WO2019228238A1 - 一种激光扫描成像设备 - Google Patents

一种激光扫描成像设备 Download PDF

Info

Publication number
WO2019228238A1
WO2019228238A1 PCT/CN2019/087950 CN2019087950W WO2019228238A1 WO 2019228238 A1 WO2019228238 A1 WO 2019228238A1 CN 2019087950 W CN2019087950 W CN 2019087950W WO 2019228238 A1 WO2019228238 A1 WO 2019228238A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
imaging device
gray value
light
scanning imaging
Prior art date
Application number
PCT/CN2019/087950
Other languages
English (en)
French (fr)
Inventor
宋海涛
姚长呈
Original Assignee
成都理想境界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都理想境界科技有限公司 filed Critical 成都理想境界科技有限公司
Publication of WO2019228238A1 publication Critical patent/WO2019228238A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Definitions

  • the invention relates to the field of laser scanning projection, in particular to a laser scanning imaging device.
  • Laser scanning imaging refers to the use of a laser as a light source to scan the image surface in a preset manner through a laser scanning imaging device, and at the same time change the color of the emitted laser light accordingly, so that laser scanning imaging can be achieved on the image surface.
  • the scanning point corresponding to the laser scanning imaging device starts to control the light source when entering the pixel area 101.
  • the laser starts to emit light of the corresponding color.
  • the light spot emitted by the light source forms a spot 111 on the image surface.
  • the laser in the light source is controlled to stop emitting light, and starts after the scanning point enters the pixel area 102.
  • the laser in the control light source starts to emit light of the corresponding color, and the laser in the light source is controlled to stop emitting light when leaving the pixel area 102.
  • the output of the laser will experience a gray value from 0 to the corresponding gray of the current pixel.
  • the value changes to 0 again, so the requirements on the laser's response capability are higher.
  • the gray value of a color channel of two consecutive pixels is 139 and 150, respectively, the gray value of the light emitted by the laser will go through the process of "0 ⁇ 139 ⁇ 0 ⁇ 150 ⁇ 0", and with the scan to be scanned
  • the resolution of the image is getting higher and higher, and the modulation frequency of the laser is getting higher and higher.
  • the shortest time is at the level of 10 nanoseconds. Such continuous high-frequency pulse modulation will cause the performance of the circuit and the laser to decrease, thereby reducing laser scanning imaging. Equipment life.
  • Embodiments of the present invention provide a laser scanning imaging device, which is used to solve the technical problems of high requirements on the laser response capability existing in the prior art, and the technical problems of continuous high-frequency pulse modulation causing the performance of circuits and lasers to decrease. .
  • an embodiment of the present invention provides a laser scanning imaging device, including a processor and a laser scanning imaging device.
  • the laser scanning imaging device includes a light source and a scanner. Color light is combined, the light source includes two sets of lasers, each set of lasers includes three lasers emitting the three different color lights, and the two sets of lasers emit two lasers of the same color and an image to be scanned.
  • the processor controls one of the two lasers corresponding to the color channel that satisfies the condition to continuously emit light of a first gray value, and the other laser emits a difference between a gray value of the current pixel and the first gray value.
  • Light with a grayscale value where 0 ⁇ the first grayscale value ⁇ the minimum grayscale value of the plurality of pixels in the corresponding color channel.
  • the sum of the maximum grayscale values of two lasers emitting the same color light from the light source is greater than the maximum grayscale value of the corresponding color channel in the color mode used by the laser scanning imaging device.
  • the maximum grayscale value of the light emitted by the laser emitting the light of the first grayscale value is greater than or equal to half of the maximum grayscale value of the corresponding color channel.
  • the first gray value corresponds to the plurality of pixels. There is a fixed difference between the minimum gray values of the color channels.
  • the maximum grayscale value of the light emitted by the laser emitting the first grayscale value is less than the minimum grayscale value of the plurality of pixels in the corresponding color channel, 0 ⁇ the first grayscale value ⁇ The maximum grayscale value of the light emitted by the laser emitting the first grayscale value.
  • the processor controls the two sets of lasers to jointly emit a color channel corresponding to the current pixel Corresponding light.
  • the laser scanning imaging device buffers the color information of the pixels of the image to be scanned in advance, and the processor determines, based on the buffered color information of the pixels, a plurality of consecutive multiples whose range is within the preset range. Pixels.
  • the three lasers are specifically a red laser, a green laser, and a blue laser.
  • the scanner is a MEMS galvanometer or a scanning fiber.
  • the laser scanning imaging device further includes a light coupling unit, the light coupling unit is disposed between an output end of the light source and an incidence end of the scanning fiber.
  • a lens structure is provided at an incident end of the scanning fiber.
  • the laser scanning imaging device further includes an optical magnifying glass group including at least one optical lens, and the optical magnifying glass group is disposed at an exit end of the laser scanning imaging device.
  • One of the two lasers continuously emits the light of the first gray value, and the other laser emits the light of the difference between the gray value of the current pixel and the first gray value.
  • the two light rays are combined to correspond to the current pixel.
  • the light of the gray value required by the color channel ensures that the gray value of the light emitted by the laser scanning imaging device is equal to the gray value of the current pixel.
  • this solution avoids high-frequency modulation of the laser that continuously emits light of the first gray value, so it solves the technical problem that the continuous high-frequency pulse modulation causes the performance of the circuit and the laser to decrease, and improves the
  • the service life of the laser scanning imaging device is synthesized by the light emitted by the two lasers into the light emitted by the laser scanning imaging device, which reduces the maximum gray value output by each laser and reduces the response to the laser. Therefore, it solves the technical problem of high requirements on the response ability of the laser, thereby improving the stability of the laser scanning imaging device during use, and also reducing the production cost of the laser scanning imaging device.
  • FIG. 1 is a schematic diagram of laser scanning imaging in the prior art
  • FIG. 2 is a schematic structural diagram of a laser scanning imaging device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a light source according to an embodiment of the present invention.
  • 4A is a schematic diagram of laser scanning imaging through a MEMS galvanometer
  • 4B is a schematic diagram of laser scanning imaging by scanning an optical fiber
  • FIG. 5 is a schematic diagram of scanning two consecutive pixels according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a laser scanning imaging device including a light coupling unit
