WO2019229916A1 - Status monitoring device, status monitoring method, and status monitoring program - Google Patents

Status monitoring device, status monitoring method, and status monitoring program Download PDF

Info

Publication number
WO2019229916A1
WO2019229916A1 PCT/JP2018/020886 JP2018020886W WO2019229916A1 WO 2019229916 A1 WO2019229916 A1 WO 2019229916A1 JP 2018020886 W JP2018020886 W JP 2018020886W WO 2019229916 A1 WO2019229916 A1 WO 2019229916A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
information
component
event
model
Prior art date
Application number
PCT/JP2018/020886
Other languages
French (fr)
Japanese (ja)
Inventor
昭宏 馬場
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/020886 priority Critical patent/WO2019229916A1/en
Publication of WO2019229916A1 publication Critical patent/WO2019229916A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a state monitoring device, a state monitoring method, and a state monitoring program.
  • the communication unit of the image generation apparatus receives the operation information of the components in the facility.
  • the storage unit of the image generation device associates image data in which display symbols representing constituent elements and display hierarchies are associated with each other, and upper display symbols associated with upper display hierarchies are associated with lower display hierarchies.
  • the lower display symbols are stored so as to be aggregated.
  • the control unit of the image generation device reads the image data of the designated display hierarchy from the storage unit, and based on the read image data and the operation information of the component received by the communication unit, the display symbol and the operation A display image associated with information is generated.
  • the first cause is that a set of components having a hierarchical structure must be individually added or deleted.
  • the second cause is that the same combination of conditions appearing at a plurality of locations must be individually defined.
  • the third cause is that a combination of sensor values and conditions of components must be defined for each display mode.
  • the object of the present invention is to facilitate the correction on the monitoring side accompanying the change of the component to be monitored existing in the system.
  • a state monitoring apparatus Corresponding to a plurality of conditional expression information defining a formula for calculating a true / false value using a sensor value and each of the multiple conditional expression information, each of the expressions defined in the corresponding conditional expression information Multiple event information that represents an event determined to have occurred when the calculated value is true, and is set for each component included in the monitored system, each corresponding to at least one of the multiple event information And a structural model storage unit that stores a structural model including a plurality of pieces of component information that defines a condition for determining the state of the component based on whether or not an event represented by the corresponding event information has occurred, A sensor value at a certain time is acquired, and the state of the component is determined for each component included in the system according to the acquired sensor value and the structural model stored in the structural model storage unit, and the time and A state model creating unit that creates a state model representing the determined state.
  • a plurality of pieces of conditional expression information, a plurality of pieces of event information corresponding to each of the plurality of pieces of conditional expression information, and a plurality of pieces of conditional expression information are set for each component included in the monitored system.
  • the state of the constituent element at an arbitrary time is determined according to a structural model including a plurality of constituent element information corresponding to at least one of the event information. Therefore, it is possible to cope with changes in the constituent elements simply by editing the information included in the structural model or the corresponding relationship. That is, according to the present invention, it is easy to modify the monitoring side in accordance with the change of the monitoring target component existing in the system.
  • FIG. 1 is a block diagram showing a configuration of a state monitoring device according to Embodiment 1.
  • FIG. 3 is a diagram illustrating an example of a structural model according to the first embodiment.
  • Legend of FIG. 5 is a flowchart showing an operation of the state monitoring apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a state model according to the first embodiment.
  • Legend of FIG. FIG. 6 is a diagram illustrating an example of a structural model according to Embodiment 2.
  • 6 is a flowchart showing the operation of the state monitoring apparatus according to the second embodiment.
  • 6 is a flowchart showing the operation of the state monitoring apparatus according to the second embodiment.
  • 6 is a flowchart showing the operation of the state monitoring apparatus according to the second embodiment.
  • FIG. 6 is a diagram illustrating an example of a state model according to the second embodiment.
  • FIG. 4 is a block diagram showing a configuration of a state monitoring device according to a third embodiment.
  • FIG. 10 is a diagram illustrating an example of a structural model according to Embodiment 3; 10 is a flowchart showing the operation of the state monitoring apparatus according to the third embodiment. 10 is a flowchart showing the operation of the state monitoring apparatus according to the third embodiment.
  • FIG. 6 shows an example of a display model according to Embodiment 3.
  • FIG. 6 shows an example of a display model according to Embodiment 3.
  • FIG. 6 shows an example of a display model according to Embodiment 3.
  • FIG. 6 shows an example of a display model according to Embodiment 3.
  • FIG. 10 is a diagram illustrating an example of a structural model according to Embodiment 3;
  • FIG. 6 shows an example of a display model according to Embodiment 3.
  • Embodiment 1 FIG. This embodiment will be described with reference to FIGS.
  • the state monitoring device 10 is a computer.
  • the state monitoring apparatus 10 includes a processor 11 and other hardware such as a memory 12, a storage 13, and a communication interface 14.
  • the processor 11 is connected to other hardware via a signal line, and controls these other hardware.
  • the state monitoring device 10 includes a structural model storage unit 41, an input unit 42, a state model creation unit 43, a control unit 44, and a display unit 45 as functional elements.
  • the function of the structural model storage unit 41 is realized by the storage 13.
  • the functions of the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 are realized by software.
  • the functions of the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 are realized by a state monitoring program.
  • the state monitoring program is a program that causes the computer to execute the processing performed by the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 as input processing, state model creation processing, control processing, and display processing, respectively.
  • the state monitoring program may be provided by being recorded on a computer-readable medium, may be provided by being stored in a recording medium, or may be provided as a program product.
  • the processor 11 is a device that executes a state monitoring program.
  • the processor 11 is, for example, a CPU, a GPU, or a combination thereof.
  • CPU is an abbreviation for Central Processing Unit.
  • GPU is an abbreviation for Graphics Processing Unit.
  • the memory 12 and the storage 13 are devices for storing a state monitoring program.
  • the memory 12 is, for example, a RAM, a flash memory, or a combination thereof.
  • RAM is an abbreviation for Random Access Memory.
  • the RAM is, for example, SRAM or DRAM.
  • SRAM is an abbreviation for Static Random Access Memory.
  • DRAM is an abbreviation for Dynamic Random Access Memory.
  • the storage 13 is, for example, an HDD, an SSD, or a combination thereof.
  • “HDD” is an abbreviation for Hard Disk Drive.
  • SSD is an abbreviation for Solid State Drive.
  • the storage 13 may be a portable storage medium such as an SD (registered trademark) memory card, a CF, a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, or a DVD.
  • SD is an abbreviation for Secure Digital.
  • CF is an abbreviation for CompactFlash (registered trademark).
  • DVD is an abbreviation for Digital Versatile Disc.
  • the communication interface 14 is an interface for communicating with an external device such as the component 20 and the display device 30 included in the monitored system.
  • the communication interface 14 is an interface for receiving data input to the state monitoring program and transmitting data output from the state monitoring program.
  • the communication interface 14 is, for example, an Ethernet (registered trademark), USB, or HDMI (registered trademark) port.
  • USB is an abbreviation for Universal Serial Bus.
  • HDMI is an abbreviation for High-Definition Multimedia Interface.
  • the state monitoring program is loaded from the storage 13 to the memory 12, read into the processor 11, and executed by the processor 11.
  • the storage 13 stores not only the state monitoring program but also the OS. “OS” is an abbreviation for Operating System.
  • the processor 11 executes the state monitoring program while executing the OS. A part or all of the state monitoring program may be incorporated in the OS.
  • the state monitoring device 10 may include a plurality of processors that replace the processor 11.
  • the plurality of processors share the execution of the state monitoring program.
  • Each processor is, for example, a CPU, a GPU, or a combination thereof.
  • Data, information, signal values, and variable values used, processed, or output by the state monitoring program are stored in the memory 12, the storage 13, or a register or cache memory in the processor 11.
  • the state monitoring device 10 may be composed of a single computer or a plurality of computers.
  • the functions of the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 may be distributed and realized in each computer.
  • the component 20 is an object that exists in the system and is monitored using the state monitoring device 10.
  • the component 20 is, for example, equipment such as a pump and a valve of a water purification plant, parts such as a stator and a rotor of a generator, or a train on a route.
  • the display device 30 is a device that displays data transmitted from the state monitoring device 10.
  • the display device 30 is, for example, an LCD.
  • LCD is an abbreviation for Liquid Crystal Display.
  • the structural model 51 stored in the structural model storage unit 41 will be described with reference to FIGS.
  • the structural model 51 includes sensor information, conditional expression information, event information, and component information.
  • the sensor information is information necessary for acquiring a sensor value.
  • the conditional expression information is information defining an expression for calculating a true / false value using one or more sensor values.
  • the event information is information representing an event that has the corresponding conditional expression information and is determined to have occurred when the condition represented by the corresponding conditional expression information becomes true.
  • the component information represents the component 20 to be monitored, event information of one or more events that can occur in the component 20 to be monitored, and sensors of one or more sensors related to the component 20 to be monitored. Information having a conditional expression for determining the state of the component 20 to be monitored based on whether or not an event represented by the corresponding event information has occurred.
  • FIG. 2 is a schematic diagram showing an example of a structural model 51 in which a generator is monitored.
  • the generator has a “stator” and a “rotor” as components 20.
  • the component “stator” has “temperature” and “discharge amount” as sensors. In the component “stator”, events of “temperature abnormality” and “large discharge amount” occur. The component “stator” is normal when the event “temperature abnormality” does not occur and the event “large discharge amount” does not occur.
  • the event “temperature abnormality” is defined by a conditional expression that is true when the value obtained by the sensor “temperature” is greater than 300.
  • the event “large discharge amount” is defined by a conditional expression that is true when the value obtained by the sensor “discharge amount” is larger than 4.
  • the component “rotor” has “vibration” as a sensor.
  • an event of “large vibration” occurs.
  • the component “rotor” is normal when the event “large vibration” does not occur.
  • the event “large vibration” is defined by a conditional expression that is true when the value obtained by the sensor “vibration” is greater than 130.
  • the structural model 51 stored in the structural model storage unit 41 includes a plurality of pieces of conditional expression information, a plurality of pieces of event information, and a plurality of pieces of component element information.
  • the multiple conditional expression information is information that defines an expression for calculating a true / false value using a sensor value.
  • conditional expression information that defines an expression “temperature> 300” using a temperature sensor value, and conditional expression information that defines an expression “discharge amount> 4” using a temperature sensor value; And conditional expression information that defines an expression “vibration> 130” using the sensor value of vibration.
  • the multiple event information corresponds to any of the multiple conditional expression information, and represents the event that is judged to have occurred when the calculated value of the expression defined in the corresponding conditional expression information is true It is.
  • event information indicating an event of “temperature abnormality” that is determined to occur when “temperature> 300” is true, and event information that is generated when “discharge amount> 4” is true.
  • Event information representing an event of “large discharge amount” and event information representing an event of “vibration large” judged to have occurred when “vibration> 130” is true.
  • Plural pieces of constituent element information are set for each constituent element 20 included in the monitored system, each corresponding to at least one of the plural pieces of event information, and whether or not an event represented in the corresponding event information has occurred
  • the structural model 51 includes a plurality of pieces of sensor information.
  • the plurality of pieces of conditional expression information is information that defines one or more pieces of sensor information and defines an expression for calculating a true / false value using a sensor value obtained based on the corresponding sensor information.
  • the plurality of pieces of sensor information are information for obtaining sensor values for at least one of the constituent elements 20 included in the system.
  • sensor information for obtaining a sensor value for the temperature of the stator included in the generator sensor information for obtaining a sensor value for the discharge amount of the stator, and a rotor included in the generator.
  • Sensor information for obtaining the sensor value of the vibration is information for obtaining the sensor value of the vibration.
  • the input unit 42 acquires in the state monitoring device 10 a sensor value that is a value at a specific time of an attribute related to the component 20 to be monitored.
  • the sensor value is, for example, a valve opening or a stator temperature.
  • these sensor values are values measured in real time by a sensor physically attached to the component 20 to be monitored, but the values measured by human eyes are stored electronically in a database. You may have done.
  • the input unit 42 is, for example, a JDBC (registered trademark) API.
  • JDBC is an abbreviation for Java (registered trademark) Database Connectivity.
  • API is an abbreviation for Application Programming Interface.
  • the state model creation unit 43 acquires sensor values using the input unit 42 according to the structure model 51, and logically represents the state of the system determined by the occurrence of an event in the monitoring target component 20 at a specific time.
  • a state model 52 is created.
  • the display unit 45 records the state of the system in data that can be displayed by the display device 30.
  • the data that can be displayed is, for example, data that represents the state of each component 20 of the system as a character string such as “normal” or “abnormal”.
  • the control unit 44 controls the operation of the entire state monitoring device 10 using the state model creation unit 43 and the display unit 45.
  • step S100 the state model creation unit 43 starts creating the state model 52.
  • step S ⁇ b> 101 the state model creation unit 43 determines whether the states of all the components of the structural model 51 have been determined.
  • step S101 is NO
  • the state model creation unit 43 selects one component 20 from the structural model 51 in step S102.
  • the method of selecting the component 20 in step S102 is arbitrary.
  • the names of the components 20 are in dictionary order.
  • step S103 the state model creation unit 43 determines whether all sensor values of the component 20 have been acquired for the component 20 selected in step S102.
  • step S104 the state model creation unit 43 selects one sensor.
  • the method for selecting the sensor in step S104 is arbitrary, and as an example, the sensor name is in dictionary order.
  • step S105 the state model creation unit 43 acquires the sensor value and returns to step S103.
  • step S103 the state model creation unit 43 determines whether the states of all the events of the component 20 have been determined.
  • step S106 NO, in step S107, the state model creation unit 43 selects one event.
  • the method of selecting an event in step S107 is arbitrary, and as an example, the event name is in dictionary order.
  • step S108 the state model creation unit 43 determines the state of the event by evaluating the event conditional expression for the event selected in step S107, and returns to step S106.
  • step S109 the state model creation unit 43 determines the state of the component 20 by evaluating the conditional expression of the component 20, and returns to step S101.
  • step S110 the state model creation unit 43 ends the creation of the state model 52.
  • the state model 52 created by the state model creation unit 43 will be described with reference to FIGS.
  • FIG. 5 shows the state model 52 at the time “2018/03/28 17:00” created according to the structural model 51 shown in FIG.
  • the value of the sensor “temperature” of the component “stator” is 308, and the value of the sensor “discharge amount” is 0.3.
  • the event “abnormal temperature” occurs, and the event “large discharge amount” does not occur. Therefore, the component “stator” is abnormal.
  • the value of the sensor “vibration” of the component “rotor” is 61.
  • the event “large vibration” does not occur. Therefore, the component “rotor” is normal.
  • the state model 52 is described in the JSON format, but may be described in a format other than JSON, such as XML, or may be stored in a database.
  • JSON is an abbreviation for JavaScript (registered trademark) Object Notation.
  • XML is an abbreviation for Extensible Markup Language.
  • the state model creation unit 43 acquires a sensor value at a certain time, and in accordance with the acquired sensor value and the structural model 51 stored in the structural model storage unit 41, For each component 20 included in the system, the state of the component 20 is determined and a state model 52 is created.
  • the state model 52 represents, for each component 20, the time, the state determined by the state model creation unit 43, and the occurrence of an event represented in the event information corresponding to the component information of the component 20. It is a model. Note that whether or not an event has occurred may be omitted.
  • a plurality of pieces of conditional expression information, a plurality of pieces of event information corresponding to any of the plurality of pieces of conditional expression information, respectively, are set for each component 20 included in the monitored system,
  • the state of the component 20 at an arbitrary time is determined according to the structure model 51 including a plurality of pieces of component information corresponding to at least one of the plurality of pieces of event information. Therefore, it is possible to cope with a change in the component 20 only by editing the information included in the structural model 51 or the corresponding relationship. That is, according to the present embodiment, correction on the monitoring side accompanying change of the monitoring target component 20 existing in the system is easy.
