WO2019225908A1 - Method for transmitting and receiving downlink signal, and device therefor - Google Patents

Method for transmitting and receiving downlink signal, and device therefor Download PDF

Info

Publication number
WO2019225908A1
WO2019225908A1 PCT/KR2019/005916 KR2019005916W WO2019225908A1 WO 2019225908 A1 WO2019225908 A1 WO 2019225908A1 KR 2019005916 W KR2019005916 W KR 2019005916W WO 2019225908 A1 WO2019225908 A1 WO 2019225908A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
downlink signal
resource
configuration information
processor
Prior art date
Application number
PCT/KR2019/005916
Other languages
French (fr)
Korean (ko)
Inventor
차현수
이길봄
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2019225908A1 publication Critical patent/WO2019225908A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a method for transmitting and receiving a downlink signal and an apparatus therefor, and more particularly, to a method for transmitting and receiving a downlink signal based on a 'ReportQuantity' parameter setting associated with a CSI-RS resource or an SS / PBCH block resource. And an apparatus therefor.
  • next generation 5G system which is an improved wireless broadband communication than the existing LTE system, is required.
  • eMBB Enhanced Mobile BroadBand
  • URLLC Ultra-reliability and low-latency communication
  • mMTC Massive Machine-Type Communications
  • eMBB is a next generation mobile communication scenario having characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate, and URLLC is a next generation mobile communication scenario having characteristics such as Ultra Reliable, Ultra Low Latency, Ultra High Availability, etc.
  • mMTC is a next generation mobile communication scenario with low cost, low energy, short packet, and mass connectivity. (e.g., IoT).
  • the present invention provides a method for transmitting and receiving a downlink signal and an apparatus therefor.
  • a wireless communication system in a method for receiving a downlink signal by a terminal, measurement report configuration information associated with a resource for a synchronization signal / physical broadcast channel (SS / PBCH) block , The SS / PBCH block through the plurality of Orthogonal Frequency Divisional Multiplexing (OFDM) symbols, and the downlink signal through the plurality of OFDM symbols based on the measurement report configuration information.
  • OFDM Orthogonal Frequency Divisional Multiplexing
  • the downlink signal may not be received.
  • the measurement report configuration information informs the report of the RSRP (Reference Signal Received Power) of the SS / PBCH block
  • the downlink signal may be received.
  • a resource for the SS / PBCH block may be included in a specific CSI resource setting.
  • the downlink signal may be at least one of a physical downlink shared channel (PDSCH) and a physical downlink control channel (PDCCH).
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • the measurement report configuration information does not report the measurement of the SS / PBCH block (measurement)
  • the downlink signal is CSI-RS (Channel State Information-Reference Signal) for beam management
  • the downlink The link signal can be received.
  • the terminal may communicate with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the terminal.
  • an apparatus for receiving a downlink signal comprising: at least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that when executed by the at least one processor cause the at least one processor to perform a particular operation.
  • the specific operation may include measurement report configuration (MEA) information associated with a resource for a Synchronization Signal / Physical Broadcast Channel (SS / PBCH) block, and through a plurality of Orthogonal Frequency Divisional Multiplexing (OFDM) symbols,
  • MAA measurement report configuration
  • SS / PBCH Synchronization Signal / Physical Broadcast Channel
  • OFDM Orthogonal Frequency Divisional Multiplexing
  • the downlink signal may not be received.
  • the measurement report configuration information informs the report of the RSRP (Reference Signal Received Power) of the SS / PBCH block
  • the downlink signal may be received.
  • a resource for the SS / PBCH block may be included in a specific CSI resource setting.
  • the downlink signal may be at least one of a physical downlink shared channel (PDSCH) and a physical downlink control channel (PDCCH).
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • the measurement report configuration information does not report the measurement of the SS / PBCH block (measurement)
  • the downlink signal is CSI-RS (Channel State Information-Reference Signal) for beam management
  • the downlink The link signal can be received.
  • the apparatus may be capable of communicating with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the apparatus.
  • a terminal for receiving a downlink signal comprising: at least one transceiver; At least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that when executed by the at least one processor cause the at least one processor to perform a particular operation.
  • the specific operation may include measurement report configuration information associated with a resource for a Synchronization Signal / Physical Broadcast Channel (SS / PBCH) block through the at least one transceiver and receive the at least one transceiver.
  • SS / PBCH Synchronization Signal / Physical Broadcast Channel
  • the SS / PBCH block is received through a plurality of Orthogonal Frequency Divisional Multiplexing (OFDM) symbols, and the downlink signal is transmitted through the plurality of OFDM symbols based on the measurement report configuration information through the at least one transceiver. Can be received.
  • OFDM Orthogonal Frequency Divisional Multiplexing
  • a wireless communication system in a method for transmitting a downlink signal by a base station, measurement report configuration information associated with resources for a synchronization signal / physical broadcast channel (SS / PBCH) block
  • the SS / PBCH block may be transmitted through a plurality of orthogonal frequency divisional multiplexing (OFDM) symbols, and the downlink signal may be transmitted through the plurality of OFDM symbols based on the measurement report configuration information.
  • OFDM orthogonal frequency divisional multiplexing
  • a base station for transmitting a downlink signal comprising: at least one transceiver; At least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that when executed by the at least one processor cause the at least one processor to perform a particular operation.
  • the specific operation may include: transmitting measurement report configuration information associated with a resource for a Synchronization Signal / Physical Broadcast Channel (SS / PBCH) block through the at least one transceiver, and transmitting the at least one transceiver
  • the SS / PBCH block is transmitted through a plurality of Orthogonal Frequency Divisional Multiplexing (OFDM) symbols, and the downlink signal is transmitted through the plurality of OFDM symbols based on the measurement report configuration information through the at least one transceiver.
  • OFDM Orthogonal Frequency Divisional Multiplexing
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • FIG. 2 is a diagram for explaining a physical channel used in the 3GPP system and a general signal transmission method using the same.
  • 3 to 5 are diagrams for explaining the structure of a radio frame and slot used in the NR system.
  • 6 to 8 are diagrams illustrating an example of transmission of an SS / PBCH block.
  • FIG. 9 is a diagram for explaining analog beamforming in an NR system.
  • 10 to 14 are diagrams for explaining beam management in the NR system.
  • 15 is a diagram for explaining an example of reporting channel state information.
  • 16 is a diagram illustrating an example in which a terminal and a base station transmit and receive downlink signals according to an embodiment of the present invention.
  • 17 is a block diagram illustrating components of a wireless device according to an embodiment of the present invention.
  • the present specification describes an embodiment of the present invention using an LTE system, an LTE-A system, and an NR system, the embodiment of the present invention as an example may be applied to any communication system corresponding to the above definition.
  • the specification of the base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • relay and the like.
  • the 3GPP-based communication standard provides downlink physical channels corresponding to resource elements carrying information originating from an upper layer and downlink corresponding to resource elements used by the physical layer but not carrying information originating from an upper layer.
  • Physical signals are defined.
  • a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), a physical control format indicator channel (physical control) format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, reference signal and synchronization signal Is defined as downlink physical signals.
  • a reference signal also referred to as a pilot, refers to a signal of a predefined special waveform that the gNB and the UE know from each other.
  • a cell specific RS, UE- UE-specific RS, positioning RS (PRS), and channel state information RS (CSI-RS) are defined as downlink reference signals.
  • the 3GPP LTE / LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from a higher layer and resource elements used by the physical layer but not carrying information originating from an upper layer. Uplink physical signals are defined.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • Physical Downlink Control CHannel / Physical Control Format Indicator CHannel (PCFICH) / PHICH (Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel) are respectively DCI (Downlink Control Information) / CFI ( Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK / NACK (ACKnowlegement / Negative ACK) / downlink data, and also a physical uplink control channel (PUCCH) / physical (PUSCH).
  • DCI Downlink Control Information
  • CFI Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK / NACK (ACKnowlegement / Negative ACK) / downlink data, and also a physical uplink control channel (PUCCH) / physical (PUSCH).
  • Uplink Shared CHannel / PACH Physical Random Access CHannel
  • PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH Resource the expression that the user equipment transmits PUCCH / PUSCH / PRACH is used for uplink control information / uplink on or through PUSCH / PUCCH / PRACH, respectively. It is used in the same sense as transmitting a data / random access signal, and the expression that the gNB transmits PDCCH / PCFICH / PHICH / PDSCH is used for downlink data / control information on or through PDCCH / PCFICH / PHICH / PDSCH, respectively. It is used in the same sense as sending it.
  • an OFDM symbol / subcarrier / RE to which CRS / DMRS / CSI-RS / SRS / UE-RS is assigned or configured is configured as CRS / DMRS / CSI-RS / SRS / UE-RS symbol / carrier. It is called / subcarrier / RE.
  • an OFDM symbol assigned or configured with a tracking RS (TRS) is referred to as a TRS symbol
  • a subcarrier assigned or configured with a TRS is called a TRS subcarrier and is assigned a TRS.
  • the configured RE is called a TRS RE.
  • a subframe configured for TRS transmission is called a TRS subframe.
  • a subframe in which a broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe
  • a subframe in which a sync signal (for example, PSS and / or SSS) is transmitted is a sync signal subframe or a PSS / SSS subframe. It is called.
  • An OFDM symbol / subcarrier / RE to which PSS / SSS is assigned or configured is referred to as a PSS / SSS symbol / subcarrier / RE, respectively.
  • the CRS port, the UE-RS port, the CSI-RS port, and the TRS port are respectively an antenna port configured to transmit CRS, an antenna port configured to transmit UE-RS, An antenna port configured to transmit CSI-RS and an antenna port configured to transmit TRS.
  • Antenna ports configured to transmit CRSs can be distinguished from each other by the location of REs occupied by the CRS according to the CRS ports, and antenna ports configured to transmit UE-RSs.
  • the antenna ports configured to transmit the CSI-RSs can be distinguished from each other by the positions of the REs occupied by the UE-RS according to the -RS ports, and the CSI-RSs occupy The location of the REs can be distinguished from each other.
  • CRS / UE-RS / CSI-RS / TRS port may be used as a term for a pattern of REs occupied by CRS / UE-RS / CSI-RS / TRS in a certain resource region.
  • the three main requirements areas of 5G are: (1) Enhanced Mobile Broadband (eMBB) area, (2) massive Machine Type Communication (mMTC) area, and (3) ultra-reliability and It includes the area of Ultra-reliable and Low Latency Communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC massive Machine Type Communication
  • URLLC Ultra-reliable and Low Latency Communications
  • KPI key performance indicator
  • eMBB goes far beyond basic mobile Internet access and covers media and entertainment applications in rich interactive work, cloud or augmented reality.
  • Data is one of the key drivers of 5G and may not see dedicated voice services for the first time in the 5G era.
  • voice is expected to be treated as an application simply using the data connection provided by the communication system.
  • the main reasons for the increased traffic volume are the increase in content size and the increase in the number of applications requiring high data rates.
  • Streaming services (audio and video), interactive video, and mobile Internet connections will become more popular as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to the user.
  • Cloud storage and applications are growing rapidly in mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of uplink data rates.
  • 5G is also used for remote tasks in the cloud and requires much lower end-to-end delays to maintain a good user experience when tactile interfaces are used.
  • Entertainment For example, cloud gaming and video streaming are another key factor in increasing the need for mobile broadband capabilities. Entertainment is essential in smartphones and tablets anywhere, including in high mobility environments such as trains, cars and airplanes.
  • Another use case is augmented reality and information retrieval for entertainment.
  • augmented reality requires very low latency and instantaneous amount of data.
  • one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all applications, namely mMTC.
  • potential IoT devices are expected to reach 20 billion.
  • Industrial IoT is one of the areas where 5G plays a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
  • URLLC includes new services that will change the industry through ultra-reliable / low-latency links available, such as remote control of key infrastructure and self-driving vehicles.
  • the level of reliability and latency is essential for smart grid control, industrial automation, robotics, drone control and coordination.
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of providing streams that are rated at hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in 4K and above (6K, 8K and above) resolutions as well as virtual and augmented reality.
  • Virtual Reality (AVR) and Augmented Reality (AR) applications include nearly immersive sporting events. Certain applications may require special network settings. For example, for VR games, game companies may need to integrate core servers with network operator's edge network servers to minimize latency.
  • Automotive is expected to be an important new driver for 5G, with many examples for mobile communications to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. This is because future users continue to expect high quality connections regardless of their location and speed.
  • Another use case in the automotive field is augmented reality dashboards. It identifies objects in the dark above what the driver sees through the front window and overlays information that tells the driver about the distance and movement of the object.
  • wireless modules enable communication between vehicles, the exchange of information between the vehicle and the supporting infrastructure, and the exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians).
  • Safety systems guide alternative courses of action to help drivers drive safer, reducing the risk of an accident.
  • the next step will be a remotely controlled or self-driven vehicle.
  • Smart cities and smart homes will be embedded in high-density wireless sensor networks.
  • the distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of the city or home. Similar settings can be made for each hypothesis.
  • Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
  • Smart grids interconnect these sensors using digital information and communication technologies to gather information and act accordingly. This information can include the behavior of suppliers and consumers, allowing smart grids to improve the distribution of fuels such as electricity in efficiency, reliability, economics, sustainability of production, and in an automated manner. Smart Grid can be viewed as another sensor network with low latency.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system may support telemedicine that provides clinical care from a distance. This can help reduce barriers to distance and improve access to healthcare services that are not consistently available in remote rural areas. It is also used to save lives in critical care and emergencies.
  • a mobile communication based wireless sensor network can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing the cables with reconfigurable wireless links is an attractive opportunity in many industries. However, achieving this requires that the wireless connection operates with similar cable delay, reliability, and capacity, and that management is simplified. Low latency and very low error probability are new requirements that need to be connected in 5G.
  • Logistics and freight tracking are important use cases for mobile communications that enable the tracking of inventory and packages from anywhere using a location-based information system.
  • the use of logistics and freight tracking typically requires low data rates but requires wide range and reliable location information.
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transmission channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources.
  • the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • PDCP Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transmission channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers.
  • the radio bearer refers to a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • the downlink transmission channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • the logical channel mapped to the transmission channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and an MTCH (multicast). Traffic Channel).
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 2 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE performs an initial cell search operation such as synchronizing with the base station (S201).
  • the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have.
  • the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell.
  • the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S202).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S203 to S206).
  • RACH random access procedure
  • the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S204 and S206).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the above-described procedure, the UE performs a PDCCH / PDSCH reception (S207) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S208) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • the NR system considers a method using a high ultra-high frequency band, that is, a millimeter frequency band of 6 GHz or more, to transmit data while maintaining a high data rate to a large number of users using a wide frequency band.
  • 3GPP uses this as the name NR, which is referred to as NR system in the present invention.
  • 3 illustrates the structure of a radio frame used in NR.
  • uplink and downlink transmission are composed of frames.
  • the radio frame has a length of 10 ms and is defined as two 5 ms half-frames (HFs).
  • Half-frames are defined as five 1 ms subframes (SFs).
  • the subframe is divided into one or more slots, and the number of slots in the subframe depends on the subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot includes 12 or 14 OFDM (A) symbols according to a cyclic prefix (CP). Usually when CP is used, each slot contains 14 symbols. If extended CP is used, each slot includes 12 symbols.
  • the symbol may include an OFDM symbol (or CP-OFDM symbol), SC-FDMA symbol (or DFT-s-OFDM symbol).
  • Table 1 exemplarily shows that when the CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to the SCS.
  • Table 2 illustrates that when the extended CP is used, the number of symbols for each slot, the number of slots for each frame, and the number of slots for each subframe vary according to the SCS.
  • OFDM (A) numerology eg, SCS, CP length, etc.
  • a numerology eg, SCS, CP length, etc.
  • the (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit TU
  • 4 illustrates a slot structure of an NR frame.
  • the slot includes a plurality of symbols in the time domain. For example, one slot includes seven symbols in the case of a normal CP, but one slot includes six symbols in the case of an extended CP.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • Resource block is defined as a plurality of consecutive subcarriers (eg, 12) in the frequency domain.
  • the bandwidth part (BWP) is defined as a plurality of consecutive (P) RBs in the frequency domain and may correspond to one numerology (eg, SCS, CP length, etc.).
  • the carrier may include up to N (eg, 5) BWPs. Data communication is performed through an activated BWP, and only one BWP may be activated by one UE.
  • Each element in the resource grid is referred to as a resource element (RE), one complex symbol may be mapped.
  • RE resource element
  • a frame is characterized by a self-complete structure in which a DL control channel, DL or UL data, UL control channel, and the like can be included in one slot.
  • the first N symbols in a slot may be used to transmit a DL control channel (hereinafter DL control region), and the last M symbols in the slot may be used to transmit a UL control channel (hereinafter UL control region).
  • N and M are each an integer of 0 or more.
  • a resource region hereinafter, referred to as a data region
  • a data region between the DL control region and the UL control region may be used for DL data transmission or may be used for UL data transmission.
  • Each interval is listed in chronological order.
  • DL area (i) DL data area, (ii) DL control area + DL data area
  • UL region (i) UL data region, (ii) UL data region + UL control region
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • Downlink control information (DCI) for example, DL data scheduling information, UL data scheduling information, and the like may be transmitted in the PDCCH.
  • DCI Downlink control information
  • uplink control information (UCI) for example, positive acknowledgment / negative acknowledgment (ACK / NACK) information, channel state information (CSI) information, and scheduling request (SR) for DL data may be transmitted.
  • UCI uplink control information
  • ACK / NACK positive acknowledgment / negative acknowledgment
  • CSI channel state information
  • SR scheduling request
  • the GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or from the reception mode to the transmission mode. Some symbols at the time of switching from DL to UL in the subframe may be set to GP
  • the UE may perform cell search, system information acquisition, beam alignment for initial access, DL measurement, etc. based on the SSB.
  • SSB is mixed with a Synchronization Signal / Physical Broadcast channel (SS / PBCH) block.
  • SS / PBCH Synchronization Signal / Physical Broadcast channel
  • the SSB is periodically transmitted in accordance with the SSB period.
  • the SSB basic period assumed by the UE in initial cell search is defined as 20 ms.
  • the SSB period may be set to one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ by a network (eg, a base station).
  • a set of SSB bursts is constructed at the beginning of the SSB period.
  • the SSB burst set consists of a 5ms time window (ie, half-frame), and the SSB can be transmitted up to L times within the SS burst set.
  • the maximum number of transmissions L of the SSB may be given as follows according to the frequency band of the carrier wave. One slot includes up to two SSBs.
  • the time position of the SSB candidate in the SS burst set may be defined as follows according to the SCS.
  • the temporal position of the SSB candidate is indexed from 0 to L-1 in time order within the SSB burst set (ie, half-frame) (SSB index).
  • Beam sweeping means that the Transmission Reception Point (TRP) (eg, base station / cell) varies the beam (direction) of the radio signal over time (hereinafter, the beam and beam direction may be mixed).
  • TRP Transmission Reception Point
  • the SSB may be periodically transmitted using beam sweeping.
  • the SSB index is implicitly linked with the SSB beam.
  • the SSB beam may be changed in units of SSB (index) or in units of SSB (index) group. In the latter case, the SSB beam remains the same within the SSB (index) group. That is, the transmission beam reflections of the SSB are repeated in a plurality of consecutive SSBs.
  • the maximum number of transmissions L of the SSB in the SSB burst set has a value of 4, 8 or 64 depending on the frequency band to which the carrier belongs. Accordingly, the maximum number of SSB beams in the SSB burst set may also be given as follows according to the frequency band of the carrier.
  • the number of SSB beams is one.
  • the terminal may align the beam with the base station based on the SSB. For example, the terminal identifies the best SSB after performing SSB detection. Thereafter, the terminal may transmit the RACH preamble to the base station using the PRACH resources linked / corresponding to the index (ie, beam) of the best SSB. SSB may be used to align the beam between the base station and the terminal even after the initial access.
  • FIG. 8 illustrates a method of notifying the SSB (SSB_tx) that is actually transmitted.
  • Up to L SSBs may be transmitted in the SSB burst set, and the number / locations of the SSBs actually transmitted may vary by base station / cell.
  • the number / location at which the SSB is actually transmitted is used for rate-matching and measurement, and information about the SSB actually transmitted is indicated as follows.
  • rate-matching it may be indicated through UE-specific RRC signaling or RMSI.
  • UE-specific RRC signaling includes a full (eg, length L) bitmap in both the below 6 GHz and above 6 GHz frequency ranges.
  • the RMSI includes a full bitmap below 6GHz and a compressed bitmap as shown above.
  • information about the SSB actually transmitted using the group-bit map (8 bits) + the intra-group bitmap (8 bits) can be indicated.
  • resources indicated by UE-specific RRC signaling or RMSI eg, RE
  • PDSCH / PUSCH and the like may be rate-matched in consideration of SSB resources.
  • the network When in the RRC connected mode, the network (eg, base station) may indicate the set of SSBs to be measured within the measurement interval.
  • the SSB set may be indicated for each frequency layer. If there is no indication about the SSB set, the default SSB set is used.
  • the default SSB set includes all SSBs within the measurement interval.
  • the SSB set may be indicated using a full (eg, length L) bitmap of RRC signaling.
  • RRC idle mode a default set of SSBs is used.
  • a massive multiple input multiple output (MIMO) environment in which a transmit / receive antenna is greatly increased may be considered. That is, as a large MIMO environment is considered, the number of transmit / receive antennas may increase to tens or hundreds or more.
  • the NR system supports communication in the above 6GHz band, that is, the millimeter frequency band.
  • the millimeter frequency band has a frequency characteristic that the signal attenuation with the distance is very rapid due to the use of a frequency band too high. Therefore, NR systems using bands of at least 6 GHz or more use a beamforming technique that collects and transmits energy in a specific direction rather than omnidirectionally to compensate for a sudden propagation attenuation characteristic.
  • beamforming weight vectors / precoding vectors are used to reduce the complexity of hardware implementation, increase performance with multiple antennas, flexibility in resource allocation, and ease of frequency-specific beam control.
  • a hybrid beamforming technique in which an analog beamforming technique and a digital beamforming technique are combined is required.
  • FIG. 9 is a diagram illustrating an example of a block diagram of a transmitting end and a receiving end for hybrid beamforming.
  • a beamforming method of increasing energy only in a specific direction by transmitting the same signal using a phase difference appropriate to a large number of antennas in a BS or a UE is mainly considered.
  • Such beamforming methods include digital beamforming that creates a phase difference in a digital baseband signal, analog beamforming that uses a time delay (ie, cyclic shift) in a modulated analog signal to create a phase difference, digital beamforming, and an analog beam.
  • TXRU transceiver unit
  • the millimeter frequency band should be used by a large number of antennas to compensate for rapid propagation attenuation, and digital beamforming is equivalent to the number of antennas, so RF components (eg, digital-to-analog converters (DACs), mixers, power Since an amplifier (power amplifier, linear amplifier, etc.) is required, there is a problem in that the cost of a communication device increases in order to implement digital beamforming in the millimeter frequency band. Therefore, when a large number of antennas are required, such as the millimeter frequency band, the use of analog beamforming or hybrid beamforming is considered.
  • DACs digital-to-analog converters
  • the analog beamforming method maps a plurality of antenna elements to one TXRU and adjusts the beam direction with an analog phase shifter.
  • Such an analog beamforming method has a disadvantage in that only one beam direction can be made in the entire band and thus frequency selective beamforming (BF) cannot be performed.
  • BF frequency selective beamforming
  • Hybrid BF is an intermediate form between digital BF and analog BF with B RF units less than Q antenna elements. In the case of the hybrid BF, although there are differences depending on the connection method of the B RF units and the Q antenna elements, the direction of beams that can be simultaneously transmitted is limited to B or less.
  • DL BM Downlink Beam Management
  • the BM process is a BS (or transmission and reception point (TRP)) and / or set of UE beams that can be used for downlink (DL) and uplink (UL) transmission / reception.
  • TRP transmission and reception point
  • UE beams that can be used for downlink (DL) and uplink (UL) transmission / reception.
  • Beam measurement an operation in which a BS or a UE measures a characteristic of a received beamforming signal.
  • Beam determination an operation in which the BS or the UE selects its Tx beam / Rx beam.
  • Beam sweeping an operation of covering the spatial domain using transmit and / or receive beams for a certain time interval in a predetermined manner.
  • Beam report an operation in which a UE reports information of a beamformed signal based on beam measurement.
  • the BM process may be divided into (1) DL BM process using SSB or CSI-RS and (2) UL BM process using SRS (sounding reference signal).
  • each BM process may include a Tx beam sweeping for determining the Tx beam and an Rx beam sweeping for determining the Rx beam.
  • the DL BM process may include (1) transmission of beamformed DL RSs (eg, CSI-RS or SSB) by the BS, and (2) beam reporting by the UE.
  • beamformed DL RSs eg, CSI-RS or SSB
  • the beam report may include a preferred DL RS ID (s) and a reference signal received power (RSRP) corresponding thereto.
  • the DL RS ID may be a SSB Resource Indicator (SSBRI) or a CSI-RS Resource Indicator (CRI).
  • FIG. 10 shows an example of beamforming using SSB and CSI-RS.
  • the SSB beam and the CSI-RS beam may be used for beam measurement.
  • the measurement metric is a resource / block RSRP.
  • SSB is used for coarse beam measurement and CSI-RS can be used for fine beam measurement.
  • SSB can be used for both Tx beam sweeping and Rx beam sweeping.
  • Rx beam sweeping using the SSB may be performed by attempting to receive the SSB while the UE changes the Rx beam for the same SSBRI across multiple SSB bursts.
  • one SS burst includes one or more SSBs
  • one SS burst set includes one or more SSB bursts.
  • FIG. 11 is a flowchart illustrating an example of a DL BM process using an SSB.
  • the beam report setting using the SSB is performed at the channel state information (CSI) / beam setting in RRC_CONNECTED.
  • CSI channel state information
  • the UE receives the CSI-ResourceConfig IE including the CSI-SSB-ResourceSetList for the SSB resources used for the BM from the BS (S1110).
  • the RRC parameter csi-SSB-ResourceSetList represents a list of SSB resources used for beam management and reporting in one resource set.
  • the SSB resource set may be set to ⁇ SSBx1, SSBx2, SSBx3, SSBx4, ⁇ .
  • SSB index may be defined from 0 to 63.
  • the UE receives signals on SSB resources from the BS based on the CSI-SSB-ResourceSetList (S1120).
  • the UE reports the best SSBRI and the corresponding RSRP to the BS (S1130). For example, when reportQuantity of the CSI-RS reportConfig IE is set to 'ssb-Index-RSRP', the UE reports the best SSBRI and the corresponding RSRP to the BS.
  • the UE When the CSI-RS resource is configured in the same OFDM symbol (s) as the SSB, and the 'QCL-TypeD' is applicable, the UE is similarly co-located in terms of the 'QCL-TypeD' with the CSI-RS and the SSB ( quasi co-located (QCL).
  • QCL-TypeD may mean that QCLs are interposed between antenna ports in terms of spatial Rx parameters.
  • the UE may apply the same reception beam when receiving signals of a plurality of DL antenna ports in a QCL-TypeD relationship.
  • CSI-RS is used for beam management when a repetition parameter is set for a specific CSI-RS resource set and TRS_info is not set. ii) If the repeating parameter is not set and TRS_info is set, the CSI-RS is used for a tracking reference signal (TRS). iii) If the repetition parameter is not set and TRS_info is not set, the CSI-RS is used for CSI acquisition.
  • TRS tracking reference signal
  • RRC parameter When repetition is set to 'ON', it is associated with the Rx beam sweeping process of the UE.
  • the repetition is set to 'ON', when the UE receives the NZP-CSI-RS-ResourceSet, the UE receives signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet with the same downlink spatial domain filter. Can be assumed to be transmitted. That is, at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through the same Tx beam.
  • signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet may be transmitted in different OFDM symbols.
  • the repetition is set to 'OFF' is related to the Tx beam sweeping process of the BS.
  • the UE does not assume that signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet are transmitted to the same downlink spatial domain transport filter. That is, signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet are transmitted through different Tx beams.
  • 12 shows another example of a DL BM process using CSI-RS.
  • FIG. 12 (a) shows the Rx beam determination (or refinement) process of the UE
  • FIG. 12 (b) shows the Tx beam sweeping process of the BS.
  • 12A illustrates a case where the repeating parameter is set to 'ON'
  • FIG. 12B illustrates a case where the repeating parameter is set to 'OFF'.
  • FIG. 13 (a) is a flowchart illustrating an example of a process of determining a reception beam of a UE.
  • the UE receives an NZP CSI-RS resource set IE including an RRC parameter related to 'repetition' from the BS through RRC signaling (S1310).
  • the RRC parameter 'repetition' is set to 'ON'.
  • the UE repeats signals on resource (s) in the CSI-RS resource set in which the RRC parameter 'repetition' is set to 'ON' in different OFDM symbols through the same Tx beam (or DL spatial domain transport filter) of the BS It receives (S1320).
  • the UE determines its Rx beam (S1330).
  • the UE omits CSI reporting (S1340). That is, when the mall RRC parameter 'repetition' is set to 'ON', the UE may omit CSI reporting.
  • FIG. 13 (b) is a flowchart illustrating an example of a transmission beam determination process of a BS.
  • the UE receives an NZP CSI-RS resource set IE including an RRC parameter related to 'repetition' from the BS through RRC signaling (S1350).
  • the RRC parameter 'repetition' is set to 'OFF', and is related to the Tx beam sweeping process of the BS.
  • the UE receives signals on resources in the CSI-RS resource set in which the RRC parameter 'repetition' is set to 'OFF' through different Tx beams (DL spatial domain transmission filter) of the BS (S1360).
  • the UE selects (or determines) the best beam (S1370).
  • the UE reports the ID (eg, CRI) and related quality information (eg, RSRP) for the selected beam to the BS (S1380). That is, when the CSI-RS is transmitted for the BM, the UE reports the CRI and its RSRP to the BS.
  • ID eg, CRI
  • RSRP related quality information
  • FIG. 14 illustrates an example of resource allocation in the time and frequency domain associated with the operation of FIG. 12.
  • repetition 'ON' is set in the CSI-RS resource set
  • a plurality of CSI-RS resources are repeatedly used by applying the same transmission beam
  • repetition 'OFF' is set in the CSI-RS resource set
  • different CSI-RSs are used. Resources may be transmitted in different transmission beams.
  • the UE may receive a list of at least M candidate transmission configuration indication (TCI) states for at least a quasi co-location (QCL) indication through RRC signaling.
  • TCI transmission configuration indication
  • QCL quasi co-location
  • M depends on UE (capability) and may be 64.
  • Each TCI state may be set with one reference signal (RS) set.
  • Table 3 shows an example of the TCI-State IE.
  • the TCI-State IE is associated with one or two DL reference signal (RS) corresponding quasi co-location (QCL) types.
  • 'bwp-Id' indicates the DL BWP where the RS is located
  • 'cell' indicates the carrier on which the RS is located
  • 'referencesignal' indicates the source of pseudo co-location for the target antenna port (s) ( Reference antenna port (s) to be a source or a reference signal including the same.
  • the target antenna port (s) may be CSI-RS, PDCCH DMRS, or PDSCH DMRS.
  • the UE may receive a list containing up to M TCI-status settings for decoding the PDSCH according to the detected PDCCH having an intended DCI for the UE and a given cell.
  • M depends on UE capability.
  • each TCI-State includes parameters for establishing a QCL relationship between one or two DL RSs and a DM-RS port of PDSCH.
  • the QCL relationship is established with the RRC parameters qcl-Type1 for the first DL RS and qcl-Type2 (if set) for the second DL RS.
  • the QCL type corresponding to each DL RS is given by the parameter 'qcl-Type' in QCL-Info, and can take one of the following values:
  • 'QCL-TypeA' ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
  • the corresponding NZP CSI-RS antenna ports may be indicated / set as a specific TRS in QCL-Type A view and a specific SSB and QCL in QCL-Type D view. have.
  • the UE receiving this indication / setting receives the corresponding NZP CSI-RS using the Doppler and delay values measured in the QCL-TypeA TRS, and applies the reception beam used to receive the QCL-TypeD SSB to the corresponding NZP CSI-RS reception. can do.
  • the channel state information-reference signal (CSI-RS) is used for time and / or frequency tracking, CSI computation, and reference signal received power (RSRP) computation. And for mobility.
  • CSI-RS channel state information-reference signal
  • RSRP reference signal received power
  • the CSI calculation is related to the CSI acquisition
  • the RSRP calculation is related to the beam management (BM).
  • 15 is a flowchart illustrating an example of a CSI related process.
  • the UE receives configuration information related to the CSI from the BS through RRC signaling (S1501).
  • the configuration information related to CSI includes information related to CSI-IM (interference management) resources, information related to CSI measurement configuration, information related to CSI resource configuration, and information related to CSI-RS resource. Or CSI report configuration related information.
  • CSI-IM interference management
  • CSI-IM resource related information may include CSI-IM resource information, CSI-IM resource set information, and the like.
  • the CSI-IM resource set is identified by a CSI-IM resource set ID, and one resource set includes at least one CSI-IM resource.
  • Each CSI-IM resource is identified by a CSI-IM resource ID.
  • CSI resource configuration related information may be represented by CSI-ResourceConfig IE.
  • the CSI resource configuration related information defines a group including at least one of a non zero power (NZP) CSI-RS resource set, a CSI-IM resource set, or a CSI-SSB resource set. That is, the CSI resource setting related information includes a CSI-RS resource set list, and the CSI-RS resource set list includes at least one of an NZP CSI-RS resource set list, a CSI-IM resource set list, or a CSI-SSB resource set list. It may include one.
  • the CSI-RS resource set is identified by a CSI-RS resource set ID, and one resource set includes at least one CSI-RS resource. Each CSI-RS resource is identified by a CSI-RS resource ID.
  • RRC parameters eg, a 'repetition' parameter related to BM and a 'trs-Info' parameter related to tracking
  • RRC parameters indicating the use of the CSI-RS may be set for each NZP CSI-RS resource set.
  • CSI report configuration related information includes a reportConfigType parameter indicating a time domain behavior and a reportQuantity parameter indicating a CSI related quantity for reporting.
  • the time domain behavior can be periodic, aperiodic or semi-persistent.
  • the UE measures the CSI based on the configuration information related to the CSI (S1505).
  • the CSI measurement may include (1) a process of receiving a CSI-RS of a UE (S1503) and (2) a process of computing a CSI through a received CSI-RS (S1507).
  • CSI-RS resource element (RE) mapping of CSI-RS resources is set in time and frequency domain by RRC parameter CSI-RS-ResourceMapping.
  • UE reports the measured CSI to BS (S1509).
  • the NR system supports more flexible and dynamic CSI measurement and reporting.
  • the CSI measurement may include a process of receiving a CSI-RS and measuring the received CSI-RS to obtain a CSI.
  • CM channel measurement
  • IM interference measurement
  • the CSI-IM based IM resource (IMR) of the NR has a design similar to that of the CSI-IM of LTE, and is set independently of zero power (ZP) CSI-RS resources for PDSCH rate matching.
  • IMR CSI-IM based IM resource
  • the BS transmits the NZP CSI-RS to the UE on each port of the configured NZP CSI-RS based IMR.
  • a channel For a channel, if there is no PMI and RI feedback, multiple resources are set in the set, and the BS or the network indicates via DCI a subset of NZP CSI-RS resources for channel measurement and / or interference measurement.
  • Each CSI resource setting 'CSI-ResourceConfig' includes a setting for S ⁇ 1 CSI resource set (given by the RRC parameter csi-RS-ResourceSetList).
  • the CSI resource setting corresponds to the CSI-RS-resourcesetlist.
  • S represents the number of configured CSI-RS resource set.
  • the configuration for the S ⁇ 1 CSI resource set includes each CSI resource set including CSI-RS resources (configured as NZP CSI-RS or CSI-IM) and SSB resources used for RSRP calculation.
  • Each CSI resource setting is located in the DL bandwidth part (BWP) identified by the RRC parameter bwp-id. And all the CSI resource settings linked to the CSI reporting setting have the same DL BWP.
  • BWP DL bandwidth part
  • the time domain behavior of the CSI-RS resource in the CSI resource setting included in the CSI-ResourceConfig IE is indicated by the RRC parameter resourceType and may be set to be periodic, aperiodic, or semi-persistent.
  • Channel Measurement Resource may be NZP CSI-RS for CSI acquisition
  • Interference Measurement Resource may be NZP CSI-RS for CSI-IM and IM.
  • CSI-IM or ZP CSI-RS for IM
  • ZP CSI-RS for IM is mainly used for inter-cell interference measurement
  • NZP CSI-RS for IM is mainly used for intra-cell interference measurement from multi-user.
  • the UE may assume that the CSI-RS resource (s) for channel measurement and the CSI-IM / NZP CSI-RS resource (s) for interference measurement configured for one CSI reporting are 'QCL-TypeD' for each resource. .
  • the resource setting may mean a list of resource sets.
  • One reporting setting can be linked to up to three resource settings.
  • the resource setting (given by the RRC parameter resourcesForChannelMeasurement) is for channel measurement for RSRP calculation.
  • the first resource setting (given by the RRC parameter resourcesForChannelMeasurement) is for channel measurement and the second resource setting (given by csi-IM-ResourcesForInterference or nzp-CSI-RS -ResourcesForInterference). Is for the interference measurement performed on the CSI-IM or NZP CSI-RS.
  • the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement
  • the second resource setting (given by csi-IM-ResourcesForInterference) is for CSI-IM based interference measurement
  • the third resource setting (given by nzp-CSI-RS-ResourcesForInterference) is for NZP CSI-RS based interference measurement.
  • the resource setting is for channel measurement for RSRP calculation.
  • the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement
  • the second resource setting (given by RRC parameter csi-IM-ResourcesForInterference) is the interference performed on the CSI-IM. Used for measurement.
  • each CSI-RS resource for channel measurement is associated with the CSI-IM resource by resource in order of the CSI-RS resources and the CSI-IM resources within the corresponding resource set. .
  • the number of CSI-RS resources for channel measurement is equal to the number of CSI-IM resources.
  • the UE assumes the following.
  • Each NZP CSI-RS port configured for interference measurement corresponds to an interference transport layer.
  • All interference transport layers of the NZP CSI-RS port for interference measurement take into account the energy per resource element (EPRE) ratio.
  • EPRE energy per resource element
  • the time and frequency the UE can use is controlled by the BS.
  • the UE For CQI, PMI, CRI, SSBRI, LI, RI, RSRP, the UE is responsible for N ⁇ 1 CSI-ReportConfig report settings, M ⁇ 1 CSI-ResourceConfig resource settings, and a list of one or two trigger states (aperiodicTriggerStateList and semiPersistentOnPUSCH-TriggerStateList).
  • Each trigger state in the aperiodicTriggerStateList contains an associated CSI-ReportConfigs list indicating the channel and optionally resource set IDs for interference.
  • each trigger state contains one associated CSI-ReportConfig.
  • the UE transmits the CSI report indicated by the CSI-ReportConfigs associated with each CSI-RS resource setting to the BS. For example, as indicated by CSI-ReportConfigs associated with the corresponding CSI-RS resource setting, at least one of CQI, PMI, CRI, SSBRI, LI, RI, and RSRP may be reported. However, if CSI-ReportConfigs associated with the CSI-RS resource setting indicates 'none', the UE may not report CSI or RSRP associated with the CSI-RS resource setting. Meanwhile, the CSI-RS resource setting may include resources for SS / PBCH block.
  • 16 is a view for explaining an implementation example of a terminal and a base station according to the present invention.
  • the base station may transmit a 'ReportQuantity' parameter associated with the SS / PBCH block resource and / or the CSI-RS resource to the terminal through an upper layer (S1601).
  • the base station may configure 'ReportQuantity' related to the SS / PBCH block resource and / or the CSI-RS resource through the upper layer to the terminal.
  • the base station may transmit at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH based on the 'ReportQuantity' configuration (S1603).
  • the UE may receive at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH based on the 'ReportQuantity' set through the same OFDM symbol period.
  • the UE may receive at least one of SS / PBCH block, CSI-RS, PDSCH, and PDCCH in the same OFDM symbol period while performing Rx beam sweeping based on a 'ReportQuantity' configuration. Can be.
  • the UE performs at least one of SS / PBCH block, CSI-RS, PDSCH, and PDCCH in the same OFDM symbol interval without performing Rx beam sweeping based on a 'ReportQuantity' configuration. Can be received.
  • a specific embodiment in which the UE receives at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH in the same OFDM symbol period based on the 'ReportQuantity' configuration in step S1603 may be implemented based on the following description. have.
  • the UE looks at a specific embodiment of receiving at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH in the same OFDM symbol period based on the 'ReportQuantity' configuration.
  • CSI-RS resources included in the CSI-RS resource set in which the upper layer parameter “TRS-Info” is set that is, CSI- for time-frequency tracking.
  • the RS may be redundantly included / used / set only in the CSI resource setting and / or the CSI resource set in which the associated ReportQuantity is “No report (or none)”.
  • And / or CSI resource sets are not expected / assumed to be redundantly defined / configured / used.
  • the UE is a CSI-RS resource other than the ReportQuantity associated with the CSI-RS resources included in the CSI-RS resource set ("TRS-Info") is set to "No report (or none)" It is not expected or assumed to be transmitted through the same OFDM symbol as the CSI-RS resource included in the resource set.
  • TRS-Info the ReportQuantity associated with the CSI-RS resources included in the CSI-RS resource set
  • the UE may include another CSI-RS resource set having a ReportQuantity of “No report (or none) associated with CSI-RS resources included in the CSI-RS resource set for which“ TRS-Info ”is set ( It can be expected / assumed to be transmitted through the same OFDM symbol as the CSI-RS resource included in the resource set).
  • ReportQuantity associated with the configured SS / PBCH block resource is not “no report,” the UE receives over several OFDM symbols (for example, four OFDM symbols) in which the SS / PBCH block is transmitted. No RX beam sweeping and / or RX beam refinement is assumed. In other words, the UE may not change the reception filter during several OFDM symbols (eg, four OFDM symbols) in which the SS / PBCH block is transmitted. In addition, if the ReportQuantity associated with the SS / PBCH block resource is not “no report”, the UE may select a PDSCH and a number of OFDM symbols (eg, four OFDM symbols) in which the SS / PBCH block is transmitted.
  • the UE transmits the PDSCH and / or in the OFDM symbols (eg, four OFDM symbols) in which the SS / PBCH block is transmitted. Or it may not expect / assume that the PDCCH is transmitted.
  • ReportQuantity associated with SS / PBCH block resource is “SSBRI”
  • the UE has a PDSCH and / or PDCCH in an OFDM symbol (eg, 4 OFDM symbols) to which the SS / PBCH block is transmitted. It can be expected or assumed to be sent together.
  • ReportQuantity associated with SS / PBCH block resource is “no report”
  • the UE expects / assumed that PDSCH and / or PDCCH are transmitted together in a plurality of OFDM symbols in which SS / PBCH block is transmitted. I never do that. This is because, when ReportQuantity associated with the SS / PBCH block resource is “no report”, the UE may perform receive beam sweeping.
  • the UE may perform receive beam sweeping and is associated with the SS / PBCH block resource. If the reported ReportQuantity is 'SSBRI', it is expected that the UE does not perform the reception beam sweep. However, when the SS / PBCH block and the PDSCH and / or PDCCH are received by receiving frequency divisional multiplexing (FDM), when the UE performs the reception beam sweeping, the UE cannot properly receive the PDSCH and / or PDCCH.
  • FDM frequency divisional multiplexing
  • 'SSBRI' in the present invention may mean 'ssb-index-RSRP' of ReportQuantity parameter.
  • the UE transmits the SS / PBCH block in OFDM. It may not be expected / assumed that CSI-RS for CSI acquisition and CSI-RS for time-frequency tracking are transmitted via symbols.
  • the CSI-RS resources of the CSI-RS resource set for which repetition is set may be expected or assumed to be transmitted together through OFDM symbols in which the SS / PBCH block is transmitted. In this case, the CSI-RS resource set for which repetition is set may mean CSI-RS for beam management.
  • the SS / PBCH block resource is included in the CSI resource setting and the ReportQuantity associated with the SS / PBCH block resource is “No report”, the SS / PBCH block is transmitted through OFDM symbols transmitted.
  • CSI-RS resources of a CSI-RS resource set for which repetition is set may be transmitted together.
  • the CSI-RS resource set for which repetition is set may mean CSI-RS for beam management.
  • the UE changes the reception beam and / or the reception filter in the OFDM symbols in which the corresponding SS / PBCH block is transmitted. Do not assume / do anything.
  • FIG. 17 illustrates an embodiment of a wireless communication device according to an embodiment of the present invention.
  • the wireless communication device described with reference to FIG. 17 may represent a terminal and / or a base station according to an embodiment of the present invention.
  • the wireless communication device of FIG. 17 is not necessarily limited to a terminal and / or a base station according to the present embodiment, and may be replaced with various devices such as a vehicle communication system or device, a wearable device, a laptop, a smart phone, and the like.
  • the apparatus includes a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, an unmanned aerial vehicle (UAV), and artificial intelligence (AI).
  • UAV unmanned aerial vehicle
  • AI artificial intelligence
  • a drone may be a vehicle in which humans fly by radio control signals.
  • the MTC device and the IoT device are devices that do not require human intervention or manipulation, and may be smart meters, bending machines, thermometers, smart bulbs, door locks, various sensors, and the like.
  • a medical device is a device used to examine, replace, or modify a device, structure, or function used for diagnosing, treating, alleviating, treating, or preventing a disease, such as a medical device, a surgical device, ( In vitro) diagnostic devices, hearing aids, surgical devices, and the like.
  • the security device is a device installed to prevent a risk that may occur and maintain safety, and may be a camera, a CCTV, a black box, or the like.
  • the fintech device is a device that can provide financial services such as mobile payment, and may be a payment device or a point of sales (POS).
  • the climate / environmental device may mean a device for monitoring and predicting the climate / environment.
  • the transmitting terminal and the receiving terminal are mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants, portable multimedia players, navigation, slate PCs. , Tablet PCs, ultrabooks, wearable devices, such as smartwatches, glass glasses, head mounted displays, and foldables foldable) devices and the like.
  • the HMD is a display device of a type worn on the head and may be used to implement VR or AR.
  • a terminal and / or a base station may include at least one processor 10 such as a digital signal processor (DSP) or a microprocessor, a transceiver 35, Power management module 5, antenna 40, battery 55, display 15, keypad 20, memory 30, subscriber identity module (SIM) card 25, speaker 45 and microphone ( 50) and the like.
  • the terminal and / or the base station may include a single antenna or multiple antennas.
  • the transceiver 35 may also be referred to as a radio frequency module (RF module).
  • RF module radio frequency module
  • the processor 10 may be configured to implement the functions, procedures, and / or methods described in FIGS. 1-16. In at least some of the embodiments described in FIGS. 1-16, the processor 10 may implement one or more protocols, such as layers of a radio interface protocol (eg, functional layers).
  • layers of a radio interface protocol eg, functional layers
  • the memory 30 is connected to the processor 10 and stores information related to the operation of the processor 10.
  • the memory 30 may be located inside or outside the processor 10 and may be connected to the processor through various technologies such as wired or wireless communication.
  • the user may enter various types of information (eg, indication information such as a telephone number) by various techniques such as pressing a button on the keypad 20 or voice activation using the microphone 50.
  • the processor 10 performs appropriate functions such as receiving and / or processing the user's information and dialing the telephone number.
  • the processor 10 may receive and process GPS information from a GPS chip to obtain location information of a terminal and / or a base station such as a vehicle navigation and a map service, or perform a function related to the location information.
  • the processor 10 may display these various types of information and data on the display 15 for the user's reference and convenience.
  • the transceiver 35 is connected to the processor 10 to transmit and / or receive a radio signal such as a radio frequency (RF) signal.
  • the processor 10 may control the transceiver 35 to initiate communication and transmit a radio signal including various types of information or data such as voice communication data.
  • Transceiver 35 may include a receiver for receiving wireless signals and a transmitter for transmitting.
  • Antenna 40 facilitates the transmission and reception of wireless signals.
  • the transceiver 35 may forward and convert the signal to a baseband frequency for processing by the processor 10.
  • the processed signal may be processed according to various techniques, such as being converted into audible or readable information, and such a signal may be output through the speaker 45.
  • the senor may also be connected to the processor 10.
  • the sensor may include one or more sensing devices configured to detect various types of information including speed, acceleration, light, vibration, and the like.
  • the processor 10 receives and processes sensor information obtained from a sensor such as proximity, location, and image, thereby performing various functions such as collision avoidance and autonomous driving.
  • a camera and a USB port may be additionally included in the terminal and / or the base station.
  • a camera may be further connected to the processor 10, and such a camera may be used for various services such as autonomous driving, vehicle safety service, and the like.
  • FIG. 17 is only an embodiment of devices configuring a terminal and / or a base station, but is not limited thereto.
  • some components such as keypad 20, global positioning system (GPS) chip, sensor, speaker 45, and / or microphone 50 may be excluded for terminal and / or base station implementation in some embodiments. It may be.
  • GPS global positioning system
  • the operation of the wireless communication apparatus illustrated in FIG. 17 is a terminal according to an embodiment of the present disclosure.
  • the processor 10 may receive a 'ReportQuantity' parameter associated with an SS / PBCH block resource and / or a CSI-RS resource from a base station through a higher layer. 35 can be controlled.
  • the processor 10 may be configured with 'ReportQuantity' associated with the SS / PBCH block resource and / or the CSI-RS resource through the upper layer.
  • the processor 10 may control the transceiver 35 to receive at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH based on the 'ReportQuantity' configuration through the same OFDM symbol period.
  • the processor 10 performs Rx beam sweeping based on a 'ReportQuantity' configuration while at least one of an SS / PBCH block, a CSI-RS, a PDSCH, and a PDCCH in the same OFDM symbol period.
  • Transceiver 35 can be controlled to receive.
  • the processor 10 may perform an Rx beam sweeping based on a 'ReportQuantity' configuration, and among the SS / PBCH blocks, the CSI-RS, the PDSCH, and the PDCCH in the same OFDM symbol period.
  • the transceiver 35 may be controlled to receive at least one.
  • a specific embodiment of the processor 10 receiving at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH in the same OFDM symbol period based on the 'ReportQuantity' configuration is based on the above-described embodiments. Can be implemented.
  • the processor 10 may perform SS / PBCH block resource and / or through an upper layer.
  • the transceiver 35 may be controlled to transmit a 'ReportQuantity' parameter associated with the CSI-RS resource to the terminal.
  • the processor 10 may control to configure 'ReportQuantity' related to the SS / PBCH block resource and / or the CSI-RS resource to the terminal through an upper layer.
  • the processor 10 may control the transceiver 35 to transmit at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH based on the 'ReportQuantity' configuration.
  • the processor 10 expects the UE to perform Rx beam sweeping based on the 'ReportQuantity' configuration, while SS / PBCH block, CSI-RS, PDSCH in the same OFDM symbol period.
  • the transceiver 35 to transmit at least one of the PDCCH.
  • the processor 10 expects not to perform Rx beam sweeping based on a 'ReportQuantity' configuration, and the SS / PBCH block, CSI-RS, PDSCH and The transceiver 35 may be controlled to transmit at least one of the PDCCHs.
  • a specific embodiment of controlling the processor 10 to transmit at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH in the same OFDM symbol period based on the 'ReportQuantity' configuration is described above. It can be implemented based on.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention discloses a method for a terminal to receive a downlink signal in a wireless communication system. In particular, the method can: receive measurement report configuration information associated with a resource for a synchronization signal/physical broadcast channel (SS/PBCH) block; receive the SS/PBCH block through a plurality of orthogonal frequency divisional multiplexing (OFDM) symbols; and receive the downlink signal through the plurality of OFDM symbols on the basis of the measurement report configuration information.

Description

하향링크 신호를 송수신하는 방법 및 이를 위한 장치Method for transmitting / receiving downlink signal and apparatus therefor
본 발명은 하향링크 신호를 송수신하는 방법 및 이를 위한 장치에 관한 것으로서, 더욱 상세하게는, CSI-RS 자원 또는 SS/PBCH 블록 자원과 연관된 'ReportQuantity' 파라미터 설정을 기반으로 하향링크 신호를 송수신하는 방법 및 이를 위한 장치에 관한 것이다.The present invention relates to a method for transmitting and receiving a downlink signal and an apparatus therefor, and more particularly, to a method for transmitting and receiving a downlink signal based on a 'ReportQuantity' parameter setting associated with a CSI-RS resource or an SS / PBCH block resource. And an apparatus therefor.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, 기존 LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. NewRAT이라고 명칭되는, 이러한 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC) 등으로 통신 시나리오가 구분된다. As time goes by, more communication devices require more communication traffic, and a next generation 5G system, which is an improved wireless broadband communication than the existing LTE system, is required. Called NewRAT, these next-generation 5G systems are divided into communication scenarios such as Enhanced Mobile BroadBand (eMBB) / Ultra-reliability and low-latency communication (URLLC) / Massive Machine-Type Communications (mMTC).
여기서, eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, URLLC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g., V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다. (e.g., IoT).Here, eMBB is a next generation mobile communication scenario having characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate, and URLLC is a next generation mobile communication scenario having characteristics such as Ultra Reliable, Ultra Low Latency, Ultra High Availability, etc. (Eg, V2X, Emergency Service, Remote Control), mMTC is a next generation mobile communication scenario with low cost, low energy, short packet, and mass connectivity. (e.g., IoT).
본 발명은 하향링크 신호를 송수신하는 방법 및 이를 위한 장치를 제공하고자 한다.The present invention provides a method for transmitting and receiving a downlink signal and an apparatus therefor.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.
본 발명의 실시 예에 따른 무선 통신 시스템에서, 단말이 하향링크 신호를 수신하는 방법에 있어서, SS/PBCH (Synchronization Signal/Physical Broadcast Channel) 블록을 위한 자원과 연관된 측정 보고 설정(measurement report configuration) 정보를 수신하고, 복수의 OFDM (Orthogonal Frequency Divisional Multiplexing) 심볼들을 통해, 상기 SS/PBCH 블록을 수신하고, 상기 측정 보고 설정 정보를 기반으로 상기 복수의 OFDM 심볼들을 통해 상기 하향링크 신호를 수신할 수 있다.In a wireless communication system according to an embodiment of the present invention, in a method for receiving a downlink signal by a terminal, measurement report configuration information associated with a resource for a synchronization signal / physical broadcast channel (SS / PBCH) block , The SS / PBCH block through the plurality of Orthogonal Frequency Divisional Multiplexing (OFDM) symbols, and the downlink signal through the plurality of OFDM symbols based on the measurement report configuration information. .
이 때, 상기 측정 보고 설정 정보가 상기 SS/PBCH 블록의 측정(measurement)을 보고하지 않음을 알리는 경우, 상기 하향링크 신호는 수신되지 않을 수 있다.In this case, when the measurement report configuration information informs that the measurement of the SS / PBCH block is not reported, the downlink signal may not be received.
또한, 상기 측정 보고 설정 정보가 상기 SS/PBCH 블록의 RSRP(Reference Signal Received Power)를 보고할 것을 알리는 경우, 상기 하향링크 신호는 수신될 수 있다.In addition, when the measurement report configuration information informs the report of the RSRP (Reference Signal Received Power) of the SS / PBCH block, the downlink signal may be received.
또한, 상기 SS/PBCH 블록을 위한 자원은, 특정 CSI 자원 셋팅(resource setting)에 포함될 수 있다.In addition, a resource for the SS / PBCH block may be included in a specific CSI resource setting.
또한, 상기 하향링크 신호는, PDSCH (Physical Downlink Shared Channel) 및 PDCCH (Physical Downlink Control Channel) 중 적어도 하나일 수 있다.The downlink signal may be at least one of a physical downlink shared channel (PDSCH) and a physical downlink control channel (PDCCH).
또한, 상기 측정 보고 설정 정보가 상기 SS/PBCH 블록의 측정(measurement)을 보고하지 않음을 알리고, 상기 하향링크 신호가 빔 관리를 위한 CSI-RS (Channel State Information - Reference Signal)인 경우, 상기 하향링크 신호가 수신될 수 있다.In addition, when the measurement report configuration information does not report the measurement of the SS / PBCH block (measurement), and if the downlink signal is CSI-RS (Channel State Information-Reference Signal) for beam management, the downlink The link signal can be received.
또한, 상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능할 수 있다.The terminal may communicate with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the terminal.
본 발명에 따른 무선 통신 시스템에서, 하향링크 신호를 수신하기 위한 장치에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 상기 적어도 하나의 프로세서에 의해 실행될 경우, 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, SS/PBCH (Synchronization Signal/Physical Broadcast Channel) 블록을 위한 자원과 연관된 측정 보고 설정(measurement report configuration) 정보를 수신하고, 복수의 OFDM (Orthogonal Frequency Divisional Multiplexing) 심볼들을 통해, 상기 SS/PBCH 블록을 수신하고, 상기 측정 보고 설정 정보를 기반으로 상기 복수의 OFDM 심볼들을 통해 상기 하향링크 신호를 수신할 수 있다.In the wireless communication system according to the present invention, an apparatus for receiving a downlink signal, comprising: at least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that when executed by the at least one processor cause the at least one processor to perform a particular operation. The specific operation may include measurement report configuration (MEA) information associated with a resource for a Synchronization Signal / Physical Broadcast Channel (SS / PBCH) block, and through a plurality of Orthogonal Frequency Divisional Multiplexing (OFDM) symbols, The SS / PBCH block may be received and the downlink signal may be received through the plurality of OFDM symbols based on the measurement report configuration information.
이 때, 상기 측정 보고 설정 정보가 상기 SS/PBCH 블록의 측정(measurement)을 보고하지 않음을 알리는 경우, 상기 하향링크 신호는 수신되지 않을 수 있다.In this case, when the measurement report configuration information informs that the measurement of the SS / PBCH block is not reported, the downlink signal may not be received.
또한, 상기 측정 보고 설정 정보가 상기 SS/PBCH 블록의 RSRP(Reference Signal Received Power)를 보고할 것을 알리는 경우, 상기 하향링크 신호는 수신될 수 있다.In addition, when the measurement report configuration information informs the report of the RSRP (Reference Signal Received Power) of the SS / PBCH block, the downlink signal may be received.
또한, 상기 SS/PBCH 블록을 위한 자원은, 특정 CSI 자원 셋팅(resource setting)에 포함될 수 있다.In addition, a resource for the SS / PBCH block may be included in a specific CSI resource setting.
또한, 상기 하향링크 신호는, PDSCH (Physical Downlink Shared Channel) 및 PDCCH (Physical Downlink Control Channel) 중 적어도 하나일 수 있다.The downlink signal may be at least one of a physical downlink shared channel (PDSCH) and a physical downlink control channel (PDCCH).
또한, 상기 측정 보고 설정 정보가 상기 SS/PBCH 블록의 측정(measurement)을 보고하지 않음을 알리고, 상기 하향링크 신호가 빔 관리를 위한 CSI-RS (Channel State Information - Reference Signal)인 경우, 상기 하향링크 신호가 수신될 수 있다.In addition, when the measurement report configuration information does not report the measurement of the SS / PBCH block (measurement), and if the downlink signal is CSI-RS (Channel State Information-Reference Signal) for beam management, the downlink The link signal can be received.
또한, 상기 장치는, 단말, 네트워크, 기지국 및 상기 장치 이외의 자율 주행 차량 중 적어도 하나와 통신 가능할 수 있다.In addition, the apparatus may be capable of communicating with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the apparatus.
본 발명에 따른 무선 통신 시스템에서, 하향링크 신호를 수신하기 위한 단말에 있어서, 적어도 하나의 트랜시버; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 상기 적어도 하나의 프로세서에 의해 실행될 경우, 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 상기 적어도 하나의 트랜시버를 통해 SS/PBCH (Synchronization Signal/Physical Broadcast Channel) 블록을 위한 자원과 연관된 측정 보고 설정(measurement report configuration) 정보를 수신하고, 상기 적어도 하나의 트랜시버를 통해 복수의 OFDM (Orthogonal Frequency Divisional Multiplexing) 심볼들을 통해, 상기 SS/PBCH 블록을 수신하고, 상기 적어도 하나의 트랜시버를 통해 상기 측정 보고 설정 정보를 기반으로 상기 복수의 OFDM 심볼들을 통해 상기 하향링크 신호를 수신할 수 있다.In a wireless communication system according to the present invention, a terminal for receiving a downlink signal, the terminal comprising: at least one transceiver; At least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that when executed by the at least one processor cause the at least one processor to perform a particular operation. The specific operation may include measurement report configuration information associated with a resource for a Synchronization Signal / Physical Broadcast Channel (SS / PBCH) block through the at least one transceiver and receive the at least one transceiver. The SS / PBCH block is received through a plurality of Orthogonal Frequency Divisional Multiplexing (OFDM) symbols, and the downlink signal is transmitted through the plurality of OFDM symbols based on the measurement report configuration information through the at least one transceiver. Can be received.
본 발명의 실시 예에 따른 무선 통신 시스템에서, 기지국이 하향링크 신호를 전송하는 방법에 있어서, SS/PBCH (Synchronization Signal/Physical Broadcast Channel) 블록을 위한 자원과 연관된 측정 보고 설정(measurement report configuration) 정보를 전송하고, 복수의 OFDM (Orthogonal Frequency Divisional Multiplexing) 심볼들을 통해, 상기 SS/PBCH 블록을 전송하고, 상기 측정 보고 설정 정보를 기반으로 상기 복수의 OFDM 심볼들을 통해 상기 하향링크 신호를 전송할 수 있다.In a wireless communication system according to an embodiment of the present invention, in a method for transmitting a downlink signal by a base station, measurement report configuration information associated with resources for a synchronization signal / physical broadcast channel (SS / PBCH) block In this case, the SS / PBCH block may be transmitted through a plurality of orthogonal frequency divisional multiplexing (OFDM) symbols, and the downlink signal may be transmitted through the plurality of OFDM symbols based on the measurement report configuration information.
본 발명에 따른 무선 통신 시스템에서, 하향링크 신호를 전송하기 위한 기지국에 있어서, 적어도 하나의 트랜시버; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 상기 적어도 하나의 프로세서에 의해 실행될 경우, 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 상기 적어도 하나의 트랜시버를 통해 SS/PBCH (Synchronization Signal/Physical Broadcast Channel) 블록을 위한 자원과 연관된 측정 보고 설정(measurement report configuration) 정보를 전송하고, 상기 적어도 하나의 트랜시버를 통해 복수의 OFDM (Orthogonal Frequency Divisional Multiplexing) 심볼들을 통해, 상기 SS/PBCH 블록을 전송하고, 상기 적어도 하나의 트랜시버를 통해 상기 측정 보고 설정 정보를 기반으로 상기 복수의 OFDM 심볼들을 통해 상기 하향링크 신호를 전송할 수 있다.In the wireless communication system according to the present invention, a base station for transmitting a downlink signal, comprising: at least one transceiver; At least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that when executed by the at least one processor cause the at least one processor to perform a particular operation. The specific operation may include: transmitting measurement report configuration information associated with a resource for a Synchronization Signal / Physical Broadcast Channel (SS / PBCH) block through the at least one transceiver, and transmitting the at least one transceiver The SS / PBCH block is transmitted through a plurality of Orthogonal Frequency Divisional Multiplexing (OFDM) symbols, and the downlink signal is transmitted through the plurality of OFDM symbols based on the measurement report configuration information through the at least one transceiver. Can transmit
본 발명에 따르면, 서로 다른 타입을 가지는 둘 이상의 하향링크 신호를 효율적으로 송수신할 수 있다.According to the present invention, it is possible to efficiently transmit and receive two or more downlink signals having different types.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면.2 is a diagram for explaining a physical channel used in the 3GPP system and a general signal transmission method using the same.
도 3 내지 도 5은 NR 시스템에서 사용되는 무선 프레임 및 슬롯의 구조를 설명하기 위한 도면이다.3 to 5 are diagrams for explaining the structure of a radio frame and slot used in the NR system.
도 6 내지 도 8은 SS/PBCH 블록의 전송 예시를 나타낸 도면이다.6 to 8 are diagrams illustrating an example of transmission of an SS / PBCH block.
도 9는 NR 시스템에서의 아날로그 빔포밍(Analog Beamforming)을 설명하기 위한 도면이다.FIG. 9 is a diagram for explaining analog beamforming in an NR system.
도 10 내지 도 14는 NR 시스템에서의 빔 관리(Beam Management)를 설명하기 위한 도면이다.10 to 14 are diagrams for explaining beam management in the NR system.
도 15은 채널 상태 정보를 보고하는 예시를 설명하기 위한 도면이다.15 is a diagram for explaining an example of reporting channel state information.
도 16은 본 발명의 실시 예에 따라 단말 및 기지국이 하향링크 신호를 송수신하는 예시를 나타낸 도면이다.16 is a diagram illustrating an example in which a terminal and a base station transmit and receive downlink signals according to an embodiment of the present invention.
도 17은 본 발명의 실시 예를 수행하는 무선 장치의 구성요소를 나타내는 블록도이다.17 is a block diagram illustrating components of a wireless device according to an embodiment of the present invention.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.The construction, operation, and other features of the present invention will be readily understood by the embodiments of the present invention described with reference to the accompanying drawings. The embodiments described below are examples in which technical features of the present invention are applied to a 3GPP system.
본 명세서는 LTE 시스템, LTE-A 시스템 및 NR 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. Although the present specification describes an embodiment of the present invention using an LTE system, an LTE-A system, and an NR system, the embodiment of the present invention as an example may be applied to any communication system corresponding to the above definition.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.In addition, the specification of the base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.The 3GPP-based communication standard provides downlink physical channels corresponding to resource elements carrying information originating from an upper layer and downlink corresponding to resource elements used by the physical layer but not carrying information originating from an upper layer. Physical signals are defined. For example, a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), a physical control format indicator channel (physical control) format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, reference signal and synchronization signal Is defined as downlink physical signals. A reference signal (RS), also referred to as a pilot, refers to a signal of a predefined special waveform that the gNB and the UE know from each other. For example, a cell specific RS, UE- UE-specific RS, positioning RS (PRS), and channel state information RS (CSI-RS) are defined as downlink reference signals. The 3GPP LTE / LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from a higher layer and resource elements used by the physical layer but not carrying information originating from an upper layer. Uplink physical signals are defined. For example, a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a physical random access channel (PRACH) are the uplink physical channels. A demodulation reference signal (DMRS) for uplink control / data signals and a sounding reference signal (SRS) used for uplink channel measurement are defined.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, gNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.In the present invention, Physical Downlink Control CHannel (PDCCH) / Physical Control Format Indicator CHannel (PCFICH) / PHICH (Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel) are respectively DCI (Downlink Control Information) / CFI ( Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK / NACK (ACKnowlegement / Negative ACK) / downlink data, and also a physical uplink control channel (PUCCH) / physical (PUSCH). Uplink Shared CHannel / PACH (Physical Random Access CHannel) means a set of time-frequency resources or a set of resource elements that carry uplink control information (UCI) / uplink data / random access signals, respectively. PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH RE or the time-frequency resource or resource element (RE) assigned to or belonging to PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH, respectively. PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH Resource In the following, the expression that the user equipment transmits PUCCH / PUSCH / PRACH is used for uplink control information / uplink on or through PUSCH / PUCCH / PRACH, respectively. It is used in the same sense as transmitting a data / random access signal, and the expression that the gNB transmits PDCCH / PCFICH / PHICH / PDSCH is used for downlink data / control information on or through PDCCH / PCFICH / PHICH / PDSCH, respectively. It is used in the same sense as sending it.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정(Configuration)된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정(Configuration)된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정(Configuration)된 RE 는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정(Configuration)된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.Hereinafter, an OFDM symbol / subcarrier / RE to which CRS / DMRS / CSI-RS / SRS / UE-RS is assigned or configured is configured as CRS / DMRS / CSI-RS / SRS / UE-RS symbol / carrier. It is called / subcarrier / RE. For example, an OFDM symbol assigned or configured with a tracking RS (TRS) is referred to as a TRS symbol, and a subcarrier assigned or configured with a TRS is called a TRS subcarrier and is assigned a TRS. Alternatively, the configured RE is called a TRS RE. Also, a subframe configured for TRS transmission is called a TRS subframe. Also, a subframe in which a broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe, and a subframe in which a sync signal (for example, PSS and / or SSS) is transmitted is a sync signal subframe or a PSS / SSS subframe. It is called. An OFDM symbol / subcarrier / RE to which PSS / SSS is assigned or configured is referred to as a PSS / SSS symbol / subcarrier / RE, respectively.
본 발명에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정(Configuration)된(configured) 안테나 포트, UE-RS를 전송하도록 설정(Configuration)된 안테나 포트, CSI-RS를 전송하도록 설정(Configuration)된 안테나 포트, TRS를 전송하도록 설정(Configuration)된 안테나 포트를 의미한다. CRS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정(Configuration)된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.In the present invention, the CRS port, the UE-RS port, the CSI-RS port, and the TRS port are respectively an antenna port configured to transmit CRS, an antenna port configured to transmit UE-RS, An antenna port configured to transmit CSI-RS and an antenna port configured to transmit TRS. Antenna ports configured to transmit CRSs can be distinguished from each other by the location of REs occupied by the CRS according to the CRS ports, and antenna ports configured to transmit UE-RSs The antenna ports configured to transmit the CSI-RSs can be distinguished from each other by the positions of the REs occupied by the UE-RS according to the -RS ports, and the CSI-RSs occupy The location of the REs can be distinguished from each other. Therefore, the term CRS / UE-RS / CSI-RS / TRS port may be used as a term for a pattern of REs occupied by CRS / UE-RS / CSI-RS / TRS in a certain resource region.
한편, NR 시스템을 포함한 5G 통신에 대해서 살펴보도록 한다.Meanwhile, the 5G communication including the NR system will be described.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.The three main requirements areas of 5G are: (1) Enhanced Mobile Broadband (eMBB) area, (2) massive Machine Type Communication (mMTC) area, and (3) ultra-reliability and It includes the area of Ultra-reliable and Low Latency Communications (URLLC).
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.Some use cases may require multiple areas for optimization, and other use cases may be focused on only one key performance indicator (KPI). 5G supports these various use cases in a flexible and reliable way.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.eMBB goes far beyond basic mobile Internet access and covers media and entertainment applications in rich interactive work, cloud or augmented reality. Data is one of the key drivers of 5G and may not see dedicated voice services for the first time in the 5G era. In 5G, voice is expected to be treated as an application simply using the data connection provided by the communication system. The main reasons for the increased traffic volume are the increase in content size and the increase in the number of applications requiring high data rates. Streaming services (audio and video), interactive video, and mobile Internet connections will become more popular as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to the user. Cloud storage and applications are growing rapidly in mobile communication platforms, which can be applied to both work and entertainment. And, cloud storage is a special use case that drives the growth of uplink data rates. 5G is also used for remote tasks in the cloud and requires much lower end-to-end delays to maintain a good user experience when tactile interfaces are used. Entertainment For example, cloud gaming and video streaming are another key factor in increasing the need for mobile broadband capabilities. Entertainment is essential in smartphones and tablets anywhere, including in high mobility environments such as trains, cars and airplanes. Another use case is augmented reality and information retrieval for entertainment. Here, augmented reality requires very low latency and instantaneous amount of data.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.In addition, one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all applications, namely mMTC. By 2020, potential IoT devices are expected to reach 20 billion. Industrial IoT is one of the areas where 5G plays a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.URLLC includes new services that will change the industry through ultra-reliable / low-latency links available, such as remote control of key infrastructure and self-driving vehicles. The level of reliability and latency is essential for smart grid control, industrial automation, robotics, drone control and coordination.
다음으로, NR 시스템을 포함한 5G 통신 시스템에서의 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.Next, a number of use cases in a 5G communication system including an NR system will be described in more detail.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of providing streams that are rated at hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in 4K and above (6K, 8K and above) resolutions as well as virtual and augmented reality. Virtual Reality (AVR) and Augmented Reality (AR) applications include nearly immersive sporting events. Certain applications may require special network settings. For example, for VR games, game companies may need to integrate core servers with network operator's edge network servers to minimize latency.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.Automotive is expected to be an important new driver for 5G, with many examples for mobile communications to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. This is because future users continue to expect high quality connections regardless of their location and speed. Another use case in the automotive field is augmented reality dashboards. It identifies objects in the dark above what the driver sees through the front window and overlays information that tells the driver about the distance and movement of the object. In the future, wireless modules enable communication between vehicles, the exchange of information between the vehicle and the supporting infrastructure, and the exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians). Safety systems guide alternative courses of action to help drivers drive safer, reducing the risk of an accident. The next step will be a remotely controlled or self-driven vehicle. This is very reliable and requires very fast communication between different self-driving vehicles and between automobiles and infrastructure. In the future, self-driving vehicles will perform all driving activities, and drivers will focus on traffic anomalies that the vehicle itself cannot identify. The technical requirements of self-driving vehicles require ultra-low latency and ultra-fast reliability to increase traffic safety to an unachievable level.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.Smart cities and smart homes, referred to as smart societies, will be embedded in high-density wireless sensor networks. The distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of the city or home. Similar settings can be made for each hypothesis. Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.The consumption and distribution of energy, including heat or gas, is highly decentralized, requiring automated control of distributed sensor networks. Smart grids interconnect these sensors using digital information and communication technologies to gather information and act accordingly. This information can include the behavior of suppliers and consumers, allowing smart grids to improve the distribution of fuels such as electricity in efficiency, reliability, economics, sustainability of production, and in an automated manner. Smart Grid can be viewed as another sensor network with low latency.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.The health sector has many applications that can benefit from mobile communications. The communication system may support telemedicine that provides clinical care from a distance. This can help reduce barriers to distance and improve access to healthcare services that are not consistently available in remote rural areas. It is also used to save lives in critical care and emergencies. A mobile communication based wireless sensor network can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing the cables with reconfigurable wireless links is an attractive opportunity in many industries. However, achieving this requires that the wireless connection operates with similar cable delay, reliability, and capacity, and that management is simplified. Low latency and very low error probability are new requirements that need to be connected in 5G.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.Logistics and freight tracking are important use cases for mobile communications that enable the tracking of inventory and packages from anywhere using a location-based information system. The use of logistics and freight tracking typically requires low data rates but requires wide range and reliable location information.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard. The control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted. The user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.The physical layer, which is the first layer, provides an information transfer service to an upper layer by using a physical channel. The physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transmission channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel. The physical channel utilizes time and frequency as radio resources. In detail, the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.The medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel. The RLC layer of the second layer supports reliable data transmission. The function of the RLC layer may be implemented as a functional block inside the MAC. The Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.The Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane. The RRC layer is responsible for controlling logical channels, transmission channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers. The radio bearer refers to a service provided by the second layer for data transmission between the terminal and the network. To this end, the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode. The non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.The downlink transmission channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message. have. Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH). The uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message. Above the transmission channel, the logical channel mapped to the transmission channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and an MTCH (multicast). Traffic Channel).
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.FIG. 2 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S201). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.If the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S201). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S202).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.On the other hand, when the first access to the base station or there is no radio resource for signal transmission, the terminal may perform a random access procedure (RACH) for the base station (steps S203 to S206). To this end, the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S204 and S206). In the case of contention-based RACH, a contention resolution procedure may be additionally performed.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S208)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다. After performing the above-described procedure, the UE performs a PDCCH / PDSCH reception (S207) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure. Control Channel (PUCCH) transmission (S208) may be performed. In particular, the terminal receives downlink control information (DCI) through the PDCCH. Here, the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.Meanwhile, the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like. In the 3GPP LTE system, the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
한편, NR 시스템은 넓은 주파수 대역을 이용하여 다수의 사용자에게 높은 전송율을 유지하면서 데이터 전송을 하기 위해 높은 초고주파 대역, 즉, 6GHz 이상의 밀리미터 주파수 대역을 이용하는 방안을 고려하고 있다. 3GPP에서는 이를 NR이라는 이름으로 사용하고 있으며, 본 발명에서는 앞으로 NR 시스템으로 칭한다.Meanwhile, the NR system considers a method using a high ultra-high frequency band, that is, a millimeter frequency band of 6 GHz or more, to transmit data while maintaining a high data rate to a large number of users using a wide frequency band. 3GPP uses this as the name NR, which is referred to as NR system in the present invention.
도 3은 NR에서 사용되는 무선 프레임의 구조를 예시한다.3 illustrates the structure of a radio frame used in NR.
NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.In NR, uplink and downlink transmission are composed of frames. The radio frame has a length of 10 ms and is defined as two 5 ms half-frames (HFs). Half-frames are defined as five 1 ms subframes (SFs). The subframe is divided into one or more slots, and the number of slots in the subframe depends on the subcarrier spacing (SCS). Each slot includes 12 or 14 OFDM (A) symbols according to a cyclic prefix (CP). Usually when CP is used, each slot contains 14 symbols. If extended CP is used, each slot includes 12 symbols. Here, the symbol may include an OFDM symbol (or CP-OFDM symbol), SC-FDMA symbol (or DFT-s-OFDM symbol).
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다. Table 1 exemplarily shows that when the CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to the SCS.
SCS (15*2^u)SCS (15 * 2 ^ u) N slot symb N slot symb N frame,u slot N frame, u slot N subframe,u slot N subframe, u slot
15KHz (u=0)15KHz (u = 0) 1414 1010 1One
30KHz (u=1)30KHz (u = 1) 1414 2020 22
60KHz (u=2)60KHz (u = 2) 1414 4040 44
120KHz (u=3)120KHz (u = 3) 1414 8080 88
240KHz (u=4)240KHz (u = 4) 1414 160160 1616
* N slot symb: 슬롯 내 심볼의 개수* N frame,u slot: 프레임 내 슬롯의 개수* N slot symb : Number of symbols in slot * N frame, u slot : Number of slots in frame
* N subframe,u slot: 서브프레임 내 슬롯의 개수* N subframe, u slot : Number of slots in a subframe
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.Table 2 illustrates that when the extended CP is used, the number of symbols for each slot, the number of slots for each frame, and the number of slots for each subframe vary according to the SCS.
SCS (15*2^u)SCS (15 * 2 ^ u) N slot symb N slot symb N frame,u slot N frame, u slot N subframe,u slot N subframe, u slot
60KHz (u=2)60KHz (u = 2) 1212 4040 44
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 도 4는 NR 프레임의 슬롯 구조를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.In the NR system, OFDM (A) numerology (eg, SCS, CP length, etc.) may be set differently among a plurality of cells merged into one UE. Accordingly, the (absolute time) section of a time resource (eg, SF, slot, or TTI) (commonly referred to as a time unit (TU) for convenience) composed of the same number of symbols may be set differently between merged cells. 4 illustrates a slot structure of an NR frame. The slot includes a plurality of symbols in the time domain. For example, one slot includes seven symbols in the case of a normal CP, but one slot includes six symbols in the case of an extended CP. The carrier includes a plurality of subcarriers in the frequency domain. Resource block (RB) is defined as a plurality of consecutive subcarriers (eg, 12) in the frequency domain. The bandwidth part (BWP) is defined as a plurality of consecutive (P) RBs in the frequency domain and may correspond to one numerology (eg, SCS, CP length, etc.). The carrier may include up to N (eg, 5) BWPs. Data communication is performed through an activated BWP, and only one BWP may be activated by one UE. Each element in the resource grid is referred to as a resource element (RE), one complex symbol may be mapped.
도 5는 자기-완비(self-contained) 슬롯의 구조를 예시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.5 illustrates the structure of a self-contained slot. In an NR system, a frame is characterized by a self-complete structure in which a DL control channel, DL or UL data, UL control channel, and the like can be included in one slot. For example, the first N symbols in a slot may be used to transmit a DL control channel (hereinafter DL control region), and the last M symbols in the slot may be used to transmit a UL control channel (hereinafter UL control region). N and M are each an integer of 0 or more. A resource region (hereinafter, referred to as a data region) between the DL control region and the UL control region may be used for DL data transmission or may be used for UL data transmission. As an example, the following configuration may be considered. Each interval is listed in chronological order.
1. DL only 구성1.DL only configuration
2. UL only 구성2.UL only configuration
3. Mixed UL-DL 구성3. Mixed UL-DL Configuration
- DL 영역 + GP(Guard Period) + UL 제어 영역DL area + Guard Period (GP) + UL control area
- DL 제어 영역 + GP + UL 영역DL control area + GP + UL area
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역DL area: (i) DL data area, (ii) DL control area + DL data area
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역 UL region: (i) UL data region, (ii) UL data region + UL control region
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.The PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region. PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region. Downlink control information (DCI), for example, DL data scheduling information, UL data scheduling information, and the like may be transmitted in the PDCCH. In PUCCH, uplink control information (UCI), for example, positive acknowledgment / negative acknowledgment (ACK / NACK) information, channel state information (CSI) information, and scheduling request (SR) for DL data may be transmitted. The GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or from the reception mode to the transmission mode. Some symbols at the time of switching from DL to UL in the subframe may be set to GP.
도 6은 SSB 전송을 예시한다. 단말은 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.6 illustrates SSB transmission. The UE may perform cell search, system information acquisition, beam alignment for initial access, DL measurement, etc. based on the SSB. SSB is mixed with a Synchronization Signal / Physical Broadcast channel (SS / PBCH) block.
도 6을 참조하면, SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 단말이 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, 기지국)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다. SSB 주기의 시작 부분에 SSB 버스트(burst) 세트가 구성된다. SSB 버스트 세트는 5ms 시간 윈도우(즉, 하프-프레임)로 구성되며, SSB는 SS 버스트 세트 내에서 최대 L번 전송될 수 있다. SSB의 최대 전송 횟수 L은 반송파의 주파수 대역에 따라 다음과 같이 주어질 수 있다. 하나의 슬롯은 최대 2개의 SSB를 포함한다.Referring to FIG. 6, the SSB is periodically transmitted in accordance with the SSB period. The SSB basic period assumed by the UE in initial cell search is defined as 20 ms. After cell access, the SSB period may be set to one of {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} by a network (eg, a base station). A set of SSB bursts is constructed at the beginning of the SSB period. The SSB burst set consists of a 5ms time window (ie, half-frame), and the SSB can be transmitted up to L times within the SS burst set. The maximum number of transmissions L of the SSB may be given as follows according to the frequency band of the carrier wave. One slot includes up to two SSBs.
- For frequency range up to 3 GHz, L = 4-For frequency range up to 3 GHz, L = 4
- For frequency range from 3GHz to 6 GHz, L = 8-For frequency range from 3 GHz to 6 GHz, L = 8
- For frequency range from 6 GHz to 52.6 GHz, L = 64-For frequency range from 6 GHz to 52.6 GHz, L = 64
SS 버스트 세트 내에서 SSB 후보의 시간 위치는 SCS에 따라 다음과 같이 정의될 수 있다. SSB 후보의 시간 위치는 SSB 버스트 세트(즉, 하프-프레임) 내에서 시간 순서에 따라 0 ~ L-1로 인덱싱 된다(SSB 인덱스).The time position of the SSB candidate in the SS burst set may be defined as follows according to the SCS. The temporal position of the SSB candidate is indexed from 0 to L-1 in time order within the SSB burst set (ie, half-frame) (SSB index).
- Case A - 15 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.Case A-15 kHz SCS: The index of the start symbol of the candidate SSB is given by {2, 8} + 14 * n. N = 0, 1 when the carrier frequency is 3 GHz or less. N = 0, 1, 2, and 3 when the carrier frequency is 3 GHz to 6 GHz.
- Case B - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1이다.Case B-30 kHz SCS: The index of the start symbol of the candidate SSB is given by {4, 8, 16, 20} + 28 * n. N = 0 when the carrier frequency is 3 GHz or less. N = 0, 1 when the carrier frequency is 3 GHz to 6 GHz.
- Case C - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.Case C-30 kHz SCS: The index of the start symbol of the candidate SSB is given by {2, 8} + 14 * n. N = 0, 1 when the carrier frequency is 3 GHz or less. N = 0, 1, 2, and 3 when the carrier frequency is 3 GHz to 6 GHz.
- Case D - 120 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18이다.Case D-120 kHz SCS: The index of the start symbol of the candidate SSB is given by {4, 8, 16, 20} + 28 * n. If the carrier frequency is greater than 6 GHz, then n = 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18.
- Case E - 240 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {8, 12, 16, 20, 32, 36, 40, 44} + 56*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8이다.Case E-240 kHz SCS: The index of the start symbol of the candidate SSB is given by {8, 12, 16, 20, 32, 36, 40, 44} + 56 * n. If the carrier frequency is greater than 6 GHz, then n = 0, 1, 2, 3, 5, 6, 7, 8.
도 7은 SSB의 멀티-빔 전송을 예시한다.7 illustrates multi-beam transmission of the SSB.
빔 스위핑은 TRP(Transmission Reception Point)(예, 기지국/셀)가 무선 신호의 빔 (방향)을 시간에 따라 다르게 하는 것을 의미한다 (이하에서, 빔과 빔 방향은 혼용될 수 있다). 도 8을 참조하면, SSB는 빔 스위핑을 이용하여 주기적으로 전송될 수 있다. 이 경우, SSB 인덱스는 SSB 빔과 묵시적(implicitly)으로 링크된다. SSB 빔은 SSB (인덱스) 단위로 변경되거나, SSB (인덱스) 그룹 단위로 변경될 수 있다. 후자의 경우, SSB 빔은 SSB (인덱스) 그룹 내에서 동일하게 유지된다. 즉, SSB의 전송 빔 반향이 복수의 연속된 SSB에서 반복된다. SSB 버스트 세트 내에서 SSB의 최대 전송 횟수 L은 캐리어가 속하는 주파수 대역에 따라 4, 8 또는 64의 값을 가진다. 따라서, SSB 버스트 세트 내에서 SSB 빔의 최대 개수도 캐리어의 주파수 대역에 따라 다음과 같이 주어질 수 있다.Beam sweeping means that the Transmission Reception Point (TRP) (eg, base station / cell) varies the beam (direction) of the radio signal over time (hereinafter, the beam and beam direction may be mixed). Referring to FIG. 8, the SSB may be periodically transmitted using beam sweeping. In this case, the SSB index is implicitly linked with the SSB beam. The SSB beam may be changed in units of SSB (index) or in units of SSB (index) group. In the latter case, the SSB beam remains the same within the SSB (index) group. That is, the transmission beam reflections of the SSB are repeated in a plurality of consecutive SSBs. The maximum number of transmissions L of the SSB in the SSB burst set has a value of 4, 8 or 64 depending on the frequency band to which the carrier belongs. Accordingly, the maximum number of SSB beams in the SSB burst set may also be given as follows according to the frequency band of the carrier.
- For frequency range up to 3 GHz, Max number of beams = 4-For frequency range up to 3 GHz, Max number of beams = 4
- For frequency range from 3GHz to 6 GHz, Max number of beams = 8-For frequency range from 3 GHz to 6 GHz, Max number of beams = 8
- For frequency range from 6 GHz to 52.6 GHz, Max number of beams = 64-For frequency range from 6 GHz to 52.6 GHz, Max number of beams = 64
다만, 멀티-빔 전송이 적용되지 않는 경우, SSB 빔의 개수는 1개이다.However, when multi-beam transmission is not applied, the number of SSB beams is one.
단말이 기지국에 초기 접속을 시도하는 경우, 단말은 SSB에 기반하여 기지국과 빔을 정렬할 수 있다. 예를 들어, 단말은 SSB 검출을 수행한 뒤, 베스트 SSB를 식별한다. 이후, 단말은 베스트 SSB의 인덱스(즉, 빔)에 링크된/대응되는 PRACH 자원을 이용하여 RACH 프리앰블을 기지국에게 전송할 수 있다. SSB는 초기 접속 이후에도 기지국과 단말간에 빔을 정렬하는데 사용될 수 있다.When the terminal attempts to initially access the base station, the terminal may align the beam with the base station based on the SSB. For example, the terminal identifies the best SSB after performing SSB detection. Thereafter, the terminal may transmit the RACH preamble to the base station using the PRACH resources linked / corresponding to the index (ie, beam) of the best SSB. SSB may be used to align the beam between the base station and the terminal even after the initial access.
도 8은 실제로 전송되는 SSB(SSB_tx)를 알려주는 방법을 예시한다.8 illustrates a method of notifying the SSB (SSB_tx) that is actually transmitted.
SSB 버스트 세트 내에서 SSB는 최대 L개가 전송될 수 있으며, SSB가 실제로 전송되는 개수/위치는 기지국/셀 별로 달라질 수 있다. SSB가 실제로 전송되는 개수/위치는 레이트-매칭과 측정을 위해 사용되며, 실제로 전송된 SSB에 관한 정보는 다음과 같이 지시된다.Up to L SSBs may be transmitted in the SSB burst set, and the number / locations of the SSBs actually transmitted may vary by base station / cell. The number / location at which the SSB is actually transmitted is used for rate-matching and measurement, and information about the SSB actually transmitted is indicated as follows.
- 레이트-매칭과 관련된 경우: 단말-특정(specific) RRC 시그널링이나 RMSI를 통해 지시될 수 있다. 단말-특정 RRC 시그널링은 below 6GHz 및 above 6GHz 주파수 범위에서 모두 풀(full)(예, 길이 L) 비트맵을 포함한다. 반편, RMSI는 below 6GHz에서 풀 비트맵을 포함하고, above 6GHz에서는 도시된 바와 같이 압축 형태의 비트맵을 포함한다. 구체적으로, 그룹-비트 맵(8비트) + 그룹-내 비트맵(8비트)을 이용하여 실제로 전송된 SSB에 관한 정보가 지시될 수 있다. 여기서, 단말-특정 RRC 시그널링이나 RMSI를 통해 지시된 자원(예, RE)은 SSB 전송을 위해 예약되고, PDSCH/PUSCH 등은 SSB 자원을 고려하여 레이트-매칭될 수 있다.In the case of rate-matching: it may be indicated through UE-specific RRC signaling or RMSI. UE-specific RRC signaling includes a full (eg, length L) bitmap in both the below 6 GHz and above 6 GHz frequency ranges. On the other hand, the RMSI includes a full bitmap below 6GHz and a compressed bitmap as shown above. Specifically, information about the SSB actually transmitted using the group-bit map (8 bits) + the intra-group bitmap (8 bits) can be indicated. Here, resources indicated by UE-specific RRC signaling or RMSI (eg, RE) may be reserved for SSB transmission, and PDSCH / PUSCH and the like may be rate-matched in consideration of SSB resources.
- 측정과 관련된 경우: RRC 연결(connected) 모드에 있는 경우, 네트워크(예, 기지국)는 측정 구간 내에서 측정될 SSB 세트를 지시할 수 있다. SSB 세트는 주파수 레이어(frequency layer) 별로 지시될 수 있다. SSB 세트에 관한 지시가 없는 경우, 디폴트 SSB 세트가 사용된다. 디폴트 SSB 세트는 측정 구간 내의 모든 SSB를 포함한다. SSB 세트는 RRC 시그널링의 풀(full)(예, 길이 L) 비트맵을 이용하여 지시될 수 있다. RRC 아이들(idle) 모드에 있는 경우, 디폴트 SSB 세트가 사용된다.In the case of measurement: When in the RRC connected mode, the network (eg, base station) may indicate the set of SSBs to be measured within the measurement interval. The SSB set may be indicated for each frequency layer. If there is no indication about the SSB set, the default SSB set is used. The default SSB set includes all SSBs within the measurement interval. The SSB set may be indicated using a full (eg, length L) bitmap of RRC signaling. When in RRC idle mode, a default set of SSBs is used.
한편, NR 시스템의 경우, 전송/수신 안테나가 크게 증가하는 거대(massive) 다중 입력 다중 출력(multiple input multiple output, MIMO) 환경이 고려될 수 있다. 즉, 거대 MIMO 환경이 고려됨에 따라, 전송/수신 안테나의 수는 수십 또는 수백 개 이상으로 증가할 수 있다. 한편, NR 시스템에서는 above 6GHz 대역, 즉, 밀리미터 주파수 대역에서의 통신을 지원한다. 하지만 밀리미터 주파수 대역은 너무 높은 주파수 대역을 이용하는 것으로 인해 거리에 따른 신호 감쇄가 매우 급격하게 나타나는 주파수 특성을 갖는다. 따라서, 적어도 6GHz 이상의 대역을 사용하는 NR 시스템은 급격한 전파 감쇄 특성을 보상하기 위해 신호 전송을 전방향이 아닌 특정 방향으로 에너지를 모아서 전송하는 빔포밍 기법을 사용한다. 거대 MIMO 환경에서는 하드웨어 구현의 복잡도를 줄이고, 다수의 안테나들을 이용한 성능 증가, 자원 할당의 유연성, 주파수별 빔 제어의 용이를 위해, 빔 형성 가중치 벡터(weight vector)/프리코딩 벡터(precoding vector)를 적용하는 위치에 따라 아날로그 빔포밍(analog beamforming) 기법과 디지털 빔포밍(digital beamforming) 기법이 결합된 하이브리드(hybrid) 형태의 빔포밍 기법이 요구된다.Meanwhile, in the NR system, a massive multiple input multiple output (MIMO) environment in which a transmit / receive antenna is greatly increased may be considered. That is, as a large MIMO environment is considered, the number of transmit / receive antennas may increase to tens or hundreds or more. On the other hand, the NR system supports communication in the above 6GHz band, that is, the millimeter frequency band. However, the millimeter frequency band has a frequency characteristic that the signal attenuation with the distance is very rapid due to the use of a frequency band too high. Therefore, NR systems using bands of at least 6 GHz or more use a beamforming technique that collects and transmits energy in a specific direction rather than omnidirectionally to compensate for a sudden propagation attenuation characteristic. In large MIMO environments, beamforming weight vectors / precoding vectors are used to reduce the complexity of hardware implementation, increase performance with multiple antennas, flexibility in resource allocation, and ease of frequency-specific beam control. According to the application position, a hybrid beamforming technique in which an analog beamforming technique and a digital beamforming technique are combined is required.
도 9는 하이브리드 빔포밍(hybrid beamforming)을 위한 전송단 및 수신단의 블록도의 일례를 나타낸 도이다.9 is a diagram illustrating an example of a block diagram of a transmitting end and a receiving end for hybrid beamforming.
밀리미터 주파수 대역에서 좁은 빔을 형성하기 위한 방법으로, BS나 UE에서 많은 수의 안테나에 적절한 위상차를 이용하여 동일한 신호를 전송함으로써 특정한 방향에서만 에너지가 높아지게 하는 빔포밍 방식이 주로 고려되고 있다. 이와 같은 빔포밍 방식에는 디지털 기저대역(baseband) 신호에 위상차를 만드는 디지털 빔포밍, 변조된 아날로그 신호에 시간 지연(즉, 순환 천이)을 이용하여 위상차를 만드는 아날로그 빔포밍, 디지털 빔포밍과 아날로그 빔포밍을 모두 이용하는 하이브리드 빔포밍 등이 있다. 안테나 요소별로 전송 파워 및 위상 조절이 가능하도록 RF 유닛(혹은 트랜시버 유닛(transceiver unit, TXRU))을 가지면 주파수 자원별로 독립적인 빔포밍이 가능하다. 그러나 100여 개의 안테나 요소 모두에 RF 유닛를 설치하기에는 가격 측면에서 실효성이 떨어지는 문제를 있다. 즉, 밀리미터 주파수 대역은 급격한 전파 감쇄 특성을 보상하기 위해 많은 수의 안테나가 사용해야 하고, 디지털 빔포밍은 안테나 수에 해당하는 만큼 RF 컴포넌트(예, 디지털 아날로그 컨버터(DAC), 믹서(mixer), 전력 증폭기(power amplifier), 선형 증폭기(linear amplifier) 등)를 필요로 하므로, 밀리미터 주파수 대역에서 디지털 빔포밍을 구현하려면 통신 기기의 가격이 증가하는 문제점이 있다. 그러므로 밀리미터 주파수 대역과 같이 안테나의 수가 많이 필요한 경우에는 아날로그 빔포밍 혹은 하이브리드 빔포밍 방식의 사용이 고려된다. 아날로그 빔포밍 방식은 하나의 TXRU에 다수 개의 안테나 요소를 매핑하고 아날로그 위상 천이기(analog phase shifter)로 빔(beam)의 방향을 조절한다. 이러한 아날로그 빔포밍 방식은 전체 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍(beamforming, BF)을 해줄 수 없는 단점이 있다. 하이브리드 BF는 디지털 BF와 아날로그 BF의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 RF 유닛을 갖는 방식이다. 하이브리드 BF의 경우, B개의 RF 유닛과 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한되게 된다.As a method for forming a narrow beam in the millimeter frequency band, a beamforming method of increasing energy only in a specific direction by transmitting the same signal using a phase difference appropriate to a large number of antennas in a BS or a UE is mainly considered. Such beamforming methods include digital beamforming that creates a phase difference in a digital baseband signal, analog beamforming that uses a time delay (ie, cyclic shift) in a modulated analog signal to create a phase difference, digital beamforming, and an analog beam. Hybrid beamforming using both the forming and the like. If an RF unit (or transceiver unit (TXRU)) is provided to enable transmission power and phase adjustment for each antenna element, independent beamforming is possible for each frequency resource. However, there is a problem in that it is ineffective in installing an RF unit in all 100 antenna elements. In other words, the millimeter frequency band should be used by a large number of antennas to compensate for rapid propagation attenuation, and digital beamforming is equivalent to the number of antennas, so RF components (eg, digital-to-analog converters (DACs), mixers, power Since an amplifier (power amplifier, linear amplifier, etc.) is required, there is a problem in that the cost of a communication device increases in order to implement digital beamforming in the millimeter frequency band. Therefore, when a large number of antennas are required, such as the millimeter frequency band, the use of analog beamforming or hybrid beamforming is considered. The analog beamforming method maps a plurality of antenna elements to one TXRU and adjusts the beam direction with an analog phase shifter. Such an analog beamforming method has a disadvantage in that only one beam direction can be made in the entire band and thus frequency selective beamforming (BF) cannot be performed. Hybrid BF is an intermediate form between digital BF and analog BF with B RF units less than Q antenna elements. In the case of the hybrid BF, although there are differences depending on the connection method of the B RF units and the Q antenna elements, the direction of beams that can be simultaneously transmitted is limited to B or less.
하향링크 빔 관리(Downlink Beam Management, DL BM)Downlink Beam Management (DL BM)
BM 과정은 하향링크(downlink, DL) 및 상향링크(uplink, UL) 전송/수신에 사용될 수 있는 BS(혹은 전송 및 수신 포인트(transmission and reception point, TRP)) 및/또는 UE 빔들의 세트(set)를 획득하고 유지하기 위한 과정들로서, 아래와 같은 과정 및 용어를 포함할 수 있다.The BM process is a BS (or transmission and reception point (TRP)) and / or set of UE beams that can be used for downlink (DL) and uplink (UL) transmission / reception. As a process for acquiring and maintaining), the following process and terminology may be included.
- 빔 측정(beam measurement): BS 또는 UE가 수신된 빔포밍 신호의 특성을 측정하는 동작.Beam measurement: an operation in which a BS or a UE measures a characteristic of a received beamforming signal.
- 빔 결정(beam determination): BS 또는 UE가 자신의 전송 빔(Tx beam) / 수신 빔(Rx beam)을 선택하는 동작.Beam determination: an operation in which the BS or the UE selects its Tx beam / Rx beam.
- 빔 스위핑(beam sweeping): 미리 결정된 방식으로 일정 시간 인터벌 동안 전송 및/또는 수신 빔을 이용하여 공간 도메인을 커버하는 동작.Beam sweeping: an operation of covering the spatial domain using transmit and / or receive beams for a certain time interval in a predetermined manner.
- 빔 보고(beam report): UE가 빔 측정에 기반하여 빔포밍된 신호의 정보를 보고하는 동작.Beam report: an operation in which a UE reports information of a beamformed signal based on beam measurement.
BM 과정은 (1) SSB 또는 CSI-RS를 이용하는 DL BM 과정과, (2) SRS(sounding reference signal)을 이용하는 UL BM 과정으로 구분될 수 있다. 또한, 각 BM 과정은 Tx 빔을 결정하기 위한 Tx 빔 스위핑과 Rx 빔을 결정하기 위한 Rx 빔 스위핑을 포함할 수 있다.The BM process may be divided into (1) DL BM process using SSB or CSI-RS and (2) UL BM process using SRS (sounding reference signal). In addition, each BM process may include a Tx beam sweeping for determining the Tx beam and an Rx beam sweeping for determining the Rx beam.
이 때, DL BM 과정은 (1) BS에 의한 빔포밍된 DL RS들(예, CSI-RS 또는 SSB) 전송과, (2) UE에 의한 빔 보고(beam reporting)를 포함할 수 있다.In this case, the DL BM process may include (1) transmission of beamformed DL RSs (eg, CSI-RS or SSB) by the BS, and (2) beam reporting by the UE.
여기서, 빔 보고는 선호하는(preferred) DL RS ID(들) 및 이에 대응하는 참조 신호 수신 전력(reference signal received power, RSRP)를 포함할 수 있다. DL RS ID는 SSBRI(SSB Resource Indicator) 또는 CRI(CSI-RS Resource Indicator)일 수 있다.Here, the beam report may include a preferred DL RS ID (s) and a reference signal received power (RSRP) corresponding thereto. The DL RS ID may be a SSB Resource Indicator (SSBRI) or a CSI-RS Resource Indicator (CRI).
도 10은 SSB와 CSI-RS를 이용한 빔포밍의 일례를 나타낸다.10 shows an example of beamforming using SSB and CSI-RS.
도 10과 같이, SSB 빔과 CSI-RS 빔이 빔 측정(beam measurement)을 위해 사용될 수 있다. 측정 메트릭(measurement metric)은 자원(resource)/블록(block) 별 RSRP이다. SSB는 듬성한(coarse) 빔 측정을 위해 사용되며, CSI-RS는 미세한(fine) 빔 측정을 위해 사용될 수 있다. SSB는 Tx 빔 스위핑과 Rx 빔 스위핑 모두에 사용될 수 있다. SSB를 이용한 Rx 빔 스위핑은 다수의 SSB 버스트들에 걸쳐서(across) 동일 SSBRI에 대해 UE가 Rx 빔을 변경하면서 SSB의 수신을 시도함으로써 수행될 수 있다. 여기서, 하나의 SS 버스트는 하나 또는 그 이상의 SSB들을 포함하고, 하나의 SS 버스트 세트는 하나 또는 그 이상의 SSB 버스트들을 포함한다.As shown in FIG. 10, the SSB beam and the CSI-RS beam may be used for beam measurement. The measurement metric is a resource / block RSRP. SSB is used for coarse beam measurement and CSI-RS can be used for fine beam measurement. SSB can be used for both Tx beam sweeping and Rx beam sweeping. Rx beam sweeping using the SSB may be performed by attempting to receive the SSB while the UE changes the Rx beam for the same SSBRI across multiple SSB bursts. Here, one SS burst includes one or more SSBs, and one SS burst set includes one or more SSB bursts.
1. SSB를 이용한 DL BM1. DL BM using SSB
도 11은 SSB를 이용한 DL BM 과정의 일례를 나타낸 흐름도이다.11 is a flowchart illustrating an example of a DL BM process using an SSB.
SSB를 이용한 빔 보고(beam report)에 대한 설정은 RRC_CONNECTED에서 채널 상태 정보(channel state information, CSI)/빔 설정 시에 수행된다.The beam report setting using the SSB is performed at the channel state information (CSI) / beam setting in RRC_CONNECTED.
- UE는 BM을 위해 사용되는 SSB 자원들에 대한 CSI-SSB-ResourceSetList를 포함하는 CSI-ResourceConfig IE를 BS로부터 수신한다(S1110). RRC 파라미터 csi-SSB-ResourceSetList는 하나의 자원 세트에서 빔 관리 및 보고를 위해 사용되는 SSB 자원들의 리스트를 나타낸다. 여기서, SSB 자원 세트는 {SSBx1, SSBx2, SSBx3, SSBx4, 쪋}으로 설정될 수 있다. SSB 인덱스는 0부터 63까지 정의될 수 있다.-The UE receives the CSI-ResourceConfig IE including the CSI-SSB-ResourceSetList for the SSB resources used for the BM from the BS (S1110). The RRC parameter csi-SSB-ResourceSetList represents a list of SSB resources used for beam management and reporting in one resource set. Here, the SSB resource set may be set to {SSBx1, SSBx2, SSBx3, SSBx4, 쪋}. SSB index may be defined from 0 to 63.
- UE는 상기 CSI-SSB-ResourceSetList에 기초하여 SSB 자원들 상의 신호들을 상기 BS로부터 수신한다(S1120).-The UE receives signals on SSB resources from the BS based on the CSI-SSB-ResourceSetList (S1120).
- SSBRI 및 참조 신호 수신 전력(reference signal received power, RSRP)에 대한 보고와 관련된 CSI-RS reportConfig가 설정된 경우, 상기 UE는 최선(best) SSBRI 및 이에 대응하는 RSRP를 BS에게 보고한다(S1130). 예를 들어, 상기 CSI-RS reportConfig IE의 reportQuantity가 'ssb-Index-RSRP'로 설정된 경우, UE는 BS으로 최선 SSBRI 및 이에 대응하는 RSRP를 보고한다.If the CSI-RS reportConfig related to the report on the SSBRI and reference signal received power (RSRP) is configured, the UE reports the best SSBRI and the corresponding RSRP to the BS (S1130). For example, when reportQuantity of the CSI-RS reportConfig IE is set to 'ssb-Index-RSRP', the UE reports the best SSBRI and the corresponding RSRP to the BS.
UE는 SSB와 동일한 OFDM 심볼(들)에 CSI-RS 자원이 설정되고, 'QCL-TypeD'가 적용 가능한 경우, 상기 UE는 CSI-RS와 SSB가 'QCL-TypeD' 관점에서 유사 동일 위치된(quasi co-located, QCL) 것으로 가정할 수 있다. 여기서, QCL-TypeD는 공간(spatial) Rx 파라미터 관점에서 안테나 포트들 간에 QCL되어 있음을 의미할 수 있다. UE가 QCL-TypeD 관계에 있는 복수의 DL 안테나 포트들의 신호들을 수신 시에는 동일한 수신 빔을 적용해도 무방하다. When the CSI-RS resource is configured in the same OFDM symbol (s) as the SSB, and the 'QCL-TypeD' is applicable, the UE is similarly co-located in terms of the 'QCL-TypeD' with the CSI-RS and the SSB ( quasi co-located (QCL). In this case, QCL-TypeD may mean that QCLs are interposed between antenna ports in terms of spatial Rx parameters. The UE may apply the same reception beam when receiving signals of a plurality of DL antenna ports in a QCL-TypeD relationship.
2. CSI-RS를 이용한 DL BM2. DL BM using CSI-RS
CSI-RS 용도에 대해 살펴보면, i) 특정 CSI-RS 자원 세트에 대해 반복(repetition) 파라미터가 설정되고 TRS_info가 설정되지 않은 경우, CSI-RS는 빔 관리(beam management)를 위해 사용된다. ii) 반복 파라미터가 설정되지 않고 TRS_info가 설정된 경우, CSI-RS는 트랙킹 참조 신호(tracking reference signal, TRS)을 위해 사용된다. iii) 반복 파라미터가 설정되지 않고 TRS_info가 설정되지 않은 경우, CSI-RS는 CSI 획득(acquisition)을 위해 사용된다.Referring to the CSI-RS use, i) CSI-RS is used for beam management when a repetition parameter is set for a specific CSI-RS resource set and TRS_info is not set. ii) If the repeating parameter is not set and TRS_info is set, the CSI-RS is used for a tracking reference signal (TRS). iii) If the repetition parameter is not set and TRS_info is not set, the CSI-RS is used for CSI acquisition.
(RRC 파라미터) 반복이 'ON'으로 설정된 경우, UE의 Rx 빔 스위핑 과정과 관련된다. 반복이 'ON'으로 설정된 경우, UE가 NZP-CSI-RS-ResourceSet을 설정받으면, 상기 UE는 NZP-CSI-RS-ResourceSet 내 적어도 하나의 CSI-RS 자원의 신호들은 동일한 하향링크 공간 도메인 필터로 전송된다고 가정할 수 있다. 즉, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS 자원은 동일한 Tx 빔을 통해 전송된다. 여기서, NZP-CSI-RS-ResourceSet 내 적어도 하나의 CSI-RS 자원의 신호들은 서로 다른 OFDM 심볼로 전송될 수 있다. (RRC parameter) When repetition is set to 'ON', it is associated with the Rx beam sweeping process of the UE. When the repetition is set to 'ON', when the UE receives the NZP-CSI-RS-ResourceSet, the UE receives signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet with the same downlink spatial domain filter. Can be assumed to be transmitted. That is, at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through the same Tx beam. Here, signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet may be transmitted in different OFDM symbols.
반면, 반복이 'OFF'로 설정된 경우는 BS의 Tx 빔 스위핑 과정과 관련된다. 반복이 'OFF'로 설정된 경우, UE는 NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS 자원의 신호들이 동일한 하향링크 공간 도메인 전송 필터로 전송된다고 가정하지 않는다. 즉, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS 자원의 신호들은 서로 다른 Tx 빔을 통해 전송된다. 도 12는 CSI-RS를 이용한 DL BM 과정의 또 다른 일례를 나타낸다.On the other hand, the repetition is set to 'OFF' is related to the Tx beam sweeping process of the BS. When the repetition is set to 'OFF', the UE does not assume that signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet are transmitted to the same downlink spatial domain transport filter. That is, signals of at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet are transmitted through different Tx beams. 12 shows another example of a DL BM process using CSI-RS.
도 12(a)는 UE의 Rx 빔 결정(또는 정제(refinement)) 과정을 나타내며, 도 12(b)는 BS의 Tx 빔 스위핑 과정을 나타낸다. 또한, 도 12(a)는, 반복 파라미터가 'ON'으로 설정된 경우이고, 도 12(b)는, 반복 파라미터가 'OFF'로 설정된 경우이다.FIG. 12 (a) shows the Rx beam determination (or refinement) process of the UE, and FIG. 12 (b) shows the Tx beam sweeping process of the BS. 12A illustrates a case where the repeating parameter is set to 'ON', and FIG. 12B illustrates a case where the repeating parameter is set to 'OFF'.
도 12(a) 및 도 13(a)를 참고하여, UE의 Rx 빔 결정 과정에 대해 살펴본다.12 (a) and 13 (a), the process of determining the Rx beam of the UE will be described.
도 13(a)는 UE의 수신 빔 결정 과정의 일례를 나타낸 흐름도이다.13 (a) is a flowchart illustrating an example of a process of determining a reception beam of a UE.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다(S1310). 여기서, 상기 RRC 파라미터 'repetition'이 'ON'으로 세팅되어 있다.The UE receives an NZP CSI-RS resource set IE including an RRC parameter related to 'repetition' from the BS through RRC signaling (S1310). Here, the RRC parameter 'repetition' is set to 'ON'.
- UE는 상기 RRC 파라미터 'repetition'이 'ON'으로 설정된 CSI-RS 자원 세트 내의 자원(들) 상에서의 신호들을 BS의 동일 Tx 빔(또는 DL 공간 도메인 전송 필터)을 통해 서로 다른 OFDM 심볼에서 반복 수신한다(S1320). The UE repeats signals on resource (s) in the CSI-RS resource set in which the RRC parameter 'repetition' is set to 'ON' in different OFDM symbols through the same Tx beam (or DL spatial domain transport filter) of the BS It receives (S1320).
- UE는 자신의 Rx 빔을 결정한다(S1330). The UE determines its Rx beam (S1330).
- UE는 CSI 보고를 생략한다(S1340). 즉, UE는 상가 RRC 파라미터 'repetition'이 'ON'으로 설정된 경우, CSI 보고를 생략할 수 있다. The UE omits CSI reporting (S1340). That is, when the mall RRC parameter 'repetition' is set to 'ON', the UE may omit CSI reporting.
도 12(b) 및 도 13(b)를 참고하여, BS의 Tx 빔 결정 과정에 대해 살펴본다.12 (b) and 13 (b), the Tx beam determination process of the BS will be described.
도 13(b)는 BS의 전송 빔 결정 과정의 일례를 나타낸 흐름도이다.13 (b) is a flowchart illustrating an example of a transmission beam determination process of a BS.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다(S1350). 여기서, 상기 RRC 파라미터 'repetition'이 'OFF'로 세팅되어 있으며, BS의 Tx 빔 스위핑 과정과 관련된다.The UE receives an NZP CSI-RS resource set IE including an RRC parameter related to 'repetition' from the BS through RRC signaling (S1350). Here, the RRC parameter 'repetition' is set to 'OFF', and is related to the Tx beam sweeping process of the BS.
- UE는 상기 RRC 파라미터 'repetition'이 'OFF'로 설정된 CSI-RS 자원 세트 내의 자원들 상에서의 신호들을 BS의 서로 다른 Tx 빔(DL 공간 도메인 전송 필터)을 통해 수신한다(S1360). The UE receives signals on resources in the CSI-RS resource set in which the RRC parameter 'repetition' is set to 'OFF' through different Tx beams (DL spatial domain transmission filter) of the BS (S1360).
- UE는 최상의(best) 빔을 선택(또는 결정)한다(S1370)The UE selects (or determines) the best beam (S1370).
- UE는 선택된 빔에 대한 ID(예, CRI) 및 관련 품질 정보(예, RSRP)를 BS으로 보고한다(S1380). 즉, UE는 CSI-RS가 BM을 위해 전송되는 경우 CRI와 이에 대한 RSRP를 BS으로 보고한다.The UE reports the ID (eg, CRI) and related quality information (eg, RSRP) for the selected beam to the BS (S1380). That is, when the CSI-RS is transmitted for the BM, the UE reports the CRI and its RSRP to the BS.
도 14는 도 12의 동작과 관련된 시간 및 주파수 도메인에서의 자원 할당의 일례를 나타낸다.14 illustrates an example of resource allocation in the time and frequency domain associated with the operation of FIG. 12.
CSI-RS 자원 세트에 repetition 'ON'이 설정된 경우, 복수의 CSI-RS resource들이 동일한 전송 빔을 적용하여 반복하여 사용되고, CSI-RS 자원 세트에 repetition 'OFF'가 설정된 경우, 서로 다른 CSI-RS resource들이 서로 다른 전송 빔으로 전송될 수 있다.When repetition 'ON' is set in the CSI-RS resource set, a plurality of CSI-RS resources are repeatedly used by applying the same transmission beam, and when repetition 'OFF' is set in the CSI-RS resource set, different CSI-RSs are used. Resources may be transmitted in different transmission beams.
3. DL BM 관련 빔 지시(beam indication)3. Beam indication related to DL BM
UE는 적어도 QCL(Quasi Co-location) 지시를 위한 최대 M 개의 후보(candidate) 전송 설정 지시 (Transmission Configuration Indication, TCI) 상태(state)들에 대한 리스트를 RRC 시그널링을 통해 수신할 수 있다. 여기서, M은 UE (capability)에 의존하며, 64일 수 있다.The UE may receive a list of at least M candidate transmission configuration indication (TCI) states for at least a quasi co-location (QCL) indication through RRC signaling. Here, M depends on UE (capability) and may be 64.
각 TCI 상태는 하나의 참조 신호(reference signal, RS) 세트를 가지고 설정될 수 있다. 표 3은 TCI-State IE의 일례를 나타낸다. TCI-State IE는 하나 또는 두 개의 DL 참조 신호(reference signal, RS) 대응하는 유사 공동-위치(quasi co-location, QCL) 타입과 연관된다.Each TCI state may be set with one reference signal (RS) set. Table 3 shows an example of the TCI-State IE. The TCI-State IE is associated with one or two DL reference signal (RS) corresponding quasi co-location (QCL) types.
-- ASN1START-- TAG-TCI-STATE-STARTTCI-State ::= SEQUENCE { tci-StateId TCI-StateId, qcl-Type1 QCL-Info, qcl-Type2 QCL-Info OPTIONAL, -- Need R ...}QCL-Info ::= SEQUENCE { cell ServCellIndex OPTIONAL, -- Need R bwp-Id BWP-Id OPTIONAL, -- Cond CSI-RS-Indicated referenceSignal CHOICE { csi-rs NZP-CSI-RS-ResourceId, ssb SSB-Index }, qcl-Type ENUMERATED {typeA, typeB, typeC, typeD}, ...}-- TAG-TCI-STATE-STOP-- ASN1STOP-ASN1START-- TAG-TCI-STATE-STARTTCI-State :: = SEQUENCE {tci-StateId TCI-StateId, qcl-Type1 QCL-Info, qcl-Type2 QCL-Info OPTIONAL,-Need R ...} QCL -Info :: = SEQUENCE {cell ServCellIndex OPTIONAL,-Need R bwp-Id BWP-Id OPTIONAL,-Cond CSI-RS-Indicated referenceSignal CHOICE {csi-rs NZP-CSI-RS-ResourceId, ssb SSB-Index} , qcl-Type ENUMERATED {typeA, typeB, typeC, typeD}, ...}-TAG-TCI-STATE-STOP-- ASN1STOP
표 3에서, 'bwp-Id'는 RS가 위치되는 DL BWP를 나타내며, 'cell'은 RS가 위치되는 반송파를 나타내며, 'referencesignal'은 타겟 안테나 포트(들)에 대해 유사 공동-위치의 소스(source)가 되는 참조 안테나 포트(들) 혹은 이를 포함하는 참조 신호를 나타낸다. 상기 타겟 안테나 포트(들)은 CSI-RS, PDCCH DMRS, 또는 PDSCH DMRS 일 수 있다. In Table 3, 'bwp-Id' indicates the DL BWP where the RS is located, 'cell' indicates the carrier on which the RS is located, and 'referencesignal' indicates the source of pseudo co-location for the target antenna port (s) ( Reference antenna port (s) to be a source or a reference signal including the same. The target antenna port (s) may be CSI-RS, PDCCH DMRS, or PDSCH DMRS.
4. QCL(Quasi-Co Location)4.Quasi-Co Location (QCL)
UE는 상기 UE 및 주어진 주어진 셀에 대해 의도된(intended) DCI를 가지는 검출된 PDCCH에 따라 PDSCH를 디코딩하기 위해, 최대 M개의 TCI-상태 설정들을 포함하는 리스트를 수신할 있다. 여기서, M은 UE 능력(capability)에 의존한다.The UE may receive a list containing up to M TCI-status settings for decoding the PDSCH according to the detected PDCCH having an intended DCI for the UE and a given cell. Here, M depends on UE capability.
표 3에 예시된 바와 같이, 각각의 TCI-State는 하나 또는 두 개의 DL RS와 PDSCH의 DM-RS 포트 간에 QCL 관계를 설정하기 위한 파라미터를 포함한다. QCL 관계는 첫 번째 DL RS에 대한 RRC 파라미터 qcl-Type1과 두 번째 DL RS에 대한 qcl-Type2 (설정된 경우)를 가지고 설정된다. As illustrated in Table 3, each TCI-State includes parameters for establishing a QCL relationship between one or two DL RSs and a DM-RS port of PDSCH. The QCL relationship is established with the RRC parameters qcl-Type1 for the first DL RS and qcl-Type2 (if set) for the second DL RS.
각 DL RS에 대응하는 QCL 타입은 QCL-Info 내 파라미터 'qcl-Type'에 의해 주어지며, 다음 값 중 하나를 취할 수 있다:The QCL type corresponding to each DL RS is given by the parameter 'qcl-Type' in QCL-Info, and can take one of the following values:
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}-'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}-'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}'QCL-TypeD': {Spatial Rx parameter}
예를 들어, 타겟 안테나 포트가 특정 NZP CSI-RS 인 경우, 해당 NZP CSI-RS 안테나 포트들은 QCL-Type A관점에서는 특정 TRS와, QCL-Type D관점에서는 특정 SSB과 QCL되었다고 지시/설정될 수 있다. 이러한 지시/설정을 받은 UE는 QCL-TypeA TRS에서 측정된 도플러, 딜레이 값을 이용해서 해당 NZP CSI-RS를 수신하고, QCL-TypeD SSB 수신에 사용된 수신 빔을 해당 NZP CSI-RS 수신에 적용할 수 있다.For example, if the target antenna port is a specific NZP CSI-RS, the corresponding NZP CSI-RS antenna ports may be indicated / set as a specific TRS in QCL-Type A view and a specific SSB and QCL in QCL-Type D view. have. The UE receiving this indication / setting receives the corresponding NZP CSI-RS using the Doppler and delay values measured in the QCL-TypeA TRS, and applies the reception beam used to receive the QCL-TypeD SSB to the corresponding NZP CSI-RS reception. can do.
CSI 관련 동작CSI related behavior
NR(New Radio) 시스템에서, CSI-RS(channel state information-reference signal)은 시간 및/또는 주파수 트래킹(time/frequency tracking), CSI 계산(computation), RSRP(reference signal received power) 계산(computation) 및 이동성(mobility)를 위해 사용된다. 여기서, CSI 계산은 CSI 획득(acquisition)과 관련되며, RSRP 계산은 빔 관리(beam management, BM)와 관련된다.In a New Radio (NR) system, the channel state information-reference signal (CSI-RS) is used for time and / or frequency tracking, CSI computation, and reference signal received power (RSRP) computation. And for mobility. Here, the CSI calculation is related to the CSI acquisition, and the RSRP calculation is related to the beam management (BM).
도 15는 CSI 관련 과정의 일례를 나타낸 흐름도이다.15 is a flowchart illustrating an example of a CSI related process.
- 상기와 같은 CSI-RS의 용도 중 하나를 수행하기 위해, UE은 CSI와 관련된 설정(configuration) 정보를 RRC 시그널링을 통해 BS로부터 수신한다(S1501).In order to perform one of the uses of the CSI-RS as described above, the UE receives configuration information related to the CSI from the BS through RRC signaling (S1501).
상기 CSI와 관련된 설정 정보는 CSI-IM(interference management) 자원(resource) 관련 정보, CSI 측정 설정(measurement configuration) 관련 정보, CSI 자원 설정(resource configuration) 관련 정보, CSI-RS 자원(resource) 관련 정보 또는 CSI 보고 설정(report configuration) 관련 정보 중 적어도 하나를 포함할 수 있다. The configuration information related to CSI includes information related to CSI-IM (interference management) resources, information related to CSI measurement configuration, information related to CSI resource configuration, and information related to CSI-RS resource. Or CSI report configuration related information.
i) CSI-IM 자원 관련 정보는 CSI-IM 자원 정보(resource information), CSI-IM 자원 세트 정보(resource set information) 등을 포함할 수 있다. CSI-IM 자원 세트는 CSI-IM 자원 세트 ID에 의해 식별되며, 하나의 자원 세트는 적어도 하나의 CSI-IM 자원를 포함한다. 각각의 CSI-IM 자원은 CSI-IM 자원 ID에 의해 식별된다.i) CSI-IM resource related information may include CSI-IM resource information, CSI-IM resource set information, and the like. The CSI-IM resource set is identified by a CSI-IM resource set ID, and one resource set includes at least one CSI-IM resource. Each CSI-IM resource is identified by a CSI-IM resource ID.
ii) CSI 자원 설정 관련 정보는 CSI-ResourceConfig IE로 표현될 수 있다. CSI 자원 설정 관련 정보는 NZP(non zero power) CSI-RS 자원 세트, CSI-IM 자원 세트 또는 CSI-SSB 자원 세트 중 적어도 하나를 포함하는 그룹을 정의한다. 즉, 상기 CSI 자원 설정 관련 정보는 CSI-RS 자원 세트 리스트를 포함하며, 상기 CSI-RS 자원 세트 리스트는 NZP CSI-RS 자원 세트 리스트, CSI-IM 자원 세트 리스트 또는 CSI-SSB 자원 세트 리스트 중 적어도 하나를 포함할 수 있다. CSI-RS 자원 세트는 CSI-RS 자원 세트 ID에 의해 식별되고, 하나의 자원 세트는 적어도 하나의 CSI-RS 자원을 포함한다. 각각의 CSI-RS 자원은 CSI-RS 자원 ID에 의해 식별된다.ii) CSI resource configuration related information may be represented by CSI-ResourceConfig IE. The CSI resource configuration related information defines a group including at least one of a non zero power (NZP) CSI-RS resource set, a CSI-IM resource set, or a CSI-SSB resource set. That is, the CSI resource setting related information includes a CSI-RS resource set list, and the CSI-RS resource set list includes at least one of an NZP CSI-RS resource set list, a CSI-IM resource set list, or a CSI-SSB resource set list. It may include one. The CSI-RS resource set is identified by a CSI-RS resource set ID, and one resource set includes at least one CSI-RS resource. Each CSI-RS resource is identified by a CSI-RS resource ID.
NZP CSI-RS 자원 세트 별로 CSI-RS의 용도를 나타내는 RRC 파라미터들(예, BM 관련 'repetition' 파라미터, 트랙킹 관련 'trs-Info' 파라미터)이 설정될 수 있다.RRC parameters (eg, a 'repetition' parameter related to BM and a 'trs-Info' parameter related to tracking) indicating the use of the CSI-RS may be set for each NZP CSI-RS resource set.
iii) CSI 보고 설정(report configuration) 관련 정보는 시간 도메인 행동(time domain behavior)을 나타내는 보고 설정 타입(reportConfigType) 파라미터 및 보고하기 위한 CSI 관련 양(quantity)를 나타내는 보고량(reportQuantity) 파라미터를 포함한다. 상기 시간 도메인 행동(time domain behavior)은 주기적, 비주기적 또는 준-지속적(semi-persistent)일 수 있다.iii) CSI report configuration related information includes a reportConfigType parameter indicating a time domain behavior and a reportQuantity parameter indicating a CSI related quantity for reporting. . The time domain behavior can be periodic, aperiodic or semi-persistent.
- UE는 상기 CSI와 관련된 설정 정보에 기초하여 CSI를 측정(measurement)한다(S1505). 상기 CSI 측정은 (1) UE의 CSI-RS 수신 과정(S1503)과, (2) 수신된 CSI-RS를 통해 CSI를 계산(computation)하는 과정(S1507)을 포함할 수 있다. CSI-RS는 RRC 파라미터 CSI-RS-ResourceMapping에 의해 시간(time) 및 주파수(frequency) 도메인에서 CSI-RS 자원의 RE(resource element) 매핑이 설정된다.The UE measures the CSI based on the configuration information related to the CSI (S1505). The CSI measurement may include (1) a process of receiving a CSI-RS of a UE (S1503) and (2) a process of computing a CSI through a received CSI-RS (S1507). In CSI-RS, resource element (RE) mapping of CSI-RS resources is set in time and frequency domain by RRC parameter CSI-RS-ResourceMapping.
- UE는 상기 측정된 CSI를 BS으로 보고(report)한다(S1509).UE reports the measured CSI to BS (S1509).
1. CSI 측정1. CSI Measurement
NR 시스템은 보다 유연하고 동적인 CSI 측정 및 보고를 지원한다. 여기서, 상기 CSI 측정은 CSI-RS를 수신하고, 수신된 CSI-RS를 측정하여 CSI를 획득하는 과정을 포함할 수 있다.The NR system supports more flexible and dynamic CSI measurement and reporting. Here, the CSI measurement may include a process of receiving a CSI-RS and measuring the received CSI-RS to obtain a CSI.
CSI 측정 및 보고의 시간 도메인 행동으로서, CM(channel measurement) 및 IM(interference measurement)이 지원된다. As the time domain behavior of CSI measurement and reporting, channel measurement (CM) and interference measurement (IM) are supported.
NR의 CSI-IM 기반 IM 자원(IMR)은 LTE의 CSI-IM과 유사한 디자인을 가지며, PDSCH 레이트 매칭을 위한 제로 전력(zero power, ZP) CSI-RS 자원들과는 독립적으로 설정된다. The CSI-IM based IM resource (IMR) of the NR has a design similar to that of the CSI-IM of LTE, and is set independently of zero power (ZP) CSI-RS resources for PDSCH rate matching.
BS는 설정된 NZP CSI-RS 기반 IMR의 각 포트 상에서 NZP CSI-RS를 UE로 전송한다. The BS transmits the NZP CSI-RS to the UE on each port of the configured NZP CSI-RS based IMR.
채널에 대해, 어떤 PMI 및 RI 피드백도 없는 경우, 다수의 자원들이 세트에서 설정되며, BS 또는 네트워크는 채널 측정 및/또는 간섭 측정에 대해 NZP CSI-RS 자원들의 서브셋을 DCI를 통해 지시한다.For a channel, if there is no PMI and RI feedback, multiple resources are set in the set, and the BS or the network indicates via DCI a subset of NZP CSI-RS resources for channel measurement and / or interference measurement.
자원 세팅 및 자원 세팅 설정에 대해 보다 구체적으로 살펴본다.We look at resource settings and resource setting settings in more detail.
1. 1. 자원 세팅(resource setting)1. resource setting
각각의 CSI 자원 세팅 'CSI-ResourceConfig'는 (RRC 파라미터 csi-RS-ResourceSetList에 의해 주어진) S≥1 CSI 자원 세트에 대한 설정을 포함한다. CSI 자원 세팅은 CSI-RS- resourcesetlist에 대응한다. 여기서, S는 설정된 CSI-RS 자원 세트의 수를 나타낸다. 여기서, S≥1 CSI 자원 세트에 대한 configuration은 (NZP CSI-RS 또는 CSI-IM으로 구성된) CSI-RS 자원들을 포함하는 각각의 CSI 자원 세트와 RSRP 계산에 사용되는 SSB 자원을 포함한다.Each CSI resource setting 'CSI-ResourceConfig' includes a setting for S≥1 CSI resource set (given by the RRC parameter csi-RS-ResourceSetList). The CSI resource setting corresponds to the CSI-RS-resourcesetlist. Here, S represents the number of configured CSI-RS resource set. Here, the configuration for the S≥1 CSI resource set includes each CSI resource set including CSI-RS resources (configured as NZP CSI-RS or CSI-IM) and SSB resources used for RSRP calculation.
각 CSI 자원 세팅은 RRC 파라미터 bwp-id로 식별되는 DL BWP(bandwidth part)에 위치된다. 그리고, CSI 보고 세팅(CSI reporting setting)에 링크된 모든 CSI 자원 세팅들은 동일한 DL BWP를 갖는다.Each CSI resource setting is located in the DL bandwidth part (BWP) identified by the RRC parameter bwp-id. And all the CSI resource settings linked to the CSI reporting setting have the same DL BWP.
CSI-ResourceConfig IE에 포함되는 CSI 자원 세팅 내에서 CSI-RS 자원의 시간 도메인 행동은 RRC 파라미터 resourceType에 의해 지시되며, 주기적, 비주기적 또는 준-지속적(semi-persistent)인 것으로 설정될 수 있다. The time domain behavior of the CSI-RS resource in the CSI resource setting included in the CSI-ResourceConfig IE is indicated by the RRC parameter resourceType and may be set to be periodic, aperiodic, or semi-persistent.
채널 측정(channel measurement, CM) 및 간섭 측정(interference measurement, IM)을 위한 하나 또는 그 이상의 CSI 자원 세팅들은 RRC 시그널링을 통해 설정된다. CMR(Channel Measurement Resource)는 CSI 획득을 위한 NZP CSI-RS일 수 있으며, IMR(Interference Measurement Resource)는 CSI-IM과 IM을 위한 NZP CSI-RS일 수 있다. 여기서, CSI-IM(또는 IM을 위한 ZP CSI-RS)는 주로 인터-셀 간섭 측정에 대해 사용된다. IM을 위한 NZP CSI-RS는 주로 다중-사용자(multi-user)로부터의 인트라-셀 간섭 측정을 위해 사용된다.One or more CSI resource settings for channel measurement (CM) and interference measurement (IM) are set via RRC signaling. Channel Measurement Resource (CMR) may be NZP CSI-RS for CSI acquisition, and Interference Measurement Resource (IMR) may be NZP CSI-RS for CSI-IM and IM. Here, CSI-IM (or ZP CSI-RS for IM) is mainly used for inter-cell interference measurement. NZP CSI-RS for IM is mainly used for intra-cell interference measurement from multi-user.
UE는 채널 측정을 위한 CSI-RS 자원(들) 및 하나의 CSI 보고를 위해 설정된 간섭 측정을 위한 CSI-IM / NZP CSI-RS 자원(들)이 자원별로 'QCL-TypeD'라고 가정할 수 있다.The UE may assume that the CSI-RS resource (s) for channel measurement and the CSI-IM / NZP CSI-RS resource (s) for interference measurement configured for one CSI reporting are 'QCL-TypeD' for each resource. .
1. 2. 자원 세팅 설정(resource setting configuration)1. 2. Resource setting configuration
자원 세팅은 자원 세트 목록을 의미할 수 있다. 하나의 보고 세팅은 최대 3개까지의 자원 세팅과 연결될 수 있다.The resource setting may mean a list of resource sets. One reporting setting can be linked to up to three resource settings.
- 하나의 자원 세팅이 설정되면, (RRC 파라미터 resourcesForChannelMeasurement에 의해 주어지는) 자원 세팅은 RSRP 계산을 위한 채널 측정에 대한 것이다.If one resource setting is set, the resource setting (given by the RRC parameter resourcesForChannelMeasurement) is for channel measurement for RSRP calculation.
- 두 개의 자원 세팅들이 설정되면, (RRC 파라미터 resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 자원 세팅은 채널 측정을 위한 것이고, (csi-IM-ResourcesForInterference 또는 nzp-CSI-RS -ResourcesForInterference에 의해 주어지는) 두 번째 자원 세팅은 CSI-IM 또는 NZP CSI-RS 상에서 수행되는 간섭 측정을 위한 것이다.If two resource settings are set, the first resource setting (given by the RRC parameter resourcesForChannelMeasurement) is for channel measurement and the second resource setting (given by csi-IM-ResourcesForInterference or nzp-CSI-RS -ResourcesForInterference). Is for the interference measurement performed on the CSI-IM or NZP CSI-RS.
- 세 개의 자원 세팅들이 설정되면, (resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 자원 세팅은 채널 측정을 위한 것이고, (csi-IM-ResourcesForInterference에 의해 주어지는) 두 번째 자원 세팅은 CSI-IM 기반 간섭 측정을 위한 것이고, (nzp-CSI-RS-ResourcesForInterference에 의해 주어지는) 세 번째 자원 세팅은 NZP CSI-RS 기반 간섭 측정을 위한 것이다.If three resource settings are set, the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement, and the second resource setting (given by csi-IM-ResourcesForInterference) is for CSI-IM based interference measurement. For example, the third resource setting (given by nzp-CSI-RS-ResourcesForInterference) is for NZP CSI-RS based interference measurement.
- (resourcesForChannelMeasurement에 의해 주어지는) 하나의 자원 세팅 이 설정되면, 상기 자원 세팅은 RSRP 계산을 위한 채널 측정에 대한 것이다.If one resource setting (given by resourcesForChannelMeasurement) is set, the resource setting is for channel measurement for RSRP calculation.
- 두 개의 자원 세팅들이 설정되면, (resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 자원 세팅은 채널 측정을 위한 것이며, (RRC 파라미터 csi-IM-ResourcesForInterference에 의해 주어지는) 두 번째 자원 세팅은 CSI-IM 상에서 수행되는 간섭 측정을 위해 사용된다.If two resource settings are set, the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement, and the second resource setting (given by RRC parameter csi-IM-ResourcesForInterference) is the interference performed on the CSI-IM. Used for measurement.
1. 3. CSI 계산(computation)1. CSI computation
간섭 측정이 CSI-IM 상에서 수행되면, 채널 측정을 위한 각각의 CSI-RS 자원은 대응하는 자원 세트 내에서 CSI-RS 자원들 및 CSI-IM 자원들의 순서에 의해 CSI-IM 자원과 자원별로 연관된다. 채널 측정을 위한 CSI-RS 자원의 수는 CSI-IM 자원의 수와 동일하다.If interference measurement is performed on the CSI-IM, each CSI-RS resource for channel measurement is associated with the CSI-IM resource by resource in order of the CSI-RS resources and the CSI-IM resources within the corresponding resource set. . The number of CSI-RS resources for channel measurement is equal to the number of CSI-IM resources.
CSI 측정을 위해, UE는 아래 사항을 가정한다.For CSI measurement, the UE assumes the following.
- 간섭 측정을 위해 설정된 각각의 NZP CSI-RS 포트는 간섭 전송 레이어에 해당한다.Each NZP CSI-RS port configured for interference measurement corresponds to an interference transport layer.
- 간섭 측정을 위한 NZP CSI-RS 포트의 모든 간섭 전송 레이어는 EPRE(energy per resource element) 비율을 고려한다.All interference transport layers of the NZP CSI-RS port for interference measurement take into account the energy per resource element (EPRE) ratio.
- 채널 측정을 위한 NZP CSI-RS 자원, 간섭 측정을 위한 NZP CSI-RS 자원 또는 간섭 측정을 위한 CSI-IM 자원의 RE(들) 상에서 다른 간섭 신호를 가정한다.Assume another interference signal on the RE (s) of the NZP CSI-RS resource for channel measurement, the NZP CSI-RS resource for interference measurement, or the CSI-IM resource for interference measurement.
2. CSI 보고2. CSI Reporting
CSI 보고를 위해, UE가 사용할 수 있는 시간 및 주파수은 BS에 의해 제어된다.For CSI reporting, the time and frequency the UE can use is controlled by the BS.
CQI, PMI, CRI, SSBRI, LI, RI, RSRP에 대해, UE는 N≥1 CSI-ReportConfig 보고 세팅, M≥1 CSI-ResourceConfig 자원 세팅 및 하나 또는 두 개의 트리거 상태들의 리스트(aperiodicTriggerStateList 및 semiPersistentOnPUSCH-TriggerStateList에 의해 제공되는)를 포함하는 RRC 시그널링을 수신한다. aperiodicTriggerStateList에서 각 트리거 상태는 채널 및 선택적으로 간섭에 대한 자원 세트 ID들을 지시하는 연관된 CSI-ReportConfigs 리스트를 포함한다. semiPersistentOnPUSCH-TriggerStateList에서 각 트리거 상태는 하나의 연관된 CSI-ReportConfig를 포함된다.For CQI, PMI, CRI, SSBRI, LI, RI, RSRP, the UE is responsible for N≥1 CSI-ReportConfig report settings, M≥1 CSI-ResourceConfig resource settings, and a list of one or two trigger states (aperiodicTriggerStateList and semiPersistentOnPUSCH-TriggerStateList). Receive RRC signaling), provided by < RTI ID = 0.0 > Each trigger state in the aperiodicTriggerStateList contains an associated CSI-ReportConfigs list indicating the channel and optionally resource set IDs for interference. In the semiPersistentOnPUSCH-TriggerStateList, each trigger state contains one associated CSI-ReportConfig.
즉, 단말은 각각의 CSI-RS 자원 셋팅은 해당 CSI-RS 자원 셋팅과 연관된 CSI-ReportConfigs에의해 지시되는 CSI 보고를 BS에 전송한다. 예를 들어, 해당 CSI-RS 자원 셋팅과 연관된 CSI-ReportConfigs가 지시하는 바에 따라, CQI, PMI, CRI, SSBRI, LI, RI, RSRP 중 적어도 하나를 보고 할 수 있다. 다만, 해당 CSI-RS 자원 셋팅과 연관된 CSI-ReportConfigs가 'none'을 지시하면, 단말은 해당 CSI-RS 자원 셋팅과 연관된 CSI 또는 RSRP 등을 보고하지 않을 수 있다. 한편, 상기 CSI-RS 자원 셋팅에는 SS/PBCH 블록을 위한 자원이 포함될 수 있다.That is, the UE transmits the CSI report indicated by the CSI-ReportConfigs associated with each CSI-RS resource setting to the BS. For example, as indicated by CSI-ReportConfigs associated with the corresponding CSI-RS resource setting, at least one of CQI, PMI, CRI, SSBRI, LI, RI, and RSRP may be reported. However, if CSI-ReportConfigs associated with the CSI-RS resource setting indicates 'none', the UE may not report CSI or RSRP associated with the CSI-RS resource setting. Meanwhile, the CSI-RS resource setting may include resources for SS / PBCH block.
도 16은 본 발명에 따른 단말 및 기지국의 구현 예를 설명하기 위한 도면이다.16 is a view for explaining an implementation example of a terminal and a base station according to the present invention.
도 16을 참조하면, 기지국은 상위 계층을 통해 SS/PBCH 블록 자원 및/또는 CSI-RS 자원에 연관된 'ReportQuantity' 파라미터를 단말에게 전송할 수 있다(S1601). 다시 말해, 기지국은 상위 계층을 통해 SS/PBCH 블록 자원 및/또는 CSI-RS 자원에 연관된 'ReportQuantity'를 단말에 설정(Configuration)할 수 있다.Referring to FIG. 16, the base station may transmit a 'ReportQuantity' parameter associated with the SS / PBCH block resource and / or the CSI-RS resource to the terminal through an upper layer (S1601). In other words, the base station may configure 'ReportQuantity' related to the SS / PBCH block resource and / or the CSI-RS resource through the upper layer to the terminal.
그 후, 기지국은 'ReportQuantity'설정(Configuration)을 기반으로 SS/PBCH 블록, CSI-RS, PDSCH 및 PDCCH 중 적어도 하나를 동일한 OFDM 심볼 구간을 통해 전송할 수 있다(S1603). 이 때, 단말은 자신에게 설정된 'ReportQuantity'를 기반으로 SS/PBCH 블록, CSI-RS, PDSCH 및 PDCCH 중 적어도 하나를 동일한 OFDM 심볼 구간을 통해 수신할 수 있다. 예를 들어, 단말은 'ReportQuantity'설정(Configuration)을 기반으로 수신 빔 스위핑(Rx beam Sweeping)을 수행하면서 동일한 OFDM 심볼 구간에서 SS/PBCH 블록, CSI-RS, PDSCH 및 PDCCH 중 적어도 하나를 수신할 수 있다. 또 다른 예로, 단말은 'ReportQuantity'설정(Configuration)을 기반으로 수신 빔 스위핑(Rx beam Sweeping)을 수행하지 않으면서 동일한 OFDM 심볼 구간에서 SS/PBCH 블록, CSI-RS, PDSCH 및 PDCCH 중 적어도 하나를 수신할 수 있다.Thereafter, the base station may transmit at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH based on the 'ReportQuantity' configuration (S1603). In this case, the UE may receive at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH based on the 'ReportQuantity' set through the same OFDM symbol period. For example, the UE may receive at least one of SS / PBCH block, CSI-RS, PDSCH, and PDCCH in the same OFDM symbol period while performing Rx beam sweeping based on a 'ReportQuantity' configuration. Can be. As another example, the UE performs at least one of SS / PBCH block, CSI-RS, PDSCH, and PDCCH in the same OFDM symbol interval without performing Rx beam sweeping based on a 'ReportQuantity' configuration. Can be received.
S1603 단계에서 단말이 'ReportQuantity'설정(Configuration)을 기반으로 동일한 OFDM 심볼 구간에서 SS/PBCH 블록, CSI-RS, PDSCH 및 PDCCH 중 적어도 하나를 수신하는 구체적인 실시 예는 후술하는 바에 기반하여 구현될 수 있다.A specific embodiment in which the UE receives at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH in the same OFDM symbol period based on the 'ReportQuantity' configuration in step S1603 may be implemented based on the following description. have.
이제, S1603 단계에서 단말이 'ReportQuantity'설정(Configuration)을 기반으로 동일한 OFDM 심볼 구간에서 SS/PBCH 블록, CSI-RS, PDSCH 및 PDCCH 중 적어도 하나를 수신하는 구체적인 실시 예를 살펴보도록 한다.Now, in operation S1603, the UE looks at a specific embodiment of receiving at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH in the same OFDM symbol period based on the 'ReportQuantity' configuration.
상위 계층 파라미터(Higher layer parameter)인 “TRS-Info”가 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원들, 즉, 시간-주파수 추적(Time-frequency tracking)을 위한 CSI-RS는 연관된(associated) ReportQuantity가 “No report(or none)”인 CSI 자원 셋팅(resource setting) 및/또는 CSI 자원 집합(resource set)에만 중복적으로 포함/사용/설정 될 수 있다. CSI-RS resources included in the CSI-RS resource set in which the upper layer parameter “TRS-Info” is set, that is, CSI- for time-frequency tracking. The RS may be redundantly included / used / set only in the CSI resource setting and / or the CSI resource set in which the associated ReportQuantity is “No report (or none)”.
즉, 단말은 “TRS-Info”가 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원은 연관된(associated) ReportQuantity가 “No report(or none)”가 아닌 CSI 자원 셋팅(resource setting) 및/또는 CSI 자원 집합(resource set)에는 중복적으로 정의/설정/사용될 것을 기대/가정하지 않는다. That is, the CSI-RS resource included in the CSI-RS resource set in which the “TRS-Info” is set, the CSI resource setting whose associated ReportQuantity is not “No report (or none)”. ) And / or CSI resource sets are not expected / assumed to be redundantly defined / configured / used.
다시 말해, 단말은“TRS-Info”가 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원이 연관된(associated) ReportQuantity가 “No report(or none)”가 아닌 다른 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원과 동일한 OFDM 심볼을 통해 전송되는 것을 기대/가정하지 않는다. In other words, the UE is a CSI-RS resource other than the ReportQuantity associated with the CSI-RS resources included in the CSI-RS resource set ("TRS-Info") is set to "No report (or none)" It is not expected or assumed to be transmitted through the same OFDM symbol as the CSI-RS resource included in the resource set.
즉, 단말은“TRS-Info”가 설정된 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원이 연관된(associated) ReportQuantity가 “No report(or none)”인 다른 CSI-RS 자원 집합(resource set)에 포함된 CSI-RS 자원과 동일한 OFDM 심볼을 통해 전송되는 것을 기대/가정할 수 있다. That is, the UE may include another CSI-RS resource set having a ReportQuantity of “No report (or none) associated with CSI-RS resources included in the CSI-RS resource set for which“ TRS-Info ”is set ( It can be expected / assumed to be transmitted through the same OFDM symbol as the CSI-RS resource included in the resource set).
한편, 설정된 SS/PBCH 블록 자원에 연관(associated)된 ReportQuantity가 “no report”가 아닌 경우, 단말은 SS/PBCH 블록이 전송되는 여러 OFDM 심볼들(예를 들어, 4개의 OFDM 심볼)에 걸쳐서 수신 빔 스위핑(RX beam sweeping) 및/또는 수신 빔 개선(RX beam refinement)을 가정하지 않는다. 다시 말해, 단말은 SS/PBCH 블록이 전송되는 여러 OFDM 심볼들(예를 들어, 4개의 OFDM 심볼) 동안에 수신 필터를 변경하지 않을 수 있다. 또한, SS/PBCH 블록 자원에 연관(associated) ReportQuantity가 “no report”가 아닌 경우, 단말은 SS/PBCH 블록이 전송되는 복수의 OFDM 심볼들(예를 들어, 4개의 OFDM 심볼) 구간에서 PDSCH 및/또는 PDCCH가 전송되는 것을 가정하거나 기대할 수 있다. 반면, SS/PBCH 블록 자원에 연관(associated)된 ReportQuantity가 “no report”인 경우, 단말은 SS/PBCH 블록이 전송되는 OFDM 심볼들(예를 들어, 4개의 OFDM 심볼들) 구간에서 PDSCH 및/또는 PDCCH가 전송되는 것을 기대/가정하지 않을 수 있다.Meanwhile, when ReportQuantity associated with the configured SS / PBCH block resource is not “no report,” the UE receives over several OFDM symbols (for example, four OFDM symbols) in which the SS / PBCH block is transmitted. No RX beam sweeping and / or RX beam refinement is assumed. In other words, the UE may not change the reception filter during several OFDM symbols (eg, four OFDM symbols) in which the SS / PBCH block is transmitted. In addition, if the ReportQuantity associated with the SS / PBCH block resource is not “no report”, the UE may select a PDSCH and a number of OFDM symbols (eg, four OFDM symbols) in which the SS / PBCH block is transmitted. And / or may assume or expect the PDCCH to be transmitted. On the other hand, if the ReportQuantity associated with the SS / PBCH block resource is “no report”, the UE transmits the PDSCH and / or in the OFDM symbols (eg, four OFDM symbols) in which the SS / PBCH block is transmitted. Or it may not expect / assume that the PDCCH is transmitted.
한편, SS/PBCH 블록 자원에 연관(associated)된 ReportQuantity가 “SSBRI”인 경우, 단말은 SS/PBCH 블록이 전송되는 OFDM 심볼(예를 들어, 4개의 OFDM 심볼들)에 PDSCH 및/또는 PDCCH가 함께 전송되는 것을 기대하거나 가정할 수 있다. 반면, SS/PBCH 블록 자원에 연관(associated)된 ReportQuantity가 “no report”인 경우, 단말은 SS/PBCH 블록이 전송되는 복수의 OFDM 심볼들에서 PDSCH 및/또는 PDCCH가 함께 전송되는 것을 기대/가정하지 않는다. 이는, SS/PBCH 블록 자원에 연관(associated)된 ReportQuantity가 “no report”인 경우, 단말은 수신 빔 스위핑을 수행할 수 있기 때문이다. On the other hand, when ReportQuantity associated with SS / PBCH block resource is “SSBRI”, the UE has a PDSCH and / or PDCCH in an OFDM symbol (eg, 4 OFDM symbols) to which the SS / PBCH block is transmitted. It can be expected or assumed to be sent together. On the other hand, when ReportQuantity associated with SS / PBCH block resource is “no report”, the UE expects / assumed that PDSCH and / or PDCCH are transmitted together in a plurality of OFDM symbols in which SS / PBCH block is transmitted. I never do that. This is because, when ReportQuantity associated with the SS / PBCH block resource is “no report”, the UE may perform receive beam sweeping.
구체적으로, 상술한 실시 예들에서, SS/PBCH 블록 자원에 연관(associated)된 ReportQuantity가 “no report”인 경우에는 단말이 수신 빔 스위핑을 수행할 수 있고, SS/PBCH 블록 자원에 연관(associated)된 ReportQuantity가 'SSBRI'인 경우에는 단말이 수신 빔 스위핑을 수행하지 않을 것을 기대한다. 그런데, SS/PBCH 블록과 PDSCH 및/또는 PDCCH가 FDM(Frequency Divisional Multiplexing)되어 수신될 때, 단말이 수신 빔 스위핑을 수행하게 되면, 단말이 PDSCH 및/또는 PDCCH를 제대로 수신할 수 없게 된다. 따라서, PDSCH 및/또는 PDCCH가 SS/PBCH 블록과 FDM되어 전송되는 경우, 단말이 PDSCH 및/또는 PDCCH를 제대로 수신할 수 있도록, 단말의 수신 빔 스위핑 동작에 제한(Restriction)을 가하는 것이다. 한편, 본 발명에서의 'SSBRI'는 ReportQuantity 파라미터의 'ssb-index-RSRP'를 의미할 수 있다.Specifically, in the above-described embodiments, when ReportQuantity associated with the SS / PBCH block resource is “no report”, the UE may perform receive beam sweeping and is associated with the SS / PBCH block resource. If the reported ReportQuantity is 'SSBRI', it is expected that the UE does not perform the reception beam sweep. However, when the SS / PBCH block and the PDSCH and / or PDCCH are received by receiving frequency divisional multiplexing (FDM), when the UE performs the reception beam sweeping, the UE cannot properly receive the PDSCH and / or PDCCH. Therefore, when the PDSCH and / or PDCCH is transmitted by FDM with the SS / PBCH block, a restriction is applied to the reception beam sweeping operation of the terminal so that the terminal can properly receive the PDSCH and / or PDCCH. Meanwhile, 'SSBRI' in the present invention may mean 'ssb-index-RSRP' of ReportQuantity parameter.
한편, SS/PBCH 블록 자원이 CSI 자원 셋팅(resource setting)안에 포함되어 있고 상기 SS/PBCH 블록 자원에 연관(associated)된 ReportQuantity가 “No report”인 경우, 단말은 SS/PBCH 블록이 전송되는 OFDM 심볼들을 통해 CSI 획득(acquisition)을 위한 CSI-RS 및 시간-주파수 추적(time-frequency tracking)을 위한 CSI-RS가 전송되는 것을 기대/가정하지 않을 수 있다. 반면, repetition이 설정된 CSI-RS 자원 집합(resource set)의 CSI-RS 자원은 SS/PBCH 블록이 전송되는 OFDM 심볼들을 통해 함께 전송되는 것을 기대하거나 가정할 수 있다. 이 때, repetition이 설정된 CSI-RS 자원 집합은, 빔 관리를 위한 CSI-RS를 의미할 수 있다.Meanwhile, when SS / PBCH block resource is included in CSI resource setting and ReportQuantity associated with the SS / PBCH block resource is “No report”, the UE transmits the SS / PBCH block in OFDM. It may not be expected / assumed that CSI-RS for CSI acquisition and CSI-RS for time-frequency tracking are transmitted via symbols. On the other hand, the CSI-RS resources of the CSI-RS resource set for which repetition is set may be expected or assumed to be transmitted together through OFDM symbols in which the SS / PBCH block is transmitted. In this case, the CSI-RS resource set for which repetition is set may mean CSI-RS for beam management.
SS/PBCH 블록 자원이 CSI 자원 셋팅(resource setting)안에 포함되어 있고, 상기 SS/PBCH 블록 자원에 연관(associated)된 ReportQuantity가 “No report”인 경우, SS/PBCH 블록이 전송되는 OFDM 심볼들을 통해 repetition이 설정된 CSI-RS 자원 집합(resource set)의 CSI-RS 자원이 함께 전송 될 수 있다. 이 때, repetition이 설정된 CSI-RS 자원 집합은, 빔 관리를 위한 CSI-RS를 의미할 수 있다. 추가적으로 PDCCH 및/또는 PDSCH가 SS/PBCH 블록 및 CSI-RS가 전송되는 OFDM 심볼들에 함께 전송되는 경우, 단말은 수신 빔 및/또는 수신 필터를 해당 SS/PBCH block이 전송되는 OFDM 심볼들에서 변경하는 것을 가정/수행하지 않는다.When the SS / PBCH block resource is included in the CSI resource setting and the ReportQuantity associated with the SS / PBCH block resource is “No report”, the SS / PBCH block is transmitted through OFDM symbols transmitted. CSI-RS resources of a CSI-RS resource set for which repetition is set may be transmitted together. In this case, the CSI-RS resource set for which repetition is set may mean CSI-RS for beam management. Additionally, when the PDCCH and / or PDSCH are transmitted together in the OFDM symbols in which the SS / PBCH block and the CSI-RS are transmitted, the UE changes the reception beam and / or the reception filter in the OFDM symbols in which the corresponding SS / PBCH block is transmitted. Do not assume / do anything.
도 17은 본 발명의 실시 예에 따른 무선 통신 장치의 일 실시 예를 도시한다.17 illustrates an embodiment of a wireless communication device according to an embodiment of the present invention.
도 17에서 설명하는 무선 통신 장치는 본 발명의 실시 예에 따른 단말 및/또는 기지국을 나타낼 수 있다. 그러나, 도 17의 무선 통신 장치는, 본 실시 예에 따른 단말 및/또는 기지국에 반드시 한정되는 것은 아니며, 차량 통신 시스템 또는 장치, 웨어러블(wearable) 장치, 랩톱, 스마트 폰 등과 같은 다양한 장치로 대체될 수 있다. 좀 더 구체적으로, 상기 장치는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치, MTC 장치, IoT 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치 또는 그 이외 4차 산업 혁명 분야 또는 5G 서비스와 관련된 장치 등일 수 있다. 예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, MTC 장치 및 IoT 장치는 사람의 직접적인 개입이나 또는 조작이 필요하지 않는 장치로서, 스마트 미터, 벤딩 머신, 온도계, 스마트 전구, 도어락, 각종 센서 등일 수 있다. 예를 들어, 의료 장치는 질병을 진단, 치료, 경감, 처치 또는 예방할 목적으로 사용되는 장치, 구조 또는 기능을 검사, 대체 또는 변형할 목적으로 사용되는 장치로서, 진료용 장비, 수술용 장치, (체외) 진단용 장치, 보청기, 시술용 장치 등일 수 있다. 예를 들어, 보안 장치는 발생할 우려가 있는 위험을 방지하고, 안전을 유지하기 위하여 설치한 장치로서, 카메라, CCTV, 블랙박스 등일 수 있다. 예를 들어, 핀테크 장치는 모바일 결제 등 금융 서비스를 제공할 수 있는 장치로서, 결제 장치, POS(Point of Sales) 등일 수 있다. 예를 들어, 기후/환경 장치는 기후/환경을 모니터링, 예측하는 장치를 의미할 수 있다.The wireless communication device described with reference to FIG. 17 may represent a terminal and / or a base station according to an embodiment of the present invention. However, the wireless communication device of FIG. 17 is not necessarily limited to a terminal and / or a base station according to the present embodiment, and may be replaced with various devices such as a vehicle communication system or device, a wearable device, a laptop, a smart phone, and the like. Can be. More specifically, the apparatus includes a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, an unmanned aerial vehicle (UAV), and artificial intelligence (AI). Modules, Robots, Augmented Reality Devices, Virtual Reality Devices, MTC Devices, IoT Devices, Medical Devices, Fintech Devices (or Financial Devices), Security Devices, Climate / Environmental Devices or Other Fourth Industrial Revolution Sector or device associated with a 5G service. For example, a drone may be a vehicle in which humans fly by radio control signals. For example, the MTC device and the IoT device are devices that do not require human intervention or manipulation, and may be smart meters, bending machines, thermometers, smart bulbs, door locks, various sensors, and the like. For example, a medical device is a device used to examine, replace, or modify a device, structure, or function used for diagnosing, treating, alleviating, treating, or preventing a disease, such as a medical device, a surgical device, ( In vitro) diagnostic devices, hearing aids, surgical devices, and the like. For example, the security device is a device installed to prevent a risk that may occur and maintain safety, and may be a camera, a CCTV, a black box, or the like. For example, the fintech device is a device that can provide financial services such as mobile payment, and may be a payment device or a point of sales (POS). For example, the climate / environmental device may mean a device for monitoring and predicting the climate / environment.
또한, 전송 단말 및 수신 단말은 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 폴더블(foldable) 디바이스 등을 포함할 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치로서, VR 또는 AR을 구현하기 위해 사용될 수 있다. In addition, the transmitting terminal and the receiving terminal are mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants, portable multimedia players, navigation, slate PCs. , Tablet PCs, ultrabooks, wearable devices, such as smartwatches, glass glasses, head mounted displays, and foldables foldable) devices and the like. For example, the HMD is a display device of a type worn on the head and may be used to implement VR or AR.
도 17을 참조하면, 본 발명의 실시 예에 따른 단말 및/또는 기지국은 디지털 신호 프로세서(Digital Signal Processor; DSP) 또는 마이크로 프로세서와 같은 적어도 하나의 프로세서(10), 트랜시버(Transceiver)(35), 전력 관리 모듈(5), 안테나(40), 배터리(55), 디스플레이(15), 키패드(20), 메모리(30), 가입자 식별 모듈(SIM)카드 (25), 스피커(45) 및 마이크로폰(50)등을 포함할 수 있다. 또한, 상기 단말 및/또는 기지국은 단일 안테나 또는 다중 안테나를 포함할 수 있다. 한편, 상기 트랜시버(Transceiver)(35)는 RF 모듈(Radio Frequency Module)로도 명칭될 수 있다.Referring to FIG. 17, a terminal and / or a base station according to an embodiment of the present invention may include at least one processor 10 such as a digital signal processor (DSP) or a microprocessor, a transceiver 35, Power management module 5, antenna 40, battery 55, display 15, keypad 20, memory 30, subscriber identity module (SIM) card 25, speaker 45 and microphone ( 50) and the like. In addition, the terminal and / or the base station may include a single antenna or multiple antennas. Meanwhile, the transceiver 35 may also be referred to as a radio frequency module (RF module).
프로세서(10)는 도 1 내지 16에 설명된 기능, 절차 및/또는 방법을 구현하도록 구성될 수 있다. 도 1 내지 도 16에서 설명한 실시 예들 중 적어도 일부에 있어서, 프로세서(10)는 무선 인터페이스 프로토콜의 계층들 (예를 들어, 기능 계층들(functional layers))과 같은 하나 이상의 프로토콜들을 구현할 수 있다.The processor 10 may be configured to implement the functions, procedures, and / or methods described in FIGS. 1-16. In at least some of the embodiments described in FIGS. 1-16, the processor 10 may implement one or more protocols, such as layers of a radio interface protocol (eg, functional layers).
메모리(30)는 프로세서(10)에 연결되어 프로세서(10)의 동작과 관련된 정보를 저장한다. 메모리(30)는 프로세서(10)의 내부 또는 외부에 위치 할 수 있으며, 유선 또는 무선 통신과 같은 다양한 기술을 통해 프로세서에 연결될 수 있다.The memory 30 is connected to the processor 10 and stores information related to the operation of the processor 10. The memory 30 may be located inside or outside the processor 10 and may be connected to the processor through various technologies such as wired or wireless communication.
사용자는 키패드(20)의 버튼을 누름으로써 또는 마이크로폰(50)을 이용한 음성 활성화와 같은 다양한 기술에 의한 다양한 유형의 정보 (예를 들어, 전화 번호와 같은 지시 정보)를 입력 할 수 있다. 프로세서(10) 는 사용자의 정보를 수신 및/또는 처리하고 전화 번호를 다이얼하는 것과 같은 적절한 기능을 수행한다.The user may enter various types of information (eg, indication information such as a telephone number) by various techniques such as pressing a button on the keypad 20 or voice activation using the microphone 50. The processor 10 performs appropriate functions such as receiving and / or processing the user's information and dialing the telephone number.
또한, 상기 적절한 기능들을 수행하기 위해 SIM 카드(25) 또는 메모리 (30)로부터 데이터(예를 들어, 조작 데이터)를 검색할 수도 있다. 또한, 프로세서 (10)는 GPS 칩으로부터 GPS 정보를 수신 및 처리하여 차량 네비게이션, 지도 서비스 등과 같은 단말 및/또는 기지국의 위치 정보를 획득하거나 위치 정보와 관련된 기능을 수행 할 수 있다. 또한, 프로세서(10)는 사용자의 참조 및 편의를 위해 이러한 다양한 유형의 정보 및 데이터를 디스플레이(15) 상에 표시할 수 있다.It is also possible to retrieve data (eg, operation data) from the SIM card 25 or the memory 30 to perform the appropriate functions. In addition, the processor 10 may receive and process GPS information from a GPS chip to obtain location information of a terminal and / or a base station such as a vehicle navigation and a map service, or perform a function related to the location information. In addition, the processor 10 may display these various types of information and data on the display 15 for the user's reference and convenience.
트랜시버(Transceiver)(35)는 프로세서(10)에 연결되어 RF (Radio Frequency) 신호와 같은 무선 신호를 송신 및/또는 수신한다. 이 때, 프로세서(10)는 통신을 개시하고 음성 통신 데이터와 같은 다양한 유형의 정보 또는 데이터를 포함하는 무선 신호를 송신하도록 트랜시버(Transceiver)(35)를 제어 할 수 있다. 트랜시버(Transceiver) (35)는 무선 신호를 수신하는 수신기 및 송신하는 송신기를 포함할 수 있다. 안테나(40)는 무선 신호의 송신 및 수신을 용이하게 한다. 일부 실시 예에서, 무선 신호를 수신되면, 트랜시버(Transceiver)(35)는 프로세서(10)에 의한 처리를 위해 기저 대역 주파수로 신호를 포워딩하고 변환할 수 있다. 처리된 신호는 가청 또는 판독 가능한 정보로 변환되는 등, 다양한 기술에 따라 처리 될 수 있으며, 이러한 신호는 스피커 (45)를 통해 출력될 수 있다.The transceiver 35 is connected to the processor 10 to transmit and / or receive a radio signal such as a radio frequency (RF) signal. In this case, the processor 10 may control the transceiver 35 to initiate communication and transmit a radio signal including various types of information or data such as voice communication data. Transceiver 35 may include a receiver for receiving wireless signals and a transmitter for transmitting. Antenna 40 facilitates the transmission and reception of wireless signals. In some embodiments, upon receiving a wireless signal, the transceiver 35 may forward and convert the signal to a baseband frequency for processing by the processor 10. The processed signal may be processed according to various techniques, such as being converted into audible or readable information, and such a signal may be output through the speaker 45.
일부 실시 예에서, 센서 또한 프로세서(10)에 연결될 수 있다. 센서는 속도, 가속도, 광, 진동 등을 포함하는 다양한 유형의 정보를 검출하도록 구성된 하나 이상의 감지 장치를 포함 할 수 있다. 근접, 위치, 이미지 등과 같이 센서로부터 얻어진 센서 정보를 프로세서(10)가 수신하여 처리함으로써, 충돌 회피, 자율 주행 등의 각종 기능을 수행 할 수 있다.In some embodiments, the sensor may also be connected to the processor 10. The sensor may include one or more sensing devices configured to detect various types of information including speed, acceleration, light, vibration, and the like. The processor 10 receives and processes sensor information obtained from a sensor such as proximity, location, and image, thereby performing various functions such as collision avoidance and autonomous driving.
한편, 카메라, USB 포트 등과 같은 다양한 구성 요소가 단말 및/또는 기지국에 추가로 포함될 수 있다. 예를 들어, 카메라가 프로세서(10)에 추가로 연결될 수 있으며, 이러한 카메라는 자율 주행, 차량 안전 서비스 등과 같은 다양한 서비스에 사용될 수 있다.Meanwhile, various components such as a camera and a USB port may be additionally included in the terminal and / or the base station. For example, a camera may be further connected to the processor 10, and such a camera may be used for various services such as autonomous driving, vehicle safety service, and the like.
이와 같이, 도 17은 단말 및/또는 기지국을 구성하는 장치들의 일 실시 예에 불과하면, 이에 한정되는 것은 아니다. 예를 들어, 키패드(20), GPS (Global Positioning System) 칩, 센서, 스피커(45) 및/또는 마이크로폰(50)과 같은 일부 구성 요소는 일부 실시 예들에서 단말 및/또는 기지국 구현을 위해 제외될 수도 있다.As such, FIG. 17 is only an embodiment of devices configuring a terminal and / or a base station, but is not limited thereto. For example, some components, such as keypad 20, global positioning system (GPS) chip, sensor, speaker 45, and / or microphone 50 may be excluded for terminal and / or base station implementation in some embodiments. It may be.
구체적으로, 본 발명의 실시 예들을 구현하기 위해, 도 17에서 표현된 무선 통신 장치가 본 발명의 실시 예에 따른 단말인 경우의 동작을 살펴보도록 한다. 상기 무선 통신 장치가 본 발명의 실시 예에 따른 단말인 경우, 상기 프로세서(10)는 상위 계층을 통해 SS/PBCH 블록 자원 및/또는 CSI-RS 자원에 연관된 'ReportQuantity' 파라미터를 기지국으로부터 수신하도록 트랜시버(35)를 제어할 수 있다. 다시 말해, 프로세서(10)는 상위 계층을 통해 SS/PBCH 블록 자원 및/또는 CSI-RS 자원에 연관된 'ReportQuantity'를 설정(Configuration)받을 수 있다.Specifically, to implement the embodiments of the present disclosure, the operation of the wireless communication apparatus illustrated in FIG. 17 is a terminal according to an embodiment of the present disclosure. When the wireless communication device is a terminal according to an embodiment of the present invention, the processor 10 may receive a 'ReportQuantity' parameter associated with an SS / PBCH block resource and / or a CSI-RS resource from a base station through a higher layer. 35 can be controlled. In other words, the processor 10 may be configured with 'ReportQuantity' associated with the SS / PBCH block resource and / or the CSI-RS resource through the upper layer.
그 후, 프로세서(10)는 'ReportQuantity'설정(Configuration)을 기반으로 SS/PBCH 블록, CSI-RS, PDSCH 및 PDCCH 중 적어도 하나를 동일한 OFDM 심볼 구간을 통해 수신하도록 트랜시버(35)를 제어할 수 있다. 예를 들어, 프로세서(10)는 'ReportQuantity'설정(Configuration)을 기반으로 수신 빔 스위핑(Rx beam Sweeping)을 수행하면서 동일한 OFDM 심볼 구간에서 SS/PBCH 블록, CSI-RS, PDSCH 및 PDCCH 중 적어도 하나를 수신하도록 트랜시버(35)를 제어할 수 있다. 또 다른 예로, 프로세서(10)는 'ReportQuantity'설정(Configuration)을 기반으로 수신 빔 스위핑(Rx beam Sweeping)을 수행하지 않으면서 동일한 OFDM 심볼 구간에서 SS/PBCH 블록, CSI-RS, PDSCH 및 PDCCH 중 적어도 하나를 수신하도록 트랜시버(35)를 제어할 수 있다. 한편, 프로세서(10)가 'ReportQuantity'설정(Configuration)을 기반으로 동일한 OFDM 심볼 구간에서 SS/PBCH 블록, CSI-RS, PDSCH 및 PDCCH 중 적어도 하나를 수신하는 구체적인 실시 예는 상술한 실시 예들에 기반하여 구현될 수 있다.Thereafter, the processor 10 may control the transceiver 35 to receive at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH based on the 'ReportQuantity' configuration through the same OFDM symbol period. have. For example, the processor 10 performs Rx beam sweeping based on a 'ReportQuantity' configuration while at least one of an SS / PBCH block, a CSI-RS, a PDSCH, and a PDCCH in the same OFDM symbol period. Transceiver 35 can be controlled to receive. As another example, the processor 10 may perform an Rx beam sweeping based on a 'ReportQuantity' configuration, and among the SS / PBCH blocks, the CSI-RS, the PDSCH, and the PDCCH in the same OFDM symbol period. The transceiver 35 may be controlled to receive at least one. Meanwhile, a specific embodiment of the processor 10 receiving at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH in the same OFDM symbol period based on the 'ReportQuantity' configuration is based on the above-described embodiments. Can be implemented.
한편, 본 발명의 실시 예들을 구현하기 위해, 도 17에서 표현된 무선 통신 장치가 본 발명의 실시 예에 따른 기지국인 경우, 상기 프로세서 (10)는 상위 계층을 통해 SS/PBCH 블록 자원 및/또는 CSI-RS 자원에 연관된 'ReportQuantity' 파라미터를 단말에게 전송하도록 트랜시버(35)를 제어할 수 있다. 다시 말해, 프로세서(10)는 상위 계층을 통해 SS/PBCH 블록 자원 및/또는 CSI-RS 자원에 연관된 'ReportQuantity'를 단말에 설정(Configuration)하도록 제어할 수 있다.Meanwhile, in order to implement the embodiments of the present invention, when the wireless communication device represented in FIG. 17 is a base station according to the embodiment of the present invention, the processor 10 may perform SS / PBCH block resource and / or through an upper layer. The transceiver 35 may be controlled to transmit a 'ReportQuantity' parameter associated with the CSI-RS resource to the terminal. In other words, the processor 10 may control to configure 'ReportQuantity' related to the SS / PBCH block resource and / or the CSI-RS resource to the terminal through an upper layer.
그 후, 프로세서(10)는 'ReportQuantity'설정(Configuration)을 기반으로 SS/PBCH 블록, CSI-RS, PDSCH 및 PDCCH 중 적어도 하나를 동일한 OFDM 심볼 구간을 통해 전송하도록 트랜시버(35)를 제어할 수 있다. 예를 들어, 프로세서(10)는 'ReportQuantity'설정(Configuration)을 기반으로 단말이 수신 빔 스위핑(Rx beam Sweeping)을 수행할 것을 기대하면서 동일한 OFDM 심볼 구간에서 SS/PBCH 블록, CSI-RS, PDSCH 및 PDCCH 중 적어도 하나를 전송하도록 트랜시버(35)를 제어할 수 있다. 또 다른 예로, 프로세서(10)는 'ReportQuantity'설정(Configuration)을 기반으로 수신 빔 스위핑(Rx beam Sweeping)을 수행하지 않을 것을 기대하면서 동일한 OFDM 심볼 구간에서 SS/PBCH 블록, CSI-RS, PDSCH 및 PDCCH 중 적어도 하나를 전송하도록 트랜시버(35)를 제어할 수 있다. 이 때, 프로세서(10)가 'ReportQuantity'설정(Configuration)을 기반으로 동일한 OFDM 심볼 구간에서 SS/PBCH 블록, CSI-RS, PDSCH 및 PDCCH 중 적어도 하나를 전송하도록 제어하는 구체적인 실시 예는 상술한 바에 기반하여 구현될 수 있다.Thereafter, the processor 10 may control the transceiver 35 to transmit at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH based on the 'ReportQuantity' configuration. have. For example, the processor 10 expects the UE to perform Rx beam sweeping based on the 'ReportQuantity' configuration, while SS / PBCH block, CSI-RS, PDSCH in the same OFDM symbol period. And the transceiver 35 to transmit at least one of the PDCCH. In another example, the processor 10 expects not to perform Rx beam sweeping based on a 'ReportQuantity' configuration, and the SS / PBCH block, CSI-RS, PDSCH and The transceiver 35 may be controlled to transmit at least one of the PDCCHs. In this case, a specific embodiment of controlling the processor 10 to transmit at least one of the SS / PBCH block, the CSI-RS, the PDSCH, and the PDCCH in the same OFDM symbol period based on the 'ReportQuantity' configuration is described above. It can be implemented based on.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are the components and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station. A base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof. In the case of a hardware implementation, an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of implementation by firmware or software, an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above. The software code may be stored in a memory unit and driven by a processor. The memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit of the invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.
상술한 바와 같은 하향링크 신호를 송수신하는 방법 및 이를 위한 장치는 5세대 NewRAT 시스템에 적용되는 예를 중심으로 설명하였으나, 5세대 NewRAT 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.The method for transmitting and receiving a downlink signal as described above and an apparatus therefor have been described with reference to the example applied to the fifth generation NewRAT system, but it is possible to apply to various wireless communication systems in addition to the fifth generation NewRAT system.

Claims (17)

  1. 무선 통신 시스템에서, 단말이 하향링크 신호를 수신하는 방법에 있어서,In the wireless communication system, a method for receiving a downlink signal by the terminal,
    SS/PBCH (Synchronization Signal/Physical Broadcast Channel) 블록을 위한 자원과 연관된 측정 보고 설정(measurement report configuration) 정보를 수신하고,Receive measurement report configuration information associated with a resource for a SS / PBCH (Synchronization Signal / Physical Broadcast Channel) block,
    복수의 OFDM (Orthogonal Frequency Divisional Multiplexing) 심볼들을 통해, 상기 SS/PBCH 블록을 수신하고,Receive the SS / PBCH block through a plurality of Orthogonal Frequency Divisional Multiplexing (OFDM) symbols,
    상기 측정 보고 설정 정보를 기반으로 상기 복수의 OFDM 심볼들을 통해 상기 하향링크 신호를 수신하는,Receiving the downlink signal through the plurality of OFDM symbols based on the measurement report configuration information;
    하향링크 신호 수신 방법.Downlink signal receiving method.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 측정 보고 설정 정보가 상기 SS/PBCH 블록의 측정(measurement)을 보고하지 않음을 알리는 경우, 상기 하향링크 신호는 수신되지 않는,When the measurement report configuration information indicates that the measurement of the SS / PBCH block (measurement) is not reported, the downlink signal is not received,
    하향링크 신호 수신 방법.Downlink signal receiving method.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 측정 보고 설정 정보가 상기 SS/PBCH 블록의 RSRP(Reference Signal Received Power)를 보고할 것을 알리는 경우, 상기 하향링크 신호는 수신되는,When the measurement report configuration information informs the RSRP (Reference Signal Received Power) report of the SS / PBCH block, the downlink signal is received.
    하향링크 신호 수신 방법.Downlink signal receiving method.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 SS/PBCH 블록을 위한 자원은, 특정 CSI 자원 셋팅(resource setting)에 포함되는,Resources for the SS / PBCH block is included in a specific CSI resource setting,
    하향링크 신호 수신 방법.Downlink signal receiving method.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 하향링크 신호는, PDSCH (Physical Downlink Shared Channel) 및 PDCCH (Physical Downlink Control Channel) 중 적어도 하나인,The downlink signal is at least one of a physical downlink shared channel (PDSCH) and a physical downlink control channel (PDCCH).
    하향링크 신호 수신 방법.Downlink signal receiving method.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 측정 보고 설정 정보가 상기 SS/PBCH 블록의 측정(measurement)을 보고하지 않음을 알리고, 상기 하향링크 신호가 빔 관리를 위한 CSI-RS (Channel State Information - Reference Signal)인 경우, 상기 하향링크 신호가 수신되는,Informing that the measurement report configuration information does not report measurement of the SS / PBCH block, and when the downlink signal is CSI-RS (Channel State Information-Reference Signal) for beam management, the downlink signal Is received,
    하향링크 신호 수신 방법.Downlink signal receiving method.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능한,The terminal is capable of communicating with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the terminal,
    하향링크 신호 수신 방법.Downlink signal receiving method.
  8. 무선 통신 시스템에서, 하향링크 신호를 수신하기 위한 장치에 있어서,In a wireless communication system, an apparatus for receiving a downlink signal,
    적어도 하나의 프로세서; 및At least one processor; And
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 상기 적어도 하나의 프로세서에 의해 실행될 경우, 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,At least one memory operatively coupled to the at least one processor and storing instructions that, when executed by the at least one processor, cause the at least one processor to perform a particular operation; and ,
    상기 특정 동작은,The specific action,
    SS/PBCH (Synchronization Signal/Physical Broadcast Channel) 블록을 위한 자원과 연관된 측정 보고 설정(measurement report configuration) 정보를 수신하고,Receive measurement report configuration information associated with a resource for a SS / PBCH (Synchronization Signal / Physical Broadcast Channel) block,
    복수의 OFDM (Orthogonal Frequency Divisional Multiplexing) 심볼들을 통해, 상기 SS/PBCH 블록을 수신하고,Receive the SS / PBCH block through a plurality of Orthogonal Frequency Divisional Multiplexing (OFDM) symbols,
    상기 측정 보고 설정 정보를 기반으로 상기 복수의 OFDM 심볼들을 통해 상기 하향링크 신호를 수신하는,Receiving the downlink signal through the plurality of OFDM symbols based on the measurement report configuration information;
    장치.Device.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 측정 보고 설정 정보가 상기 SS/PBCH 블록의 측정(measurement)을 보고하지 않음을 알리는 경우, 상기 하향링크 신호는 수신되지 않는,When the measurement report configuration information indicates that the measurement of the SS / PBCH block (measurement) is not reported, the downlink signal is not received,
    장치.Device.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 측정 보고 설정 정보가 상기 SS/PBCH 블록의 RSRP(Reference Signal Received Power)를 보고할 것을 알리는 경우, 상기 하향링크 신호는 수신되는,When the measurement report configuration information informs the RSRP (Reference Signal Received Power) report of the SS / PBCH block, the downlink signal is received.
    장치.Device.
  11. 제 8 항에 있어서,The method of claim 8,
    상기 SS/PBCH 블록을 위한 자원은, 특정 CSI 자원 셋팅(resource setting)에 포함되는,Resources for the SS / PBCH block is included in a specific CSI resource setting,
    장치.Device.
  12. 제 8 항에 있어서,The method of claim 8,
    상기 하향링크 신호는, PDSCH (Physical Downlink Shared Channel) 및 PDCCH (Physical Downlink Control Channel) 중 적어도 하나인,The downlink signal is at least one of a physical downlink shared channel (PDSCH) and a physical downlink control channel (PDCCH).
    장치.Device.
  13. 제 8 항에 있어서,The method of claim 8,
    상기 측정 보고 설정 정보가 상기 SS/PBCH 블록의 측정(measurement)을 보고하지 않음을 알리고, 상기 하향링크 신호가 빔 관리를 위한 CSI-RS (Channel State Information - Reference Signal)인 경우, 상기 하향링크 신호가 수신되는,Informing that the measurement report configuration information does not report measurement of the SS / PBCH block, and when the downlink signal is CSI-RS (Channel State Information-Reference Signal) for beam management, the downlink signal Is received,
    장치.Device.
  14. 제 8 항에 있어서,The method of claim 8,
    상기 장치는, 단말, 네트워크, 기지국 및 상기 장치 이외의 자율 주행 차량 중 적어도 하나와 통신 가능한,The device is capable of communicating with at least one of a terminal, a network, a base station and an autonomous vehicle other than the device,
    장치.Device.
  15. 무선 통신 시스템에서, 하향링크 신호를 수신하기 위한 단말에 있어서,In a wireless communication system, a terminal for receiving a downlink signal,
    적어도 하나의 트랜시버; At least one transceiver;
    적어도 하나의 프로세서; 및At least one processor; And
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 상기 적어도 하나의 프로세서에 의해 실행될 경우, 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,At least one memory operatively coupled to the at least one processor and storing instructions that, when executed by the at least one processor, cause the at least one processor to perform a particular operation; and ,
    상기 특정 동작은,The specific action,
    상기 적어도 하나의 트랜시버를 통해 SS/PBCH (Synchronization Signal/Physical Broadcast Channel) 블록을 위한 자원과 연관된 측정 보고 설정(measurement report configuration) 정보를 수신하고,Receiving measurement report configuration information associated with a resource for a Synchronization Signal / Physical Broadcast Channel (SS / PBCH) block through the at least one transceiver,
    상기 적어도 하나의 트랜시버를 통해 복수의 OFDM (Orthogonal Frequency Divisional Multiplexing) 심볼들을 통해, 상기 SS/PBCH 블록을 수신하고,Receive the SS / PBCH block through a plurality of Orthogonal Frequency Divisional Multiplexing (OFDM) symbols via the at least one transceiver,
    상기 적어도 하나의 트랜시버를 통해 상기 측정 보고 설정 정보를 기반으로 상기 복수의 OFDM 심볼들을 통해 상기 하향링크 신호를 수신하는,Receiving the downlink signal through the plurality of OFDM symbols based on the measurement report configuration information through the at least one transceiver;
    단말.Terminal.
  16. 무선 통신 시스템에서, 기지국이 하향링크 신호를 전송하는 방법에 있어서,In a wireless communication system, the base station transmits a downlink signal,
    SS/PBCH (Synchronization Signal/Physical Broadcast Channel) 블록을 위한 자원과 연관된 측정 보고 설정(measurement report configuration) 정보를 전송하고,Transmit measurement report configuration information associated with a resource for a SS / PBCH (Synchronization Signal / Physical Broadcast Channel) block,
    복수의 OFDM (Orthogonal Frequency Divisional Multiplexing) 심볼들을 통해, 상기 SS/PBCH 블록을 전송하고,Transmit the SS / PBCH block through a plurality of Orthogonal Frequency Divisional Multiplexing (OFDM) symbols,
    상기 측정 보고 설정 정보를 기반으로 상기 복수의 OFDM 심볼들을 통해 상기 하향링크 신호를 전송하는,Transmitting the downlink signal through the plurality of OFDM symbols based on the measurement report configuration information;
    하향링크 신호 전송 방법.Downlink signal transmission method.
  17. 무선 통신 시스템에서, 하향링크 신호를 전송하기 위한 기지국에 있어서,In a wireless communication system, a base station for transmitting a downlink signal,
    적어도 하나의 트랜시버; At least one transceiver;
    적어도 하나의 프로세서; 및At least one processor; And
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 상기 적어도 하나의 프로세서에 의해 실행될 경우, 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,At least one memory operatively coupled to the at least one processor and storing instructions that, when executed by the at least one processor, cause the at least one processor to perform a particular operation; and ,
    상기 특정 동작은,The specific action,
    상기 적어도 하나의 트랜시버를 통해 SS/PBCH (Synchronization Signal/Physical Broadcast Channel) 블록을 위한 자원과 연관된 측정 보고 설정(measurement report configuration) 정보를 전송하고,Transmitting measurement report configuration information associated with a resource for a synchronization signal / physical broadcast channel (SS / PBCH) block through the at least one transceiver,
    상기 적어도 하나의 트랜시버를 통해 복수의 OFDM (Orthogonal Frequency Divisional Multiplexing) 심볼들을 통해, 상기 SS/PBCH 블록을 전송하고,Transmit the SS / PBCH block through a plurality of Orthogonal Frequency Divisional Multiplexing (OFDM) symbols through the at least one transceiver,
    상기 적어도 하나의 트랜시버를 통해 상기 측정 보고 설정 정보를 기반으로 상기 복수의 OFDM 심볼들을 통해 상기 하향링크 신호를 전송하는,Transmitting the downlink signal through the plurality of OFDM symbols based on the measurement report configuration information through the at least one transceiver;
    기지국.Base station.
PCT/KR2019/005916 2018-05-21 2019-05-17 Method for transmitting and receiving downlink signal, and device therefor WO2019225908A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862674557P 2018-05-21 2018-05-21
US62/674,557 2018-05-21

Publications (1)

Publication Number Publication Date
WO2019225908A1 true WO2019225908A1 (en) 2019-11-28

Family

ID=68616445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005916 WO2019225908A1 (en) 2018-05-21 2019-05-17 Method for transmitting and receiving downlink signal, and device therefor

Country Status (1)

Country Link
WO (1) WO2019225908A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910526A (en) * 2019-12-04 2021-06-04 维沃移动通信有限公司 Beam quality measurement method and device
CN113078988A (en) * 2020-01-06 2021-07-06 维沃移动通信有限公司 Method, device, equipment and medium for reporting channel state information
CN116584060A (en) * 2020-09-29 2023-08-11 诺基亚技术有限公司 Tracking reference signal allocation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170331670A1 (en) * 2016-05-13 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Network Architecture, Methods, and Devices for a Wireless Communications Network

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170331670A1 (en) * 2016-05-13 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Network Architecture, Methods, and Devices for a Wireless Communications Network

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP: "NR; Physical layer procedures for data (Release 15)", TSGRAN; 3GPP TS 38.214, vol. RAN WG1, no. V15.1.0, 9 April 2018 (2018-04-09), pages 1 - 77, XP051451093 *
HUAWEI ET AL.: "Summary of remaining issues for RS multiplexing", R1-1801034. 3GPP TSG RAN WG1 AD HOC MEETING, vol. RAN WG1, 24 January 2018 (2018-01-24), Vancouver, Canada, XP051385277 *
NOKIA ET AL.: "Joint L1-RSRP Beam Reporting for SSB and CSI-RS", R1-1807193. 3GPP TSG RAN WG1 MEETING #93, vol. RAN WG1, 11 May 2018 (2018-05-11), Busan, Korea, XP051462159 *
SAMSUNG: "Issues on RS multiplexing", R1-1806721. 3GPP TSG RAN WG1 MEETING #93, vol. RAN WG1, 11 May 2018 (2018-05-11), Busan, Korea, XP051461930 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910526A (en) * 2019-12-04 2021-06-04 维沃移动通信有限公司 Beam quality measurement method and device
CN112910526B (en) * 2019-12-04 2022-07-22 维沃移动通信有限公司 Beam quality measuring method and device
CN113078988A (en) * 2020-01-06 2021-07-06 维沃移动通信有限公司 Method, device, equipment and medium for reporting channel state information
CN113078988B (en) * 2020-01-06 2022-08-23 维沃移动通信有限公司 Method, device, equipment and medium for reporting channel state information
CN116584060A (en) * 2020-09-29 2023-08-11 诺基亚技术有限公司 Tracking reference signal allocation

Similar Documents

Publication Publication Date Title
WO2019194643A1 (en) Method for transmitting and receiving downlink data channel and apparatus therefor
WO2019216640A1 (en) Method by which terminal monitors control channel in wireless communication system, and terminal using method
WO2019216690A1 (en) Method for transmitting or receiving system information and apparatus therefor
WO2019226029A1 (en) Method for terminal to transmit and receive sidelink signal in wireless communication system supporting sidelink, and device for same
WO2020091547A1 (en) Method for transmitting and receiving synchronization signal in wireless communication between terminals and apparatus therefor
WO2020009431A1 (en) Method by which terminal reports logged information about quality of sidelink in wireless communication system supporting sidelink, and device therefor
WO2020027471A1 (en) Method and device for transmitting or receiving reference signal
WO2020145751A1 (en) Method for transmitting or receiving synchronization signal block in unlicensed band, and apparatus therefor
WO2020067761A1 (en) Method for transmitting and receiving data signal and device therefor
WO2020027472A1 (en) Method for configuring reference point independent of common resource block grid, and device therefor
WO2020085813A1 (en) Method for transmitting and receiving downlink data channel, and device for same
WO2020032546A1 (en) Method and apparatus for performing resource reservation in nr v2x
WO2021033946A1 (en) Method by which terminal transmits/receives signal for performing random access channel procedure in wireless communication system, and device therefor
WO2020032766A1 (en) Method and terminal for transmitting aperiodic signal in wireless communication terminal
WO2020027637A1 (en) Method and apparatus for performing carrier (re)selection in nr v2x
WO2019221543A1 (en) Method for transmitting or receiving downlink signal and device therefor
WO2020027635A1 (en) Method and device for performing synchronization in nr v2x
WO2020060214A1 (en) Method and terminal for transmitting and receiving signal in wireless communication system
WO2020145746A1 (en) Method for acquiring time information about synchronization signal block in unlicensed band, and device for same
WO2021034083A1 (en) Method for transmitting and receiving sidelink signal in wireless communication system
WO2020060281A1 (en) Method for transmitting and receiving downlink data and apparatus therefor
WO2020067760A1 (en) Method for performing radio link monitoring and apparatus therefor
WO2020226265A1 (en) Method for transmitting and receiving synchronization signal block in unlicensed band, and device therefor
WO2020060089A1 (en) Method for transmitting and receiving downlink channel and device therefor
WO2020032507A1 (en) Method for transmitting and receiving reference signal for radio link monitoring in unlicensed band and device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806943

Country of ref document: EP

Kind code of ref document: A1