ⁇ m, an Ag layer having a thickness of 0.2 to 0.35 ⁇ m, and a Sn layer having a thickness of 0.1 to 0.2 ⁇ m are formed on the substrate.
  • the surface-treated metal material according to the embodiment of the present invention is obtained by performing a reflow process at 785 to 825 ° C. for 25 to 30 seconds. If reflow is insufficient, the Ag 3 Sn area ratio will be less than 97%. On the other hand, in the case of over reflow, excellent contact resistance cannot be realized due to the thickness of the oxide film formed on the upper layer side surface being 2 nm or more.
  • the Ni underlayer, the Ag layer, and the Sn layer are provided in the above thickness ratio with each other, and the reflow treatment is performed at 785 to 825 ° C. for 25 to 30 seconds, so that the surface from the surface on the upper layer 14 side
  • the Ag 3 Sn area ratio can be controlled to 97% or more by EDS analysis.
  • the reflow treatment may be performed after a post-treatment using a phosphoric ester-based liquid described below before the reflow treatment.
  • the upper layer surface of the plating material is an aqueous solution (phosphate ester-based solution) containing one or more phosphate esters and one or more cyclic organic compounds. It is desirable to use this method.
  • the phosphoric acid ester added to the phosphoric acid ester system liquid functions as an antioxidant and a lubricant for plating.
  • the phosphate ester used in the present invention is represented by the general formulas [1] and [2].
  • Preferable examples of the compound represented by the general formula [1] include lauryl acidic phosphoric acid monoester.
  • Preferred examples of the compound represented by the general formula [2] include lauryl acidic phosphoric acid diester.
  • R 1 and R 2 each represent a substituted alkyl, and M represents hydrogen or an alkali metal.
  • the cyclic organic compound added to the phosphate ester solution functions as an antioxidant for plating.
  • a group of cyclic organic compounds used in the present invention is represented by general formulas [3] and [4].
  • Preferred examples of the cyclic organic compound group represented by the general formulas [3] and [4] include, for example, mercaptobenzothiazole, mercaptobenzothiazole Na salt, mercaptobenzothiazole K salt, benzotriazole, 1-methyltriazole, Examples include tolyltriazole and triazine compounds.
  • R 1 represents hydrogen, alkyl, or substituted alkyl
  • R 2 represents an alkali metal, hydrogen, alkyl, or substituted alkyl
  • R 3 represents an alkali metal or hydrogen
  • R 4 represents —SH, an amino group substituted with an alkyl group or an aryl group, or alkyl-substituted imidazolylalkyl
  • R 5 and R 6 represent —NH 2 , —SH or —SM (M represents an alkali metal).
  • processing is performed so that both P and N are present on the upper surface of the outermost layer after post-processing. If P is not present on the surface of the upper layer, the solderability is likely to deteriorate, and the lubricity of the plating material also deteriorates. On the other hand, if N is not present on the upper layer surface, the contact resistance of the plating material tends to increase in a high temperature environment.
  • the adhesion amount of P and N respectively, P: 1 ⁇ 10 ⁇ 11 to 4 ⁇ 10 ⁇ 8 mol / cm 2 , N: 2 ⁇ 10 ⁇ 12 to 8 ⁇ 10 ⁇ 9 mol / cm 2
  • the adhesion amount of P is less than 1 ⁇ 10 ⁇ 11 mol / cm 2
  • the solder wettability tends to deteriorate, and if it exceeds 4 ⁇ 10 ⁇ 8 mol / cm 2 , a problem arises that the contact resistance increases.
  • the detected photoelectron intensity caused by 2S orbital electrons of P is I (P2s)
  • the detected photoelectron intensity caused by 1S orbital electrons of N is I (N1s).
  • ..Ltoreq.I (P2s) / I (N1s) .ltoreq.1 contact resistance and solderability are unlikely to deteriorate in a high temperature environment.
  • the value of I (P2s) / I (N1s) is less than 0.1, there is a risk that the deterioration prevention function such as contact resistance may not be sufficient, and when the value exceeds 1, there is a possibility that the dynamic friction coefficient becomes small. is there.
  • the detected photoelectron intensity caused by 2S orbital electrons of P is I (P2s)
  • the detected photoelectron intensity caused by 1S orbital electrons of N is I (N1s).
  • ⁇ I (P2s) / I (N1s) ⁇ 50 is satisfied, the dynamic friction coefficient becomes small, and the insertion force of the terminals and connectors becomes low. If the value of I (P2s) / I (N1s) is 1 or less, the insertion force may be slightly higher. If the value exceeds 50, the initial contact resistance increases and the initial solderability is poor. There is a risk.
  • the concentration of the phosphate ester for obtaining the adhesion amount of the post-treatment liquid component according to the embodiment of the present invention is 0.1 to 10 g / L, preferably 0.5 to 5 g / L.
  • the concentration of the cyclic organic compound is 0.01 to 1.0 g / L, preferably 0.05 to 0.6 g / L with respect to the total volume of the treatment liquid.
  • Phosphate-based liquid is an aqueous solution containing the above-mentioned components, but when the temperature of the solution is heated to 40 to 80 ° C., the emulsification of the components into water proceeds more rapidly and the material after further treatment can be easily dried. become.
  • the surface treatment may be performed by applying a phosphate ester-based liquid to the surface of the upper layer.
  • the application method include spray coating, flow coating, dip coating, roll coating and the like. From the viewpoint of productivity, dip coating or spray coating is preferred.
  • the surface-treated metal material after the reflow treatment may be immersed in a phosphoric acid ester-based liquid and electrolyzed using the surface-treated metal material as an anode.
  • the surface-treated metal material treated by this method has an advantage that the contact resistance under a high temperature environment is less likely to increase.
  • Example 1 (Production of surface-treated metal material) As Examples 1 to 10 and Comparative Examples 1 to 7, Ni plating, Ag plating, Sn plating on the surface of a base material (brass plate having a width of 20 mm, a length of 80 mm, and a thickness of 0.64 mm) under the following conditions, Surface treatment was performed in the order of phosphoric acid ester liquid treatment and heat treatment. Table 1 shows the plating thickness, heat treatment (reflow treatment) conditions, and phosphate ester-based liquid treatment conditions during production of each example and comparative example.
  • Phosphate ester type A1 Lauryl acid phosphate monoester (monolauryl phosphate phosphate) ⁇ Phosphate ester type: A2 Lauryl acid phosphate diester (phosphate dilauryl ester) -Cyclic organic compound species: B1 Benzotriazole ⁇ Cyclic organic compound species: B2 Mercaptobenzothiazole Na salt ⁇ Electrolysis conditions: 2V anodic electrolysis at 2V
  • the contact resistance was measured with a contact load of 3 N by the four-terminal method (precision sliding tester CRS-G2050, Yamazaki Seiki Laboratories). A sample immediately after plating (initial stage) was evaluated as a sample. The number of samples was 5, and the range from the minimum value to the maximum value of each sample was adopted. In the present disclosure, when the contact resistance is 3 m ⁇ or less, it is defined as an excellent contact resistance.
  • Insertion force Insertion force was evaluated by performing insertion / removal tests with a plated male terminal using a commercially available Sn reflow plating female terminal (090 type Sumitomo TS / Yazaki 090II series female terminal non-waterproof / F090-SMTS).
  • the measuring device used for the test was 1311NR made by Ikko Engineering, and the evaluation was performed with a male spin sliding distance of 5 mm.
  • the insertion force is less than 1.2 N, it is defined as an excellent insertion force.
  • Corrosion resistance was evaluated in the following test environment. Evaluation of corrosion resistance is the appearance of the sample after the test after the environmental test. The target characteristic is that the appearance is not discolored or is slightly discolored with no practical problem. Hydrogen sulfide gas corrosion test Hydrogen sulfide concentration: 10ppm Temperature: 40 ° C Humidity: 80% RH Exposure time: 96h Number of samples: 5 In the present disclosure, when the ratio of the color change area (color change rate) to the sample area (total area) is less than 1%, it is defined as excellent corrosion resistance.
  • FIG. 2 shows the results of surface observation by EDS analysis of Example 3 and FIG.
  • FIG. 4 shows the frequency analysis results of particles of a predetermined size in the EBSD analysis of Example 3 and FIG. 5 in Comparative Example 2.
  • Table 2 shows the EBSD particle size distribution for particles having a particle size of 0.04 ⁇ m or less.
  • FIG. 6 shows STEM observation images of Example 2 and FIG. Test conditions and evaluation results are shown in Tables 1 and 2.
  • Comparative Example 5 could not realize an excellent contact resistance.
  • Comparative Example 6 since the Ag layer before reflow was thin, the thickness of the upper layer after reflow was thin. As a result, in Comparative Example 6, the Ag 3 Sn area ratio was less than 97%, and excellent corrosion resistance could not be realized.
  • Comparative Example 7 since the Ag layer before reflow was thick, the thickness of the middle layer after reflow was thin. As a result, in Comparative Example 7, the Ag 3 Sn area ratio was less than 97%, and excellent corrosion resistance could not be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a surface-treated metal material of which contact resistance and insertion force are suppressed finely. This surface-treated metal material is provided with: a base material; a lower layer comprising Ni and formed on the base material; an intermediate layer comprising a Ni3Sn4 alloy and formed on the lower layer; and an upper layer comprising an Ag3Sn alloy and formed on the intermediate layer. The lower layer has a thickness of 0.5-3.0 μm; the intermediate layer has a thickness of 0.03-0.20 μm; and the upper layer has a thickness of 0.25-0.55 μm. When an EDS analysis is performed thereon from the upper layer-side surface, the surface-treated metal material has an Ag3Sn area ratio of 97% or more, and the thickness of an oxide film on the upper layer-side surface is less than 2 nm.

Description

表面処理金属材料、表面処理金属材料の製造方法、及び、電子部品Surface-treated metal material, method for producing surface-treated metal material, and electronic component
 本発明は、表面処理金属材料、表面処理金属材料の製造方法、及び、電子部品に関する。 The present invention relates to a surface-treated metal material, a method for producing the surface-treated metal material, and an electronic component.
 一般に、自動車、家電、OA機器等の各種電子機器に使用されるコネクタ・端子等の電子部品には、銅又は銅合金が母材として使用され、これらは防錆、耐食性向上、電気的特性向上といった機能向上を目的としてめっき処理がなされている。めっきにはAu、Ag、Cu、Sn、Ni、半田及びPd等の種類があるが、特にSnまたはSn合金めっきを施したSnめっき材はコスト面、接触信頼性およびはんだ付け性等の観点からコネクタ、端子、スイッチ及びリードフレームのアウターリード部等に多用されている。 In general, copper or copper alloy is used as a base material for electronic parts such as connectors and terminals used in various electronic equipment such as automobiles, home appliances, OA equipment, etc., and these are rust-proof, corrosion-resistant, and improved in electrical characteristics. The plating process is performed for the purpose of such functional improvement. There are various types of plating, such as Au, Ag, Cu, Sn, Ni, solder, and Pd. Especially, Sn plating materials plated with Sn or Sn alloy are from the viewpoint of cost, contact reliability, solderability, etc. Widely used in connectors, terminals, switches, outer lead parts of lead frames, and the like.
 Sn系めっきでは、高温環境下で接触抵抗が上昇し、またはんだ付け性が劣化するという問題がある。この問題を回避する方法としてSn系めっきの厚さを厚くするという方法もあるが、この方法では後述の端子、コネクタの挿入力が増大するという問題が新たに発生する。 In Sn-based plating, there is a problem that contact resistance increases in a high temperature environment or solderability deteriorates. As a method for avoiding this problem, there is a method of increasing the thickness of the Sn-based plating. However, this method newly causes a problem that the insertion force of terminals and connectors described later increases.
 近年では、コネクタのピンの数が増え、これに伴うコネクタ挿入力の増加も問題になっている。自動車等のコネクタの組み立て作業は人手に頼ることが多く、挿入力の増大は作業者の手にかかる負担が大きくなるため、コネクタの低挿入力化が望まれているが、Snは端子の嵌合接続時の摩擦が大きく、コネクタの芯数が著しく増大すると強大な挿抜力が必要になる。 In recent years, the number of connector pins has increased, and the accompanying increase in connector insertion force has also become a problem. Connector assembly work for automobiles and the like often relies on human hands, and increasing the insertion force increases the burden on the operator's hand, so a low insertion force of the connector is desired. When the connection is large and the number of cores of the connector is remarkably increased, a strong insertion / extraction force is required.
 特許文献1には、基材上に下層と中層と上層とを順に設け、下層と中層と上層とに所定の金属を用い、且つ、所定の厚み及び組成とすることで低ウィスカ性、低凝着磨耗性及び高耐久性を有する電子部品用金属材料を作製することができると記載されている。 In Patent Document 1, a lower layer, an intermediate layer, and an upper layer are sequentially provided on a base material, a predetermined metal is used for the lower layer, the intermediate layer, and the upper layer, and a predetermined thickness and composition are provided. It is described that a metal material for electronic parts having wear resistance and high durability can be produced.
特許第5275504号公報Japanese Patent No. 5275504
 従来の表面処理金属材料は、上述のように基材の表面に種々のめっき層を所定の厚みで形成し、電子部品材料としての性能を向上させているが、特に接触抵抗と挿入力の抑制向上の点で改善の余地がある。 Conventional surface-treated metal materials have various plating layers formed on the surface of the substrate with a predetermined thickness as described above to improve the performance as electronic component materials. In particular, contact resistance and insertion force are suppressed. There is room for improvement in terms of improvement.
 本発明は上記の課題を解決するためになされたものであり、接触抵抗と挿入力が良好に抑制された表面処理金属材料を提供する。 The present invention has been made to solve the above-described problems, and provides a surface-treated metal material in which contact resistance and insertion force are well suppressed.
 本発明者は、鋭意検討の結果、基材上に下層と中層と上層とを順に設け、下層と中層と上層とに所定の金属を用い、それぞれ所定の厚みとし、且つ、上層側表面からのEDS分析での所定の面積率を制御することで、当該課題を解決し得る表面処理金属材料が得られることを見出した。 As a result of intensive studies, the inventor provided a lower layer, an intermediate layer, and an upper layer in order on the base material, using predetermined metals for the lower layer, the intermediate layer, and the upper layer, each having a predetermined thickness, and from the upper layer side surface. It has been found that a surface-treated metal material capable of solving the problem can be obtained by controlling a predetermined area ratio in EDS analysis.
 以上の知見を基礎として完成した本発明は一側面において、基材と、前記基材上に形成された、Niで構成された下層と、前記下層上に形成された、Ni3Sn4合金で構成された中層と、前記中層上に形成された、Ag3Sn合金で構成された上層とを備え、前記下層の厚みが0.5μm以上3.0μm以下であり、前記中層の厚みが0.03μm以上0.20μm以下であり、前記上層の厚みが0.25μm以上0.55μm以下であり、前記上層側表面からのEDS分析でAg3Sn面積率が97%以上であり、上層側表面の酸化膜の厚みが2nm未満である、表面処理金属材料である。 The present invention completed on the basis of the above knowledge is, in one aspect, a base material, a lower layer made of Ni formed on the base material, and a Ni 3 Sn 4 alloy formed on the lower layer. An intermediate layer formed on the intermediate layer, and an upper layer formed of an Ag 3 Sn alloy; the lower layer has a thickness of 0.5 μm or more and 3.0 μm or less; The upper layer thickness is 0.25 μm or more and 0.55 μm or less, and the Ag 3 Sn area ratio is 97% or more by EDS analysis from the upper layer side surface, and the upper layer side surface has a thickness of 97% or more and 0.20 μm or less. It is a surface-treated metal material having an oxide film thickness of less than 2 nm.
 本発明の表面処理金属材料は一実施形態において、前記下層の厚みが0.5μm以上2.0μm以下であり、前記中層の厚みが0.05μm以上0.15μm以下であり、前記上層の厚みが0.3μm以上0.45μm以下である。 In one embodiment, the surface-treated metal material of the present invention has a thickness of the lower layer of 0.5 to 2.0 μm, a thickness of the middle layer of 0.05 to 0.15 μm, and a thickness of the upper layer. It is 0.3 μm or more and 0.45 μm or less.
 本発明の表面処理金属材料は別の一実施形態において、前記上層と前記中層との厚み比:上層/中層が1.0~2.5である。 In another embodiment of the surface-treated metal material of the present invention, the thickness ratio of the upper layer to the middle layer: the upper layer / middle layer is 1.0 to 2.5.
 本発明の表面処理金属材料は更に別の一実施形態において、前記上層側表面からのEBSD分析において、粒径0.04μm以下の粒子の密度が頻度分析で30%以上である。 In yet another embodiment of the surface-treated metal material of the present invention, the density of particles having a particle size of 0.04 μm or less is 30% or more by frequency analysis in the EBSD analysis from the upper surface.
 本発明の表面処理金属材料は更に別の一実施形態において、前記上層の表面にP及びNが付着しており、前記P及びNの付着量がそれぞれ、
  P:1×10-11~4×10-8mol/cm2、N:2×10-12~8×10-9mol/cm2
である。
In yet another embodiment of the surface-treated metal material of the present invention, P and N are attached to the surface of the upper layer, and the amount of P and N attached is respectively
P: 1 × 10 −11 to 4 × 10 −8 mol / cm 2 , N: 2 × 10 −12 to 8 × 10 −9 mol / cm 2
It is.
