WO2019227979A1 - 一种混合直流换流器阀组在线投入电路和投入方法及装置 - Google Patents

一种混合直流换流器阀组在线投入电路和投入方法及装置 Download PDF

Info

Publication number
WO2019227979A1
WO2019227979A1 PCT/CN2019/075673 CN2019075673W WO2019227979A1 WO 2019227979 A1 WO2019227979 A1 WO 2019227979A1 CN 2019075673 W CN2019075673 W CN 2019075673W WO 2019227979 A1 WO2019227979 A1 WO 2019227979A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage source
converter
valve group
unit
knife gate
Prior art date
Application number
PCT/CN2019/075673
Other languages
English (en)
French (fr)
Inventor
卢东斌
李海英
陈松林
邹强
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to EP19811157.7A priority Critical patent/EP3806263A4/en
Priority to BR112020016284-1A priority patent/BR112020016284A2/pt
Priority to KR1020207023403A priority patent/KR102253974B1/ko
Priority to JP2021508043A priority patent/JP2021520183A/ja
Priority to RU2020126720A priority patent/RU2748367C1/ru
Publication of WO2019227979A1 publication Critical patent/WO2019227979A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/443Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M5/4505Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/19Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only arranged for operation in series, e.g. for voltage multiplication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/757Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/7575Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only for high voltage direct transmission link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention belongs to the field of hybrid DC power transmission and high-voltage DC power transmission, and particularly relates to an online input circuit, an input method and a device of a hybrid DC converter valve group.
  • the thyristor-based current source HVDC transmission has the advantages of small converter loss, and the DC system can be restarted by phase shifting when a DC line fault occurs; the disadvantage is that the inverter-side converter works in an active inverter and cannot be connected to Source system; the inverter side is connected to the weak AC system, and the commutation failure is prone to occur; the reactive power consumption is large, and the voltage and current harmonic content is high. It is necessary to install a filtering device to provide reactive power and filtering.
  • the advantages of DC power transmission based on voltage source converters are high controllability, which can be connected to passive systems without the need for reactive power compensation devices; the disadvantages are the large switching losses of the converter and the use of a modular multilevel converter with a half-bridge structure.
  • the converter cannot control the fault current when the DC side is faulted. After the fault occurs, the fault can only be cleared by opening the AC side circuit breaker.
  • ABB uses a DC circuit breaker to increase the DC line to solve the DC side fault, but the DC circuit breaker has high cost and reliability has yet to be verified.
  • Siemens uses a modular multilevel converter with a full-bridge circuit structure. To solve the problem, but the converter of the full-bridge circuit structure has a large loss;
  • Alstom uses a full-bridge circuit and bridge arms connected in series with power electronic switching devices, but the reliability has yet to be verified;
  • Zhejiang University uses series connection in the main circuit Diode to solve, but the diode does not participate in power conversion, it will cause losses;
  • Nanrui Jibao Company uses a grid-connected commutator with a bypass branch and a voltage source converter in series, a hybrid DC converter, and a voltage source.
  • the converter only needs to use a modular multilevel converter with a half-bridge circuit structure.
  • the grid commutation converter can naturally block the DC-side fault current, and the bypass branch can reliably protect the voltage source converter.
  • the voltage adjustment range of the voltage source converter of the hybrid DC converter is limited. Unlike the grid commutated converter, the voltage cannot be adjusted to zero to achieve online input. If the voltage source converter exit due to malfunction or maintenance, or the need to stop the control electrode into a direct current to zero in order to run again, affect the smooth operation HVDC power system.
  • An object of the present invention is to provide a hybrid DC converter valve group online input circuit, which realizes series and parallel conversion of a voltage source converter and a current source converter through a DC field switching operation, and simultaneously provides a hybrid DC
  • the online input method of the valve group of the converter realizes the online input of the voltage source converter by adjusting the DC voltage and power and operating the DC field switch, and provides an online input device of the hybrid DC converter valve group to control the valve group Put the circuit online.
  • an on-line input circuit of a hybrid DC converter valve group is used for online input of a voltage source converter. If the voltage source type valve group unit is a low-end valve group,
  • the valve group online input circuit at least includes a valve group connection line connection switch or a knife gate of a voltage source type valve group unit, a DC bus connection switch or a knife gate of a voltage source type valve group unit, and a bypass switch of a voltage source type valve group unit.
  • valve group online input circuit includes at least the valve block connection line of the voltage source valve block unit Connection switch or knife gate, neutral bus connection switch or knife gate of voltage source valve unit, bypass switch or knife gate of voltage source valve unit and bypass switch or knife gate of current source valve unit.
  • the valve group connection line connection switch or knife gate of the voltage source type valve group unit is used to connect the voltage source converter and the current source type valve group unit of the voltage source type valve group unit; the voltage source type valve group
  • the unit's DC bus connection switch or knife gate is used to connect the voltage source converter of the voltage source valve group unit and the DC bus;
  • the bypass switch or knife gate of the voltage source valve group unit is used to connect the The positive and negative poles of the voltage source converter of the voltage source type valve group unit;
  • the bypass switch or the knife gate of the current source type valve group unit is used to connect the grid commutation converter of the current source type valve group unit
  • the anode and the cathode of the voltage source valve unit are connected to a neutral busbar connection switch or a knife gate for connecting the voltage source converter and the neutral busbar of the voltage source valve unit.
  • the above-mentioned hybrid DC transmission converter is composed of a current source type valve group unit and a voltage source type valve group unit in series, and has four series connection topology structures:
  • the cathode of the current source valve block unit is connected to the negative electrode of the voltage source valve block unit
  • the anode of the current source valve block unit is connected to the positive electrode of the voltage source valve block unit
  • the current source type valve group unit adopts a grid commutation inverter; the voltage source type valve group unit adopts one voltage source converter or multiple voltage source converters in parallel.
  • the voltage source valve group unit is a low-end valve group, and the voltage source valve group unit is near the neutral bus; the voltage source valve group unit is a high-end valve group, and the voltage source valve group unit is near the DC bus.
  • the DC bus connection switch or the knife gate of the voltage source type valve group unit adopts a DC circuit breaker capable of interrupting a DC fault current, or the hybrid DC commutation
  • the DC bus connection switch of the voltage source valve group unit of the converter or the diode valve group capable of blocking DC fault current in series between the knife gate and the voltage source converter.
  • the cathode of the diode valve group and the anode of the voltage source converter are Common connection end; if the voltage source valve group unit is a high-end valve group, the neutral bus connection switch or knife gate of the voltage source valve group unit adopts a DC circuit breaker with the ability to cut off DC fault current, or the The neutral bus connection switch of the voltage source valve group unit of the hybrid DC converter or the diode valve group capable of blocking the DC fault current in series between the knife gate and the voltage source converter, and the anode of the diode valve group is switched with the voltage source.
  • the negative terminal of the current transformer is a common connection terminal.
  • the above current source valve unit uses a grid commutation converter, which includes a grid commutation converter, a bypass switch and a knife-gate assembly.
  • the grid commutation converter is connected in parallel with the bypass switch. It is connected to one end of the connected knife gate, and the other end of the connected knife gate is bypassed in parallel.
  • the above voltage source valve unit uses a voltage source converter, including a voltage source converter, a current limiting reactor, a bypass thyristor valve group, a bypass switch and a knife gate assembly, a voltage source converter and a current limiting reactor. It is connected in series, and then in parallel with the bypass thyristor valve group. The two ends of the unit after the parallel connection are respectively connected to one end connected to the knife gate.
  • a DC circuit breaker with the ability to cut off the DC fault current is connected in series between the voltage source converter and the current-limiting reactor in the group unit.
  • the above-mentioned grid commutation converter is a six-pulse bridge circuit or a twelve-pulse bridge circuit, which is composed of a non-turn-off semi-control power semiconductor, and is generally a non-turn-off thyristor.
  • the voltage source converter is as follows Any one or more: two-level converter, diode-clamped multilevel converter, modular multilevel converter MMC, hybrid multilevel converter HMC, two-level cascade type
  • the converter CSL or the stacked two-level converter CTL is composed of a fully controllable power semiconductor that can be turned off.
  • the non-shutdown semi-controllable power semiconductor is generally a non-shutdown thyristor;
  • the switchable fully-controllable power semiconductor is any one or more of the following: insulated gate bipolar transistor IGBT, integrated gate commutation Thyristor IGCT, Turn-off Thyristor GTO, Power MOSFET, Electron Injection Enhanced Gate Transistor IEGT, Gate Commutation Thyristor GCT or Silicon Carbide Enhanced Junction Field Effect Transistor SiC-JFET;
  • the invention also provides an online switching method for the hybrid DC converter valve group, which is used for the online switching circuit of the hybrid DC converter valve group.
  • the voltage source converter is connected in parallel to both ends of the grid commutator, the DC power is transferred from the grid commutator to the voltage source converter, the grid commutator is blocked, and the DC field switch or knife
  • the brake is connected in series, and the grid commutation converter is connected in series to the voltage source converter, and the grid commutation converter is put online.
  • the voltage source type valve group unit is connected to the neutral bus, which is achieved by closing the neutral bus connection switch or knife gate of the voltage source type valve group unit.
  • the above-mentioned DC field switch or knife-gate parallel conversion is achieved by connecting the other end of the voltage source valve group unit to a DC bus, and closing the DC bus connection switch or knife switch of the voltage source valve group unit.
  • the above DC field switch or knife gate is converted in series in two cases: (1) When the voltage source valve group unit is a low-end valve group, the bypass switch or knife gate of the voltage source valve group unit is separated, and the current is closed. Bypass switch or knife gate of the source type valve group unit, close the valve group connection line connection switch or knife gate of the voltage source type valve group unit, and separate the DC bus connection switch or knife gate of the voltage source type valve group unit; (2 ) When the voltage source type valve block unit is a high-end valve block, separate the bypass switch or knife gate of the voltage source type valve block unit, close the bypass switch or knife gate of the current source type valve block unit, and close the voltage source type The valve group connection line of the valve group unit is connected to the switch or the knife gate, and the neutral bus connection switch or the knife gate of the voltage source type valve group unit is separated.
  • the above-mentioned online input grid commutation converter controls the DC current to be transferred from the bypass switch or the knife gate to the grid commutation converter by unlocking the grid commutation converter, and the bypass switch or the knife gate is opened to increase the direct current. Voltage to achieve.
  • the invention also provides a hybrid DC converter valve group online input device, which is used for the hybrid DC converter valve group online input circuit.
  • the device includes a detection unit and a control unit, wherein:
  • the detection unit detects DC voltage, DC current, unlock signal, blocking signal, running signal of the voltage source valve unit, detects the DC voltage, DC current, unlock signal, blocking signal, running signal of the current source valve unit, detects DC field, voltage source valve group unit and current source valve group unit switch or knife gate position;
  • the control unit when the grid commutation converter has an unlocking signal and a running signal, and the voltage source converter has a blocking signal.
  • the voltage source converter When receiving an operator's command to put in the voltage source converter, connect one end of the voltage source converter to a fixed potential.
  • the voltage source converter is charged, the voltage source converter is unlocked, and the voltage of the voltage source converter is controlled to be the same as that of the grid commutation converter.