  • FIG. 7 is a schematic structural diagram of a lens fiber.
  • Embodiments of the present invention provide a laser scanning imaging device, which is used to solve the technical problems of high requirements on the laser response capability existing in the prior art, and the technical problems of continuous high-frequency pulse modulation causing the performance of circuits and lasers to decrease. .
  • FIG. 2 is a schematic structural diagram of a laser scanning imaging apparatus according to an embodiment of the present invention.
  • the laser scanning imaging device includes a processor 201 and a laser scanning imaging device 202.
  • the laser scanning imaging device 202 includes a light source 2021 and a scanner 2022.
  • the light emitted by the light source 2021 is composed of three different colors of light.
  • the light source 2021 includes two sets of lasers. Each set of lasers includes three lasers emitting three different colors of light. The two lasers of the two sets of lasers emitting the same color of light and one color channel of each pixel in the image to be scanned. correspond.
  • the image to be scanned uses the RGB color mode, that is, each pixel in the image to be scanned has a red channel, a green channel, and a blue channel.
  • the two red lasers in the light source 2021 correspond to the red channel
  • the two green lasers correspond to the green channel.
  • Channels correspond
  • two blue lasers correspond to blue channels.
  • the light emitted by the light source 2021 is a combination of red laser, green laser, and blue laser.
  • FIG. 3 is an embodiment of the present invention.
  • a set of lasers includes a red laser 20211, a green laser 20212, a blue laser 20213, and a light combining unit 20214.
  • the red laser 20211 may specifically be a red laser light source
  • the green laser 20212 may specifically be a green laser light source, blue.
  • the laser 20213 may specifically be a blue laser light source, which is not limited herein.
  • the light combining unit 20214 includes a red light combining unit 202141 provided at the output end of the red laser 20211, a green light combining unit 202142 provided at the output end of the green laser 20212, and blue light provided at the output end of the blue laser 20213.
  • Combined light unit 202143 As shown in FIG. 3, in this embodiment, the red light combining unit 202141 is specifically an anti-red light filter provided at the output end of the red laser 20211, and the green light combining unit 202142 is specifically provided at the output end of the green laser 20212.
  • the red-transmitting and anti-green color filter, the blue-light combining unit 202143 is specifically an anti-red-green and blue-transmitting color filter provided at the output end of the blue laser 20213.
  • the green light filter and the inverse red-green light-transmitting blue light filter can combine the light emitted by the red laser 20211, the green laser 20212, or the blue laser 20213, respectively.
  • the characteristics of the reflected light or transmitted light of each light combining unit in the light combining unit 20214 will be correspondingly different. There are no restrictions. Please continue to refer to FIG. 2.
  • the light emitted by the two sets of lasers in the light source 2021 is combined by a light combining device, which can be used for scanning by a laser scanning imaging device, which will not be repeated here.
  • the light emitted by the light source 2021 may also be a combination of the light emitted by the lasers of the same color channel in the two sets of lasers.
  • the light emitted by the two red lasers is first combined and the two green The light from the laser is combined, the light from the two blue lasers is combined, and the combined light is combined by the light combining device.
  • the obtained light can also be used for scanning by laser scanning imaging equipment. I will not repeat them here.
  • a red laser can emit a red laser with a wavelength of 638 nm
  • a green laser can emit a green laser with a wavelength of 532 nm
  • a blue laser can emit a blue laser with a wavelength of 450 nm.
  • those skilled in the art can also select three lasers capable of outputting other suitable color light as a light source according to the actual situation. These three lasers need to be in the color mode used by the image to be scanned. Each color channel has a one-to-one correspondence to meet the needs of the actual situation, and it will not be repeated here.
  • the scanner 2022 may be a MEMS galvanometer or a scanning fiber, please refer to FIGS. 4A and 4B.
  • FIG. 4A is a schematic diagram of laser scanning imaging through a MEMS galvanometer. As shown in FIG. 4A, the light emitted from the light source 2021 is incident on the MEMS galvanometer 301. The vibration of the MEMS galvanometer 301 can scan and change the light source The color of the light emitted from 2021 can achieve the purpose of laser scanning imaging. Please continue to refer to FIG. 4B.
  • FIG. 4B is a schematic diagram of laser scanning imaging by scanning the optical fiber. As shown in FIG.
  • the cantilever 3021 vibrates under the action of a driving device such as a piezoelectric ceramic driver, so that the light emitted from the optical fiber cantilever 3021 can be scanned, and the color of the light emitted from the light source 2021 can be changed, that is, the purpose of laser scanning imaging can be achieved.
  • a driving device such as a piezoelectric ceramic driver
  • FIG. 5 is a schematic diagram of scanning two consecutive pixels according to an embodiment of the present invention.
  • the image to be scanned uses the RGB color mode, in which pixels 501 and 502 are used.
  • the value of pixel 501 on the three color channels of R, G, and B is (139, 10, 80)
  • the value of pixel 502 on the three color channels of R, G, and B is (150, 205, 205)
  • the difference between the two pixels on the red channel is 11, here, assuming that the preset range of the difference x between the gray values of the color channels is 0 ⁇ x ⁇ 40, then the pixel 501 and 502 can be determined.
  • the difference between the gray values of the red channels between the two is within a preset range. Further, when the laser scanning imaging device scans the pixels 501 and 502, the light emitted by the two red lasers is combined into the red of the pixels 501 and 502.
  • the light corresponding to the gray value of the channel that is, the processor 201 controls one red laser in the light source 2021 to emit light of the first gray value, and controls the other red laser to emit the gray value of the current pixel and the first gray value. Poor light.
  • the first grayscale value should satisfy: 0 ⁇ first grayscale value ⁇ the minimum grayscale value of the multiple pixels in the corresponding color channel. Please continue to refer to FIG. 5.
  • the minimum value of the pixels 501 and 502 in the red channel is 139, so the first gray value should be less than or equal to 139. That is, when the laser scanning imaging device scans the pixels 501 and 502, it can be controlled.
  • One red laser continuously emits light with a gray value of 139
  • the other red laser emits light with a gray value of 0 or does not emit light when scanning pixel 501, and emits a light with gray value 11 when scanning pixel 502.
  • a laser continuously emits light with a gray value of 139.
  • the light emitted by a laser will go through the process of “0 ⁇ (0) ⁇ 0 ⁇ 11 ⁇ 0”.
  • the higher the gray level of the light that needs to be emitted the exponential the requirement for the laser's response capability The level rises, thus significantly reducing the requirements on the laser's response capability during the laser scanning imaging process.