 本発明の表面処理金属材料は更に別の一実施形態において、前記上層をXPSで分析した際に、検出されるPの2S軌道電子起因の光電子検出強度をI(P2s)、Nの1S軌道電子起因の光電子検出強度をI(N1s)としたとき、0.1≦I(P2s)/I(N1s)≦1を満たす。 In still another embodiment of the surface-treated metal material of the present invention, when the upper layer is analyzed by XPS, the photoelectron detection intensity caused by the 2S orbital electrons of P detected is I (P2s), and the 1S orbital electrons of N When the resulting photoelectron detection intensity is I (N1s), 0.1 ≦ I (P2s) / I (N1s) ≦ 1 is satisfied.
 本発明の表面処理金属材料は更に別の一実施形態において、前記上層をXPSで分析した際に、検出されるPの2S軌道電子起因の光電子検出強度をI(P2s)、Nの1S軌道電子起因の光電子検出強度をI(N1s)としたとき、1<I(P2s)/I(N1s)≦50を満たす。 In still another embodiment of the surface-treated metal material of the present invention, when the upper layer is analyzed by XPS, the photoelectron detection intensity caused by the 2S orbital electrons of P detected is I (P2s), and the 1S orbital electrons of N When the resulting photoelectron detection intensity is I (N1s), 1 <I (P2s) / I (N1s) ≦ 50 is satisfied.
 本発明は別の一側面において、前記基材上に、0.5~3.0μmの厚みのNi下地層、0.2~0.35μmの厚みのAg層、及び、0.1~0.2μmの厚みのSn層をこの順で、且つ、前記Sn層と前記Ag層との厚み比がSn層/Ag層=1.0~2.5となるように、めっき処理で設ける工程と、前記めっき処理の後、785~825℃で25~30秒のリフロー処理を行う工程とを含む本発明の表面処理金属材料の製造方法である。 In another aspect of the present invention, a Ni underlayer having a thickness of 0.5 to 3.0 μm, an Ag layer having a thickness of 0.2 to 0.35 μm, and 0.1 to 0.00 μm are formed on the substrate. A step of providing a Sn layer having a thickness of 2 μm in this order and plating so that the thickness ratio of the Sn layer and the Ag layer is Sn layer / Ag layer = 1.0 to 2.5; And a step of performing a reflow treatment at 785 to 825 ° C. for 25 to 30 seconds after the plating treatment.
 本発明は更に別の一側面において、本発明の表面処理金属材料を備えた電子部品である。 In still another aspect, the present invention is an electronic component including the surface-treated metal material of the present invention.
 本発明によれば、接触抵抗と挿入力が良好に抑制された表面処理金属材料を提供することができる。 According to the present invention, it is possible to provide a surface-treated metal material in which contact resistance and insertion force are well suppressed.
実施形態に係る表面処理金属材料の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the surface treatment metal material which concerns on embodiment. 実施例3のEDS分析による表面観察結果である。It is the surface observation result by the EDS analysis of Example 3. 比較例2のEDS分析による表面観察結果である。It is a surface observation result by the EDS analysis of the comparative example 2. 実施例3のEBSD分析における所定サイズの粒子の頻度分析結果である。It is the frequency analysis result of the particle | grains of the predetermined size in the EBSD analysis of Example 3. FIG. 比較例2のEBSD分析における所定サイズの粒子の頻度分析結果である。It is the frequency analysis result of the particle | grains of the predetermined size in the EBSD analysis of the comparative example 2. 実施例2のSTEM観察画像である。3 is a STEM observation image of Example 2. 比較例5のSTEM観察画像である。10 is a STEM observation image of Comparative Example 5.
 <表面処理金属材料の構成>
 従来、表面処理金属材料の基材上にSnやAgを設けてリフロー処理によって各種めっき層を形成することで、接触抵抗及び挿入力を低減させ、耐食性を向上させようとしていた。しかしながら本発明者はこれら性能の更なる向上を検討していた。そこで、従来は表面処理金属材料を断面観察することでライン分析を行い、めっき品の評価をしていたが、表面からの詳細な観察をしていなかったことに着目した。このような表面からの観察をしていないと、作製しためっき品の表面において一部未反応のSnやAgが存在したままとなっていても確認されない。このような点から、本発明者は表面処理金属材料の表面を観察して未反応のSnやAgが残存することと、それによる特性の劣化を確認した。そして表面処理金属材料の表面における未反応のSnやAgの残存を極力抑制するためのめっき構成(組成及び厚み)、及び、そのためのリフロー処理条件を見出した。以下、本発明の実施形態に係る表面処理金属材料について説明する。
<Configuration of surface-treated metal material>
Conventionally, Sn and Ag are provided on a base material of a surface-treated metal material, and various plating layers are formed by reflow treatment, thereby reducing contact resistance and insertion force and improving corrosion resistance. However, the present inventor has been studying further improvements in these performances. Therefore, in the past, line analysis was performed by observing the cross section of the surface-treated metal material to evaluate the plated product, but attention was paid to the fact that detailed observation from the surface was not performed. If observation from such a surface is not performed, even if partially unreacted Sn and Ag remain on the surface of the manufactured plated product, it is not confirmed. From such a point, the present inventor has observed the surface of the surface-treated metal material and confirmed that unreacted Sn and Ag remain and the deterioration of the characteristics due to this. And the plating structure (composition and thickness) for suppressing the residue of unreacted Sn and Ag on the surface of a surface treatment metal material as much as possible, and the reflow process conditions for that were discovered. Hereinafter, the surface-treated metal material according to the embodiment of the present invention will be described.
 図1に示すように、実施形態に係る表面処理金属材料10は、基材11上に下層12が形成され、下層12上に中層13が形成され、中層13上に上層14が形成されている。 As shown in FIG. 1, in the surface-treated metal material 10 according to the embodiment, a lower layer 12 is formed on a base material 11, an intermediate layer 13 is formed on the lower layer 12, and an upper layer 14 is formed on the intermediate layer 13. .
 (基材)
 基材11としては、特に限定されないが、例えば、銅及び銅合金、Fe系材、ステンレス、チタン及びチタン合金、アルミニウム及びアルミニウム合金などの金属基材を用いることができる。
(Base material)
Although it does not specifically limit as the base material 11, For example, metal base materials, such as copper and a copper alloy, Fe-type material, stainless steel, titanium and a titanium alloy, aluminum, and an aluminum alloy, can be used.
 (下層)
 下層12はNiで構成されており、厚みは0.5μm以上3.0μm以下である。Niを用いて下層12を形成することで、硬い下層12形成により薄膜潤滑効果が向上して凝着磨耗が減少し、下層12は基材11の構成金属が上層14に拡散するのを防止して耐熱性やはんだ濡れ性などを向上させる。下層12の厚みが0.5μm未満であると、硬い下層による薄膜潤滑効果が低下して凝着磨耗が大きくなり、また基材11の構成金属が上層14に拡散しやすくなり、耐熱性やはんだ濡れ性が劣化するおそれがある。一方、下層12の厚みは3.0μmを超えると曲げ加工性が悪くなるおそれがある。下層12の厚みは0.5μm以上2.0μm以下であるのが好ましい。
(Underlayer)
The lower layer 12 is made of Ni and has a thickness of 0.5 μm or more and 3.0 μm or less. By forming the lower layer 12 using Ni, the formation of the hard lower layer 12 improves the thin film lubrication effect and reduces adhesion wear, and the lower layer 12 prevents the constituent metal of the base material 11 from diffusing into the upper layer 14. To improve heat resistance and solder wettability. If the thickness of the lower layer 12 is less than 0.5 μm, the thin film lubrication effect by the hard lower layer is lowered and adhesion wear is increased, and the constituent metal of the base material 11 is easily diffused into the upper layer 14. There is a risk of wettability degradation. On the other hand, if the thickness of the lower layer 12 exceeds 3.0 μm, bending workability may be deteriorated. The thickness of the lower layer 12 is preferably 0.5 μm or more and 2.0 μm or less.
 (中層)
 中層13はNi3Sn4合金で構成されており、厚みは0.03μm以上0.20μm以下である。中層13がNi3Sn4合金で構成されていることで、塩素ガス、亜硫酸ガス、硫化水素ガス等のガスに対する耐食性に優れ、基材11の構成金属が上層14に拡散するのを防止し、耐熱性試験やはんだ濡れ性劣化を抑制するなどの耐久性を向上させる。中層13の厚みが0.03μm未満であると皮膜が柔らかくなり凝着磨耗が増加するおそれがある。一方中層13厚みが0.20μmを超えると曲げ加工性が悪くなるおそれがある。中層の厚みは0.05μm以上0.15μm以下であるのが好ましい。
(Middle layer)
The middle layer 13 is made of a Ni 3 Sn 4 alloy and has a thickness of 0.03 μm or more and 0.20 μm or less. Since the middle layer 13 is made of a Ni 3 Sn 4 alloy, it has excellent corrosion resistance against gases such as chlorine gas, sulfurous acid gas, and hydrogen sulfide gas, and prevents the constituent metals of the base material 11 from diffusing into the upper layer 14. Improve durability such as heat resistance test and suppressing solder wettability degradation. If the thickness of the middle layer 13 is less than 0.03 μm, the film becomes soft and adhesion wear may increase. On the other hand, when the thickness of the middle layer 13 exceeds 0.20 μm, the bending workability may be deteriorated. The thickness of the middle layer is preferably 0.05 μm or more and 0.15 μm or less.