  • the voltage source converter is connected to the grid in parallel through a DC field switch or a knife gate.
  • DC power is transferred from the grid commutation converter to the voltage source converter, the grid commutation converter is blocked, and the grid is commutated through a DC field switch or a knife gate in series.
  • the converter is connected in series to the voltage source converter, and the grid-commutated converter is put online.
  • one end of the voltage source converter is connected to a fixed potential.
  • the voltage source valve unit is connected to the neutral bus. This is achieved by closing the neutral bus connection switch or knife gate of the voltage source valve unit.
  • the DC field switch or knife-gate parallel conversion in the above control unit is achieved by connecting the other end of the voltage source valve group unit to the DC bus, and closing the DC bus connection switch or knife gate of the voltage source valve group unit.
  • the DC field switch or knife gate in the above control unit is converted in series in two cases: (1) When the voltage source valve group unit is a low-end valve group, the bypass switch or knife gate of the voltage source valve group unit is separated. Close the bypass switch or knife gate of the current source valve block unit, close the valve block connection switch or knife gate of the voltage source valve block unit, and separate the DC bus connection switch or knife gate of the voltage source valve block unit.
  • the grid commutation converter is put online, and by unlocking the grid commutation converter, the direct current is controlled to be transferred from the bypass switch or the knife gate to the grid commutation converter, and the bypass switch or the knife gate is opened, This is achieved by increasing the DC voltage.
  • the beneficial effect of the present invention is to propose an on-line input circuit, a method and a device for inputting a hybrid DC converter valve group.
  • Figure 1 shows four topological structures where current source valve block units and voltage source valve block units are connected
  • Figure 2 shows four topological structures where a typical current source valve block unit and a voltage source valve block unit are connected;
  • Figure 3 is a high-voltage DC power transmission device consisting of four hybrid DC converter topologies and a low-end valve group consisting of a voltage source converter;
  • Figure 4 is a high-voltage DC power transmission device composed of four hybrid DC converter topologies and a high-end valve group consisting of a voltage source converter;
  • Figure 5 is a high-voltage DC transmission device consisting of a conventional grid commutation converter on the rectifier side and two hybrid DC converters on the inverter side;
  • FIG. 6 is an online switching method of a hybrid DC converter valve group according to the present invention.
  • FIG. 7 is an online input device of a hybrid DC converter valve group according to the present invention.
  • FIG. 1 shows four topological structures in which a current source valve block unit and a voltage source valve block unit are connected according to the present invention.
  • Fig. 1 (a) is a topology structure in which the cathode X1 of the current source type valve group unit and the negative electrode X4 of the voltage source type valve group unit are connected;
  • Fig. 1 (a) is a topology structure in which the cathode X1 of the current source type valve group unit and the negative electrode X4 of the voltage source type valve group unit are connected;
  • Fig. 1 (a) is a topology structure in which the cathode X1 of the current source type valve group unit and the negative electrode X4 of the voltage source type valve group unit are connected;
  • Fig. 1 (a) is a topology structure in which the cathode X1 of the current source type valve group unit and the negative electrode X4 of the voltage source type valve group unit are connected;
  • Fig. 1 (a) is a topology structure in which
  • FIG. 1 (b) is the anode X2 of the current source type valve group unit and the voltage source The topology of the positive valve X3 of the valve block unit is connected;
  • Figure 1 (c) is the topology of the cathode X1 of the current source valve block unit and the positive X3 of the voltage source valve block unit;
  • Figure 1 (d) is the current source The topology of the anode X2 of the valve block unit and the negative electrode X4 of the voltage source valve block unit are connected.
  • FIG. 2 shows four topological structures in which the preferred current source type valve group unit and the voltage source type valve group unit are connected according to the present invention.
  • FIG. 2 (a) is a topology structure in which a cathode of a preferred current source valve unit is connected to a negative electrode of a voltage source valve unit;
  • FIG. 2 (a) is a topology structure in which a cathode of a preferred current source valve unit is connected to a negative electrode of a voltage source valve unit;
  • FIG. 2 (b) is an anode and voltage of a preferred current source valve unit The topology of the positive type of the source valve block unit is connected;
  • Figure 2 (c) is the preferred topology of the cathode of the current source type valve block unit and the positive pole of the voltage source type valve block unit;
  • Figure 2 (d) is preferred Topology structure in which the anode of a current source valve block unit and the negative electrode of a voltage source valve block unit are connected.
  • the current source valve group unit includes the grid commutation inverter 1 and the bypass switch and the knife gate assembly.
  • the grid commutation inverter 1 is connected in parallel with the bypass switch 3, and the two ends of the parallel unit are connected to the knife gate 5 respectively.
  • the voltage source type valve group unit includes a voltage source converter 2 and a bypass switch and a knife gate assembly.
  • the voltage source converter 2 is connected in series with a current limiting reactor 11 and is connected in parallel with the bypass power electronic switch 7.
  • the ends are connected to one end of the valve group connecting line connection switch or knife gate 9, bus connection switch or knife gate 10 respectively, and the other end of the valve group connecting line connection switch or knife gate 9, bus connection switch or knife gate 10 is connected in parallel with the bypass switch.
  • knife gate 8 In order to match the capacity of the grid commutation inverter 1, the voltage source inverter 2 is a single inverter or multiple inverters connected in parallel.
  • a DC circuit breaker with a DC fault current interruption is added between the voltage source converter 2 and the current-limiting reactor 11.
  • FIG. 3 shows an embodiment in which the high-voltage DC transmission device is composed of the four topologies shown in FIG. 2 and the low-end valve group is composed of a voltage source converter.
  • the rectification station 27 and the inverter are connected through a DC line 15 Station 28 is connected.
  • the rectifier station 27 is composed of the topological structures (1) 23 and (2) 24 in FIG. 2 respectively, and its negative converter and positive converter are respectively formed, and the inverter station 28 is composed of the topological structures (3) 25 and (4) 26 respectively Its positive and negative inverters.
  • Valve group 1 is a grid commutation converter, which is connected to the secondary winding of a thyristor-based current source HV DC transmission transformer 18, and valve group 2 is a voltage source converter, which is connected to a high voltage DC based on a voltage source converter.
  • the secondary windings of the transmission transformer 19 are connected. It is pointed out that the AC grid is three-phase, however only one phase is shown in FIG. 3 for clarity.
  • the primary winding of the high-voltage DC transmission transformer is opened and closed with the AC power grid 22 by means of the AC switch 21. If a voltage source converter 2 is used to provide reactive power to the current source converter 1, the AC filter is configured less or not.
  • a bridge arm reactor 20 In order to suppress the bridge arm circulation of the voltage source converter and the surge current under fault, a bridge arm reactor 20 is provided; in order to smooth the DC voltage of the DC circuit and suppress the DC fault current, a smoothing reactor 13 and a current-limiting reactor are provided 11.
  • a ground electrode wire 16 is shown in FIG. 3 and is used to connect the inverter to the ground electrode.
  • a DC filter 14 is disposed between the DC line 15 and the valve group connection line 17.
  • the valve group connection line connection switch or knife gate 9 is connected between the voltage source converter 2 side and the DC bus across the DC bus connection switch or knife gate 12.
  • Hybrid DC converter valve group online input circuit is used for online input of voltage source converter 2.
  • the voltage source valve group unit in Figure 3 is a low-end valve group.
  • the valve group online input circuit includes at least a voltage source valve group unit.
  • Valve group connecting line connection switch or knife gate 9 DC bus connection switch or knife gate of voltage source valve unit 12, bypass switch or knife gate of voltage source valve unit 8 and current source valve unit Bypass switch or knife gate 4.
  • connection knife gates 5 and 6 of the current source valve group unit are in the closed position, and the bypass switch 3 and the bypass switch or the knife gate 4 are in the sub-position; the voltage source valve group The unit's valve group connection line switch or knife gate 9, bus connection switch or knife gate 10, DC bus connection switch or knife gate 12 are in the sub-position, the bypass power electronic switch 7 is in the off state, and the bypass switch or knife gate 8 In position.
  • the busbar When the voltage source converter 2 needs to be switched on, the busbar is connected to the switch or the knife gate 10, the voltage source converter 2 is charged, the voltage source converter 2 is unlocked, and the voltage source converter 2 is controlled to commutate with the power grid
  • the voltage of 1 is the same, and the DC bus is connected to the switch or knife gate 12, and the voltage source converter 2 is connected in parallel to the two ends of the grid commutation converter 1 to transfer the DC power from the grid commutation converter 1 to the voltage source converter Converter 2, the grid commutation converter 1 is blocked, at this time the operating power of the voltage source converter 2 is equal to the operating power of the grid commutation converter 1 before, and the bypass switch or the knife gate 8 is closed, and the bypass switch 3 is closed Or by-pass switch or knife gate 4, closed valve group connection line switch or knife gate 9, and DC bus connection switch or knife gate 12.
  • the rectification station 27 and the inverter station 28 can perform the above operations respectively to realize the transfer of power from the grid commutation converter 1 to the voltage source converter 2.
  • the grid commutation converter 1 of the rectifier station 27 and the inverter station 28 is ready, the grid commutation converter 1 is unlocked and the DC current is controlled to be transferred from the bypass switch 3 or the bypass switch or the knife gate 4 to the grid commutation.
  • Phase converter 1 pull the bypass switch 3 or the bypass switch or the knife gate 4 to control the firing angle of the grid commutation converter 1 and increase the DC voltage to realize the online switching of the grid commutation converter 1.
  • the grid commutation converter 1 and the voltage source converter 2 operate in series.
  • the voltage source converter 2 and the current-limiting reactor 11 Add a DC circuit breaker with interrupting DC fault current between them, or a DC bus connection switch or knife gate.
  • 12 Use a DC circuit breaker with interrupting DC fault current, or a DC bus connection switch or knife gate with a hybrid DC converter on the inverter side.
  • a diode valve block that blocks the reverse current of the voltage source converter 2 is connected in series between 12 and the voltage source converter 2.
  • the cathode of the diode valve group and the positive electrode of the voltage source converter are common connection ends. It should be noted that the reverse current of the voltage source converter 2 in the hybrid DC converter on the inverter side flows from the negative electrode of the voltage source converter 2 to the positive electrode.
  • FIG. 4 shows an embodiment in which the high-voltage DC power transmission device is composed of the four topological structures shown in FIG. 2 and the high-end valve group is composed of a voltage source converter.
  • the rectifier station 27 and the inverter station are connected through a DC line 15 28 connected.
  • the rectifier station 27 is composed of the topological structures (1) 23 and (2) 24 in FIG. 2 respectively, and its positive and negative converters are respectively formed.
  • the inverter station 28 is composed of the topological structures (3) 25 and (4) 26, respectively. Its negative converter and positive converter.
  • Valve group 1 is a grid commutation converter, which is connected to the secondary winding of a thyristor-based current source HV DC transmission transformer 18, and valve group 2 is a voltage source converter, which is connected to a high voltage DC based on a voltage source converter.
  • the secondary windings of the transmission transformer 19 are connected.
  • the primary winding of the high-voltage DC transmission transformer is opened and closed with the AC power grid 22 by means of the AC switch 21. If a voltage source converter 2 is used to provide reactive power to the current source converter 1, the AC filter is configured less or not.
  • a bridge arm reactor 20 In order to suppress the bridge arm circulation of the voltage source converter and the surge current under fault, a bridge arm reactor 20 is provided; in order to smooth the DC voltage of the DC circuit and suppress the DC fault current, a smoothing reactor 13 and a current-limiting reactor are provided 11.
  • a ground electrode wire 16 is shown in FIG. 4 and is used to connect the inverter to the ground electrode.
  • a DC filter 14 is disposed between the ground electrode lead 16 and the valve block connection line 17.
  • the valve group connection line connection switch or knife gate 9 is connected between the side of the voltage source converter 2 and the neutral bus line, and the neutral bus connection switch or knife gate 29 is bridged.
  • Hybrid DC converter valve group online input circuit is used for online input of voltage source converter 2.
  • the voltage source type valve group unit in Figure 4 is a high-end valve group.
  • the valve group online input circuit includes at least the voltage source type valve group unit. Valve group connecting line connection switch or knife gate 9, neutral bus connection switch or knife gate of voltage source valve unit 29, bypass switch or knife gate of voltage source valve unit 8 and current source valve unit Bypass switch or knife gate 4.
  • connection knife gates 5 and 6 of the current source valve group unit are in the closed position, and the bypass switch 3 and the bypass switch or the knife gate 4 are in the sub-position; the voltage source valve group The unit's valve group connection line switch or knife gate 9, connection knife gate 10, neutral bus connection switch or knife gate 29 are in the sub-position, the bypass power electronic switch 7 is in the off state, and the bypass switch or knife gate 8 is in the closed state. Bit.
  • the neutral bus is connected to the switch or the knife gate 29, the voltage source converter 2 is charged, the voltage source converter 2 is unlocked, and the voltage source converter 2 is controlled to commutate with the power grid.
  • the voltage of converter 1 is the same.
  • the rectification station 27 and the inverter station 28 can perform the above operations respectively to realize the transfer of power from the grid commutation converter 1 to the voltage source converter 2.
  • the grid commutation converter 1 of the rectifier station 27 and the inverter station 28 When the grid commutation converter 1 of the rectifier station 27 and the inverter station 28 is ready, the grid commutation converter 1 is unlocked and the DC current is controlled to be transferred from the bypass switch 3 or the bypass switch or the knife gate 4 to the grid commutation.
  • Phase converter 1 pull the bypass switch 3 or the bypass switch or the knife gate 4 to control the firing angle of the grid commutation converter 1 and increase the DC voltage to realize the online switching of the grid commutation converter 1.
  • the grid commutation converter 1 and the voltage source converter 2 operate in series.
  • the voltage source converter 2 and the current-limiting reactor 11 A DC circuit breaker with interrupted DC fault current is added between them, or the neutral bus connection switch or knife gate 29 adopts a DC circuit breaker with interrupted DC fault current, or the neutral bus connection switch of the hybrid DC converter on the inverter side or A diode valve block that blocks the reverse current of the voltage source converter 2 is connected in series between the knife gate 29 and the voltage source converter 2.
  • the anode of the diode valve group and the negative electrode of the voltage source converter are common connection ends.
  • FIG. 5 shows an embodiment composed of a converter composed of a conventional current source type valve group and two topological structures shown in FIG. 2.
  • the rectifier station 27 of the high-voltage direct current power transmission device is composed of a topology 30 connected in series with a current source valve unit, and the inverter station 28 is composed of a topology (3) 25 and (4) 26, respectively, which constitute a positive converter and a negative converter.
  • Valve group 1 is a grid commutation converter, which is connected to the secondary winding of a thyristor-based current source HV DC transmission transformer 18, and valve group 2 is a voltage source converter, which is connected to a high voltage DC based on a voltage source converter.
  • the secondary windings of the transmission transformer 19 are connected.
  • the rectifier station 27 is provided with an AC filter 32 to filter out harmonics and provide reactive power, which is switched on and off with the AC power grid 22 through the AC switch 31.
  • a bridge arm reactor 20 is provided; in order to smooth the DC voltage of the DC circuit and suppress the DC fault current, a smoothing reactor 13 and a current-limiting reactor are provided 11.
  • a ground electrode lead 16 is shown in FIG. 5 and is used to connect the inverter to the ground electrode.
  • the rectifier station 27 arranges a DC filter 14 between the DC line 15 and the ground electrode lead 16.
  • the inverter station 28 is provided with a DC filter 14 between the valve group connection line 17 and the ground electrode lead 16.
  • Inverter station valve group connection line connection switch or knife gate 9 is near the voltage source converter 2 side and the DC bus is connected across the DC bus connection switch or knife gate 12.
  • Hybrid DC converter valve group online input circuit is used for online input of voltage source converter 2.
  • the voltage source type valve group unit in Figure 5 is a low-end valve group.
  • the valve group online input circuit includes at least a voltage source type valve group unit. Valve group connecting line connection switch or knife gate 9, DC bus connection switch or knife gate of voltage source valve unit 12, bypass switch or knife gate of voltage source valve unit 8 and current source valve unit Bypass switch or knife gate 4.
  • connection knife gates 5 and 6 of the current source valve group unit are in the closed position, and the bypass switch 3 and the bypass switch or the knife gate 4 are in the sub-position; the voltage source valve group The unit's valve group connection line switch or knife gate 9, bus connection switch or knife gate 10, DC bus connection switch or knife gate 12 are in the sub-position, the bypass power electronic switch 7 is in the off state, and the bypass switch or knife gate 8 In position.
  • the knife gate 10 is closed, the voltage source converter 2 is charged, the voltage source converter 2 is unlocked, and the voltage of the voltage source converter 2 and the grid commutated converter 1 is controlled.
  • the DC bus is connected to a switch or a knife gate 12, and the voltage source converter 2 is connected in parallel to both ends of the grid commutation converter 1 to transfer the DC power from the grid commutation converter 1 to the voltage source converter 2.
  • the operating power of voltage source converter 2 is equal to the operating power of grid commutation converter 1 before.
  • Switch or knife gate 4 closing valve group connecting line switch or knife gate 9, and DC bus connection switch or knife gate 12.
  • the inverter station 28 performs the above operations to transfer power from the grid commutation converter 1 to the voltage source converter 2.
  • the grid commutation converter 1 of the rectifier station 27 and the inverter station 28 When the grid commutation converter 1 of the rectifier station 27 and the inverter station 28 is ready, the grid commutation converter 1 is unlocked and the DC current is controlled to be transferred from the bypass switch 3 or the bypass switch or the knife gate 4 to the grid commutation.
  • Phase converter 1 pull the bypass switch 3 or the bypass switch or the knife gate 4 to control the firing angle of the grid commutation converter 1 and increase the DC voltage to realize the online switching of the grid commutation converter 1.
  • the grid commutation converter 1 and the voltage source converter 2 operate in series.
  • the voltage source converter 2 and the current-limiting reactor 11 Add a DC circuit breaker with interrupting DC fault current between them, or a DC bus connection switch or knife gate.
  • 12 Use a DC circuit breaker with interrupting DC fault current, or a DC bus connection switch or knife gate with a hybrid DC converter on the inverter side.
  • a diode valve block that blocks the reverse current of the voltage source converter 2 is connected in series between 12 and the voltage source converter 2. The cathode of the diode valve group and the positive electrode of the voltage source converter are common connection ends.
  • Figure 6 shows the online switching method of the hybrid DC converter.
  • the grid commutator When only the grid commutator is running and a command to input the voltage source converter is received, one end of the voltage source converter is connected to a fixed potential, and the voltage source converter is charged. , Unlock the voltage source converter, control the voltage source converter and the grid commutator converter to have the same voltage, and connect the voltage source converter to the grid commutator in parallel through the DC field switch or the knife gate. End, the DC power is transferred from the grid commutation converter to the voltage source converter, the grid commutation converter is blocked, and the grid commutation converter is connected in series to the voltage source converter through a DC field switch or a knife gate in series conversion Inverter, put into the grid commutation inverter online.
  • the voltage source type valve group unit is connected to the neutral bus, which is achieved by closing the neutral bus connection switch or knife gate of the voltage source type valve group unit.
  • the above-mentioned DC field switch or knife-gate parallel conversion is achieved by connecting the other end of the voltage source valve group unit to a DC bus, and closing the DC bus connection switch or knife switch of the voltage source valve group unit.
  • the above DC field switch or knife gate is converted in series in two cases: (1) When the voltage source valve group unit is a low-end valve group, the bypass switch or knife gate of the voltage source valve group unit is separated, and the current is closed. Bypass switch or knife gate of the source type valve group unit, close the valve group connection line connection switch or knife gate of the voltage source type valve group unit, and separate the DC bus connection switch or knife gate of the voltage source type valve group unit; (2 ) When the voltage source type valve block unit is a high-end valve block, separate the bypass switch or knife gate of the voltage source type valve block unit, close the bypass switch or knife gate of the current source type valve block unit, and close the voltage source type The valve group connection line of the valve group unit is connected to the switch or the knife gate, and the neutral bus connection switch or the knife gate of the voltage source type valve group unit is separated.
  • the above-mentioned online input grid commutation converter controls the DC current to be transferred from the bypass switch or the knife gate to the grid commutation converter by unlocking the grid commutation converter, and the bypass switch or the knife gate is opened to increase the direct current. Voltage to achieve.
  • FIG. 7 is an online input device of the hybrid DC converter valve group, which is used to implement the online input of the hybrid DC converter valve group, including:
  • the detection unit 33 detects a DC voltage, a DC current, an unlocking signal, a blocking signal, and a running signal of a voltage source valve group unit, and detects a DC voltage, a DC current, an unlocking signal, a blocking signal, and a running signal of the current source valve group unit. Detect DC field, voltage source valve group unit and current source valve group unit switch or knife gate position;
  • the control unit 34 when the grid commutation converter has an unlock signal and a running signal, and the voltage source converter has a lock signal, when receiving an operator's command to put in the voltage source converter, connect one end of the voltage source converter to a fixed potential , The voltage source converter is charged, the voltage source converter is unlocked, the voltage of the voltage source converter is controlled to be the same as that of the grid commutator converter, and the voltage source converter is connected in parallel through a DC field switch or a knife gate. At both ends of the grid commutation converter, the DC power is transferred from the grid commutation converter to the voltage source converter, the grid commutation converter is blocked, and the grid commutation is switched by a DC field switch or a knife gate in series. The converter is connected in series to the voltage source converter and is put into the grid commutated converter online.
  • the voltage source type valve group unit is connected to the neutral bus, which is achieved by closing the neutral bus connection switch or knife gate of the voltage source type valve group unit.
  • the DC field switch or knife-gate parallel conversion in the above control unit is achieved by connecting the other end of the voltage source valve group unit to the DC bus, and closing the DC bus connection switch or knife gate of the voltage source valve group unit.
  • the DC field switch or knife gate in the above control unit is converted in series in two cases: (1) When the voltage source valve group unit is a low-end valve group, the bypass switch or knife gate of the voltage source valve group unit is separated. Close the bypass switch or knife gate of the current source valve block unit, close the valve block connection switch or knife gate of the voltage source valve block unit, and separate the DC bus connection switch or knife gate of the voltage source valve block unit.
  • the grid commutation converter is put online, and by unlocking the grid commutation converter, the direct current is controlled to be transferred from the bypass switch or the knife gate to the grid commutation converter, and the bypass switch or the knife gate is opened, This is achieved by increasing the DC voltage.
  • valve group on-line input circuit and method provided by the present invention are used for on-line input of a voltage source converter of a hybrid DC converter, and are particularly suitable for voltage source converters with a narrow DC voltage adjustment range or unable to adjust the DC voltage to zero voltage. Device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开一种混合直流换流器阀组在线投入电路,用于在线投入其中的电压源换流器,至少包括电压源型阀组单元的阀组连接线连接开关或刀闸、电压源型阀组单元的直流母线连接开关或刀闸、电压源型阀组单元的旁通开关或刀闸和电流源型阀组单元的旁通开关或刀闸;或者至少包括电压源型阀组单元的阀组连接线连接开关或刀闸、电压源型阀组单元的中性母线连接开关或刀闸、电压源型阀组单元的旁通开关或刀闸和电流源型阀组单元的旁通开关或刀闸。本发明还公开一种混合直流换流器阀组在线投入方法及装置,先解锁电压源换流器,将电压源换流器并联到电网换相换流器两端,闭锁电网换相换流器,将电网换相换流器串联到电压源换流器,在线投入电网换相换流器。

Description

一种混合直流换流器阀组在线投入电路和投入方法及装置 技术领域
本发明属于混合直流输电、高压直流输电领域,特别涉及一种混合直流换流器阀组在线投入电路、投入方法及装置。
背景技术
基于晶闸管的电流源型高压直流输电优点为换流器损耗小,发生直流线路故障时可通过移相来重启直流系统;缺点是逆变侧换流器工作在有源逆变,不能接入无源系统;逆变侧接入弱交流系统出现扰动后容易发生换相失败;无功消耗大,电压、电流谐波含量高,需要安装滤波装置提供无功功率和滤波。基于电压源换流器的直流输电优点为可控性高,可接入无源系统,不需要无功补偿装置;缺点为换流器开关损耗大,采用半桥结构的模块化多电平换流器不能控制直流侧故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。
对于直流侧故障,ABB公司采用增加直流线路的直流断路器来解决直流侧故障,但是直流断路器成本高、可靠性还有待验证;西门子公司采用全桥电路结构的模块化多电平换流器来解决,但是全桥电路结构的换流器损耗大;阿尔斯通公司采用全桥电路并且桥臂串联电力电子开关器件的方式来解决,但是可靠性还有待验证;浙江大学采用在主回路串联二极管来解决,但是二极管不参与功率变换,自身会产生损耗;南瑞继保公司采用带旁通支路的电网换相换流器和电压源换流器串联的混合直流换流器,电压源换流器只需采用半桥电路结构的模块化多电平换流器,电网换相换流器能自然阻断直流侧故障电流,旁通支路又能可靠保护电压源换流器,但混合直流换流器的电压源换流器电压调节范围有限,不同于电网换相换流器,不能调节电压为零实现在线投入,如果电压源换流器因故障或检修退出,需要停极或者控制直流电流为零才能再次投入运行,影响直流输电系统功率平稳运行。
发明内容
本发明的目的,在于提供一种混合直流换流器阀组在线投入电路,通过直流场开关操作,实现电压源换流器和电流源换流器的串、并联转换,同时提供一种 混合直流换流器阀组在线投入方法,通过调节直流电压、功率,操作直流场开关,实现电压源换流器在线投入,并提供一种混合直流换流器阀组在线投入装置,来控制此阀组在线投入电路。
为了达成上述目的,本发明采用的技术方案是:一种混合直流换流器阀组在线投入电路,用于在线投入电压源换流器,如果电压源型阀组单元为低端阀组,所述阀组在线投入电路至少包括电压源型阀组单元的阀组连接线连接开关或刀闸、电压源型阀组单元的直流母线连接开关或刀闸、电压源型阀组单元的旁通开关或刀闸和电流源型阀组单元的旁通开关或刀闸;如果电压源型阀组单元为高端阀组,所述阀组在线投入电路至少包括电压源型阀组单元的阀组连接线连接开关或刀闸、电压源型阀组单元的中性母线连接开关或刀闸、电压源型阀组单元的旁通开关或刀闸和电流源型阀组单元的旁通开关或刀闸。
所述电压源型阀组单元的阀组连接线连接开关或刀闸用于连接所述电压源型阀组单元的电压源换流器与电流源型阀组单元;所述电压源型阀组单元的直流母线连接开关或刀闸用于连接所述电压源型阀组单元的电压源换流器与直流母线;所述电压源型阀组单元的旁通开关或刀闸用于连接所述电压源型阀组单元的电压源换流器的正极和负极;所述电流源型阀组单元的旁通开关或刀闸用于连接所述电流源型阀组单元的电网换相换流器的阳极和阴极;所述电压源型阀组单元的中性母线连接开关或刀闸用于连接所述电压源型阀组单元的电压源换流器与中性母线。
上述混合直流输电换流器由电流源型阀组单元和电压源型阀组单元串联组成,有四种串联连接拓扑结构:
(1)电流源型阀组单元的阴极和电压源型阀组单元的负极相连;或者
(2)电流源型阀组单元的阳极和电压源型阀组单元的正极相连;或者
(3)电流源型阀组单元的阴极和电压源型阀组单元的正极相连;或者
(4)电流源型阀组单元的阳极和电压源型阀组单元的负极相连;
所述电流源型阀组单元采用电网换相换流器;所述电压源型阀组单元采用一个电压源换流器或者多个电压源换流器并联。
上述电压源型阀组单元为低端阀组是电压源型阀组单元靠近中性母线;所述电压源型阀组单元为高端阀组是电压源型阀组单元靠近直流母线。
如果所述电压源型阀组单元为低端阀组,所述电压源型阀组单元的直流母线 连接开关或刀闸采用具有分断直流故障电流能力的直流断路器,或者所述混合直流换流器的电压源型阀组单元的直流母线连接开关或刀闸与电压源换流器之间串联阻断直流故障电流能力的二极管阀组,二极管阀组的阴极与电压源换流器的正极为公共连接端;如果所述电压源型阀组单元为高端阀组,所述电压源型阀组单元的中性母线连接开关或刀闸采用具有分断直流故障电流能力的直流断路器,或者所述混合直流换流器的电压源型阀组单元的中性母线连接开关或刀闸与电压源换流器之间串联阻断直流故障电流能力的二极管阀组,二极管阀组的阳极与电压源换流器的负极为公共连接端。
上述电流源型阀组单元采用电网换相换流器,包括电网换相换流器与旁通开关及刀闸组件,电网换相换流器与旁通开关并联连接,并联后的单元两端分别和连接刀闸的一端相连,连接刀闸的另一端并联旁通刀闸。
上述电压源型阀组单元采用电压源换流器,包括电压源换流器、限流电抗器、旁通晶闸管阀组、旁通开关及刀闸组件,电压源换流器与限流电抗器串联,再与旁通晶闸管阀组并联,并联后的单元两端分别和连接刀闸的一端相连,连接刀闸的另一端并联旁通开关或刀闸,可选地,所述电压源型阀组单元中的电压源换流器与限流电抗器之间串联具有分断直流故障电流能力的直流断路器。
上述电网换相换流器为六脉动桥式电路或十二脉动桥式电路,其由不可关断的半控型功率半导体组成,一般为不可关断的晶闸管;上述电压源换流器是以下任一种或多种:两电平换流器、二极管箝位型多电平换流器、模块化多电平换流器MMC、混合多电平换流器HMC、两电平级联型换流器CSL或堆叠式两电平换流器CTL,其由可关断的全控型功率半导体组成。上述不可关断的半控型功率半导体一般为不可关断的晶闸管;上述可关断的全控型功率半导体是以下任一种或多种:绝缘栅双极型晶体管IGBT、集成门极换流晶闸管IGCT、可关断晶闸管GTO、电力场效应管Power MOSFET、电子注入增强栅晶体管IEGT、门极换流晶闸管GCT或碳化硅增强型结型场效应晶体管SiC-JFET;。
本发明还提供一种混合直流换流器阀组在线投入方法,用于混合直流换流器阀组在线投入电路,当只有电网换相换流器运行、需要投入电压源换流器时,将电压源换流器一端连接固定电位,电压源换流器充电,解锁电压源换流器,控制电压源换流器与电网换相换流器的电压相同,通过直流场开关或刀闸并联转换,将电压源换流器并联到电网换相换流器两端,将直流功率从电网换相换流器转移 到电压源换流器,闭锁电网换相换流器,通过直流场开关或刀闸串联转换,将电网换相换流器串联到电压源换流器,在线投入电网换相换流器。
上述电压源换流器一端连接固定电位是电压源型阀组单元连接到中性母线,通过合上电压源型阀组单元的中性母线连接开关或刀闸来实现。
上述直流场开关或刀闸并联转换是电压源型阀组单元另一端连接到直流母线,通过合上电压源型阀组单元的直流母线连接开关或刀闸来实现。
上述直流场开关或刀闸串联转换,分两种情况:(1)当电压源型阀组单元为低端阀组时,分开电压源型阀组单元的旁通开关或刀闸,合上电流源型阀组单元的旁通开关或刀闸,合上电压源型阀组单元的阀组连接线连接开关或刀闸,分开电压源型阀组单元的直流母线连接开关或刀闸;(2)当电压源型阀组单元为高端阀组时,分开电压源型阀组单元的旁通开关或刀闸,合上电流源型阀组单元的旁通开关或刀闸,合上电压源型阀组单元的阀组连接线连接开关或刀闸,分开电压源型阀组单元的中性母线连接开关或刀闸。
上述在线投入电网换相换流器,通过解锁电网换相换流器,控制直流电流从旁通开关或刀闸转移到电网换相换流器,拉开旁通开关或刀闸,增大直流电压来实现。
本发明还提供一种混合直流换流器阀组在线投入装置,用于混合直流换流器阀组在线投入电路,所述装置包括检测单元和控制单元,其中:
检测单元,检测电压源型阀组单元的直流电压、直流电流、解锁信号、闭锁信号、运行信号,检测电流源型阀组单元的直流电压、直流电流、解锁信号、闭锁信号、运行信号,检测直流场、电压源型阀组单元和电流源型阀组单元开关或刀闸位置;
控制单元,当电网换相换流器有解锁信号、运行信号,电压源换流器有闭锁信号,接收到运行人员命令投入电压源换流器时,将电压源换流器一端连接固定电位,电压源换流器充电,解锁电压源换流器,控制电压源换流器与电网换相换流器的电压相同,通过直流场开关或刀闸并联转换,将电压源换流器并联到电网换相换流器两端,将直流功率从电网换相换流器转移到电压源换流器,闭锁电网换相换流器,通过直流场开关或刀闸串联转换,将电网换相换流器串联到电压源换流器,在线投入电网换相换流器。
上述控制单元中电压源换流器一端连接固定电位是电压源型阀组单元连接 到中性母线,通过合上电压源型阀组单元的中性母线连接开关或刀闸来实现。
上述控制单元中直流场开关或刀闸并联转换是电压源型阀组单元另一端连接到直流母线,通过合上电压源型阀组单元的直流母线连接开关或刀闸来实现。
上述控制单元中直流场开关或刀闸串联转换,分两种情况:(1)当电压源型阀组单元为低端阀组时,分开电压源型阀组单元的旁通开关或刀闸,合上电流源型阀组单元的旁通开关或刀闸,合上电压源型阀组单元的阀组连接线连接开关或刀闸,分开电压源型阀组单元的直流母线连接开关或刀闸;(2)当电压源型阀组单元为高端阀组时,分开电压源型阀组单元的旁通开关或刀闸,合上电流源型阀组单元的旁通开关或刀闸,合上电压源型阀组单元的阀组连接线连接开关或刀闸,分开电压源型阀组单元的中性母线连接开关或刀闸。
上述控制单元中在线投入电网换相换流器,通过解锁电网换相换流器,控制直流电流从旁通开关或刀闸转移到电网换相换流器,拉开旁通开关或刀闸,增大直流电压来实现。
本发明的有益效果是:提出一种混合直流换流器阀组在线投入电路和投入方法及装置,通过将电压源换流器并联到电网换相换流器两端,将电网换相换流器的功率转移到电压源换流器,再将电网换相换流器串联到电压源换流器,投入电网换相换流器,实现电压源换流器的在线平滑投入,保证直流输电系统功率平稳运行。
附图说明
图1是电流源型阀组单元和电压源型阀组单元相连的四种拓扑结构;
图2是典型的电流源型阀组单元和电压源型阀组单元相连的四种拓扑结构;
图3是由四种混合直流换流器拓扑结构组成、低端阀组由电压源换流器构成的高压直流输电装置;
图4是由四种混合直流换流器拓扑结构组成、高端阀组由电压源换流器构成的高压直流输电装置;
图5是整流侧由传统的电网换相换流器和逆变侧由两种混合直流换流器组成的高压直流输电装置;
图6是本发明的一种混合直流换流器阀组在线投入方法;
图7是本发明的一种混合直流换流器阀组在线投入装置。
具体实施方式
借助以下附图对本发明的实施例进行描述,其中,相同的组件使用相同的附图标记。图1为本发明电流源型阀组单元和电压源型阀组单元相连的四种拓扑结构。其中,图1(a)是电流源型阀组单元的阴极X1和电压源型阀组单元的负极X4相连的拓扑结构;图1(b)是电流源型阀组单元的阳极X2和电压源型阀组单元的正极X3相连的拓扑结构;图1(c)是电流源型阀组单元的阴极X1和电压源型阀组单元的正极X3相连的拓扑结构;图1(d)是电流源型阀组单元的阳极X2和电压源型阀组单元的负极X4相连的拓扑结构。
图2为本发明优选的电流源型阀组单元和电压源型阀组单元相连的四种拓扑结构。其中,图2(a)是优选的电流源型阀组单元的阴极和电压源型阀组单元的负极相连的拓扑结构;图2(b)是优选的电流源型阀组单元的阳极和电压源型阀组单元的正极相连的拓扑结构;图2(c)是优选的电流源型阀组单元的阴极和电压源型阀组单元的正极相连的拓扑结构;图2(d)是优选的电流源型阀组单元的阳极和电压源型阀组单元的负极相连的拓扑结构。电流源型阀组单元包括电网换相换流器1与旁通开关及刀闸组件,电网换相换流器1与旁通开关3并联连接,并联后的单元两端分别和连接刀闸5、6的一端相连,连接刀闸5、6的另一端并联旁通开关或刀闸4。电压源型阀组单元包括电压源换流器2与旁通开关及刀闸组件,电压源换流器2串联限流电抗器11后与旁通电力电子开关7并联连接,并联后的单元两端分别和阀组连接线连接开关或刀闸9、母线连接开关或刀闸10的一端相连,阀组连接线连接开关或刀闸9、母线连接开关或刀闸10的另一端并联旁通开关或刀闸8。为了匹配电网换相换流器1的容量,电压源换流器2为一个换流器或多个换流器并联。可选地,为了更好地抑制直流故障电流,电压源换流器2与限流电抗器11之间增加具有分断直流故障电流的直流断路器。
实施例1:
图3示出了高压直流输电装置全部由图2所示的四种拓扑结构组成、低端阀组由电压源换流器构成的一个实施例,其通过直流线路15将整流站27和逆变站28相连。整流站27由图2中的拓扑结构(1)23和(2)24分别组成其负极换流器和正极换流器,逆变站28由拓扑结构(3)25和(4)26分别组成其正极换 流器和负极换流器。阀组1为电网换相换流器,其与基于晶闸管的电流源型高压直流输电变压器18次级绕组相连,阀组2为电压源换流器,其与基于电压源换流器的高压直流输电变压器19次级绕组相连。要指出的是,交流电网是三相的,然而在图3中为清楚起见仅示出一相。高压直流输电变压器的初级绕组借助交流开关21与交流电网22分合,如果采用电压源换流器2为电流源换流器1提供无功功率,则交流滤波器少配置或不配置。为了抑制电压源换流器的桥臂环流和故障下的浪涌电流,设置桥臂电抗器20;为了平滑直流电路的直流电压和抑制直流故障电流,设置平波电抗器13和限流电抗器11。图3中示出接地极导线16,其用于换流器与接地极的连接。直流线路15和阀组连接线17之间配置直流滤波器14。阀组连接线连接开关或刀闸9靠近电压源换流器2侧和直流母线之间跨接直流母线连接开关或刀闸12。
混合直流换流器阀组在线投入电路用于在线投入电压源换流器2,图3中的电压源型阀组单元为低端阀组,阀组在线投入电路至少包括电压源型阀组单元的阀组连接线连接开关或刀闸9、电压源型阀组单元的直流母线连接开关或刀闸12、电压源型阀组单元的旁通开关或刀闸8和电流源型阀组单元的旁通开关或刀闸4。
当只有电网换相换流器1运行时,电流源型阀组单元的连接刀闸5、6处于合位,旁通开关3和旁通开关或刀闸4处于分位;电压源型阀组单元的阀组连接线开关或刀闸9、母线连接开关或刀闸10、直流母线连接开关或刀闸12处于分位,旁通电力电子开关7处于关断状态,旁通开关或刀闸8处于合位。当需要投入电压源换流器2时,合母线连接开关或刀闸10,电压源换流器2充电,解锁电压源换流器2,控制电压源换流器2与电网换相换流器1的电压相同,合直流母线连接开关或刀闸12,电压源换流器2并联到电网换相换流器1两端,将直流功率从电网换相换流器1转移到电压源换流器2,闭锁电网换相换流器1,此时电压源换流器2的运行功率等于之前电网换相换流器1的运行功率,分旁通开关或刀闸8,合旁通开关3或旁通开关或刀闸4,合阀组连接线开关或刀闸9,分直流母线连接开关或刀闸12。整流站27和逆变站28可分别进行上述操作实现功率从电网换相换流器1转移到电压源换流器2。当整流站27和逆变站28的电网换相换流器1都准备就绪,解锁电网换相换流器1,控制直流电流从旁通开关3或旁通开关或刀闸4转移到电网换相换流器1,拉开旁通开关3或旁通开关 或刀闸4,控制电网换相换流器1触发角,增大直流电压来实现电网换相换流器1在线投入,至此,电网换相换流器1和电压源换流器2串联运行。
为了防止在电压源换流器2并联到电网换相换流器1期间,因直流线路或者交流线路发生故障引起直流输电系统闭锁,可选地,电压源换流器2与限流电抗器11之间增加具有分断直流故障电流的直流断路器,或者直流母线连接开关或刀闸12采用具有分断直流故障电流的直流断路器,或者逆变侧的混合直流换流器直流母线连接开关或刀闸12与电压源换流器2之间串联一个阻断电压源换流器2反向电流的二极管阀组,二极管阀组的阴极与电压源换流器的正极为公共连接端。需要指出的是,逆变侧的混合直流换流器中的电压源换流器2的反向电流是从电压源换流器2的负极流向正极。
实施例2:
图4示出了高压直流输电装置全部由图2所示的四种拓扑结构组成、高端阀组由电压源换流器构成的一个实施例,其通过直流线路15将整流站27和逆变站28相连。整流站27由图2中的拓扑结构(1)23和(2)24分别组成其正极换流器和负极换流器,逆变站28由拓扑结构(3)25和(4)26分别组成其负极换流器和正极换流器。阀组1为电网换相换流器,其与基于晶闸管的电流源型高压直流输电变压器18次级绕组相连,阀组2为电压源换流器,其与基于电压源换流器的高压直流输电变压器19次级绕组相连。高压直流输电变压器的初级绕组借助交流开关21与交流电网22分合,如果采用电压源换流器2为电流源换流器1提供无功功率,则交流滤波器少配置或不配置。为了抑制电压源换流器的桥臂环流和故障下的浪涌电流,设置桥臂电抗器20;为了平滑直流电路的直流电压和抑制直流故障电流,设置平波电抗器13和限流电抗器11。图4中示出接地极导线16,其用于换流器与接地极的连接。接地极导线16和阀组连接线17之间配置直流滤波器14。阀组连接线连接开关或刀闸9靠近电压源换流器2侧和中性母线之间跨接中性母线连接开关或刀闸29。
混合直流换流器阀组在线投入电路用于在线投入电压源换流器2,图4中的电压源型阀组单元为高端阀组,阀组在线投入电路至少包括电压源型阀组单元的阀组连接线连接开关或刀闸9、电压源型阀组单元的中性母线连接开关或刀闸29、电压源型阀组单元的旁通开关或刀闸8和电流源型阀组单元的旁通开关或刀闸4。
当只有电网换相换流器1运行时,电流源型阀组单元的连接刀闸5、6处于合位,旁通开关3和旁通开关或刀闸4处于分位;电压源型阀组单元的阀组连接线开关或刀闸9、连接刀闸10、中性母线连接开关或刀闸29处于分位,旁通电力电子开关7处于关断状态,旁通开关或刀闸8处于合位。当需要投入电压源换流器2时,合中性母线连接开关或刀闸29,电压源换流器2充电,解锁电压源换流器2,控制电压源换流器2与电网换相换流器1的电压相同,合母线连接开关或刀闸10,电压源换流器2并联到电网换相换流器1两端,将直流功率从电网换相换流器1转移到电压源换流器2,闭锁电网换相换流器1,此时电压源换流器2的运行功率等于之前电网换相换流器1的运行功率,分旁通开关或刀闸8,合旁通开关3或旁通开关或刀闸4,合阀组连接线开关或刀闸9,分中性母线连接开关或刀闸29。整流站27和逆变站28可分别进行上述操作实现功率从电网换相换流器1转移到电压源换流器2。当整流站27和逆变站28的电网换相换流器1都准备就绪,解锁电网换相换流器1,控制直流电流从旁通开关3或旁通开关或刀闸4转移到电网换相换流器1,拉开旁通开关3或旁通开关或刀闸4,控制电网换相换流器1触发角,增大直流电压来实现电网换相换流器1在线投入,至此,电网换相换流器1和电压源换流器2串联运行。
为了防止在电压源换流器2并联到电网换相换流器1期间,因直流线路或者交流线路发生故障引起直流输电系统闭锁,可选地,电压源换流器2与限流电抗器11之间增加具有分断直流故障电流的直流断路器,或者中性母线连接开关或刀闸29采用具有分断直流故障电流的直流断路器,或者逆变侧的混合直流换流器中性母线连接开关或刀闸29与电压源换流器2之间串联一个阻断电压源换流器2反向电流的二极管阀组,二极管阀组的阳极与电压源换流器的负极为公共连接端。
实施例3:
图5示出了高压直流输电装置由传统的电流源型阀组组成的换流器和图2所示的两种拓扑结构组成的一个实施例。高压直流输电装置整流站27由电流源型阀组单元串联的拓扑结构30组成,逆变站28由拓扑结构(3)25和(4)26分别组成其正极换流器和负极换流器。阀组1为电网换相换流器,其与基于晶闸管的电流源型高压直流输电变压器18次级绕组相连,阀组2为电压源换流器,其与基于电压源换流器的高压直流输电变压器19次级绕组相连。整流站27配置交 流滤波器32滤除谐波和提供无功功率,其通过交流开关31与交流电网22分合。为了抑制电压源换流器的桥臂环流和故障下的浪涌电流,设置桥臂电抗器20;为了平滑直流电路的直流电压和抑制直流故障电流,设置平波电抗器13和限流电抗器11。图5中示出接地极导线16,其用于换流器与接地极的连接。整流站27在直流线路15和接地极导线16之间配置直流滤波器14。逆变站28在阀组连接线17和接地极导线16之间配置直流滤波器14。逆变站阀组连接线连接开关或刀闸9靠近电压源换流器2侧和直流母线之间跨接直流母线连接开关或刀闸12。
混合直流换流器阀组在线投入电路用于在线投入电压源换流器2,图5中的电压源型阀组单元为低端阀组,阀组在线投入电路至少包括电压源型阀组单元的阀组连接线连接开关或刀闸9、电压源型阀组单元的直流母线连接开关或刀闸12、电压源型阀组单元的旁通开关或刀闸8和电流源型阀组单元的旁通开关或刀闸4。
当只有电网换相换流器1运行时,电流源型阀组单元的连接刀闸5、6处于合位,旁通开关3和旁通开关或刀闸4处于分位;电压源型阀组单元的阀组连接线开关或刀闸9、母线连接开关或刀闸10、直流母线连接开关或刀闸12处于分位,旁通电力电子开关7处于关断状态,旁通开关或刀闸8处于合位。当需要投入电压源换流器2时,合连接刀闸10,电压源换流器2充电,解锁电压源换流器2,控制电压源换流器2与电网换相换流器1的电压相同,合直流母线连接开关或刀闸12,电压源换流器2并联到电网换相换流器1两端,将直流功率从电网换相换流器1转移到电压源换流器2,闭锁电网换相换流器1,此时电压源换流器2的运行功率等于之前电网换相换流器1的运行功率,分旁通开关或刀闸8,合旁通开关3或旁通开关或刀闸4,合阀组连接线开关或刀闸9,分直流母线连接开关或刀闸12。逆变站28进行上述操作实现功率从电网换相换流器1转移到电压源换流器2。当整流站27和逆变站28的电网换相换流器1都准备就绪,解锁电网换相换流器1,控制直流电流从旁通开关3或旁通开关或刀闸4转移到电网换相换流器1,拉开旁通开关3或旁通开关或刀闸4,控制电网换相换流器1触发角,增大直流电压来实现电网换相换流器1在线投入,至此,电网换相换流器1和电压源换流器2串联运行。
为了防止在电压源换流器2并联到电网换相换流器1期间,因直流线路或者 交流线路发生故障引起直流输电系统闭锁,可选地,电压源换流器2与限流电抗器11之间增加具有分断直流故障电流的直流断路器,或者直流母线连接开关或刀闸12采用具有分断直流故障电流的直流断路器,或者逆变侧的混合直流换流器直流母线连接开关或刀闸12与电压源换流器2之间串联一个阻断电压源换流器2反向电流的二极管阀组,二极管阀组的阴极与电压源换流器的正极为公共连接端。
图6是混合直流换流器在线投入方法,当只有电网换相换流器运行、收到投入电压源换流器命令时,将电压源换流器一端连接固定电位,电压源换流器充电,解锁电压源换流器,控制电压源换流器与电网换相换流器的电压相同,通过直流场开关或刀闸并联转换,将电压源换流器并联到电网换相换流器两端,将直流功率从电网换相换流器转移到电压源换流器,闭锁电网换相换流器,通过直流场开关或刀闸串联转换,将电网换相换流器串联到电压源换流器,在线投入电网换相换流器。
上述电压源换流器一端连接固定电位是电压源型阀组单元连接到中性母线,通过合上电压源型阀组单元的中性母线连接开关或刀闸来实现。
上述直流场开关或刀闸并联转换是电压源型阀组单元另一端连接到直流母线,通过合上电压源型阀组单元的直流母线连接开关或刀闸来实现。
上述直流场开关或刀闸串联转换,分两种情况:(1)当电压源型阀组单元为低端阀组时,分开电压源型阀组单元的旁通开关或刀闸,合上电流源型阀组单元的旁通开关或刀闸,合上电压源型阀组单元的阀组连接线连接开关或刀闸,分开电压源型阀组单元的直流母线连接开关或刀闸;(2)当电压源型阀组单元为高端阀组时,分开电压源型阀组单元的旁通开关或刀闸,合上电流源型阀组单元的旁通开关或刀闸,合上电压源型阀组单元的阀组连接线连接开关或刀闸,分开电压源型阀组单元的中性母线连接开关或刀闸。
上述在线投入电网换相换流器,通过解锁电网换相换流器,控制直流电流从旁通开关或刀闸转移到电网换相换流器,拉开旁通开关或刀闸,增大直流电压来实现。
图7是混合直流换流器阀组在线投入装置,用于实现混合直流换流器阀组在线投入,包括:
检测单元33,检测电压源型阀组单元的直流电压、直流电流、解锁信号、 闭锁信号、运行信号,检测电流源型阀组单元的直流电压、直流电流、解锁信号、闭锁信号、运行信号,检测直流场、电压源型阀组单元和电流源型阀组单元开关或刀闸位置;
控制单元34,当电网换相换流器有解锁信号、运行信号,电压源换流器有闭锁信号,接收到运行人员命令投入电压源换流器时,将电压源换流器一端连接固定电位,电压源换流器充电,解锁电压源换流器,控制电压源换流器与电网换相换流器的电压相同,通过直流场开关或刀闸并联转换,将电压源换流器并联到电网换相换流器两端,将直流功率从电网换相换流器转移到电压源换流器,闭锁电网换相换流器,通过直流场开关或刀闸串联转换,将电网换相换流器串联到电压源换流器,在线投入电网换相换流器。
上述控制单元中电压源换流器一端连接固定电位是电压源型阀组单元连接到中性母线,通过合上电压源型阀组单元的中性母线连接开关或刀闸来实现。
上述控制单元中直流场开关或刀闸并联转换是电压源型阀组单元另一端连接到直流母线,通过合上电压源型阀组单元的直流母线连接开关或刀闸来实现。
上述控制单元中直流场开关或刀闸串联转换,分两种情况:(1)当电压源型阀组单元为低端阀组时,分开电压源型阀组单元的旁通开关或刀闸,合上电流源型阀组单元的旁通开关或刀闸,合上电压源型阀组单元的阀组连接线连接开关或刀闸,分开电压源型阀组单元的直流母线连接开关或刀闸;(2)当电压源型阀组单元为高端阀组时,分开电压源型阀组单元的旁通开关或刀闸,合上电流源型阀组单元的旁通开关或刀闸,合上电压源型阀组单元的阀组连接线连接开关或刀闸,分开电压源型阀组单元的中性母线连接开关或刀闸。
上述控制单元中在线投入电网换相换流器,通过解锁电网换相换流器,控制直流电流从旁通开关或刀闸转移到电网换相换流器,拉开旁通开关或刀闸,增大直流电压来实现。
本发明所提出的阀组在线投入电路和投入方法用于混合直流换流器的电压源换流器在线投入,特别适用于直流电压调节范围窄或不能调节直流电压到零压的电压源换流器。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (18)

  1. 一种混合直流换流器阀组在线投入电路,其特征在于:所述混合直流换流器阀组在线投入电路用于在线投入混合直流换流器的电压源换流器,如果电压源型阀组单元为低端阀组,所述阀组在线投入电路至少包括电压源型阀组单元的阀组连接线连接开关或刀闸、电压源型阀组单元的直流母线连接开关或刀闸、电压源型阀组单元的旁通开关或刀闸和电流源型阀组单元的旁通开关或刀闸;如果电压源型阀组单元为高端阀组,所述阀组在线投入电路至少包括电压源型阀组单元的阀组连接线连接开关或刀闸、电压源型阀组单元的中性母线连接开关或刀闸、电压源型阀组单元的旁通开关或刀闸和电流源型阀组单元的旁通开关或刀闸。
    所述电压源型阀组单元的阀组连接线连接开关或刀闸用于连接所述电压源型阀组单元的电压源换流器与电流源型阀组单元;所述电压源型阀组单元的直流母线连接开关或刀闸用于连接所述电压源型阀组单元的电压源换流器与直流母线;所述电压源型阀组单元的旁通开关或刀闸用于连接所述电压源型阀组单元的电压源换流器的正极和负极;所述电流源型阀组单元的旁通开关或刀闸用于连接所述电流源型阀组单元的电网换相换流器的阳极和阴极;所述电压源型阀组单元的中性母线连接开关或刀闸用于连接所述电压源型阀组单元的电压源换流器与中性母线。
  2. 如权利要求1所述的一种混合直流换流器阀组在线投入电路,其特征在于:所述混合直流输电换流器由电流源型阀组单元和电压源型阀组单元串联组成,有四种串联连接拓扑结构:
    (1)电流源型阀组单元的阴极和电压源型阀组单元的负极相连;或者
    (2)电流源型阀组单元的阳极和电压源型阀组单元的正极相连;或者
    (3)电流源型阀组单元的阴极和电压源型阀组单元的正极相连;或者
    (4)电流源型阀组单元的阳极和电压源型阀组单元的负极相连;
    所述电流源型阀组单元采用电网换相换流器;所述电压源型阀组单元采用一个电压源换流器或者多个电压源换流器并联。
  3. 如权利要求1所述的一种混合直流换流器阀组在线投入电路,其特征在于:所述电压源型阀组单元为低端阀组是电压源型阀组单元靠近中性母线;所 述电压源型阀组单元为高端阀组是电压源型阀组单元靠近直流母线。
  4. 如权利要求1所述的一种混合直流换流器阀组在线投入电路,其特征在于:如果所述电压源型阀组单元为低端阀组,所述电压源型阀组单元的直流母线连接开关或刀闸采用具有分断直流故障电流能力的直流断路器,或者所述混合直流换流器的电压源型阀组单元的直流母线连接开关或刀闸与电压源换流器之间串联阻断直流故障电流能力的二极管阀组,二极管阀组的阴极与电压源换流器的正极为公共连接端;如果所述电压源型阀组单元为高端阀组,所述电压源型阀组单元的中性母线连接开关或刀闸采用具有分断直流故障电流能力的直流断路器,或者所述混合直流换流器的电压源型阀组单元的中性母线连接开关或刀闸与电压源换流器之间串联阻断直流故障电流能力的二极管阀组,二极管阀组的阳极与电压源换流器的负极为公共连接端。
  5. 如权利要求2所述的一种混合直流换流器阀组在线投入电路,其特征在于:所述电流源型阀组单元采用电网换相换流器,包括电网换相换流器与旁通开关及刀闸组件,电网换相换流器与旁通开关并联连接,并联后的单元两端分别和连接刀闸的一端相连,连接刀闸的另一端并联旁通刀闸。
  6. 如权利要求2所述的一种混合直流换流器阀组在线投入电路,其特征在于:所述电压源型阀组单元采用电压源换流器,包括电压源换流器、限流电抗器、旁通晶闸管阀组、旁通开关及刀闸组件,电压源换流器与限流电抗器串联,再与旁通晶闸管阀组并联,并联后的单元两端分别和连接刀闸的一端相连,连接刀闸的另一端并联旁通开关或刀闸。
  7. 如权利要求2所述的一种混合直流换流器阀组在线投入电路,其特征在于:所述电网换相换流器为六脉动桥式电路或十二脉动桥式电路,其由不可关断的半控型功率半导体组成。
  8. 如权利要求2所述的一种混合直流换流器阀组在线投入电路,其特征在于:所述电压源换流器是以下任一种或多种:两电平换流器、二极管箝位型多电平换流器、模块化多电平换流器MMC、混合多电平换流器HMC、两电平级联型换流器CSL或堆叠式两电平换流器CTL,其由可关断的全控型功率半导体组成。
  9. 一种适用于权利要求1至8任一项所述混合直流换流器阀组在线投入电路的混合直流换流器阀组在线投入方法,其特征在于:当只有电网换相换流器运行、需要投入电压源换流器时,将电压源换流器一端连接固定电位,电压源换流 器充电,解锁电压源换流器,控制电压源换流器与电网换相换流器的电压相同,通过直流场开关或刀闸并联转换,将电压源换流器并联到电网换相换流器两端,将直流功率从电网换相换流器转移到电压源换流器,闭锁电网换相换流器,通过直流场开关或刀闸串联转换,将电网换相换流器串联到电压源换流器,在线投入电网换相换流器。
  10. 如权利要求9所述的一种混合直流换流器阀组在线投入方法,其特征在于:所述电压源换流器一端连接固定电位是电压源型阀组单元连接到中性母线,通过合上电压源型阀组单元的中性母线连接开关或刀闸来实现。
  11. 如权利要求9所述的一种混合直流换流器阀组在线投入方法,其特征在于:所述直流场开关或刀闸并联转换是电压源型阀组单元另一端连接到直流母线,通过合上电压源型阀组单元的直流母线连接开关或刀闸来实现。
  12. 如权利要求9所述的一种混合直流换流器阀组在线投入方法,其特征在于:所述直流场开关或刀闸串联转换,分两种情况:(1)当电压源型阀组单元为低端阀组时,分开电压源型阀组单元的旁通开关或刀闸,合上电流源型阀组单元的旁通开关或刀闸,合上电压源型阀组单元的阀组连接线连接开关或刀闸,分开电压源型阀组单元的直流母线连接开关或刀闸;(2)当电压源型阀组单元为高端阀组时,分开电压源型阀组单元的旁通开关或刀闸,合上电流源型阀组单元的旁通开关或刀闸,合上电压源型阀组单元的阀组连接线连接开关或刀闸,分开电压源型阀组单元的中性母线连接开关或刀闸。
  13. 如权利要求9所述的一种混合直流换流器阀组在线投入方法,其特征在于:所述在线投入电网换相换流器,通过解锁电网换相换流器,控制直流电流从旁通开关或刀闸转移到电网换相换流器,拉开旁通开关或刀闸,增大直流电压来实现。
  14. 一种适用于权利要求1至8任一项所述混合直流换流器阀组在线投入电路的混合直流换流器阀组在线投入装置,其特征在于,所述装置包括检测单元、控制单元,其中:
    检测单元,检测电压源型阀组单元的直流电压、直流电流、解锁信号、闭锁信号、运行信号,检测电流源型阀组单元的直流电压、直流电流、解锁信号、闭锁信号、运行信号,检测直流场、电压源型阀组单元和电流源型阀组单元开关或刀闸位置;
    控制单元,当电网换相换流器有解锁信号、运行信号,电压源换流器有闭锁信号,接收到运行人员命令投入电压源换流器时,将电压源换流器一端连接固定电位,电压源换流器充电,解锁电压源换流器,控制电压源换流器与电网换相换流器的电压相同,通过直流场开关或刀闸并联转换,将电压源换流器并联到电网换相换流器两端,将直流功率从电网换相换流器转移到电压源换流器,闭锁电网换相换流器,通过直流场开关或刀闸串联转换,将电网换相换流器串联到电压源换流器,在线投入电网换相换流器。
  15. 如权利要求14所述的混合直流换流器阀组在线投入装置,其特征在于:所述控制单元中电压源换流器一端连接固定电位是电压源型阀组单元连接到中性母线,通过合上电压源型阀组单元的中性母线连接开关或刀闸来实现。
  16. 如权利要求14所述的混合直流换流器阀组在线投入装置,其特征在于:所述控制单元中直流场开关或刀闸并联转换是电压源型阀组单元另一端连接到直流母线,通过合上电压源型阀组单元的直流母线连接开关或刀闸来实现。
  17. 如权利要求14所述的混合直流换流器阀组在线投入装置,其特征在于:所述控制单元中直流场开关或刀闸串联转换,分两种情况:(1)当电压源型阀组单元为低端阀组时,分开电压源型阀组单元的旁通开关或刀闸,合上电流源型阀组单元的旁通开关或刀闸,合上电压源型阀组单元的阀组连接线连接开关或刀闸,分开电压源型阀组单元的直流母线连接开关或刀闸;(2)当电压源型阀组单元为高端阀组时,分开电压源型阀组单元的旁通开关或刀闸,合上电流源型阀组单元的旁通开关或刀闸,合上电压源型阀组单元的阀组连接线连接开关或刀闸,分开电压源型阀组单元的中性母线连接开关或刀闸。
  18. 如权利要求14所述的混合直流换流器阀组在线投入装置,其特征在于:所述控制单元中在线投入电网换相换流器,通过解锁电网换相换流器,控制直流电流从旁通开关或刀闸转移到电网换相换流器,拉开旁通开关或刀闸,增大直流电压来实现。
PCT/CN2019/075673 2018-05-28 2019-02-21 一种混合直流换流器阀组在线投入电路和投入方法及装置 WO2019227979A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19811157.7A EP3806263A4 (en) 2018-05-28 2019-02-21 VALVE GROUP DIRECT FEED CIRCUIT FOR HYBRID DC CONVERTER AND FEED METHOD AND APPARATUS
BR112020016284-1A BR112020016284A2 (pt) 2018-05-28 2019-02-21 Circuito de entrada de linha de grupo de válvulas de conversor dc híbrido, método e aparelho
KR1020207023403A KR102253974B1 (ko) 2018-05-28 2019-02-21 하이브리드 직류 컨버터 밸브 그룹 온라인 투입 회로, 투입 방법 및 장치
JP2021508043A JP2021520183A (ja) 2018-05-28 2019-02-21 ハイブリッド直流変換器弁群のオンライン投入回路、投入方法および装置
RU2020126720A RU2748367C1 (ru) 2018-05-28 2019-02-21 Цепь, способ и устройство для поточного ввода группы вентилей гибридного преобразователя постоянного тока

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810519362.X 2018-05-28
CN201810519362.XA CN108683207B (zh) 2018-05-28 2018-05-28 一种混合直流换流器阀组在线投入电路和投入方法及装置

Publications (1)

Publication Number Publication Date
WO2019227979A1 true WO2019227979A1 (zh) 2019-12-05

Family

ID=63808360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075673 WO2019227979A1 (zh) 2018-05-28 2019-02-21 一种混合直流换流器阀组在线投入电路和投入方法及装置

Country Status (7)

Country Link
EP (1) EP3806263A4 (zh)
JP (1) JP2021520183A (zh)
KR (1) KR102253974B1 (zh)
CN (1) CN108683207B (zh)
BR (1) BR112020016284A2 (zh)
RU (1) RU2748367C1 (zh)
WO (1) WO2019227979A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865038A (zh) * 2021-02-01 2021-05-28 华北电力大学 一种特高压混合多端直流输电系统受端阀侧故障保护方法
CN113949042A (zh) * 2020-07-17 2022-01-18 中国南方电网有限责任公司超高压输电公司 一种特高压直流阀组和故障阀组隔离方法
CN116722577A (zh) * 2023-08-10 2023-09-08 长江三峡集团实业发展(北京)有限公司 一种新能源直流送出拓扑电路及系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108683207B (zh) * 2018-05-28 2021-10-01 南京南瑞继保电气有限公司 一种混合直流换流器阀组在线投入电路和投入方法及装置
CN109361213B (zh) * 2018-11-23 2022-03-29 南京南瑞继保电气有限公司 一种混合直流输电系统串联换流器退出装置及方法
CN109672206A (zh) * 2018-11-23 2019-04-23 南京南瑞继保电气有限公司 一种混合直流输电系统及其串联换流器投入装置及方法
CN110289774B (zh) * 2019-07-03 2024-06-18 南京南瑞继保电气有限公司 一种高压直流输电换流单元及其控制方法和控制装置
CN110718900B (zh) * 2019-10-12 2023-03-28 日立能源瑞士股份公司 用于检测混合电力系统中的故障的方法和装置
CN110829869B (zh) * 2019-10-22 2020-11-24 中国南方电网有限责任公司超高压输电公司检修试验中心 一种适用于混合直流的mmc充电策略
CN112787347B (zh) * 2019-11-11 2022-07-22 南京南瑞继保电气有限公司 混合直流换流器阀组在线退出电路、退出方法及退出装置
CN112787349B (zh) * 2019-11-11 2022-07-22 南京南瑞继保电气有限公司 混合直流换流器阀组在线退出方法及退出装置
WO2021093746A1 (zh) * 2019-11-11 2021-05-20 南京南瑞继保电气有限公司 混合直流换流器在线退出电路、退出方法及退出装置
CN113054679B (zh) * 2019-12-26 2022-07-22 南京南瑞继保电气有限公司 高压直流输电系统直流侧接地故障控制方法及控制装置
CN113659603B (zh) * 2020-05-12 2024-02-02 南京南瑞继保电气有限公司 混合直流换流器故障闭锁控制方法和控制装置
CN112653171B (zh) * 2020-12-11 2023-11-21 华北电力大学 一种适用于海上风电送出的混合型换流器拓扑及其控制策略

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578130A (zh) * 2015-01-08 2015-04-29 南京南瑞继保电气有限公司 一种混合直流输电换流器及直流输电装置
CN104753079A (zh) * 2015-03-27 2015-07-01 国家电网公司 一种可实现功率反送的混合直流输电系统
CN107732954A (zh) * 2017-11-22 2018-02-23 南京南瑞继保电气有限公司 一种电压源换流器单元在线投入控制方法及装置
CN108683207A (zh) * 2018-05-28 2018-10-19 南京南瑞继保电气有限公司 一种混合直流换流器阀组在线投入电路和投入方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1974454A4 (en) * 2006-01-18 2017-03-01 ABB Technology Ltd A transmission system and a method for control thereof
US8098504B2 (en) * 2006-01-18 2012-01-17 Abb Technology Ltd. Converter station for connecting an AC system to an end of an HVDC transmission line
JP6099951B2 (ja) * 2012-11-29 2017-03-22 株式会社東芝 電力変換装置
DE102013218207A1 (de) * 2013-09-11 2015-03-12 Siemens Aktiengesellschaft Modularer Mehrpunktstromrichter für hohe Spannungen
CN105162155B (zh) * 2015-08-26 2017-10-27 浙江大学 一种具有直流故障穿越能力的串联混合型双极直流输电系统
CN106786713B (zh) * 2016-11-25 2019-04-09 南京南瑞继保电气有限公司 一种电压源换流器单元拓扑结构及控制方法
CN107204626B (zh) * 2017-06-09 2021-05-11 电子科技大学 一种lcc-mmc交错混合双极直流输电系统
CN107565590B (zh) * 2017-09-06 2020-05-05 合肥工业大学 适用于风电外送的混合高压直流输电系统
CN107968588B (zh) * 2017-12-17 2019-08-30 华中科技大学 一种级联换流阀、直流输电系统及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578130A (zh) * 2015-01-08 2015-04-29 南京南瑞继保电气有限公司 一种混合直流输电换流器及直流输电装置
CN104753079A (zh) * 2015-03-27 2015-07-01 国家电网公司 一种可实现功率反送的混合直流输电系统
CN107732954A (zh) * 2017-11-22 2018-02-23 南京南瑞继保电气有限公司 一种电压源换流器单元在线投入控制方法及装置
CN108683207A (zh) * 2018-05-28 2018-10-19 南京南瑞继保电气有限公司 一种混合直流换流器阀组在线投入电路和投入方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3806263A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113949042A (zh) * 2020-07-17 2022-01-18 中国南方电网有限责任公司超高压输电公司 一种特高压直流阀组和故障阀组隔离方法
CN112865038A (zh) * 2021-02-01 2021-05-28 华北电力大学 一种特高压混合多端直流输电系统受端阀侧故障保护方法
CN112865038B (zh) * 2021-02-01 2023-01-17 华北电力大学 一种特高压混合多端直流输电系统受端阀侧故障保护方法
CN116722577A (zh) * 2023-08-10 2023-09-08 长江三峡集团实业发展(北京)有限公司 一种新能源直流送出拓扑电路及系统
CN116722577B (zh) * 2023-08-10 2023-10-20 长江三峡集团实业发展(北京)有限公司 一种新能源直流送出拓扑电路及系统

Also Published As

Publication number Publication date
EP3806263A4 (en) 2022-03-09
BR112020016284A2 (pt) 2020-12-15
EP3806263A1 (en) 2021-04-14
KR20200100204A (ko) 2020-08-25
KR102253974B1 (ko) 2021-05-18
CN108683207A (zh) 2018-10-19
JP2021520183A (ja) 2021-08-12
RU2748367C1 (ru) 2021-05-24
CN108683207B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2019227979A1 (zh) 一种混合直流换流器阀组在线投入电路和投入方法及装置
EP3726712A1 (en) Protection circuit of converter, and protection method and device
Rao et al. Key technologies of ultra-high voltage hybrid LCC-VSC MTDC systems
CN104578130B (zh) 一种混合直流输电换流器及直流输电装置
CN104009446B (zh) 一种直流输电保护装置、换流器及保护方法
CN108258657B (zh) 一种电压源换流器保护电路和保护方法及装置
CN208723542U (zh) 具有故障处理功能的混合直流输电系统
WO2017129026A1 (zh) 一种混合背靠背直流输电系统及潮流反转控制方法
WO2015032421A1 (en) Hvdc series current source converter
CN110912175A (zh) 一种混合四端高压直流输电系统
Zapico et al. Fault tolerant cell design for MMC-based multiport power converters
Bakas et al. Hybrid converter with alternate common arm and director thyristors for high-power capability
CN208094430U (zh) 一种换流器保护电路
WO2021204076A1 (zh) 直流调压单元的控制方法及控制装置
CN112787347B (zh) 混合直流换流器阀组在线退出电路、退出方法及退出装置
CN111600324B (zh) 一种混合级联直流输电系统控制方法
Li et al. Grid-connection of active-forced-commutated bridge: Power quality and DC fault protection
CN113517711A (zh) 一种故障控制装置、混合直流输电系统及故障处理方法
CN113489359A (zh) 一种具备直流故障清除能力的子模块拓扑
CN111555331B (zh) 功率互济装置及混合多端直流输电系统
Ismail et al. A review of recent HVDC tapping topologies
WO2021093746A1 (zh) 混合直流换流器在线退出电路、退出方法及退出装置
CN113659603B (zh) 混合直流换流器故障闭锁控制方法和控制装置
CN110277772A (zh) 一种具有故障处理功能的混合直流输电系统
CN112787349B (zh) 混合直流换流器阀组在线退出方法及退出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207023403

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020016284

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021508043

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020016284

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200811

ENP Entry into the national phase

Ref document number: 2019811157

Country of ref document: EP

Effective date: 20210111