  • the structural model 51 has event information representing an event that has a corresponding conditional expression and that is determined to occur when the condition represented by the corresponding conditional expression becomes true. . Therefore, once a combination of conditional expressions is defined, it can be reused at a plurality of locations in the structural model 51, and it becomes easy to construct a new state monitoring device 10 and to correct the state monitoring device 10 due to a change in the system to be monitored.
  • the functions of the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 are realized by software.
  • the input unit 42, the state model creation unit 43, and the control unit 44 are used.
  • the function of the display unit 45 may be realized by a combination of software and hardware. That is, some of the functions of the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 may be realized by dedicated hardware, and the rest may be realized by software.
  • the dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an FPGA, an ASIC, or some or all of these.
  • IC is an abbreviation for Integrated Circuit.
  • GA is an abbreviation for Gate Array.
  • FPGA is an abbreviation for Field-Programmable Gate Array.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • Both the processor 11 and the dedicated hardware are processing circuits. That is, regardless of whether the functions of the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 are realized by software or a combination of software and hardware, the input unit 42, the state Operations of the model creation unit 43, the control unit 44, and the display unit 45 are performed by a processing circuit.
  • the functions of the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 may be realized using calculation resources provided via a network such as a cloud.
  • Embodiment 2 FIG. In the present embodiment, differences from the first embodiment will be mainly described with reference to FIGS.
  • a state model 52 is created using a structure model 51 composed of sensor information, conditional expression information, event information, and component information, and sensor values.
  • event information and component element information have a hierarchical structure.
  • the structural model 51 stored in the structural model storage unit 41 will be described with reference to FIG.
  • the point that the structural model 51 is composed of sensor information, conditional expression information, event information, and component information is the same as in the first embodiment, but the following two points are different from the first embodiment.
  • the first point is that the event information has zero or more event information as a child in addition to the event information in the first embodiment, that is, the event information has a hierarchical structure.
  • the second point is that the constituent element information has zero or more constituent element information as a child in addition to the constituent element information in the first embodiment, that is, the constituent element information has a hierarchical structure.
  • FIG. 7 is a schematic diagram showing an example of a structural model 51 in which a generator is monitored.
  • the component “generator” has a “stator” and a “rotor” as child components.
  • the component “generator” is normal when the “stator” is normal and the “rotor” is normal.
  • the component “stator” has “temperature rise” as a sensor in addition to “temperature” and “discharge amount”. In the component “stator”, events of “temperature abnormality” and “large discharge amount” occur. The component “stator” is normal when the event “temperature abnormality” does not occur and the event “large discharge amount” does not occur.
  • the event “temperature abnormality” has “high temperature” and “high temperature rise” as child events.
  • the event “high temperature” is defined by a conditional expression that is true when the value obtained by the sensor “temperature” is greater than 300.
  • the event “high temperature rise” is defined by a conditional expression that is true when the value obtained by the sensor “temperature rise” is greater than 10.
  • the event “large discharge amount” is defined by a conditional expression that is true when the value obtained by the sensor “discharge amount” is larger than 4.
  • the component “rotor” is the same as the example in FIG.
  • a plurality of pieces of component element information included in the structural model 51 stored in the structural model storage unit 41 has a hierarchical structure.
  • the component information of a parent component having a child component is information that defines a condition for determining the state of the parent component based on the state of the child component.
  • the generator is determined to be normal when the stator is normal and the rotor is normal based on the component information of the generator including the stator and the rotor. .
  • a plurality of pieces of event information included in the structural model 51 stored in the structural model storage unit 41 has a hierarchical structure.
  • the event information of a parent event having a child event is information that defines a condition for determining whether or not the parent event has occurred depending on whether or not the child event has occurred.
  • event information indicating an event of “temperature abnormality” that is determined not to occur when “temperature high” does not occur and “temperature increase” does not occur.
  • step S200 to step S204 is the main process.
  • step S200 the state model creation unit 43 starts creating the state model 52.
  • step S ⁇ b> 201 the state model creation unit 43 determines whether or not the state of all the highest levels of the structural model 51, i.e., the components 20 having no parent have been determined.
  • step S201 NO
  • step S202 the state model creation unit 43 selects one uppermost component 20 from the structural model 51.
  • step S203 the state model creation unit 43 determines the state of the component 20 for the highest-order component 20 selected in step S202, and returns to step S201.
  • step S201 is YES
  • step S204 the state model creation unit 43 ends the creation of the state model 52.
  • step S203 The details of the processing of step S203 and step S214 described later are the processing of step S210 to step S222.
  • step S210 the state model creation unit 43 starts determining the state of the component 20.
  • step S211 the state model creation unit 43 determines whether the component 20 has a child component.
  • step S212 the state model creation unit 43 determines whether or not the states of all child constituent elements of the constituent element 20 have been determined.
  • step S212 is NO, in step S213, the state model creation unit 43 selects one child component.
  • step S214 the state model creation unit 43 determines the state of the child component for the child component selected in step S213, and returns to step S212.
  • step S211 is NO
  • step S215 the state model creation unit 43 determines whether all sensor values of the component 20 have been acquired.
  • step S215 when step S215 is NO, in step S216, the state model creation unit 43 selects one sensor. In step S217, the state model creation unit 43 acquires sensor values for the sensor selected in step S216, and returns to step S215.
  • step S215 is YES, in step S218, the state model creation unit 43 determines whether the states of all the events of the component 20 have been determined.
  • step S218 is NO, in step S219, the state model creation unit 43 selects one event.
  • step S220 the state model creation unit 43 determines the state of the event for the event selected in step S219, and returns to step S218.
  • step S212 is YES or step S218 is YES
  • the state model creation unit 43 evaluates the conditional expression of the component 20 in step S221.
  • step S ⁇ b> 222 the state model creation unit 43 ends the determination of the state of the component 20.
  • step S220 and step S234 described later are the processing of step S230 to step S236.
  • step S230 the state model creation unit 43 starts event state determination.
  • step S231 the state model creation unit 43 determines whether the event has a child event.
  • step S231 the state model creation unit 43 determines whether the states of all child events of the event have been determined.
  • step S232 the state model creation unit 43 selects one child event.
  • step S234 the state model creation unit 43 determines the state of the child event for the child event selected in step S233, and returns to step S232.
  • step S231 is NO or when step S232 is YES
  • step S235 the state model creation unit 43 evaluates the conditional expression of the event.
  • step S236 the state model creation unit 43 ends the event state determination.
  • the state model 52 created by the state model creation unit 43 will be described with reference to FIG.
  • FIG. 11 shows a state model 52 at time “2018/03/29 16:00: 00” created according to the structural model 51 shown in FIG.
  • the value of the sensor “temperature” of the child component “stator” of the component “generator” is 308, the value of the sensor “temperature rise” is 2, and the value of the sensor “discharge amount” is 0. 3.
  • the child event “high temperature” of the event “temperature abnormality” occurs, and the child event “high temperature rise” does not occur. Therefore, the event “temperature abnormality” does not occur.
  • the event “large discharge amount” does not occur. Therefore, the component “stator” is normal.
  • the value of the sensor “vibration” of the component “rotor” is 61. The event “large vibration” does not occur. Therefore, the component “rotor” is normal. Therefore, the component “generator” is normal.
  • the component 20 has a hierarchical structure. Therefore, the structural model 51 can be defined in units of higher-order components 20 composed of a plurality of components 20 like a plant composed of a plurality of devices. Therefore, once the upper component 20 is defined, it can be reused at a plurality of locations in the structural model 51, and it becomes easy to newly construct the state monitoring device 10 and to correct the state monitoring device 10 due to the change of the monitored system. .
  • events have a hierarchical structure. Therefore, once an event that abstracts a plurality of specific events or a complex event in which a plurality of events occur simultaneously is defined once, it can be reused at a plurality of locations in the structural model 51, and a new construction and monitoring of the state monitoring device 10 can be performed. It becomes easy to correct the state monitoring apparatus 10 accompanying the change of the target system.
  • Embodiment 3 FIG. In the present embodiment, differences from the second embodiment will be mainly described with reference to FIGS.
  • event information and component information have a hierarchical structure in a structure model 51 composed of sensor information, conditional expression information, event information, and component information, and the structure model 51 and sensor values are used.
  • a state model 52 is created.
  • the structural model 51 has information for visualizing the monitoring target component 20, the information indicating the state of the monitoring target component 20 included in the state model 52 and the monitoring target included in the structural model 51.
  • a three-dimensional or two-dimensional symbol is created using information necessary to visualize the component 20.
  • the state monitoring apparatus 10 includes a display model creation unit 46 in addition to the structural model storage unit 41, the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 as functional elements.
  • the function of the structural model storage unit 41 is realized by the storage 13.
  • the functions of the input unit 42, state model creation unit 43, control unit 44, display unit 45, and display model creation unit 46 are realized by software. Specifically, the functions of the input unit 42, the state model creation unit 43, the control unit 44, the display unit 45, and the display model creation unit 46 are realized by a state monitoring program.
  • the state monitoring program performs the processing performed by the input unit 42, the state model creation unit 43, the control unit 44, the display unit 45, and the display model creation unit 46, respectively, as input processing, state model creation processing, control processing, display processing, and display model.
  • the structural model 51 stored in the structural model storage unit 41 will be described with reference to FIG.
  • the structural model 51 is composed of sensor information, conditional expression information, event information, and component element information is the same as in the second embodiment, but the component element information is used to visualize the component 20 to be monitored.
  • the difference from Embodiment 2 is that it has necessary information.
  • the information necessary for visualization is information on the appearance of the component 20 alone.
  • the information necessary for visualization is a three-dimensional object including a mesh.
  • information necessary for visualization is information on how to combine these child components.
  • the information necessary for visualization is a matrix representing the presence / absence of scaling, rotation, and translation for each child component.
  • the format need not be particularly limited, but as an example, it is glTF which is a format of a three-dimensional model. “GlTF” is an abbreviation for graphics library Transmission Format.
  • FIG. 13 is a schematic diagram showing an example of a structural model 51 in which a generator is monitored.
  • the components “stator” and “rotor” that do not have child components each have different appearance information depending on whether the state is “normal” or “abnormal”. ing.
  • the component “generator” has the information necessary for visualization that combines the components “stator” and “rotor” without scaling, without rotation, and without translation.
  • the operation of the state model creation unit 43 creating the state model 52 is the same as that of the second embodiment shown in FIGS.
  • step S300 to step S304 is the main process.
  • step S300 the display model creation unit 46 starts creating the display model 53.
  • step S ⁇ b> 301 the display model creation unit 46 determines whether or not all the top models of the state model 52, that is, the display models 53 of the component 20 having no parent have been created.
  • step S301 is NO
  • step S302 the display model creation unit 46 selects one top-level component 20 from the state model 52.
  • step S303 the display model creation unit 46 creates the display model 53 of the component 20 for the highest-order component 20 selected in step S302, and returns to step S301.
  • step S304 the display model creation unit 46 finishes creating the display model 53.
  • step S303 and step S314 Details of the processing of step S303 and step S314 described later are the processing of step S310 to step S318.
  • step S310 the display model creation unit 46 starts creating the display model 53 of the component 20.
  • step S ⁇ b> 311 the display model creation unit 46 determines whether the component 20 has a child component. If step S311 is YES, in step S312, the display model creation unit 46 determines whether or not the display models 53 of all the child constituent elements of the constituent element 20 have been created. When step S312 is NO, in step S313, the display model creation unit 46 selects one child component. In step S314, the display model creation unit 46 creates the child component display model 53 for the child component selected in step S313, and returns to step S312.
  • step S312 When step S312 is YES, in step S315, the display model creation unit 46 obtains information on how to combine child constituent elements of the constituent element 20 from the structural model 51. In step S316, the display model creation unit 46 combines the display models 53 of all the child components based on the information acquired in step S315. In step S317, the display model creation unit 46 finishes creating the display model 53 of the component 20.
  • step S311 is NO
  • step S318 the display model creation unit 46 acquires the appearance information of the component 20 from the structural model 51 as the display model 53. In step S317, the display model creation unit 46 finishes creating the display model 53 of the component 20.
  • the display model 53 created by the display model creation unit 46 will be described with reference to FIGS.
  • FIGS. 16 to 19 show examples in which a display model 53 in which the state of the system is displayed as a three-dimensional symbol is visualized by the display unit 45.
  • FIG. FIGS. 16 to 19 show the component “generator” created by combining the appearances of the component “stator” and the component “rotor” without scaling, without rotation, and without translation. ”Represents a display model 53.
  • stator part and the rotor part of the component “generator” are both in the “normal” state.
  • stator portion of the component “generator” is in an “abnormal” state, and the rotor portion is in a “normal” state.
  • stator portion of the component “generator” is in a “normal” state, and the rotor portion is in an “abnormal” state.
  • stator portion and the rotor portion of the component “generator” are both “abnormal”.
  • FIG. 20 corresponds to FIG. 13 and is a schematic diagram showing an example of a part of the structural model 51 in which the generator is monitored.
  • the state of the system is displayed as a two-dimensional symbol.
  • the appearance of the component “stator” having no child component is defined according to whether the state is “normal” or “abnormal” in the example of FIG. 13, but in the example of FIG.
  • the combinations of events that occur are defined according to whether they are “normal”, “temperature abnormality”, “large discharge amount”, and “temperature abnormality and large discharge amount”, and have four types of appearance.
  • the appearance of the “rotor” is defined according to whether the state is “normal” or “abnormal” as in the example of FIG.
  • the component “generator” moves the component “stator” by ⁇ 30 in the vertical direction and moves the component “rotor” by 30 in the vertical direction, thereby arranging these two child components vertically. Have the information to combine.
  • FIG. 21 corresponds to FIG. 19 and shows an example in which a display model 53 in which the state of the system is displayed with a two-dimensional symbol is visualized by the display unit 45.
  • stator portion of the component “generator” is in the “temperature abnormal and large discharge amount” state, and the rotor portion is in “abnormal” state.
  • the display model creation unit 46 determines the state of the component 20 represented by the state model 52 created by the state model creation unit 43 for each component 20 included in the system.
  • a display model 53 that represents the appearance of the component 20 in a different manner of appearance is created.
  • the display model creation unit 46 displays, for each component 20 included in the system as the display model 53, the state and event of the component 20 represented by the state model 52 created by the state model creation unit 43.
  • a model is created that represents the appearance of the component 20 with different appearance depending on the combination of the occurrence and non-occurrence of
  • the display unit 45 may display the display model 53 created by the display model creation unit 46 on the display device 30 using a three-dimensional symbol, or may display the display model 30 on the display device 30 using a two-dimensional symbol.
  • the structural model 51 has information for visualizing the monitoring target component 20, the information indicating the state of the monitoring target component 20 included in the state model 52 and the monitoring target included in the structural model 51.
  • the display model 53 is created using information necessary for visualizing the component 20. Therefore, a single state model 52 can be visualized by a plurality of methods, and a new construction of the state monitoring device 10 and a modification of the state monitoring device 10 accompanying a change in the system to be monitored are facilitated.
  • the functions of the input unit 42, the state model creation unit 43, the control unit 44, the display unit 45, and the display model creation unit 46 are realized by software.
  • the functions of the input unit 42, the state model creation unit 43, the control unit 44, the display unit 45, and the display model creation unit 46 may be realized by a combination of software and hardware.
  • 10 state monitoring device 11 processor, 12 memory, 13 storage, 14 communication interface, 20 component, 30 display device, 41 structural model storage unit, 42 input unit, 43 state model creation unit, 44 control unit, 45 display unit, 46 display model creation unit, 51 structural model, 52 state model, 53 display model.