 (上層)
 上層14はAg3Sn合金で構成されており、厚みは0.25μm以上0.55μm以下である。上層14がAg3Sn合金で構成されていることで、塩素ガス、亜硫酸ガス、硫化水素ガス等のガスに対する耐食性が良好となり、接触抵抗が低下する。上層14の厚みが0.25μm未満であると、基材11や下層12の組成が上層14側に拡散しやすくなって耐熱性が悪くなるおそれがある。また微摺動によって上層14が磨耗し、接触抵抗の高い下層12が露出しやすくなるため耐微摺動磨耗性が悪く、微摺動によって接触抵抗が上昇しやすくなる。一方、上層14の厚みが0.55μmを超えると、硬い基材11または下層12による薄膜潤滑効果が低下して凝着磨耗が大きくなるおそれがある。また機械的耐久性が低下して、めっき削れが発生しやすくなるおそれがある。上層の厚みは0.3μm以上0.45μm以下であるのが好ましい。
(Upper layer)
The upper layer 14 is made of an Ag 3 Sn alloy and has a thickness of 0.25 μm or more and 0.55 μm or less. Since the upper layer 14 is made of an Ag 3 Sn alloy, corrosion resistance to gases such as chlorine gas, sulfurous acid gas, and hydrogen sulfide gas is improved, and contact resistance is reduced. If the thickness of the upper layer 14 is less than 0.25 μm, the composition of the base material 11 and the lower layer 12 is likely to diffuse to the upper layer 14 side and heat resistance may deteriorate. Further, the upper layer 14 is worn by fine sliding, and the lower layer 12 having a high contact resistance is easily exposed, so the resistance to fine sliding wear is poor, and the contact resistance is likely to increase by fine sliding. On the other hand, if the thickness of the upper layer 14 exceeds 0.55 μm, the thin film lubrication effect by the hard base material 11 or the lower layer 12 may be reduced, and adhesion wear may be increased. Further, the mechanical durability is lowered, and there is a possibility that plating scraping is likely to occur. The thickness of the upper layer is preferably 0.3 μm or more and 0.45 μm or less.
 本発明の実施形態に係る表面処理金属材料は、上層14側表面からのEDS分析でAg3Sn面積率が97%以上である。上層14側表面からのEDS分析でAg3Sn面積率を97%以上に制御することで、上層14側表面に未反応のSnやAgの残存が良好に抑制されているため、接触抵抗と挿入力が良好に抑制された表面処理金属材料を提供することができる。上層14側表面からのEDS分析でAg3Sn面積率は98%以上であることが好ましく、99%以上であることがより好ましい。 The surface-treated metal material according to the embodiment of the present invention has an Ag 3 Sn area ratio of 97% or more by EDS analysis from the surface on the upper layer 14 side. By controlling the Ag 3 Sn area ratio to 97% or more by EDS analysis from the surface on the upper layer 14 side, the remaining unreacted Sn and Ag on the surface on the upper layer 14 side is well suppressed, so contact resistance and insertion It is possible to provide a surface-treated metal material whose force is well suppressed. In the EDS analysis from the surface on the upper layer 14 side, the Ag 3 Sn area ratio is preferably 98% or more, and more preferably 99% or more.
 本発明の実施形態に係る表面処理金属材料は、上層14側表面の酸化膜の厚みが2nm未満に制御されている。このような構成により、表面処理金属材料の接触抵抗が良好となる。上層14側表面の酸化膜の厚みの下限は特に限定されないが、例えば0.3nmであってもよい。 In the surface-treated metal material according to the embodiment of the present invention, the thickness of the oxide film on the upper layer 14 side surface is controlled to be less than 2 nm. With such a configuration, the contact resistance of the surface-treated metal material is improved. The lower limit of the thickness of the oxide film on the surface of the upper layer 14 is not particularly limited, but may be 0.3 nm, for example.
 本発明の実施形態に係る表面処理金属材料は、上層14と中層13との厚み比:上層/中層が1.0~2.5であるのが好ましい。このような構成により、低ウィスカ性及び耐久性、耐微摺動磨耗性を向上させることができる。 In the surface-treated metal material according to the embodiment of the present invention, the thickness ratio of the upper layer 14 and the middle layer 13: the upper layer / middle layer is preferably 1.0 to 2.5. With such a configuration, it is possible to improve the low whisker property and durability, and the fine sliding wear resistance.
 本発明の実施形態に係る表面処理金属材料は、上層14側表面からのEBSD分析において、粒径0.04μm以下の粒子の密度が頻度分析で30%以上であるのが好ましい。このような構成により、低ウィスカ性及び耐久性、耐微摺動磨耗性を向上させることができる。 In the surface-treated metal material according to the embodiment of the present invention, the density of particles having a particle size of 0.04 μm or less is preferably 30% or more by frequency analysis in the EBSD analysis from the surface on the upper layer 14 side. With such a configuration, it is possible to improve the low whisker property and durability, and the fine sliding wear resistance.
 <表面処理金属材料の用途>
 本発明の実施形態に係る表面処理金属材料の用途は特に限定しないが、以下の電子部品等が挙げられる。具体的には、表面処理金属材料を接点部分に用いたコネクタ端子、表面処理金属材料を接点部分に用いたFFC端子またはFPC端子、表面処理金属材料を外部接続用電極に用いた電子部品などが挙げられる。なお、端子については、圧着端子、はんだ付け端子、プレスフィット端子等、配線側との接合方法によらない。外部接続用電極には、タブに表面処理を施した接続部品や半導体のアンダーバンプメタル用に表面処理を施した材料などがある。また、このように形成されたコネクタ端子を用いてコネクタを作製しても良く、FFC端子またはFPC端子を用いてFFCまたはFPCを作製しても良い。また本発明の実施形態に係る表面処理金属材料は、ハウジングに取り付ける装着部の一方側にメス端子接続部が、他方側に基板接続部がそれぞれ設けられ、該基板接続部を基板に形成されたスルーホールに圧入して該基板に取り付ける圧入型端子に用いても良い。コネクタはオス端子とメス端子の両方が本発明の実施形態に係る表面処理金属材料であっても良いし、オス端子またはメス端子の片方だけであっても良い。なおオス端子とメス端子の両方を本発明の実施形態に係る表面処理金属材料にすることで、更に低挿抜性が向上する。
<Uses of surface-treated metal materials>
Although the use of the surface treatment metal material which concerns on embodiment of this invention is not specifically limited, The following electronic components etc. are mentioned. Specifically, connector terminals using surface-treated metal materials for contact portions, FFC terminals or FPC terminals using surface-treated metal materials for contact portions, electronic components using surface-treated metal materials for external connection electrodes, etc. Can be mentioned. In addition, about a terminal, it does not depend on the joining method with a wiring side, such as a crimp terminal, a solder terminal, and a press fit terminal. Examples of the external connection electrode include a connection component in which a surface treatment is performed on a tab and a material in which a surface treatment is applied to a semiconductor under bump metal. Moreover, a connector may be produced using the connector terminal formed in this way, and an FFC or FPC may be produced using an FFC terminal or an FPC terminal. Further, the surface-treated metal material according to the embodiment of the present invention is provided with a female terminal connection portion on one side of a mounting portion attached to the housing and a substrate connection portion on the other side, and the substrate connection portion is formed on the substrate. You may use for the press-fit type terminal which press-fits to a through-hole and attaches to this board | substrate. In the connector, both the male terminal and the female terminal may be the surface-treated metal material according to the embodiment of the present invention, or only one of the male terminal and the female terminal. In addition, the low insertion property is further improved by using both the male terminal and the female terminal as the surface-treated metal material according to the embodiment of the present invention.