  • one red laser can also be controlled to continuously emit light with a gray value of 130
  • another red laser can emit light with a gray value of 9 when scanning pixel 501, and can emit light with a gray value of 20 when scanning pixel 502.
  • one laser continuously emits light with a gray value of 130, and the other The light emitted by the laser will go through the process of "0 ⁇ 9 ⁇ 0 ⁇ 20 ⁇ 0".
  • the response ability to the laser during the laser scanning imaging process is significantly reduced.
  • the maximum gray value of the light emitted by the laser emitting the first gray value is greater than or equal to the maximum value of the corresponding color channel, for example, the The maximum gray value is 255, and the maximum value of the corresponding color channel in the image to be scanned is 255.
  • the first gray value can be set to have a fixed difference between the minimum gray value of the corresponding color channel and multiple pixels. The difference can be 0, 1, or 2 and so on, and there is no limitation here.
  • the maximum grayscale value of the light emitted by the laser emitting the first grayscale value is less than the minimum grayscale value of the plurality of pixels in the corresponding color channel, 0 ⁇ the first grayscale value ⁇ emission of the first grayscale value is satisfied.
  • the maximum gray value of light emitted by a gray laser it is necessary to ensure that the gray value of the combined light emitted by two lasers in the same color channel can be equal to the gray value of the current pixel.
  • the first grayscale value can be any value between 1 and 200, such as 180, of course, and the sum of the gray value of the light emitted by another laser corresponding to the color channel and the first gray value must be equal to the gray value of the current pixel
  • the maximum gray value of the light emitted by another laser needs to be greater than or equal to 60.
  • the processor controls the two sets The lasers collectively emit light corresponding to the color channel corresponding to the current pixel.
  • the gray value of the light emitted by the two sets of lasers can be set according to the actual situation.
  • the gray value of the light emitted by the two sets of lasers is half of the gray value of the corresponding color channel of the current pixel.
  • Scanning may be performed in a normal manner or in a conventional manner, and details are not described herein again.
  • the combination of the rays of the road is the rays of the gray value required by the color channel of the current pixel, which ensures that the gray value of the light emitted by the laser scanning imaging device is equal to the gray value of the current pixel.
  • the service life of the imaging device is synthesized by the light emitted by the two lasers into the light emitted by the laser scanning imaging device, which reduces the maximum gray value output by each laser and reduces the requirements for the laser's response capability Therefore, it solves the technical problem of high requirements on the response capability of the laser, thereby improving the stability of the laser scanning imaging device during use, and also reducing the production cost of the laser scanning imaging device.
  • the sum of the maximum gray values of two lasers in the light source 2021 that emit light of the same color is greater than the maximum gray value of the corresponding color channel in the color mode used by the laser scanning imaging device.
  • the maximum value of the first gray value is small, such as single digits or two digits, another laser still needs to have a higher response capability, and the laser will still Perform high-frequency modulation, which makes less progress compared to the prior art. Therefore, preferably, the maximum gray value of the laser capable of emitting light of the first gray value is greater than or equal to half of the maximum value of the corresponding color channel, so that at least half of the response capacity of the laser can be reduced. Requirements.
  • the two lasers corresponding to the color channels that meet the conditions are accurately controlled.
  • One of the lasers continuously emits light of the first gray value, and the other laser emits light of the difference between the gray value of the current pixel and the first gray value.
  • the laser scanning imaging device may also buffer the pixels of the image to be scanned in advance.
  • the specific color information can be buffered for the next or multiple rows of pixels to be scanned. In this way, the processor 201 can analyze the buffered pixels and extract the color information of all pixels.
  • the processing speed of the laser scanning imaging device is fast enough, such as the reading speed of the image to be scanned, the analysis speed of the color information of the image to be scanned, and the speed of the output control parameters, etc., There is no need for the laser scanning imaging device to buffer the color information of the pixels of the image to be scanned in advance.
  • the incident end of the scanning optical fiber is provided with a lens structure, that is, the scanning optical fiber is specifically a lensed fiber with a lens structure disposed at the incident end.
  • the scanning optical fiber may be sintered Or form a spherical, wedge-shaped, or tapered lens at one end of the fiber by grinding or other methods to increase the numerical aperture of the scanning fiber, thereby improving the light receiving efficiency of the scanning fiber.
  • FIG. 7 is a schematic structural diagram of a lens optical fiber. As shown in FIG. 7, the lens optical fiber is 71, and an incident end of the lens optical fiber is provided with a spherical lens structure 701.
  • the laser scanning imaging device further includes an optical magnifying lens group 203.
  • the optical magnifying lens group 203 includes at least one optical lens.
  • the specific lens quantity and lens parameter settings are Meeting the needs of the actual situation shall prevail and there is no restriction here.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” or “including” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the invention can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In the unit claim listing several devices, several of these devices may be embodied by the same hardware item.
  • the use of the words first, second, and third does not indicate any order, and these words can be interpreted as names.
  • One of the two lasers continuously emits the light of the first gray value, and the other laser emits the light of the difference between the gray value of the current pixel and the first gray value.
  • the two light rays are combined to correspond to the current pixel.
  • the light of the gray value required by the color channel ensures that the gray value of the light emitted by the laser scanning imaging device is equal to the gray value of the current pixel.
  • the service life of the imaging device is synthesized by the light emitted by the two lasers into the light emitted by the laser scanning imaging device, which reduces the maximum gray value output by each laser and reduces the requirements for the laser's response capability Therefore, it solves the technical problem of high requirements on the response capability of the laser, thereby improving the stability of the laser scanning imaging device during use, and also reducing the production cost of the laser scanning imaging device.
  • the invention is not limited to the foregoing specific embodiments.
  • the invention extends to any new feature or any new combination disclosed in this specification, and to any new method or process step or any new combination disclosed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

一种激光扫描成像设备,包括处理器(201)和激光扫描成像装置(202),光源(2021)包括两套激光器,每套激光器包括分别出射三种不同色彩光线的三个激光器,所述两套激光器中出射同一色彩光线的两个激光器与待扫描图像中每个像素的一个色彩通道对应;在对待扫描图像中连续的多个像素进行扫描的过程中,多个像素有至少一个色彩通道的灰度值的极差在一预设范围内,处理器控制满足该条件的色彩通道所对应的两个激光器中的一个激光器持续出射第一灰度值的光线,另一个激光器出射当前像素的灰度值与第一灰度值之差的光线,避免了对持续出射第一灰度值的光线的激光器的高频调制,也降低了对激光器的响应能力的要求。

Description

一种激光扫描成像设备
本申请要求享有2018年5月31日提交的名称为“一种激光扫描成像设备”的中国专利申请CN201810544810.1的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及激光扫描投影领域,尤其涉及一种激光扫描成像设备。
背景技术
激光扫描成像是指利用激光作为光源,通过激光扫描成像装置在像面上按照预设的方式进行扫描,同时相应改变出射激光的色彩,这样便能够在像面上实现激光扫描成像。
目前,实现激光扫描成像的过程,请参考图1,激光扫描成像装置对应的扫描点(其中扫描点是指激光扫描成像装置当前时刻所扫描的位置)在进入像素区域101即开始控制光源中的激光器开始出射对应色彩的光线,光源出射的光线在像面上形成的光斑111,扫描点在离开该像素区域101后控制光源中的激光器停止出射光线,,并在扫描点进入像素区域102后开始控制光源中的激光器开始出射对应色彩的光线,并在离开像素区域102控制光源中的激光器停止出射光线,也即每扫描一个像素,激光器的输出都会经历灰度值从0至当前像素对应灰度值再到0这样一个变化,这样对激光器的响应能力的要求较高。例如连续两个像素某一色彩通道的灰度值分别为139和150,则激光器出射的光线的灰度值会经历“0→139→0→150→0”这一过程,并且随着待扫描图像的分辨率越来越高,对激光器的调制频率也越来越高,最短时间在10纳秒级别,这样持续的高频的脉冲调制会导致电路和激光器的性能下降,从而减少激光扫描成像设备的使用寿命。
发明内容
本发明实施例提供一种激光扫描成像设备,用以解决现有技术中存在的对激光器的响应能力的要求较高的技术问题以及持续的高频脉冲调制导致电路和激光器的性能下降的技术问题。
为了实现上述发明目的,本发明实施例提供了一种激光扫描成像设备,包括处理器和 激光扫描成像装置,所述激光扫描成像装置包括光源和扫描器,所述光源出射的光线由三种不同色彩的光线组合而成,所述光源包括两套激光器,每套激光器包括分别出射所述三种不同色彩光线的三个激光器,所述两套激光器中出射同一色彩的两个激光器与待扫描图像中每个像素的一个色彩通道对应;
在对所述待扫描图像中连续的多个像素进行扫描的过程中,当满足所述多个像素有至少一个色彩通道的灰度值的极差在一预设范围内的条件时,则所述处理器控制满足该条件的色彩通道所对应的两个激光器中的一个激光器持续出射第一灰度值的光线,另一个激光器出射当前像素的灰度值与所述第一灰度值之差灰度值的光线,其中,0<第一灰度值≤所述多个像素在对应色彩通道的最小灰度值。
可选地,所述光源中两个出射相同色彩光线的激光器出射光线的最大灰度值之和,大于所述激光扫描成像设备所采用的色彩模式中对应色彩通道的最大灰度值。
可选地,出射所述第一灰度值的光线的激光器所出射光线的最大灰度值大于或等于对应色彩通道的最大灰度值的一半。
可选地,在出射所述第一灰度值的激光器出射光线的最大灰度值大于或等于对应色彩通道的最大灰度值时,所述第一灰度值与所述多个像素在对应色彩通道的最小灰度值之间具有固定差值。
可选地,在出射所述第一灰度值的激光器出射光线的最大灰度值小于所述多个像素在对应色彩通道的最小灰度值时,满足0<所述第一灰度值≤出射所述第一灰度值的激光器出射光线的最大灰度值。
可选地,当所述多个像素的任一色彩通道的灰度值的极差在所述预设范围之外时,所述处理器控制所述两套激光器共同出射当前像素对应的色彩通道对应的光线。
可选地,所述激光扫描成像设备预先缓存所述待扫描图像的像素的色彩信息,所述处理器根据缓存的像素的色彩信息,确定极差在所述预设范围内的连续的多个像素。
可选地,所述三个激光器具体为红色激光器、绿色激光器和蓝色激光器。
可选地,所述扫描器具体为MEMS振镜或者扫描光纤。
可选地,在所述扫描器具体为扫描光纤时,所述激光扫描成像装置还包括光耦合单元,所述光耦合单元设置于所述光源的出射端以及所述扫描光纤的入射端之间。
可选地,所述扫描光纤的入射端设置有透镜结构。
可选地,所述激光扫描成像设备还包括光学放大镜组,所述光学放大镜组包括至少一 个光学透镜,所述光学放大镜组设置于所述激光扫描成像装置的出射端。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
通过两个激光器中一个激光器持续出射第一灰度值的光线,以及另一个激光器出射当前像素的灰度值与第一灰度值之差的光线的方案,将两路光线组合为当前像素对应色彩通道所需要的灰度值的光线,保证了激光扫描成像设备出射的光线的灰度值等于当前像素的灰度值。与现有技术相比,该方案避免了对持续出射第一灰度值的光线的激光器的高频调制,所以解决了持续的高频脉冲调制导致电路和激光器的性能下降的技术问题,提高了激光扫描成像设备的使用寿命,另一方面由于通过两个激光器出射的光线来合成为激光扫描成像设备出射的光线,降低了每个激光器输出的最高灰度值,也降低了对激光器的响应能力的要求,所以解决了对激光器的响应能力的要求较高的技术问题,从而提高了激光扫描成像设备在使用过程中的稳定性,并且也降低了激光扫描成像设备的生产成本。
附图说明
图1为现有技术中激光扫描成像的示意图;
图2为本发明实施例提供的激光扫描成像设备的结构示意图;
图3为本发明实施例提供的光源的结构示意图;
图4A为通过MEMS振镜进行激光扫描成像的示意图;
图4B为通过扫描光纤进行激光扫描成像的示意图;
图5为本发明实施例提供的对连续的两个像素进行扫描的示意图;
图6为激光扫描成像装置包括光耦合单元的结构示意图;
图7为透镜光纤的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种激光扫描成像设备,用以解决现有技术中存在的对激光器的响应能力的要求较高的技术问题以及持续的高频脉冲调制导致电路和激光器的性能下降的 技术问题。