Abstract

In the present invention, a structural model includes: a plurality of pieces of conditional expression information; a plurality of pieces of event information; and a plurality of pieces of constituent element information. The plurality of pieces of conditional expression information define expressions which calculate a Boolean value using a sensor value. The plurality of pieces of event information correspond respectively to the plurality of pieces of conditional expression information, and represents an event that is determined to have occurred when the calculated value of the expression defined in the corresponding conditional expression information is true. The plurality of pieces of constituent element information are set for respective constituent elements (20) and each piece corresponds to at least one of the plurality of pieces of event information and defines a condition which determines the status of the constituent element (20) depending on whether the event represented by the corresponding piece of event information has occurred. A status model creation unit (43) of a status monitoring device (10) creates, according to a sensor value at a certain time and the structural model, a status model representing the time and the status for each constituent element (20).

Description

状態監視装置、状態監視方法および状態監視プログラムStatus monitoring device, status monitoring method, and status monitoring program
 本発明は、状態監視装置、状態監視方法および状態監視プログラムに関するものである。 The present invention relates to a state monitoring device, a state monitoring method, and a state monitoring program.
 特許文献1に記載されている技術では、画像生成装置の通信部は、設備における構成要素の稼働情報を受信する。画像生成装置の記憶部は、構成要素を表す表示シンボルと表示階層とが対応付けられた画像データを、上位の表示階層に対応付けられた上位の表示シンボルが、下位の表示階層に対応付けられた下位の表示シンボルを集約するように記憶する。画像生成装置の制御部は、指定された表示階層の画像データを記憶部から読み出し、読み出された画像データと、通信部により受信された構成要素の稼働情報とに基づいて、表示シンボルと稼働情報とを関連付けた表示画像を生成する。 In the technique described in Patent Document 1, the communication unit of the image generation apparatus receives the operation information of the components in the facility. The storage unit of the image generation device associates image data in which display symbols representing constituent elements and display hierarchies are associated with each other, and upper display symbols associated with upper display hierarchies are associated with lower display hierarchies. The lower display symbols are stored so as to be aggregated. The control unit of the image generation device reads the image data of the designated display hierarchy from the storage unit, and based on the read image data and the operation information of the component received by the communication unit, the display symbol and the operation A display image associated with information is generated.
特開2015-049679号公報Japanese Patent Laying-Open No. 2015-049679
 従来の技術では、監視対象の構成要素の変更に伴う監視側装置の修正を容易に成し遂げることができないという課題がある。 In the conventional technology, there is a problem that the monitoring side device cannot be easily corrected in accordance with the change of the component to be monitored.
 特許文献1に記載されている技術では、次の3つの点が課題の原因である。第1の原因は、階層構造を持つ構成要素の集合を個別に追加または削除しなければならないことである。第2の原因は、複数箇所に現れる同一の条件の組み合わせを個別に定義しなければならないことである。第3の原因は、表示の態様ごとに構成要素のセンサ値および条件の組み合わせを定義しなければならないことである。 In the technique described in Patent Document 1, the following three points are causes of the problem. The first cause is that a set of components having a hierarchical structure must be individually added or deleted. The second cause is that the same combination of conditions appearing at a plurality of locations must be individually defined. The third cause is that a combination of sensor values and conditions of components must be defined for each display mode.
 本発明は、系に存在する監視対象の構成要素の変更に伴う監視側の修正を容易にすることを目的とする。 The object of the present invention is to facilitate the correction on the monitoring side accompanying the change of the component to be monitored existing in the system.
 本発明の一態様に係る状態監視装置は、
 センサ値を用いて真偽値を計算する式を定義する複数件の条件式情報と、それぞれ前記複数件の条件式情報のいずれかに対応し、対応する条件式情報に定義されている式の計算値が真のときに発生したと判断される事象を表す複数件の事象情報と、監視対象の系に含まれる構成要素ごとに設定され、それぞれ前記複数件の事象情報の少なくともいずれかに対応し、対応する事象情報に表されている事象の発生有無によって構成要素の状態を判定する条件を定義する複数件の構成要素情報とを含む構造モデルを格納する構造モデル格納部と、
 ある時刻のセンサ値を取得し、取得したセンサ値と、前記構造モデル格納部に格納された構造モデルとに従って、前記系に含まれる構成要素ごとに、構成要素の状態を判定し、前記時刻と、判定した状態とを表す状態モデルを作成する状態モデル作成部と
を備える。
A state monitoring apparatus according to an aspect of the present invention is provided.
Corresponding to a plurality of conditional expression information defining a formula for calculating a true / false value using a sensor value and each of the multiple conditional expression information, each of the expressions defined in the corresponding conditional expression information Multiple event information that represents an event determined to have occurred when the calculated value is true, and is set for each component included in the monitored system, each corresponding to at least one of the multiple event information And a structural model storage unit that stores a structural model including a plurality of pieces of component information that defines a condition for determining the state of the component based on whether or not an event represented by the corresponding event information has occurred,
A sensor value at a certain time is acquired, and the state of the component is determined for each component included in the system according to the acquired sensor value and the structural model stored in the structural model storage unit, and the time and A state model creating unit that creates a state model representing the determined state.
 本発明では、複数件の条件式情報と、それぞれ複数件の条件式情報のいずれかに対応する複数件の事象情報と、監視対象の系に含まれる構成要素ごとに設定され、それぞれ複数件の事象情報の少なくともいずれかに対応する複数件の構成要素情報とを含む構造モデルに従って、任意の時刻における構成要素の状態が判定される。そのため、構造モデルに含まれる情報またはその対応関係を編集するだけで、構成要素の変更に対応できる。すなわち、本発明によれば、系に存在する監視対象の構成要素の変更に伴う監視側の修正が容易である。 In the present invention, a plurality of pieces of conditional expression information, a plurality of pieces of event information corresponding to each of the plurality of pieces of conditional expression information, and a plurality of pieces of conditional expression information are set for each component included in the monitored system. The state of the constituent element at an arbitrary time is determined according to a structural model including a plurality of constituent element information corresponding to at least one of the event information. Therefore, it is possible to cope with changes in the constituent elements simply by editing the information included in the structural model or the corresponding relationship. That is, according to the present invention, it is easy to modify the monitoring side in accordance with the change of the monitoring target component existing in the system.
実施の形態1に係る状態監視装置の構成を示すブロック図。1 is a block diagram showing a configuration of a state monitoring device according to Embodiment 1. FIG. 実施の形態1に係る構造モデルの例を示す図。FIG. 3 is a diagram illustrating an example of a structural model according to the first embodiment. 図2の凡例。Legend of FIG. 実施の形態1に係る状態監視装置の動作を示すフローチャート。5 is a flowchart showing an operation of the state monitoring apparatus according to the first embodiment. 実施の形態1に係る状態モデルの例を示す図。FIG. 3 is a diagram illustrating an example of a state model according to the first embodiment. 図5の凡例。Legend of FIG. 実施の形態2に係る構造モデルの例を示す図。FIG. 6 is a diagram illustrating an example of a structural model according to Embodiment 2. 実施の形態2に係る状態監視装置の動作を示すフローチャート。6 is a flowchart showing the operation of the state monitoring apparatus according to the second embodiment. 実施の形態2に係る状態監視装置の動作を示すフローチャート。6 is a flowchart showing the operation of the state monitoring apparatus according to the second embodiment. 実施の形態2に係る状態監視装置の動作を示すフローチャート。6 is a flowchart showing the operation of the state monitoring apparatus according to the second embodiment. 実施の形態2に係る状態モデルの例を示す図。FIG. 6 is a diagram illustrating an example of a state model according to the second embodiment. 実施の形態3に係る状態監視装置の構成を示すブロック図。FIG. 4 is a block diagram showing a configuration of a state monitoring device according to a third embodiment. 実施の形態3に係る構造モデルの例を示す図。FIG. 10 is a diagram illustrating an example of a structural model according to Embodiment 3; 実施の形態3に係る状態監視装置の動作を示すフローチャート。10 is a flowchart showing the operation of the state monitoring apparatus according to the third embodiment. 実施の形態3に係る状態監視装置の動作を示すフローチャート。10 is a flowchart showing the operation of the state monitoring apparatus according to the third embodiment. 実施の形態3に係る表示モデルの例を示す図。FIG. 6 shows an example of a display model according to Embodiment 3. 実施の形態3に係る表示モデルの例を示す図。FIG. 6 shows an example of a display model according to Embodiment 3. 実施の形態3に係る表示モデルの例を示す図。FIG. 6 shows an example of a display model according to Embodiment 3. 実施の形態3に係る表示モデルの例を示す図。FIG. 6 shows an example of a display model according to Embodiment 3. 実施の形態3に係る構造モデルの例を示す図。FIG. 10 is a diagram illustrating an example of a structural model according to Embodiment 3; 実施の形態3に係る表示モデルの例を示す図。FIG. 6 shows an example of a display model according to Embodiment 3.
 以下、本発明の実施の形態について、図を用いて説明する。各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。なお、本発明は、以下に説明する実施の形態に限定されるものではなく、必要に応じて種々の変更が可能である。例えば、以下に説明する実施の形態のうち、2つ以上の実施の形態が組み合わせられて実施されても構わない。あるいは、以下に説明する実施の形態のうち、1つの実施の形態または2つ以上の実施の形態の組み合わせが部分的に実施されても構わない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals. In the description of the embodiments, the description of the same or corresponding parts will be omitted or simplified as appropriate. The present invention is not limited to the embodiments described below, and various modifications can be made as necessary. For example, two or more embodiments among the embodiments described below may be combined and executed. Alternatively, among the embodiments described below, one embodiment or a combination of two or more embodiments may be partially implemented.
 実施の形態1.
 本実施の形態について、図1から図6を用いて説明する。
Embodiment 1 FIG.
This embodiment will be described with reference to FIGS.
 ***構成の説明***
 図1を参照して、本実施の形態に係る状態監視装置10の構成を説明する。
*** Explanation of configuration ***
With reference to FIG. 1, the structure of the state monitoring apparatus 10 which concerns on this Embodiment is demonstrated.
 状態監視装置10は、コンピュータである。状態監視装置10は、プロセッサ11を備えるとともに、メモリ12、ストレージ13および通信インタフェース14といった他のハードウェアを備える。プロセッサ11は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。 The state monitoring device 10 is a computer. The state monitoring apparatus 10 includes a processor 11 and other hardware such as a memory 12, a storage 13, and a communication interface 14. The processor 11 is connected to other hardware via a signal line, and controls these other hardware.
 状態監視装置10は、機能要素として、構造モデル格納部41と、入力部42と、状態モデル作成部43と、制御部44と、表示部45とを備える。構造モデル格納部41の機能は、ストレージ13により実現される。入力部42、状態モデル作成部43、制御部44および表示部45の機能は、ソフトウェアにより実現される。具体的には、入力部42、状態モデル作成部43、制御部44および表示部45の機能は、状態監視プログラムにより実現される。状態監視プログラムは、入力部42、状態モデル作成部43、制御部44および表示部45により行われる処理をそれぞれ入力処理、状態モデル作成処理、制御処理および表示処理としてコンピュータに実行させるプログラムである。状態監視プログラムは、コンピュータ読取可能な媒体に記録されて提供されてもよいし、記録媒体に格納されて提供されてもよいし、プログラムプロダクトとして提供されてもよい。 The state monitoring device 10 includes a structural model storage unit 41, an input unit 42, a state model creation unit 43, a control unit 44, and a display unit 45 as functional elements. The function of the structural model storage unit 41 is realized by the storage 13. The functions of the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 are realized by software. Specifically, the functions of the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 are realized by a state monitoring program. The state monitoring program is a program that causes the computer to execute the processing performed by the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 as input processing, state model creation processing, control processing, and display processing, respectively. The state monitoring program may be provided by being recorded on a computer-readable medium, may be provided by being stored in a recording medium, or may be provided as a program product.
 プロセッサ11は、状態監視プログラムを実行する装置である。プロセッサ11は、例えば、CPU、GPUまたはこれらの組み合わせである。「CPU」は、Central Processing Unitの略語である。「GPU」は、Graphics Processing Unitの略語である。 The processor 11 is a device that executes a state monitoring program. The processor 11 is, for example, a CPU, a GPU, or a combination thereof. “CPU” is an abbreviation for Central Processing Unit. “GPU” is an abbreviation for Graphics Processing Unit.
 メモリ12およびストレージ13は、状態監視プログラムを記憶する装置である。メモリ12は、例えば、RAM、フラッシュメモリまたはこれらの組み合わせである。「RAM」は、Random Access Memoryの略語である。RAMは、例えば、SRAMまたはDRAMである。「SRAM」は、Static Random Access Memoryの略語である。「DRAM」は、Dynamic Random Access Memoryの略語である。ストレージ13は、例えば、HDD、SSDまたはこれらの組み合わせである。「HDD」は、Hard Disk Driveの略語である。「SSD」は、Solid State Driveの略語である。なお、ストレージ13は、SD(登録商標)メモリカード、CF、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、Blu-ray(登録商標)ディスクまたはDVDといった可搬記憶媒体であってもよい。「SD」は、Secure Digitalの略語である。「CF」は、CompactFlash(登録商標)の略語である。「DVD」は、Digital Versatile Discの略語である。 The memory 12 and the storage 13 are devices for storing a state monitoring program. The memory 12 is, for example, a RAM, a flash memory, or a combination thereof. “RAM” is an abbreviation for Random Access Memory. The RAM is, for example, SRAM or DRAM. “SRAM” is an abbreviation for Static Random Access Memory. “DRAM” is an abbreviation for Dynamic Random Access Memory. The storage 13 is, for example, an HDD, an SSD, or a combination thereof. “HDD” is an abbreviation for Hard Disk Drive. “SSD” is an abbreviation for Solid State Drive. The storage 13 may be a portable storage medium such as an SD (registered trademark) memory card, a CF, a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, or a DVD. “SD” is an abbreviation for Secure Digital. “CF” is an abbreviation for CompactFlash (registered trademark). “DVD” is an abbreviation for Digital Versatile Disc.
 通信インタフェース14は、監視対象の系に含まれる構成要素20、および表示装置30といった外部の装置と通信するためのインタフェースである。通信インタフェース14は、状態監視プログラムに入力されるデータを受信したり、状態監視プログラムから出力されるデータを送信したりするためのインタフェースである。通信インタフェース14は、例えば、Ethernet(登録商標)、USBまたはHDMI(登録商標)のポートである。「USB」は、Universal Serial Busの略語である。「HDMI」は、High-Definition Multimedia Interfaceの略語である。 The communication interface 14 is an interface for communicating with an external device such as the component 20 and the display device 30 included in the monitored system. The communication interface 14 is an interface for receiving data input to the state monitoring program and transmitting data output from the state monitoring program. The communication interface 14 is, for example, an Ethernet (registered trademark), USB, or HDMI (registered trademark) port. “USB” is an abbreviation for Universal Serial Bus. “HDMI” is an abbreviation for High-Definition Multimedia Interface.
 状態監視プログラムは、ストレージ13からメモリ12にロードされ、プロセッサ11に読み込まれ、プロセッサ11によって実行される。ストレージ13には、状態監視プログラムだけでなく、OSも記憶されている。「OS」は、Operating Systemの略語である。プロセッサ11は、OSを実行しながら、状態監視プログラムを実行する。なお、状態監視プログラムの一部または全部がOSに組み込まれていてもよい。 The state monitoring program is loaded from the storage 13 to the memory 12, read into the processor 11, and executed by the processor 11. The storage 13 stores not only the state monitoring program but also the OS. “OS” is an abbreviation for Operating System. The processor 11 executes the state monitoring program while executing the OS. A part or all of the state monitoring program may be incorporated in the OS.
 状態監視装置10は、プロセッサ11を代替する複数のプロセッサを備えていてもよい。これら複数のプロセッサは、状態監視プログラムの実行を分担する。それぞれのプロセッサは、例えば、CPU、GPUまたはこれらの組み合わせである。 The state monitoring device 10 may include a plurality of processors that replace the processor 11. The plurality of processors share the execution of the state monitoring program. Each processor is, for example, a CPU, a GPU, or a combination thereof.
 状態監視プログラムにより利用、処理または出力されるデータ、情報、信号値および変数値は、メモリ12、ストレージ13、または、プロセッサ11内のレジスタまたはキャッシュメモリに記憶される。 Data, information, signal values, and variable values used, processed, or output by the state monitoring program are stored in the memory 12, the storage 13, or a register or cache memory in the processor 11.
 状態監視装置10は、1台のコンピュータで構成されていてもよいし、複数台のコンピュータで構成されていてもよい。状態監視装置10が複数台のコンピュータで構成されている場合は、入力部42、状態モデル作成部43、制御部44および表示部45の機能が、各コンピュータに分散されて実現されてもよい。 The state monitoring device 10 may be composed of a single computer or a plurality of computers. When the state monitoring apparatus 10 is configured by a plurality of computers, the functions of the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 may be distributed and realized in each computer.
 構成要素20は、系に存在し、状態監視装置10を用いて監視する対象物である。構成要素20は、例えば、浄水プラントのポンプおよびバルブ等の機器、発電機の固定子および回転子等の部品、または路線における電車である。 The component 20 is an object that exists in the system and is monitored using the state monitoring device 10. The component 20 is, for example, equipment such as a pump and a valve of a water purification plant, parts such as a stator and a rotor of a generator, or a train on a route.