 <表面処理金属材料の製造方法>
 (成膜及びリフロー処理)
 本発明の実施形態に係る表面処理金属材料の製造方法としては、湿式(電気、無電解)めっき、乾式(スパッタ、イオンプレーティング等)めっき等を用いることができる。まず、基材上に、0.5~3.0μmの厚みのNi下地層、0.2~0.35μmの厚みのAg層、及び、0.1~0.2μmの厚みのSn層をこの順で、且つ、Sn層とAg層との厚み比がSn層/Ag層=1.0~2.5となるように、めっき処理で設ける。めっき処理の後、785~825℃で25~30秒のリフロー処理を行うことで、本発明の実施形態に係る表面処理金属材料が得られる。リフローが不十分な場合、Ag3Sn面積率が97%未満になってしまう。一方、オーバーリフローの場合、上層側表面において形成される酸化膜の厚みが2nm以上になることに起因して優れた接触抵抗を実現できない。
<Method for producing surface-treated metal material>
(Film formation and reflow treatment)
As a method for producing a surface-treated metal material according to an embodiment of the present invention, wet (electrical, electroless) plating, dry (sputtering, ion plating, etc.) plating, or the like can be used. First, a Ni underlayer having a thickness of 0.5 to 3.0 μm, an Ag layer having a thickness of 0.2 to 0.35 μm, and a Sn layer having a thickness of 0.1 to 0.2 μm are formed on the substrate. In this order, the plating is performed so that the thickness ratio of the Sn layer to the Ag layer is Sn layer / Ag layer = 1.0 to 2.5. After the plating process, the surface-treated metal material according to the embodiment of the present invention is obtained by performing a reflow process at 785 to 825 ° C. for 25 to 30 seconds. If reflow is insufficient, the Ag 3 Sn area ratio will be less than 97%. On the other hand, in the case of over reflow, excellent contact resistance cannot be realized due to the thickness of the oxide film formed on the upper layer side surface being 2 nm or more.
 上述のようにNi下地層、Ag層、Sn層を上記の厚みと互いの厚み比で設け、且つ、785~825℃で25~30秒のリフロー処理を行うことで、上層14側表面からのEDS分析でAg3Sn面積率を97%以上に制御することができる。 As described above, the Ni underlayer, the Ag layer, and the Sn layer are provided in the above thickness ratio with each other, and the reflow treatment is performed at 785 to 825 ° C. for 25 to 30 seconds, so that the surface from the surface on the upper layer 14 side The Ag 3 Sn area ratio can be controlled to 97% or more by EDS analysis.
 (後処理)
 リフロー処理後に後述のリン酸エステル系の液を使用した後処理を行ってもよい。または、リフロー処理前に後述のリン酸エステル系の液を使用した後処理を行った後、リフロー処理を行ってもよい。当該後処理(表面処理)は、めっき材の上層表面を、1種又は2種以上のリン酸エステルと、環状有機化合物の1種又は2種以上とを含有する水溶液(リン酸エステル系液とよぶ)を用いて行うことが望ましい。リン酸エステル系液に添加されるリン酸エステルは、めっきの酸化防止剤および潤滑剤としての機能を果たす。本発明に使用されるリン酸エステルは、一般式〔1〕および〔2〕で表される。一般式〔1〕で表される化合物のうち好ましいものを挙げると、ラウリル酸性リン酸モノエステルなどがある。一般式〔2〕で表される化合物のうち好ましいものを挙げると、ラウリル酸性リン酸ジエステルなどがある。
(Post-processing)
You may perform the post-processing which uses the below-mentioned phosphate ester type liquid after a reflow process. Alternatively, the reflow treatment may be performed after a post-treatment using a phosphoric ester-based liquid described below before the reflow treatment. In the post-treatment (surface treatment), the upper layer surface of the plating material is an aqueous solution (phosphate ester-based solution) containing one or more phosphate esters and one or more cyclic organic compounds. It is desirable to use this method. The phosphoric acid ester added to the phosphoric acid ester system liquid functions as an antioxidant and a lubricant for plating. The phosphate ester used in the present invention is represented by the general formulas [1] and [2]. Preferable examples of the compound represented by the general formula [1] include lauryl acidic phosphoric acid monoester. Preferred examples of the compound represented by the general formula [2] include lauryl acidic phosphoric acid diester.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
(式〔1〕、〔2〕において、R1およびR2はそれぞれ置換アルキルを表し、Mは水素又はアルカリ金属を表す。)
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
(In the formulas [1] and [2], R 1 and R 2 each represent a substituted alkyl, and M represents hydrogen or an alkali metal.)
 リン酸エステル系液に添加される環状有機化合物は、めっきの酸化防止剤としての機能を果たす。本発明に使用される環状有機化合物の群を一般式〔3〕および〔4〕で表す。一般式〔3〕および〔4〕で表す環状有機化合物群のうち好ましいものを挙げると、例えばメルカプトベンゾチアゾール、メルカプトベンゾチアゾールのNa塩、メルカプトベンゾチアゾールのK塩、ベンゾトリアゾール、1-メチルトリアゾール、トリルトリアゾール、トリアジン系化合物などがある。 The cyclic organic compound added to the phosphate ester solution functions as an antioxidant for plating. A group of cyclic organic compounds used in the present invention is represented by general formulas [3] and [4]. Preferred examples of the cyclic organic compound group represented by the general formulas [3] and [4] include, for example, mercaptobenzothiazole, mercaptobenzothiazole Na salt, mercaptobenzothiazole K salt, benzotriazole, 1-methyltriazole, Examples include tolyltriazole and triazine compounds.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(式〔3〕、〔4〕中、R1は水素、アルキル、または置換アルキルを表し、R2はアルカリ金属、水素、アルキル、または置換アルキルを表し、R3はアルカリ金属または水素を表し、R4は-SH、アルキル基かアリール基で置換されたアミノ基、またはアルキル置換イミダゾリルアルキルを表し、R5およびR6は-NH2、-SHまたは-SM(Mはアルカリ金属を表す)を表す。)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(In the formulas [3] and [4], R 1 represents hydrogen, alkyl, or substituted alkyl, R 2 represents an alkali metal, hydrogen, alkyl, or substituted alkyl, R 3 represents an alkali metal or hydrogen, R 4 represents —SH, an amino group substituted with an alkyl group or an aryl group, or alkyl-substituted imidazolylalkyl, and R 5 and R 6 represent —NH 2 , —SH or —SM (M represents an alkali metal). Represents.)
 本発明の実施形態では、後処理後に最表層の上層表面にPとNが共に存在するように処理を行う。上層表面にPが存在しないとはんだ付け性が劣化しやすくなり、まためっき材の潤滑性も悪くなる。一方上層表面にNが存在しないと、高温環境下においてめっき材の接触抵抗が上昇しやすくなる。
 さらに本発明の実施形態では、P及びNの付着量をそれぞれ、
  P:1×10-11~4×10-8mol/cm2、N:2×10-12~8×10-9mol/cm2
とすると、はんだ付け性が劣化しにくく、潤滑性がより良好で、接触抵抗の上昇も少ないことを見出した。Pの付着量が1×10-11mol/cm2未満では、はんだ濡れ性が劣化しやすくなり、4×10-8mol/cm2を超えると、接触抵抗が高くなるという不具合が発生する。
In the embodiment of the present invention, processing is performed so that both P and N are present on the upper surface of the outermost layer after post-processing. If P is not present on the surface of the upper layer, the solderability is likely to deteriorate, and the lubricity of the plating material also deteriorates. On the other hand, if N is not present on the upper layer surface, the contact resistance of the plating material tends to increase in a high temperature environment.
Furthermore, in the embodiment of the present invention, the adhesion amount of P and N, respectively,
P: 1 × 10 −11 to 4 × 10 −8 mol / cm 2 , N: 2 × 10 −12 to 8 × 10 −9 mol / cm 2
Then, it was found that the solderability is not easily deteriorated, the lubricity is better, and the contact resistance is less increased. If the adhesion amount of P is less than 1 × 10 −11 mol / cm 2 , the solder wettability tends to deteriorate, and if it exceeds 4 × 10 −8 mol / cm 2 , a problem arises that the contact resistance increases.
 また、上層をXPSで分析した際に、検出されるPの2S軌道電子起因の光電子検出強度をI(P2s)、Nの1S軌道電子起因の光電子検出強度をI(N1s)としたとき、0.1≦I(P2s)/I(N1s)≦1を満たす場合には、接触抵抗とはんだ付け性が高温環境下において劣化しにくくなる。I(P2s)/I(N1s)の値が0.1未満の場合には接触抵抗などの劣化防止機能が十分ではないおそれがあり、値が1を超える場合は動摩擦係数が小さくなる可能性がある。 Further, when the upper layer is analyzed by XPS, the detected photoelectron intensity caused by 2S orbital electrons of P is I (P2s), and the detected photoelectron intensity caused by 1S orbital electrons of N is I (N1s). ..Ltoreq.I (P2s) / I (N1s) .ltoreq.1, contact resistance and solderability are unlikely to deteriorate in a high temperature environment. When the value of I (P2s) / I (N1s) is less than 0.1, there is a risk that the deterioration prevention function such as contact resistance may not be sufficient, and when the value exceeds 1, there is a possibility that the dynamic friction coefficient becomes small. is there.
 また、上層をXPSで分析した際に、検出されるPの2S軌道電子起因の光電子検出強度をI(P2s)、Nの1S軌道電子起因の光電子検出強度をI(N1s)としたとき、1<I(P2s)/I(N1s)≦50を満たす場合には動摩擦係数が小さくなり、端子、コネクタの挿入力が低くなる。I(P2s)/I(N1s)の値が1以下の場合には挿入力がやや高めになるおそれがあり、値が50を超えると初期の接触抵抗が高くなり、初期のはんだ付け性も悪くなるおそれがある。 Also, when the upper layer is analyzed by XPS, the detected photoelectron intensity caused by 2S orbital electrons of P is I (P2s), and the detected photoelectron intensity caused by 1S orbital electrons of N is I (N1s). When <I (P2s) / I (N1s) ≦ 50 is satisfied, the dynamic friction coefficient becomes small, and the insertion force of the terminals and connectors becomes low. If the value of I (P2s) / I (N1s) is 1 or less, the insertion force may be slightly higher. If the value exceeds 50, the initial contact resistance increases and the initial solderability is poor. There is a risk.
 本発明の実施形態に係る後処理液成分の付着量を得るためのリン酸エステルの濃度は、0.1~10g/L、好ましくは0.5~5g/Lである。一方環状有機化合物の濃度は処理液全体の体積に対して0.01~1.0g/L、好ましくは0.05~0.6g/Lである。リン酸エステル系液は上述の成分を有する水溶液であるが、溶液の温度を40~80℃に加熱すると成分の水への乳化がより速やかに進行し、さらの処理後の材料の乾燥が容易になる。表面処理は、上層の表面にリン酸エステル系液を塗布して行ってもよい。塗布する方法としては、スプレーコーティング、フローコーティング、ディップコーティング、ロールコーティング等の方法が挙げられ生産性の観点からディップコーティングもしくはスプレーコーティングが好ましい。一方、別の処理方法として、リフロー処理後の表面処理金属材料をリン酸エステル系液中に浸漬させ、表面処理金属材料を陽極にして電解することで行ってもよい。この方法で処理した表面処理金属材料では、高温環境下での接触抵抗がより上昇しにくいという利点がある。 The concentration of the phosphate ester for obtaining the adhesion amount of the post-treatment liquid component according to the embodiment of the present invention is 0.1 to 10 g / L, preferably 0.5 to 5 g / L. On the other hand, the concentration of the cyclic organic compound is 0.01 to 1.0 g / L, preferably 0.05 to 0.6 g / L with respect to the total volume of the treatment liquid. Phosphate-based liquid is an aqueous solution containing the above-mentioned components, but when the temperature of the solution is heated to 40 to 80 ° C., the emulsification of the components into water proceeds more rapidly and the material after further treatment can be easily dried. become. The surface treatment may be performed by applying a phosphate ester-based liquid to the surface of the upper layer. Examples of the application method include spray coating, flow coating, dip coating, roll coating and the like. From the viewpoint of productivity, dip coating or spray coating is preferred. On the other hand, as another treatment method, the surface-treated metal material after the reflow treatment may be immersed in a phosphoric acid ester-based liquid and electrolyzed using the surface-treated metal material as an anode. The surface-treated metal material treated by this method has an advantage that the contact resistance under a high temperature environment is less likely to increase.
 以下、本発明の実施例と比較例を共に示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。 Hereinafter, examples and comparative examples of the present invention will be shown together, but these are provided for better understanding of the present invention, and are not intended to limit the present invention.
 〔例1〕
(表面処理金属材料の作製)
 実施例1~10、比較例1~7として、以下の条件で、基材(幅20mm、長さ80mm、厚み0.64mmの黄銅板)の表面に、Niめっき、Agめっき、Snめっき、さらにリン酸エステル系液処理及び熱処理の順で表面処理を行った。表1には各実施例、比較例の製造時のめっき厚さ、熱処理(リフロー処理)条件及びリン酸エステル系液処理条件を示す。
[Example 1]
(Production of surface-treated metal material)
As Examples 1 to 10 and Comparative Examples 1 to 7, Ni plating, Ag plating, Sn plating on the surface of a base material (brass plate having a width of 20 mm, a length of 80 mm, and a thickness of 0.64 mm) under the following conditions, Surface treatment was performed in the order of phosphoric acid ester liquid treatment and heat treatment. Table 1 shows the plating thickness, heat treatment (reflow treatment) conditions, and phosphate ester-based liquid treatment conditions during production of each example and comparative example.
 (Niめっき条件)
  表面処理方法:電気めっき
  めっき液:スルファミン酸Ni(150g/l)+硼酸(30g/l)
  めっき温度:55℃
  電流密度:0.5~4A/dm2
(Ni plating conditions)
Surface treatment method: electroplating Plating solution: Ni sulfamate (150 g / l) + boric acid (30 g / l)
Plating temperature: 55 ° C
Current density: 0.5-4A / dm 2
 (Agめっき条件)
  表面処理方法:電気めっき
  めっき液:シアン化Ag(10g/l)+シアン化カリウム(30g/l)
  めっき温度:40℃
  電流密度:0.2~4A/dm2
(Ag plating conditions)
Surface treatment method: electroplating Plating solution: Ag cyanide (10 g / l) + potassium cyanide (30 g / l)
Plating temperature: 40 ° C
Current density: 0.2-4 A / dm 2
 (Snめっき条件)
  表面処理方法:電気めっき
  めっき液:メタンスルホン酸Sn(50g/l)+メタンスルホン酸(200g/l)
  めっき温度:30℃
  電流密度:5~7A/dm2
(Sn plating conditions)
Surface treatment method: electroplating plating solution: methanesulfonic acid Sn (50 g / l) + methanesulfonic acid (200 g / l)
Plating temperature: 30 ° C
Current density: 5-7 A / dm 2
 (リフロー処理)
 第1~第3めっき後、サンプルを表1に示す温度、雰囲気下及び熱処理時間にてリフロー処理を実施した。
(Reflow processing)
After the first to third plating, the sample was reflowed at the temperature, atmosphere and heat treatment time shown in Table 1.
 (リン酸エステル系液処理)
 リフロー処理後、表1に示すように、めっき表面に以下のリン酸エステル種(A1、A2)及び環状有機化合物種(B1、B2)を用いて以下の条件にてリン酸エステル系液処理を行った。リン酸エステル系液処理後の、めっき表面のP付着量及びN付着量を表1に示す。
 ・リン酸エステル種:A1
 ラウリル酸性リン酸モノエステル(リン酸モノラウリルエステル)
 ・リン酸エステル種:A2
 ラウリル酸性リン酸ジエステル(リン酸ジラウリルエステル)
 ・環状有機化合物種:B1
 ベンゾトリアゾール
 ・環状有機化合物種:B2
 メルカプトベンゾチアゾールのNa塩
 ・電解条件:2Vで5秒陽極電解
(Phosphate ester liquid treatment)
After the reflow treatment, as shown in Table 1, using the following phosphoric acid ester species (A1, A2) and cyclic organic compound species (B1, B2) on the plating surface, the phosphoric acid ester type liquid treatment is performed under the following conditions. went. Table 1 shows the P adhesion amount and the N adhesion amount on the plating surface after the phosphoric ester solution treatment.
・ Phosphate ester type: A1
Lauryl acid phosphate monoester (monolauryl phosphate phosphate)
・ Phosphate ester type: A2
Lauryl acid phosphate diester (phosphate dilauryl ester)
-Cyclic organic compound species: B1
Benzotriazole ・ Cyclic organic compound species: B2
Mercaptobenzothiazole Na salt ・ Electrolysis conditions: 2V anodic electrolysis at 2V
 (評価)
 ・下層の厚み測定
 下層の厚みは、蛍光X線膜厚計(Seiko Instruments製 SEA5100、コリメータ0.1mmΦ)で測定した。
 下層の厚み測定は、任意の10点について評価を行って平均化した。
(Evaluation)
-Lower layer thickness measurement The lower layer thickness was measured with a fluorescent X-ray film thickness meter (SEA5100, manufactured by Seiko Instruments, collimator 0.1 mmΦ).
The thickness of the lower layer was averaged by evaluating 10 points.
 ・表層及び上層及び中層の構造[組成]の決定及び厚み測定
 得られた試料の上層及び中層の構造の決定及び厚み測定は、STEM(走査型電子顕微鏡)分析による線分析で行った。厚みは、線分析(または面分析)から求めた距離に対応する。STEM装置は、日本電子株式会社製JEM-2100Fを用いた。本装置の加速電圧は200kVである。
 得られた試料の上層及び中層の構造の決定及び厚み測定は、任意の10点について評価を行って平均化した。表層の厚みは上層及び中層の厚みと同様に測定した。
 また、実施例1~10及び比較例1~7は、いずれも中層がNi3Sn4合金で構成され、上層がAg3Sn合金で構成されていたことを確認した。
-Determination of structure [composition] and thickness measurement of surface layer, upper layer and middle layer Determination of the structure and thickness measurement of the upper layer and middle layer of the obtained sample were performed by line analysis by STEM (scanning electron microscope) analysis. The thickness corresponds to the distance obtained from line analysis (or surface analysis). As the STEM apparatus, JEM-2100F manufactured by JEOL Ltd. was used. The acceleration voltage of this device is 200 kV.
Determination of the structure of the upper layer and the middle layer of the obtained sample and measurement of the thickness were performed by evaluating 10 points and averaging. The thickness of the surface layer was measured in the same manner as the thicknesses of the upper layer and the middle layer.
In each of Examples 1 to 10 and Comparative Examples 1 to 7, it was confirmed that the middle layer was composed of a Ni 3 Sn 4 alloy and the upper layer was composed of an Ag 3 Sn alloy.
 ・接触抵抗
 接触抵抗は四端子法(精密摺動試験機 CRS-G2050型 山崎精機研究所)にて接触荷重3Nで測定した。サンプルとして、めっき直後(初期)のサンプルを評価した。サンプル数は5個とし、各サンプルの最小値から最大値の範囲を採用した。
 なお、本開示において接触抵抗が3mΩ以下である場合に、優れた接触抵抗であると定義する。
Contact resistance The contact resistance was measured with a contact load of 3 N by the four-terminal method (precision sliding tester CRS-G2050, Yamazaki Seiki Laboratories). A sample immediately after plating (initial stage) was evaluated as a sample. The number of samples was 5, and the range from the minimum value to the maximum value of each sample was adopted.
In the present disclosure, when the contact resistance is 3 mΩ or less, it is defined as an excellent contact resistance.
 ・挿入力
 挿入力は、市販のSnリフローめっきメス端子(090型住友TS/矢崎090IIシリーズメス端子非防水/F090-SMTS)を用いてめっきを施したオス端子と挿抜試験することによって評価した。
 試験に用いた測定装置は、アイコーエンジニアリング製1311NRであり、オスピンの摺動距離5mmで評価した。
 なお、本開示において挿入力が1.2N未満である場合に、優れた挿入力であると定義する。
Insertion force Insertion force was evaluated by performing insertion / removal tests with a plated male terminal using a commercially available Sn reflow plating female terminal (090 type Sumitomo TS / Yazaki 090II series female terminal non-waterproof / F090-SMTS).
The measuring device used for the test was 1311NR made by Ikko Engineering, and the evaluation was performed with a male spin sliding distance of 5 mm.
In the present disclosure, when the insertion force is less than 1.2 N, it is defined as an excellent insertion force.
 ・耐食性
 耐食性は、下記の試験環境で評価した。耐食性の評価は、環境試験を終えた試験後のサンプルの外観である。なお、目標とする特性は、外観が変色していないことか、実用上問題のない若干の変色である。
  硫化水素ガス腐食試験
  硫化水素濃度:10ppm
  温度:40℃
  湿度:80%RH
  曝露時間:96h
  サンプル数:5個
 なお、本開示において、サンプル面積(全面積)に対する変色面積の割合(変色率)が1%未満である場合に、優れた耐食性であると定義する。
-Corrosion resistance Corrosion resistance was evaluated in the following test environment. Evaluation of corrosion resistance is the appearance of the sample after the test after the environmental test. The target characteristic is that the appearance is not discolored or is slightly discolored with no practical problem.
Hydrogen sulfide gas corrosion test Hydrogen sulfide concentration: 10ppm
Temperature: 40 ° C
Humidity: 80% RH
Exposure time: 96h
Number of samples: 5 In the present disclosure, when the ratio of the color change area (color change rate) to the sample area (total area) is less than 1%, it is defined as excellent corrosion resistance.
 ・EDS分析
 以下に示す条件にて、サンプルの上層側表面からのEDS分析を行い、Ag3Sn面積率を測定した。
 日立ハイテクノロジーズ社製走査電子顕微鏡(型式:SU-70)を用いて、倍率×20000、観察視野26.5μm2でEDS面分析を行った。
 図2に実施例3の、また図3に比較例2のEDS分析による表面観察結果を示す。
-EDS analysis EDS analysis from the upper surface of the sample was performed under the following conditions, and the Ag 3 Sn area ratio was measured.
Using a scanning electron microscope (model: SU-70) manufactured by Hitachi High-Technologies Corporation, EDS surface analysis was performed at a magnification of 20,000 and an observation field of 26.5 μm 2 .
FIG. 2 shows the results of surface observation by EDS analysis of Example 3 and FIG.
 ・EBSD分析
 以下に示す条件にて、サンプルの上層側表面からのEBSD分析を行い、各粒子サイズの密度の頻度分析を評価した。
 TSLソリューションズ社製EBSD装置を用いて、走査電子顕微鏡用結晶解析ツール(OIM)を用い、評価した。
 図4に実施例3の、また図5に比較例2のEBSD分析における所定サイズの粒子の頻度分析結果を示す。
 表2には粒径0.04μm以下の粒子についてのEBSD粒度分布を示した。
-EBSD analysis EBSD analysis from the upper surface of the sample was performed under the conditions shown below, and frequency analysis of density of each particle size was evaluated.
Evaluation was performed using a crystal analysis tool for scanning electron microscope (OIM) using an EBSD apparatus manufactured by TSL Solutions.
FIG. 4 shows the frequency analysis results of particles of a predetermined size in the EBSD analysis of Example 3 and FIG. 5 in Comparative Example 2.
Table 2 shows the EBSD particle size distribution for particles having a particle size of 0.04 μm or less.
 ・酸化膜測定方法
 サンプルの上層側表面の酸化膜の厚みの測定に関し、STEM(日本電子株式会社製JEM-2100F)による分析を行った。具体的には、STEM観察により200万倍のBF像でサンプルの上層側表面を5視野観察して酸化膜の厚みをそれぞれ測定し、その平均を求めた。
 図6に実施例2の、また図7に比較例5のSTEM観察画像を示す。
 試験条件及び評価結果を表1、2に示す。
-Oxide film measurement method Regarding the measurement of the thickness of the oxide film on the upper layer side surface of the sample, analysis was performed by STEM (JEM-2100F, manufactured by JEOL Ltd.). Specifically, the surface of the upper layer side of the sample was observed in five views with a BF image of 2 million times by STEM observation, the thickness of the oxide film was measured, and the average was obtained.
FIG. 6 shows STEM observation images of Example 2 and FIG.
Test conditions and evaluation results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1~10は、いずれも接触抵抗と挿入力が良好に抑制されていた。
 実施例2及び5は、上層側表面のP付着量とN付着量とが適切な範囲に収まっていたため、1.05N未満という一層優れた挿入力を実現している。
 比較例1はリフローが不十分であったため、Ag3Sn面積率が97%未満であった。そのため、比較例1は、優れた耐食性を実現できなかった。
 比較例2~4は、上層側表面からのEDS分析でAg3Sn面積率が97%未満であったため、優れた挿入力を実現できなかった。
 比較例5において、オーバーリフローであることに起因して、上層側表面に形成される酸化膜の厚みが2nm以上になっていた。その結果、比較例5は、優れた接触抵抗を実現できなかった。
 比較例6において、リフロー前のAg層が薄いため、リフロー後の上層の厚みが薄かった。その結果、比較例6は、Ag3Sn面積率が97%未満になり、優れた耐食性を実現できなかった。
 比較例7において、リフロー前のAg層が厚いため、リフロー後の中層の厚みが薄かった。その結果、比較例7は、Ag3Sn面積率が97%未満になり、優れた耐食性を実現できなかった。
In all of Examples 1 to 10, contact resistance and insertion force were well suppressed.
In Examples 2 and 5, since the P adhesion amount and the N adhesion amount on the upper layer side surface were within appropriate ranges, an even better insertion force of less than 1.05 N was realized.
Since the comparative example 1 had insufficient reflow, the Ag 3 Sn area ratio was less than 97%. Therefore, Comparative Example 1 could not realize excellent corrosion resistance.
In Comparative Examples 2 to 4, since the Ag 3 Sn area ratio was less than 97% by EDS analysis from the upper layer side surface, an excellent insertion force could not be realized.
In Comparative Example 5, the thickness of the oxide film formed on the upper layer side surface was 2 nm or more due to over reflow. As a result, Comparative Example 5 could not realize an excellent contact resistance.
In Comparative Example 6, since the Ag layer before reflow was thin, the thickness of the upper layer after reflow was thin. As a result, in Comparative Example 6, the Ag 3 Sn area ratio was less than 97%, and excellent corrosion resistance could not be realized.
In Comparative Example 7, since the Ag layer before reflow was thick, the thickness of the middle layer after reflow was thin. As a result, in Comparative Example 7, the Ag 3 Sn area ratio was less than 97%, and excellent corrosion resistance could not be realized.
10 表面処理金属材料
11 基材
12 下層
13 中層
14 上層
10 Surface-treated metal material 11 Base material 12 Lower layer 13 Middle layer 14 Upper layer

Claims (9)

  1.  基材と、
     前記基材上に形成された、Niで構成された下層と、
     前記下層上に形成された、Ni3Sn4合金で構成された中層と、
     前記中層上に形成された、Ag3Sn合金で構成された上層と、
    を備え、
     前記下層の厚みが0.5μm以上3.0μm以下であり、
     前記中層の厚みが0.03μm以上0.20μm以下であり、
     前記上層の厚みが0.25μm以上0.55μm以下であり、
     前記上層側表面からのEDS分析でAg3Sn面積率が97%以上であり、
     前記上層側表面の酸化膜の厚みが2nm未満である、表面処理金属材料。
    A substrate;
    A lower layer made of Ni, formed on the substrate;
    An intermediate layer made of a Ni 3 Sn 4 alloy formed on the lower layer;
    An upper layer made of an Ag 3 Sn alloy formed on the middle layer;
    With
    The thickness of the lower layer is 0.5 μm or more and 3.0 μm or less,
    The middle layer has a thickness of 0.03 μm or more and 0.20 μm or less,
    The upper layer has a thickness of 0.25 μm or more and 0.55 μm or less,
    Ag 3 Sn area ratio is 97% or more by EDS analysis from the upper layer side surface,
    A surface-treated metal material, wherein the thickness of the oxide film on the upper surface is less than 2 nm.
  2.  前記下層の厚みが0.5μm以上2.0μm以下であり、
     前記中層の厚みが0.05μm以上0.15μm以下であり、
     前記上層の厚みが0.3μm以上0.45μm以下である請求項1に記載の表面処理金属材料。
    The thickness of the lower layer is 0.5 μm or more and 2.0 μm or less,
    The middle layer has a thickness of 0.05 μm or more and 0.15 μm or less,
    The surface-treated metal material according to claim 1, wherein the upper layer has a thickness of 0.3 μm or more and 0.45 μm or less.
  3.  前記上層と前記中層との厚み比:上層/中層が1.0~2.5である請求項1又は2に記載の表面処理金属材料。 The surface-treated metal material according to claim 1 or 2, wherein the thickness ratio of the upper layer to the middle layer: the upper layer / middle layer is 1.0 to 2.5.
  4.  前記上層側表面からのEBSD分析において、粒径0.04μm以下の粒子の密度が頻度分析で30%以上である請求項1~3のいずれか一項に記載の表面処理金属材料。 4. The surface-treated metal material according to claim 1, wherein in the EBSD analysis from the upper surface, the density of particles having a particle size of 0.04 μm or less is 30% or more by frequency analysis.
  5.  前記上層の表面にP及びNが付着しており、前記P及びNの付着量がそれぞれ、
      P:1×10-11~4×10-8mol/cm2、N:2×10-12~8×10-9mol/cm2
    である請求項1~4のいずれか一項に記載の表面処理金属材料。
    P and N are attached to the surface of the upper layer, and the attached amounts of P and N are respectively
    P: 1 × 10 −11 to 4 × 10 −8 mol / cm 2 , N: 2 × 10 −12 to 8 × 10 −9 mol / cm 2
    The surface-treated metal material according to any one of claims 1 to 4, wherein
  6.  前記上層をXPSで分析した際に、検出されるPの2S軌道電子起因の光電子検出強度をI(P2s)、Nの1S軌道電子起因の光電子検出強度をI(N1s)としたとき、0.1≦I(P2s)/I(N1s)≦1を満たす請求項5に記載の表面処理金属材料。 When the upper layer is analyzed by XPS, the detected photoelectron intensity caused by 2S orbital electrons of P is I (P2s), and the photoelectron detected intensity caused by 1S orbital electrons of N is I (N1s). The surface-treated metal material according to claim 5, wherein 1 ≦ I (P2s) / I (N1s) ≦ 1 is satisfied.
  7.  前記上層をXPSで分析した際に、検出されるPの2S軌道電子起因の光電子検出強度をI(P2s)、Nの1S軌道電子起因の光電子検出強度をI(N1s)としたとき、1<I(P2s)/I(N1s)≦50を満たす請求項5に記載の表面処理金属材料。 When the upper layer is analyzed by XPS, the detected photoelectron intensity caused by 2S orbital electrons of P is I (P2s), and the photoelectron detected intensity caused by 1S orbital electrons of N is I (N1s). 6. The surface-treated metal material according to claim 5, wherein I (P2s) / I (N1s) ≦ 50 is satisfied.
  8.  前記基材上に、0.5~3.0μmの厚みのNi下地層、0.2~0.35μmの厚みのAg層、及び、0.1~0.2μmの厚みのSn層をこの順で、且つ、前記Sn層と前記Ag層との厚み比がSn層/Ag層=1.0~2.5となるように、めっき処理で設ける工程と、
     前記めっき処理の後、785~825℃で25~30秒のリフロー処理を行う工程と、
    を含む請求項1~7のいずれか一項に記載の表面処理金属材料の製造方法。
    On the substrate, a Ni underlayer having a thickness of 0.5 to 3.0 μm, an Ag layer having a thickness of 0.2 to 0.35 μm, and a Sn layer having a thickness of 0.1 to 0.2 μm are arranged in this order. And a step of providing a plating treatment so that the thickness ratio of the Sn layer and the Ag layer is Sn layer / Ag layer = 1.0 to 2.5,
    A step of performing a reflow treatment at 785 to 825 ° C. for 25 to 30 seconds after the plating treatment;
    The method for producing a surface-treated metal material according to any one of claims 1 to 7, comprising:
  9.  請求項1~7のいずれかに記載の表面処理金属材料を備えた電子部品。 An electronic component comprising the surface-treated metal material according to any one of claims 1 to 7.
PCT/JP2019/011000 2018-05-28 2019-03-15 Surface-treated metal material, surface-treated metal material production method, and electronic component WO2019230137A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-101658 2018-05-28
JP2018101658A JP6592140B1 (en) 2018-05-28 2018-05-28 Surface-treated metal material, method for producing surface-treated metal material, and electronic component

Publications (1)

Publication Number Publication Date
WO2019230137A1 true WO2019230137A1 (en) 2019-12-05

Family

ID=68234925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011000 WO2019230137A1 (en) 2018-05-28 2019-03-15 Surface-treated metal material, surface-treated metal material production method, and electronic component

Country Status (3)

Country Link
JP (1) JP6592140B1 (en)
TW (1) TWI696730B (en)
WO (1) WO2019230137A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069659A (en) * 2014-09-26 2016-05-09 株式会社オートネットワーク技術研究所 Electrical contact material for connector and manufacturing method therefor
JP6309124B1 (en) * 2017-02-15 2018-04-11 Jx金属株式会社 METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI465333B (en) * 2012-07-25 2014-12-21 Jx Nippon Mining & Metals Corp Electronic material for electronic parts and method for manufacturing the same, use of its connector terminals, connectors and electronic parts
JP2014063846A (en) * 2012-09-20 2014-04-10 Asahi Kasei E-Materials Corp Protective layer of metal surface and method for forming the same
WO2014199547A1 (en) * 2013-06-10 2014-12-18 オリエンタル鍍金株式会社 Method for producing plated laminate, and plated laminate
US10351965B2 (en) * 2013-06-24 2019-07-16 Oriental Electro Plating Corporation Method for producing plated material, and plated material
JP2015046266A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same
JP2015045045A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069659A (en) * 2014-09-26 2016-05-09 株式会社オートネットワーク技術研究所 Electrical contact material for connector and manufacturing method therefor
JP6309124B1 (en) * 2017-02-15 2018-04-11 Jx金属株式会社 METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT

Also Published As

Publication number Publication date
TWI696730B (en) 2020-06-21
JP2019206730A (en) 2019-12-05
JP6592140B1 (en) 2019-10-16
TW202003927A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6050664B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP5427945B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
TWI489002B (en) Surface treatment plating material and manufacturing method thereof, and electronic parts
WO2014017238A1 (en) Metal material for electronic components, method for producing same, connector terminal using same, connector and electronic component
JP6029435B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
EP3575446B1 (en) Surface-treated plated material, connector terminal, connector, ffc terminal, ffc, fpc and electronic component
KR20190117596A (en) Metal materials for electronic components and manufacturing methods thereof, connector terminals, connectors and electronic components using the same
JP5980746B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP2018123422A (en) Surface treatment plating material, connector terminal, connector, ffc terminal, ffc, fpc and electronic part
JP5275504B1 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP2015045045A (en) Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same
JP2014139345A (en) Surface treatment plated material and production method of the same, and electronic component
JP2015046268A (en) Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same
JP6012564B2 (en) METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP2015045042A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045053A (en) Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same
JP6592140B1 (en) Surface-treated metal material, method for producing surface-treated metal material, and electronic component
JP2015045050A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045044A (en) Metallic material for electronic component, method for producing the same,and connector terminal, connector and electronic component using the same
JP2015045047A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2020111796A (en) Surface-treatment metallic material, production method of surface-treatment metallic material, and electronic component
JP2015045051A (en) Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same
JP2015045043A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045054A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045057A (en) Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810462

Country of ref document: EP

Kind code of ref document: A1