本发明实施例提供一种激光扫描成像设备,请参考图2,图2为本发明实施例提供的激光扫描成像设备的结构示意图。如图2所示,该激光扫描成像设备包括处理器201和激光扫描成像装置202,激光扫描成像装置202包括光源2021和扫描器2022,光源2021出射的光线由三种不同色彩的光线组合而成,光源2021包括两套激光器,每套激光器包括分别出射三种不同色彩光线的三个激光器,所述两套激光器中出射同一色彩光线的两个激光器与待扫描图像中每个像素的一个色彩通道对应。例如待扫描图像采用RGB色彩模式,也即待扫描图像中每个像素都具有红色通道、绿色通道和蓝色通道,则光源2021中的两个红色激光器与红色通道对应,两个绿色激光器与绿色通道对应,两个蓝色激光器与蓝色通道对应。
在具体实施过程中,若激光扫描成像设备采用RGB色彩模式,则光源2021出射的光线由红色激光、绿色激光和蓝色激光组合而成,请参考图3,图3为本发明实施例提供的光源2021中的一套激光器的结构示意图。如图3所示,一套激光器包括红色激光器20211、绿色激光器20212、蓝色激光器20213和合光单元20214,其中红色激光器20211具体可以是红色激光光源,绿色激光器20212具体可以是绿色激光光源,蓝色激光器20213具体可以是蓝色激光光源,在此不做限制。在本实施例中,合光单元20214包括设置于红色激光器20211的出射端的红光合光单元202141、设置于绿色激光器20212的出射端的绿光合光单元202142和设置于蓝色激光器20213的出射端的蓝光合光单元202143。如图3所示,在本实施例中,红光合光单元202141具体为设置于红色激光器20211的出射端的反红光滤色片,绿光合光单元202142具体为设置于绿色激光器20212的出射端的透红光反绿光滤色片,蓝光合光单元202143具体为设置于蓝色激光器20213的出射端的反红绿光透蓝光滤色片,这样,通过反红光滤色片、透红光反绿光滤色片和反红绿光透蓝光滤色片,即能够将红色激光器20211、绿色激光器20212或蓝色激光器20213各自出射的光线组合在一起。在其他实施例中,根据红色激光器20211、绿色激光器20212和蓝色激光器20213之间的光路设计的不同,合光单元20214中各个合光单元的反射光或透射光的特性也会相应不同,在此不做限制。请继续参考图2,光源2021中两套激光器出射的光线再通过一个合光器件组合在一起,即能够用于激光扫描成像设备进行扫描,在此就不再赘述了。
在另一实施例中,光源2021出射的光线还可以是先将两套激光器中相同色彩通道的激光器出射的光线组合在一起,例如先将两个红色激光器出射的光线组合在一起,两个绿色激光器出射的光线组合在一起,两个蓝色激光器出射的光线组合在一起,并且将组合之 后的光线再通过合光器件进行组合,所获得的光线也能够用于激光扫描成像设备进行扫描,在此就不再赘述了。
在接下来的部分中,将以三个激光器具体为红色激光器、绿色激光器和蓝色激光器为例来进行介绍。例如,红色激光器可以出射波长为638nm的红色激光,绿色激光器可以出射波长为532nm的绿色激光,蓝色激光器可以出射波长为450nm的蓝色激光。当然了,在实际应用中,本领域所属的技术人员还可以根据实际情况,选择能够输出其他合适色彩光线的三个激光器组合成为光源,这三个激光器需要和待扫描图像所采用的色彩模式中各个色彩通道一一对应,以满足实际情况的需要,在此就不再赘述了。
在具体实施过程中,扫描器2022可以是MEMS振镜或者扫描光纤,请参考图4A和图4B。图4A为通过MEMS振镜进行激光扫描成像的示意图,如图4A所示,从光源2021出射的光线入射在MEMS振镜301上,通过MEMS振镜301的振动即能够实现扫描,同时改变从光源2021出射的光线的色彩,即能够实现激光扫描成像的目的。请继续参考图4B,图4B为通过扫描光纤进行激光扫描成像的示意图,如图4B所示,从光源2021出射的光纤被耦合至扫描光纤302中后,扫描光纤302的出射端,也即光纤悬臂3021在压电陶瓷驱动器等驱动装置的作用下振动,从而使得从光纤悬臂3021出射的光线能够实现扫描,同时改变从光源2021出射的光线的色彩,即能够实现激光扫描成像的目的。在实际应用中,本领域所属的技术人员还能够根据实际情况,选择其他合适的方式来实现激光扫描成像,在此就不再赘述了。
在具体实施过程中,请参考图5,图5为本发明实施例提供的对连续的两个像素进行扫描的示意图,如图5所示,待扫描图像采用RGB色彩模式,其中像素501和502为相邻两个像素,像素501在R、G和B三个色彩通道上的数值为(139,10,80),像素502在R、G和B三个色彩通道上的数值为(150,205,205),两个像素在红色通道上的极差为11,这里假设色彩通道的灰度值的极差x所在的预设范围为0≤x≤40,则可确定像素501和502之间的红色通道的灰度值的极差在预设范围之内,进一步地,在激光扫描成像设备对像素501和502进行扫描时,两个红色激光器出射的光线组合成像素501和502中红色通道对应灰度值的光线,也即,处理器201控制光源2021中一个红色激光器出射第一灰度值的光线,并控制另一个红色激光器出射当前像素的灰度值与第一灰度值之差的光线。在本实施例中,第一灰度值应满足:0<第一灰度值≤所述多个像素在对应色彩通道的最小灰度值。请继续参考图5,像素501和502在红色通道的最小值为139,因此第一灰度值小于等于139即可,也就是说,在激光扫描成像设备扫描像素501和502的时候,可以控制一个红色激光器持续出射灰度值为139的光线,另一个红色激光器在扫描像素 501时出射灰度值为0的光线或者不出射光线,在扫描像素502时出射灰度值为11的光线,这样,与现有技术中激光器出射的光线的灰度值会经历“0→139→0→150→0”这一过程相比,本实施例中一个激光器持续出射灰度值为139的光线,另一个激光器出射的光线会经历“0→(0)→0→11→0”这一过程,对激光器而言,需要出射的光线的灰阶等级越高,则对激光器的响应能力的要求呈指数级上升,因此明显降低了在激光扫描成像过程中对激光器的响应能力的要求。
当然,也可以控制一个红色激光器持续出射灰度值为130的光线,另一个红色激光器在扫描像素501时出射灰度值为9的光线,在扫描像素502时出射灰度值为20的光线,与现有技术中激光器出射的光线的灰度值会经历“0→139→0→150→0”这一过程相比,本实施例中一个激光器持续出射灰度值为130的光线,另一个激光器出射的光线会经历“0→9→0→20→0”这一过程,同理,也明显降低了在激光扫描成像过程中对激光器的响应能力。
在具体实施过程中,在出射所述第一灰度值的激光器出射光线的最大灰度值大于或等于对应色彩通道的最大值时,例如,出射所述第一灰度值的激光器出射光线的最大灰度值为255,待扫描图像中对应色彩通道的最大值为255,则第一灰度值可以设置为与多个像素在对应色彩通道的最小灰度值之间具有固定差值,固定差值可以为0、1或2等等,在此不做限制。
在出射所述第一灰度值的激光器出射光线的最大灰度值小于所述多个像素在对应色彩通道的最小灰度值时,满足0<所述第一灰度值≤出射所述第一灰度值的激光器出射光线的最大灰度值。当然了,此时需要保证同一色彩通道下两个激光器出射的光线组合后的灰度值能够等于当前像素的灰度值。例如,出射所述第一灰度值的激光器出射光线的最大灰度值为200,多个像素在对应色彩通道的最小灰度值为220、最大灰度值为240,则第一灰度值可以为1~200之间的任意值,比如可以为180,当然,而对应色彩通道的另一激光器出射的光线的灰度值与第一灰度值之和要能够等于当前像素的灰度值,比如另一激光器出射的光线的最大灰度值需要大于或等于60。
在介绍完对像素501和502的扫描过程中控制两个激光器出射相应灰度值光线的具体过程之后,本领域的技术人员能够推断得知,在三个或者更多个像素、以及在两个色彩通道或者三个色彩通道的灰度值的极差在预设范围内时,控制光源中各个激光器出射相应灰度值光线的具体过程,在此就不再赘述了。
当然了,在实际应用中,本领域的技术人员可以根据实际情况,调整灰度值的极差在 预设范围内的色彩通道对应的两个激光器各自出射光线的灰度值,以满足实际情况的需要,在此就不再赘述了。
在待扫描图像中,在多个像素不满足条件,也即多个像素的任一色彩通道的灰度值的极差在所述预设范围之外时,所述处理器控制所述两套激光器共同出射当前像素对应的色彩通道对应的光线。两套激光器各自出射的光线的灰度值可以根据实际情况进行设置,较佳的,两套激光器各自出射的光线的灰度值为当前像素对应色彩通道的灰度值的一半。
按正常的方式或者现有技术中的方式进行扫描即可,在此就不再赘述。
通过上述部分可以看出,通过两个激光器中一个激光器持续出射第一灰度值的光线,以及另一个激光器出射当前像素的灰度值与第一灰度值之差的光线的方案,将两路光线组合为当前像素对应色彩通道所需要的灰度值的光线,保证了激光扫描成像设备出射的光线的灰度值等于当前像素的灰度值。与现有技术相比,避免了对持续出射第一灰度值的光线的激光器的高频调制,所以解决了持续的高频脉冲调制导致电路和激光器的性能下降的技术问题,提高了激光扫描成像设备的使用寿命,另一方面由于通过两个激光器出射的光线来合成为激光扫描成像设备出射的光线,降低了每个激光器输出的最高灰度值,也降低了对激光器的响应能力的要求,所以解决了对激光器的响应能力的要求较高的技术问题,从而提高了激光扫描成像设备在使用过程中的稳定性,并且也降低了激光扫描成像设备的生产成本。
在具体实施过程中,光源2021中两个出射相同色彩光线的激光器出射光线时的最大灰度值之和,大于激光扫描成像设备所采用的色彩模式中对应色彩通道的最大灰度值。这样,一方面保证了光源2021输出的光线满足激光扫描成像设备扫描待扫描图像时的需要,另一方面还能够更灵活地对激光器进行调制,减少因激光器出射光线的灰度数值太低而带来的限制。
在具体实施过程中,可以理解的,若第一灰度值的最大值较小,例如是个位数或者两位数,则仍然需要另一个激光器具有较高的响应能力,并且仍然会对该激光器进行高频调制,这样与现有技术相比进步较小。因此,较佳地,出射第一灰度值的光线的激光器,其所能够出射光线的最大灰度值大于或等于对应色彩通道的最大值的一半,这样,至少能够降低一半对激光器的响应能力的要求。
在具体实施过程中,为了保证在连续的多个像素有至少一个色彩通道的灰度值的极差在一预设范围内的情况下,准确地控制满足条件的色彩通道所对应的两个激光器中的一个激光器持续出射第一灰度值的光线,另一个激光器出射当前像素的灰度值与所述第一灰度 值之差的光线,激光扫描成像设备还可以预先缓存待扫描图像的像素的色彩信息,具体可以缓存将要进行扫描的下一行或者多行像素,这样,处理器201即能够对缓存的像素进行分析,提取所有像素的色彩信息,这样,即能够根据缓存的像素的色彩信息,确定极差在所述预设范围的连续的多个像素,继而能够根据确定结果,预先生成相应的控制参数,从而能够在激光扫描成像设备对有至少一个色彩通道的灰度值的极差在所述预设范围的连续的多个像素进行扫描时,控制满足该条件的色彩通道所对应的两个激光器中的一个激光器持续出射第一灰度值的光线,另一个激光器出射当前像素的灰度值与所述第一灰度值之差的光线。
当然了,需要说明的是,在激光扫描成像设备的处理速度足够快的情况下,例如对待扫描图像的读取速度、对待扫描图像的色彩信息的解析速度和输出控制参数的速度等等,则无需激光扫描成像设备预先缓存待扫描图像的像素的色彩信息。
在具体实施过程中,在扫描器具体为扫描光纤时,扫描光纤的入射端设置有透镜结构,也即该扫描光纤具体为透镜结构设置在入射端的透镜光纤(lensed fiber),扫描光纤可以通过烧结或者研磨等方式在光纤一端形成球形、楔形或锥形等透镜,提高扫描光纤的数值孔径,从而提高扫描光纤的收光率,这样即无需再设置图6中的光耦合单元,请参考图7,图7为透镜光纤的结构示意图,如图7所示,透镜光纤为71,透镜光纤的入射端设置有球形的透镜结构701。
在具体实施过程中,请继续参考图2,如图2所示,激光扫描成像设备还包括光学放大镜组203,该光学放大镜组203包括至少一个光学透镜,具体的透镜数量和透镜的参数设置以满足实际情况的需要为准,在此不做限制。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”或“包括”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序,可将这些单词解释为名称。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
通过两个激光器中一个激光器持续出射第一灰度值的光线,以及另一个激光器出射当 前像素的灰度值与第一灰度值之差的光线的方案,将两路光线组合为当前像素对应色彩通道所需要的灰度值的光线,保证了激光扫描成像设备出射的光线的灰度值等于当前像素的灰度值。与现有技术相比,避免了对持续出射第一灰度值的光线的激光器的高频调制,所以解决了持续的高频脉冲调制导致电路和激光器的性能下降的技术问题,提高了激光扫描成像设备的使用寿命,另一方面由于通过两个激光器出射的光线来合成为激光扫描成像设备出射的光线,降低了每个激光器输出的最高灰度值,也降低了对激光器的响应能力的要求,所以解决了对激光器的响应能力的要求较高的技术问题,从而提高了激光扫描成像设备在使用过程中的稳定性,并且也降低了激光扫描成像设备的生产成本。
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (10)

  1. 一种激光扫描成像设备,其特征在于,包括处理器和激光扫描成像装置,所述激光扫描成像装置包括光源和扫描器,所述光源出射的光线由三种不同色彩光线组合而成,所述光源包括两套激光器,每套激光器包括分别出射所述三种不同色彩光线的三个激光器,所述两套激光器中出射同一色彩光线的两个激光器与待扫描图像中每个像素的一个色彩通道对应;
    在对所述待扫描图像中连续的多个像素进行扫描的过程中,当满足所述多个像素有至少一个色彩通道的灰度值的极差在一预设范围内的条件时,则所述处理器控制满足该条件的色彩通道所对应的两个激光器中的一个激光器持续出射第一灰度值的光线,另一个激光器出射当前像素的灰度值与所述第一灰度值之差灰度值的光线,其中,0<第一灰度值≤所述多个像素在对应色彩通道的最小灰度值。
  2. 如权利要求1所述的激光扫描成像设备,其特征在于,所述光源中两个出射相同色彩光线的激光器出射光线的最大灰度值之和,大于所述激光扫描成像设备所采用的色彩模式中对应色彩通道的最大灰度值。
  3. 如权利要求1所述的激光扫描成像设备,其特征在于,出射所述第一灰度值的光线的激光器所出射光线的最大灰度值大于或等于对应色彩通道的最大灰度值的一半。
  4. 如权利要求1所述的激光扫描成像设备,其特征在于,在出射所述第一灰度值的激光器出射光线的最大灰度值大于或等于对应色彩通道的最大灰度值时,所述第一灰度值与所述多个像素在对应色彩通道的最小灰度值之间具有固定差值。
  5. 如权利要求1所述的激光扫描成像设备,其特征在于,在出射所述第一灰度值的激光器出射光线的最大灰度值小于所述多个像素在对应色彩通道的最小灰度值时,满足0<所述第一灰度值≤出射所述第一灰度值的激光器出射光线的最大灰度值。
  6. 如权利要求1所述的激光扫描成像设备,其特征在于,当所述多个像素的任一色彩通道的灰度值的极差在所述预设范围之外时,所述处理器控制所述两套激光器共同出射当前像素对应的色彩通道对应的光线。
  7. 如权利要求1至6任一项所述的激光扫描成像设备,其特征在于,所述激光扫描成像设备预先缓存所述待扫描图像的像素的色彩信息,所述处理器根据缓存的像素的色彩信息,确定极差在所述预设范围内的连续的多个像素。
  8. 如权利要求7所述的激光扫描成像设备,其特征在于,所述三个激光器为红色激光器、绿色激光器和蓝色激光器。
  9. 如权利要求1所述的激光扫描成像设备,其特征在于,所述扫描器为MEMS振镜或者扫描光纤。
  10. 如权利要求1所述的激光扫描成像设备,其特征在于,所述激光扫描成像设备还包括光学放大镜组,所述光学放大镜组包括至少一个光学透镜,所述光学放大镜组设置于所述激光扫描成像装置的出射端。
PCT/CN2019/087950 2018-05-31 2019-05-22 一种激光扫描成像设备 WO2019228238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810544810.1A CN110554403A (zh) 2018-05-31 2018-05-31 一种激光扫描成像设备
CN201810544810.1 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019228238A1 true WO2019228238A1 (zh) 2019-12-05

Family

ID=68697367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087950 WO2019228238A1 (zh) 2018-05-31 2019-05-22 一种激光扫描成像设备

Country Status (2)

Country Link
CN (1) CN110554403A (zh)
WO (1) WO2019228238A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109960097B (zh) * 2017-12-22 2021-08-31 成都理想境界科技有限公司 一种单色激光光源、彩色激光光源和激光投影设备
CN112560729B (zh) * 2020-12-22 2023-12-26 成都中科信息技术有限公司 一种选票处理方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201097088Y (zh) * 2007-11-08 2008-08-06 北京中视中科光电技术有限公司 一种用于投影系统的光源装置及投影显示装置
CN102645830A (zh) * 2011-12-08 2012-08-22 深圳市光峰光电技术有限公司 光源系统及投影装置
US8253345B2 (en) * 2007-07-12 2012-08-28 Yu-Nung Shen Method for driving LED
CN204595412U (zh) * 2014-12-08 2015-08-26 深圳市光峰光电技术有限公司 发光装置和投影系统
CN105395184A (zh) * 2015-12-04 2016-03-16 华中科技大学 生物组织血流、血氧和血容量的多参数检测方法及装置
CN106125479A (zh) * 2016-08-08 2016-11-16 常州创微电子机械科技有限公司 多激光扫描投影系统
CN106970667A (zh) * 2017-05-04 2017-07-21 方显峰 一种电致激发长余辉发光系统的激发控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3789126B2 (ja) * 1994-08-31 2006-06-21 株式会社東芝 画像記録装置
JP3730057B2 (ja) * 1999-07-26 2005-12-21 シャープ株式会社 画像処理装置、および、それを用いた画像形成装置、並びに、そのプログラムが記録された記録媒体
DE102007011425A1 (de) * 2007-03-08 2008-09-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Projektionsvorrichtung zum scannenden Projizieren
CN104378566B (zh) * 2013-08-12 2017-12-26 联想(北京)有限公司 一种投影方法以及一种电子设备
CN106200229B (zh) * 2015-05-04 2019-01-08 深圳市光峰光电技术有限公司 拼接显示装置和拼接显示控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253345B2 (en) * 2007-07-12 2012-08-28 Yu-Nung Shen Method for driving LED
CN201097088Y (zh) * 2007-11-08 2008-08-06 北京中视中科光电技术有限公司 一种用于投影系统的光源装置及投影显示装置
CN102645830A (zh) * 2011-12-08 2012-08-22 深圳市光峰光电技术有限公司 光源系统及投影装置
CN204595412U (zh) * 2014-12-08 2015-08-26 深圳市光峰光电技术有限公司 发光装置和投影系统
CN105395184A (zh) * 2015-12-04 2016-03-16 华中科技大学 生物组织血流、血氧和血容量的多参数检测方法及装置
CN106125479A (zh) * 2016-08-08 2016-11-16 常州创微电子机械科技有限公司 多激光扫描投影系统
CN106970667A (zh) * 2017-05-04 2017-07-21 方显峰 一种电致激发长余辉发光系统的激发控制方法

Also Published As

Publication number Publication date
CN110554403A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
JP6387589B2 (ja) 画像形成装置、車両、及び画像形成装置の制御方法
CN101600120B (zh) 降低功耗的图像显示方法及装置
US8573779B2 (en) Lighting device with plural light sources illuminating distinct regions of integrator
KR102250809B1 (ko) 광 변환을 갖는 이중 변조 디스플레이 기술들
WO2016161934A1 (zh) 一种投影系统及其色域控制方法
JP5518764B2 (ja) ディスプレイにおいて色を処理するための方法及び装置
WO2019228238A1 (zh) 一种激光扫描成像设备
JP2006323391A (ja) 固体レーザを使用するディスプレイシステム及び方法
US10488744B2 (en) Light source module and projection apparatus
US10281805B2 (en) Image display device and image display method
JP6137006B2 (ja) 画像表示装置および画像表示方法
KR102548864B1 (ko) 표시 장치 및 이의 구동 방법
CN112147834A (zh) 一种光源、投影显示装置及光源调制方法
WO2020135293A1 (zh) 一种显示系统
WO2019120142A1 (zh) 一种单色激光光源、彩色激光光源和激光投影设备
WO2019228239A1 (zh) 一种激光扫描成像设备
WO2021017981A1 (zh) 投影显示设备
CN111142325B (zh) 一种激光光源装置、投影系统及其控制方法
CN111505841B (zh) 一种激光调制方法、激光扫描装置及系统
CN114690399B (zh) 一种光源参数初始化方法及光纤扫描成像系统
US12003896B2 (en) Projection display device
WO2014112032A1 (ja) 画像表示装置および画像表示方法
CN106406003A (zh) 投影光机及激光投影装置
JP2018081791A (ja) 発光装置および表示装置
CN108139657A (zh) 投影型影像显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810041

Country of ref document: EP

Kind code of ref document: A1