 表示装置30は、状態監視装置10から送信されたデータを表示する装置である。表示装置30は、例えば、LCDである。「LCD」は、Liquid Crystal Displayの略語である。 The display device 30 is a device that displays data transmitted from the state monitoring device 10. The display device 30 is, for example, an LCD. “LCD” is an abbreviation for Liquid Crystal Display.
 図2および図3を参照して、構造モデル格納部41に格納される構造モデル51について説明する。 The structural model 51 stored in the structural model storage unit 41 will be described with reference to FIGS.
 構造モデル51は、センサ情報、条件式情報、事象情報および構成要素情報から構成される。センサ情報は、センサ値を取得するために必要な情報である。条件式情報は、センサ値を1個以上用いて真偽値を計算する式を定義する情報である。事象情報は、対応する条件式情報を持ち、対応する条件式情報で表される条件が真となったときに発生したと判断される事象を表す情報である。構成要素情報は、監視対象の構成要素20を表し、監視対象の構成要素20で発生し得る1個以上の事象の事象情報と、監視対象の構成要素20に関連する1個以上のセンサのセンサ情報とに対応し、対応する事象情報が表す事象の発生有無によって監視対象の構成要素20の状態を判定する条件式を持つ情報である。 The structural model 51 includes sensor information, conditional expression information, event information, and component information. The sensor information is information necessary for acquiring a sensor value. The conditional expression information is information defining an expression for calculating a true / false value using one or more sensor values. The event information is information representing an event that has the corresponding conditional expression information and is determined to have occurred when the condition represented by the corresponding conditional expression information becomes true. The component information represents the component 20 to be monitored, event information of one or more events that can occur in the component 20 to be monitored, and sensors of one or more sensors related to the component 20 to be monitored. Information having a conditional expression for determining the state of the component 20 to be monitored based on whether or not an event represented by the corresponding event information has occurred.
 図2は、発電機を監視対象とした構造モデル51の例を示す模式図である。図2の例において、発電機は、「固定子」と「回転子」とを構成要素20として持っている。 FIG. 2 is a schematic diagram showing an example of a structural model 51 in which a generator is monitored. In the example of FIG. 2, the generator has a “stator” and a “rotor” as components 20.
 構成要素「固定子」は、「温度」と「放電量」とをセンサとして持っている。構成要素「固定子」では、「温度異常」と「放電量大」という事象が発生する。構成要素「固定子」は、事象「温度異常」が発生なし、かつ事象「放電量大」が発生なしのときに正常である。事象「温度異常」は、センサ「温度」により得られる値が300よりも大きいときに真となるような条件式により定義される。事象「放電量大」は、センサ「放電量」により得られる値が4よりも大きいときに真となるような条件式により定義される。 The component “stator” has “temperature” and “discharge amount” as sensors. In the component “stator”, events of “temperature abnormality” and “large discharge amount” occur. The component “stator” is normal when the event “temperature abnormality” does not occur and the event “large discharge amount” does not occur. The event “temperature abnormality” is defined by a conditional expression that is true when the value obtained by the sensor “temperature” is greater than 300. The event “large discharge amount” is defined by a conditional expression that is true when the value obtained by the sensor “discharge amount” is larger than 4.
 構成要素「回転子」は、「振動」をセンサとして持っている。構成要素「回転子」では、「振動大」という事象が発生する。構成要素「回転子」は、事象「振動大」が発生なしのときに正常である。事象「振動大」は、センサ「振動」により得られる値が130よりも大きいときに真となるような条件式により定義される。 The component “rotor” has “vibration” as a sensor. In the component “rotor”, an event of “large vibration” occurs. The component “rotor” is normal when the event “large vibration” does not occur. The event “large vibration” is defined by a conditional expression that is true when the value obtained by the sensor “vibration” is greater than 130.
 このように、本実施の形態では、構造モデル格納部41に格納される構造モデル51は、複数件の条件式情報と、複数件の事象情報と、複数件の構成要素情報とを含む。 Thus, in the present embodiment, the structural model 51 stored in the structural model storage unit 41 includes a plurality of pieces of conditional expression information, a plurality of pieces of event information, and a plurality of pieces of component element information.
 複数件の条件式情報は、センサ値を用いて真偽値を計算する式を定義する情報である。図2の例では、温度のセンサ値を用いて「温度>300」という式を定義する条件式情報と、温度のセンサ値を用いて「放電量>4」という式を定義する条件式情報と、振動のセンサ値を用いて「振動>130」という式を定義する条件式情報とがある。 The multiple conditional expression information is information that defines an expression for calculating a true / false value using a sensor value. In the example of FIG. 2, conditional expression information that defines an expression “temperature> 300” using a temperature sensor value, and conditional expression information that defines an expression “discharge amount> 4” using a temperature sensor value; And conditional expression information that defines an expression “vibration> 130” using the sensor value of vibration.
 複数件の事象情報は、それぞれ複数件の条件式情報のいずれかに対応し、対応する条件式情報に定義されている式の計算値が真のときに発生したと判断される事象を表す情報である。図2の例では、「温度>300」が真のときに発生したと判断される「温度異常」という事象を表す事象情報と、「放電量>4」が真のときに発生したと判断される「放電量大」という事象を表す事象情報と、「振動>130」が真のときに発生したと判断される「振動大」という事象を表す事象情報とがある。 The multiple event information corresponds to any of the multiple conditional expression information, and represents the event that is judged to have occurred when the calculated value of the expression defined in the corresponding conditional expression information is true It is. In the example of FIG. 2, it is determined that event information indicating an event of “temperature abnormality” that is determined to occur when “temperature> 300” is true, and event information that is generated when “discharge amount> 4” is true. Event information representing an event of “large discharge amount” and event information representing an event of “vibration large” judged to have occurred when “vibration> 130” is true.
 複数件の構成要素情報は、監視対象の系に含まれる構成要素20ごとに設定され、それぞれ複数件の事象情報の少なくともいずれかに対応し、対応する事象情報に表されている事象の発生有無によって構成要素20の状態を判定する条件を定義する情報である。図2の例では、発電機に含まれる固定子の構成要素情報によって、「温度異常」が発生なし、かつ「放電量大」が発生なしのときに固定子が正常であると判定されることが定義され、発電機に含まれる回転子の構成要素情報によって、「振動大」が発生なしのときに回転子が正常であると判定されることが定義されている。 Plural pieces of constituent element information are set for each constituent element 20 included in the monitored system, each corresponding to at least one of the plural pieces of event information, and whether or not an event represented in the corresponding event information has occurred Is information that defines a condition for determining the state of the component 20. In the example of FIG. 2, it is determined that the stator is normal when “temperature abnormality” does not occur and “large discharge amount” does not occur according to the component information of the stator included in the generator. Is defined, and it is defined by the component information of the rotor included in the generator that the rotor is determined to be normal when “large vibration” does not occur.
 本実施の形態では、構造モデル51には、複数件のセンサ情報が含まれている。複数件の条件式情報は、それぞれ複数件のセンサ情報のいずれかに対応し、対応するセンサ情報に基づいて得られるセンサ値を用いて真偽値を計算する式を定義する情報である。 In the present embodiment, the structural model 51 includes a plurality of pieces of sensor information. The plurality of pieces of conditional expression information is information that defines one or more pieces of sensor information and defines an expression for calculating a true / false value using a sensor value obtained based on the corresponding sensor information.
 複数件のセンサ情報は、それぞれ系に含まれる構成要素20の少なくともいずれかについてのセンサ値を得るための情報である。図2の例では、発電機に含まれる固定子の温度のセンサ値を得るためのセンサ情報と、その固定子の放電量のセンサ値を得るためのセンサ情報と、発電機に含まれる回転子の振動のセンサ値を得るためのセンサ情報とがある。 The plurality of pieces of sensor information are information for obtaining sensor values for at least one of the constituent elements 20 included in the system. In the example of FIG. 2, sensor information for obtaining a sensor value for the temperature of the stator included in the generator, sensor information for obtaining a sensor value for the discharge amount of the stator, and a rotor included in the generator. Sensor information for obtaining the sensor value of the vibration.
 ***動作の説明***
 図1から図3のほかに、図4から図6を参照して、本実施の形態に係る状態監視装置10の動作を説明する。状態監視装置10の動作は、本実施の形態に係る状態監視方法に相当する。
*** Explanation of operation ***
The operation of the state monitoring apparatus 10 according to this embodiment will be described with reference to FIGS. 4 to 6 in addition to FIGS. The operation of the state monitoring device 10 corresponds to the state monitoring method according to the present embodiment.
 まず、動作の概要を説明する。 First, an outline of the operation will be described.
 入力部42は、監視対象の構成要素20に関連する属性の特定の時刻における値であるセンサ値を状態監視装置10内に取得する。センサ値は、例えば、バルブの開度または固定子の温度である。これらのセンサ値は、本実施の形態では、監視対象の構成要素20に物理的に取り付けられたセンサによりリアルタイムに計測した値であるが、人間が目視により計測した値を電子的にデータベースに蓄積したものでもよい。入力部42は、センサ値がデータベースに蓄積されている場合は、例えば、JDBC(登録商標)のAPIである。「JDBC」は、Java(登録商標) Database Connectivityの略語である。「API」は、Application Programming Interfaceの略語である。 The input unit 42 acquires in the state monitoring device 10 a sensor value that is a value at a specific time of an attribute related to the component 20 to be monitored. The sensor value is, for example, a valve opening or a stator temperature. In the present embodiment, these sensor values are values measured in real time by a sensor physically attached to the component 20 to be monitored, but the values measured by human eyes are stored electronically in a database. You may have done. When the sensor value is accumulated in the database, the input unit 42 is, for example, a JDBC (registered trademark) API. “JDBC” is an abbreviation for Java (registered trademark) Database Connectivity. “API” is an abbreviation for Application Programming Interface.
 状態モデル作成部43は、構造モデル51に従って、入力部42を用いてセンサ値を取得し、特定の時刻での監視対象の構成要素20における事象の発生有無によって決まる系の状態を論理的に表す状態モデル52を作成する。 The state model creation unit 43 acquires sensor values using the input unit 42 according to the structure model 51, and logically represents the state of the system determined by the occurrence of an event in the monitoring target component 20 at a specific time. A state model 52 is created.
 表示部45は、系の状態を表示装置30により表示可能なデータに記録する。表示可能なデータは、例えば、系の各構成要素20の状態を「正常」または「異常」のように文字列として表したデータである。 The display unit 45 records the state of the system in data that can be displayed by the display device 30. The data that can be displayed is, for example, data that represents the state of each component 20 of the system as a character string such as “normal” or “abnormal”.
 制御部44は、状態モデル作成部43および表示部45を用いて状態監視装置10全体の動作を制御する。 The control unit 44 controls the operation of the entire state monitoring device 10 using the state model creation unit 43 and the display unit 45.
 次に、特に図4を参照して、状態モデル作成部43が状態モデル52を作成する動作の詳細を説明する。 Next, with reference to FIG. 4 in particular, the details of the operation in which the state model creation unit 43 creates the state model 52 will be described.
 ステップS100において、状態モデル作成部43は、状態モデル52の作成を開始する。ステップS101において、状態モデル作成部43は、構造モデル51のすべての構成要素の状態が決定しているかどうかを判定する。ステップS101がNOの場合、ステップS102において、状態モデル作成部43は、構造モデル51から構成要素20を1つ選択する。ステップS102において構成要素20を選択する方法は任意であり、一例としては構成要素20の名称の辞書順である。ステップS103において、状態モデル作成部43は、ステップS102で選択した構成要素20について、構成要素20のすべてのセンサ値を取得しているかどうかを判定する。ステップS103がNOの場合、ステップS104において、状態モデル作成部43は、センサを1つ選択する。ステップS104においてセンサを選択する方法は任意であり、一例としてはセンサの名称の辞書順である。ステップS105において、状態モデル作成部43は、センサ値を取得し、ステップS103に戻る。ステップS103がYESの場合、ステップS106において、状態モデル作成部43は、構成要素20のすべての事象の状態が決定しているかどうかを判定する。ステップS106がNOの場合、ステップS107において、状態モデル作成部43は、事象を1つ選択する。ステップS107において事象を選択する方法は任意であり、一例としては事象の名称の辞書順である。ステップS108において、状態モデル作成部43は、ステップS107で選択した事象について、事象の条件式を評価することで事象の状態を決定し、ステップS106に戻る。ステップS106がYESの場合、ステップS109において、状態モデル作成部43は、構成要素20の条件式を評価することで構成要素20の状態を決定し、ステップS101に戻る。ステップS101がYESの場合、ステップS110において、状態モデル作成部43は、状態モデル52の作成を終了する。 In step S100, the state model creation unit 43 starts creating the state model 52. In step S <b> 101, the state model creation unit 43 determines whether the states of all the components of the structural model 51 have been determined. When step S101 is NO, the state model creation unit 43 selects one component 20 from the structural model 51 in step S102. The method of selecting the component 20 in step S102 is arbitrary. For example, the names of the components 20 are in dictionary order. In step S103, the state model creation unit 43 determines whether all sensor values of the component 20 have been acquired for the component 20 selected in step S102. When step S103 is NO, in step S104, the state model creation unit 43 selects one sensor. The method for selecting the sensor in step S104 is arbitrary, and as an example, the sensor name is in dictionary order. In step S105, the state model creation unit 43 acquires the sensor value and returns to step S103. When step S103 is YES, in step S106, the state model creation unit 43 determines whether the states of all the events of the component 20 have been determined. When step S106 is NO, in step S107, the state model creation unit 43 selects one event. The method of selecting an event in step S107 is arbitrary, and as an example, the event name is in dictionary order. In step S108, the state model creation unit 43 determines the state of the event by evaluating the event conditional expression for the event selected in step S107, and returns to step S106. When step S106 is YES, in step S109, the state model creation unit 43 determines the state of the component 20 by evaluating the conditional expression of the component 20, and returns to step S101. When step S101 is YES, in step S110, the state model creation unit 43 ends the creation of the state model 52.
 図5および図6を参照して、状態モデル作成部43により作成される状態モデル52について説明する。 The state model 52 created by the state model creation unit 43 will be described with reference to FIGS.
 図5は、図2に示した構造モデル51に従って作成された時刻「2018/03/28 17:00:00」における状態モデル52を示している。 FIG. 5 shows the state model 52 at the time “2018/03/28 17:00” created according to the structural model 51 shown in FIG.
 図5の例では、構成要素「固定子」のセンサ「温度」の値は308、センサ「放電量」の値は0.3である。事象「温度異常」が発生、事象「放電量大」は発生なしである。したがって、構成要素「固定子」は異常である。構成要素「回転子」のセンサ「振動」の値は61である。事象「振動大」は発生なしである。したがって、構成要素「回転子」は正常である。 In the example of FIG. 5, the value of the sensor “temperature” of the component “stator” is 308, and the value of the sensor “discharge amount” is 0.3. The event “abnormal temperature” occurs, and the event “large discharge amount” does not occur. Therefore, the component “stator” is abnormal. The value of the sensor “vibration” of the component “rotor” is 61. The event “large vibration” does not occur. Therefore, the component “rotor” is normal.
 なお、図5の例では、状態モデル52をJSON形式で記載しているが、XML等、JSON以外の形式で記載してもよいし、データベースに格納してもよい。「JSON」は、JavaScript(登録商標) Object Notationの略語である。「XML」は、Extensible Markup Languageの略語である。状態モデル52がJSON等のテキスト形式の場合は、表示部45は、状態モデル52をそのまま出力すればよいが、状態モデル52がデータベースに格納される場合は、表示部45は、状態モデル52をテキスト形式に変換して出力する。 In the example of FIG. 5, the state model 52 is described in the JSON format, but may be described in a format other than JSON, such as XML, or may be stored in a database. “JSON” is an abbreviation for JavaScript (registered trademark) Object Notation. “XML” is an abbreviation for Extensible Markup Language. When the state model 52 is in a text format such as JSON, the display unit 45 may output the state model 52 as it is. However, when the state model 52 is stored in the database, the display unit 45 displays the state model 52. Convert to text format and output.
 このように、本実施の形態では、状態モデル作成部43は、ある時刻のセンサ値を取得し、取得したセンサ値と、構造モデル格納部41に格納された構造モデル51とに従って、監視対象の系に含まれる構成要素20ごとに、構成要素20の状態を判定し、状態モデル52を作成する。状態モデル52は、構成要素20ごとに、時刻と、状態モデル作成部43により判定された状態と、構成要素20の構成要素情報に対応する事象情報に表されている事象の発生有無とを表すモデルである。なお、事象の発生有無については、省略されてもよい。 As described above, in the present embodiment, the state model creation unit 43 acquires a sensor value at a certain time, and in accordance with the acquired sensor value and the structural model 51 stored in the structural model storage unit 41, For each component 20 included in the system, the state of the component 20 is determined and a state model 52 is created. The state model 52 represents, for each component 20, the time, the state determined by the state model creation unit 43, and the occurrence of an event represented in the event information corresponding to the component information of the component 20. It is a model. Note that whether or not an event has occurred may be omitted.
 ***実施の形態の効果の説明***
 本実施の形態では、複数件の条件式情報と、それぞれ複数件の条件式情報のいずれかに対応する複数件の事象情報と、監視対象の系に含まれる構成要素20ごとに設定され、それぞれ複数件の事象情報の少なくともいずれかに対応する複数件の構成要素情報とを含む構造モデル51に従って、任意の時刻における構成要素20の状態が判定される。そのため、構造モデル51に含まれる情報またはその対応関係を編集するだけで、構成要素20の変更に対応できる。すなわち、本実施の形態によれば、系に存在する監視対象の構成要素20の変更に伴う監視側の修正が容易である。
*** Explanation of the effect of the embodiment ***
In the present embodiment, a plurality of pieces of conditional expression information, a plurality of pieces of event information corresponding to any of the plurality of pieces of conditional expression information, respectively, are set for each component 20 included in the monitored system, The state of the component 20 at an arbitrary time is determined according to the structure model 51 including a plurality of pieces of component information corresponding to at least one of the plurality of pieces of event information. Therefore, it is possible to cope with a change in the component 20 only by editing the information included in the structural model 51 or the corresponding relationship. That is, according to the present embodiment, correction on the monitoring side accompanying change of the monitoring target component 20 existing in the system is easy.
 本実施の形態では、対応する条件式を持ち、対応する条件式で表される条件が真となったときに発生したと判断される事象を表す事象情報を構造モデル51に持つようにしている。よって、条件式の組み合わせを一度定義すれば構造モデル51の複数箇所で再利用でき、状態監視装置10の新規構築、および監視対象の系の変更に伴う状態監視装置10の修正が容易になる。 In the present embodiment, the structural model 51 has event information representing an event that has a corresponding conditional expression and that is determined to occur when the condition represented by the corresponding conditional expression becomes true. . Therefore, once a combination of conditional expressions is defined, it can be reused at a plurality of locations in the structural model 51, and it becomes easy to construct a new state monitoring device 10 and to correct the state monitoring device 10 due to a change in the system to be monitored.
 ***他の構成***
 本実施の形態では、入力部42、状態モデル作成部43、制御部44および表示部45の機能がソフトウェアにより実現されるが、変形例として、入力部42、状態モデル作成部43、制御部44および表示部45の機能がソフトウェアとハードウェアとの組み合わせにより実現されてもよい。すなわち、入力部42、状態モデル作成部43、制御部44および表示部45の機能の一部が専用のハードウェアにより実現され、残りがソフトウェアにより実現されてもよい。
*** Other configurations ***
In the present embodiment, the functions of the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 are realized by software. However, as a modification, the input unit 42, the state model creation unit 43, and the control unit 44 are used. The function of the display unit 45 may be realized by a combination of software and hardware. That is, some of the functions of the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 may be realized by dedicated hardware, and the rest may be realized by software.
 専用のハードウェアは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA、FPGA、ASIC、または、これらのうちいくつか、もしくは、すべての組み合わせである。「IC」は、Integrated Circuitの略語である。「GA」は、Gate Arrayの略語である。「FPGA」は、Field-Programmable Gate Arrayの略語である。「ASIC」は、Application Specific Integrated Circuitの略語である。 The dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an FPGA, an ASIC, or some or all of these. . “IC” is an abbreviation for Integrated Circuit. “GA” is an abbreviation for Gate Array. “FPGA” is an abbreviation for Field-Programmable Gate Array. “ASIC” is an abbreviation for Application Specific Integrated Circuit.
 プロセッサ11および専用のハードウェアは、いずれも処理回路である。すなわち、入力部42、状態モデル作成部43、制御部44および表示部45の機能がソフトウェアにより実現されるか、ソフトウェアとハードウェアとの組み合わせにより実現されるかに関わらず、入力部42、状態モデル作成部43、制御部44および表示部45の動作は、処理回路により行われる。 Both the processor 11 and the dedicated hardware are processing circuits. That is, regardless of whether the functions of the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 are realized by software or a combination of software and hardware, the input unit 42, the state Operations of the model creation unit 43, the control unit 44, and the display unit 45 are performed by a processing circuit.
 入力部42、状態モデル作成部43、制御部44および表示部45の機能は、クラウド等、ネットワークを介して提供される計算リソースを用いて実現されてもよい。 The functions of the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 may be realized using calculation resources provided via a network such as a cloud.
 実施の形態2.
 本実施の形態について、主に実施の形態1との差異を、図7から図11を用いて説明する。
Embodiment 2. FIG.
In the present embodiment, differences from the first embodiment will be mainly described with reference to FIGS.
 実施の形態1では、センサ情報、条件式情報、事象情報および構成要素情報から構成される構造モデル51とセンサ値とを用いて状態モデル52が作成される。本実施の形態では、事象情報と構成要素情報とが階層構造を持つ。 In Embodiment 1, a state model 52 is created using a structure model 51 composed of sensor information, conditional expression information, event information, and component information, and sensor values. In the present embodiment, event information and component element information have a hierarchical structure.
 ***構成の説明***
 本実施の形態に係る状態監視装置10の構成については、図1に示した実施の形態1のものと同じであるため、説明を省略する。
*** Explanation of configuration ***
The configuration of the state monitoring apparatus 10 according to the present embodiment is the same as that of the first embodiment shown in FIG.
 図7を参照して、構造モデル格納部41に格納される構造モデル51について説明する。 The structural model 51 stored in the structural model storage unit 41 will be described with reference to FIG.
 構造モデル51がセンサ情報、条件式情報、事象情報および構成要素情報から構成される点は、実施の形態1と同様であるが、次の2点が実施の形態1と異なる。1点目は、事象情報が実施の形態1における事象情報に加え、0件以上の事象情報を子として持つ、すなわち、事象情報が階層構造を有することである。2点目は、構成要素情報が実施の形態1における構成要素情報に加え、0件以上の構成要素情報を子として持つ、すなわち、構成要素情報が階層構造を有することである。 The point that the structural model 51 is composed of sensor information, conditional expression information, event information, and component information is the same as in the first embodiment, but the following two points are different from the first embodiment. The first point is that the event information has zero or more event information as a child in addition to the event information in the first embodiment, that is, the event information has a hierarchical structure. The second point is that the constituent element information has zero or more constituent element information as a child in addition to the constituent element information in the first embodiment, that is, the constituent element information has a hierarchical structure.
 図7は、発電機を監視対象とした構造モデル51の例を示す模式図である。図7の例において、構成要素「発電機」は「固定子」と「回転子」とを子構成要素として持っている。構成要素「発電機」は、「固定子」が正常かつ「回転子」が正常のときに正常である。 FIG. 7 is a schematic diagram showing an example of a structural model 51 in which a generator is monitored. In the example of FIG. 7, the component “generator” has a “stator” and a “rotor” as child components. The component “generator” is normal when the “stator” is normal and the “rotor” is normal.
 構成要素「固定子」は、「温度」と「放電量」とに加え、「温度上昇」をセンサとして持っている。構成要素「固定子」では、「温度異常」と「放電量大」という事象が発生する。構成要素「固定子」は、事象「温度異常」が発生なし、かつ事象「放電量大」が発生なしのときに正常である。事象「温度異常」は、「温度高」と「温度上昇大」とを子事象として持っている。事象「温度高」は、センサ「温度」により得られる値が300よりも大きいときに真となるような条件式により定義される。事象「温度上昇大」は、センサ「温度上昇」により得られる値が10よりも大きいときに真となるような条件式により定義される。事象「放電量大」は、センサ「放電量」により得られる値が4よりも大きいときに真となるような条件式により定義される。 The component “stator” has “temperature rise” as a sensor in addition to “temperature” and “discharge amount”. In the component “stator”, events of “temperature abnormality” and “large discharge amount” occur. The component “stator” is normal when the event “temperature abnormality” does not occur and the event “large discharge amount” does not occur. The event “temperature abnormality” has “high temperature” and “high temperature rise” as child events. The event “high temperature” is defined by a conditional expression that is true when the value obtained by the sensor “temperature” is greater than 300. The event “high temperature rise” is defined by a conditional expression that is true when the value obtained by the sensor “temperature rise” is greater than 10. The event “large discharge amount” is defined by a conditional expression that is true when the value obtained by the sensor “discharge amount” is larger than 4.
 構成要素「回転子」については、図2の例と同じであるため、説明を省略する。 The component “rotor” is the same as the example in FIG.
 このように、本実施の形態では、構造モデル格納部41に格納される構造モデル51に含まれる複数件の構成要素情報が、階層構造を持つ。 As described above, in the present embodiment, a plurality of pieces of component element information included in the structural model 51 stored in the structural model storage unit 41 has a hierarchical structure.
 子構成要素を持つ親構成要素の構成要素情報は、当該子構成要素の状態によって当該親構成要素の状態を判定する条件を定義する情報である。図7の例では、固定子と回転子とを含む発電機の構成要素情報によって、固定子が正常かつ回転子が正常のときに発電機が正常であると判定されることが定義されている。 The component information of a parent component having a child component is information that defines a condition for determining the state of the parent component based on the state of the child component. In the example of FIG. 7, it is defined that the generator is determined to be normal when the stator is normal and the rotor is normal based on the component information of the generator including the stator and the rotor. .
 本実施の形態では、構造モデル格納部41に格納される構造モデル51に含まれる複数件の事象情報が、階層構造を持つ。 In the present embodiment, a plurality of pieces of event information included in the structural model 51 stored in the structural model storage unit 41 has a hierarchical structure.
 子事象を持つ親事象の事象情報は、当該子事象の発生有無によって当該親事象の発生有無を判断する条件を定義する情報である。図7の例では、「温度高」が発生なし、かつ「温度上昇大」が発生なしのときに発生なしと判断される「温度異常」という事象を表す事象情報がある。 The event information of a parent event having a child event is information that defines a condition for determining whether or not the parent event has occurred depending on whether or not the child event has occurred. In the example of FIG. 7, there is event information indicating an event of “temperature abnormality” that is determined not to occur when “temperature high” does not occur and “temperature increase” does not occur.
 ***動作の説明***
 図7のほかに、図8から図11を参照して、本実施の形態に係る状態監視装置10の動作を説明する。状態監視装置10の動作は、本実施の形態に係る状態監視方法に相当する。
*** Explanation of operation ***
In addition to FIG. 7, the operation of the state monitoring apparatus 10 according to the present embodiment will be described with reference to FIGS. 8 to 11. The operation of the state monitoring device 10 corresponds to the state monitoring method according to the present embodiment.
 特に図8から図10を参照して、状態モデル作成部43が状態モデル52を作成する動作の詳細を説明する。 Referring in particular to FIGS. 8 to 10, details of the operation of the state model creation unit 43 creating the state model 52 will be described.
 ステップS200からステップS204の処理がメインの処理である。 The process from step S200 to step S204 is the main process.
 ステップS200において、状態モデル作成部43は、状態モデル52の作成を開始する。ステップS201において、状態モデル作成部43は、構造モデル51のすべての最上位の、すなわち、親を持たない構成要素20の状態が決定しているかどうかを判定する。ステップS201がNOの場合、ステップS202において、状態モデル作成部43は、構造モデル51から最上位の構成要素20を1つ選択する。ステップS203において、状態モデル作成部43は、ステップS202で選択した最上位の構成要素20について、構成要素20の状態を決定し、ステップS201に戻る。ステップS201がYESの場合、ステップS204において、状態モデル作成部43は、状態モデル52の作成を終了する。 In step S200, the state model creation unit 43 starts creating the state model 52. In step S <b> 201, the state model creation unit 43 determines whether or not the state of all the highest levels of the structural model 51, i.e., the components 20 having no parent have been determined. When step S201 is NO, in step S202, the state model creation unit 43 selects one uppermost component 20 from the structural model 51. In step S203, the state model creation unit 43 determines the state of the component 20 for the highest-order component 20 selected in step S202, and returns to step S201. When step S201 is YES, in step S204, the state model creation unit 43 ends the creation of the state model 52.
 ステップS203および後述のステップS214の処理の詳細がステップS210からステップS222の処理である。 The details of the processing of step S203 and step S214 described later are the processing of step S210 to step S222.
 ステップS210において、状態モデル作成部43は、構成要素20の状態決定を開始する。ステップS211において、状態モデル作成部43は、構成要素20に子構成要素があるかどうか判定する。ステップS211がYESの場合、ステップS212において、状態モデル作成部43は、構成要素20のすべての子構成要素の状態が決定しているかどうか判定する。ステップS212がNOの場合、ステップS213において、状態モデル作成部43は、子構成要素を1つ選択する。ステップS214において、状態モデル作成部43は、ステップS213で選択した子構成要素について、子構成要素の状態を決定し、ステップS212に戻る。ステップS211がNOの場合、ステップS215において、状態モデル作成部43は、構成要素20のすべてのセンサ値を取得しているかどうか判定する。ステップS215がNOの場合、ステップS216において、状態モデル作成部43は、センサを1つ選択する。ステップS217において、状態モデル作成部43は、ステップS216で選択したセンサについて、センサ値を取得し、ステップS215に戻る。ステップS215がYESの場合、ステップS218において、状態モデル作成部43は、構成要素20のすべての事象の状態が決定しているかどうか判定する。ステップS218がNOの場合、ステップS219において、状態モデル作成部43は、事象を1つ選択する。ステップS220において、状態モデル作成部43は、ステップS219で選択した事象について、事象の状態を決定し、ステップS218に戻る。ステップS212がYESの場合またはステップS218がYESの場合、ステップS221において、状態モデル作成部43は、構成要素20の条件式を評価する。ステップS222において、状態モデル作成部43は、構成要素20の状態決定を終了する。 In step S210, the state model creation unit 43 starts determining the state of the component 20. In step S211, the state model creation unit 43 determines whether the component 20 has a child component. When step S211 is YES, in step S212, the state model creation unit 43 determines whether or not the states of all child constituent elements of the constituent element 20 have been determined. When step S212 is NO, in step S213, the state model creation unit 43 selects one child component. In step S214, the state model creation unit 43 determines the state of the child component for the child component selected in step S213, and returns to step S212. When step S211 is NO, in step S215, the state model creation unit 43 determines whether all sensor values of the component 20 have been acquired. When step S215 is NO, in step S216, the state model creation unit 43 selects one sensor. In step S217, the state model creation unit 43 acquires sensor values for the sensor selected in step S216, and returns to step S215. When step S215 is YES, in step S218, the state model creation unit 43 determines whether the states of all the events of the component 20 have been determined. When step S218 is NO, in step S219, the state model creation unit 43 selects one event. In step S220, the state model creation unit 43 determines the state of the event for the event selected in step S219, and returns to step S218. If step S212 is YES or step S218 is YES, the state model creation unit 43 evaluates the conditional expression of the component 20 in step S221. In step S <b> 222, the state model creation unit 43 ends the determination of the state of the component 20.
 ステップS220および後述のステップS234の処理の詳細がステップS230からステップS236の処理である。 Details of the processing of step S220 and step S234 described later are the processing of step S230 to step S236.
 ステップS230において、状態モデル作成部43は、事象の状態決定を開始する。ステップS231において、状態モデル作成部43は、事象に子事象があるかどうか判定する。ステップS231がYESの場合、ステップS232において、状態モデル作成部43は、事象のすべての子事象の状態が決定しているかどうか判定する。ステップS232がNOの場合、ステップS233において、状態モデル作成部43は、子事象を1つ選択する。ステップS234において、状態モデル作成部43は、ステップS233で選択した子事象について、子事象の状態を決定し、ステップS232に戻る。ステップS231がNOの場合またはステップS232がYESの場合、ステップS235において、状態モデル作成部43は、事象の条件式を評価する。ステップS236において、状態モデル作成部43は、事象の状態決定を終了する。 In step S230, the state model creation unit 43 starts event state determination. In step S231, the state model creation unit 43 determines whether the event has a child event. When step S231 is YES, in step S232, the state model creation unit 43 determines whether the states of all child events of the event have been determined. When step S232 is NO, in step S233, the state model creation unit 43 selects one child event. In step S234, the state model creation unit 43 determines the state of the child event for the child event selected in step S233, and returns to step S232. When step S231 is NO or when step S232 is YES, in step S235, the state model creation unit 43 evaluates the conditional expression of the event. In step S236, the state model creation unit 43 ends the event state determination.
 図11を参照して、状態モデル作成部43により作成される状態モデル52について説明する。 The state model 52 created by the state model creation unit 43 will be described with reference to FIG.
 図11は、図7に示した構造モデル51に従って作成された時刻「2018/03/29 16:00:00」における状態モデル52を示している。 FIG. 11 shows a state model 52 at time “2018/03/29 16:00: 00” created according to the structural model 51 shown in FIG.
 図11の例では、構成要素「発電機」の子構成要素「固定子」のセンサ「温度」の値は308、センサ「温度上昇」の値は2、センサ「放電量」の値は0.3である。事象「温度異常」の子事象「温度高」が発生、子事象「温度上昇大」は発生なしである。したがって、事象「温度異常」は発生なしである。事象「放電量大」は発生なしである。よって、構成要素「固定子」は正常である。構成要素「回転子」のセンサ「振動」の値は61である。事象「振動大」は発生なしである。よって、構成要素「回転子」は正常である。したがって、構成要素「発電機」は正常である。 In the example of FIG. 11, the value of the sensor “temperature” of the child component “stator” of the component “generator” is 308, the value of the sensor “temperature rise” is 2, and the value of the sensor “discharge amount” is 0. 3. The child event “high temperature” of the event “temperature abnormality” occurs, and the child event “high temperature rise” does not occur. Therefore, the event “temperature abnormality” does not occur. The event “large discharge amount” does not occur. Therefore, the component “stator” is normal. The value of the sensor “vibration” of the component “rotor” is 61. The event “large vibration” does not occur. Therefore, the component “rotor” is normal. Therefore, the component “generator” is normal.
 ***実施の形態の効果の説明***
 本実施の形態では、構成要素20が階層構造を持つようにしている。よって、複数の機器から構成されるプラントのように、複数の構成要素20から成り立つ上位の構成要素20の単位で構造モデル51を定義できる。そのため、上位の構成要素20を一度定義すれば構造モデル51の複数箇所で再利用でき、状態監視装置10の新規構築、および監視対象の系の変更に伴う状態監視装置10の修正が容易になる。
*** Explanation of the effect of the embodiment ***
In the present embodiment, the component 20 has a hierarchical structure. Therefore, the structural model 51 can be defined in units of higher-order components 20 composed of a plurality of components 20 like a plant composed of a plurality of devices. Therefore, once the upper component 20 is defined, it can be reused at a plurality of locations in the structural model 51, and it becomes easy to newly construct the state monitoring device 10 and to correct the state monitoring device 10 due to the change of the monitored system. .
 本実施の形態では、事象が階層構造を持つようにしている。よって、複数の具体的な事象を抽象化した事象、または複数の事象が同時に発生した複合事象を一度定義すれば構造モデル51の複数箇所で再利用でき、状態監視装置10の新規構築、および監視対象の系の変更に伴う状態監視装置10の修正が容易になる。 In this embodiment, events have a hierarchical structure. Therefore, once an event that abstracts a plurality of specific events or a complex event in which a plurality of events occur simultaneously is defined once, it can be reused at a plurality of locations in the structural model 51, and a new construction and monitoring of the state monitoring device 10 can be performed. It becomes easy to correct the state monitoring apparatus 10 accompanying the change of the target system.
 実施の形態3.
 本実施の形態について、主に実施の形態2との差異を、図12から図21を用いて説明する。
Embodiment 3 FIG.
In the present embodiment, differences from the second embodiment will be mainly described with reference to FIGS.
 実施の形態2では、センサ情報、条件式情報、事象情報および構成要素情報から構成される構造モデル51において事象情報と構成要素情報とが階層構造を持ち、構造モデル51とセンサ値とを用いて状態モデル52が作成される。本実施の形態では、構造モデル51が監視対象の構成要素20を可視化するような情報を持ち、状態モデル52が持つ監視対象の構成要素20の状態を表す情報と構造モデル51が持つ監視対象の構成要素20を可視化するために必要な情報とを使用して3次元または2次元のシンボルが作成される。 In the second embodiment, event information and component information have a hierarchical structure in a structure model 51 composed of sensor information, conditional expression information, event information, and component information, and the structure model 51 and sensor values are used. A state model 52 is created. In the present embodiment, the structural model 51 has information for visualizing the monitoring target component 20, the information indicating the state of the monitoring target component 20 included in the state model 52 and the monitoring target included in the structural model 51. A three-dimensional or two-dimensional symbol is created using information necessary to visualize the component 20.
 ***構成の説明***
 図12を参照して、本実施の形態に係る状態監視装置10の構成を説明する。
*** Explanation of configuration ***
With reference to FIG. 12, a configuration of state monitoring apparatus 10 according to the present embodiment will be described.
 状態監視装置10は、機能要素として、構造モデル格納部41と、入力部42と、状態モデル作成部43と、制御部44と、表示部45とのほかに、表示モデル作成部46を備える。構造モデル格納部41の機能は、ストレージ13により実現される。入力部42、状態モデル作成部43、制御部44、表示部45および表示モデル作成部46の機能は、ソフトウェアにより実現される。具体的には、入力部42、状態モデル作成部43、制御部44、表示部45および表示モデル作成部46の機能は、状態監視プログラムにより実現される。状態監視プログラムは、入力部42、状態モデル作成部43、制御部44、表示部45および表示モデル作成部46により行われる処理をそれぞれ入力処理、状態モデル作成処理、制御処理、表示処理および表示モデル作成処理としてコンピュータに実行させるプログラムである。 The state monitoring apparatus 10 includes a display model creation unit 46 in addition to the structural model storage unit 41, the input unit 42, the state model creation unit 43, the control unit 44, and the display unit 45 as functional elements. The function of the structural model storage unit 41 is realized by the storage 13. The functions of the input unit 42, state model creation unit 43, control unit 44, display unit 45, and display model creation unit 46 are realized by software. Specifically, the functions of the input unit 42, the state model creation unit 43, the control unit 44, the display unit 45, and the display model creation unit 46 are realized by a state monitoring program. The state monitoring program performs the processing performed by the input unit 42, the state model creation unit 43, the control unit 44, the display unit 45, and the display model creation unit 46, respectively, as input processing, state model creation processing, control processing, display processing, and display model. A program to be executed by a computer as a creation process.
 図13を参照して、構造モデル格納部41に格納される構造モデル51について説明する。 The structural model 51 stored in the structural model storage unit 41 will be described with reference to FIG.
 構造モデル51がセンサ情報、条件式情報、事象情報および構成要素情報から構成される点は、実施の形態2と同様であるが、構成要素情報が、監視対象の構成要素20を可視化するために必要な情報を持つ点が実施の形態2と異なる。構成要素20が子構成要素を持たない場合、可視化に必要な情報は、その構成要素20単体の外観の情報である。一例として、構成要素20が3次元で可視化される場合、可視化に必要な情報は、メッシュを含む3次元オブジェクトである。構成要素20が子構成要素を持つ場合、可視化に必要な情報は、それら子構成要素の組み合わせ方の情報である。一例として、構成要素20が3次元で可視化される場合、可視化に必要な情報は、子構成要素ごとの拡大縮小、回転および平行移動の有無を表す行列である。形式は、特に限定する必要はないが、一例としては、3次元モデルの形式であるglTFである。「glTF」は、graphics library Transmission Formatの略語である。 The point that the structural model 51 is composed of sensor information, conditional expression information, event information, and component element information is the same as in the second embodiment, but the component element information is used to visualize the component 20 to be monitored. The difference from Embodiment 2 is that it has necessary information. When the component 20 has no child component, the information necessary for visualization is information on the appearance of the component 20 alone. As an example, when the component 20 is visualized in three dimensions, the information necessary for visualization is a three-dimensional object including a mesh. When the component 20 has child components, information necessary for visualization is information on how to combine these child components. As an example, when the component 20 is visualized in three dimensions, the information necessary for visualization is a matrix representing the presence / absence of scaling, rotation, and translation for each child component. The format need not be particularly limited, but as an example, it is glTF which is a format of a three-dimensional model. “GlTF” is an abbreviation for graphics library Transmission Format.
 図13は、発電機を監視対象とした構造モデル51の例を示す模式図である。図13の例において、子構成要素を持たない構成要素「固定子」と「回転子」は、その状態が「正常」であるか「異常」であるかに応じて異なる外観の情報をそれぞれ持っている。構成要素「発電機」は、構成要素「固定子」および「回転子」を拡大縮小なし、回転なし、かつ平行移動なしで組み合わせるという情報を可視化に必要な情報として持っている。 FIG. 13 is a schematic diagram showing an example of a structural model 51 in which a generator is monitored. In the example of FIG. 13, the components “stator” and “rotor” that do not have child components each have different appearance information depending on whether the state is “normal” or “abnormal”. ing. The component “generator” has the information necessary for visualization that combines the components “stator” and “rotor” without scaling, without rotation, and without translation.
 ***動作の説明***
 図12および図13のほかに、図14から図19を参照して、本実施の形態に係る状態監視装置10の動作を説明する。状態監視装置10の動作は、本実施の形態に係る状態監視方法に相当する。
*** Explanation of operation ***
In addition to FIGS. 12 and 13, the operation of the state monitoring apparatus 10 according to the present embodiment will be described with reference to FIGS. The operation of the state monitoring device 10 corresponds to the state monitoring method according to the present embodiment.
 状態モデル作成部43が状態モデル52を作成する動作については、図8から図10に示した実施の形態2のものと同じであるため、説明を省略する。 The operation of the state model creation unit 43 creating the state model 52 is the same as that of the second embodiment shown in FIGS.
 特に図14および図15を参照して、表示モデル作成部46が表示モデル53を作成する動作を説明する。 Referring in particular to FIGS. 14 and 15, the operation of the display model creation unit 46 creating the display model 53 will be described.
 ステップS300からステップS304の処理がメインの処理である。 The process from step S300 to step S304 is the main process.
 ステップS300において、表示モデル作成部46は、表示モデル53の作成を開始する。ステップS301において、表示モデル作成部46は、状態モデル52のすべての最上位の、すなわち、親を持たない構成要素20の表示モデル53を作成済かどうか判定する。ステップS301がNOの場合、ステップS302において、表示モデル作成部46は、状態モデル52から最上位の構成要素20を1つ選択する。ステップS303において、表示モデル作成部46は、ステップS302で選択した最上位の構成要素20について、構成要素20の表示モデル53を作成し、ステップS301に戻る。ステップS301がYESの場合、ステップS304において、表示モデル作成部46は、表示モデル53の作成を終了する。 In step S300, the display model creation unit 46 starts creating the display model 53. In step S <b> 301, the display model creation unit 46 determines whether or not all the top models of the state model 52, that is, the display models 53 of the component 20 having no parent have been created. When step S301 is NO, in step S302, the display model creation unit 46 selects one top-level component 20 from the state model 52. In step S303, the display model creation unit 46 creates the display model 53 of the component 20 for the highest-order component 20 selected in step S302, and returns to step S301. When step S301 is YES, in step S304, the display model creation unit 46 finishes creating the display model 53.
 ステップS303および後述のステップS314の処理の詳細がステップS310からステップS318の処理である。 Details of the processing of step S303 and step S314 described later are the processing of step S310 to step S318.
 ステップS310において、表示モデル作成部46は、構成要素20の表示モデル53の作成を開始する。ステップS311において、表示モデル作成部46は、構成要素20に子構成要素があるかどうか判定する。ステップS311がYESの場合、ステップS312において、表示モデル作成部46は、構成要素20のすべての子構成要素の表示モデル53を作成済かどうか判定する。ステップS312がNOの場合、ステップS313において、表示モデル作成部46は、子構成要素を1つ選択する。ステップS314において、表示モデル作成部46は、ステップS313で選択した子構成要素について、子構成要素の表示モデル53を作成し、ステップS312に戻る。ステップS312がYESの場合、ステップS315において、表示モデル作成部46は、構成要素20の子構成要素の組み合わせ方の情報を構造モデル51から取得する。ステップS316において、表示モデル作成部46は、ステップS315で取得した情報に基づき、すべての子構成要素の表示モデル53を組み合わせる。ステップS317において、表示モデル作成部46は、構成要素20の表示モデル53の作成を終了する。ステップS311がNOの場合、ステップS318において、表示モデル作成部46は、構成要素20の外観の情報を構造モデル51から表示モデル53として取得する。ステップS317において、表示モデル作成部46は、構成要素20の表示モデル53の作成を終了する。 In step S310, the display model creation unit 46 starts creating the display model 53 of the component 20. In step S <b> 311, the display model creation unit 46 determines whether the component 20 has a child component. If step S311 is YES, in step S312, the display model creation unit 46 determines whether or not the display models 53 of all the child constituent elements of the constituent element 20 have been created. When step S312 is NO, in step S313, the display model creation unit 46 selects one child component. In step S314, the display model creation unit 46 creates the child component display model 53 for the child component selected in step S313, and returns to step S312. When step S312 is YES, in step S315, the display model creation unit 46 obtains information on how to combine child constituent elements of the constituent element 20 from the structural model 51. In step S316, the display model creation unit 46 combines the display models 53 of all the child components based on the information acquired in step S315. In step S317, the display model creation unit 46 finishes creating the display model 53 of the component 20. When step S311 is NO, in step S318, the display model creation unit 46 acquires the appearance information of the component 20 from the structural model 51 as the display model 53. In step S317, the display model creation unit 46 finishes creating the display model 53 of the component 20.
 図16から図19を参照して、表示モデル作成部46により作成される表示モデル53について説明する。 The display model 53 created by the display model creation unit 46 will be described with reference to FIGS.
 図16から図19は、系の状態を3次元のシンボルで表示するようにした表示モデル53を表示部45により可視化した例を示している。図16から図19は、いずれも構成要素「固定子」と構成要素「回転子」との外観をいずれも拡大縮小なし、回転なし、かつ平行移動なしで組み合わせて作成された構成要素「発電機」の表示モデル53を表している。 16 to 19 show examples in which a display model 53 in which the state of the system is displayed as a three-dimensional symbol is visualized by the display unit 45. FIG. FIGS. 16 to 19 show the component “generator” created by combining the appearances of the component “stator” and the component “rotor” without scaling, without rotation, and without translation. ”Represents a display model 53.
 図16の例では、構成要素「発電機」の固定子部分と回転子部分とがいずれも「正常」の状態である。図17の例では、構成要素「発電機」の固定子部分が「異常」の状態で、回転子部分は「正常」の状態である。図18の例では、構成要素「発電機」の固定子部分は「正常」の状態で、回転子部分は「異常」の状態である。図19の例では、構成要素「発電機」の固定子部分と回転子部分とがいずれも「異常」の状態である。 In the example of FIG. 16, the stator part and the rotor part of the component “generator” are both in the “normal” state. In the example of FIG. 17, the stator portion of the component “generator” is in an “abnormal” state, and the rotor portion is in a “normal” state. In the example of FIG. 18, the stator portion of the component “generator” is in a “normal” state, and the rotor portion is in an “abnormal” state. In the example of FIG. 19, the stator portion and the rotor portion of the component “generator” are both “abnormal”.
 系の状態を3次元のシンボルに代えて2次元のシンボルで表示する変形例を説明する。 A modification example in which the state of the system is displayed with a two-dimensional symbol instead of a three-dimensional symbol will be described.
 図20は、図13に対応しており、発電機を監視対象とした構造モデル51の一部の例を示す模式図である。 FIG. 20 corresponds to FIG. 13 and is a schematic diagram showing an example of a part of the structural model 51 in which the generator is monitored.
 図20の例では、系の状態が2次元のシンボルで表示されている。子構成要素を持たない構成要素「固定子」の外観は、図13の例では、状態が「正常」であるか「異常」であるかに応じて定義されているが、図20の例では、発生する事象の組み合わせが「正常」、「温度異常」、「放電量大」および「温度異常かつ放電量大」のいずれであるかに応じて定義されており、4種類の外観がある。「回転子」の外観は、図13の例と同じように、状態が「正常」であるか「異常」であるかに応じて定義されている。構成要素「発電機」は、構成要素「固定子」を垂直方向に-30移動し、構成要素「回転子」を垂直方向に30移動することにより、これら2つの子構成要素を上下に配置して組み合わせるという情報を持っている。 In the example of FIG. 20, the state of the system is displayed as a two-dimensional symbol. The appearance of the component “stator” having no child component is defined according to whether the state is “normal” or “abnormal” in the example of FIG. 13, but in the example of FIG. The combinations of events that occur are defined according to whether they are “normal”, “temperature abnormality”, “large discharge amount”, and “temperature abnormality and large discharge amount”, and have four types of appearance. The appearance of the “rotor” is defined according to whether the state is “normal” or “abnormal” as in the example of FIG. The component “generator” moves the component “stator” by −30 in the vertical direction and moves the component “rotor” by 30 in the vertical direction, thereby arranging these two child components vertically. Have the information to combine.
 図21は、図19に対応しており、系の状態を2次元のシンボルで表示するようにした表示モデル53を表示部45により可視化した例を示している。 FIG. 21 corresponds to FIG. 19 and shows an example in which a display model 53 in which the state of the system is displayed with a two-dimensional symbol is visualized by the display unit 45.
 図21の例では、構成要素「発電機」の固定子部分は「温度異常かつ放電量大」の状態であり、回転子部分は「異常」の状態である。 In the example of FIG. 21, the stator portion of the component “generator” is in the “temperature abnormal and large discharge amount” state, and the rotor portion is in “abnormal” state.
 このように、本実施の形態では、表示モデル作成部46は、系に含まれる構成要素20ごとに、状態モデル作成部43により作成された状態モデル52に表されている構成要素20の状態によって異なる見え方で構成要素20の外観を表す表示モデル53を作成する。場合によっては、表示モデル作成部46は、表示モデル53として、系に含まれる構成要素20ごとに、状態モデル作成部43により作成された状態モデル52に表されている構成要素20の状態と事象の発生有無との組み合わせによって異なる見え方で構成要素20の外観を表すモデルを作成する。 As described above, in the present embodiment, the display model creation unit 46 determines the state of the component 20 represented by the state model 52 created by the state model creation unit 43 for each component 20 included in the system. A display model 53 that represents the appearance of the component 20 in a different manner of appearance is created. In some cases, the display model creation unit 46 displays, for each component 20 included in the system as the display model 53, the state and event of the component 20 represented by the state model 52 created by the state model creation unit 43. A model is created that represents the appearance of the component 20 with different appearance depending on the combination of the occurrence and non-occurrence of
 表示部45は、表示モデル作成部46により作成された表示モデル53を3次元のシンボルで表示装置30に表示してもよいし、2次元のシンボルで表示装置30に表示してもよい。 The display unit 45 may display the display model 53 created by the display model creation unit 46 on the display device 30 using a three-dimensional symbol, or may display the display model 30 on the display device 30 using a two-dimensional symbol.
 ***実施の形態の効果の説明***
 本実施の形態では、構造モデル51が監視対象の構成要素20を可視化するような情報を持ち、状態モデル52が持つ監視対象の構成要素20の状態を表す情報と構造モデル51が持つ監視対象の構成要素20を可視化するために必要な情報とを使用して表示モデル53を作成するようにしている。よって、1つの状態モデル52に対して複数の方法で可視化が可能であり、状態監視装置10の新規構築、および監視対象の系の変更に伴う状態監視装置10の修正が容易になる。
*** Explanation of the effect of the embodiment ***
In the present embodiment, the structural model 51 has information for visualizing the monitoring target component 20, the information indicating the state of the monitoring target component 20 included in the state model 52 and the monitoring target included in the structural model 51. The display model 53 is created using information necessary for visualizing the component 20. Therefore, a single state model 52 can be visualized by a plurality of methods, and a new construction of the state monitoring device 10 and a modification of the state monitoring device 10 accompanying a change in the system to be monitored are facilitated.
 ***他の構成***
 本実施の形態では、実施の形態1と同じように、入力部42、状態モデル作成部43、制御部44、表示部45および表示モデル作成部46の機能がソフトウェアにより実現されるが、実施の形態1の変形例と同じように、入力部42、状態モデル作成部43、制御部44、表示部45および表示モデル作成部46の機能がソフトウェアとハードウェアとの組み合わせにより実現されてもよい。
*** Other configurations ***
In the present embodiment, as in the first embodiment, the functions of the input unit 42, the state model creation unit 43, the control unit 44, the display unit 45, and the display model creation unit 46 are realized by software. As in the modification of the first embodiment, the functions of the input unit 42, the state model creation unit 43, the control unit 44, the display unit 45, and the display model creation unit 46 may be realized by a combination of software and hardware.
 10 状態監視装置、11 プロセッサ、12 メモリ、13 ストレージ、14 通信インタフェース、20 構成要素、30 表示装置、41 構造モデル格納部、42 入力部、43 状態モデル作成部、44 制御部、45 表示部、46 表示モデル作成部、51 構造モデル、52 状態モデル、53 表示モデル。 10 state monitoring device, 11 processor, 12 memory, 13 storage, 14 communication interface, 20 component, 30 display device, 41 structural model storage unit, 42 input unit, 43 state model creation unit, 44 control unit, 45 display unit, 46 display model creation unit, 51 structural model, 52 state model, 53 display model.

Claims (10)

  1.  センサ値を用いて真偽値を計算する式を定義する複数件の条件式情報と、それぞれ前記複数件の条件式情報のいずれかに対応し、対応する条件式情報に定義されている式の計算値が真のときに発生したと判断される事象を表す複数件の事象情報と、監視対象の系に含まれる構成要素ごとに設定され、それぞれ前記複数件の事象情報の少なくともいずれかに対応し、対応する事象情報に表されている事象の発生有無によって構成要素の状態を判定する条件を定義する複数件の構成要素情報とを含む構造モデルを格納する構造モデル格納部と、
     ある時刻のセンサ値を取得し、取得したセンサ値と、前記構造モデル格納部に格納された構造モデルとに従って、前記系に含まれる構成要素ごとに、構成要素の状態を判定し、前記時刻と、判定した状態とを表す状態モデルを作成する状態モデル作成部と
    を備える状態監視装置。
    Corresponding to a plurality of conditional expression information defining a formula for calculating a true / false value using a sensor value and each of the multiple conditional expression information, each of the expressions defined in the corresponding conditional expression information Multiple event information that represents an event determined to have occurred when the calculated value is true, and is set for each component included in the monitored system, each corresponding to at least one of the multiple event information And a structural model storage unit that stores a structural model including a plurality of pieces of component information that defines a condition for determining the state of the component based on whether or not an event represented by the corresponding event information has occurred,
    A sensor value at a certain time is acquired, and the state of the component is determined for each component included in the system according to the acquired sensor value and the structural model stored in the structural model storage unit, and the time and A state monitoring device comprising: a state model creating unit that creates a state model representing the determined state.
  2.  前記構造モデルには、それぞれ前記系に含まれる構成要素の少なくともいずれかについてのセンサ値を得るための複数件のセンサ情報が含まれ、
     前記複数件の条件式情報は、それぞれ前記複数件のセンサ情報のいずれかに対応し、対応するセンサ情報に基づいて得られるセンサ値を用いて真偽値を計算する式を定義する情報である請求項1に記載の状態監視装置。
    The structural model includes a plurality of pieces of sensor information for obtaining sensor values for at least one of the components included in the system,
    The plurality of pieces of conditional expression information is information that defines a formula for calculating a true / false value by using a sensor value obtained based on the corresponding sensor information corresponding to any one of the plurality of pieces of sensor information. The state monitoring apparatus according to claim 1.
  3.  前記複数件の構成要素情報は、階層構造を持ち、
     子構成要素を持つ親構成要素の構成要素情報は、当該子構成要素の状態によって当該親構成要素の状態を判定する条件を定義する情報である請求項1または2に記載の状態監視装置。
    The plurality of component information has a hierarchical structure,
    The state monitoring device according to claim 1 or 2, wherein the constituent element information of a parent constituent element having a child constituent element is information defining a condition for determining the state of the parent constituent element based on the state of the child constituent element.
  4.  前記複数件の事象情報は、階層構造を持ち、
     子事象を持つ親事象の事象情報は、当該子事象の発生有無によって当該親事象の発生有無を判断する条件を定義する情報である請求項1から3のいずれか1項に記載の状態監視装置。
    The plurality of event information has a hierarchical structure,
    The state monitoring device according to any one of claims 1 to 3, wherein event information of a parent event having a child event is information defining a condition for determining whether or not the parent event has occurred based on whether or not the child event has occurred. .
  5.  前記系に含まれる構成要素ごとに、前記状態モデル作成部により作成された状態モデルに表されている構成要素の状態によって異なる見え方で構成要素の外観を表す表示モデルを作成する表示モデル作成部をさらに備える請求項1から4のいずれか1項に記載の状態監視装置。 For each component included in the system, a display model creation unit that creates a display model that represents the appearance of the component in a different appearance depending on the state of the component represented in the state model created by the state model creation unit The state monitoring device according to any one of claims 1 to 4, further comprising:
  6.  前記状態モデル作成部は、前記状態モデルとして、前記系に含まれる構成要素ごとに、前記時刻と、構成要素の状態とのほか、構成要素の構成要素情報に対応する事象情報に表されている事象の発生有無を表すモデルを作成し、
     前記表示モデル作成部は、前記表示モデルとして、前記系に含まれる構成要素ごとに、前記状態モデル作成部により作成された状態モデルに表されている構成要素の状態と事象の発生有無との組み合わせによって異なる見え方で構成要素の外観を表すモデルを作成する請求項5に記載の状態監視装置。
    The state model creation unit is represented in the event information corresponding to the constituent element information of the constituent element in addition to the time and the state of the constituent element for each constituent element included in the system as the state model. Create a model that indicates whether an event has occurred,
    The display model creation unit, as the display model, for each component included in the system, a combination of the state of the component represented by the state model created by the state model creation unit and the occurrence of an event The state monitoring apparatus according to claim 5, wherein a model that represents an appearance of a component with a different appearance depending on the state is created.
  7.  前記表示モデル作成部により作成された表示モデルを3次元のシンボルで表示装置に表示する表示部をさらに備える請求項5または6に記載の状態監視装置。 The state monitoring device according to claim 5 or 6, further comprising a display unit that displays the display model created by the display model creation unit on a display device with a three-dimensional symbol.
  8.  前記表示モデル作成部により作成された表示モデルを2次元のシンボルで表示装置に表示する表示部をさらに備える請求項5または6に記載の状態監視装置。 The state monitoring device according to claim 5 or 6, further comprising a display unit that displays the display model created by the display model creation unit on a display device with a two-dimensional symbol.
  9.  センサ値を用いて真偽値を計算する式を定義する複数件の条件式情報と、それぞれ前記複数件の条件式情報のいずれかに対応し、対応する条件式情報に定義されている式の計算値が真のときに発生したと判断される事象を表す複数件の事象情報と、監視対象の系に含まれる構成要素ごとに設定され、それぞれ前記複数件の事象情報の少なくともいずれかに対応し、対応する事象情報に表されている事象の発生有無によって構成要素の状態を判定する条件を定義する複数件の構成要素情報とを含む構造モデルを格納する構造モデル格納部を備えるコンピュータが、ある時刻のセンサ値を取得し、取得したセンサ値と、前記構造モデル格納部に格納された構造モデルとに従って、前記系に含まれる構成要素ごとに、構成要素の状態を判定し、前記時刻と、判定した状態とを表す状態モデルを作成する状態監視方法。 A plurality of conditional expression information defining an expression for calculating a true / false value using a sensor value, and corresponding to any of the multiple conditional expression information, and the expression defined in the corresponding conditional expression information. Multiple event information that represents an event that is determined to occur when the calculated value is true, and is set for each component included in the monitored system, each corresponding to at least one of the multiple event information items And a computer having a structural model storage unit that stores a structural model including a plurality of pieces of constituent element information that defines conditions for determining the state of the constituent element depending on whether or not an event represented by the corresponding event information has occurred, A sensor value at a certain time is acquired, and the state of the component is determined for each component included in the system according to the acquired sensor value and the structural model stored in the structural model storage unit. Time and status monitoring method of creating a state model representing the determined state.
  10.  センサ値を用いて真偽値を計算する式を定義する複数件の条件式情報と、それぞれ前記複数件の条件式情報のいずれかに対応し、対応する条件式情報に定義されている式の計算値が真のときに発生したと判断される事象を表す複数件の事象情報と、監視対象の系に含まれる構成要素ごとに設定され、それぞれ前記複数件の事象情報の少なくともいずれかに対応し、対応する事象情報に表されている事象の発生有無によって構成要素の状態を判定する条件を定義する複数件の構成要素情報とを含む構造モデルを格納する構造モデル格納部を備えるコンピュータに、
     ある時刻のセンサ値を取得し、取得したセンサ値と、前記構造モデル格納部に格納された構造モデルとに従って、前記系に含まれる構成要素ごとに、構成要素の状態を判定し、前記時刻と、判定した状態とを表す状態モデルを作成する状態モデル作成処理を実行させる状態監視プログラム。
    Corresponding to a plurality of conditional expression information defining a formula for calculating a true / false value using a sensor value and each of the multiple conditional expression information, each of the expressions defined in the corresponding conditional expression information Multiple event information that represents an event determined to have occurred when the calculated value is true, and is set for each component included in the monitored system, each corresponding to at least one of the multiple event information And a computer having a structural model storage unit for storing a structural model including a plurality of component information defining conditions for determining the state of the component depending on whether or not an event represented by the corresponding event information has occurred,
    A sensor value at a certain time is acquired, and the state of the component is determined for each component included in the system according to the acquired sensor value and the structural model stored in the structural model storage unit, and the time and A state monitoring program for executing a state model creation process for creating a state model representing the determined state.
PCT/JP2018/020886 2018-05-31 2018-05-31 Status monitoring device, status monitoring method, and status monitoring program WO2019229916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020886 WO2019229916A1 (en) 2018-05-31 2018-05-31 Status monitoring device, status monitoring method, and status monitoring program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020886 WO2019229916A1 (en) 2018-05-31 2018-05-31 Status monitoring device, status monitoring method, and status monitoring program

Publications (1)

Publication Number Publication Date
WO2019229916A1 true WO2019229916A1 (en) 2019-12-05

Family

ID=68698303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020886 WO2019229916A1 (en) 2018-05-31 2018-05-31 Status monitoring device, status monitoring method, and status monitoring program

Country Status (1)

Country Link
WO (1) WO2019229916A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07152984A (en) * 1993-11-30 1995-06-16 Mitsubishi Electric Corp Method and device for monitoring plant
JPH07320174A (en) * 1994-05-23 1995-12-08 Mitsubishi Electric Corp Alarm display device
JP2000259220A (en) * 1999-03-10 2000-09-22 Toshiba Corp Monitoring device
JP2008097424A (en) * 2006-10-13 2008-04-24 Mitsubishi Electric Corp Engineering tool
JP2015049679A (en) * 2013-08-30 2015-03-16 株式会社東芝 Image generating apparatus, image generating system, and image generating method
JP2015176400A (en) * 2014-03-17 2015-10-05 三菱電機株式会社 Monitoring controller
WO2016147726A1 (en) * 2015-03-16 2016-09-22 株式会社日立製作所 Abnormality prediction/recovery assistance system, abnormality prediction/recovery assistance method, and water treatment system
JP2016170560A (en) * 2015-03-12 2016-09-23 三菱電機株式会社 Monitoring control system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07152984A (en) * 1993-11-30 1995-06-16 Mitsubishi Electric Corp Method and device for monitoring plant
JPH07320174A (en) * 1994-05-23 1995-12-08 Mitsubishi Electric Corp Alarm display device
JP2000259220A (en) * 1999-03-10 2000-09-22 Toshiba Corp Monitoring device
JP2008097424A (en) * 2006-10-13 2008-04-24 Mitsubishi Electric Corp Engineering tool
JP2015049679A (en) * 2013-08-30 2015-03-16 株式会社東芝 Image generating apparatus, image generating system, and image generating method
JP2015176400A (en) * 2014-03-17 2015-10-05 三菱電機株式会社 Monitoring controller
JP2016170560A (en) * 2015-03-12 2016-09-23 三菱電機株式会社 Monitoring control system
WO2016147726A1 (en) * 2015-03-16 2016-09-22 株式会社日立製作所 Abnormality prediction/recovery assistance system, abnormality prediction/recovery assistance method, and water treatment system

Similar Documents

Publication Publication Date Title
US20200301897A1 (en) Specifying and applying rules to data
CN104350475B (en) Visual code is checked
US7190363B2 (en) Method and system for processing graphics simulation data
US11194884B2 (en) Method for facilitating identification of navigation regions in a web page based on document object model analysis
US20140032606A1 (en) Collapsible groups in graphical workflow models
US8793646B2 (en) Aggregation of constraints across profiles
US10423416B2 (en) Automatic creation of macro-services
JPWO2020137847A1 (en) Attack tree generator, attack tree generator and attack tree generator
WO2019229916A1 (en) Status monitoring device, status monitoring method, and status monitoring program
JP6692289B2 (en) Screen information generating device, screen information generating method, and program
JP6692281B2 (en) Test case generation device and test case generation method
US20180196738A1 (en) Test input information search device and method
JP6667733B2 (en) Simulation apparatus, simulation method, and simulation program
JP6873332B2 (en) Scoring device, scoring program and scoring method
US20070192694A1 (en) Information display for disparate data sets
JP5449506B1 (en) Product quality management device and product quality management program
US20160321223A1 (en) Visualization interface for information object system
JP6482362B2 (en) Source code generation system, source code generation device, source code generation method and program
US10515330B2 (en) Real time visibility of process lifecycle
JPWO2019244226A1 (en) Program execution support device, program execution support method, and program execution support program
JP2018156592A (en) Display control system, display data creation system, display control method, and program
JP2011227789A (en) Information processor and program
JP6974772B2 (en) Specification description program and specification description method
CN110674622B (en) Visual chart generation method and system, storage medium and electronic equipment
WO2014103024A1 (en) Chart synthesizing device and chart synthesizing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP