WO2019229107A1 - Antriebsmaschine für ein u-boot und ein betriebsverfahren - Google Patents

Antriebsmaschine für ein u-boot und ein betriebsverfahren Download PDF

Info

Publication number
WO2019229107A1
WO2019229107A1 PCT/EP2019/063914 EP2019063914W WO2019229107A1 WO 2019229107 A1 WO2019229107 A1 WO 2019229107A1 EP 2019063914 W EP2019063914 W EP 2019063914W WO 2019229107 A1 WO2019229107 A1 WO 2019229107A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
submarine
energy sources
partial
drive machine
Prior art date
Application number
PCT/EP2019/063914
Other languages
English (en)
French (fr)
Inventor
Walter Marx
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2019229107A1 publication Critical patent/WO2019229107A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P4/00Arrangements specially adapted for regulating or controlling the speed or torque of electric motors that can be connected to two or more different electric power supplies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/02Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for optimising the efficiency at low load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/32Waterborne vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a prime mover for a submarine and an operating method.
  • the prime mover of a submarine has, for example, egg nen three-phase motor and / or a DC motor to drive to the submarine on.
  • the prime mover of the submarine also has a switchgear and an energy source (for example fuel cells and / or batteries).
  • a DC motor is powered directly from the battery voltage on a submarine with its armature.
  • the DC motor has in particular special two or more so-called partial motors.
  • a speed change is realized by the field weakening operation.
  • the battery voltage should be designed so that when the battery is discharged, the voltage is still higher than the emf. If a three-phase motor, in particular a permanent-magnet synchronous motor, should be used for an existing submarine concept or as a replacement for a DC motor, the entire vehicle electrical system would have to be redesigned.
  • An object of the invention is to show a drive machine in which the use of a three-phase machine is possible in a simple manner.
  • a further object of this is obtained in particular according to one of claims 2 to 5.
  • a solution to the problem also succeeds in a method for operating a drive machine according to claim 6. More Ausgestaltun gene this method arise in particular according to one of claims 7 to 8.
  • a solution to the problem results accordingly for a U-boat designed in this way.
  • An engine for a submarine has a three-phase motor, in particular a permanent-magnet synchronous motor.
  • the prime mover also has a power converter with a DC link capacity.
  • the prime mover further comprises an energy source, wherein the energy source Tei lenergie provoken has.
  • the prime mover has an interconnection in order to interconnect the DC link capacitance differing with the partial energy sources. This makes it possible to apply the DC link capacitance to different tions, whereby the different voltages result from the different interconnection of the partial energy sources.
  • the rotary current motor has a first partial motor and a second partial motor.
  • the inter mediate circuit capacitance has a plurality of capacitors.
  • the permanent magnet synchronous motor has a relatively high DC link capacity (e.g., on the order of 70 mF to 140 mF per sub motor when the permanent magnet synchronous motor is included).
  • the DC link capacity is therefore to be preloaded to switch. This happens, for example, by pre-charging resistors.
  • the pre-charging time can be about 20 to 30 seconds, which is especially the case when the submarine and thus also the electrical equipment was planned from the beginning for a permanent-magnet synchronous motor. Since the engine is switched in this case only before a seafaring and unloaded at the end of the sea and Consum switched off, the pre-charge / discharge time does not matter much. But this is different if, for example, in the context of a reconstruction or in the context of a replica instead of a
  • DC motor is a permanent-magnet synchronous motor is to be built and the electrical device should be changed as little as possible.
  • the prime mover is when a permanent-magnet synchronous motor in an existing concept (ie, a concept with an originally planned DC motor) to be integrated, the drive machine to deviating to a fixed voltage with speed change (battery switching) operated.
  • the pre-charging and discharging resistors are designed so that the pre-charging and discharging amounts to a few seconds.
  • the prime mover resistors for pre-charging and / or discharging the DC link capacitance are provided, the resistors are designed for pre-charging and / or discharging a few seconds, in particular special less than 5 seconds or less as 2 seconds.
  • the energy source has a battery and / or a fuel cell.
  • a prime mover ei nes submarine are operated in a first speed range Tei lenergy provoken in a parallel operation wherein in a second speed range, which is greater than the first Drehtownberiech, the partial energy sources are operated in a seri ellen operation.
  • batteries can be operated as partial energy sources in parallel operation. This would, for example, depending on the emf of the engine and the lowest battery voltage, to about 60 to 70% n N can happen. This is also the driving range in which a submarine stays in most of its operating hours. Due to the lower voltage, the efficiency of the engine increases significantly in the partial load range. This has a positive effect on the reach of the submarine.
  • a power converter for the three-phase motor in particular a permanent-magnet synchronous motor, which serves as a drive motor locked to change the speed ranges.
  • the motor will briefly block its power converter, in particular its partial converter, so that switching off the motor and switching the partial energy sources (eg battery rien) takes place in series operation without current. Then the motor (or its intermediate circuit) is preloaded to the new voltage position, be switched back on and then continue to operate.
  • the power converter in particular its Generalstromrichter, locked again, the Mo gate switch off and the partial current sources, in particular the battery, in the parallel operation maral Tet.
  • the engine is switched on again and then continue ben operated. The energy is regeneratively fed back into the battery.
  • one of the be described drive machines is used.
  • the illustration shows a drive machine 1 for a submarine, which has a three-phase motor 2 and an energy source.
  • the three-phase motor 2 is a permanent-magnet synchronous motor which has a first partial motor 6 and a second motor 7, the energy source has a first partial energy source 3 (battery 1) and a second partial energy source 4 (battery 2).
  • a Verschal device 5 is provided for a connection of the motors 6 and 7 with the partial energy sources 3 and 4.
  • a switch 21 Qseriai
  • a switch 22 Qparaiiei
  • a switch 23 Q pa raiiei
  • a switch 24 Q ß attery
  • a switch 25 Q ß attery
  • a switch 26 Qcoupiing
  • the Dar ⁇ position also shows a pre-charge 11 (R pre- charging) and a pre-charge resistor 12 (Rprecharging), which are switched on the respective switches 27 and 28 (K pre charging) or wegschaltbar (separable).
  • the illustration further shows also a discharge resistor 13 (Rpischarging) and a Entla ⁇ dewiderstand 14 (Rpi flocking went) which on the respective
  • Switches 29 and 30 can be switched or switched off.
  • disconnectors 31 (Q Motori) and 32 (Q Mo tor2) are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

Eine Antriebsmaschine (1) für ein U-Boot, weist einen Drehstrommotor (2), insbesondere einen permanenterregten Synchronmotor auf. Ferner weist die Antriebsmaschine einen Stromrichter mit einer Zwischenkreiskapazität auf. Auch ist eine Energiequelle (3, 4) vorhanden, wobei die Energiequelle Teilenergiequellen aufweist, wobei eine Verschaltung (5) vorgesehen ist, um die Zwischenkreiskapazität unterschiedlich mit den Teilenergiequellen zu verschalten. In einem ersten Drehzahlbereich können Teilenergiequellen in einem Parallelbetrieb betrieben werden und in einem zweiten Drehzahlbereich, welcher größer ist als der erste Drehzahlbereich, können die Teilenergiequellen in einem seriellen Betrieb betrieben werden.

Description

Beschreibung
Antriebsmaschine für ein U-Boot und ein Betriebsverfahren
Die Erfindung betrifft eine Antriebsmaschine für ein U-Boot und ein Betriebsverfahren.
Die Antriebsmaschine eines U-Bootes weist beispielsweise ei nen Drehstrommotor und/oder einen Gleichstrommotor zum An trieb des U-Bootes auf. Ein Wechsel von einem Gleichstrommo tor zu einem Drehstrommotor, insbesondere einem Synchronmo tor, ist nur mit erheblichen Anpassungen der Antriebsmaschine möglich. Die Antriebsmaschine des U-Bootes weist insbesondere auch eine Schaltanlage und eine Energiequelle (z.B. Brenn stoffzellen und/oder Batterien) auf.
Ein Gleichstrommotor wird auf einem U-Boot mit seinem Anker direkt von der Batteriespannung versorgt. Um unterschiedli che Ankerspannungen zu erhalten, gibt es insbesondere zwei oder vier Teilbatterien. Der Gleichstrommotor weist insbe sondere zwei oder mehr sogenannten Teilmotoren auf. Durch un terschiedliches Gruppieren der Batterien und der, insbeson dere beiden (zwei), Teilmotoren in Parallel- bzw. Reihen schaltungen, bekommt man bis zu vier unterschiedliche Anker spannungen. Innerhalb einer dieser sogenannten Fahrtstufen wird eine Drehzahlveränderung durch den Feldschwächbetrieb realisiert .
Ein U-Boot mit einem Drehstrommotor, insbesondere einem permanenterregten Synchronmotor, ist insbesondere so kon zipiert, dass dieser Motor fest an einer Batteriespannung angeschlossen ist. Da er wegen seiner eingebauten Stromrich ter seine Ausgangsspannung kontinuierlich verstellen kann, benötigt er eingangsseitig keine Spannungsumschaltung . Die Batteriespannung ist so auszulegen, dass bei entladener Bat terie die Spannung immer noch höher als die EMK ist. Wenn für ein vorhandenes U-Boots-Konzept oder als Ersatz für einen Gleichstrommotor ein Drehstrommotor, insbesondere ein permanenterregter Synchronmotor eingesetzt werden sollte, müsste das gesamte Bordnetz neu konzipiert werden. Dies wä ren einerseits die Batterien, die Hauptschalttafel wie auch die Bordnetzumformer für die Erzeugung der Unternetze (z.B. 3AC 115V, DC 220V usw.) . Damit hätte man quasi ein neues Boot, welches hohe Einmalkosten und Umbaukosten verursacht.
Eine andere Möglichkeit wäre es, die Batterien immer in der Reihenschaltung zu belassen, um die benötigte hohe Spannung zu bekommen. Damit gäbe es aber keine Redundanz der Batterie mehr. Eine Redundanz der Batterie ist allerdings notwendig. Ein einfacher Ersatz für einen Gleichstrommotor in U-Booten ist demnach derzeit nicht möglich.
Eine Aufgabe der Erfindung ist es, eine Antriebsmaschine auf zuzeigen, bei welcher der Einsatz einer Drehstrommaschine in einfacher Weise möglich ist.
Eine Lösung der Aufgabe gelingt bei einer Antriebsmaschine nach Anspruch 1. Weitere Ausgestaltungen dieser ergeben sich insbesondere nach einem der Ansprüche 2 bis 5. Eine Lösung der Aufgabe gelingt ferner bei einem Verfahren zum Betrieb einer Antriebsmaschine nach Anspruch 6. Weitere Ausgestaltun gen dieses Verfahrens ergeben sich insbesondere nach einem der Ansprüche 7 bis 8. Eine Lösung der Aufgabe ergibt sich entsprechend auch für ein derart ausgeführtes U-Boot.
Eine Antriebsmaschine für ein U-Boot, weist einen Drehstrom motor, insbesondere einen permanenterregten Synchronmotor auf. Die Antriebsmaschine weist ferner einen Stromrichter mit einer Zwischenkreiskapazität auf. Die Antriebsmaschine weist ferner eine Energiequelle auf, wobei die Energiequelle Tei lenergiequellen aufweist. Die Antriebsmaschine weist eine Verschaltung auf, um die Zwischenkreiskapazität unterschied lich mit den Teilenergiequellen zu verschalten. Damit ist es möglich die Zwischenkreiskapazität an unterschiedliche Span- nungen zu legen, wobei sich die Unterschiedlichen Spannungen durch die unterschiedliche Verschaltung der Teilenergiequel len ergeben.
In einer Ausgestaltung der Antriebsmaschine weist der Dreh strommotor einen ersten Teilmotor und einen zweiten Teilmotor aufweist .
In einer Ausgestaltung der Antriebsmaschine weist der Zwi schenkreiskapazität eine Vielzahl von Kondensatoren aufweist.
In einer Ausgestaltung der Antriebsmaschine weist der perma nenterregten Synchronmotor eine relativ hohe Zwischenkreiska pazität auf (z.B. in einer Größenordnung von 70 mF bis 140 mF pro Teilmotor, wenn der permanenterregten Synchronmotor aufweist) . Die Zwischenkreiskapazität ist deshalb zum Zu schalten vorgeladen werden. Dies geschieht beispielsweise durch Vorladewiderstände. Die Vorladezeit kann ca. 20 bis 30 Sekunden betragen, was insbesondere dann der Fall ist, wenn das U-Boot und damit auch die elektrischen Einrichtungen von Anfang an für einen permanenterregten Synchronmotor geplant wurde. Da der Motor in diesem Fall nur vor einer Seefahrt zu geschaltet und am Ende der Seefahrt wieder entladen und abge schaltet wird, spielt die Vorlade-/Entladezeit keine große Rolle. Dies ist aber anders, wenn beispielsweise im Rahmen eines Umbaus oder in Rahmen eines Nachbaus statt eines
Gleichstrommotors ein permanenterregter Synchronmotor einge baut werden soll und die elektrische Einrichtung möglichst wenig abgeändert werden soll.
In einer Ausgestaltung der Antriebsmaschine wird, wenn eine permanenterregte Synchronmotor in ein vorhandenes Konzept (also ein Konzept mit einem ursprünglich geplanten Gleichstrommotor) integriert werden soll, wird die An triebsmaschine abweichend zu einer festen Spannung auch mit Fahrtstufenwechsel (Batterieumschaltung) betrieben. Dazu sind die Vor- und Entladewiderstände so ausgelegt, dass die Vor- und Entladung sich auf wenige Sekunden beläuft. In einer Ausgestaltung der Antriebsmaschine sind Widerstände zum Vorladen und/oder Entladen der Zwischenkreiskapazität vorgesehen sind, wobei die Widerstände für ein Vorladen und/oder Entladen von wenigen Sekunden ausgelegt sind, insbe sondere von weniger wie 5 Sekunden oder weniger wie 2 Sekun den .
In einer Ausgestaltung der Antriebsmaschine weist die Ener giequelle eine Batterie und/oder eine Brennstoffzelle auf.
Gemäß eines Verfahrens zum Betrieb einer Antriebsmaschine ei nes U-Bootes, werden in einem ersten Drehzahlbereich Tei lenergiequellen in einem Parallelbetrieb betrieben wobei in einem zweiten Drehzahlbereich, welcher größer ist als der erste Drehzahlberiech, die Teilenergiequellen in einem seri ellen Betrieb betrieben werden.
Im unteren Drehzahlbereich kann man z.B. Batterien als Tei lenergiequellen im Parallelbetrieb betreiben. Dies würde z.B., je nach EMK des Motors und der niedrigsten Batterie spannung, bis ca. 60 bis 70% nN geschehen können. Das ist auch der Fahrbereich, in dem ein U-Boot sich im größten Teil seiner Betriebsstunden aufhält. Aufgrund der niedrigeren Spannung erhöht sich der Wirkungsgrad des Motors im Teil lastbereich merklich. Dies wirkt sich positiv auf die Reich weite des U- Bootes aus.
In einer Ausgestaltung des Verfahrens wird zum Wechsel der Drehzahlbereiche ein Stromrichter für den Drehstrommotor, insbesondere einen permanenterregten Synchronmotor, welcher als Antriebsmotor dient, gesperrt. Durch die Sperrung kann die Umschaltung (Seriellschaltung/Parallelschaltung) der Tei lenergiequellen gefahrlos erfolgen.
Wenn beispielsweise eine höhere Drehzahl gefordert ist, wird der Motor seinen Stromrichter, insbesondere seine Teil stromrichter, kurz sperren, damit das Abschalten des Motors und die Umschaltung der Teilenergiequellen (z.B. Batte- rien) in den Reihenbetrieb stromlos stattfindet. Dann wird der Motor (bzw. dessen Zwischenkreis) auf die neue Spannungs lage vorgeladen, wieder zugeschaltet werden und dann weiter betrieben. Beim Runterfahren wird/werden der Stromrichter, insbesondere seine Teilstromrichter, wieder gesperrt, die Mo torschalter abgeschaltet und die Teilstromquellen, ins besondere die Batterie, in den Parallelbetrieb geschal tet. Nach einer Entladung auf die niedrigere Spannungslage wird der Motor wieder zugeschaltet und dann weiter betrie ben. Die Energie wird regenerativ in die Batterie zurückge speist .
Bei einem U-Boot mit z.B. vier Teilbatterien gibt es insbe sondere zwei Möglichkeiten. Entweder mit drei Fahrtstufen indem im Parallelbetrieb alle vier Batterien parallel lie gen. Im kombinierten Parallel/Reihenbetrieb sind jeweils zwei Batterien in Reihe und die anderen beiden in Reihe pa rallel dazu. In der höchsten Fahrtstufe sind dann alle vier in Reihe. Hier sind die Drehzahlen in der niedrigsten Fahrt stufe bei 30 bis 35% nN (Nenndrehzahl) und in der mittle ren Fahrtstufe bei ca. 60 bis 70% nN. Bei zwei Fahrtstufen ist der Grundzustand des kombinierten Parallel/Reihenbetrieb mit jeweils zwei Batterien in Reihe und die anderen beiden in Reihe parallel dazu. Damit ist die Umschaltdrehzahl wie der im Bereich von ca. 60 bis 70% nN und es ist nur ein Fahrtstufenwechsel notwendig.
In einer Ausgestaltung des Verfahrens wird dabei eine der be schriebenen Antriebsmaschinen verwendet.
Da Gleichstrommotoren immer schwieriger zu beschaffen sind und auch immer teurer werden, ist eine hier beschrieben al ternative Verwendung von Drehstrommaschinen von Vorteil, um insbesondere wie oben beschrieben, die alten Bootsentwür fe und -konzepte beibehalten zu können. Dies hilft insbeson dere den Werften, diese Art von U-Booten, welche für Gleich strommaschinen als Antriebsmaschine ausgelegt sind weiter zu vermarkten . Die Erfindung wird nachfolgend näher anhand eines Ausfüh rungsbeispiels in der Zeichnung erläutert.
Die Darstellung zeigt eine Antriebsmaschine 1 für ein U-Boot, welche einen Drehstrommotor 2 und eine Energiequelle auf weist. Der Drehstrommotor 2 ist ein permanenterregter Syn chronmotor, welcher einen ersten Teilmotor 6 und einen zwei ten Teilmotor 7 aufweist, Die Energiequelle weist eine erste Teilenergiequelle 3 (Batterie 1) und eine zweite Teilenergie quelle 4 (Batterie 2) auf. Für ein Verschalten der Motoren 6 und 7 mit den Teilenergiequellen 3 und 4 ist eine Verschal tung 5 vorgesehen. Für eine serielle Verschaltung der Tei lenergiequellen 3 und 4 ist ein Schalter 21 (Qseriai) vorgese hen. Für eine parallele Verschaltung der Teilenergiequellen 3 und 4 sind ein Schalter 22 (Qparaiiei) und ein Schalter 23 (Qpa- raiiei) vorgesehen. Zum Zuschalten und Trennen der Teilenergie quellen 3 und 4 sind ein Schalter 24 (Qßattery) ein Schalter 25 ( Qßatterie) vorgesehen. Zum Verschalten der sich ausbildenden Teilnetze ist ein Schalter 26 (Qcoupiing) vorgesehen. Die Dar¬ stellung zeigt ferner einen Vorladewiderstand 11 (RPrecharging) und einen Vorladewiderstand 12 (Rprecharging) , welche über die jeweiligen Schalter 27 und 28 (KPrecharging) zuschaltbar bzw. wegschaltbar (trennbar) sind. Die Darstellung zeigt ferner auch einen Entladewiderstand 13 (Rpischarging) und einen Entla¬ dewiderstand 14 (Rpischarging) , welche über die jeweiligen
Schalter 29 und 30 (KDiSCharging) zuschaltbar bzw. wegschaltbar sind. Zum Zuschalten und Trennen der Teilmotoren 6 und 7 sind Trennschalter 31 (QMotori) und 32 (QMotor2) vorgesehen.

Claims

Patentansprüche
1. Antriebsmaschine (1) für ein U-Boot,
welche einen Drehstrommotor (2), insbesondere einen perma nenterregten Synchronmotor aufweist,
welche einen Stromrichter mit einer Zwischenkreiskapazität aufweist,
welche eine Energiequelle (3,4) aufweist, wobei die Energie quelle Teilenergiequellen aufweist,
wobei eine Verschaltung (5) vorgesehen ist, um die Zwischen kreiskapazität unterschiedlich mit den Teilenergiequellen zu verschalten .
2. Antriebsmaschine (1) nach Anspruch 1, wobei der Drehstrom motor (2) einen ersten Teilmotor (6) und einen zweiten Teil motor (7) aufweist.
3. Antriebsmaschine (1) nach Anspruch 1 oder 2, wobei der Zwischenkreiskapazität eine Vielzahl von Kondensatoren auf weist.
4. Antriebsmaschine (1) nach einem der Ansprüche 1 bis 3, wo bei Widerstände (11,12,13,14) zum Vorladen und/oder Entladen der Zwischenkreiskapazität vorgesehen sind, wobei die Wider stände für ein Vorladen und/oder Entladen von wenigen Sekun den ausgelegt sind, insbesondere von weniger wie fünf Sekun den oder weniger wie zwei Sekunden.
5. Antriebsmaschine (1) nach einem der Ansprüche 1 bis 4, wo bei die Energiequelle (3,4) eine Batterie und/oder eine
Brennstoffzelle aufweist.
6. Verfahren zum Betrieb einer Antriebsmaschine (1) eines U- Bootes, wobei in einem ersten Drehzahlbereich Teilenergie quellen in einem Parallelbetrieb betrieben werden und in ei nem zweiten Drehzahlbereich, welcher größer ist als der erste Drehzahlberiech, die Teilenergiequellen in einem seriellen Betrieb betrieben werden.
7. Verfahren nach Anspruch 6, wobei zum Wechsel der Drehzahl bereiche ein Stromrichter für einen Drehstrommotor (2), wel cher als Antriebsmotor dient, gesperrt wird.
8. Verfahren nach einem der Ansprüche 6 bis 7, wobei eine An triebsmaschine (1) nach einem der Ansprüche 1 bis 5 verwendet wird .
PCT/EP2019/063914 2018-05-30 2019-05-29 Antriebsmaschine für ein u-boot und ein betriebsverfahren WO2019229107A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018208617.6 2018-05-30
DE102018208617.6A DE102018208617A1 (de) 2018-05-30 2018-05-30 Antriebsmaschine für ein U-Boot und ein Betriebsverfahren

Publications (1)

Publication Number Publication Date
WO2019229107A1 true WO2019229107A1 (de) 2019-12-05

Family

ID=66821191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/063914 WO2019229107A1 (de) 2018-05-30 2019-05-29 Antriebsmaschine für ein u-boot und ein betriebsverfahren

Country Status (2)

Country Link
DE (1) DE102018208617A1 (de)
WO (1) WO2019229107A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020211176A1 (de) 2020-09-04 2021-08-05 Thyssenkrupp Ag Antriebseinheit eines Unterwasserfahrzeugs mit einem ersten und einem zweiten Betriebsmodus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070159007A1 (en) * 2006-01-09 2007-07-12 General Electric Company Energy storage system for electric or hybrid vehicle
WO2008137246A2 (en) * 2007-05-07 2008-11-13 General Electric Company Propulsion system
EP2599656A1 (de) * 2010-07-30 2013-06-05 Mitsubishi Electric Corporation Steuerungsvorrichtung zum antrieb eines elektrofahrzeugs und schienenfahrzeugsystem

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070159007A1 (en) * 2006-01-09 2007-07-12 General Electric Company Energy storage system for electric or hybrid vehicle
WO2008137246A2 (en) * 2007-05-07 2008-11-13 General Electric Company Propulsion system
EP2599656A1 (de) * 2010-07-30 2013-06-05 Mitsubishi Electric Corporation Steuerungsvorrichtung zum antrieb eines elektrofahrzeugs und schienenfahrzeugsystem

Also Published As

Publication number Publication date
DE102018208617A1 (de) 2019-12-05

Similar Documents

Publication Publication Date Title
EP3213952B1 (de) Elektrisches antriebssystem für ein luftfahrzeug sowie betriebsverfahren
EP2424747B1 (de) Elektrisch antreibbares kraftfahrzeug
EP2619842B1 (de) Energieversorgungsnetz und verfahren zum laden mindestens einer als energiespeicher für einen gleichspannungszwischenkreis dienenden energiespeicherzelle in einem energieversorgungsnetz
EP2659566B1 (de) Steuerbarer energiespeicher und verfahren zum betreiben eines steuerbaren energiespeichers
DE102017207944A1 (de) Batterievorrichtung mit zumindest einem Modulstrang, in welchem Moduleinheiten in einer Reihe hintereinander verschaltet sind, sowie Kraftfahrzeug und Betriebsverfahren für die Batterievorrichtung
WO2016005101A1 (de) Umrichter mit redundanter schaltungstopologie
DE102012205395A1 (de) Batteriesystem, Verfahren zum Laden von Batteriemodulen, sowie Verfahren zum Balancieren von Batteriemodulen
DE102011003859A1 (de) System zum Laden eines Energiespeichers und Verfahren zum Betrieb des Ladesystems
DE102011089655A1 (de) Batteriesystem und Verfahren
WO2012038176A2 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
DE102017115506A1 (de) Steuervorrichtung für einen Inverter
DE102016015314A1 (de) Elektrisches Antriebssystem für ein Fahrzeug und Verfahren zu dessen Betrieb
WO2013107567A2 (de) Kraftfahrzeug, batterie und verfahren zum steuern einer batterie
DE102011003863A1 (de) System zum Laden eines Energiespeichers und Verfahren zum Betrieb des Ladesystems
WO2013167465A1 (de) Verfahren und vorrichtung zum einstellen der ladezustände einer batterie
WO2019145081A1 (de) Schaltungsanordnung für einen umrichter, verfahren zum betrieb eines umrichters und luftfahrzeug mit einer derartigen schaltungsanordnung
WO2012038210A2 (de) Energieversorgungsnetz und verfahren zum laden mindestens einer als energiespeicher für einen gleichspannungszwischenkreis dienenden energiespeicherzelle in einem energieversorgungsnetz
WO2019229107A1 (de) Antriebsmaschine für ein u-boot und ein betriebsverfahren
DE102016012876A1 (de) Elektrisches Antriebssystem für ein Fahrzeug
DE102010041068A1 (de) System zum Laden eines Energiespeichers und Verfahren zum Betrieb des Ladesystems
DE102014223224A1 (de) Antriebseinrichtung und Verfahren zum Betrieb einer Antriebseinrichtung
DE102016110870A1 (de) Aufladesystem zum Aufladen einer Hochvoltbatterie eines elektrisch angetriebenen Fahrzeugs
DE102012208349A1 (de) Verfahren und Vorrichtung zum Einstellen der Ladezustände von Batteriemodulen einer Batterie
DE102010064314A1 (de) System zur Ankopplung mindestens einer Wechselstromquelle an einen steuerbaren Energiespeicher und zugehöriges Betriebsverfahren
DE102014004234A1 (de) Spannungssteller auf Basis einer Einzelzellschaltung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19729650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19729650

Country of ref document: EP

Kind code of ref document: A1