WO2019230135A1 - Photo-fabrication ink set, and production method for photo-fabricated article - Google Patents

Photo-fabrication ink set, and production method for photo-fabricated article Download PDF

Info

Publication number
WO2019230135A1
WO2019230135A1 PCT/JP2019/010947 JP2019010947W WO2019230135A1 WO 2019230135 A1 WO2019230135 A1 WO 2019230135A1 JP 2019010947 W JP2019010947 W JP 2019010947W WO 2019230135 A1 WO2019230135 A1 WO 2019230135A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
support material
composition
mass
parts
Prior art date
Application number
PCT/JP2019/010947
Other languages
French (fr)
Japanese (ja)
Inventor
浩史 太田
圭介 奥城
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Publication of WO2019230135A1 publication Critical patent/WO2019230135A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G

Definitions

  • the present invention relates to an optical modeling ink set combining a composition for a model material and a composition for a support material used in a material jet optical modeling method, and a method for manufacturing an optical modeling product using the optical modeling ink set. .
  • a modeling method using a photocurable composition that is cured by irradiating ultraviolet rays or the like is widely known as a method of creating a three-dimensional modeled object.
  • the cured layer having a predetermined shape is formed by irradiating the photocurable composition with ultraviolet rays or the like to cure.
  • a photocurable composition is further supplied onto the cured layer and cured to form a new cured layer.
  • a three-dimensional model is produced by repeating the above steps.
  • Inkjet stereolithography does not require the installation of a large resin bath and a dark room for storing the photocurable composition. Therefore, the modeling apparatus can be reduced in size compared with the conventional method.
  • Inkjet stereolithography is attracting attention as a modeling method realized by a 3D printer that can freely create a three-dimensional model based on CAD (Computer Aided Design) data.
  • the model material and the support material are formed in combination (Patent Document 1).
  • the support material is created by irradiating the photocurable composition with ultraviolet rays or the like and curing the same as the model material. After the model material is created, the support material can be removed by physically peeling the support material or dissolving the support material in an organic solvent or water.
  • the ink composition includes an acrylate monomer A having a homopolymer glass transition temperature of 25 ° C. or more and 120 ° C. or less, an acrylate monomer B having a glass transition temperature of ⁇ 60 ° C. or more and less than 25 ° C., and a weight average molecular weight.
  • Patent Document 2 discloses a support material ink composition containing a monofunctional acrylamide compound and / or a monofunctional acrylate compound having one or more hydroxy groups, polyethylene glycol and / or polypropylene glycol, and a photopolymerization initiator. Is disclosed. However, even if such an ink composition for a support material is used, it can be obtained by photocuring the ink composition for a support material depending on the type and content of components contained in the ink composition for a support material. In some cases, the support material used was inferior. As a result, there has been a problem that the dimensional accuracy of the optically modeled product modeled using the ink composition for a support material is lowered.
  • the present invention has been made in view of the above-described present situation, and for optical modeling for obtaining a stereolithographic product having a good dimensional accuracy, softness, and excellent tensile strength using a support material excellent in self-supporting property. It is an object of the present invention to provide an ink set, an optical modeling product modeled using the optical modeling ink set, and a method of manufacturing an optical modeling product using the optical modeling ink set.
  • the present inventors are excellent in water removability of the support material by defining the content of the non-polymerized component and the water-soluble monofunctional ethylenically unsaturated monomer in the composition for the support material within a predetermined range, Furthermore, it discovered that the support material excellent in independence was obtained.
  • the composition for a support material and the composition for a model material capable of obtaining a soft and excellent tensile strength an optically shaped article having good dimensional accuracy. It was found that can be shaped.
  • a composition for a model material that is used in an inkjet optical modeling method and is used for modeling a model material, and a support material that is used for modeling a support material.
  • the model material composition is an optical set ink set comprising a combination of an ethylenically unsaturated monomer (A) having a glass transition temperature of 20 ° C. or higher and 120 ° C. or lower.
  • a functional initiator (D) and the content of the bifunctional or higher acrylate compound is 15 parts by mass or less with respect to 100 parts by mass of the entire model material composition, and for the support material Composition
  • the polyalkylene glycol containing 19 to 80 parts by mass of the water-soluble monofunctional ethylenically unsaturated monomer (a) and 15 to 75 parts by mass of the oxybutylene group with respect to 100 parts by mass of the whole composition for the support material There is provided an optical modeling ink set, wherein the polyalkylene glycol (b) containing (b) and having an oxybutylene group has a molecular weight of 300 to 3,000.
  • an optical modeling ink set in which the ethylenically unsaturated monomer (A) of the model material composition is a monofunctional ethylenically unsaturated monomer.
  • an optical modeling ink set in which the ethylenically unsaturated monomer (B) of the model material composition is a monofunctional ethylenically unsaturated monomer.
  • an optical modeling ink set in which the bifunctional acrylate oligomer (C) of the model material composition has a Young's modulus at 25 ° C. of 1 to 100 MPa.
  • the content of the bifunctional acrylate oligomer (C) in the model material composition is 1 to 15 parts by mass with respect to 100 parts by mass of the model material composition as a whole.
  • the optical modeling ink set is provided.
  • the ethylenically unsaturated monomer (A) of the composition for model material is isobornyl acrylate, t-butylcyclohexyl acrylate, 3,3,5-trimethylcyclohexyl.
  • an ink set for stereolithography that is at least one selected from acrylate and dicyclopentanyl acrylate.
  • the ethylenically unsaturated monomer (B) of the composition for model material is phenoxyethyl acrylate, n-stearyl acrylate, isodecyl acrylate, ethoxyethoxyethyl acrylate, tetrahydro
  • the optical modeling ink set is provided.
  • an optical modeling ink set in which the photopolymerizable compound contained in the model material composition is an acylphosphine oxide photopolymerizable initiator.
  • an optical modeling ink set in which the composition for a support material contains 1 to 20 parts by mass of a photopolymerization initiator (d).
  • the composition for a support material further contains a water-soluble organic solvent, and the content of the water-soluble organic solvent is 100 parts by mass of the total composition for the support material.
  • an optical modeling ink set of 30 parts by mass or less is provided.
  • the composition for support material further contains a surface conditioner, and the content of the surface conditioner is 100 parts by mass with respect to the total mass of the composition for support material.
  • an ink set for optical modeling that is 0.005 parts by mass or more and 3.0 parts by mass or less is provided.
  • a method for producing a stereolithographic product by using the optical modeling ink set according to the first to eleventh aspects according to the present invention by a material jet stereolithography method wherein the model The material material is photocured to obtain a model material, and the support material composition is photocured using an ultraviolet LED to obtain a support material (I), and the support material is removed.
  • a method for producing an optically shaped article comprising the step (II).
  • An ink set for modeling, an optical modeling product modeled using the optical modeling ink set, and a method for manufacturing an optical modeling product using the optical modeling ink set can be provided.
  • FIG. 1 is a schematic side view showing a state where an ink for a support material and an ink for a model material are ejected by an ink jet modeling method and are irradiated with energy rays.
  • FIG. 2 is a schematic side view showing a state where the support material ink and the model material ink are discharged by the ink jet modeling method.
  • FIG. 3 is a schematic side view showing a state in which energy rays are applied to the support material ink and the model material ink ejected by the ink jet modeling method.
  • FIG. 4 is a schematic side view of a modeled article precursor composed of a support material and a model material formed by an ink jet modeling method.
  • FIG. 5 is a schematic side view of a model formed by the ink jet modeling method.
  • (meth) acrylate is a general term for acrylate and methacrylate, and means one or both of acrylate and methacrylate.
  • the model material composition included in the optical modeling ink set according to the present embodiment contains an ethylenically unsaturated monomer (A).
  • the ethylenically unsaturated monomer (A) has a glass transition temperature (hereinafter referred to as Tg) of a homopolymer (polymer) of 20 ° C. or higher and 120 ° C. or lower.
  • Tg glass transition temperature
  • the softness and tensile strength of the model material and the stereolithographic product can be improved.
  • the model material can be improved in formability by becoming difficult to break when removing the support material described later.
  • the Tg of the homopolymer of the ethylenically unsaturated monomer (A) is preferably 30 ° C. or higher, and more preferably 60 ° C. or higher. Moreover, it is preferable that Tg of the homopolymer of the said ethylenically unsaturated monomer (A) is 100 degrees C or less. Tg can be measured by a dynamic viscoelasticity measuring device (DMA).
  • DMA dynamic viscoelasticity measuring device
  • the ethylenically unsaturated monomer (A) may be an acrylate compound or a methacrylate compound, but is preferably an acrylate compound.
  • the ethylenically unsaturated monomer (A) may be a monofunctional ethylenically unsaturated monomer or a polyfunctional ethylenically unsaturated monomer. A saturated monomer is preferred.
  • the ethylenically unsaturated monomer (A) is preferably an ethylenically unsaturated monomer having a hydrocarbon ring structure.
  • Examples of the ethylenically unsaturated monomer (A) include isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, t-butyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, and methyl (meth) acrylate.
  • the ethylenically unsaturated monomer (A) is selected from isobornyl acrylate, t-butylcyclohexyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, and dicyclopentanyl acrylate 1 It is preferably a seed or more, and more preferably isobornyl acrylate and / or t-butylcyclohexyl acrylate.
  • the tensile strength of the model material obtained by photocuring the said composition for model materials, and the optical modeling article manufactured using this model material can be improved.
  • the model material can be improved in formability by becoming difficult to break when removing the support material described later.
  • the content of the ethylenically unsaturated monomer (A) is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the entire model material composition.
  • the content of the ethylenically unsaturated monomer (A) is more preferably 3 parts by mass or more, further preferably 5 parts by mass or more, and particularly preferably 10 parts by mass or more.
  • the content of the ethylenically unsaturated monomer (A) is more preferably 25 parts by mass or less, and further preferably 20 parts by mass or less.
  • the said content is the sum total of content of each (A) component.
  • the model material composition contained in the optical modeling ink set according to the present embodiment contains an ethylenically unsaturated monomer (B).
  • the ethylenically unsaturated monomer (B) has a homopolymer Tg of ⁇ 65 ° C. or more and less than 20 ° C.
  • Tg of the ethylenically unsaturated monomer (B) is in the above range, the softness and tensile strength of the model material and the stereolithographic product can be improved.
  • the model material can be improved in formability by becoming difficult to break when removing the support material described later.
  • the Tg of the ethylenically unsaturated monomer (B) homopolymer is preferably ⁇ 30 ° C. or higher, more preferably ⁇ 10 ° C. or higher. Moreover, it is preferable that Tg of the homopolymer of the said ethylenically unsaturated monomer (B) is 10 degrees C or less. Tg can be measured by a dynamic viscoelasticity measuring device (DMA).
  • DMA dynamic viscoelasticity measuring device
  • the ethylenically unsaturated monomer (B) may be an acrylate compound or a methacrylate compound, but is preferably an acrylate compound.
  • the ethylenically unsaturated monomer (B) may be a monofunctional ethylenically unsaturated monomer or a polyfunctional ethylenically unsaturated monomer. A saturated monomer is preferred.
  • the ethylenically unsaturated monomer (B) is preferably an ethylenically unsaturated monomer having an ether bond and / or an alkyl group having 8 or more carbon atoms.
  • Examples of the ethylenically unsaturated monomer (B) include long-chain alkyl (carbon number 8 or more) acrylate compounds, acrylate compounds having a polyethylene oxide or polypropylene oxide chain, phenoxyethyl acrylate compounds, tetrahydrofurfuryl acrylate, and acrylics.
  • Examples of the long-chain alkyl acrylate compound include 2-ethylhexyl acrylate, n-octyl acrylate, n-isononyl acrylate, n-decyl acrylate, isooctyl acrylate, n-lauryl acrylate, n-tridecyl acrylate, and n-cetyl.
  • Examples include acrylate, n-stearyl acrylate, isomyristyl acrylate, and isostearyl acrylate.
  • Examples of the acrylate compound having a polyethylene oxide or polypropylene oxide chain include (poly) ethylene glycol monoacrylate, (poly) ethylene glycol acrylate methyl ester, (poly) ethylene glycol acrylate ethyl ester, and (poly) ethylene glycol acrylate phenyl ester.
  • phenoxyethyl acrylate compound examples include phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, phenoxy polyethylene glycol acrylate, 2-hydroxy-3-phenoxypropyl acrylate, and nonylphenol ethylene oxide adduct acrylate.
  • the ethylenically unsaturated monomer (B) includes phenoxyethyl acrylate, n-stearyl acrylate, isodecyl acrylate, ethoxyethoxyethyl acrylate, tetrahydrofurfuryl acrylate, n-lauryl acrylate, n-octyl acrylate, It is preferably at least one selected from n-decyl acrylate, isooctyl acrylate, n-tridecyl acrylate, and 2- (N-butylcarbamoyloxy) ethyl acrylate, such as phenoxyethyl acrylate and / or n- More preferred is stearyl acrylate.
  • the tensile strength of the model material obtained by photocuring the said composition for model materials, and the optical modeling article manufactured using this model material can be improved.
  • the model material can be improved in formability by becoming difficult to break when removing the support material described later.
  • the content of the ethylenically unsaturated monomer (B) is preferably 10 to 90 parts by mass with respect to 100 parts by mass of the entire model material composition.
  • the content of the ethylenically unsaturated monomer (B) is more preferably 30 parts by mass or more, further preferably 40 parts by mass or more, and particularly preferably 50 parts by mass or more.
  • the content of the ethylenically unsaturated monomer (B) is more preferably 85 parts by mass or less, further preferably 80 parts by mass or less, and particularly preferably 75 parts by mass or less. .
  • the said content is the sum total of content of each (B) component.
  • the content M (A) of the ethylenically unsaturated monomer (A) and the content M (B) of the ethylenically unsaturated monomer (B) are M (A) ⁇ M (B (M (A) is smaller than M (B)), and 2 ⁇ M (A) ⁇ M (B) is satisfied (a value obtained by doubling M (A) is greater than M (B). Is preferably smaller), and more preferably 3 ⁇ M (A) ⁇ M (B) (a value obtained by multiplying M (A) by 3 is smaller than M (B)).
  • the model material can be improved in formability by becoming difficult to break when removing the support material described later.
  • the content M (A) of the ethylenically unsaturated monomer (A) and the content M (B) of the ethylenically unsaturated monomer (B) are 10 ⁇ M (A)> M It is preferable that (B) is satisfied (the value obtained by multiplying M (A) by 10 is larger than M (B)), and 7 ⁇ M (A)> M (B) is satisfied (M (A) is multiplied by 7) It is more preferable that the value is larger than M (B), and it is more preferable that 5 ⁇ M (A)> M (B) is satisfied (a value obtained by multiplying M (A) by 5 is larger than M (B)). preferable.
  • the composition for model materials contained in the optical modeling ink set according to this embodiment contains a bifunctional acrylate oligomer (C).
  • the bifunctional acrylate oligomer (C) has a weight average molecular weight (hereinafter referred to as Mw) of 800 or more and 10,000 or less.
  • Mw weight average molecular weight
  • the Mw of the bifunctional acrylate oligomer (C) is preferably 5,000 or more, and more preferably 10,000 or more.
  • Mw can be measured by gel permeation chromatography (GPC) analysis. More specifically, using Tosoh Corporation HLC-8220 GPC, three columns of TSK gel SuperAWM-H are connected and used, solvent: tetrahydrofuran (10 mM LiBr), flow rate: 0.5 mL / min, sample It can be measured under the conditions of concentration: 0.1% by mass, injection amount: 60 ⁇ L, measurement temperature: 40 ° C. A UV or RI detector (differential refractometer) can be used as the detector.
  • GPC gel permeation chromatography
  • the bifunctional acrylate oligomer (C) may have an acryloyloxy group or a methacryloyloxy group, but preferably has an acryloyloxy group.
  • the bifunctional acrylate oligomer (C) is an oligomer having a total of two acryloyloxy groups and / or methacryloyloxy groups.
  • the composition for model material contains only the monofunctional acrylate oligomer, the tensile strength of the model material and the stereolithographic product is inferior.
  • the composition for model material contains only trifunctional or higher acrylate oligomers, the softness of the model material and the stereolithographic product is inferior.
  • the Young's modulus at 25 ° C. of the bifunctional acrylate oligomer (C) is preferably 1 to 100 MPa.
  • the Young's modulus of the bifunctional acrylate oligomer (C) is more preferably 2 MPa or more, further preferably 3 MPa or more, and particularly preferably 10 MPa or more.
  • the Young's modulus of the bifunctional acrylate oligomer (C) is more preferably 80 MPa or less, further preferably 50 MPa or less, and particularly preferably 30 MPa or less.
  • the Young's modulus at 25 ° C. of the bifunctional acrylate oligomer (C) is the Young's modulus at 25 ° C. of the homopolymer (monopolymer) of the bifunctional acrylate oligomer (C).
  • the Young's modulus can be measured by, for example, the following method. A liquid in which 2% by mass of Irgacure 819 (manufactured by BASF), 2% by mass of Irgacure 184 (manufactured by BASF), and 96% by mass of the oligomer to be measured was formed with a bar coater to form a coating film of 100 ⁇ m, and ultraviolet (UV) exposure Cured with a machine.
  • Irgacure 819 manufactured by BASF
  • Irgacure 184 manufactured by BASF
  • the cured film was cured to such an extent that the influence of the degree of polymerization of the cured film was negligible.
  • This cured film is cut into a 15 mm ⁇ 50 mm strip and the Young's modulus is measured with a tensile tester (Autograph AGS-X, 5KN, manufactured by Shimadzu Corporation). The value of Young's modulus is measured at the 1% elongation. Moreover, in a test, it pulls to a major axis direction and grasps about 10 mm part up and down with a clamp.
  • bifunctional acrylate oligomer (C) examples include olefin-based (ethylene oligomer, propylene oligomer, butene oligomer, etc.), vinyl-based (styrene oligomer, vinyl alcohol oligomer, vinyl pyrrolidone oligomer, acrylic resin oligomer, etc.), diene-based ( Butadiene oligomer, chloroprene rubber, pentadiene oligomer, etc.), ring-opening polymerization system (di-, tri-, tetraethylene glycol, polyethylene glycol, polyethylimine, etc.), polyaddition system (oligoester acrylate, polyamide oligomer, polyisocyanate oligomer) And addition condensation oligomers (phenol resin, amino resin, xylene resin, ketone resin, etc.).
  • olefin-based ethylene oligomer, propylene oligomer, butene oligo
  • a urethane acrylate oligomer, a polyester acrylate oligomer, or an epoxy acrylate oligomer is preferable, and a urethane acrylate oligomer is more preferable.
  • an oligomer handbook (supervised by Junji Furukawa, Chemical Industries Daily Co., Ltd.) can be referred to.
  • Examples of the bifunctional acrylate oligomer (C) include Shin-Nakamura Chemical Co., Ltd., Sartomer Japan Co., Ltd., Daicel Cytec Co., Ltd., Rahn A.I. G. What is marketed by the company etc. can be used.
  • the content of the bifunctional acrylate oligomer (C) is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the entire model material composition. When the content of the bifunctional acrylate oligomer (C) is in the above range, the softness and tensile strength of the model material and the stereolithographic product can be improved.
  • the content of the bifunctional acrylate oligomer (C) is more preferably 3 parts by mass or more, and still more preferably 5 parts by mass or more.
  • the said (C) component is contained 2 or more types, the said content is the sum total of content of each (C) component.
  • the content of the bifunctional or higher acrylate compound is 15 parts by mass or less with respect to 100 parts by mass of the entire model material composition.
  • the content of the bifunctional acrylate oligomer (C) is preferably 50 parts by mass or more with respect to 100 parts by mass of the entire bifunctional or higher acrylate compound.
  • the content of the bifunctional acrylate oligomer (C) is more preferably 80 parts by mass or more, further preferably 90 parts by mass or more, based on 100 parts by mass of the entire bifunctional or higher acrylate compound. It is particularly preferable that the amount is at least part by mass.
  • the composition for model materials of this invention contains a photoinitiator.
  • the photopolymerization initiator is a compound that promotes a radical reaction when irradiated with light having a wavelength in the ultraviolet, near ultraviolet, or visible light region.
  • the photopolymerization initiator is not particularly limited as long as the polymerization can be initiated with low energy, but is not limited to acylphosphine oxide compounds, ⁇ -aminoalkylphenone compounds, ⁇ -hydroxyquinone compounds, thioxanthone compounds, benzoin compounds, anthraquinone compounds.
  • acylphosphine oxide compound examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, and 2,6-dichlorobenzoyldiphenylphosphine oxide.
  • ⁇ -aminoalkylphenone compound examples include 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl) butanone-1,2-methyl-1- [4- (methoxythio) -phenyl] -2-morpholinopropan-2-one and the like. These may be used alone or in combination. Examples of commercially available ⁇ -aminoalkylphenone compounds include “IRGACURE 369” and “IRGACURE 907” manufactured by BASF.
  • ⁇ -hydroxyquinone compound examples include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-phenylpropan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-Hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-methyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl- 1-propan-1-one and the like can be mentioned. These may be used alone or in combination. Examples of commercially available ⁇ -hydroxyquinone compounds include “IRGACURE 184”, “DAROCURE 1173”, “IRGACURE 2959”, “IRGACURE 127”, and the like.
  • thioxanthone compound examples include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4 -Diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone and the like. These may be used alone or in combination. Examples of commercially available thioxanthone compounds include “MKAYACURE DETX-S” manufactured by Nippon Kayaku Co., Ltd. and “Chivacure ITX” manufactured by Double Bond Chemical.
  • benzoin compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether.
  • anthraquinone compound examples include 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone and the like.
  • ketal compound examples include, for example, acetophenone dimethyl ketal, benzyl dimethyl ketal, and the like, benzophenone compounds having 13 to 21 carbon atoms (for example, benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4 And '-bismethylaminobenzophenone.
  • the content of (D) is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the entire model material composition. When the content of (D) is in the above range, the softness and tensile strength of the model material and the stereolithographic product can be improved.
  • the content of (D) is more preferably 2 parts by mass or more, and further preferably 5 parts by mass or more.
  • the content of (D) is more preferably 13 parts by mass or less.
  • the said content is the sum total of content of each (D) component.
  • the composition for a model material included in the optical modeling ink set according to the present embodiment can contain other additives as necessary within a range that does not impair the effects of the present invention.
  • other additives include a sensitizer, a colorant, a dispersant, a surface conditioner, a polymerization inhibitor, a storage stabilizer, a photopolymerization initiator other than the acylphosphine oxide compound (D), and co-sensitization.
  • Agent ultraviolet absorber, antioxidant, anti-fading agent, conductive salt, solvent, polymer compound, basic compound, leveling additive, matting agent, polyester resin for adjusting film properties, polyurethane resin, Examples include vinyl resins, acrylic resins, rubber resins, and waxes.
  • sensitizer examples include polynuclear aromatics (for example, pyrene, perylene, triphenylene, 2-ethyl-9,10-dimethoxyanthracene), thioxanthones (for example, isopropylthioxanthone), thiochromanones (for example, Thiochromanone, etc.). These may be used alone or in combination of two or more. Among these, thioxanthones are preferable, and isopropylthioxanthone is more preferable.
  • the content of the sensitizer is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the entire model material composition. When the content of the sensitizer is within the above range, the model material is excellent in curability and curing sensitivity.
  • the content of the sensitizer is more preferably 0.5 parts by mass or more, and more preferably 3 parts by mass or less. In addition, when the said sensitizer is contained 2 or more types, the said content is the sum total of content of each sensitizer.
  • the colorant various known pigments and dyes can be appropriately selected and used depending on the application.
  • a pigment is preferable from the viewpoint of excellent light resistance.
  • the pigment is not particularly limited, and all commercially available organic pigments, inorganic pigments, pigments obtained by dyeing resin particles with a dye, and the like can be used.
  • commercially available pigment dispersions, surface-treated pigments, for example, pigments dispersed in an insoluble resin or the like using a dispersion medium, and those obtained by grafting a resin on the pigment surface do not impair the effects of the present invention. As long as it can be used.
  • Examples of the organic pigment and the inorganic pigment that exhibit a yellow color include C.I. I. Pigment Yellow 1 (Fast Yellow G, etc.), C.I. I. Monoazo pigments such as CI Pigment Yellow 74; I. Pigment Yellow 12 (disaji yellow AAA, etc.), C.I. I. Disazo pigments such as CI Pigment Yellow 17; I. Non-benzidine type azo pigments such as CI Pigment Yellow 180; I. Azo lake pigments such as C.I. Pigment Yellow 100 (eg Tartrazine Yellow Lake); I. Condensed azo pigments such as CI Pigment Yellow 95 (Condensed Azo Yellow GR, etc.); I. Acidic dye lake pigments such as C.I.
  • Pigment Yellow 115 (quinoline yellow lake, etc.); I. Basic dye lake pigments such as CI Pigment Yellow 18 (thioflavin lake, etc.); anthraquinone pigments such as Flavantron Yellow (Y-24); isoindolinone pigments such as Isoindolinone Yellow 3RLT (Y-110); quinophthalone yellow Quinophthalone pigments such as (Y-138); isoindoline pigments such as isoindoline yellow (Y-139); I. Nitroso pigments such as C.I. Pigment Yellow 153 (nickel nitroso yellow, etc.); I. And metal complex salt azomethine pigments such as CI Pigment Yellow 117 (copper azomethine yellow and the like). These may be used alone or in combination of two or more.
  • Basic dye lake pigments such as CI Pigment Yellow 18 (thioflavin lake, etc.); anthraquinone pigments such as Flavantron Yellow (Y-24); isoindolinone pigments
  • Examples of the organic pigment and the inorganic pigment that exhibit red or magenta color include C.I. I. Monoazo pigments such as CI Pigment Red 3 (Toluidine Red, etc.); I. Disazo pigments such as C.I. Pigment Red 38 (Pyrazolone Red B, etc.); I. Pigment Red 53: 1 (Lake Red C, etc.), C.I. I. Azo lake pigments such as CI Pigment Red 57: 1 (Brilliant Carmine 6B); I. Condensed azo pigments such as C.I. Pigment Red 144 (condensed azo red BR and the like); I. Acidic dye lake pigments such as C.I. Pigment Red 174 (Phloxine B Lake, etc.); I.
  • Basic dye lake pigments such as C.I. Pigment Red 81 (Rhodamine 6G 'lake, etc.); I. Anthraquinone pigments such as C.I. Pigment Red 177 (eg, dianthraquinonyl red); I. Thioindigo pigments such as C.I. Pigment Red 88 (such as Thioindigo Bordeaux); I. Perinone pigments such as C.I. Pigment Red 194 (perinone red, etc.); I. Perylene pigments such as CI Pigment Red 149 (perylene scarlet, etc.); I. Pigment violet 19 (unsubstituted quinacridone), C.I. I. Quinacridone pigments such as C.I.
  • Pigment Red 122 quinacridone magenta, etc.
  • I. CI indolinone pigments such as C.I. Pigment Red 180 (Isoindolinone Red 2BLT and the like);
  • I. And alizarin lake pigments such as CI Pigment Red 83 (Madder Lake, etc.). These may be used alone or in combination of two or more.
  • examples of the pigment exhibiting blue or cyan include C.I. I. Disazo pigments such as CI Pigment Blue 25 (dianisidine blue and the like); I. Phthalocyanine pigments such as C.I. Pigment Blue 15 (phthalocyanine blue, etc.); I. Acidic dye lake pigments such as C.I. Pigment Blue 24 (peacock blue lake, etc.); I. Basic dye lake pigments such as C.I. Pigment Blue 1 (Viclotia Pure Blue BO Lake, etc.); I. Anthraquinone pigments such as C.I. Pigment Blue 60 (Indantron Blue, etc.); I. And alkaline blue pigments such as CI Pigment Blue 18 (Alkali Blue V-5: 1). These may be used alone or in combination of two or more.
  • examples of the green pigment include C.I. I. Pigment green 7 (phthalocyanine green), C.I. I. Phthalocyanine pigments such as CI Pigment Green 36 (phthalocyanine green); I. And azo metal complex pigments such as CI Pigment Green 8 (Nitroso Green). These may be used alone or in combination of two or more.
  • examples of the orange pigment include C.I. I. CI indoline pigments such as CI Pigment Orange 66 (isoindoline orange); I. And anthraquinone pigments such as CI Pigment Orange 51 (dichloropyrantron orange). These may be used alone or in combination of two or more.
  • examples of the black pigment include carbon black, titanium black, and aniline black. These may be used alone or in combination of two or more.
  • white pigments include, for example, basic lead carbonate (2PbCO 3 Pb (OH) 2 , so-called silver white), zinc oxide (ZnO, so-called zinc white), and titanium oxide.
  • 2PbCO 3 Pb (OH) 2 so-called silver white
  • ZnO zinc oxide
  • titanium oxide titanium oxide
  • TiO 2 so-called titanium white
  • strontium titanate strontium titanate
  • titanium oxide is preferable from the viewpoint of high hiding power and coloring power as a pigment and excellent durability to acids, alkalis, and other environments.
  • the content of the colorant is preferably 0.01 to 40 parts by mass with respect to 100 parts by mass of the entire model material composition from the viewpoint of colorability and storage stability.
  • the content of the colorant is more preferably 0.1 parts by mass or more, and further preferably 0.2 parts by mass or more. Further, the content of the colorant is more preferably 30 parts by mass or less, and further preferably 20 parts by mass or less.
  • the said coloring agent is contained 2 or more types, the said content is the sum total of content of each coloring agent.
  • the dispersant is preferably a polymer dispersant having an Mw of 1,000 or more.
  • the polymer dispersant include DISPERBYK-101, DISPERBYK-102 and the like (manufactured by BYK Chemie); EFKA4010 and EFKA4046 and the like (above, manufactured by Fuka Additive); As described above, manufactured by San Nopco); various Solsperse dispersants such as SOLPERSE 3000, 5000 (hereinafter, manufactured by Noveon); Adeka Pluronic L31, F38, etc. (hereinafter, manufactured by ADEKA); Manufactured by the company); Disparon KS-860, 873SN, etc. (above, manufactured by Enomoto Kasei Co., Ltd.). These may be used alone or in combination of two or more.
  • the content of the dispersant is preferably 0.05 to 15 parts by mass with respect to 100 parts by mass of the entire model material composition.
  • the said content is the sum total of content of each dispersing agent.
  • Examples of the surface conditioner (E) include a PEG-type nonionic surfactant [nonylphenol ethylene oxide (hereinafter abbreviated as EO) 1 to 40 mol adduct, stearin having a molecular weight of 264 or more and Mn of 5,000 or less.
  • EO nonylphenol ethylene oxide
  • Acid EO 1-40 mol adducts, etc.] polyhydric alcohol type nonionic surfactants (sorbitan palmitic acid monoester, sorbitan stearic acid monoester, sorbitan stearic acid triester, etc.), fluorine-containing surfactants (perfluoroalkyl EO1) ⁇ 50 mol adduct, perfluoroalkyl carboxylate, perfluoroalkyl betaine, etc.), modified silicone oils [polyether-modified silicone oil, (meth) acrylate-modified silicone oil, etc.] and the like. These may be used alone or in combination of two or more.
  • silicone-based surface conditioners are preferable, and surface conditioners having a polydimethylsiloxane structure are particularly preferable.
  • the content of the surface conditioner is 3 parts by mass or less with respect to 100 parts by mass of the entire model material composition, from the viewpoint of adding effects and improving the physical properties of the model material and the optically shaped article. It is preferably 2 parts by mass or less, more preferably 0.1 parts by mass or more. In addition, when 2 or more types of the said surface conditioning agents are contained, the said content is the sum total of content of each surface conditioning agent.
  • the model material composition preferably contains a polymerization inhibitor.
  • a polymerization inhibitor When the composition for a model material contains a polymerization inhibitor, it is possible to suppress excessive polymerization at a temperature (about 50 to 90 ° C.) at which the shaped article is molded. As a result, since the monomer can be stabilized, the model material composition is easily cured.
  • the polymerization inhibitor enhances the storage stability of the model material composition and improves the ejection stability from the inkjet head.
  • the polymerization inhibitor include nitroso polymerization inhibitors, hydroquinone, methoxyhydroquinone, benzoquinone, p-methoxyphenol, TEMPO, TEMPOL (HO-TEMPO), cuperon Al, hindered amine and the like.
  • the content of the polymerization inhibitor is preferably 0.001 to 1.5 parts by mass with respect to 100 parts by mass of the entire model material composition.
  • the content of the polymerization inhibitor is more preferably 0.01 parts by mass or more, and further preferably 0.05 parts by mass or more.
  • the content of the polymerization inhibitor is more preferably 1.0 part by mass or less, and further preferably 0.8 part by mass or less.
  • the said content is the sum total of content of each polymerization inhibitor.
  • the method for producing the model material composition included in the optical modeling ink set according to the present embodiment is not particularly limited.
  • the components (A) to (D) and, if necessary, the other additives can be produced by uniformly mixing them using a mixing and stirring device or the like.
  • the composition for a model material thus produced preferably has a viscosity at 25 ° C. of 70 mPa ⁇ s or less from the viewpoint of improving dischargeability from an inkjet head.
  • the measurement of the viscosity of the composition for model materials is performed using R100 type
  • a support material composition is a photocurable composition for a support material that provides a support material by photocuring. After the model material is created, it can be removed from the model material by physically peeling the support material from the model material or by dissolving the support material in an organic solvent or water.
  • the composition for a model material of the present invention can be used in combination with various conventionally known compositions as a composition for a support material, but does not damage the model material when the support material is removed, and the environment. It is preferable that the support material composition constituting the stereolithography composition set of the present invention is water-soluble because the support material can be removed easily and cleanly in detail.
  • the water-soluble support material composition comprises at least one water-soluble monofunctional ethylenically unsaturated monomer (a), at least one polyalkylene glycol (b) containing an oxybutylene group, and photopolymerization. It is preferable to contain an initiator (c).
  • Examples of the water-soluble monofunctional ethylenically unsaturated monomer (a) contained in the support material composition of the present invention include a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms [for example, hydroxyethyl (meta ) Acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.], hydroxyl group-containing (meth) acrylate having a number average molecular weight (Mn) of 200 to 1,000 [for example, polyethylene glycol mono (meth) acrylate, mono Alkoxy (1 to 4 carbon atoms) polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polypropylene glycol mono (meth) acrylate, mono (meta) of PEG-PPG block polymer Acrylate ], (Meth) acrylamide derivatives [eg (meth)
  • the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) contained in the support material composition is preferably 19 to 80 parts by mass with respect to 100 parts by mass of the support material composition. More preferably, it is 22 parts by mass or more, more preferably 25 parts by mass or more, more preferably 76 parts by mass or less, and further preferably 73 parts by mass or less.
  • the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is within the above range, the removability of the support material with water can be improved without reducing the support power of the support material.
  • the polyalkylene glycol (b) containing an oxybutylene group contained in the support material composition may be either a linear type or a multi-chain type.
  • the alkyl group may be included in the terminal, for example, Preferably it may contain the C6 or less alkyl chain. These may be used alone or in combination of two or more.
  • the polyalkylene glycol (b) containing an oxybutylene group contained in the support material composition is a water-soluble resin for imparting appropriate hydrophilicity to the support material. Support material that combines strength can be obtained.
  • the polyalkylene glycol containing an oxybutylene group is not particularly limited as long as it contains an oxybutylene group.
  • the polyalkylene glycol having only an oxybutylene group is a single polybutylene glycol.
  • it may be a polybutylene polyoxyalkylene glycol (for example, polybutylene polyethylene glycol) having both an oxybutylene group and another oxyalkylene group.
  • the polybutylene glycol is represented by the following chemical formula (1)
  • the polybutylene polyethylene glycol is represented by the following chemical formula (2).
  • n is preferably an integer of 2 to 150. More preferably, m is 6 to 200, and n is 3 to 100.
  • the oxybutylene group in the chemical formula (1) and the chemical formula (2) may be a straight chain or may be branched. These may be used alone or in combination of two or more.
  • the composition for the support material contains the polyalkylene glycol (b) containing an oxybutylene group, the removability by water can be further improved without reducing the support power of the support material, and a soft model material can be obtained.
  • It is a support material that is suitable for supporting and modeling a highly accurate model material.
  • the support material can sufficiently support the model material during the optical modeling, the modeling accuracy at the optical modeling stage can be improved with respect to the soft model material whose dimensional accuracy is likely to be lowered during molding.
  • the support material can be easily removed at the stage of removing the support material after that, the support material can be used while suppressing the decrease in accuracy even in the microstructure of the three-dimensional model molded with high accuracy during stereolithography. Can be removed.
  • This not only prevents the reduction of dimensional accuracy when removing the support material by improving the removability of the support material with water, but also improves the dimensional accuracy of the model material during stereolithography by improving the self-supporting property of the support material. By increasing the height, it is possible to obtain an optically shaped article having better dimensional accuracy.
  • the weight average molecular weight of the polyalkylene glycol (b) component containing an oxybutylene group is 300 or more, preferably less than 3000, more preferably 800 or more, and more preferably less than 2000.
  • the weight average molecular weight of the component (b) is smaller than 300, bleeding of the support material tends to occur when the support material composition is cured. Bleeding is a phenomenon in which a liquid component oozes from the inside of a cured support material to the support material surface.
  • the weight average molecular weight of the polyalkylene glycol containing an oxybutylene group is smaller than 3000, the discharge stability of the support material composition is excellent.
  • the water-soluble monofunctional ethylenically unsaturated monomer (a) is easily compatible in the composition before curing, while the water-soluble monofunctional ethylenic monomer after light irradiation is easily compatible. It becomes difficult to be compatible with the cured product of the saturated monomer, and the support material can be easily removed with water or a water-soluble solvent.
  • Two or more types of components may be used. When two or more types of polyalkylene glycol are used, the content of polyalkylene glycol having a weight average molecular weight of less than 300 or greater than 3000 is preferably small.
  • the content of the polyalkylene glycol (b) containing an oxybutylene group in the support material composition is preferably 15 to 75 parts by mass, more preferably 17 parts by mass with respect to 100 parts by mass of the support material composition. Part or more, more preferably 20 parts by weight or more, more preferably 72 parts by weight or less, and even more preferably 70 parts by weight or less.
  • the content of the polyalkylene glycol (b) containing an oxybutylene group is within the above range, the removability of the support material with water or a water-soluble solvent can be improved without reducing the support power of the support material. .
  • the support material composition may contain a water-soluble organic solvent (c).
  • the water-soluble organic solvent (c) is a component that improves the solubility of the support material obtained by photocuring the support material composition in water. Moreover, it has the function to adjust the composition for support materials to low viscosity.
  • the water-soluble organic solvent (c) it is preferable to use a glycol solvent.
  • a glycol solvent Specifically, for example, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol monoacetate.
  • Glycol ester solvents such as acetate, tripropylene glycol monoacetate, tetraethylene glycol monoacetate, tetrapropylene glycol monoacetate, ethylene glycol diacetate, propylene glycol diacetate; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, triethylene glycol monomethyl Ether, ethylene glycol monoethyl ether, propylene glycol Monoethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, tetrapropylene glycol monobutyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, Glycol ether solvents such as ethylene glycol dipropyl ether, propylene glycol dipropyl ether,
  • the low-viscosity support material composition is easy to prepare, and the support material obtained by curing is excellent in water solubility. Therefore, as the water-soluble organic solvent (c), triethylene glycol monomethyl ether, diethylene glycol diethyl Ether and dipropylene glycol monomethyl ether acetate are preferred.
  • the content of the water-soluble organic solvent (c) in the support material composition is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, with respect to 100 parts by mass of the support material composition. More preferably, it is 25 parts by mass or less.
  • the content of the water-soluble organic solvent (c) is within the above range, the removability of the support material with water or the water-soluble solvent can be improved without reducing the support power of the support material.
  • the composition for a support material contains a water-soluble organic solvent, the content thereof is preferably 3 masses with respect to 100 parts by mass of the composition for a support material from the viewpoint that the composition for a support material can be adjusted to a low viscosity. More than a part.
  • the compounds described above as photopolymerization initiators that can be contained in the model material composition can be similarly used.
  • the content of the photopolymerization initiator in the support material composition is preferably 1 to 20 parts by mass and more preferably 2 to 18 parts by mass with respect to 100 parts by mass of the support material composition.
  • the content of the photopolymerization initiator is within the above range, unreacted polymerization components can be sufficiently reduced, and the curability of the support material can be sufficiently enhanced.
  • the support material composition may contain other additives as necessary.
  • additives include surface conditioners, antioxidants, colorants, pigment dispersants, storage stabilizers, ultraviolet absorbers, light stabilizers, polymerization inhibitors, chain transfer agents, and fillers. .
  • the surface tension of the support material composition can be controlled within an appropriate range by adding the surface conditioner (e) to the support material composition, and the model material composition and the support material composition Mixing at the interface can be suppressed. Thereby, a stereolithography product with favorable dimensional accuracy can be obtained.
  • the surface conditioner that can be contained in the support material composition the same as those exemplified as the surface conditioner that can be used in the model material composition of the present invention can be used. It is preferable that it is 0.005 mass part or more and 3 mass parts or less with respect to 100 mass parts of things.
  • the storage stability can be improved by blending the storage stabilizer (f) into the support material composition.
  • the storage stabilizer that can be contained in the support material composition the same storage stabilizers as those exemplified as the storage stabilizer that can be used in the model material composition of the present invention can be used. It is preferable that they are 0.05 mass part or more and 3 mass parts or less with respect to 100 mass parts of composition for materials.
  • the viscosity of the support material composition is preferably 30 to 200 mPa ⁇ s at 25 ° C., more preferably 35 mPa ⁇ s or more, and still more preferably, from the viewpoint of improving dischargeability from the inkjet nozzle. Is 40 mPa ⁇ s or more, more preferably 170 mPa ⁇ s or less, and still more preferably 150 mPa ⁇ s or less.
  • the measurement of the said viscosity can be performed using R100 type
  • the surface tension of the support material composition is preferably 24 to 30 mN / m, more preferably 24.5 to 29.5 mN / m, and further preferably 25 to 29 mN / m.
  • the surface tension of the composition for support material can be measured in accordance with the method similar to the measuring method of the surface tension in the composition for model materials.
  • the method for producing the composition for a support material of the present invention is not particularly limited.
  • the composition for the support material can be produced by uniformly mixing the components constituting the composition for a support material using a mixing stirrer or the like.
  • the manufacturing method of the optical modeling object of this embodiment is a manufacturing method of an optical modeling object using the composition set for material jet optical modeling described in the above embodiment, and is a material jet (inkjet). ) After discharging the composition for the model material and the composition for the support material using a method printer, the model material composition is photocured to obtain the model material, and the water soluble support material composition is photocured. A step of obtaining a water-soluble support material, and a step of removing the water-soluble support material by immersing the water-soluble support material in water.
  • the manufacturing method of the optical modeling thing of this embodiment is using the said composition set for material jet optical modeling, it can form the optical modeling thing excellent in modeling precision.
  • FIG. 1 is a schematic side view showing a state in which a support material composition and a model material composition are ejected by a material jet modeling method and irradiated with energy rays.
  • the three-dimensional modeling apparatus 10 includes an inkjet head module 11 and a modeling table 12.
  • the ink jet head module 11 includes an optical modeling ink unit 11a, a roller 11b, and a light source 11c.
  • the optical modeling ink unit 11a includes a model material inkjet head 11aM filled with the model material ink 13 and a support material inkjet head 11aS filled with the support material ink.
  • the model material composition 13 is ejected from the model material inkjet head 11aM
  • the support material composition 14 is ejected from the support material inkjet head 11aS
  • the energy beam 15 is irradiated and ejected from the light source 11c.
  • the model material composition 13 and the support material composition 14 are cured to form the model material 13PM and the support material 14PS.
  • FIG. 1 shows a state in which the first layer model material 13PM and the support material 14PS are formed.
  • the inkjet head module 11 is scanned in the X direction (right direction in FIG. 2) with respect to the modeling table 12, and the inkjet for model material is used.
  • the model material composition 13 is discharged from the head 11aM
  • the support material composition 14 is discharged from the support material inkjet head 11aS.
  • the layer which consists of the model material precursor 13M, and the layer which consists of the support material precursor 14S are arrange
  • the inkjet head module 11 is scanned in the reverse X direction (left direction in FIG. 3) with respect to the modeling table 12, and the model material precursor 13 ⁇ / b> M and the support material precursor 14 ⁇ / b> S are scanned by the roller 11 b.
  • the energy beam 15 is irradiated from the light source 11c to cure the layer made of the model material precursor 13M and the support material precursor 14S, and the first model material 13PM and the support material 14PS.
  • a layer consisting of is formed.
  • the modeling table 12 is lowered by one layer in the Z direction, and the same process as described above is performed to form a second layer of model material and support material. Thereafter, by repeating the above steps, as shown in FIG. 4, an optically shaped product precursor 16 composed of the model material 13PM and the support material 14PS is formed.
  • optical modeling product precursor 16 shown in FIG. 4 is immersed in water to dissolve and remove the support material 14PS, thereby forming the optical modeling product 17 as shown in FIG.
  • a high pressure mercury lamp, a metal halide lamp, a UV-LED, or the like can be used as the light source.
  • UV-LED is preferable.
  • the amount of light is preferably 200 to 500 mJ / cm 2 from the viewpoint of the hardness and dimensional accuracy of the shaped product.
  • a UV-LED it is preferable to use a light having a center wavelength of 385 to 415 nm because light easily reaches a deep layer and the hardness and dimensional accuracy of the optically shaped product can be improved.
  • ultraviolet rays As the energy rays 15 irradiated from the light source 11c, ultraviolet rays, near ultraviolet rays, visible rays, infrared rays, far infrared rays, electron beams, ⁇ rays, ⁇ rays, X-rays, and the like can be used. And from a viewpoint of efficiency, ultraviolet rays or near ultraviolet rays are preferable.
  • the data of the composition for the model material that forms the three-dimensional structure by stacking by the material jet method, and the three-dimensional modeling in the process of preparation The data of the composition for the support material that supports the object is prepared, and further, the slice data for discharging each composition by the 3D printer of the material jet method is prepared, and each of the model material and the support material is used based on the prepared slice data.
  • the photo-curing treatment is repeated for each layer to produce an optically shaped article composed of a cured product of the model material composition (model material) and a cured product of the composition for support material (support material). it can.
  • each layer constituting the three-dimensional model is preferably thin from the viewpoint of modeling accuracy, but is preferably 5 to 30 ⁇ m from the balance with the modeling speed.
  • the obtained stereolithography is a combination of a model material and a support material.
  • the support material is removed from the stereolithography product to obtain a stereolithography product as a model material.
  • the support material can be removed by, for example, immersing an optical modeling object obtained in a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like.
  • a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like.
  • Water or a water-soluble solvent such as a glycol solvent or an alcohol solvent may be used as the solvent for removing the support material. These may be used alone or in combination.
  • the above-mentioned stereolithography product has suppressed water absorption and swelling when contacted with water, and is less likely to cause breakage and deformation of the fine structure portion. Further, the stereolithographic product is excellent in water and oil repellency and hardly contaminated.
  • Table 3 summarizes the components used in the support material composition in the following Examples and Comparative Examples.
  • Example S1 to S13 the support material compositions of Examples S1 to S13 and Comparative Example s1 were prepared as follows. That is, each support material composition was prepared by measuring the components (a) to (f) shown in Table 4 at the blending amounts (unit: parts by mass) shown in Table 4 and mixing them in a plastic bottle. .
  • the support material composition was cooled at low temperatures and the support material cured product obtained by curing the support material composition was stable under high temperature and high humidity conditions by the following methods.
  • the property (supporting power) and water removal property were evaluated.
  • ⁇ Low temperature stability of support material composition The stability of the composition for the support material at low temperature was evaluated. Each support material composition was put in a glass bottle, and the glass bottle containing the support material composition was stored in a thermostatic bath set at a temperature of 10 ° C. for 24 hours. Then, the state of the composition for support material after storage was confirmed visually, and the low temperature stability of the composition for support material was evaluated according to the following criteria.
  • composition for the support material When the composition for the support material is maintained in a liquid state: low temperature stability A (excellent) When the support material composition is partially solidified (solidified): Low temperature stability B (good) When the composition for the support material is solidified (solidified): low temperature stability C (poor) ⁇ Supporting power of cured support material> A frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 5 mm, each support material composition is poured into the frame, and an ultraviolet ray with an integrated light amount of 500 mJ / cm 2 is obtained by a metal halide lamp. Was irradiated to produce a cured support material.
  • the cured product was placed in a glass petri dish, and the petri dish containing the cured product was left in a thermostatic bath at a temperature of 40 ° C. and a relative humidity of 90% for 2 hours. Thereafter, the state of the cured product after standing was visually confirmed, and the support force of the cured support material was evaluated according to the following criteria.
  • Support strength A excellent
  • Support strength B good
  • Support force C defect
  • a cured support material was produced in the same manner as in the evaluation of the support force of the cured support material.
  • the cured product is placed in a beaker filled with 50 mL of ion exchange water, treated with an ultrasonic cleaner while maintaining the water temperature at 25 ° C., and the time until the cured product is dissolved is measured.
  • the water removal property of the support material cured product was evaluated based on the standard.
  • a spacer having a thickness of 1 mm was arranged on the four upper surfaces of a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm ⁇ 200 mm ⁇ thickness 5 mm), and was partitioned into 10 cm ⁇ 10 cm squares.
  • an ultraviolet LED NCCU001E, manufactured by Nichia Corporation
  • UV rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a support material.
  • spacers having a thickness of 1 mm were arranged on the four sides of the upper surface of the support material and partitioned into squares of 10 cm ⁇ 10 cm.
  • an ultraviolet LED NCCU001E, manufactured by Nichia Corporation
  • UV rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2.
  • cured to obtain a model material.
  • evaluation of adhesion In this state, it was left in a thermostatic bath at 30 ° C. for 12 hours, the state of adhesion between the model material and the support material was visually confirmed, and evaluated according to the following criteria. The results are shown in Table 6.
  • The model material and the support material were in close contact.
  • X Peeling occurred at the interface between the model material and the support material, and the model material was peeled off so as to be warped by the curing shrinkage of the model material.
  • the ink set for optical modeling according to the present invention can be suitably used when an optical modeling product with good dimensional accuracy is manufactured using an inkjet optical modeling method.

Abstract

The present invention relates to a photo-fabrication ink set that comprises a model material composition and a support material composition. The model material composition: contains an ethylenically unsaturated monomer (A) that has a Tg of 20°C–120°C, an ethylenically unsaturated monomer (B) that has a Tg of at least -65°C but less than 20°C, a bifunctional acrylate oligomer (C) that has a Mw of 800–10,000, and a initiator (D); and has a bi- or higher functional acrylate compound content of no more than 15 parts by mass. The support material composition contains 19–80 parts by mass of a water-soluble monofunctional ethylenically unsaturated monomer (a) and 15–75 parts by mass of a polyalkylene glycol (b) that has a molecular weight of 300–3,000 and includes an oxybutylene group.

Description

光造形用インクセット、及び、光造形品の製造方法Optical modeling ink set and manufacturing method of optical modeling product
 本発明は、マテリアルジェット光造形法に用いられるモデル材用組成物とサポート材用組成物を組み合わせた光造形用インクセット、及び、前記光造形用インクセットを用いた光造形品の製造方法に関する。 The present invention relates to an optical modeling ink set combining a composition for a model material and a composition for a support material used in a material jet optical modeling method, and a method for manufacturing an optical modeling product using the optical modeling ink set. .
 従来、立体造形物を作成する方法として、紫外線等を照射することにより硬化する光硬化性組成物を用いた造形法が広く知られている。具体的に、このような造形法では、光硬化性組成物に紫外線等を照射して硬化させることにより、所定の形状を有する硬化層を形成する。その後、該硬化層の上にさらに光硬化性組成物を供給して硬化させることにより、新たな硬化層を形成する。前記工程を繰り返し行うことにより、立体造形物を作製する。 Conventionally, a modeling method using a photocurable composition that is cured by irradiating ultraviolet rays or the like is widely known as a method of creating a three-dimensional modeled object. Specifically, in such a modeling method, the cured layer having a predetermined shape is formed by irradiating the photocurable composition with ultraviolet rays or the like to cure. Thereafter, a photocurable composition is further supplied onto the cured layer and cured to form a new cured layer. A three-dimensional model is produced by repeating the above steps.
 前記造形法の中でも、近年、ノズルから光硬化性組成物を吐出させ、その直後に紫外線等を照射して硬化させることにより、所定の形状を有する硬化層を形成するマテリアルジェット方式(インクジェット方式)による光造形法(以下、マテリアルジェット光造形方又はインクジェット光造形法という)が報告されている(特許文献1~4)。インクジェット光造形法は、光硬化性組成物を貯留する大型の樹脂液槽及び暗室の設置が不要である。そのため、従来法に比べて、造形装置を小型化することができる。インクジェット光造形法は、CAD(Computer Aided Design)データに基づいて、自由に立体造形物を作成可能な3Dプリンターによって実現される造形法として、注目されている。 Among the modeling methods, in recent years, a material jet method (inkjet method) that forms a cured layer having a predetermined shape by discharging a photocurable composition from a nozzle and immediately irradiating it with ultraviolet rays and curing. (Hereinafter referred to as “material jet stereolithography” or “inkjet stereolithography”) has been reported (Patent Documents 1 to 4). Inkjet stereolithography does not require the installation of a large resin bath and a dark room for storing the photocurable composition. Therefore, the modeling apparatus can be reduced in size compared with the conventional method. Inkjet stereolithography is attracting attention as a modeling method realized by a 3D printer that can freely create a three-dimensional model based on CAD (Computer Aided Design) data.
 インクジェット光造形法において、中空形状等の複雑な形状を有する光造形品を造形する場合には、モデル材を支えるために、該モデル材とサポート材とを組み合わせて形成する(特許文献1)。サポート材は、モデル材と同様に、光硬化性組成物に紫外線等を照射して硬化させることにより作成される。モデル材を作成した後は、サポート材を、物理的に剥離する、又は、有機溶媒もしくは水に溶解させることにより、前記サポート材を除去することができる。 In the ink jet stereolithography method, when modeling a stereolithography product having a complicated shape such as a hollow shape, in order to support the model material, the model material and the support material are formed in combination (Patent Document 1). The support material is created by irradiating the photocurable composition with ultraviolet rays or the like and curing the same as the model material. After the model material is created, the support material can be removed by physically peeling the support material or dissolving the support material in an organic solvent or water.
 また、インクジェット方式による光造形法において、柔らかく、かつ、引張強度に優れた光造形品を造形したいという要望がある。特許文献2では、インク組成物が、ホモポリマーのガラス転移温度が25℃以上120℃以下のアクリレートモノマーA、ホモポリマーのガラス転移温度が-60℃以上25℃未満のアクリレートモノマーB、重量平均分子量が2,000以上20,000以下の2官能アクリレートオリゴマーC、及び、光重合開始剤としてアシルフォスフィンオキサイド化合物を含有し、かつ、該インク組成物の全量に対する2官能以上のアクリレート化合物の含有量を特定の範囲に規定することにより、前記インク組成物を光硬化させることにより得られた硬化物が、柔らかく、かつ、引張強度に優れることが開示されている。 In addition, there is a demand for modeling an optical modeling product that is soft and excellent in tensile strength in the optical modeling method using the inkjet method. In Patent Document 2, the ink composition includes an acrylate monomer A having a homopolymer glass transition temperature of 25 ° C. or more and 120 ° C. or less, an acrylate monomer B having a glass transition temperature of −60 ° C. or more and less than 25 ° C., and a weight average molecular weight. Is a bifunctional acrylate oligomer C having a molecular weight of 2,000 or more and 20,000 or less, and an acylphosphine oxide compound as a photopolymerization initiator, and the content of the bifunctional or higher acrylate compound relative to the total amount of the ink composition It is disclosed that a cured product obtained by photocuring the ink composition is soft and excellent in tensile strength by defining the value in a specific range.
特開2012-111226号公報JP 2012-111226 A 国際公開第2016/098636号International Publication No. 2016/098636
 特許文献2には、単官能アクリルアミド化合物及び/又は1つ以上のヒドロキシ基を有する単官能アクリレート化合物と、ポリエチレングリコール及び/又はポリプロピレングリコールと、光重合開始剤とを含有するサポート材用インク組成物が開示されている。しかしながら、このようなサポート材用インク組成物を用いたとしても、該サポート材用インク組成物に含まれる成分の種類及び含有量によっては、該サポート材用インク組成物を光硬化させることにより得られるサポート材の自立性が劣る場合があった。その結果、前記サポート材用インク組成物を用いて造形された光造形品の寸法精度が低下するという問題があった。 Patent Document 2 discloses a support material ink composition containing a monofunctional acrylamide compound and / or a monofunctional acrylate compound having one or more hydroxy groups, polyethylene glycol and / or polypropylene glycol, and a photopolymerization initiator. Is disclosed. However, even if such an ink composition for a support material is used, it can be obtained by photocuring the ink composition for a support material depending on the type and content of components contained in the ink composition for a support material. In some cases, the support material used was inferior. As a result, there has been a problem that the dimensional accuracy of the optically modeled product modeled using the ink composition for a support material is lowered.
 本発明は、前記現状に鑑みてなされたであり、自立性に優れたサポート材を用いて、寸法精度が良好で、柔らかく、かつ、引張強度に優れた光造形品を得るための光造形用インクセット、該光造形用インクセットを用いて造形された光造形品、及び、前記光造形用インクセットを用いた光造形品の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described present situation, and for optical modeling for obtaining a stereolithographic product having a good dimensional accuracy, softness, and excellent tensile strength using a support material excellent in self-supporting property. It is an object of the present invention to provide an ink set, an optical modeling product modeled using the optical modeling ink set, and a method of manufacturing an optical modeling product using the optical modeling ink set.
 本発明者らは、サポート材用組成物中の非重合成分及び水溶性単官能エチレン性不飽和単量体の含有量を所定の範囲に規定することにより、サポート材の水除去性に優れ、更に自立性に優れたサポート材が得られることを見出した。本発明者らは、前記サポート材用組成物と、柔らかく、かつ、引張強度に優れたモデル材を得ることが可能なモデル材用組成物とを用いることにより、寸法精度が良好な光造形品を造形することができること見出した。 The present inventors are excellent in water removability of the support material by defining the content of the non-polymerized component and the water-soluble monofunctional ethylenically unsaturated monomer in the composition for the support material within a predetermined range, Furthermore, it discovered that the support material excellent in independence was obtained. By using the composition for a support material and the composition for a model material capable of obtaining a soft and excellent tensile strength, an optically shaped article having good dimensional accuracy. It was found that can be shaped.
 本発明の第1の態様によれば、インクジェット光造形法に用いられ、かつ、モデル材を造形するために使用されるモデル材用組成物と、サポート材を造形するために使用されるサポート材用組成物とを組み合わせてなる光造形用インクセットであって、前記モデル材用組成物は、重合体のガラス転移温度が20℃以上120℃以下のエチレン性不飽和単量体(A)と、重合体のガラス転移温度が-65℃以上20℃未満のエチレン性不飽和単量体(B)と、重量平均分子量が800以上10,000以下の2官能アクリレートオリゴマー(C)と、光重合性開始剤(D)と、を含有し、かつ、2官能以上のアクリレート化合物の含有量が、前記モデル材用組成物全体100質量部に対して、15質量部以下であり、前記サポート材用組成物は、該サポート材用組成物全体100質量部に対して、19~80質量部の水溶性単官能エチレン性不飽和単量体(a)と15~75質量部のオキシブチレン基を含むポリアルキレングリコール(b)とを含有し、前記オキシブチレン基を含むポリアルキレングリコール(b)の分子量が300~3000である、光造形用インクセットが提供される。 According to the first aspect of the present invention, a composition for a model material that is used in an inkjet optical modeling method and is used for modeling a model material, and a support material that is used for modeling a support material. The model material composition is an optical set ink set comprising a combination of an ethylenically unsaturated monomer (A) having a glass transition temperature of 20 ° C. or higher and 120 ° C. or lower. An ethylenically unsaturated monomer (B) having a glass transition temperature of −65 ° C. or higher and lower than 20 ° C., a bifunctional acrylate oligomer (C) having a weight average molecular weight of 800 to 10,000, and photopolymerization. And a functional initiator (D), and the content of the bifunctional or higher acrylate compound is 15 parts by mass or less with respect to 100 parts by mass of the entire model material composition, and for the support material Composition The polyalkylene glycol containing 19 to 80 parts by mass of the water-soluble monofunctional ethylenically unsaturated monomer (a) and 15 to 75 parts by mass of the oxybutylene group with respect to 100 parts by mass of the whole composition for the support material There is provided an optical modeling ink set, wherein the polyalkylene glycol (b) containing (b) and having an oxybutylene group has a molecular weight of 300 to 3,000.
 本発明の第2の態様によれば、前記モデル材用組成物の前記エチレン性不飽和単量体(A)が、単官能エチレン性不飽和単量体である光造形用インクセットが提供される。 According to a second aspect of the present invention, there is provided an optical modeling ink set in which the ethylenically unsaturated monomer (A) of the model material composition is a monofunctional ethylenically unsaturated monomer. The
 本発明の第3の態様によれば、前記モデル材用組成物の前記エチレン性不飽和単量体(B)が、単官能エチレン性不飽和単量体である光造形用インクセットが提供される。 According to a third aspect of the present invention, there is provided an optical modeling ink set in which the ethylenically unsaturated monomer (B) of the model material composition is a monofunctional ethylenically unsaturated monomer. The
 本発明の第4の態様によれば、前記モデル材用組成物の前記2官能アクリレートオリゴマー(C)の25℃におけるヤング率が、1~100MPaである光造形用インクセットが提供される。 According to the fourth aspect of the present invention, there is provided an optical modeling ink set in which the bifunctional acrylate oligomer (C) of the model material composition has a Young's modulus at 25 ° C. of 1 to 100 MPa.
 本発明の第5の態様によれば、前記モデル材用組成物の前記2官能アクリレートオリゴマー(C)の含有量が、該モデル材用組成物全体100質量部に対して、1~15質量部である光造形用インクセットが提供される。 According to the fifth aspect of the present invention, the content of the bifunctional acrylate oligomer (C) in the model material composition is 1 to 15 parts by mass with respect to 100 parts by mass of the model material composition as a whole. The optical modeling ink set is provided.
 本発明の第6の態様によれば、前記モデル材用組成物の前記エチレン性不飽和単量体(A)が、イソボルニルアクリレート、t-ブチルシクロヘキシルアクリレート、3,3,5-トリメチルシクロヘキシルアクリレート、及び、ジシクロペンタニルアクリレートから選択される1種以上である光造形用インクセットが提供される。 According to the sixth aspect of the present invention, the ethylenically unsaturated monomer (A) of the composition for model material is isobornyl acrylate, t-butylcyclohexyl acrylate, 3,3,5-trimethylcyclohexyl. There is provided an ink set for stereolithography that is at least one selected from acrylate and dicyclopentanyl acrylate.
 本発明の第7の態様によれば、前記モデル材用組成物の前記エチレン性不飽和単量体(B)が、フェノキシエチルアクリレート、n-ステアリルアクリレート、イソデシルアクリレート、エトキシエトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、n-ラウリルアクリレート、n-オクチルアクリレート、n-デシルアクリレート、イソオクチルアクリレート、n-トリデシルアクリレート、及び、アクリル酸2-(N-ブチルカルバモイルオキシ)エチルから選択される1種以上である光造形用インクセットが提供される。 According to the seventh aspect of the present invention, the ethylenically unsaturated monomer (B) of the composition for model material is phenoxyethyl acrylate, n-stearyl acrylate, isodecyl acrylate, ethoxyethoxyethyl acrylate, tetrahydro One or more selected from furfuryl acrylate, n-lauryl acrylate, n-octyl acrylate, n-decyl acrylate, isooctyl acrylate, n-tridecyl acrylate, and 2- (N-butylcarbamoyloxy) ethyl acrylate The optical modeling ink set is provided.
 本発明の第8の態様によれば、前記モデル材用組成物に含まれる光重合性化合物が、アシルフォスフィンオキサイド系光重合性開始剤である光造形用インクセットが提供される。 According to an eighth aspect of the present invention, there is provided an optical modeling ink set in which the photopolymerizable compound contained in the model material composition is an acylphosphine oxide photopolymerizable initiator.
 本発明の第9の態様によれば、前記サポート材用組成物が、1~20質量部の光重合開始剤(d)を含有する光造形用インクセットが提供される。 According to the ninth aspect of the present invention, there is provided an optical modeling ink set in which the composition for a support material contains 1 to 20 parts by mass of a photopolymerization initiator (d).
 本発明の第10の態様によれば、前記サポート材用組成物が、更に水溶性有機溶剤を含有し、前記水溶性有機溶剤の含有量が、前記サポート材用組成物の全質量100質量部に対して、30質量部以下である光造形用インクセットが提供される。 According to the tenth aspect of the present invention, the composition for a support material further contains a water-soluble organic solvent, and the content of the water-soluble organic solvent is 100 parts by mass of the total composition for the support material. In contrast, an optical modeling ink set of 30 parts by mass or less is provided.
 本発明の第11の態様によれば、前記サポート材用組成物が、更に表面調整剤を含有し、前記表面調整剤の含有量が、前記サポート材用組成物の全質量100質量部に対して、0.005質量部以上3.0質量部以下である光造形用インクセットが提供される。 According to the eleventh aspect of the present invention, the composition for support material further contains a surface conditioner, and the content of the surface conditioner is 100 parts by mass with respect to the total mass of the composition for support material. Thus, an ink set for optical modeling that is 0.005 parts by mass or more and 3.0 parts by mass or less is provided.
 本発明の第12の態様によれば、マテリアルジェット光造形法により、本発明による第1から第11の態様による光造形用インクセットを用いて光造形品を製造する方法であって、前記モデル材用組成物を光硬化させることによりモデル材を得るとともに、前記サポート材用組成物を紫外線LEDを用いて、光硬化させることによりサポート材を得る工程(I)と、前記サポート材を除去する工程(II)と、を有する、光造形品の製造方法が提供される。 According to a twelfth aspect of the present invention, there is provided a method for producing a stereolithographic product by using the optical modeling ink set according to the first to eleventh aspects according to the present invention by a material jet stereolithography method, wherein the model The material material is photocured to obtain a model material, and the support material composition is photocured using an ultraviolet LED to obtain a support material (I), and the support material is removed. There is provided a method for producing an optically shaped article, comprising the step (II).
 本発明によれば、サポート材の水除去性に優れ、更に自立性に優れたサポート材を用いて、寸法精度が良好で、柔らかく、かつ、引張強度に優れた光造形品を得るための光造形用インクセット、該光造形用インクセットを用いて造形された光造形品、及び、前記光造形用インクセットを用いた光造形品の製造方法を提供することができる。 According to the present invention, the light for obtaining a stereolithography product having excellent dimensional accuracy, softness, and excellent tensile strength by using a support material excellent in water removal property of the support material and further excellent in self-supporting property. An ink set for modeling, an optical modeling product modeled using the optical modeling ink set, and a method for manufacturing an optical modeling product using the optical modeling ink set can be provided.
図1は、インクジェット造形法によりサポート材用インク及びモデル材用インクを吐出してエネルギー線を照射している状態を示す模式側面図である。FIG. 1 is a schematic side view showing a state where an ink for a support material and an ink for a model material are ejected by an ink jet modeling method and are irradiated with energy rays. 図2は、インクジェット造形法によりサポート材用インク及びモデル材用インクを吐出している状態を示す模式側面図である。FIG. 2 is a schematic side view showing a state where the support material ink and the model material ink are discharged by the ink jet modeling method. 図3は、インクジェット造形法により吐出したサポート材用インク及びモデル材用インクにエネルギー線を照射している状態を示す模式側面図である。FIG. 3 is a schematic side view showing a state in which energy rays are applied to the support material ink and the model material ink ejected by the ink jet modeling method. 図4は、インクジェット造形法により形成したサポート材とモデル材からなる造形物前駆体の模式側面図である。FIG. 4 is a schematic side view of a modeled article precursor composed of a support material and a model material formed by an ink jet modeling method. 図5は、インクジェット造形法により形成した造形物の模式側面図である。FIG. 5 is a schematic side view of a model formed by the ink jet modeling method.
 以下、本発明の一実施形態(以下、本実施形態ともいう)について詳しく説明する。本発明は、以下の内容に限定されるものではない。なお、以下の説明において「(メタ)アクリレート」とは、アクリレート及びメタクリレートの総称であり、アクリレート及びメタクリレートの一方又は両方を意味するものである。「(メタ)アクリロイル」、「(メタ)アクリル」についても同様である。 Hereinafter, an embodiment of the present invention (hereinafter also referred to as the present embodiment) will be described in detail. The present invention is not limited to the following contents. In the following description, “(meth) acrylate” is a general term for acrylate and methacrylate, and means one or both of acrylate and methacrylate. The same applies to “(meth) acryloyl” and “(meth) acryl”.
 1.モデル材用組成物
 <エチレン性不飽和単量体(A)>
 本実施形態に係る光造形用インクセットに含まれるモデル材用組成物は、エチレン性不飽和単量体(A)を含有する。前記エチレン性不飽和単量体(A)は、ホモポリマー(重合体)のガラス転移温度(以下、Tgという)が20℃以上120℃以下である。前記エチレン性不飽和単量体(A)のTgが前記範囲であると、前記モデル材及び前記光造形品の柔らかさ及び引張強度を向上させることができる。また、前記モデル材は、後述するサポート材を除去する際、壊れにくくなることにより、成形性を向上させることができる。前記エチレン性不飽和単量体(A)のホモポリマーのTgは、30℃以上であることが好ましく、60℃以上であることがより好ましい。また、前記エチレン性不飽和単量体(A)のホモポリマーのTgは、100℃以下であることが好ましい。なお、Tgは、動的粘弾性測定器(DMA)によって測定することができる。
1. Model Material Composition <Ethylenically Unsaturated Monomer (A)>
The model material composition included in the optical modeling ink set according to the present embodiment contains an ethylenically unsaturated monomer (A). The ethylenically unsaturated monomer (A) has a glass transition temperature (hereinafter referred to as Tg) of a homopolymer (polymer) of 20 ° C. or higher and 120 ° C. or lower. When the Tg of the ethylenically unsaturated monomer (A) is within the above range, the softness and tensile strength of the model material and the stereolithographic product can be improved. In addition, the model material can be improved in formability by becoming difficult to break when removing the support material described later. The Tg of the homopolymer of the ethylenically unsaturated monomer (A) is preferably 30 ° C. or higher, and more preferably 60 ° C. or higher. Moreover, it is preferable that Tg of the homopolymer of the said ethylenically unsaturated monomer (A) is 100 degrees C or less. Tg can be measured by a dynamic viscoelasticity measuring device (DMA).
 前記エチレン性不飽和単量体(A)は、アクリレート化合物であっても、メタクリレート化合物であってもよいが、アクリレート化合物であることが好ましい。また、前記エチレン性不飽和単量体(A)は、単官能エチレン性不飽和単量体であっても、多官能エチレン性不飽和単量体であってもよいが、単官能エチレン性不飽和単量体であることが好ましい。さらに、前記エチレン性不飽和単量体(A)は、炭化水素環構造を有するエチレン性不飽和単量体であることが好ましい。 The ethylenically unsaturated monomer (A) may be an acrylate compound or a methacrylate compound, but is preferably an acrylate compound. The ethylenically unsaturated monomer (A) may be a monofunctional ethylenically unsaturated monomer or a polyfunctional ethylenically unsaturated monomer. A saturated monomer is preferred. Furthermore, the ethylenically unsaturated monomer (A) is preferably an ethylenically unsaturated monomer having a hydrocarbon ring structure.
 前記エチレン性不飽和単量体(A)としては、例えば、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t-ブチル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェネチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-メタクリロイロキシエチルヘキサヒドロフタル酸、3-ヒドロキシプロピル(メタ)アクリレート、2-メタクリロイロキシエチルフタル酸、3,3,5-トリメチルシクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples of the ethylenically unsaturated monomer (A) include isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, t-butyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, and methyl (meth) acrylate. , Ethyl (meth) acrylate, propyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, phenethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2 -Methacryloyloxyethyl hexahydrophthalic acid, 3-hydroxypropyl (meth) acrylate, 2-methacryloyloxyethyl phthalic acid, 3,3,5-trimethylcyclohexyl (meth) acrylate, dicyclopenteni (Meth) acrylate, 1,6-hexanediol di (meth) acrylate. These may be used alone or in combination of two or more.
 これらの中でも、前記エチレン性不飽和単量体(A)は、イソボルニルアクリレート、t-ブチルシクロヘキシルアクリレート、3,3,5-トリメチルシクロヘキシルアクリレート、及び、ジシクロペンタニルアクリレートから選択される1種以上であることが好ましく、イソボルニルアクリレート及び/又はt-ブチルシクロヘキシルアクリレートであることがより好ましい。これにより、前記モデル材用組成物を光硬化させることにより得られるモデル材及び該モデル材を用いて製造される光造形品の引張強度を向上させることができる。また、前記モデル材は、後述するサポート材を除去する際、壊れにくくなることにより、成形性を向上させることができる。 Among these, the ethylenically unsaturated monomer (A) is selected from isobornyl acrylate, t-butylcyclohexyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, and dicyclopentanyl acrylate 1 It is preferably a seed or more, and more preferably isobornyl acrylate and / or t-butylcyclohexyl acrylate. Thereby, the tensile strength of the model material obtained by photocuring the said composition for model materials, and the optical modeling article manufactured using this model material can be improved. In addition, the model material can be improved in formability by becoming difficult to break when removing the support material described later.
 前記エチレン性不飽和単量体(A)の含有量は、前記モデル材用組成物全体100質量部に対して、1~30質量部であることが好ましい。前記エチレン性不飽和単量体(A)の含有量が前記範囲であると、前記モデル材及び前記光造形品の柔らかさ及び引張強度を向上させることができる。また、前記モデル材は、後述するサポート材を除去する際、壊れにくくなることにより、成形性を向上させることができる。前記エチレン性不飽和単量体(A)の含有量は、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましく、10質量部以上であることが特に好ましい。また、前記エチレン性不飽和単量体(A)の含有量は、25質量部以下であることがより好ましく、20質量部以下であることがさらに好ましい。なお、前記(A)成分が2種以上含まれる場合、前記含有量は、各(A)成分の含有量の合計である。 The content of the ethylenically unsaturated monomer (A) is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the entire model material composition. When the content of the ethylenically unsaturated monomer (A) is within the above range, the softness and tensile strength of the model material and the stereolithographic product can be improved. In addition, the model material can be improved in formability by becoming difficult to break when removing the support material described later. The content of the ethylenically unsaturated monomer (A) is more preferably 3 parts by mass or more, further preferably 5 parts by mass or more, and particularly preferably 10 parts by mass or more. In addition, the content of the ethylenically unsaturated monomer (A) is more preferably 25 parts by mass or less, and further preferably 20 parts by mass or less. In addition, when the said (A) component is contained 2 or more types, the said content is the sum total of content of each (A) component.
 <エチレン性不飽和単量体(B)>
 本実施形態に係る光造形用インクセットに含まれるモデル材用組成物は、エチレン性不飽和単量体(B)を含有する。前記エチレン性不飽和単量体(B)は、ホモポリマーのTgが-65℃以上20℃未満である。前記エチレン性不飽和単量体(B)のTgが前記範囲であると、前記モデル材及び前記光造形品の柔らかさ及び引張強度を向上させることができる。また、前記モデル材は、後述するサポート材を除去する際、壊れにくくなることにより、成形性を向上させることができる。前記エチレン性不飽和単量体(B)のホモポリマーのTgは、-30℃以上であることが好ましく、-10℃以上であることがより好ましい。また、前記エチレン性不飽和単量体(B)のホモポリマーのTgは、10℃以下であることが好ましい。なお、Tgは、動的粘弾性測定器(DMA)によって測定することができる。
<Ethylenically unsaturated monomer (B)>
The model material composition contained in the optical modeling ink set according to the present embodiment contains an ethylenically unsaturated monomer (B). The ethylenically unsaturated monomer (B) has a homopolymer Tg of −65 ° C. or more and less than 20 ° C. When the Tg of the ethylenically unsaturated monomer (B) is in the above range, the softness and tensile strength of the model material and the stereolithographic product can be improved. In addition, the model material can be improved in formability by becoming difficult to break when removing the support material described later. The Tg of the ethylenically unsaturated monomer (B) homopolymer is preferably −30 ° C. or higher, more preferably −10 ° C. or higher. Moreover, it is preferable that Tg of the homopolymer of the said ethylenically unsaturated monomer (B) is 10 degrees C or less. Tg can be measured by a dynamic viscoelasticity measuring device (DMA).
 前記エチレン性不飽和単量体(B)は、アクリレート化合物であっても、メタクリレート化合物であってもよいが、アクリレート化合物であることが好ましい。また、前記エチレン性不飽和単量体(B)は、単官能エチレン性不飽和単量体であっても、多官能エチレン性不飽和単量体であってもよいが、単官能エチレン性不飽和単量体であることが好ましい。さらに、前記エチレン性不飽和単量体(B)は、エーテル結合及び/又は炭素数8以上のアルキル基を有するエチレン性不飽和単量体であることが好ましい。 The ethylenically unsaturated monomer (B) may be an acrylate compound or a methacrylate compound, but is preferably an acrylate compound. The ethylenically unsaturated monomer (B) may be a monofunctional ethylenically unsaturated monomer or a polyfunctional ethylenically unsaturated monomer. A saturated monomer is preferred. Furthermore, the ethylenically unsaturated monomer (B) is preferably an ethylenically unsaturated monomer having an ether bond and / or an alkyl group having 8 or more carbon atoms.
 前記エチレン性不飽和単量体(B)としては、例えば、長鎖アルキル(炭素数8以上)アクリレート化合物、ポリエチレンオキサイド又はポリプロピレンオキサイド鎖を有するアクリレート化合物、フェノキシエチルアクリレート化合物、テトラヒドロフルフリルアクリレート、アクリル酸2-(N-ブチルカルバモイルオキシ)エチル(1,2-エタンジオール 1-アクリラート 2-(N-ブチルカルバマート))等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples of the ethylenically unsaturated monomer (B) include long-chain alkyl (carbon number 8 or more) acrylate compounds, acrylate compounds having a polyethylene oxide or polypropylene oxide chain, phenoxyethyl acrylate compounds, tetrahydrofurfuryl acrylate, and acrylics. Acid 2- (N-butylcarbamoyloxy) ethyl (1,2-ethanediol 1-acrylate 2- (N-butylcarbamate)) and the like. These may be used alone or in combination of two or more.
 前記長鎖アルキルアクリレート化合物としては、例えば、2-エチルヘキシルアクリレート、n-オクチルアクリレート、n-イソノニルアクリレート、n-デシルアクリレート、イソオクチルアクリレート、n-ラウリルアクリレート、n-トリデシルアクリレート、n-セチルアクリレート、n-ステアリルアクリレート、イソミリスチルアクリレート、イソステアリルアクリレート等が挙げられる。 Examples of the long-chain alkyl acrylate compound include 2-ethylhexyl acrylate, n-octyl acrylate, n-isononyl acrylate, n-decyl acrylate, isooctyl acrylate, n-lauryl acrylate, n-tridecyl acrylate, and n-cetyl. Examples include acrylate, n-stearyl acrylate, isomyristyl acrylate, and isostearyl acrylate.
 前記ポリエチレンオキサイド又はポリプロピレンオキサイド鎖を有するアクリレート化合物としては、例えば、(ポリ)エチレングリコールモノアクリレート、(ポリ)エチレングリコールアクリレートメチルエステル、(ポリ)エチレングリコールアクリレートエチルエステル、(ポリ)エチレングリコールアクリレートフェニルエステル、(ポリ)プロピレングリコールモノアクリレート、(ポリ)プロピレングリコールモノアクリレートフェニルエステル、(ポリ)プロピレングリコールアクリレートメチルエステル、(ポリ)プロピレングリコールアクリレートエチルエステル、メトキシトリエチレングリコールアクリレート、メトキシジプロピレングリコールアクリレート、エトキシジエチレングリコールアクリレート(エトキシエトキシエチルアクリレート)、メトキシポリエチレングリコールアクリレート等が挙げられる。 Examples of the acrylate compound having a polyethylene oxide or polypropylene oxide chain include (poly) ethylene glycol monoacrylate, (poly) ethylene glycol acrylate methyl ester, (poly) ethylene glycol acrylate ethyl ester, and (poly) ethylene glycol acrylate phenyl ester. , (Poly) propylene glycol monoacrylate, (poly) propylene glycol monoacrylate phenyl ester, (poly) propylene glycol acrylate methyl ester, (poly) propylene glycol acrylate ethyl ester, methoxytriethylene glycol acrylate, methoxydipropylene glycol acrylate, ethoxy Diethylene glycol acrylate (Etoki Ethoxyethyl acrylate), methoxy polyethylene glycol acrylate.
 前記フェノキシエチルアクリレート化合物としては、例えば、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、ノニルフェノールエチレンオキサイド付加物アクリレート等が挙げられる。 Examples of the phenoxyethyl acrylate compound include phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, phenoxy polyethylene glycol acrylate, 2-hydroxy-3-phenoxypropyl acrylate, and nonylphenol ethylene oxide adduct acrylate.
 これらの中でも、前記エチレン性不飽和単量体(B)は、フェノキシエチルアクリレート、n-ステアリルアクリレート、イソデシルアクリレート、エトキシエトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、n-ラウリルアクリレート、n-オクチルアクリレート、n-デシルアクリレート、イソオクチルアクリレート、n-トリデシルアクリレート、及び、アクリル酸2-(N-ブチルカルバモイルオキシ)エチルから選択される1種以上であることが好ましく、フェノキシエチルアクリレート及び/又はn-ステアリルアクリレートであることがより好ましい。これにより、前記モデル材用組成物を光硬化させることにより得られるモデル材及び該モデル材を用いて製造される光造形品の引張強度を向上させることができる。また、前記モデル材は、後述するサポート材を除去する際、壊れにくくなることにより、成形性を向上させることができる。 Among these, the ethylenically unsaturated monomer (B) includes phenoxyethyl acrylate, n-stearyl acrylate, isodecyl acrylate, ethoxyethoxyethyl acrylate, tetrahydrofurfuryl acrylate, n-lauryl acrylate, n-octyl acrylate, It is preferably at least one selected from n-decyl acrylate, isooctyl acrylate, n-tridecyl acrylate, and 2- (N-butylcarbamoyloxy) ethyl acrylate, such as phenoxyethyl acrylate and / or n- More preferred is stearyl acrylate. Thereby, the tensile strength of the model material obtained by photocuring the said composition for model materials, and the optical modeling article manufactured using this model material can be improved. In addition, the model material can be improved in formability by becoming difficult to break when removing the support material described later.
 前記エチレン性不飽和単量体(B)の含有量は、前記モデル材用組成物全体100質量部に対して、10~90質量部であることが好ましい。前記エチレン性不飽和単量体(B)の含有量が前記範囲であると、前記モデル材及び前記光造形品の柔らかさ及び引張強度を向上させることができる。また、前記モデル材は、後述するサポート材を除去する際、壊れにくくなることにより、成形性を向上させることができる。前記エチレン性不飽和単量体(B)の含有量は、30質量部以上であることがより好ましく、40質量部以上であることがさらに好ましく、50質量部以上であることが特に好ましい。また、前記エチレン性不飽和単量体(B)の含有量は、85質量部以下であることがより好ましく、80質量部以下であることがさらに好ましく、75質量部以下であることが特に好ましい。なお、前記(B)成分が2種以上含まれる場合、前記含有量は、各(B)成分の含有量の合計である。 The content of the ethylenically unsaturated monomer (B) is preferably 10 to 90 parts by mass with respect to 100 parts by mass of the entire model material composition. When the content of the ethylenically unsaturated monomer (B) is in the above range, the softness and tensile strength of the model material and the stereolithographic product can be improved. In addition, the model material can be improved in formability by becoming difficult to break when removing the support material described later. The content of the ethylenically unsaturated monomer (B) is more preferably 30 parts by mass or more, further preferably 40 parts by mass or more, and particularly preferably 50 parts by mass or more. The content of the ethylenically unsaturated monomer (B) is more preferably 85 parts by mass or less, further preferably 80 parts by mass or less, and particularly preferably 75 parts by mass or less. . In addition, when the said (B) component is contained 2 or more types, the said content is the sum total of content of each (B) component.
 また、前記エチレン性不飽和単量体(A)の含有量M(A)と前記エチレン性不飽和単量体(B)の含有量M(B)とは、M(A)<M(B)を満たす(M(A)がM(B)よりも小さい)ことが好ましく、2×M(A)<M(B)を満たす(M(A)を2倍した値がM(B)よりも小さい)ことがより好ましく、3×M(A)<M(B)を満たす(M(A)を3倍した値がM(B)よりも小さい)ことがさらに好ましい。これにより、前記モデル材用組成物を光硬化させることにより得られるモデル材及び該モデル材を用いて製造される光造形品の引張強度を向上させることができる。また、前記モデル材は、後述するサポート材を除去する際、壊れにくくなることにより、成形性を向上させることができる。 Further, the content M (A) of the ethylenically unsaturated monomer (A) and the content M (B) of the ethylenically unsaturated monomer (B) are M (A) <M (B (M (A) is smaller than M (B)), and 2 × M (A) <M (B) is satisfied (a value obtained by doubling M (A) is greater than M (B). Is preferably smaller), and more preferably 3 × M (A) <M (B) (a value obtained by multiplying M (A) by 3 is smaller than M (B)). Thereby, the tensile strength of the model material obtained by photocuring the said composition for model materials, and the optical modeling article manufactured using this model material can be improved. In addition, the model material can be improved in formability by becoming difficult to break when removing the support material described later.
 また、前記エチレン性不飽和単量体(A)の含有量M(A)と前記エチレン性不飽和単量体(B)の含有量M(B)とは、10×M(A)>M(B)を満たす(M(A)を10倍した値がM(B)よりも大きい)ことが好ましく、7×M(A)>M(B)を満たす(M(A)を7倍した値がM(B)よりも大きい)ことがより好ましく、5×M(A)>M(B)を満たす(M(A)を5倍した値がM(B)よりも大きい)ことがさらに好ましい。 Further, the content M (A) of the ethylenically unsaturated monomer (A) and the content M (B) of the ethylenically unsaturated monomer (B) are 10 × M (A)> M It is preferable that (B) is satisfied (the value obtained by multiplying M (A) by 10 is larger than M (B)), and 7 × M (A)> M (B) is satisfied (M (A) is multiplied by 7) It is more preferable that the value is larger than M (B), and it is more preferable that 5 × M (A)> M (B) is satisfied (a value obtained by multiplying M (A) by 5 is larger than M (B)). preferable.
 <2官能アクリレートオリゴマー(C)>
 本実施形態に係る光造形用インクセットに含まれるモデル材用組成物は、2官能アクリレートオリゴマー(C)を含有する。前記2官能アクリレートオリゴマー(C)は、重量平均分子量(以下、Mwという)が800以上10,000以下である。前記2官能アクリレートオリゴマー(C)のMwが前記範囲であると、前記モデル材及び前記光造形品の柔らかさ及び引張強度を向上させることができる。前記2官能アクリレートオリゴマー(C)のMwは、5,000以上であることが好ましく、10,000以上であることがより好ましい。
<Bifunctional acrylate oligomer (C)>
The composition for model materials contained in the optical modeling ink set according to this embodiment contains a bifunctional acrylate oligomer (C). The bifunctional acrylate oligomer (C) has a weight average molecular weight (hereinafter referred to as Mw) of 800 or more and 10,000 or less. When the Mw of the bifunctional acrylate oligomer (C) is within the above range, the softness and tensile strength of the model material and the stereolithographic product can be improved. The Mw of the bifunctional acrylate oligomer (C) is preferably 5,000 or more, and more preferably 10,000 or more.
 なお、Mwは、ゲル浸透クロマトグラフィー(GPC)分析をにより測定することができる。より詳細には、東ソー(株)HLC-8220 GPCを用いて、カラムとしてTSK gel SuperAWM-Hを3本連結して使用し、溶媒:テトラヒドロフラン(10mM LiBr)、流速:0.5mL/min、試料濃度:0.1質量%、注入量:60μL、測定温度:40℃の条件で測定することができる。検出器には、UV又はRI検出装置(示差屈折計)を使用することができる。 Mw can be measured by gel permeation chromatography (GPC) analysis. More specifically, using Tosoh Corporation HLC-8220 GPC, three columns of TSK gel SuperAWM-H are connected and used, solvent: tetrahydrofuran (10 mM LiBr), flow rate: 0.5 mL / min, sample It can be measured under the conditions of concentration: 0.1% by mass, injection amount: 60 μL, measurement temperature: 40 ° C. A UV or RI detector (differential refractometer) can be used as the detector.
 前記2官能アクリレートオリゴマー(C)は、アクリロイルオキシ基を有していても、メタクリロイルオキシ基を有していてもよいが、アクリロイルオキシ基を有していることが好ましい。また、2官能アクリレートオリゴマー(C)は、アクリロイルオキシ基及び/又はメタクリロイルオキシ基を合計2つ有するオリゴマーである。前記モデル材用組成物が単官能アクリレートオリゴマーのみを含有すると、前記モデル材及び前記光造形品の引張強度が劣る。一方、前記モデル材用組成物が3官能以上のアクリレートオリゴマーのみを含有すると、前記モデル材及び前記光造形品の柔らかさが劣る。 The bifunctional acrylate oligomer (C) may have an acryloyloxy group or a methacryloyloxy group, but preferably has an acryloyloxy group. The bifunctional acrylate oligomer (C) is an oligomer having a total of two acryloyloxy groups and / or methacryloyloxy groups. When the composition for model material contains only the monofunctional acrylate oligomer, the tensile strength of the model material and the stereolithographic product is inferior. On the other hand, if the composition for model material contains only trifunctional or higher acrylate oligomers, the softness of the model material and the stereolithographic product is inferior.
 前記2官能アクリレートオリゴマー(C)の25℃におけるヤング率は、1~100MPaであることが好ましい。前記2官能アクリレートオリゴマー(C)の前記ヤング率が前記範囲であると、前記モデル材及び前記光造形品の柔らかさ及び引張強度を向上させることができる。前記2官能アクリレートオリゴマー(C)の前記ヤング率は、2MPa以上であることがより好ましく、3MPa以上であることがさらに好ましく、10MPa以上であることが特に好ましい。一方、前記2官能アクリレートオリゴマー(C)の前記ヤング率は、80MPa以下であることがより好ましく、50MPa以下であることがさらに好ましく、30MPa以下であることが特に好ましい。 The Young's modulus at 25 ° C. of the bifunctional acrylate oligomer (C) is preferably 1 to 100 MPa. When the Young's modulus of the bifunctional acrylate oligomer (C) is within the above range, the softness and tensile strength of the model material and the stereolithographic product can be improved. The Young's modulus of the bifunctional acrylate oligomer (C) is more preferably 2 MPa or more, further preferably 3 MPa or more, and particularly preferably 10 MPa or more. On the other hand, the Young's modulus of the bifunctional acrylate oligomer (C) is more preferably 80 MPa or less, further preferably 50 MPa or less, and particularly preferably 30 MPa or less.
 ここで、前記2官能アクリレートオリゴマー(C)の25℃におけるヤング率とは、前記2官能アクリレートオリゴマー(C)の単独重合体(モノポリマー)の25℃におけるヤング率である。前記ヤング率の測定方法は、例えば、以下の方法により行うことができる。Irgacure819(BASF社製)2質量%、Irgacure184(BASF社製)2質量%、及び、測定するオリゴマー96質量%を混合した液体をバーコーターにて100μmの塗布膜を形成し、紫外線(UV)露光機にて硬化させる。この時、硬化膜の重合度の影響が無視できる程度まで硬化をさせた。この硬化膜を15mm×50mmの短冊状に切り出し、引っ張り試験機(オートグラフAGS-X 5KN、(株)島津製作所製)にてヤング率を測定する。また、ヤング率の値は、1%の伸びの部分で測定する。また、試験では、長軸方向に引っ張り、上下約10mm部分をクランプで掴む。 Here, the Young's modulus at 25 ° C. of the bifunctional acrylate oligomer (C) is the Young's modulus at 25 ° C. of the homopolymer (monopolymer) of the bifunctional acrylate oligomer (C). The Young's modulus can be measured by, for example, the following method. A liquid in which 2% by mass of Irgacure 819 (manufactured by BASF), 2% by mass of Irgacure 184 (manufactured by BASF), and 96% by mass of the oligomer to be measured was formed with a bar coater to form a coating film of 100 μm, and ultraviolet (UV) exposure Cured with a machine. At this time, the cured film was cured to such an extent that the influence of the degree of polymerization of the cured film was negligible. This cured film is cut into a 15 mm × 50 mm strip and the Young's modulus is measured with a tensile tester (Autograph AGS-X, 5KN, manufactured by Shimadzu Corporation). The value of Young's modulus is measured at the 1% elongation. Moreover, in a test, it pulls to a major axis direction and grasps about 10 mm part up and down with a clamp.
 前記2官能アクリレートオリゴマー(C)としては、例えば、オレフィン系(エチレンオリゴマー、プロピレンオリゴマー、ブテンオリゴマー等)、ビニル系(スチレンオリゴマー、ビニルアルコールオリゴマー、ビニルピロリドンオリゴマー、アクリル樹脂オリゴマー等)、ジエン系(ブタジエンオリゴマー、クロロプレンゴム、ペンタジエンオリゴマー等)、開環重合系(ジ-,トリ-,テトラエチレングリコール、ポリエチレングリコール、ポリエチルイミン等)、重付加系(オリゴエステルアクリレート、ポリアミドオリゴマー、ポリイソシアネートオリゴマー)、付加縮合オリゴマー(フェノール樹脂、アミノ樹脂、キシレン樹脂、ケトン樹脂等)等が挙げられる。これらの中でも、ウレタンアクリレートオリゴマー、ポリエステルアクリレートオリゴマー、又は、エポキシアクリレートオリゴマーであることが好ましく、ウレタンアクリレートオリゴマーであることがより好ましい。前記ウレタンアクリレートオリゴマー、前記ポリエステルアクリレートオリゴマー、及び、前記エポキシアクリレートオリゴマーとしては、オリゴマーハンドブック(古川淳二監修、(株)化学工業日報社)を参照することができる。また、前記2官能アクリレートオリゴマー(C)としては、新中村化学工業(株)、サートマー・ジャパン(株)、ダイセル・サイテック(株)、Rahn A.G.社等により市販されているものを用いることができる。 Examples of the bifunctional acrylate oligomer (C) include olefin-based (ethylene oligomer, propylene oligomer, butene oligomer, etc.), vinyl-based (styrene oligomer, vinyl alcohol oligomer, vinyl pyrrolidone oligomer, acrylic resin oligomer, etc.), diene-based ( Butadiene oligomer, chloroprene rubber, pentadiene oligomer, etc.), ring-opening polymerization system (di-, tri-, tetraethylene glycol, polyethylene glycol, polyethylimine, etc.), polyaddition system (oligoester acrylate, polyamide oligomer, polyisocyanate oligomer) And addition condensation oligomers (phenol resin, amino resin, xylene resin, ketone resin, etc.). Among these, a urethane acrylate oligomer, a polyester acrylate oligomer, or an epoxy acrylate oligomer is preferable, and a urethane acrylate oligomer is more preferable. As the urethane acrylate oligomer, the polyester acrylate oligomer, and the epoxy acrylate oligomer, an oligomer handbook (supervised by Junji Furukawa, Chemical Industries Daily Co., Ltd.) can be referred to. Examples of the bifunctional acrylate oligomer (C) include Shin-Nakamura Chemical Co., Ltd., Sartomer Japan Co., Ltd., Daicel Cytec Co., Ltd., Rahn A.I. G. What is marketed by the company etc. can be used.
 前記2官能アクリレートオリゴマー(C)の含有量は、前記モデル材用組成物全体100質量部に対して、1~15質量部であることが好ましい。前記2官能アクリレートオリゴマー(C)の含有量が前記範囲であると、前記モデル材及び前記光造形品の柔らかさ及び引張強度を向上させることができる。前記2官能アクリレートオリゴマー(C)の含有量は、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。なお、前記(C)成分が2種以上含まれる場合、前記含有量は、各(C)成分の含有量の合計である。 The content of the bifunctional acrylate oligomer (C) is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the entire model material composition. When the content of the bifunctional acrylate oligomer (C) is in the above range, the softness and tensile strength of the model material and the stereolithographic product can be improved. The content of the bifunctional acrylate oligomer (C) is more preferably 3 parts by mass or more, and still more preferably 5 parts by mass or more. In addition, when the said (C) component is contained 2 or more types, the said content is the sum total of content of each (C) component.
 前記(A)、(B)及び(C)成分のうち、2官能以上のアクリレート化合物の含有量は、前記モデル材用組成物全体100質量部に対して、15質量部以下である。 Among the components (A), (B), and (C), the content of the bifunctional or higher acrylate compound is 15 parts by mass or less with respect to 100 parts by mass of the entire model material composition.
 前記2官能アクリレートオリゴマー(C)の含有量は、前記2官能以上のアクリレート化合物全体100質量部に対して、50質量部以上であることが好ましい。前記2官能アクリレートオリゴマー(C)の含有量が前記範囲であると、前記モデル材及び前記光造形品の柔らかさ及び引張強度をより向上させることができる。前記2官能アクリレートオリゴマー(C)の含有量は、2官能以上のアクリレート化合物全体100質量部に対して、80質量部以上であることがより好ましく、90質量部以上であることがさらに好ましく、95質量部以上であることが特に好ましい。 The content of the bifunctional acrylate oligomer (C) is preferably 50 parts by mass or more with respect to 100 parts by mass of the entire bifunctional or higher acrylate compound. When the content of the bifunctional acrylate oligomer (C) is in the above range, the softness and tensile strength of the model material and the stereolithographic product can be further improved. The content of the bifunctional acrylate oligomer (C) is more preferably 80 parts by mass or more, further preferably 90 parts by mass or more, based on 100 parts by mass of the entire bifunctional or higher acrylate compound. It is particularly preferable that the amount is at least part by mass.
 <光重合開始剤(D)>
 本発明のモデル材用組成物は、光重合開始剤を含むことが好ましい。光重合開始剤は、紫外線、近紫外線または可視光領域の波長の光を照射するとラジカル反応を促進する化合物である。上記光重合開始剤としては、低エネルギーで重合を開始させることができれば特に限定されないが、アシルフォスフィンオキサイド化合物、α-アミノアルキルフェノン化合物、α-ヒドロキシキノン化合物、チオキサントン化合物、ベンゾイン化合物、アントラキノン化合物およびケタール化合物からなる群から選択される少なくとも1種の化合物を含む光重合開始剤を用いることが好ましい。これらの中でも、アシルフォスフィンオキサイド化合物が特に好ましい。
<Photopolymerization initiator (D)>
It is preferable that the composition for model materials of this invention contains a photoinitiator. The photopolymerization initiator is a compound that promotes a radical reaction when irradiated with light having a wavelength in the ultraviolet, near ultraviolet, or visible light region. The photopolymerization initiator is not particularly limited as long as the polymerization can be initiated with low energy, but is not limited to acylphosphine oxide compounds, α-aminoalkylphenone compounds, α-hydroxyquinone compounds, thioxanthone compounds, benzoin compounds, anthraquinone compounds. It is preferable to use a photopolymerization initiator containing at least one compound selected from the group consisting of and ketal compounds. Among these, acylphosphine oxide compounds are particularly preferable.
 上記アシルフォスフィンオキサイド化合物としては、具体的には、例えば、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,6-ジメトキシベンゾイルジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルフォスフィンオキサイド、2,3,5,6-テトラメチルベンゾイルジフェニルフォスフィンオキサイド、2,6-ジメチルベンゾイルジフェニルフォスフィンオキサイド、4-メチルベンゾイルジフェニルフォスフィンオキサイド、4-エチルベンゾイルジフェニルフォスフィンオキサイド、4-イソプロピルベンゾイルジフェニルフォスフィンオキサイド、1-メチルシクロヘキサノイルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸イソプロピルエステル、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なアシルフォスフィンオキサイド化合物としては、例えば、BASF社製の“DAROCURE TPO”等が挙げ
られる。
Specific examples of the acylphosphine oxide compound include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, and 2,6-dichlorobenzoyldiphenylphosphine oxide. 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide, 2,6-dimethylbenzoyldiphenylphosphine oxide, 4-methylbenzoyldiphenylphosphine oxide, 4-ethylbenzoyldiphenylphosphine oxide, 4-isopropylbenzoyl Diphenylphosphine oxide, 1-methylcyclohexanoylbenzoyl diphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -Phenylphosphine oxide, 2,4,6-trimethylbenzoylphenylphosphinic acid methyl ester, 2,4,6-trimethylbenzoylphenylphosphinic acid isopropyl ester, bis (2,6-dimethoxybenzoyl) -2,4 Examples include 4-trimethylpentylphosphine oxide. These may be used alone or in combination. Examples of the acylphosphine oxide compound available in the market include “DAROCURE TPO” manufactured by BASF.
 上記α-アミノアルキルフェノン化合物としては、具体的には、例えば、2-メチル-1[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン-1、2-メチル-1-[4-(メトキシチオ)-フェニル]-2-モルホリノプロパン-2-オン等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なα-アミノアルキルフェノン化合物としては、例えば、BASF社製の“IRGACURE 369”、“IRGACURE 907”等が挙げられる。
上記α-ヒドロキシキノン化合物としては、具体的には、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチループロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル] -2-ヒドロキシ2-メチル-1-プロパン1-オン等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なα-ヒドロキシキノン化合物としては“IRGACURE 184”、“DAROCURE 1173”、“IRGACURE 2959”、“IRGACURE 127”等が挙げられる。
Specific examples of the α-aminoalkylphenone compound include 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl) butanone-1,2-methyl-1- [4- (methoxythio) -phenyl] -2-morpholinopropan-2-one and the like. These may be used alone or in combination. Examples of commercially available α-aminoalkylphenone compounds include “IRGACURE 369” and “IRGACURE 907” manufactured by BASF.
Specific examples of the α-hydroxyquinone compound include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-phenylpropan-1-one, 2-hydroxy-1- {4- [4- (2-Hydroxy-2-methyl-propionyl) -benzyl] -phenyl} -2-methyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl- 1-propan-1-one and the like can be mentioned. These may be used alone or in combination. Examples of commercially available α-hydroxyquinone compounds include “IRGACURE 184”, “DAROCURE 1173”, “IRGACURE 2959”, “IRGACURE 127”, and the like.
 上記チオキサントン化合物としては、具体的には、例えば、チオキサントン、2-メチルチオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン等が挙げられる。これらは単独で又は複数混合して使用してもよい。市場で入手可能なチオキサントン化合物としては、例えば、日本化薬社製の“MKAYACURE DETX-S”、ダブルボンドケミカル社製の“Chivacure ITX”等が挙げられる。 Specific examples of the thioxanthone compound include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4 -Diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone and the like. These may be used alone or in combination. Examples of commercially available thioxanthone compounds include “MKAYACURE DETX-S” manufactured by Nippon Kayaku Co., Ltd. and “Chivacure ITX” manufactured by Double Bond Chemical.
 上記ベンゾイン化合物としては、具体的には、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等が挙げられる。 Specific examples of the benzoin compound include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether.
 上記アントラキノン化合物としては、具体的には、例えば、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノン等が挙げられる。 Specific examples of the anthraquinone compound include 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone and the like.
 上記ケタール化合物としては、具体的には、例えば、アセトフェノンジメチルケタール、ベンジルジメチルケタール等〕、炭素数13~21のベンゾフェノン化合物〔例えば、ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノン等が挙げられる。 Specific examples of the ketal compound include, for example, acetophenone dimethyl ketal, benzyl dimethyl ketal, and the like, benzophenone compounds having 13 to 21 carbon atoms (for example, benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4 And '-bismethylaminobenzophenone.
 前記(D)の含有量は、前記モデル材用組成物全体100質量部に対して、1~15質量部であることが好ましい。前記(D)の含有量が前記範囲であると、前記モデル材及び前記光造形品の柔らかさ及び引張強度を向上させることができる。前記(D)の含有量は、2質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。また、前記(D)の含有量は、13質量部以下であることがより好ましい。なお、前記(D)成分が2種以上含まれる場合、前記含有量は、各(D)成分の含有量の合計である。 The content of (D) is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the entire model material composition. When the content of (D) is in the above range, the softness and tensile strength of the model material and the stereolithographic product can be improved. The content of (D) is more preferably 2 parts by mass or more, and further preferably 5 parts by mass or more. The content of (D) is more preferably 13 parts by mass or less. In addition, when the said (D) component is contained 2 or more types, the said content is the sum total of content of each (D) component.
 <その他の添加剤>
 本実施形態に係る光造形用インクセットに含まれるモデル材用組成物は、本発明の効果を阻害しない範囲で、必要により、その他の添加剤を含有させることができる。その他の添加剤としては、例えば、増感剤、着色剤、分散剤、表面調整剤、重合禁止剤、保存安定化剤、アシルフォスフィンオキサイド化合物(D)以外の光重合開始剤、共増感剤、紫外線吸収剤、酸化防止剤、褪色防止剤、導電性塩類、溶剤、高分子化合物、塩基性化合物、レベリング添加剤、マット剤、膜物性を調整するためのポリエステル系樹脂、ポリウレタン系樹脂、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、ワックス類等が挙げられる。
<Other additives>
The composition for a model material included in the optical modeling ink set according to the present embodiment can contain other additives as necessary within a range that does not impair the effects of the present invention. Examples of other additives include a sensitizer, a colorant, a dispersant, a surface conditioner, a polymerization inhibitor, a storage stabilizer, a photopolymerization initiator other than the acylphosphine oxide compound (D), and co-sensitization. Agent, ultraviolet absorber, antioxidant, anti-fading agent, conductive salt, solvent, polymer compound, basic compound, leveling additive, matting agent, polyester resin for adjusting film properties, polyurethane resin, Examples include vinyl resins, acrylic resins, rubber resins, and waxes.
 前記増感剤としては、例えば、多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン、2-エチル-9,10-ジメトキシアントラセン等)、チオキサントン類(例えば、イソプロピルチオキサントン等)、チオクロマノン類(例えば、チオクロマノン等)等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。これらの中でも、チオキサントン類であることが好ましく、イソプロピルチオキサントンであることがより好ましい。 Examples of the sensitizer include polynuclear aromatics (for example, pyrene, perylene, triphenylene, 2-ethyl-9,10-dimethoxyanthracene), thioxanthones (for example, isopropylthioxanthone), thiochromanones (for example, Thiochromanone, etc.). These may be used alone or in combination of two or more. Among these, thioxanthones are preferable, and isopropylthioxanthone is more preferable.
 前記増感剤の含有量は、前記モデル材用組成物全体100質量部に対して、0.1~5質量部であることが好ましい。前記増感剤の含有量が前記範囲であると、前記モデル材が硬化性及び硬化感度に優れる。前記増感剤の含有量は、0.5質量部以上であることがより好ましく、3質量部以下であることがより好ましい。なお、前記増感剤が2種以上含まれる場合、前記含有量は、各増感剤の含有量の合計である。 The content of the sensitizer is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the entire model material composition. When the content of the sensitizer is within the above range, the model material is excellent in curability and curing sensitivity. The content of the sensitizer is more preferably 0.5 parts by mass or more, and more preferably 3 parts by mass or less. In addition, when the said sensitizer is contained 2 or more types, the said content is the sum total of content of each sensitizer.
 前記着色剤としては、用途に応じて、公知の種々の顔料及び染料を適宜選択して用いることができる。これらの中でも、耐光性に優れる観点から、顔料であることが好ましい。前記顔料としては、特に限定されるものではなく、一般に市販されているすべての有機顔料、無機顔料、樹脂粒子を染料で染色した顔料等を用いることができる。また、市販の顔料分散体、表面処理された顔料、例えば、顔料を分散媒として不溶性の樹脂等に分散させたもの、顔料表面に樹脂をグラフト化したもの等も、本発明の効果を損なわない限りにおいて、用いることができる。 As the colorant, various known pigments and dyes can be appropriately selected and used depending on the application. Among these, a pigment is preferable from the viewpoint of excellent light resistance. The pigment is not particularly limited, and all commercially available organic pigments, inorganic pigments, pigments obtained by dyeing resin particles with a dye, and the like can be used. Further, commercially available pigment dispersions, surface-treated pigments, for example, pigments dispersed in an insoluble resin or the like using a dispersion medium, and those obtained by grafting a resin on the pigment surface do not impair the effects of the present invention. As long as it can be used.
 前記有機顔料及び前記無機顔料のうちイエロー色を呈するものとしては、例えば、C.I.ピグメントイエロー1(ファストイエローG等)、C.I.ピグメントイエロー74等のモノアゾ顔料;C.I.ピグメントイエロー12(ジスアジイエローAAA等)、C.I.ピグメントイエロー17等のジスアゾ顔料;C.I.ピグメントイエロー180等の非ベンジジン系のアゾ顔料;C.I.ピグメントイエロー100(タートラジンイエローレーキ等)等のアゾレーキ顔料;C.I.ピグメントイエロー95(縮合アゾイエローGR等)等の縮合アゾ顔料;C.I.ピグメントイエロー115(キノリンイエローレーキ等)等の酸性染料レーキ顔料;C.I.ピグメントイエロー18(チオフラビンレーキ等)等の塩基性染料レーキ顔料;フラバントロンイエロー(Y-24)等のアントラキノン系顔料;イソインドリノンイエロー3RLT(Y-110)等のイソインドリノン顔料;キノフタロンイエロー(Y-138)等のキノフタロン顔料;イソインドリンイエロー(Y-139)等のイソインドリン顔料;C.I.ピグメントイエロー153(ニッケルニトロソイエロー等)等のニトロソ顔料;C.I.ピグメントイエロー117(銅アゾメチンイエロー等)等の金属錯塩アゾメチン顔料等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples of the organic pigment and the inorganic pigment that exhibit a yellow color include C.I. I. Pigment Yellow 1 (Fast Yellow G, etc.), C.I. I. Monoazo pigments such as CI Pigment Yellow 74; I. Pigment Yellow 12 (disaji yellow AAA, etc.), C.I. I. Disazo pigments such as CI Pigment Yellow 17; I. Non-benzidine type azo pigments such as CI Pigment Yellow 180; I. Azo lake pigments such as C.I. Pigment Yellow 100 (eg Tartrazine Yellow Lake); I. Condensed azo pigments such as CI Pigment Yellow 95 (Condensed Azo Yellow GR, etc.); I. Acidic dye lake pigments such as C.I. Pigment Yellow 115 (quinoline yellow lake, etc.); I. Basic dye lake pigments such as CI Pigment Yellow 18 (thioflavin lake, etc.); anthraquinone pigments such as Flavantron Yellow (Y-24); isoindolinone pigments such as Isoindolinone Yellow 3RLT (Y-110); quinophthalone yellow Quinophthalone pigments such as (Y-138); isoindoline pigments such as isoindoline yellow (Y-139); I. Nitroso pigments such as C.I. Pigment Yellow 153 (nickel nitroso yellow, etc.); I. And metal complex salt azomethine pigments such as CI Pigment Yellow 117 (copper azomethine yellow and the like). These may be used alone or in combination of two or more.
 前記有機顔料及び前記無機顔料のうち赤又はマゼンタ色を呈するものとしては、例えば、C.I.ピグメントレッド3(トルイジンレッド等)等のモノアゾ系顔料;C.I.ピグメントレッド38(ピラゾロンレッドB等)等のジスアゾ顔料;C.I.ピグメントレッド53:1(レーキレッドC等)、C.I.ピグメントレッド57:1(ブリリアントカーミン6B)等のアゾレーキ顔料;C.I.ピグメントレッド144(縮合アゾレッドBR等)等の縮合アゾ顔料;C.I.ピグメントレッド174(フロキシンBレーキ等)等の酸性染料レーキ顔料;C.I.ピグメントレッド81(ローダミン6G’レーキ等)等の塩基性染料レーキ顔料、C.I.ピグメントレッド177(ジアントラキノニルレッド等)等のアントラキノン系顔料、C.I.ピグメントレッド88(チオインジゴボルドー等)等のチオインジゴ顔料;C.I.ピグメントレッド194(ペリノンレッド等)等のペリノン顔料;C.I.ピグメントレッド149(ペリレンスカーレット等)等のペリレン顔料;C.I.ピグメントバイオレット19(無置換キナクリドン)、C.I.ピグメントレッド122(キナクリドンマゼンタ等)等のキナクリドン顔料;C.I.ピグメントレッド180(イソインドリノンレッド2BLT等)等のイソインドリノン顔料;C.I.ピグメントレッド83(マダーレーキ等)等のアリザリンレーキ顔料等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples of the organic pigment and the inorganic pigment that exhibit red or magenta color include C.I. I. Monoazo pigments such as CI Pigment Red 3 (Toluidine Red, etc.); I. Disazo pigments such as C.I. Pigment Red 38 (Pyrazolone Red B, etc.); I. Pigment Red 53: 1 (Lake Red C, etc.), C.I. I. Azo lake pigments such as CI Pigment Red 57: 1 (Brilliant Carmine 6B); I. Condensed azo pigments such as C.I. Pigment Red 144 (condensed azo red BR and the like); I. Acidic dye lake pigments such as C.I. Pigment Red 174 (Phloxine B Lake, etc.); I. Basic dye lake pigments such as C.I. Pigment Red 81 (Rhodamine 6G 'lake, etc.); I. Anthraquinone pigments such as C.I. Pigment Red 177 (eg, dianthraquinonyl red); I. Thioindigo pigments such as C.I. Pigment Red 88 (such as Thioindigo Bordeaux); I. Perinone pigments such as C.I. Pigment Red 194 (perinone red, etc.); I. Perylene pigments such as CI Pigment Red 149 (perylene scarlet, etc.); I. Pigment violet 19 (unsubstituted quinacridone), C.I. I. Quinacridone pigments such as C.I. Pigment Red 122 (quinacridone magenta, etc.); I. CI indolinone pigments such as C.I. Pigment Red 180 (Isoindolinone Red 2BLT and the like); I. And alizarin lake pigments such as CI Pigment Red 83 (Madder Lake, etc.). These may be used alone or in combination of two or more.
 前記有機顔料及び前記無機顔料のうち青又はシアン色を呈する顔料としては、例えば、C.I.ピグメントブルー25(ジアニシジンブルー等)等のジスアゾ系顔料;C.I.ピグメントブルー15(フタロシアニンブルー等)等のフタロシアニン顔料;C.I.ピグメントブルー24(ピーコックブルーレーキ等)等の酸性染料レーキ顔料;C.I.ピグメントブルー1(ビクロチアピュアブルーBOレーキ等)等の塩基性染料レーキ顔料;C.I.ピグメントブルー60(インダントロンブルー等)等のアントラキノン系顔料;C.I.ピグメントブルー18(アルカリブルーV-5:1)等のアルカリブルー顔料等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Among the organic pigment and the inorganic pigment, examples of the pigment exhibiting blue or cyan include C.I. I. Disazo pigments such as CI Pigment Blue 25 (dianisidine blue and the like); I. Phthalocyanine pigments such as C.I. Pigment Blue 15 (phthalocyanine blue, etc.); I. Acidic dye lake pigments such as C.I. Pigment Blue 24 (peacock blue lake, etc.); I. Basic dye lake pigments such as C.I. Pigment Blue 1 (Viclotia Pure Blue BO Lake, etc.); I. Anthraquinone pigments such as C.I. Pigment Blue 60 (Indantron Blue, etc.); I. And alkaline blue pigments such as CI Pigment Blue 18 (Alkali Blue V-5: 1). These may be used alone or in combination of two or more.
 前記有機顔料及び前記無機顔料のうち緑色を呈する顔料としては、例えば、C.I.ピグメントグリーン7(フタロシアニングリーン)、C.I.ピグメントグリーン36(フタロシアニングリーン)等のフタロシアニン顔料;C.I.ピグメントグリーン8(ニトロソグリーン)等のアゾ金属錯体顔料等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Among the organic pigments and the inorganic pigments, examples of the green pigment include C.I. I. Pigment green 7 (phthalocyanine green), C.I. I. Phthalocyanine pigments such as CI Pigment Green 36 (phthalocyanine green); I. And azo metal complex pigments such as CI Pigment Green 8 (Nitroso Green). These may be used alone or in combination of two or more.
 前記有機顔料及び前記無機顔料のうちオレンジ色を呈する顔料としては、例えば、C.I.ピグメントオレンジ66(イソインドリンオレンジ)等のイソインドリン系顔料;C.I.ピグメントオレンジ51(ジクロロピラントロンオレンジ)等のアントラキノン系顔料等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Among the organic pigments and the inorganic pigments, examples of the orange pigment include C.I. I. CI indoline pigments such as CI Pigment Orange 66 (isoindoline orange); I. And anthraquinone pigments such as CI Pigment Orange 51 (dichloropyrantron orange). These may be used alone or in combination of two or more.
 前記有機顔料及び前記無機顔料のうち黒色を呈する顔料としては、例えば、カーボンブラック、チタンブラック、アニリンブラック等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Among the organic pigment and the inorganic pigment, examples of the black pigment include carbon black, titanium black, and aniline black. These may be used alone or in combination of two or more.
 前記有機顔料及び前記無機顔料のうち白色を呈する顔料としては、例えば、塩基性炭酸鉛(2PbCOPb(OH)、いわゆる、シルバーホワイト)、酸化亜鉛(ZnO、いわゆる、ジンクホワイト)、酸化チタン(TiO、いわゆる、チタンホワイト)、チタン酸ストロンチウム(SrTiO、いわゆる、チタンストロンチウムホワイト)等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。これらの中でも、顔料としての隠蔽力及び着色力が大きく、さらに、酸、アルカリ、その他の環境等に対する耐久性に優れる観点から、酸化チタンであることが好ましい。 Among the organic pigments and the inorganic pigments, white pigments include, for example, basic lead carbonate (2PbCO 3 Pb (OH) 2 , so-called silver white), zinc oxide (ZnO, so-called zinc white), and titanium oxide. (TiO 2 , so-called titanium white), strontium titanate (SrTiO 3 , so-called titanium strontium white), and the like. These may be used alone or in combination of two or more. Among these, titanium oxide is preferable from the viewpoint of high hiding power and coloring power as a pigment and excellent durability to acids, alkalis, and other environments.
 前記着色剤の含有量は、着色性及び保存安定性の観点から、前記モデル材用組成物全体100質量部に対して、0.01~40質量部であることが好ましい。前記着色剤の含有量は、0.1質量部以上であることがより好ましく、0.2質量部以上であることがさらに好ましい。また、前記着色剤の含有量は、30質量部以下であることがより好ましく、20質量部以下であることがさらに好ましい。なお、前記着色剤が2種以上含まれる場合、前記含有量は、各着色剤の含有量の合計である。 The content of the colorant is preferably 0.01 to 40 parts by mass with respect to 100 parts by mass of the entire model material composition from the viewpoint of colorability and storage stability. The content of the colorant is more preferably 0.1 parts by mass or more, and further preferably 0.2 parts by mass or more. Further, the content of the colorant is more preferably 30 parts by mass or less, and further preferably 20 parts by mass or less. In addition, when the said coloring agent is contained 2 or more types, the said content is the sum total of content of each coloring agent.
 前記分散剤は、Mwが1,000以上の高分子分散剤であることが好ましい。前記高分子分散剤としては、例えば、DISPERBYK-101、DISPERBYK-102等(BYKケミー社製);EFKA4010、EFKA4046等(以上、エフカアディティブ社製);ディスパースエイド6、ディスパースエイド8等(以上、サンノプコ社製);ソルスパース(SOLSPERSE)3000、5000等の各種ソルスパース分散剤(以上、Noveon社製);アデカプルロニックL31、F38等(以上、ADEKA社製);イオネットS-20(三洋化成工業社製);ディスパロン KS-860、873SN等(以上、楠本化成社製)等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 The dispersant is preferably a polymer dispersant having an Mw of 1,000 or more. Examples of the polymer dispersant include DISPERBYK-101, DISPERBYK-102 and the like (manufactured by BYK Chemie); EFKA4010 and EFKA4046 and the like (above, manufactured by Fuka Additive); As described above, manufactured by San Nopco); various Solsperse dispersants such as SOLPERSE 3000, 5000 (hereinafter, manufactured by Noveon); Adeka Pluronic L31, F38, etc. (hereinafter, manufactured by ADEKA); Manufactured by the company); Disparon KS-860, 873SN, etc. (above, manufactured by Enomoto Kasei Co., Ltd.). These may be used alone or in combination of two or more.
 前記分散剤の含有量は、前記モデル材用組成物全体100質量部に対して、0.05~15質量部であることが好ましい。なお、前記分散剤が2種以上含まれる場合、前記含有量は、各分散剤の含有量の合計である。 The content of the dispersant is preferably 0.05 to 15 parts by mass with respect to 100 parts by mass of the entire model material composition. In addition, when the said dispersing agent is contained 2 or more types, the said content is the sum total of content of each dispersing agent.
 前記表面調整剤(E)としては、例えば、分子量264以上かつMn5,000以下である、PEG型非イオン界面活性剤[ノニルフェノールのエチレンオキサイド(以下、EOと略記)1~40モル付加物、ステアリン酸EO1~40モル付加物等]、多価アルコール型非イオン界面活性剤(ソルビタンパルミチン酸モノエステル、ソルビタンステアリン酸モノエステル、ソルビタンステアリン酸トリエステル等)、フッ素含有界面活性剤(パーフルオロアルキルEO1~50モル付加物、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルベタイン等)、変性シリコーンオイル[ポリエーテル変性シリコーンオイル、(メタ)アクリレート変性シリコーンオイル等]等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。前記表面調整剤のうち、シリコーン系表面調整剤が好ましく、ポリジメチルシロキサン構造を有する表面調整剤が特に好ましい。 Examples of the surface conditioner (E) include a PEG-type nonionic surfactant [nonylphenol ethylene oxide (hereinafter abbreviated as EO) 1 to 40 mol adduct, stearin having a molecular weight of 264 or more and Mn of 5,000 or less. Acid EO 1-40 mol adducts, etc.], polyhydric alcohol type nonionic surfactants (sorbitan palmitic acid monoester, sorbitan stearic acid monoester, sorbitan stearic acid triester, etc.), fluorine-containing surfactants (perfluoroalkyl EO1) ˜50 mol adduct, perfluoroalkyl carboxylate, perfluoroalkyl betaine, etc.), modified silicone oils [polyether-modified silicone oil, (meth) acrylate-modified silicone oil, etc.] and the like. These may be used alone or in combination of two or more. Of the surface conditioners, silicone-based surface conditioners are preferable, and surface conditioners having a polydimethylsiloxane structure are particularly preferable.
 前記表面調整剤の含有量は、添加効果、並びに、前記モデル材及び前記光造形品の物性を向上させる観点から、前記モデル材用組成物全体100質量部に対して、3質量部以下であることが好ましく、2質量部以下であることがより好ましく、0.1質量部以上であることが好ましい。なお、前記表面調整剤が2種以上含まれる場合、前記含有量は、各表面調整剤の含有量の合計である。 The content of the surface conditioner is 3 parts by mass or less with respect to 100 parts by mass of the entire model material composition, from the viewpoint of adding effects and improving the physical properties of the model material and the optically shaped article. It is preferably 2 parts by mass or less, more preferably 0.1 parts by mass or more. In addition, when 2 or more types of the said surface conditioning agents are contained, the said content is the sum total of content of each surface conditioning agent.
 前記モデル材用組成物は、重合禁止剤を含有することが好ましい。前記モデル材用組成物が重合禁止剤を含有することにより、前記造形品を成形する温度(50~90℃程度)において、重合が過剰に起きることを抑制することができる。その結果、単量体を安定させることができるため、前記モデル材用組成物が硬化しやすくなる。 The model material composition preferably contains a polymerization inhibitor. When the composition for a model material contains a polymerization inhibitor, it is possible to suppress excessive polymerization at a temperature (about 50 to 90 ° C.) at which the shaped article is molded. As a result, since the monomer can be stabilized, the model material composition is easily cured.
 前記重合禁止剤は、前記モデル材用組成物の保存性を高め、かつ、インクジェットヘッドからの吐出安定性を向上させる。前記重合禁止剤としては、例えば、ニトロソ系重合禁止剤、ハイドロキノン、メトキシヒドロキノン、ベンゾキノン、p-メトキシフェノール、TEMPO、TEMPOL(HO-TEMPO)、クペロンAl、ヒンダードアミン等が挙げられる。 The polymerization inhibitor enhances the storage stability of the model material composition and improves the ejection stability from the inkjet head. Examples of the polymerization inhibitor include nitroso polymerization inhibitors, hydroquinone, methoxyhydroquinone, benzoquinone, p-methoxyphenol, TEMPO, TEMPOL (HO-TEMPO), cuperon Al, hindered amine and the like.
 前記重合禁止剤の含有量は、前記モデル材用組成物全体100質量部に対して、0.001~1.5質量部であることが好ましい。前記重合禁止剤の含有量が前記範囲であると、前記モデル材用組成物の保存性をより高め、かつ、インクジェットヘッドからの吐出安定性をより向上させる。前記重合禁止剤の含有量は、0.01質量部以上であることがより好ましく、0.05質量部以上であることがさらに好ましい。また、前記重合禁止剤の含有量は、1.0質量部以下であることがより好ましく、0.8質量部以下であることがさらに好ましい。なお、前記重合禁止剤が2種以上含まれる場合、前記含有量は、各重合禁止剤の含有量の合計である。 The content of the polymerization inhibitor is preferably 0.001 to 1.5 parts by mass with respect to 100 parts by mass of the entire model material composition. When the content of the polymerization inhibitor is in the above range, the storage stability of the model material composition is further improved, and the ejection stability from the inkjet head is further improved. The content of the polymerization inhibitor is more preferably 0.01 parts by mass or more, and further preferably 0.05 parts by mass or more. The content of the polymerization inhibitor is more preferably 1.0 part by mass or less, and further preferably 0.8 part by mass or less. In addition, when the said polymerization inhibitor is contained 2 or more types, the said content is the sum total of content of each polymerization inhibitor.
 本実施形態に係る光造形用インクセットに含まれるモデル材用組成物の製造方法は、特に限定されるものではない。例えば、前記(A)~(D)成分、並びに、必要により、前記その他の添加剤を、混合攪拌装置等を用いて均一に混合することにより、製造することができる。 The method for producing the model material composition included in the optical modeling ink set according to the present embodiment is not particularly limited. For example, the components (A) to (D) and, if necessary, the other additives can be produced by uniformly mixing them using a mixing and stirring device or the like.
 このようにして製造された前記モデル材用組成物は、インクジェットヘッドからの吐出性を良好にする観点から、25℃における粘度が、70mPa・s以下であることが好ましい。なお、モデル材用組成物の粘度の測定は、JIS Z 8803に準拠し、R100型粘度計を用いて行われる。 The composition for a model material thus produced preferably has a viscosity at 25 ° C. of 70 mPa · s or less from the viewpoint of improving dischargeability from an inkjet head. In addition, the measurement of the viscosity of the composition for model materials is performed using R100 type | mold viscosity meter based on JISZ8803.
 2.サポート材用組成物
 サポート材用組成物は、光硬化によりサポート材を与える、サポート材用の光硬化性組成物である。モデル材を作成後、サポート材をモデル材から物理的に剥離することにより、または、サポート材を有機溶媒もしくは水に溶解させることにより、モデル材から除去することができる。本発明のモデル材用組成物は、サポート材用組成物として従来公知の種々の組成物との組み合わせにおいて用いることができるが、サポート材を除去する際にモデル材を破損することがなく、環境に優しく、細部まできれいにかつ容易にサポート材を除去することができるため、本発明の光造形用組成物セットを構成するサポート材用組成物は水溶性であることが好ましい。
2. Support Material Composition A support material composition is a photocurable composition for a support material that provides a support material by photocuring. After the model material is created, it can be removed from the model material by physically peeling the support material from the model material or by dissolving the support material in an organic solvent or water. The composition for a model material of the present invention can be used in combination with various conventionally known compositions as a composition for a support material, but does not damage the model material when the support material is removed, and the environment. It is preferable that the support material composition constituting the stereolithography composition set of the present invention is water-soluble because the support material can be removed easily and cleanly in detail.
 本発明において、水溶性サポート材用組成物は、少なくとも1種の水溶性単官能エチレン性不飽和単量体(a)、オキシブチレン基を含む少なくとも1種のポリアルキレングリコール(b)および光重合開始剤(c)を含むことが好ましい。 In the present invention, the water-soluble support material composition comprises at least one water-soluble monofunctional ethylenically unsaturated monomer (a), at least one polyalkylene glycol (b) containing an oxybutylene group, and photopolymerization. It is preferable to contain an initiator (c).
 本発明のサポート材用組成物に含まれる水溶性の単官能エチレン性不飽和単量体(a)としては、例えば、炭素数5~15の水酸基含有(メタ)アクリレート〔例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等〕、数平均分子量(Mn)200~1,000の水酸基含有(メタ)アクリレート〔例えばポリエチレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリプロピレングリコールモノ(メタ)アクリレート、PEG-PPGブロックポリマーのモノ(メタ)アクリレート等〕、(メタ)アクリルアミド誘導体〔例えば(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、N,N’-ジエチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N-ヒドロキシブチル(メタ)アクリルアミド等〕、(メタ)アクリロイルモルフォリン等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples of the water-soluble monofunctional ethylenically unsaturated monomer (a) contained in the support material composition of the present invention include a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms [for example, hydroxyethyl (meta ) Acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc.], hydroxyl group-containing (meth) acrylate having a number average molecular weight (Mn) of 200 to 1,000 [for example, polyethylene glycol mono (meth) acrylate, mono Alkoxy (1 to 4 carbon atoms) polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polypropylene glycol mono (meth) acrylate, mono (meta) of PEG-PPG block polymer Acrylate ], (Meth) acrylamide derivatives [eg (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N ′ -Dimethyl (meth) acrylamide, N, N'-diethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide, N-hydroxybutyl (meth) acrylamide, etc.], (meth) Examples include acryloyl morpholine. These may be used alone or in combination of two or more.
 サポート材用組成物に含まれる水溶性単官能エチレン性不飽和単量体(a)の含有量は、上記サポート材用組成物100質量部に対して、19~80質量部であることが好ましく、より好ましくは22質量部以上であり、さらに好ましくは25質量部以上であり、より好ましくは76質量部以下であり、さらに好ましくは73質量部以下である。水溶性単官能エチレン性不飽和単量体(a)の含有量が上記範囲内であると、サポート材のサポート力を低下させることなく、水によるサポート材の除去性を向上させることができる。 The content of the water-soluble monofunctional ethylenically unsaturated monomer (a) contained in the support material composition is preferably 19 to 80 parts by mass with respect to 100 parts by mass of the support material composition. More preferably, it is 22 parts by mass or more, more preferably 25 parts by mass or more, more preferably 76 parts by mass or less, and further preferably 73 parts by mass or less. When the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is within the above range, the removability of the support material with water can be improved without reducing the support power of the support material.
 サポート材用組成物に含まれるオキシブチレン基を含むポリアルキレングリコール(b)としては、直鎖型、多鎖型のいずれであってもよい。また、水に溶解するものであれば、末端にアルキル基を含んでいてもよく、例えば、好ましくは炭素数6以下のアルキル鎖を含んでいてもよい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The polyalkylene glycol (b) containing an oxybutylene group contained in the support material composition may be either a linear type or a multi-chain type. Moreover, as long as it melt | dissolves in water, the alkyl group may be included in the terminal, for example, Preferably it may contain the C6 or less alkyl chain. These may be used alone or in combination of two or more.
 サポート材用組成物に含まれるオキシブチレン基を含むポリアルキレングリコール(b)は、サポート材に適度な親水性を付与するための水溶性樹脂であり、これを添加することにより水除去性とサポート力とを兼ね備えたサポート材を得ることができる。上記オキシブチレン基を含むポリアルキレングリコールは、オキシブチレン基を含んでいれば、特にそのアルキレン部分の構造は限定されず、例えば、オキシブチレン基(オキシテトラメチレン基)のみ有するポリブチレングリコール単体であってもよく、また、オキシブチレン基と他のオキシアルキレン基とを共に有するポリブチレンポリオキシアルキレングリコール(例えば、ポリブチレンポリエチレングリコール)であってもよい。例えば、上記ポリブチレングリコールは、下記化学式(1)で示され、上記ポリブチレンポリエチレングリコールは、下記化学式(2)で示される。 The polyalkylene glycol (b) containing an oxybutylene group contained in the support material composition is a water-soluble resin for imparting appropriate hydrophilicity to the support material. Support material that combines strength can be obtained. The polyalkylene glycol containing an oxybutylene group is not particularly limited as long as it contains an oxybutylene group. For example, the polyalkylene glycol having only an oxybutylene group (oxytetramethylene group) is a single polybutylene glycol. Alternatively, it may be a polybutylene polyoxyalkylene glycol (for example, polybutylene polyethylene glycol) having both an oxybutylene group and another oxyalkylene group. For example, the polybutylene glycol is represented by the following chemical formula (1), and the polybutylene polyethylene glycol is represented by the following chemical formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記化学式(2)において、mは5~300の整数であることが好ましく、nは2~150の整数であることが好ましい。より好ましくは、mは6~200、nは3~100である。また、化学式(1)および化学式(2)中のオキシブチレン基は、直鎖であってもよいが、分岐していてもよい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In the above chemical formula (2), m is preferably an integer of 5 to 300, and n is preferably an integer of 2 to 150. More preferably, m is 6 to 200, and n is 3 to 100. Further, the oxybutylene group in the chemical formula (1) and the chemical formula (2) may be a straight chain or may be branched. These may be used alone or in combination of two or more.
 サポート材用組成物が、オキシブチレン基を含むポリアルキレングリコール(b)を含むことにより、サポート材のサポート力を低下させずに水による除去性をより向上させることができ、柔らかなモデル材を支持し、精度の高いモデル材を造形するのに適したサポート材となる。特に、柔らかく、成形時に寸法精度が低下しやすいモデル材に対して、光造形中にサポート材がモデル材を十分に支えることができるため光造形の段階における造形精度を向上させることができる。さらに、その後、サポート材を除去する段階においてはサポート材の容易な除去が可能であるため、光造形中に高い精度で成形した立体モデルの微細構造においてもその精度の低下を抑えながらサポート材を除去することができる。これにより、サポート材の水による除去性を向上させることによりサポート材除去時における寸法精度の低下を抑制するだけでなく、サポート材の自立性を向上させることにより光造形中におけるモデル材の寸法精度を高めることで、より良好な寸法精度を有する光造形物を得ることができる。 Since the composition for the support material contains the polyalkylene glycol (b) containing an oxybutylene group, the removability by water can be further improved without reducing the support power of the support material, and a soft model material can be obtained. It is a support material that is suitable for supporting and modeling a highly accurate model material. In particular, since the support material can sufficiently support the model material during the optical modeling, the modeling accuracy at the optical modeling stage can be improved with respect to the soft model material whose dimensional accuracy is likely to be lowered during molding. Furthermore, since the support material can be easily removed at the stage of removing the support material after that, the support material can be used while suppressing the decrease in accuracy even in the microstructure of the three-dimensional model molded with high accuracy during stereolithography. Can be removed. This not only prevents the reduction of dimensional accuracy when removing the support material by improving the removability of the support material with water, but also improves the dimensional accuracy of the model material during stereolithography by improving the self-supporting property of the support material. By increasing the height, it is possible to obtain an optically shaped article having better dimensional accuracy.
 オキシブチレン基を含むポリアルキレングリコール(b)成分の重量平均分子量は、300以上であり、3000より小さいことが好ましく、更に、800以上であり、2000より小さいことがより好ましい。(b)成分の重量平均分子量が300より小さいと、サポート材用組成物を硬化した際にサポート材のブリーディングが生じやすくなる。ブリーディングとは、硬化したサポート材内部から液体成分がサポート材表面に浸みだす現象である。また、オキシブチレン基を含むポリアルキレングリコールの重量平均分子量が3000より小さいことにより、サポート材用組成物の吐出安定性に優れる。重量平均分子量が上記範囲であると、硬化前の組成物中で水溶性単官能エチレン性不飽和単量体(a)と相溶しやすくなる一方、光照射後の水溶性単官能エチレン性不飽和単量体の硬化物とは相溶し難くなり、サポート材の水または水溶性溶剤による除去が容易になる。(b)成分は、2種類以上使用されてもよい。2種類以上のポリアルキレングリコールが使用される場合、重量平均分子量が300より小さい又は3000より大きいポリアルキレングリコールの含有量は、少量が好ましい。 The weight average molecular weight of the polyalkylene glycol (b) component containing an oxybutylene group is 300 or more, preferably less than 3000, more preferably 800 or more, and more preferably less than 2000. When the weight average molecular weight of the component (b) is smaller than 300, bleeding of the support material tends to occur when the support material composition is cured. Bleeding is a phenomenon in which a liquid component oozes from the inside of a cured support material to the support material surface. Moreover, when the weight average molecular weight of the polyalkylene glycol containing an oxybutylene group is smaller than 3000, the discharge stability of the support material composition is excellent. When the weight average molecular weight is in the above range, the water-soluble monofunctional ethylenically unsaturated monomer (a) is easily compatible in the composition before curing, while the water-soluble monofunctional ethylenic monomer after light irradiation is easily compatible. It becomes difficult to be compatible with the cured product of the saturated monomer, and the support material can be easily removed with water or a water-soluble solvent. (B) Two or more types of components may be used. When two or more types of polyalkylene glycol are used, the content of polyalkylene glycol having a weight average molecular weight of less than 300 or greater than 3000 is preferably small.
 サポート材用組成物におけるオキシブチレン基を含むポリアルキレングリコール(b)の含有量は、サポート材用組成物100質量部に対して、15~75質量部であることが好ましく、より好ましくは17質量部以上であり、さらに好ましくは20質量部以上であり、より好ましくは72質量部以下であり、さらに好ましくは70質量部以下である。オキシブチレン基を含むポリアルキレングリコール(b)の含有量が、上記範囲内であると、サポート材のサポート力を低下させずにサポート材の水または水溶性溶媒による除去性を向上させることができる。 The content of the polyalkylene glycol (b) containing an oxybutylene group in the support material composition is preferably 15 to 75 parts by mass, more preferably 17 parts by mass with respect to 100 parts by mass of the support material composition. Part or more, more preferably 20 parts by weight or more, more preferably 72 parts by weight or less, and even more preferably 70 parts by weight or less. When the content of the polyalkylene glycol (b) containing an oxybutylene group is within the above range, the removability of the support material with water or a water-soluble solvent can be improved without reducing the support power of the support material. .
 サポート材用組成物は、水溶性有機溶剤(c)を含んでいてもよい。水溶性有機溶剤(c)は、サポート材用組成物を光硬化させて得られるサポート材の水への溶解性を向上させる成分である。また、サポート材用組成物を低粘度に調整する機能も有する。 The support material composition may contain a water-soluble organic solvent (c). The water-soluble organic solvent (c) is a component that improves the solubility of the support material obtained by photocuring the support material composition in water. Moreover, it has the function to adjust the composition for support materials to low viscosity.
 水溶性有機溶剤(c)としては、グリコール系溶剤を用いることが好ましく、具体的には、例えば、エチレングリコールモノアセテート、プロピレングリコールモノアセテート、ジエチレングリコールモノアセテート、ジプロピレングリコールモノアセテート、トリエチレングリコールモノアセテート、トリプロピレングリコールモノアセテート、テトラエチレングリコールモノアセテート、テトラプロピレングリコールモノアセテート、エチレングリコールジアセテート、プロピレングリコールジアセテートなどのグリコールエステル系溶剤;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、テトラプロピレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールジエチルエーテルなどのグリコールエーテル系溶剤;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテートなどのグリコールモノエーテルアセテート系溶剤等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As the water-soluble organic solvent (c), it is preferable to use a glycol solvent. Specifically, for example, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol monoacetate. Glycol ester solvents such as acetate, tripropylene glycol monoacetate, tetraethylene glycol monoacetate, tetrapropylene glycol monoacetate, ethylene glycol diacetate, propylene glycol diacetate; ethylene glycol monomethyl ether, propylene glycol monomethyl ether, triethylene glycol monomethyl Ether, ethylene glycol monoethyl ether, propylene glycol Monoethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, tetrapropylene glycol monobutyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, Glycol ether solvents such as ethylene glycol dipropyl ether, propylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dibutyl ether, diethylene glycol diethyl ether; ethylene glycol monomethyl ether acetate, propylene glycol Nomethyl ether acetate, dipropylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, propylene glycol monopropyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monobutyl ether Examples thereof include glycol monoether acetate solvents such as acetate. These may be used alone or in combination of two or more.
 中でも、低粘度のサポート材組成物を調製しやすく、また、硬化して得られるサポート材が水溶解性に優れる点から、水溶性有機溶剤(c)としては、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテルおよびジプロピレングリコールモノメチルエーテルアセテートが好ましい。 Among them, the low-viscosity support material composition is easy to prepare, and the support material obtained by curing is excellent in water solubility. Therefore, as the water-soluble organic solvent (c), triethylene glycol monomethyl ether, diethylene glycol diethyl Ether and dipropylene glycol monomethyl ether acetate are preferred.
 サポート材用組成物における水溶性有機溶剤(c)の含有量は、サポート材用組成物100質量部に対して、30質量部以下であることが好ましく、より好ましくは28質量部以下であり、さらに好ましくは25質量部以下である。水溶性有機溶剤(c)の含有量が、上記範囲内であると、サポート材のサポート力を低下させずにサポート材の水または水溶性溶媒による除去性を向上させることができる。サポート材用組成物が水溶性有機溶剤を含む場合、その含有量は、サポート材用組成物を低粘度に調整し得る観点から、サポート材用組成物100質量部に対して、好ましくは3質量部以上である。 The content of the water-soluble organic solvent (c) in the support material composition is preferably 30 parts by mass or less, more preferably 28 parts by mass or less, with respect to 100 parts by mass of the support material composition. More preferably, it is 25 parts by mass or less. When the content of the water-soluble organic solvent (c) is within the above range, the removability of the support material with water or the water-soluble solvent can be improved without reducing the support power of the support material. When the composition for a support material contains a water-soluble organic solvent, the content thereof is preferably 3 masses with respect to 100 parts by mass of the composition for a support material from the viewpoint that the composition for a support material can be adjusted to a low viscosity. More than a part.
 光重合開始剤(d)としては、モデル材用組成物に含有され得る光重合開始剤として上記に述べた化合物を同様に使用することができる。サポート材用組成物における光重合開始剤の含有量は、サポート材用組成物100質量部に対して、好ましくは1~20質量部であり、より好ましくは2~18質量部である。光重合開始剤の含有量が上記範囲内であると、未反応の重合成分を十分に低減させて、サポート材の硬化性を十分に高めやすい。 As the photopolymerization initiator (d), the compounds described above as photopolymerization initiators that can be contained in the model material composition can be similarly used. The content of the photopolymerization initiator in the support material composition is preferably 1 to 20 parts by mass and more preferably 2 to 18 parts by mass with respect to 100 parts by mass of the support material composition. When the content of the photopolymerization initiator is within the above range, unreacted polymerization components can be sufficiently reduced, and the curability of the support material can be sufficiently enhanced.
 上記サポート材用組成物には、必要により、その他の添加剤を含有させることができる。その他の添加剤としては、例えば、表面調整剤、酸化防止剤、着色剤、顔料分散剤、保存安定剤、紫外線吸収剤、光安定剤、重合禁止剤、連鎖移動剤、充填剤等が挙げられる。 The support material composition may contain other additives as necessary. Examples of other additives include surface conditioners, antioxidants, colorants, pigment dispersants, storage stabilizers, ultraviolet absorbers, light stabilizers, polymerization inhibitors, chain transfer agents, and fillers. .
 サポート材用組成物に、表面調整剤(e)を配合することによりサポート材用組成物の表面張力を適当な範囲に制御することができ、モデル材用組成物とサポート材用組成物がその界面で混合することを抑制することができる。これにより、寸法精度の良好な光造形品を得ることができる。サポート材用組成物が含み得る表面調整剤としては、本発明のモデル材用組成物に用い得る表面調整剤として例示したものと同様のものを用いることができ、その含有量は、サポート材組成物100質量部に対して0.005質量部以上3質量部以下であることが好ましい。 The surface tension of the support material composition can be controlled within an appropriate range by adding the surface conditioner (e) to the support material composition, and the model material composition and the support material composition Mixing at the interface can be suppressed. Thereby, a stereolithography product with favorable dimensional accuracy can be obtained. As the surface conditioner that can be contained in the support material composition, the same as those exemplified as the surface conditioner that can be used in the model material composition of the present invention can be used. It is preferable that it is 0.005 mass part or more and 3 mass parts or less with respect to 100 mass parts of things.
 また、サポート材用組成物に保存安定化剤(f)を配合することにより保存安定性を向上させることができる。サポート材用組成物が含み得る保存安定化剤としては、本発明のモデル材用組成物に用い得る保存安定化剤として例示したものと同様のものを用いることができ、その含有量は、サポート材用組成物100質量部に対して0.05質量部以上3質量部以下であることが好ましい。 Further, the storage stability can be improved by blending the storage stabilizer (f) into the support material composition. As the storage stabilizer that can be contained in the support material composition, the same storage stabilizers as those exemplified as the storage stabilizer that can be used in the model material composition of the present invention can be used. It is preferable that they are 0.05 mass part or more and 3 mass parts or less with respect to 100 mass parts of composition for materials.
 本発明において、サポート材用組成物の粘度は、インクジェットノズルからの吐出性を良好にする観点から、25℃において30~200mPa・sであることが好ましく、より好ましくは35mPa・s以上、さらに好ましくは40mPa・s以上であり、より好ましくは170mPa・s以下、さらに好ましくは150mPa・s以下である。なお、上記粘度の測定は、JIS Z 8803に準拠し、R100型粘度計を用いて行うことができる。 In the present invention, the viscosity of the support material composition is preferably 30 to 200 mPa · s at 25 ° C., more preferably 35 mPa · s or more, and still more preferably, from the viewpoint of improving dischargeability from the inkjet nozzle. Is 40 mPa · s or more, more preferably 170 mPa · s or less, and still more preferably 150 mPa · s or less. In addition, the measurement of the said viscosity can be performed using R100 type | mold viscosity meter based on JISZ8803.
 本発明において、サポート材用組成物の表面張力は、好ましくは24~30mN/mであり、より好ましくは24.5~29.5mN/mであり、さらに好ましくは25~29mN/mである。表面張力が上記範囲内であると、ノズルからの吐出液滴を正常に形成することができ、適切な液滴量や着弾精度を確保することやサテライトの発生を抑制することが可能であり、高い造形精度を確保しやすくなる。なお、サポート材用組成物の表面張力は、モデル材用組成物における表面張力の測定方法と同様の方法に従い測定することができる。 In the present invention, the surface tension of the support material composition is preferably 24 to 30 mN / m, more preferably 24.5 to 29.5 mN / m, and further preferably 25 to 29 mN / m. When the surface tension is within the above range, it is possible to normally form droplets ejected from the nozzle, to ensure an appropriate droplet amount and landing accuracy, and to suppress the occurrence of satellites, It becomes easy to ensure high modeling accuracy. In addition, the surface tension of the composition for support material can be measured in accordance with the method similar to the measuring method of the surface tension in the composition for model materials.
 本発明のサポート材用組成物の製造方法は特に限定されず、例えば、混合攪拌装置等を用いて、サポート材用組成物を構成する成分を均一に混合することにより製造することができる。 The method for producing the composition for a support material of the present invention is not particularly limited. For example, the composition for the support material can be produced by uniformly mixing the components constituting the composition for a support material using a mixing stirrer or the like.
 3.光造形品及びその製造方法
 本実施形態の光造形物の製造方法は、前述の実施形態で説明したマテリアルジェット光造形用組成物セットを用いた光造形物の製造方法であり、マテリアルジェット(インクジェット)方式プリンターを用いてモデル材用組成物及びサポート材用組成物を吐出した後、モデル材用組成物を光硬化させてモデル材を得るとともに、水溶性サポート材用組成物を光硬化させて水溶性サポート材を得る工程と、前記水溶性サポート材を水に浸水することにより除去する工程とを備えている。
3. Optical modeling product and manufacturing method thereof The manufacturing method of the optical modeling object of this embodiment is a manufacturing method of an optical modeling object using the composition set for material jet optical modeling described in the above embodiment, and is a material jet (inkjet). ) After discharging the composition for the model material and the composition for the support material using a method printer, the model material composition is photocured to obtain the model material, and the water soluble support material composition is photocured. A step of obtaining a water-soluble support material, and a step of removing the water-soluble support material by immersing the water-soluble support material in water.
 本実施形態の光造形物の製造方法は、上記マテリアルジェット光造形用組成物セットを用いているため、造形精度に優れた光造形物を形成することができる。 Since the manufacturing method of the optical modeling thing of this embodiment is using the said composition set for material jet optical modeling, it can form the optical modeling thing excellent in modeling precision.
 以下、本実施形態の光造形物の製造方法について図面に基づき説明する。図1は、マテリアルジェット造形法によりサポート材用組成物及びモデル材用組成物を吐出してエネルギー線を照射している状態を示す模式側面図である。図1において、三次元造形装置10は、インクジェットヘッドモジュール11と、造形テーブル12とを備えている。また、インクジェットヘッドモジュール11は、光造形用インクユニット11aと、ローラー11bと、光源11cとを備えている。更に、光造形用インクユニット11aは、モデル材用インク13が充填されたモデル材用インクジェットヘッド11aMと、サポート材用インク14が充填されたサポート材用インクジェットヘッド11aSとを備えている。 Hereinafter, a method for manufacturing an optically shaped object according to the present embodiment will be described with reference to the drawings. FIG. 1 is a schematic side view showing a state in which a support material composition and a model material composition are ejected by a material jet modeling method and irradiated with energy rays. In FIG. 1, the three-dimensional modeling apparatus 10 includes an inkjet head module 11 and a modeling table 12. The ink jet head module 11 includes an optical modeling ink unit 11a, a roller 11b, and a light source 11c. Further, the optical modeling ink unit 11a includes a model material inkjet head 11aM filled with the model material ink 13 and a support material inkjet head 11aS filled with the support material ink.
 モデル材用インクジェットヘッド11aMからは、モデル材用組成物13が吐出され、サポート材用インクジェットヘッド11aSからは、サポート材用組成物14が吐出され、光源11cからエネルギー線15が照射され、吐出されたモデル材用組成物13及びサポート材用組成物14を硬化させて、モデル材13PMとサポート材14PSを形成している。図1では、一層目のモデル材13PM及びサポート材14PSを形成する状態を示している。 The model material composition 13 is ejected from the model material inkjet head 11aM, the support material composition 14 is ejected from the support material inkjet head 11aS, and the energy beam 15 is irradiated and ejected from the light source 11c. The model material composition 13 and the support material composition 14 are cured to form the model material 13PM and the support material 14PS. FIG. 1 shows a state in which the first layer model material 13PM and the support material 14PS are formed.
 次に、本実施形態の光造形物の製造方法について図面に基づき更に詳細に説明する。本実施形態の光造形物の製造方法では、先ず、図2に示すように、インクジェットヘッドモジュール11を造形テーブル12に対してX方向(図2では右方向)に走査させる共に、モデル材用インクジェットヘッド11aMからモデル材用組成物13を吐出し、サポート材用インクジェットヘッド11aSからサポート材用組成物14を吐出する。これにより、造形テーブル12の上に、モデル材前駆体13Mからなる層とサポート材前駆体14Sからなる層とを、それぞれの界面同士が接触するように隣接して配置する。 Next, the method for manufacturing an optically shaped object according to this embodiment will be described in more detail based on the drawings. In the method for manufacturing an optically shaped object according to the present embodiment, first, as shown in FIG. 2, the inkjet head module 11 is scanned in the X direction (right direction in FIG. 2) with respect to the modeling table 12, and the inkjet for model material is used. The model material composition 13 is discharged from the head 11aM, and the support material composition 14 is discharged from the support material inkjet head 11aS. Thereby, on the modeling table 12, the layer which consists of the model material precursor 13M, and the layer which consists of the support material precursor 14S are arrange | positioned adjacently so that each interface may contact.
 次に、図3に示すように、インクジェットヘッドモジュール11を造形テーブル12に対して逆X方向(図3では左方向)に走査させると共に、ローラー11bでモデル材前駆体13M及びサポート材前駆体14Sからなる層の表面を平滑にした後、光源11cからエネルギー線15を照射し、モデル材前駆体13M及びサポート材前駆体14Sからなる層を硬化させて、一層目のモデル材13PM及びサポート材14PSからなる層を形成する。 Next, as shown in FIG. 3, the inkjet head module 11 is scanned in the reverse X direction (left direction in FIG. 3) with respect to the modeling table 12, and the model material precursor 13 </ b> M and the support material precursor 14 </ b> S are scanned by the roller 11 b. After smoothing the surface of the layer made of the material, the energy beam 15 is irradiated from the light source 11c to cure the layer made of the model material precursor 13M and the support material precursor 14S, and the first model material 13PM and the support material 14PS. A layer consisting of is formed.
 続いて、造形テーブル12をZ方向に一層分だけ下降させて、上記と同様の工程を行い、二層目のモデル材及びサポート材からなる層を形成する。その後、上記の工程を繰り返すことにより、図4に示すように、モデル材13PMとサポート材14PSからなる光造形品前駆体16が形成される。 Subsequently, the modeling table 12 is lowered by one layer in the Z direction, and the same process as described above is performed to form a second layer of model material and support material. Thereafter, by repeating the above steps, as shown in FIG. 4, an optically shaped product precursor 16 composed of the model material 13PM and the support material 14PS is formed.
 最後に、図4に示した光造形品前駆体16を水に浸漬することによりサポート材14PSを溶解して除去し、図7に示すような光造形品17が形成される。 Finally, the optical modeling product precursor 16 shown in FIG. 4 is immersed in water to dissolve and remove the support material 14PS, thereby forming the optical modeling product 17 as shown in FIG.
 本実施形態の光造形物の製造方法において、光源として、例えば、高圧水銀灯、メタルハライドランプ、UV-LED等を使用できる。三次元造形装置10の小型化が可能であり、消費電力が小さいという観点から、UV-LEDが好ましい。光量は、造形品の硬度および寸法精度の観点から、200~500mJ/cmが好ましい。光源としてUV-LEDを用いる場合、光が深層まで届きやすくなり、光造形品の硬度および寸法精度を向上させることができることから、中心波長が385~415nmのものを用いることが好ましい。また、光源11cから照射するエネルギー線15についは、紫外線、近紫外線、可視光線、赤外線、遠赤外線、電子線、α線、γ線およびエックス線等を使用することができるが、硬化作業の容易性及び効率性の観点から、紫外線又は近紫外線が好ましい。 In the method for producing an optically shaped object of the present embodiment, for example, a high pressure mercury lamp, a metal halide lamp, a UV-LED, or the like can be used as the light source. From the viewpoint that the three-dimensional modeling apparatus 10 can be miniaturized and the power consumption is small, UV-LED is preferable. The amount of light is preferably 200 to 500 mJ / cm 2 from the viewpoint of the hardness and dimensional accuracy of the shaped product. When a UV-LED is used as the light source, it is preferable to use a light having a center wavelength of 385 to 415 nm because light easily reaches a deep layer and the hardness and dimensional accuracy of the optically shaped product can be improved. As the energy rays 15 irradiated from the light source 11c, ultraviolet rays, near ultraviolet rays, visible rays, infrared rays, far infrared rays, electron beams, α rays, γ rays, X-rays, and the like can be used. And from a viewpoint of efficiency, ultraviolet rays or near ultraviolet rays are preferable.
 本発明の製造方法において、例えば、作製する物体の3次元CADデータをもとに、マテリアルジェット方式で積層して立体造形物を構成するモデル材用組成物のデータ、および、作製途上の立体造形物を支持するサポート材用組成物のデータを作製し、さらにマテリアルジェット方式の3Dプリンターで各組成物を吐出するスライスデータを作製し、作製したスライスデータに基づきモデル材用およびサポート材用の各組成物を吐出後、光硬化処理を層ごとに繰り返し、モデル材用組成物の硬化物(モデル材)およびサポート材用組成物の硬化物(サポート材)からなる光造形物を作製することができる。 In the manufacturing method of the present invention, for example, based on the three-dimensional CAD data of the object to be manufactured, the data of the composition for the model material that forms the three-dimensional structure by stacking by the material jet method, and the three-dimensional modeling in the process of preparation The data of the composition for the support material that supports the object is prepared, and further, the slice data for discharging each composition by the 3D printer of the material jet method is prepared, and each of the model material and the support material is used based on the prepared slice data. After discharging the composition, the photo-curing treatment is repeated for each layer to produce an optically shaped article composed of a cured product of the model material composition (model material) and a cured product of the composition for support material (support material). it can.
 立体造形物を構成する各層の厚みは、造形精度の観点からは薄いほうが好ましいが、造形速度とのバランスからは5~30μmが好ましい。 The thickness of each layer constituting the three-dimensional model is preferably thin from the viewpoint of modeling accuracy, but is preferably 5 to 30 μm from the balance with the modeling speed.
 得られた光造形物は、モデル材とサポート材とが組み合わされたものである。かかる光造形物からサポート材を除去してモデル材である光造形品を得る。サポート材の除去は、例えば、サポート材を溶解させる除去溶剤に得られた光造形物を浸漬し、サポート材を柔軟にした後、ブラシなどでモデル材表面からサポート材を除去して行うことが好ましい。サポート材の除去溶剤には水、水溶性溶剤、例えばグリコール系溶剤、アルコール系溶剤などを用いてもよい。これらは、単独で、あるいは複数用いてもよい。 The obtained stereolithography is a combination of a model material and a support material. The support material is removed from the stereolithography product to obtain a stereolithography product as a model material. The support material can be removed by, for example, immersing an optical modeling object obtained in a removal solvent that dissolves the support material, softening the support material, and then removing the support material from the model material surface with a brush or the like. preferable. Water or a water-soluble solvent such as a glycol solvent or an alcohol solvent may be used as the solvent for removing the support material. These may be used alone or in combination.
 上記光造形品は、水に接触した場合の吸水及び膨潤が抑制されており、微細構造部分の破損及び変形を起こしにくいものである。また、上記光造形品は撥水撥油性に優れ、汚染されにくいものである。 The above-mentioned stereolithography product has suppressed water absorption and swelling when contacted with water, and is less likely to cause breakage and deformation of the fine structure portion. Further, the stereolithographic product is excellent in water and oil repellency and hardly contaminated.
 以下、本実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, examples that more specifically disclose the present embodiment will be shown. In addition, this invention is not limited only to these Examples.
 <モデル材用組成物>
 (モデル材用組成物の製造)
 表1及び2に示す通り、各成分を、混合攪拌装置を用いて均一に混合し、実施例M1~M16及び比較例m1~m3のモデル材用組成物を製造した。
<Model material composition>
(Manufacture of compositions for model materials)
As shown in Tables 1 and 2, the components were mixed uniformly using a mixing and stirring device to produce compositions for model materials of Examples M1 to M16 and Comparative Examples m1 to m3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <サポート材用組成物>
 表3に、下記の実施例及び比較例において、サポート材用組成物に使用した成分をまとめた。
<Composition for support material>
Table 3 summarizes the components used in the support material composition in the following Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (実施例S1~S13)
 先ず、実施例S1~S13、比較例s1のサポート材組成物を次のようにして調製した。即ち、プラスチック製ビンに、表4に示す成分(a)~(f)を表4に示す配合量(単位:質量部)で計り取り、これらを混合することにより各サポート材組成物を調製した。 
(Examples S1 to S13)
First, the support material compositions of Examples S1 to S13 and Comparative Example s1 were prepared as follows. That is, each support material composition was prepared by measuring the components (a) to (f) shown in Table 4 at the blending amounts (unit: parts by mass) shown in Table 4 and mixing them in a plastic bottle. .
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 次に、上記実施例及び比較例のサポート材用組成物について、下記に示す方法によって、サポート材組成物の低温安定性、サポート材用組成物を硬化したサポート材硬化物の高温高湿条件安定性(サポート力)及び水除去性を評価した。 Next, with respect to the support material compositions of the above Examples and Comparative Examples, the support material composition was cooled at low temperatures and the support material cured product obtained by curing the support material composition was stable under high temperature and high humidity conditions by the following methods. The property (supporting power) and water removal property were evaluated.
 <サポート材用組成物の低温安定性>
 低温でのサポート材用組成物の安定性について評価した。各サポート材組成物をガラス瓶に入れ、そのサポート材用組成物入りガラス瓶を温度10℃に設定した恒温槽中で24時間保管した。その後、保管後のサポート材用組成物の状態を目視で確認して、下記基準でサポート材用組成物の低温安定性を評価した。
<Low temperature stability of support material composition>
The stability of the composition for the support material at low temperature was evaluated. Each support material composition was put in a glass bottle, and the glass bottle containing the support material composition was stored in a thermostatic bath set at a temperature of 10 ° C. for 24 hours. Then, the state of the composition for support material after storage was confirmed visually, and the low temperature stability of the composition for support material was evaluated according to the following criteria.
 サポート材用組成物が液体状を維持している場合:低温安定性A(優良)
 サポート材用組成物が一部凝固(固化)している場合:低温安定性B(良)
 サポート材用組成物が凝固(固化)している場合:低温安定性C(不良)
 <サポート材硬化物のサポート力>
 ガラス板上に、縦30mm、横30mm、厚さ5mmの額縁状のシリコンゴムにより枠を形成し、その枠の中に各サポート材組成物を流し込み、メタルハライドランプにより積算光量500mJ/cm2の紫外線を照射し、サポート材硬化物を作製した。続いて、上記硬化物をガラス製シャーレに入れ、その硬化物入りシャーレを温度40℃、相対湿度90%の恒温槽中に2時間放置した。その後、放置後の上記硬化物の状態を目視で確認して、下記基準でサポート材硬化物のサポート力を評価した。
When the composition for the support material is maintained in a liquid state: low temperature stability A (excellent)
When the support material composition is partially solidified (solidified): Low temperature stability B (good)
When the composition for the support material is solidified (solidified): low temperature stability C (poor)
<Supporting power of cured support material>
A frame is formed on a glass plate with a frame-shaped silicon rubber having a length of 30 mm, a width of 30 mm, and a thickness of 5 mm, each support material composition is poured into the frame, and an ultraviolet ray with an integrated light amount of 500 mJ / cm 2 is obtained by a metal halide lamp. Was irradiated to produce a cured support material. Subsequently, the cured product was placed in a glass petri dish, and the petri dish containing the cured product was left in a thermostatic bath at a temperature of 40 ° C. and a relative humidity of 90% for 2 hours. Thereafter, the state of the cured product after standing was visually confirmed, and the support force of the cured support material was evaluated according to the following criteria.
 硬化物の表面に液体状物質の発生がなく、硬化物の軟化も確認されない場合:サポート力A(優良)
 硬化物の表面に液体状物質がわずかに発生し、硬化物の軟化が若干確認された場合:サポート力B(良)
 硬化物の表面に液体状物質が発生し、硬化物の軟化が確認された場合:サポート力C(不良)
 <サポート材硬化物の水除去性>
 上記サポート材硬化物のサポート力の評価の場合と同様にして、サポート材硬化物を作製した。次に、上記硬化物を、50mLのイオン交換水を満たしたビーカーに入れ、水温を25℃に維持しながら超音波洗浄機で処理し、上記硬化物が溶解するまでの時間を測定し、下記基準でサポート材硬化物の水除去性を評価した。
When there is no generation of liquid substances on the surface of the cured product and no softening of the cured product is confirmed: Support strength A (excellent)
When a slight amount of liquid material is generated on the surface of the cured product and softening of the cured product is confirmed slightly: Support strength B (good)
When a liquid substance is generated on the surface of the cured product and softening of the cured product is confirmed: Support force C (defect)
<Water removability of the cured support material>
A cured support material was produced in the same manner as in the evaluation of the support force of the cured support material. Next, the cured product is placed in a beaker filled with 50 mL of ion exchange water, treated with an ultrasonic cleaner while maintaining the water temperature at 25 ° C., and the time until the cured product is dissolved is measured. The water removal property of the support material cured product was evaluated based on the standard.
 硬化物が完全に溶解するまでの時間が1時間未満であった:水除去性A(優良)
 硬化物が完全に溶解するまでの時間が1時間以上2時間未満であった:水除去性B(良)
 硬化物が完全に溶解するまでの時間が2時間以上であった:水除去性C(不良)
 以上の結果を表5に示す。
The time until the cured product completely dissolved was less than 1 hour: water removability A (excellent)
The time until the cured product was completely dissolved was 1 hour or more and less than 2 hours: Water removability B (good)
The time until the cured product was completely dissolved was 2 hours or more: water removability C (poor)
The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例S1~S13のサポート材組成物は、全ての評価項目で満足できる結果を得たことが分かる。 It can be seen that the support material compositions of Examples S1 to S13 obtained satisfactory results for all evaluation items.
 <光造形品>
 <マテリアルジェット光造形用組成物セット(インクセット)>
 表6に示す通りに上記モデル材用組成物及びサポート材用組成物を組み合わせることにより、実施例1~4及び比較例1~3を調製した。
<Optical modeling products>
<Composition set for material jet stereolithography (ink set)>
Examples 1 to 4 and Comparative Examples 1 to 3 were prepared by combining the composition for model material and the composition for support material as shown in Table 6.
 ガラス板(商品名「GLASS PLATE」、アズワン社製、200mm×200mm×厚さ5mm)の上面四辺に厚さ1mmのスペーサーを配し、10cm×10cmの正方形に仕切った。該正方形内にサポート材用組成物を注型した後、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cmとなるように紫外線を照射して硬化させ、サポート材を得た。 A spacer having a thickness of 1 mm was arranged on the four upper surfaces of a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm × 200 mm × thickness 5 mm), and was partitioned into 10 cm × 10 cm squares. After casting the composition for the support material in the square, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) is used as the irradiation means, and ultraviolet rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a support material.
 次に、上記サポート材の上面四辺に厚さ1mmのスペーサーを配し、10cm×10cmの正方形に仕切った。該正方形内にモデル材用組成物を注型した後、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cmとなるように紫外線を照射して硬化させ、モデル材を得た。
(密着性の評価)
 この状態で30℃の恒温槽に12時間放置し、モデル材とサポート材との密着性の様子を目視にて確認し、下記の基準において評価した。結果を表6に示す。
○:モデル材とサポート材とは密着していた。
×:モデル材とサポート材との界面で剥がれが生じ、モデル材の硬化収縮でモデル材が反るように剥がれた。
Next, spacers having a thickness of 1 mm were arranged on the four sides of the upper surface of the support material and partitioned into squares of 10 cm × 10 cm. After casting the composition for the model material in the square, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) is used as the irradiation means, and ultraviolet rays are irradiated so that the total irradiation light amount becomes 500 mJ / cm 2. And cured to obtain a model material.
(Evaluation of adhesion)
In this state, it was left in a thermostatic bath at 30 ° C. for 12 hours, the state of adhesion between the model material and the support material was visually confirmed, and evaluated according to the following criteria. The results are shown in Table 6.
○: The model material and the support material were in close contact.
X: Peeling occurred at the interface between the model material and the support material, and the model material was peeled off so as to be warped by the curing shrinkage of the model material.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6の結果から分かるように、モデル材用組成物およびサポート材用組成物の両方が本発明の要件を満たす実施例1~4は、モデル材とサポート材との界面に剥がれが生じず、モデル材とサポート材とがより密着していた。このように、モデル材とサポート材とが密着していれば、寸法精度が良好な光造形品が得られる。 As can be seen from the results in Table 6, in Examples 1 to 4 in which both the composition for the model material and the composition for the support material satisfy the requirements of the present invention, the interface between the model material and the support material does not peel, Model material and support material were more closely attached. Thus, if the model material and the support material are in close contact with each other, an optically shaped product with good dimensional accuracy can be obtained.
 一方、モデル材用組成物およびサポート材用組成物の一方又は両方が本発明の要件を満たしていない比較例1~3は、モデル材とサポート材との界面で剥がれが生じた。このように、モデル材とサポート材との密着性が悪いと、光造形品の寸法精度が悪化する。 On the other hand, in Comparative Examples 1 to 3 in which one or both of the model material composition and the support material composition did not satisfy the requirements of the present invention, peeling occurred at the interface between the model material and the support material. As described above, when the adhesion between the model material and the support material is poor, the dimensional accuracy of the stereolithography product deteriorates.
 本発明の光造形用インクセットは、インクジェット光造形法を用いて、寸法精度が良好な光造形品を製造する際に好適に用いることができる。 The ink set for optical modeling according to the present invention can be suitably used when an optical modeling product with good dimensional accuracy is manufactured using an inkjet optical modeling method.
 10 三次元造形装置
 11 インクジェットヘッドモジュール
 11a 光造形用インクユニット
 11aM モデル材用インクジェットヘッド
 11aS サポート材用インクジェットヘッド
 11b ローラー
 11c 光源
 12 造形テーブル
 13 モデル材用組成物
 13M モデル材前駆体
 13PM モデル材
 14 サポート材用組成物
 14S サポート材前駆体
 14PS サポート材
 15 エネルギー線
 16 光造形品前駆体(光造形物)
 17 光造形品
DESCRIPTION OF SYMBOLS 10 3D modeling apparatus 11 Inkjet head module 11a Optical modeling ink unit 11aM Model material inkjet head 11aS Support material inkjet head 11b Roller 11c Light source 12 Modeling table 13 Model material composition 13M Model material precursor 13PM Model material 14 Support Material composition 14S Support material precursor 14PS Support material 15 Energy beam 16 Stereolithography product precursor (Optical fabrication product)
17 Stereolithography

Claims (12)

  1.  インクジェット光造形法に用いられ、かつ、モデル材を造形するために使用されるモデル材用組成物と、サポート材を造形するために使用されるサポート材用組成物とを組み合わせてなる光造形用インクセットであって、
     前記モデル材用組成物は、
     重合体のガラス転移温度が20℃以上120℃以下のエチレン性不飽和単量体(A)と、
     重合体のガラス転移温度が-65℃以上20℃未満のエチレン性不飽和単量体(B)と、
     重量平均分子量が800以上10,000以下の2官能アクリレートオリゴマー(C)と、
     光重合性開始剤(D)と、
    を含有し、かつ、
     2官能以上のアクリレート化合物の含有量が、前記モデル材用組成物全体100質量部に対して、15質量部以下であり、
     前記サポート材用組成物は、該サポート材用組成物全体100質量部に対して、
     19~80質量部の水溶性単官能エチレン性不飽和単量体(a)と
     15~75質量部のオキシブチレン基を含むポリアルキレングリコール(b)とを含有し、前記オキシブチレン基を含むポリアルキレングリコール(b)の分子量が300~3000である、光造形用インクセット。
    For optical modeling, which is a combination of a composition for a model material that is used in an inkjet optical modeling method and is used for modeling a model material, and a composition for a support material that is used to model a support material An ink set,
    The model material composition is:
    An ethylenically unsaturated monomer (A) having a glass transition temperature of 20 ° C. or higher and 120 ° C. or lower of the polymer;
    An ethylenically unsaturated monomer (B) having a glass transition temperature of −65 ° C. or higher and lower than 20 ° C. of the polymer;
    A bifunctional acrylate oligomer (C) having a weight average molecular weight of 800 or more and 10,000 or less;
    A photopolymerizable initiator (D);
    Containing, and
    The content of the bifunctional or higher acrylate compound is 15 parts by mass or less with respect to 100 parts by mass of the entire model material composition,
    The support material composition is based on 100 parts by mass of the support material composition as a whole.
    19 to 80 parts by weight of a water-soluble monofunctional ethylenically unsaturated monomer (a) and 15 to 75 parts by weight of a polyalkylene glycol (b) containing an oxybutylene group, An optical modeling ink set in which the molecular weight of the alkylene glycol (b) is 300 to 3000.
  2.  前記モデル材用組成物の前記エチレン性不飽和単量体(A)が、単官能エチレン性不飽和単量体である、請求項1に記載の光造形用インクセット。 The optical modeling ink set according to claim 1, wherein the ethylenically unsaturated monomer (A) of the model material composition is a monofunctional ethylenically unsaturated monomer.
  3.  前記モデル材用組成物の前記エチレン性不飽和単量体(B)が、単官能エチレン性不飽和単量体である、請求項1または2に記載の光造形用インクセット。 The ink set for stereolithography according to claim 1 or 2, wherein the ethylenically unsaturated monomer (B) of the composition for model material is a monofunctional ethylenically unsaturated monomer.
  4.  前記モデル材用組成物の前記2官能アクリレートオリゴマー(C)の25℃におけるヤング率が、1~100MPaである、請求項1~3のいずれかに記載の光造形用インクセット。 4. The optical modeling ink set according to claim 1, wherein the bifunctional acrylate oligomer (C) of the model material composition has a Young's modulus at 25 ° C. of 1 to 100 MPa.
  5.  前記モデル材用組成物の前記2官能アクリレートオリゴマー(C)の含有量が、該モデル材用組成物全体100質量部に対して、1~15質量部である、請求項1~4のいずれかに記載の光造形用インクセット。 The content of the bifunctional acrylate oligomer (C) in the model material composition is 1 to 15 parts by mass with respect to 100 parts by mass of the model material composition as a whole. The ink set for stereolithography described in 1.
  6.  前記モデル材用組成物の前記エチレン性不飽和単量体(A)が、イソボルニルアクリレート、t-ブチルシクロヘキシルアクリレート、3,3,5-トリメチルシクロヘキシルアクリレート、及び、ジシクロペンタニルアクリレートから選択される1種以上である、請求項1~5のいずれかに記載の光造形用インクセット。 The ethylenically unsaturated monomer (A) of the model material composition is selected from isobornyl acrylate, t-butylcyclohexyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, and dicyclopentanyl acrylate The ink set for stereolithography according to any one of claims 1 to 5, wherein the ink set is one or more selected from the above.
  7.  前記モデル材用組成物の前記エチレン性不飽和単量体(B)が、フェノキシエチルアクリレート、n-ステアリルアクリレート、イソデシルアクリレート、エトキシエトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、n-ラウリルアクリレート、n-オクチルアクリレート、n-デシルアクリレート、イソオクチルアクリレート、n-トリデシルアクリレート、及び、アクリル酸2-(N-ブチルカルバモイルオキシ)エチルから選択される1種以上である、請求項1~6のいずれかに記載の光造形用インクセット。 The ethylenically unsaturated monomer (B) of the model material composition is phenoxyethyl acrylate, n-stearyl acrylate, isodecyl acrylate, ethoxyethoxyethyl acrylate, tetrahydrofurfuryl acrylate, n-lauryl acrylate, n- 7. One or more selected from octyl acrylate, n-decyl acrylate, isooctyl acrylate, n-tridecyl acrylate, and 2- (N-butylcarbamoyloxy) ethyl acrylate The ink set for stereolithography described in 1.
  8.  前記モデル材用組成物に含まれる光重合性化合物が、アシルフォスフィンオキサイド系光重合性開始剤である、請求項1~7のいずれかに記載の光造形用インクセット。 The optical modeling ink set according to any one of claims 1 to 7, wherein the photopolymerizable compound contained in the model material composition is an acylphosphine oxide photopolymerization initiator.
  9.  前記サポート材用組成物が、1~20質量部の光重合開始剤(d)を含有する、請求項1~8のいずれかに記載の光造形用インクセット。 9. The optical modeling ink set according to claim 1, wherein the support material composition contains 1 to 20 parts by mass of a photopolymerization initiator (d).
  10.  前記サポート材用組成物が、更に水溶性有機溶剤を含有し、 前記水溶性有機溶剤の含有量が、前記サポート材用組成物の全質量100質量部に対して、30質量部以下である、請求項1~9のいずれかに記載の光造形用インクセット。 The composition for support material further contains a water-soluble organic solvent, and the content of the water-soluble organic solvent is 30 parts by mass or less with respect to 100 parts by mass of the total mass of the composition for support material. The optical modeling ink set according to any one of claims 1 to 9.
  11.  前記サポート材用組成物が、更に表面調整剤を含有し、
     前記表面調整剤の含有量が、前記サポート材用組成物の全質量100質量部に対して、0.005質量部以上3.0質量部以下である、請求項1~10のいずれかに記載の光造形用インクセット。
    The support material composition further contains a surface conditioner,
    The content of the surface conditioner is 0.005 parts by mass or more and 3.0 parts by mass or less with respect to 100 parts by mass of the total mass of the support material composition. Ink set for optical modeling.
  12.  マテリアルジェット光造形法により、請求項1~11のいずれかに記載の光造形用インクセットを用いて光造形品を製造する方法であって、
     前記モデル材用組成物を光硬化させることによりモデル材を得るとともに、前記サポート材用組成物を紫外線LEDを用いて、光硬化させることによりサポート材を得る工程(I)と、
     前記サポート材を除去する工程(II)と、
     を有する、光造形品の製造方法。
    A method for producing a stereolithography product by using the ink jet for stereolithography according to any one of claims 1 to 11, by a material jet stereolithography method,
    Step (I) of obtaining a model material by photocuring the composition for model material, and obtaining a support material by photocuring the composition for support material using an ultraviolet LED;
    Removing the support material (II);
    A method for manufacturing an optically shaped article.
PCT/JP2019/010947 2018-05-28 2019-03-15 Photo-fabrication ink set, and production method for photo-fabricated article WO2019230135A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018101888A JP2021130198A (en) 2018-05-28 2018-05-28 Ink set for photo-molding and method of producing photo-molded article
JP2018-101888 2018-05-28

Publications (1)

Publication Number Publication Date
WO2019230135A1 true WO2019230135A1 (en) 2019-12-05

Family

ID=68696913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010947 WO2019230135A1 (en) 2018-05-28 2019-03-15 Photo-fabrication ink set, and production method for photo-fabricated article

Country Status (2)

Country Link
JP (1) JP2021130198A (en)
WO (1) WO2019230135A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098636A1 (en) * 2014-12-16 2016-06-23 富士フイルム株式会社 Actinic-ray-curable inkjet ink composition for 3d printing, three-dimensional modeling method, and actinic-ray-curable inkjet ink set for 3d printing
WO2016121587A1 (en) * 2015-01-26 2016-08-04 Kjケミカルズ株式会社 Active energy ray-curable resin composition for three-dimensional model supporting material
JP2018058974A (en) * 2016-10-04 2018-04-12 共栄社化学株式会社 Active ray-curable resin composition
WO2018101343A1 (en) * 2016-11-29 2018-06-07 マクセルホールディングス株式会社 Support material composition and photo fabrication ink set

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098636A1 (en) * 2014-12-16 2016-06-23 富士フイルム株式会社 Actinic-ray-curable inkjet ink composition for 3d printing, three-dimensional modeling method, and actinic-ray-curable inkjet ink set for 3d printing
WO2016121587A1 (en) * 2015-01-26 2016-08-04 Kjケミカルズ株式会社 Active energy ray-curable resin composition for three-dimensional model supporting material
JP2018058974A (en) * 2016-10-04 2018-04-12 共栄社化学株式会社 Active ray-curable resin composition
WO2018101343A1 (en) * 2016-11-29 2018-06-07 マクセルホールディングス株式会社 Support material composition and photo fabrication ink set

Also Published As

Publication number Publication date
JP2021130198A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
EP3235630B1 (en) Actinic-ray-curable inkjet ink composition for 3d printing, three-dimensional modeling method, and actinic-ray-curable inkjet ink set for 3d printing
JP6475328B2 (en) Actinic ray curable inkjet ink set for 3D printing, 3D printing method, and 3D printing system
JP6571297B2 (en) Optical modeling ink set, optical modeling product, and manufacturing method of optical modeling product
CN111093949B (en) Composition for mold material
EP3578338B1 (en) Model material ink set, support material composition, ink set, three-dimensional shaped object, and method for manufacturing three-dimensional shaped object
US11713366B2 (en) Resin composition for model material and method for manufacturing optically shaped article
WO2019176139A1 (en) Model material composition and photo fabrication composition set
JP7186508B2 (en) Composition for model material
WO2019230135A1 (en) Photo-fabrication ink set, and production method for photo-fabricated article
JP6941654B2 (en) Composition for model material
JP6941655B2 (en) Composition for model material
WO2019230132A1 (en) Photo-fabrication composition set
JP7086654B2 (en) Composition for model material and composition set for stereolithography containing it
WO2019230134A1 (en) Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article
JP2019155801A (en) Composition for model material, and composition set for material jetting optical shaping
WO2019230136A1 (en) Photo-fabrication ink set
WO2019230133A1 (en) Photo-fabrication composition set
JP2019206111A (en) Photo-fabrication ink set, photo-fabricated article, and production method for photo-fabricated article
US20230174806A1 (en) Model material clear composition, model material composition set, and composition set for optical shaping
US20220281157A1 (en) Photo fabrication resin composition, model material composition, and photo-cured product thereof, and photo fabrication composition set

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP