WO2019225686A1 - Transmission device and reception device - Google Patents

Transmission device and reception device Download PDF

Info

Publication number
WO2019225686A1
WO2019225686A1 PCT/JP2019/020403 JP2019020403W WO2019225686A1 WO 2019225686 A1 WO2019225686 A1 WO 2019225686A1 JP 2019020403 W JP2019020403 W JP 2019020403W WO 2019225686 A1 WO2019225686 A1 WO 2019225686A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
signal
node
reception
lbt
Prior art date
Application number
PCT/JP2019/020403
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 村山
浩樹 原田
和晃 武田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2019225686A1 publication Critical patent/WO2019225686A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access

Definitions

  • the present invention relates to a transmission device and a reception device in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-patent Document 1 LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( New RAT), 3GPP (3 rd Generation Partnership Project) Rel.14,15,16 ⁇ also called, etc.) have also been studied.
  • the frequency band (licensed band, licensed carrier, licensed component carrier (CC) etc.) licensed by the operator (operator)
  • the specification has been performed on the assumption that exclusive operation will be performed.
  • 800 MHz, 1.7 GHz, 2 GHz, or the like is used as the license CC.
  • a frequency band (unlicensed band, unlicensed carrier, unlicensed CC) different from the above-mentioned license band. (Also called) is supported.
  • the unlicensed band for example, a 2.4 GHz band or a 5 GHz band that can use Wi-Fi (registered trademark) or Bluetooth (registered trademark) is assumed.
  • a carrier aggregation (CA) that integrates a carrier (CC) of a license band and a carrier (CC) of an unlicensed band is supported. Communication performed using the unlicensed band together with the license band is referred to as LAA (License-Assisted Access).
  • LAA is being used in future wireless communication systems (for example, 5G, 5G +, NR, Rel. 15 and later).
  • license connectivity and unlicensed band dual connectivity DC: Dual Connectivity
  • SA unlicensed band stand-alone
  • a transmitting device for example, a radio base station in the downlink (DL) and a user terminal in the uplink (UL)
  • Listening LBT: Listen Before Talk
  • CCA Clear Channel Assessment, Carrier Sense or Channel
  • Access operation also called channel access procedure
  • the transmitting apparatus starts data transmission after a predetermined period (immediately after or backoff period) after detecting that no other apparatus is transmitting (idle state) during listening.
  • the present invention has been made in view of this point, and an object of the present invention is to provide a transmission device and a reception device that can improve the utilization efficiency of radio resources based on the listening result.
  • the transmission device transmits a first signal in a transmission opportunity based on a result of the first listening, and in a period after transmission of the signal in the transmission opportunity, And a control unit that controls transmission of information indicating the result of the second listening.
  • FIG. 1 is a diagram illustrating an example of data collision by a hidden terminal.
  • FIG. 2 is a diagram illustrating an example of CSMA / CA with RTS / CTS.
  • FIG. 3 is a diagram illustrating an example of RTS / CTS in a future LAA system.
  • 4A and 4B are diagrams illustrating an example of the operation of a plurality of nodes in the unlicensed CC.
  • 5A and 5B are diagrams illustrating an example of the operation of a plurality of nodes according to aspect 1-1.
  • 6A and 6B are diagrams illustrating an example of the operation of a plurality of nodes according to aspect 1-2.
  • FIG. 7 is a diagram illustrating an example of operations of a plurality of nodes according to aspect 2.
  • FIG. 2 is a diagram illustrating an example of CSMA / CA with RTS / CTS.
  • FIG. 3 is a diagram illustrating an example of RTS / CTS in a future LAA system.
  • FIG. 8 is a diagram showing an example of a schematic configuration of the radio communication system according to the present embodiment.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment.
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the baseband signal processing unit of the radio base station according to the present embodiment.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
  • FIG. 12 is a diagram illustrating an example of a functional configuration of the baseband signal processing unit of the user terminal according to the present embodiment.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of the radio base station and the user terminal according to the present embodiment.
  • an unlicensed band for example, 2.4 GHz band or 5 GHz band
  • a plurality of systems such as a Wi-Fi system and a system supporting LAA (LAA system) are assumed to coexist. It is considered that transmission collision avoidance and / or interference control between systems is required.
  • a Wi-Fi system using an unlicensed band employs CSMA (Carrier Sense Multiple Access) / CA (Collision Avoidance) for the purpose of collision avoidance and / or interference control.
  • CSMA / CA a predetermined time (DIFS: Distributed access Inter Frame Space) is provided before transmission, and the transmission apparatus performs data transmission after confirming that there is no other transmission signal (carrier sense). Further, after data transmission, it waits for ACK (ACKnowledgement) from the receiving apparatus. If the transmitting apparatus cannot receive ACK within a predetermined time, it determines that a collision has occurred and performs retransmission.
  • DIFS Distributed access Inter Frame Space
  • RTS Request to Send
  • CTS Clear RTS / CTS responding with “Send”
  • RTS / CTS is effective in avoiding data collision by a hidden terminal.
  • FIG. 1 is a diagram showing an example of data collision by a hidden terminal.
  • the wireless terminal A since the radio wave of the wireless terminal C does not reach the wireless terminal A, the wireless terminal A cannot detect the transmission signal from the wireless terminal C even if carrier sensing is performed before transmission. As a result, even when the wireless terminal B is transmitting to the access point B, it is assumed that the wireless terminal A also transmits to the access point B. In this case, the transmission signals from the wireless terminals A and C collide with each other at the access point B, which may reduce the throughput.
  • FIG. 2 is a diagram showing an example of CSMA / CA with RTS / CTS.
  • the wireless terminal C transmits the RTS (in FIG. 1, the RTS is wireless. It does not reach terminal A (the other terminal)).
  • the access point B Upon receiving the RTS from the wireless terminal C, the access point B (reception side) transmits a CTS after a predetermined time (SIFS: Short Inter Frame Space).
  • the RTS may be referred to as a transmission request signal.
  • the CTS may be referred to as a receivable signal.
  • the wireless terminal A since the CTS from the access point B reaches the wireless terminal A (another apparatus), the wireless terminal A detects that communication is performed and postpones transmission. Since the RTS / CTS packet includes a predetermined period (also referred to as NAV: Network Allocation Vector or transmission prohibition period), communication is suspended during the predetermined period.
  • NAV Network Allocation Vector or transmission prohibition period
  • the wireless terminal C that has received the CTS from the access point B confirms that there is no other transmission signal in the predetermined period (SIFS) before transmission
  • the wireless terminal C transmits data (frame) after the predetermined period (SIFS).
  • the access point B that has received the data transmits an ACK after the predetermined period (SIFS).
  • the data transmitting apparatus is connected to another apparatus (for example, a radio base station, a user terminal, a Wi-Fi apparatus) before transmitting data in the unlicensed band.
  • Etc. is performed to confirm the presence / absence of transmission (also called LBT, CCA, carrier sense or channel access operation).
  • the transmission apparatus may be, for example, a radio base station (for example, gNB: gNodeB) in the downlink (DL) and a user terminal (for example, UE: User Equipment) in the uplink (UL).
  • a radio base station for example, gNB: gNodeB
  • UE User Equipment
  • the receiving device that receives data from the transmitting device may be, for example, a user terminal in DL and a radio base station in UL.
  • the transmitting apparatus starts data transmission after a predetermined period (for example, immediately after or a back-off period) after detecting that there is no transmission of other apparatuses (idle state) in listening. .
  • a predetermined period for example, immediately after or a back-off period
  • the transmission apparatus transmits data based on the listening result, there is a possibility that data collision in the reception apparatus cannot be avoided as a result of the presence of the hidden terminal.
  • Future LAA systems may be referred to as NR-U (Unlicensed) systems, NR LAA systems, and the like.
  • FIG. 3 is a diagram showing an example of RTS / CTS in a future LAA system.
  • a transmission device wireless base station
  • the RTS is transmitted by an unlicensed CC, LAA SCell (Secondary Cell) or the like).
  • the downlink data receiving device transmits the CTS using the uplink unlicensed CC.
  • an unlicensed CC of TDD Time Division Duplex, unpaired spectrum
  • TxOP transmission opportunity
  • COT Channel Occupancy Time
  • the node may be either a UE or a radio base station, or a node of another system.
  • COT sharing it may be assumed that DL and UL face each other on a one-to-one basis (for example, loopback). It may be possible to share COT when DL and UL are one-to-many.
  • the node A When the node A performs LBT in the unlicensed CC and the LBT result is idle, and acquires TxOP having the COT time length, the node A performs data transmission in the unlicensed CC.
  • the LBT for acquiring TxOP is referred to as an initial LBT (initial-LBT: I-LBT).
  • I-LBT initial-LBT
  • the remaining period of transmission by the node A may be allocated to other nodes (nodes B and C) that can receive the signal from the node A.
  • no-LBT transmission (data transmission that does not require LBT before transmission) may be allowed in TxOP.
  • several data transmissions within the TxOP are preferably scheduled. For example, when node A is a radio base station and nodes B and C are UEs, data transmission by node A may transmit downlink control information indicating scheduling (allocation) of data transmission of nodes B and C. Good.
  • data transmission by the nodes A, B, and C may be scheduled, and information indicating scheduling may be transmitted before TxOP.
  • the node B when the data transmission by the node A is completed in the TxOP, the node B performs the data transmission without the LBT after the gap.
  • the node C performs data transmission without LBT after the gap.
  • LBT transmission data transmission that requires LBT before transmission, or data transmission when the LBT result is idle
  • TxOP data transmission that requires LBT before transmission, or data transmission when the LBT result is idle
  • the node B when data transmission by the node A is completed in the TxOP, the node B performs LBT in the gap, and performs data transmission when the LBT result is idle.
  • the node C performs LBT within the gap, and performs data transmission when the LBT result is idle.
  • LTE LAA LBT is preferably category 4.
  • Category 1 Send without performing LBT.
  • Category 2 Performs carrier sensing at a fixed sensing time before transmission, and transmits when the channel is free.
  • ⁇ Category 3 A value (random backoff) is randomly generated from within a predetermined range before transmission, and carrier sensing in a fixed sensing slot time is repeated, and it can be confirmed that the channel is free over the slot of the value.
  • Sent when ⁇ Category 4 Generates a value (random backoff) randomly from within a predetermined range before transmission, repeats carrier sensing in a fixed sensing slot time, and confirms that the channel is free over the slot of the value Sent when The range of random back-off value (contention window size) is changed according to the communication failure situation due to collision with communication of other systems.
  • the LBT in TxOP may perform a one-shot LBT (short LBT: perform carrier sense for a short fixed time) or may perform an LBT in LTE LAA. If the gap is shorter than 16 ⁇ s, data transmission may be performed without LBT.
  • the LBT in the TxOP is used as a receiver auxiliary LBT.
  • the overhead becomes large and the transmission source (transmission device) is frequently switched.
  • a blank period occurs.
  • the gap becomes overhead. Further, the gap is detected as an idle state with respect to other surrounding systems, and the possibility of losing a transmission opportunity increases when the system starts communication first.
  • the present inventors have conceived of controlling data transmission based on carrier sense in the gap of TxOP.
  • the unlicensed CC is a carrier (cell, CC) of the first frequency band, a carrier (cell, CC) of the unlicensed band (unlicensed spectrum), LAA SCell, LAA cell, secondary cell (SCell). : Secondary Cell), etc.
  • the license CC may be read as a second frequency band carrier (cell, CC), a license band (license spectrum) carrier (cell, CC), a primary cell (PCell: Primary Cell), an SCell, or the like. .
  • the unlicensed CC may be LTE-based or NR-based (NR unlicensed CC).
  • the license CC may be LTE-based or NR-based.
  • the unlicensed CC and license CC may be carrier aggregation (CA) or dual connectivity (DC) in either LTE or NR system (standalone) ), May be CA or DC between LTE and NR systems (non-standalone).
  • the future LAA system may be called an NR-U (Unlicensed) system.
  • the LAA system may be compliant (supported) with a first wireless communication standard (eg, NR, LTE, etc.).
  • coexistence system coexistence apparatus
  • other wireless communication apparatuses coexistence apparatus
  • Wi-Fi Wi-Fi
  • Bluetooth WiGig
  • wireless LAN Local Area Network
  • IEEE802. 11 may be compliant (supported) with a second wireless communication standard different from the first wireless communication standard.
  • the coexistence system may be a system that receives interference from the LAA system, or may be a system that gives interference to the LAA system.
  • the coexistence system may support RTS and CTS, or equivalent transmission request and receivable signals.
  • an apparatus that performs I-LBT among the user terminal and the radio base station may be referred to as a transmission apparatus.
  • a device that receives data from another device at a transmission opportunity acquired by another device (node A) may be referred to as a receiving device.
  • the data transmitted by the transmission device and the reception device may include at least one of user data and control information.
  • TxOP transmission opportunity
  • LBT long LBT
  • LTE LAA LBT blank time
  • the node that has acquired TxOP may cancel at least one of data transmission by the own node and data transmission by another node.
  • the short LBT time in the gap is shorter than the gap time.
  • the short LBT time may be shorter than the I-LBT time.
  • the node may perform the operations of the following modes 1-1 to 1-4.
  • ⁇ Aspect 1-1 The node that has acquired TxOP performs LBT in the gap in TxOP. Only when the result is busy, the node may notify the busy information (for example, busy notification frame) in the unlicensed CC.
  • the busy information for example, busy notification frame
  • the node A that has acquired TxOP performs LBT in the subsequent gap when data transmission by the node A is completed in TxOP.
  • the node A transmits a busy notification frame in the unlicensed CC within the remaining period of the LBT in the gap.
  • the other nodes (nodes B and C) to which the remaining TxOP is assigned receive the busy notification frame, even if the data transmission of FIG. 5B is assigned, the assigned data transmission is canceled.
  • the node A when the LBT result is idle (idle detection), the node A does not transmit a busy notification frame. If the other nodes (nodes B and C) to which the remaining TxOP is assigned do not receive the busy notification frame in the unlicensed CC after the data transmission by the node A, the data transmission assigned in the TxOP of the unlicensed CC I do.
  • the node that has acquired TxOP performs LBT in the gap in TxOP.
  • the node may notify the information (notification frame) indicating the LBT result in the license CC.
  • the notification frame may be information indicating busy (for example, busy notification frame) or information indicating idle (for example, idle notification frame).
  • the node A that has acquired TxOP performs LBT in the subsequent gap, and transmits a notification frame in the license CC within the remaining period of the gap.
  • the node A transmits a busy notification frame in the license CC.
  • the other nodes (nodes B and C) to which the remaining TxOPs are assigned cancel the assigned data transmission even if the data transmission of FIG. 6B is assigned.
  • the node A transmits an idle notification frame in the license CC.
  • the other nodes (nodes B and C) to which the remaining TxOP is assigned receive the idle notification frame, the other nodes (nodes B and C) perform data transmission assigned in the TxOP of the unlicensed CC.
  • the nodes B and C may cancel the assigned data transmission when the license CC does not receive the notification frame after the data transmission by the node A.
  • the nodes B and C may perform the data transmission allocated in the TxOP of the unlicensed CC.
  • the node that has acquired TxOP performs LBT in the gap in TxOP.
  • the node may notify the notification frame in the unlicensed CC.
  • the node A that has acquired the TxOP performs LBT in the subsequent gap, and transmits a notification frame in the unlicensed CC within the remaining period of the gap.
  • the node A transmits a busy notification frame in the unlicensed CC.
  • the other nodes (nodes B and C) to which the remaining TxOPs are assigned receive the busy notification frame, they cancel the assigned data transmission.
  • the node A transmits an idle notification frame in the unlicensed CC.
  • the other nodes (nodes B and C) to which the remaining TxOP is assigned receive the idle notification frame, the other nodes (nodes B and C) perform data transmission assigned in the TxOP of the unlicensed CC.
  • the nodes B and C may cancel the assigned data transmission if the notification frame is not received in the unlicensed CC after the data transmission by the node A.
  • the nodes B and C may perform the data transmission allocated in the TxOP of the unlicensed CC.
  • ⁇ Aspect 1-4 The node that has acquired TxOP performs LBT in the gap in TxOP. Only when the result is busy, the node may notify the busy notification frame in the license CC.
  • the node A that has acquired TxOP performs LBT in the subsequent gap when data transmission by the node A is completed in TxOP.
  • the node A transmits a busy notification frame in the license CC within the remaining period of the LBT in the gap.
  • the other nodes (nodes B and C) to which the remaining TxOPs are assigned receive the busy notification frame, they cancel the assigned data transmission.
  • the node A when the LBT result is idle, the node A does not transmit a busy notification frame. If the other nodes (nodes B and C) to which the remaining TxOP is assigned do not receive the busy notification frame in the license CC after the data transmission by the node A, the data transmission assigned in the TxOP of the unlicensed CC is performed. Do.
  • the busy notification frame may be information instructing cancellation of data transmission, may indicate changed data transmission allocation, or may indicate data transmission deactivation (release).
  • the idle notification frame may indicate allocation of data transmission of another node or may indicate activation of data transmission.
  • the notification frame is transmitted by a downlink control channel (eg, PDCCH, DCI), a scheduled downlink channel (eg, PDSCH), or a UE-specific uplink channel (eg, PUCCH), or a dynamic grant (DCI). It may be transmitted by a scheduled uplink channel (eg, PUSCH) or an uplink channel that is not scheduled by dynamic grant (eg, PUSCH with configured grant, grant-free PUSCH).
  • a downlink control channel eg, PDCCH, DCI
  • a scheduled downlink channel eg, PDSCH
  • a UE-specific uplink channel eg, PUCCH
  • DCI dynamic grant
  • the notification frame may include a transmission source identifier (for example, MAC address, UE ID, cell ID), a transmission destination identifier (for example, MAC address, UE ID, cell ID), or data transmission.
  • Assignment eg, time resource
  • FIG. 5B and FIG. 6B after transmission of the LBT by the node A and the idle notification frame by the node A in the gap, the nodes B and C perform the LBT, and the LBT result is idle, Data transmission may be performed after the gap. Also, in at least one of FIGS. 5B and 6B, after transmission of the LBT by node A and the idle notification frame by node A in the gap, nodes B and C do not perform LBT and transmit data after the gap. You may go.
  • TxOP transmission opportunity
  • I-LBT performs carrier sense (for example, short LBT, LTE LAA LBT) in the blank time (gap) for switching the transmission source in TxOP, and the result is busy.
  • carrier sense for example, short LBT, LTE LAA LBT
  • gap blank time
  • data transmission of other nodes may be canceled (dropped) in the remaining period of TxOP.
  • the node may perform the operations of the following modes 2-1 to 2-4.
  • ⁇ Aspect 2-1 The node that has acquired TxOP performs LBT in the gap in TxOP. Only when the result is busy, the node may notify the information indicating busy in the unlicensed CC.
  • the node A that has acquired TxOP performs LBT in the subsequent gap when data transmission by the node A is completed in TxOP.
  • the node A transmits information indicating busy in the unlicensed CC within the remaining period of the LBT in the gap.
  • the other nodes (nodes B and C) to which the remaining TxOPs are assigned receive the information indicating busy, even if data transmissions similar to those in FIGS. 5B and 6B are assigned, Cancel.
  • the node A transmits data in the remaining TxOP of the unlicensed CC.
  • the node that has acquired TxOP performs LBT in the gap in TxOP.
  • the node may notify the license CC of information indicating the LBT result.
  • the node A when the node A that has acquired TxOP finishes data transmission by the node A within the TxOP, the node A performs LBT in the subsequent gap, and transmits information indicating the LBT result in the license CC within the remaining period of the gap. To do.
  • the node A transmits information indicating busy in the license CC.
  • the other nodes (nodes B and C) to which the remaining TxOPs are assigned receive information indicating busy, they cancel the assigned data transmission.
  • the node A transmits data in the remaining TxOP of the unlicensed CC.
  • the node that has acquired TxOP performs LBT in the gap in TxOP.
  • the node may notify the information indicating the LBT result in the unlicensed CC.
  • node A that has acquired TxOP finishes data transmission by node A within TxOP, it performs LBT in the subsequent gap, and in the remaining period of the gap, information indicating the LBT result is displayed in the unlicensed CC. Send.
  • the node A transmits information indicating busy in the unlicensed CC.
  • the other nodes (nodes B and C) to which the remaining TxOPs are assigned receive information indicating busy, they cancel the assigned data transmission.
  • the node A transmits data in the remaining TxOP of the unlicensed CC.
  • ⁇ Aspect 2-4 The node that has acquired TxOP performs LBT in the gap in TxOP. Only when the result is busy, the node may notify information indicating busy in the license CC.
  • the node A that has acquired TxOP performs LBT in the subsequent gap when data transmission by the node A is completed in TxOP.
  • the node A transmits information indicating busy in the license CC within the remaining period of the LBT in the gap.
  • the other nodes (nodes B and C) to which the remaining TxOPs are assigned receive information indicating busy, they cancel the assigned data transmission.
  • the node A transmits data in the remaining TxOP of the unlicensed CC.
  • wireless communication system Wireless communication system
  • the radio communication method according to each of the above aspects is applied.
  • wireless communication method which concerns on each said aspect may be applied independently, respectively, and may be applied in combination.
  • FIG. 8 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • the wireless communication system 1 may be called SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), NR (New Rat), or the like.
  • the radio communication system 1 shown in this figure includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a to 12c that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. .
  • the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, two or more CCs). Further, the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells. In addition, it can be set as the structure by which the TDD carrier which applies shortening TTI is contained in either of several cells.
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.
  • the same carrier as that between the base station 11 and the base station 11 may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point or the like.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE, LTE-A, NR, 5G, 5G +, and may include not only mobile communication terminals but also fixed communication terminals.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in the UL.
  • downlink data channels Physical Downlink Shared Channel, also called downlink shared channels
  • PBCH Physical Broadcast Channel
  • L1 / L2 A control channel or the like is used.
  • User data, upper layer control information, SIB (System Information Block), etc. are transmitted by PDSCH.
  • SIB System Information Block
  • MIB Master Information Block
  • L1 / L2 control channels include downlink control channels (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. .
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and PUSCH scheduling information is transmitted by the PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the HAICH transmission confirmation information (ACK / NACK) for PUSCH is transmitted by PHICH.
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like, similar to PDCCH.
  • an uplink data channel (PUSCH: Physical Uplink Shared Channel, also referred to as uplink shared channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), random An access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by the PUSCH.
  • Uplink control information including at least one of delivery confirmation information (ACK / NACK) and radio quality information (CQI) is transmitted by PUSCH or PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • FIG. 9 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • the radio base station 10 is a downlink data transmission device and may be an uplink data reception device.
  • Downlink data transmitted from the radio base station 10 to the user terminal 20 is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling for example, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, transmission processing such as precoding processing is performed, and the transmission / reception unit 103.
  • IFFT inverse fast Fourier transform
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, status management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 transmits a downlink signal (eg, downlink control signal (downlink control channel), downlink data signal (downlink data channel, downlink shared channel), downlink reference signal (DM-RS, CSI-RS, etc.), discovery signal, etc. , Synchronization signals, broadcast signals, etc.) and uplink signals (eg, uplink control signals (uplink control channels), uplink data signals (uplink data channels, uplink shared channels), uplink reference signals, etc.) are received.
  • a downlink signal eg, downlink control signal (downlink control channel), downlink data signal (downlink data channel, downlink shared channel), downlink reference signal (DM-RS, CSI-RS, etc.), discovery signal, etc. , Synchronization signals, broadcast signals, etc.
  • uplink signals eg, uplink control signals (uplink control channels), uplink data signals (uplink data channels, uplink shared channels), uplink reference signals, etc.
  • the transmission / reception unit 103 uses a second wireless communication standard (for example, WiFi, WiGig, wireless LAN) in a carrier (for example, unlicensed CC) that applies listening to transmission of the first wireless communication standard (for example, NR, LTE).
  • a transmission request signal e.g., RTS
  • a receivable signal e.g., CTS
  • the transmission unit and reception unit of the present invention are configured by the transmission / reception unit 103 and / or the transmission path interface 106.
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment.
  • the functional block of the characteristic part in this embodiment is mainly shown, and the radio base station 10 is assumed to have other functional blocks necessary for radio communication.
  • the baseband signal processing unit 104 includes at least a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
  • the control unit 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls signal generation by the transmission signal generation unit 302 and signal allocation by the mapping unit 303, for example.
  • the control unit 301 also controls signal reception processing by the reception signal processing unit 304 and signal measurement by the measurement unit 305.
  • the control unit 301 controls scheduling of downlink signals and / or uplink signals (for example, resource allocation). Specifically, the control unit 301 performs transmission so as to generate and transmit DCI (DL assignment, DL grant) including scheduling information of the downlink data channel and DCI (UL grant) including scheduling information of the uplink data channel. It controls the signal generation unit 302, the mapping unit 303, and the transmission / reception unit 103.
  • DCI DL assignment, DL grant
  • UL grant scheduling information of the uplink data channel
  • the transmission signal generation unit 302 generates a downlink signal (downlink reference signal such as downlink control channel, downlink data channel, DM-RS, etc.) based on an instruction from the control unit 301 and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control channel, uplink data channel, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301.
  • the received signal processing unit 304 outputs at least one of a preamble, control information, and uplink data to the control unit 301.
  • the reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 may measure, for example, the received power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality)), channel state, and the like of the received signal.
  • the measurement result may be output to the control unit 301.
  • the transmission / reception unit 103 receives the first signal (for example, data transmission by the node A) in the transmission opportunity (for example, TxOP) based on the result of the first listening (for example, I-LBT). May be sent.
  • the control unit 301 includes information (for example, a notification frame, a busy notification frame, and the like) indicating a result of the second listening (for example, LBT) in a period (for example, a gap) after the transmission of the first signal in the transmission opportunity.
  • the transmission of the (idle notification frame) may be controlled.
  • control unit 301 may control transmission of the information indicating the busy.
  • control unit 301 in a period after the second listening in the transmission opportunity, other devices (for example, Node B or C, the radio base station 10, The reception of the second signal from the user terminal 20) may be controlled.
  • control unit 301 controls transmission of a third signal (for example, FIG. 7, data transmission after a busy notification frame) after transmission of the information. Also good.
  • a third signal for example, FIG. 7, data transmission after a busy notification frame
  • time length of the second listening may be shorter than the time length of the first listening.
  • the transmission / reception unit 103 (for example, the transmission / reception unit of the node B or C) transmits the transmission among the transmission opportunities based on the result of the first listening by the transmission device (for example, the node A, the radio base station 10, and the user terminal 20).
  • Information indicating the result of the second listening may be received in a period after transmission of the first signal from the device.
  • the control unit 301 may control transmission of the second signal in a period after reception of the information in the transmission opportunity based on the information.
  • FIG. 11 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the user terminal 20 is a downlink data receiving device and may be an uplink data transmitting device.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Of the downlink data, system information and higher layer control information are also transferred to the application unit 205.
  • the uplink data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 includes a downlink signal (eg, downlink control signal (downlink control channel), downlink data signal (downlink data channel, downlink shared channel), downlink reference signal (DM-RS, CSI-RS, etc.), discovery signal, etc.
  • a downlink signal eg, downlink control signal (downlink control channel), downlink data signal (downlink data channel, downlink shared channel), downlink reference signal (DM-RS, CSI-RS, etc.), discovery signal, etc.
  • an uplink signal eg, uplink control signal (uplink control channel), uplink data signal (uplink data channel, uplink shared channel), uplink reference signal, etc.
  • the transmission / reception unit 203 uses a second wireless communication standard (for example, WiFi, WiGig, wireless LAN) in a carrier (for example, unlicensed CC) that applies listening to transmission of the first wireless communication standard (for example, NR, LTE).
  • a transmission request signal e.g., RTS
  • a receivable signal e.g., CTS
  • FIG. 12 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
  • the functional block of the characteristic part in the present embodiment is mainly shown, and the user terminal 20 is assumed to have other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. At least.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403.
  • the control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control channel, uplink data channel, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates an uplink data channel based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data channel when a UL grant is included in the downlink control channel notified from the radio base station 10.
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control channel, downlink data channel, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the reception signal processing unit 404 Based on an instruction from the control unit 401, the reception signal processing unit 404 performs blind decoding on the downlink control channel that schedules at least one of transmission and reception of the downlink data channel, and performs reception processing on the downlink data channel based on the DCI. Do. Received signal processing section 404 estimates the channel gain based on DM-RS or CRS, and demodulates the downlink data channel based on the estimated channel gain.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 may output the data decoding result to the control unit 401.
  • the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may measure, for example, the received power (for example, RSRP), DL reception quality (for example, RSRQ), channel state, etc. of the received signal.
  • the measurement result may be output to the control unit 401.
  • the transmission / reception unit 203 receives the first signal (for example, data transmission by the node A) in the transmission opportunity (for example, TxOP) based on the result of the first listening (for example, I-LBT). May be sent.
  • the control unit 401 includes information indicating a result of the second listening (for example, LBT) (for example, a notification frame, a busy notification frame, and the like) in a period (for example, a gap) after the transmission of the first signal in the transmission opportunity.
  • the transmission of the (idle notification frame) may be controlled.
  • control unit 401 may control transmission of the information indicating the busy.
  • control unit 401 in a period after the second listening in the transmission opportunity, another device (for example, the node B or C, the radio base station 10, The reception of the second signal from the user terminal 20) may be controlled.
  • another device for example, the node B or C, the radio base station 10.
  • control unit 401 controls transmission of a third signal (for example, data transmission after a busy notification frame in FIG. 7) after transmission of the information. Also good.
  • time length of the second listening may be shorter than the time length of the first listening.
  • the transmission / reception unit 203 (for example, the transmission / reception unit of the node B or C) transmits the transmission among the transmission opportunities based on the result of the first listening by the transmission device (for example, the node A, the radio base station 10, and the user terminal 20).
  • Information indicating the result of the second listening may be received in a period after transmission of the first signal from the device.
  • the control unit 401 may control transmission of the second signal in a period after reception of the information in the transmission opportunity based on the information.
  • each functional block is realized using one device physically or logically coupled, or two or more devices physically or logically separated may be directly or indirectly (for example, (Using wired, wireless, etc.) and may be implemented using these multiple devices.
  • a wireless base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication or controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be constituted by.
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on the numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be configured with one or more symbols in the time domain.
  • the minislot may also be called a subslot.
  • a mini-slot may be composed of fewer symbols than slots.
  • PDSCH and PUSCH transmitted in units of time larger than the minislot may be referred to as PDSCH / PUSCH mapping type A.
  • the PDSCH and PUSCH transmitted using the minislot may be referred to as PDSCH / PUSCH mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, a code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • the resource block may be configured by one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • information, parameters, and the like described in the present disclosure may be expressed using absolute values, may be expressed using relative values from predetermined values, or may be expressed using other corresponding information. May be represented.
  • the radio resource may be indicated by a predetermined index.
  • the names used for parameters and the like in this disclosure are not limited names in any way.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limited in any way.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
  • information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • the software uses websites using at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • system and “network” as used in this disclosure may be used interchangeably.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • BWP Bandwidth Part
  • a base station may also be called terms such as a macro cell, a small cell, a femto cell, and a pico cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: Remote Radio Head)) can also provide communication services.
  • a base station subsystem eg, an indoor small base station (RRH: Remote Radio Head)
  • RRH Remote Radio Head
  • the terms “cell” or “sector” refer to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • Mobile station subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be referred to as a transmission device, a reception device, or the like.
  • the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unattended moving body (for example, a drone, an autonomous driving vehicle, etc.), or a robot (manned or unmanned).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • the radio base station in the present disclosure may be replaced with a user terminal.
  • the communication between the radio base station and the user terminal is replaced with communication between a plurality of user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called))
  • a plurality of user terminals for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called)
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • the uplink channel may be read as a side channel.
  • the user terminal in the present disclosure may be replaced with a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the operation performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
  • the methods described in this disclosure present elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.
  • the present invention may be applied to a system using other appropriate wireless communication methods, a next-generation system extended based on these, and the like.
  • a plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
  • the phrase“ based on ”does not mean“ based only on, ”unless expressly specified otherwise.
  • the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations can be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination (decision)” includes determination, calculation, calculation, processing, derivation, investigating, looking up (eg, table, (Searching in a database or another data structure), ascertaining, etc. may be considered to be “determining”.
  • determination (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”.
  • determination is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection is any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • radio frequency domain microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) region, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This transmission device has: a transmission unit which transmits a first signal at a transmission opportunity based on a first listening result; and a control unit which controls, in a period after the transmission of the signal in the transmission opportunity, the transmission of information indicating a second listening result. According to an aspect of the present disclosure, the use efficiency of wireless resources based on the listening result can be improved.

Description

送信装置及び受信装置Transmitting apparatus and receiving apparatus
 本発明は、次世代移動通信システムにおける送信装置及び受信装置に関する。 The present invention relates to a transmission device and a reception device in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、4G、5G、5G+(plus)、NR(New RAT)、3GPP(3rd Generation Partnership Project) Rel.14、15、16~などともいう)も検討されている。 In a UMTS (Universal Mobile Telecommunications System) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rate and low delay (Non-patent Document 1). In order to further increase the bandwidth and speed from LTE, LTE successor systems (for example, LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( New RAT), 3GPP (3 rd Generation Partnership Project) Rel.14,15,16 ~ also called, etc.) have also been studied.
 既存のLTEシステム(例えば、Rel.8-12)では、通信事業者(オペレータ)に免許された周波数帯域(ライセンスバンド(licensed band)、ライセンスキャリア(licensed carrier)、ライセンスコンポーネントキャリア(CC)等ともいう)において排他的な運用がなされることを想定して仕様化が行われてきた。ライセンスCCとしては、例えば、800MHz、1.7GHz、2GHzなどが使用される。 In the existing LTE system (for example, Rel. 8-12), the frequency band (licensed band, licensed carrier, licensed component carrier (CC) etc.) licensed by the operator (operator) The specification has been performed on the assumption that exclusive operation will be performed. For example, 800 MHz, 1.7 GHz, 2 GHz, or the like is used as the license CC.
 また、既存のLTEシステム(例えば、Rel.13)では、周波数帯域を拡張するため、上記ライセンスバンドとは異なる周波数帯域(アンライセンスバンド(unlicensed band)、アンライセンスキャリア(unlicensed carrier)、アンライセンスCCともいう)の利用がサポートされている。アンライセンスバンドとしては、例えば、Wi-Fi(登録商標)やBluetooth(登録商標)を使用可能な2.4GHz帯や5GHz帯などが想定される。 Further, in the existing LTE system (for example, Rel. 13), in order to expand the frequency band, a frequency band (unlicensed band, unlicensed carrier, unlicensed CC) different from the above-mentioned license band. (Also called) is supported. As the unlicensed band, for example, a 2.4 GHz band or a 5 GHz band that can use Wi-Fi (registered trademark) or Bluetooth (registered trademark) is assumed.
 具体的には、Rel.13では、ライセンスバンドのキャリア(CC)とアンライセンスバンドのキャリア(CC)とを統合するキャリアアグリゲーション(CA:Carrier Aggregation)がサポートされる。このように、ライセンスバンドとともにアンライセンスバンドを用いて行う通信をLAA(License-Assisted Access)と称する。 Specifically, Rel. 13, a carrier aggregation (CA) that integrates a carrier (CC) of a license band and a carrier (CC) of an unlicensed band is supported. Communication performed using the unlicensed band together with the license band is referred to as LAA (License-Assisted Access).
 LAAの利用は、将来の無線通信システム(例えば、5G、5G+、NR、Rel.15以降)でもLAAの利用が検討されている。将来的には、ライセンスバンドとアンライセンスバンドとのデュアルコネクティビティ(DC:Dual Connectivity)や、アンライセンスバンドのスタンドアローン(SA:Stand-Alone)もLAAの検討対象となる可能性がある。 LAA is being used in future wireless communication systems (for example, 5G, 5G +, NR, Rel. 15 and later). In the future, license connectivity and unlicensed band dual connectivity (DC: Dual Connectivity) and unlicensed band stand-alone (SA) may also be considered for LAA.
 将来のLAAシステム(例えば、5G、5G+、NR、Rel.15以降)では、送信装置(例えば、下りリンク(DL)では無線基地局、上りリンク(UL)ではユーザ端末)は、アンライセンスバンドにおけるデータの送信前に、他の装置(例えば、無線基地局、ユーザ端末、Wi-Fi装置など)の送信の有無を確認するリスニング(LBT:Listen Before Talk、CCA:Clear Channel Assessment、キャリアセンス又はチャネルアクセス動作:channel access procedure等とも呼ばれる)を行う。 In future LAA systems (for example, 5G, 5G +, NR, Rel. 15 and later), a transmitting device (for example, a radio base station in the downlink (DL) and a user terminal in the uplink (UL)) Listening (LBT: Listen Before Talk, CCA: Clear Channel Assessment, Carrier Sense or Channel) that confirms whether other devices (eg, wireless base stations, user terminals, Wi-Fi devices, etc.) are transmitting before data transmission (Access operation: also called channel access procedure).
 また、当該送信装置は、リスニングにおいて他の装置の送信がないこと(アイドル状態)が検出されてから所定期間(直後又はバックオフの期間)後にデータ送信を開始する。 Also, the transmitting apparatus starts data transmission after a predetermined period (immediately after or backoff period) after detecting that no other apparatus is transmitting (idle state) during listening.
 しかしながら、リスニングの結果(アイドル状態の検出)に基づいて得られる送信機会において、他の装置がデータを送信することが考えられる。この場合、他の装置の送信を適切に制御しなければ、データの衝突が生じるおそれがある。 However, it is conceivable that another device transmits data at a transmission opportunity obtained based on the result of listening (detection of an idle state). In this case, data collision may occur unless transmission of other devices is appropriately controlled.
 本発明はかかる点に鑑みてなされたものであり、リスニング結果に基づく無線リソースの利用効率を向上可能な送信装置及び受信装置を提供することを目的の1つとする。 The present invention has been made in view of this point, and an object of the present invention is to provide a transmission device and a reception device that can improve the utilization efficiency of radio resources based on the listening result.
 本発明の一態様に係るユーザ端末は、送信装置は、第1リスニングの結果に基づく送信機会において第1信号を送信する送信部と、前記送信機会のうち前記信号の送信の後の期間において、第2リスニングの結果を示す情報の送信を制御する制御部と、を有することを特徴とする。 In the user terminal according to an aspect of the present invention, the transmission device transmits a first signal in a transmission opportunity based on a result of the first listening, and in a period after transmission of the signal in the transmission opportunity, And a control unit that controls transmission of information indicating the result of the second listening.
 本発明によれば、リスニング結果に基づく無線リソースの利用効率を向上できる。 According to the present invention, it is possible to improve the utilization efficiency of radio resources based on the listening result.
図1は、隠れ端末によるデータの衝突の一例を示す図である。FIG. 1 is a diagram illustrating an example of data collision by a hidden terminal. 図2は、RTS/CTS付きのCSMA/CAの一例を示す図である。FIG. 2 is a diagram illustrating an example of CSMA / CA with RTS / CTS. 図3は、将来のLAAシステムにおけるRTS/CTSの一例を示す図である。FIG. 3 is a diagram illustrating an example of RTS / CTS in a future LAA system. 図4A及び図4Bは、アンライセンスCCにおける複数ノードの動作の一例を示す図である。4A and 4B are diagrams illustrating an example of the operation of a plurality of nodes in the unlicensed CC. 図5A及び図5Bは、態様1-1に係る複数ノードの動作の一例を示す図である。5A and 5B are diagrams illustrating an example of the operation of a plurality of nodes according to aspect 1-1. 図6A及び図6Bは、態様1-2に係る複数ノードの動作の一例を示す図である。6A and 6B are diagrams illustrating an example of the operation of a plurality of nodes according to aspect 1-2. 図7は、態様2に係る複数ノードの動作の一例を示す図である。FIG. 7 is a diagram illustrating an example of operations of a plurality of nodes according to aspect 2. 図8は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 8 is a diagram showing an example of a schematic configuration of the radio communication system according to the present embodiment. 図9は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. 図10は、本実施の形態に係る無線基地局のベースバンド信号処理部の機能構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of a functional configuration of the baseband signal processing unit of the radio base station according to the present embodiment. 図11は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. 図12は、本実施の形態に係るユーザ端末のベースバンド信号処理部の機能構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of a functional configuration of the baseband signal processing unit of the user terminal according to the present embodiment. 図13は、本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of a hardware configuration of the radio base station and the user terminal according to the present embodiment.
 アンライセンスバンド(例えば、2.4GHz帯や5GHz帯)では、例えば、Wi-Fiシステム、LAAをサポートするシステム(LAAシステム)等の複数のシステムが共存することが想定されるため、当該複数のシステム間での送信の衝突回避及び/又は干渉制御が必要となると考えられる。 In an unlicensed band (for example, 2.4 GHz band or 5 GHz band), for example, a plurality of systems such as a Wi-Fi system and a system supporting LAA (LAA system) are assumed to coexist. It is considered that transmission collision avoidance and / or interference control between systems is required.
 例えば、アンライセンスバンドを利用するWi-Fiシステムでは、衝突回避及び/又は干渉制御を目的として、CSMA(Carrier Sense Multiple Access)/CA(Collision Avoidance)が採用されている。CSMA/CAでは、送信前に所定時間(DIFS:Distributed access Inter Frame Space)が設けられ、送信装置は、他の送信信号がないことを確認(キャリアセンス)してからデータ送信を行う。また、データ送信後、受信装置からのACK(ACKnowledgement)を待つ。送信装置は、所定時間内にACKを受信できない場合、衝突が起きたと判断して、再送信を行う。 For example, a Wi-Fi system using an unlicensed band employs CSMA (Carrier Sense Multiple Access) / CA (Collision Avoidance) for the purpose of collision avoidance and / or interference control. In CSMA / CA, a predetermined time (DIFS: Distributed access Inter Frame Space) is provided before transmission, and the transmission apparatus performs data transmission after confirming that there is no other transmission signal (carrier sense). Further, after data transmission, it waits for ACK (ACKnowledgement) from the receiving apparatus. If the transmitting apparatus cannot receive ACK within a predetermined time, it determines that a collision has occurred and performs retransmission.
 また、Wi-Fiシステムでは、衝突回避及び/又は干渉制御を目的として、送信前に送信要求(RTS:Request to Send)を送信し、受信装置が受信可能であれば、受信可能(CTS:Clear to Send)で応答するRTS/CTSが採用されている。例えば、RTS/CTSは、隠れ端末によるデータの衝突回避に有効である。 In addition, in the Wi-Fi system, for the purpose of collision avoidance and / or interference control, a transmission request (RTS: Request to Send) is transmitted before transmission, and reception is possible if the receiving apparatus can receive (CTS: Clear RTS / CTS responding with “Send” is adopted. For example, RTS / CTS is effective in avoiding data collision by a hidden terminal.
 図1は、隠れ端末によるデータの衝突の一例を示す図である。図1において、無線端末Cの電波は無線端末Aまで届かないため、無線端末Aは、送信前にキャリアセンスを行っても、無線端末Cからの送信信号を検出できない。この結果、無線端末BがアクセスポイントBに送信中であっても、無線端末AもアクセスポイントBに送信することが想定される。この場合、アクセスポイントBにおいて無線端末A及びCからの送信信号が衝突し、スループットが低下する恐れがある。 FIG. 1 is a diagram showing an example of data collision by a hidden terminal. In FIG. 1, since the radio wave of the wireless terminal C does not reach the wireless terminal A, the wireless terminal A cannot detect the transmission signal from the wireless terminal C even if carrier sensing is performed before transmission. As a result, even when the wireless terminal B is transmitting to the access point B, it is assumed that the wireless terminal A also transmits to the access point B. In this case, the transmission signals from the wireless terminals A and C collide with each other at the access point B, which may reduce the throughput.
 図2は、RTS/CTS付きのCSMA/CAの一例を示す図である。図2に示すように、無線端末C(送信側)は、送信前の所定時間(DIFS)において他の送信信号がないことを確認するとRTSを送信する(なお、図1では、当該RTSは無線端末A(他の端末)には届かない)。アクセスポイントB(受信側)は、無線端末CからのRTSを受信すると、所定時間(SIFS:Short Inter Frame Space)後にCTSを送信する。RTSは、送信要求信号と呼ばれてもよい。CTSは、受信可能信号と呼ばれてもよい。 FIG. 2 is a diagram showing an example of CSMA / CA with RTS / CTS. As shown in FIG. 2, when the wireless terminal C (transmission side) confirms that there is no other transmission signal in a predetermined time (DIFS) before transmission, it transmits the RTS (in FIG. 1, the RTS is wireless. It does not reach terminal A (the other terminal)). Upon receiving the RTS from the wireless terminal C, the access point B (reception side) transmits a CTS after a predetermined time (SIFS: Short Inter Frame Space). The RTS may be referred to as a transmission request signal. The CTS may be referred to as a receivable signal.
 図2において、アクセスポイントBからのCTSは、無線端末A(他の装置)にも届くため、無線端末Aは、通信が行われることを察知し、送信を延期する。RTS/CTSのパケットには、所定期間(NAV:Network Allocation Vector又は送信禁止期間等ともいう)が記されているので、当該所定期間の間、通信を保留する。 In FIG. 2, since the CTS from the access point B reaches the wireless terminal A (another apparatus), the wireless terminal A detects that communication is performed and postpones transmission. Since the RTS / CTS packet includes a predetermined period (also referred to as NAV: Network Allocation Vector or transmission prohibition period), communication is suspended during the predetermined period.
 アクセスポイントBからのCTSを受信した無線端末Cは、送信前の所定期間(SIFS)において他の送信信号がないことを確認すると、当該所定期間(SIFS)後にデータ(フレーム)を送信する。当該データを受信したアクセスポイントBは、当該所定期間(SIFS)後にACKを送信する。 When the wireless terminal C that has received the CTS from the access point B confirms that there is no other transmission signal in the predetermined period (SIFS) before transmission, the wireless terminal C transmits data (frame) after the predetermined period (SIFS). The access point B that has received the data transmits an ACK after the predetermined period (SIFS).
 図2では、無線端末Cの隠れ端末である無線端末AがアクセスポイントBからのCTSを検出すると、送信を延期するので、アクセスポイントBにおける無線端末A及びCの送信信号の衝突を回避できる。 In FIG. 2, when the wireless terminal A, which is a hidden terminal of the wireless terminal C, detects CTS from the access point B, transmission is postponed, so that collision of transmission signals of the wireless terminals A and C at the access point B can be avoided.
 ところで、既存のLTEシステム(例えば、Rel.13)のLAAでは、データの送信装置は、アンライセンスバンドにおけるデータの送信前に、他の装置(例えば、無線基地局、ユーザ端末、Wi-Fi装置など)の送信の有無を確認するリスニング(LBT、CCA、キャリアセンス又はチャネルアクセス動作等とも呼ばれる)を行う。 By the way, in the LAA of the existing LTE system (for example, Rel. 13), the data transmitting apparatus is connected to another apparatus (for example, a radio base station, a user terminal, a Wi-Fi apparatus) before transmitting data in the unlicensed band. Etc.) is performed to confirm the presence / absence of transmission (also called LBT, CCA, carrier sense or channel access operation).
 当該送信装置は、例えば、下りリンク(DL)では無線基地局(例えば、gNB:gNodeB)、上りリンク(UL)ではユーザ端末(例えば、UE:User Equipment)であってもよい。また、送信装置からのデータを受信する受信装置は、例えば、DLではユーザ端末、ULでは無線基地局であってもよい。 The transmission apparatus may be, for example, a radio base station (for example, gNB: gNodeB) in the downlink (DL) and a user terminal (for example, UE: User Equipment) in the uplink (UL). Further, the receiving device that receives data from the transmitting device may be, for example, a user terminal in DL and a radio base station in UL.
 既存のLTEシステムのLAAでは、当該送信装置は、リスニングにおいて他の装置の送信がないこと(アイドル状態)が検出されてから所定期間(例えば、直後又はバックオフの期間)後にデータ送信を開始する。しかしながら、当該リスニングの結果に基づいて送信装置がデータを送信する場合であっても、上記隠れ端末が存在する結果、受信装置におけるデータの衝突を回避できないおそれがある。 In the LAA of the existing LTE system, the transmitting apparatus starts data transmission after a predetermined period (for example, immediately after or a back-off period) after detecting that there is no transmission of other apparatuses (idle state) in listening. . However, even if the transmission apparatus transmits data based on the listening result, there is a possibility that data collision in the reception apparatus cannot be avoided as a result of the presence of the hidden terminal.
 このため、将来のLAAシステム(例えば、Rel.15以降、5G、5G+又はNR等ともいう)では、受信装置におけるデータの衝突の回避率を向上させるため、上述のRTS/CTSをサポートすることが検討されている。将来のLAAシステムは、NR-U(Unlicensed)システム、NR LAAシステムなどと呼ばれてもよい。 For this reason, in the future LAA system (for example, also referred to as 5G, 5G +, or NR after Rel.15), the above-described RTS / CTS may be supported in order to improve the data collision avoidance rate in the receiving apparatus. It is being considered. Future LAA systems may be referred to as NR-U (Unlicensed) systems, NR LAA systems, and the like.
 図3は、将来のLAAシステムにおけるRTS/CTSの一例を示す図である。図3に示すように、RTS/CTSをサポートする将来のLAAシステムでは、送信装置(無線基地局)が受信装置(ユーザ端末)に対する下りデータの送信前に、アンライセンスバンドのキャリア(アンライセンスキャリア、アンライセンスCC、LAA SCell(Secondary Cell)等ともいう)でRTSを送信することが想定される。 FIG. 3 is a diagram showing an example of RTS / CTS in a future LAA system. As shown in FIG. 3, in a future LAA system that supports RTS / CTS, a transmission device (wireless base station) transmits an unlicensed band carrier (unlicensed carrier) before transmitting downlink data to the reception device (user terminal). It is assumed that the RTS is transmitted by an unlicensed CC, LAA SCell (Secondary Cell) or the like).
 当該将来のLAAシステムにおいて上りのアンライセンスCCをサポートする場合、図3に示すように、下りデータの受信装置(ユーザ端末)が当該上りのアンライセンスCCを用いてCTSを送信することが考えられる。上りのアンライセンスCCの代わりに、TDD(Time Division Duplex、unpaired spectrum)のアンライセンスCCが用いられてもよい。 When the future unlicensed CC is supported in the future LAA system, as shown in FIG. 3, it is conceivable that the downlink data receiving device (user terminal) transmits the CTS using the uplink unlicensed CC. . Instead of the upstream unlicensed CC, an unlicensed CC of TDD (Time Division Duplex, unpaired spectrum) may be used.
<COTシェアリング(分配)>
 NR-Uシステムにおいて、gNB(無線基地局)又はUEが獲得した送信機会(Transmission Opportunity:TxOP)の時間(COT:Channel Occupancy Time)を複数ノードにおいて分配(share)することが検討されている。ノードは、UE、無線基地局のいずれかであってもよいし、他システムのノードであってもよい。
<COT sharing (distribution)>
In the NR-U system, it has been studied to share the transmission opportunity (TxOP) time (COT: Channel Occupancy Time) acquired by gNB (radio base station) or UE among a plurality of nodes. The node may be either a UE or a radio base station, or a node of another system.
 COTシェアリングの基本の形態として、DL及びULが1対1に対向すること(例えば、ループバック)を想定してもよい。DL及びULが1対多である場合に、COTをシェアすることが可能であってもよい。 As a basic form of COT sharing, it may be assumed that DL and UL face each other on a one-to-one basis (for example, loopback). It may be possible to share COT when DL and UL are one-to-many.
 ノードAがアンライセンスCCにおいてLBTを行い、LBT結果がアイドルであることによって、COTの時間長を有するTxOPを獲得した場合、ノードAは、アンライセンスCCにおいてデータ送信を行う。以下、TxOPを獲得するためのLBTを初期LBT(initial-LBT:I-LBT)と呼ぶ。TxOPのうち、ノードAによる送信の残りの期間は、ノードAからの信号を受信できる他のノード(ノードB、C)に割り当てられてもよい。 When the node A performs LBT in the unlicensed CC and the LBT result is idle, and acquires TxOP having the COT time length, the node A performs data transmission in the unlicensed CC. Hereinafter, the LBT for acquiring TxOP is referred to as an initial LBT (initial-LBT: I-LBT). Of the TxOP, the remaining period of transmission by the node A may be allocated to other nodes (nodes B and C) that can receive the signal from the node A.
 ギャップが16μsよりも短い場合、TxOP内においてno-LBT送信(送信前にLBTを必要としないデータ送信)を許容してもよい。このような短いギャップを実現するために、TxOP内の幾つかのデータ送信がスケジュールされることが好ましい。例えば、ノードAが無線基地局であり、ノードB、CがUEである場合、ノードAによるデータ送信が、ノードB、Cのデータ送信のスケジューリング(割り当て)を示す下り制御情報を送信してもよい。また、ノードA、B、Cによるデータ送信がスケジュールされ、TxOPより前に、スケジューリングを示す情報が送信されてもよい。 If the gap is shorter than 16 μs, no-LBT transmission (data transmission that does not require LBT before transmission) may be allowed in TxOP. In order to achieve such a short gap, several data transmissions within the TxOP are preferably scheduled. For example, when node A is a radio base station and nodes B and C are UEs, data transmission by node A may transmit downlink control information indicating scheduling (allocation) of data transmission of nodes B and C. Good. In addition, data transmission by the nodes A, B, and C may be scheduled, and information indicating scheduling may be transmitted before TxOP.
 例えば、図4Aに示すように、TxOP内においてノードAによるデータ送信が終了すると、ノードBは、ギャップの後にLBT無しでデータ送信を行う。ノードBによるデータ送信が終了すると、ノードCは、ギャップの後にLBT無しでデータ送信を行う。 For example, as shown in FIG. 4A, when the data transmission by the node A is completed in the TxOP, the node B performs the data transmission without the LBT after the gap. When data transmission by the node B is completed, the node C performs data transmission without LBT after the gap.
 ギャップが16μs以上である場合、TxOP内においてLBT送信(送信前にLBTを必要とするデータ送信、LBT結果がアイドルである場合にデータを送信する)を行ってもよい。ギャップが16μsよりも短い場合であっても、LBTを必要としてもよい。 When the gap is 16 μs or more, LBT transmission (data transmission that requires LBT before transmission, or data transmission when the LBT result is idle) may be performed in TxOP. Even when the gap is shorter than 16 μs, LBT may be required.
 例えば、図4Bに示すように、TxOP内においてノードAによるデータ送信が終了すると、ノードBは、ギャップ内にLBTを行い、LBT結果がアイドルである場合、データ送信を行う。ノードBによるデータ送信が終了すると、ノードCは、ギャップ内にLBTを行い、LBT結果がアイドルである場合、データ送信を行う。 For example, as shown in FIG. 4B, when data transmission by the node A is completed in the TxOP, the node B performs LBT in the gap, and performs data transmission when the LBT result is idle. When data transmission by the node B is completed, the node C performs LBT within the gap, and performs data transmission when the LBT result is idle.
 I-LBTとして、受信機補助LBT(receiver assisted LBT)又はLTE LAAにおけるLBTを行ってもよい。この場合、LTE LAAのLBTはカテゴリ4であることが好ましい。 As I-LBT, receiver-assisted LBT (receiver assisted LBT) or LBT in LTE LAA may be performed. In this case, the LTE LAA LBT is preferably category 4.
 LTE LAAにおけるLBTに対し、次の4つのカテゴリが規定されている。 The following four categories are defined for LBT in LTE LAA.
・カテゴリ1:LBTを行わずに送信する。
・カテゴリ2:送信前に固定のセンシング時間においてキャリアセンスを行い、チャネルが空いている場合に送信する。
・カテゴリ3:送信前に所定の範囲内からランダムに値(ランダムバックオフ)を生成し、固定のセンシングスロット時間におけるキャリアセンスを繰り返し行い、当該値のスロットにわたってチャネルが空いていることが確認できた場合に送信する。
・カテゴリ4:送信前に所定の範囲内からランダムに値(ランダムバックオフ)を生成し、固定のセンシングスロット時間におけるキャリアセンスを繰り返し行い、当該値のスロットにわたってチャネルが空いていることが確認できた場合に送信する。ランダムバックオフ値の範囲(contention window size)は、他システムの通信との衝突による通信失敗状況に応じて変化させる。
• Category 1: Send without performing LBT.
Category 2: Performs carrier sensing at a fixed sensing time before transmission, and transmits when the channel is free.
・ Category 3: A value (random backoff) is randomly generated from within a predetermined range before transmission, and carrier sensing in a fixed sensing slot time is repeated, and it can be confirmed that the channel is free over the slot of the value. Sent when
・ Category 4: Generates a value (random backoff) randomly from within a predetermined range before transmission, repeats carrier sensing in a fixed sensing slot time, and confirms that the channel is free over the slot of the value Sent when The range of random back-off value (contention window size) is changed according to the communication failure situation due to collision with communication of other systems.
 TxOP中のLBTは、ワンショットLBT(ショートLBT:短い固定時間のキャリアセンスを行う)を行ってもよいし、LTE LAAにおけるLBTを行ってもよい。ギャップが16μsより短い場合にLBT無しでデータ送信を行ってもよい。 The LBT in TxOP may perform a one-shot LBT (short LBT: perform carrier sense for a short fixed time) or may perform an LBT in LTE LAA. If the gap is shorter than 16 μs, data transmission may be performed without LBT.
 COTシェアリングにおいて、I-LBT後にTxOPを獲得したノードAがデータ送信を行っている間に、隠れ端末等の要因によって送信中のノードAに干渉が及ぶ可能性がある。隠れ端末による干渉であった場合、TxOPを獲得したノードAからの信号を受信していたノードB又はCはノードAが干渉を受けていることを検知できないため、ノードB又はCはLBTを行ってLBT結果がアイドル(idle)である場合にノードA宛のデータ送信を開始する、又はノードB又はCはLBTを行わずにデータ送信を開始する。しかし、ノードAはビジー(busy)であるため、ノードB又はCからのデータを受信できない。 In COT sharing, while node A that has acquired TxOP after I-LBT is transmitting data, there is a possibility that interference may occur on node A that is transmitting due to factors such as hidden terminals. In the case of interference due to a hidden terminal, since the node B or C that has received the signal from the node A that has acquired TxOP cannot detect that the node A is receiving interference, the node B or C performs LBT. When the LBT result is idle, the node A starts data transmission to the node A, or the node B or C starts data transmission without performing the LBT. However, since node A is busy, it cannot receive data from node B or C.
 この問題を解決するために、TxOP中のLBTを受信機補助LBTとすることが考えられる。しかしながら、オーバーヘッドが大きくなり、送信元(送信機器)を切り替えることが頻発することが考えられる。1つのTxOP内において送信元を切り替えると、空白期間(ギャップ)が生じる。ギャップはオーバーヘッドになる。また、ギャップは、周囲の他システムにとってアイドルの状態として検知され、当該システムが先に通信を開始されることによって、送信機会を失う可能性が高まる。 In order to solve this problem, it can be considered that the LBT in the TxOP is used as a receiver auxiliary LBT. However, it is conceivable that the overhead becomes large and the transmission source (transmission device) is frequently switched. When the transmission source is switched within one TxOP, a blank period (gap) occurs. The gap becomes overhead. Further, the gap is detected as an idle state with respect to other surrounding systems, and the possibility of losing a transmission opportunity increases when the system starts communication first.
 そこで、本発明者らは、TxOPのギャップにおけるキャリアセンスに基づいてデータ送信を制御することを着想した。 Therefore, the present inventors have conceived of controlling data transmission based on carrier sense in the gap of TxOP.
 以下、本実施の形態について添付図面を参照して詳細に説明する。本実施の形態において、アンライセンスCCは、第1の周波数帯のキャリア(セル、CC)、アンライセンスバンド(アンライセンススペクトラム)のキャリア(セル、CC)、LAA SCell、LAAセル、セカンダリセル(SCell:Secondary Cell)等と読み替えられてもよい。また、ライセンスCCは、第2の周波数帯のキャリア(セル、CC)、ライセンスバンド(ライセンススペクトラム)のキャリア(セル、CC)、プライマリセル(PCell:Primary Cell)、SCell等と読み替えられてもよい。 Hereinafter, the present embodiment will be described in detail with reference to the accompanying drawings. In the present embodiment, the unlicensed CC is a carrier (cell, CC) of the first frequency band, a carrier (cell, CC) of the unlicensed band (unlicensed spectrum), LAA SCell, LAA cell, secondary cell (SCell). : Secondary Cell), etc. In addition, the license CC may be read as a second frequency band carrier (cell, CC), a license band (license spectrum) carrier (cell, CC), a primary cell (PCell: Primary Cell), an SCell, or the like. .
 また、本実施の形態において、アンライセンスCCは、LTEベースであってもよいし、NRベース(NR unlicensed CC)であってもよい。同様に、ライセンスCCも、LTEベースであってもよいし、NRベースであってもよい。本実施の形態のLAAシステム(無線通信システム)では、アンライセンスCCとライセンスCCは、LTE又はNRのいずれかのシステムでキャリアアグリゲーション(CA)又はデュアルコネクティビティ(DC)されてもよいし(スタンドアローン)、LTE及びNRのシステム間でCA又はDCされてもよい(非スタンドアローン)。 In this embodiment, the unlicensed CC may be LTE-based or NR-based (NR unlicensed CC). Similarly, the license CC may be LTE-based or NR-based. In the LAA system (wireless communication system) of this embodiment, the unlicensed CC and license CC may be carrier aggregation (CA) or dual connectivity (DC) in either LTE or NR system (standalone) ), May be CA or DC between LTE and NR systems (non-standalone).
 将来のLAAシステムは、NR-U(Unlicensed)システムと呼ばれてもよい。LAAシステムは、第1無線通信規格(例えば、NR、LTEなど)に準拠(サポート)してもよい。 The future LAA system may be called an NR-U (Unlicensed) system. The LAA system may be compliant (supported) with a first wireless communication standard (eg, NR, LTE, etc.).
 このLAAシステムと共存する他のシステム(共存システム、共存装置)、他の無線通信装置(共存装置)は、Wi-Fi、Bluetooth、WiGig(登録商標)、無線LAN(Local Area Network)、IEEE802.11など、第1無線通信規格と異なる第2無線通信規格に準拠(サポート)していてもよい。共存システムは、LAAシステムからの干渉を受けるシステムであってもよいし、LAAシステムへ干渉を与えるシステムであってもよい。共存システムは、RTS及びCTS、又は同等の送信要求信号及び受信可能信号をサポートしてもよい。 Other systems coexisting with this LAA system (coexistence system, coexistence apparatus), and other wireless communication apparatuses (coexistence apparatus) include Wi-Fi, Bluetooth, WiGig (registered trademark), wireless LAN (Local Area Network), IEEE802. 11 may be compliant (supported) with a second wireless communication standard different from the first wireless communication standard. The coexistence system may be a system that receives interference from the LAA system, or may be a system that gives interference to the LAA system. The coexistence system may support RTS and CTS, or equivalent transmission request and receivable signals.
 本開示において、ユーザ端末及び無線基地局のうち、I-LBTを行う装置(ノードA)が送信装置と呼ばれてもよい。また、ユーザ端末及び無線基地局のうち、他の装置(ノードA)が獲得した送信機会において、他の装置からのデータを受信する装置(ノードB又はC)が受信装置と呼ばれてもよい。送信装置及び受信装置によって送信されるデータは、ユーザデータ及び制御情報の少なくとも1つを含んでもよい。 In the present disclosure, an apparatus (node A) that performs I-LBT among the user terminal and the radio base station may be referred to as a transmission apparatus. In addition, among user terminals and radio base stations, a device (node B or C) that receives data from another device at a transmission opportunity acquired by another device (node A) may be referred to as a receiving device. . The data transmitted by the transmission device and the reception device may include at least one of user data and control information.
(無線通信方法)
<態様1>
 I-LBTによって送信機会(TxOP)を獲得したノードは、TxOP内の送信元を切り替えるための空白時間(ギャップ)において、キャリアセンス(例えば、LBT、ショートLBT、LTE LAA LBT)を行い、その結果がビジーである場合、TxOPにおける残りのデータ送信をキャンセル(ドロップ)してもよい。
(Wireless communication method)
<Aspect 1>
The node that has acquired the transmission opportunity (TxOP) by the I-LBT performs carrier sense (for example, LBT, short LBT, LTE LAA LBT) in the blank time (gap) for switching the transmission source in the TxOP, and the result Is busy, the remaining data transmission in TxOP may be canceled (dropped).
 TxOPを獲得したノードは、LBTの結果がビジーである場合、ノードは、自ノードによるデータ送信及び他ノードによるデータ送信の少なくとも1つをキャンセルしてもよい。 When the LBT result is busy, the node that has acquired TxOP may cancel at least one of data transmission by the own node and data transmission by another node.
 ギャップ内のショートLBTの時間は、ギャップ時間より短い。ショートLBTの時間は、I-LBTの時間より短くてもよい。 The short LBT time in the gap is shorter than the gap time. The short LBT time may be shorter than the I-LBT time.
 ノードは、次の態様1-1~1-4の動作を行ってもよい。 The node may perform the operations of the following modes 1-1 to 1-4.
《態様1-1》
 TxOPを獲得したノードは、TxOP内のギャップ内においてLBTを行う。その結果がビジーである場合のみ、当該ノードは、ビジーを示す情報(例えば、ビジー通知フレーム)をアンライセンスCCにおいて通知してもよい。
<< Aspect 1-1 >>
The node that has acquired TxOP performs LBT in the gap in TxOP. Only when the result is busy, the node may notify the busy information (for example, busy notification frame) in the unlicensed CC.
 例えば、TxOPを獲得したノードAは、TxOP内においてノードAによるデータ送信が終了すると、その後のギャップ内においてLBTを行う。 For example, the node A that has acquired TxOP performs LBT in the subsequent gap when data transmission by the node A is completed in TxOP.
 図5Aに示すように、LBT結果がビジーである場合(busy検知)、ノードAは、当該ギャップのうちLBTの残りの期間内において、ビジー通知フレームをアンライセンスCCにおいて送信する。残りのTxOPを割り当てられた他のノード(ノードB、C)は、ビジー通知フレームを受信すると、図5Bのデータ送信が割り当てられていたとしても、割り当てられたデータ送信をキャンセルする。 As shown in FIG. 5A, when the LBT result is busy (busy detection), the node A transmits a busy notification frame in the unlicensed CC within the remaining period of the LBT in the gap. When the other nodes (nodes B and C) to which the remaining TxOP is assigned receive the busy notification frame, even if the data transmission of FIG. 5B is assigned, the assigned data transmission is canceled.
 図5Bに示すように、LBT結果がアイドルである場合(idle検知)、ノードAは、ビジー通知フレームを送信しない。残りのTxOPを割り当てられた他のノード(ノードB、C)は、ノードAによるデータ送信の後に、アンライセンスCCにおいてビジー通知フレームを受信しない場合、アンライセンスCCのTxOP内において割り当てられたデータ送信を行う。 As shown in FIG. 5B, when the LBT result is idle (idle detection), the node A does not transmit a busy notification frame. If the other nodes (nodes B and C) to which the remaining TxOP is assigned do not receive the busy notification frame in the unlicensed CC after the data transmission by the node A, the data transmission assigned in the TxOP of the unlicensed CC I do.
《態様1-2》
 TxOPを獲得したノードは、TxOP内のギャップ内においてLBTを行う。当該ノードは、LBTの結果を示す情報(通知フレーム)をライセンスCCにおいて通知してもよい。通知フレームは、ビジーを示す情報(例えば、ビジー通知フレーム)又はアイドルを示す情報(例えば、アイドル通知フレーム)であってもよい。
<< Aspect 1-2 >>
The node that has acquired TxOP performs LBT in the gap in TxOP. The node may notify the information (notification frame) indicating the LBT result in the license CC. The notification frame may be information indicating busy (for example, busy notification frame) or information indicating idle (for example, idle notification frame).
 例えば、TxOPを獲得したノードAは、TxOP内においてノードAによるデータ送信が終了すると、その後のギャップ内においてLBTを行い、当該ギャップの残りの期間内において、通知フレームをライセンスCCにおいて送信する。 For example, when data transmission by the node A is completed in the TxOP, the node A that has acquired TxOP performs LBT in the subsequent gap, and transmits a notification frame in the license CC within the remaining period of the gap.
 図6Aに示すように、LBT結果がビジーである場合(busy検知)、ノードAは、ビジー通知フレームをライセンスCCにおいて送信する。残りのTxOPを割り当てられた他のノード(ノードB、C)は、ビジー通知フレームを受信すると、図6Bのデータ送信が割り当てられていたとしても、割り当てられたデータ送信をキャンセルする。 As shown in FIG. 6A, when the LBT result is busy (busy detection), the node A transmits a busy notification frame in the license CC. When receiving the busy notification frame, the other nodes (nodes B and C) to which the remaining TxOPs are assigned cancel the assigned data transmission even if the data transmission of FIG. 6B is assigned.
 図6Bに示すように、LBT結果がアイドルである場合(idle検知)、ノードAは、アイドル通知フレームをライセンスCCにおいて送信する。残りのTxOPを割り当てられた他のノード(ノードB、C)は、アイドル通知フレームを受信すると、アンライセンスCCのTxOP内において割り当てられたデータ送信を行う。 As shown in FIG. 6B, when the LBT result is idle (idle detection), the node A transmits an idle notification frame in the license CC. When the other nodes (nodes B and C) to which the remaining TxOP is assigned receive the idle notification frame, the other nodes (nodes B and C) perform data transmission assigned in the TxOP of the unlicensed CC.
 なお、ノードB、Cは、ノードAによるデータ送信の後に、ライセンスCCにおいて通知フレームを受信しない場合、割り当てられたデータ送信をキャンセルしてもよい。或いは、ノードB、Cは、ノードAによるデータ送信の後に、ライセンスCCにおいて通知フレームを受信しない場合、アンライセンスCCのTxOP内において割り当てられたデータ送信を行ってもよい。 Note that the nodes B and C may cancel the assigned data transmission when the license CC does not receive the notification frame after the data transmission by the node A. Alternatively, when the nodes B and C do not receive the notification frame in the license CC after the data transmission by the node A, the nodes B and C may perform the data transmission allocated in the TxOP of the unlicensed CC.
《態様1-3》
 TxOPを獲得したノードは、TxOP内のギャップ内においてLBTを行う。当該ノードは、通知フレームをアンライセンスCCにおいて通知してもよい。
<< Aspect 1-3 >>
The node that has acquired TxOP performs LBT in the gap in TxOP. The node may notify the notification frame in the unlicensed CC.
 例えば、TxOPを獲得したノードAは、TxOP内においてノードAによるデータ送信が終了すると、その後のギャップ内においてLBTを行い、当該ギャップの残りの期間内において、通知フレームをアンライセンスCCにおいて送信する。 For example, when data transmission by the node A is completed in the TxOP, the node A that has acquired the TxOP performs LBT in the subsequent gap, and transmits a notification frame in the unlicensed CC within the remaining period of the gap.
 図6Aに示すように、LBT結果がビジーである場合、ノードAは、ビジー通知フレームをアンライセンスCCにおいて送信する。残りのTxOPを割り当てられた他のノード(ノードB、C)は、ビジー通知フレームを受信すると、割り当てられたデータ送信をキャンセルする。 As shown in FIG. 6A, when the LBT result is busy, the node A transmits a busy notification frame in the unlicensed CC. When the other nodes (nodes B and C) to which the remaining TxOPs are assigned receive the busy notification frame, they cancel the assigned data transmission.
 図6Bに示すように、LBT結果がアイドルである場合、ノードAは、アイドル通知フレームをアンライセンスCCにおいて送信する。残りのTxOPを割り当てられた他のノード(ノードB、C)は、アイドル通知フレームを受信すると、アンライセンスCCのTxOP内において割り当てられたデータ送信を行う。 As shown in FIG. 6B, when the LBT result is idle, the node A transmits an idle notification frame in the unlicensed CC. When the other nodes (nodes B and C) to which the remaining TxOP is assigned receive the idle notification frame, the other nodes (nodes B and C) perform data transmission assigned in the TxOP of the unlicensed CC.
 なお、ノードB、Cは、ノードAによるデータ送信の後に、アンライセンスCCにおいて通知フレームを受信しない場合、割り当てられたデータ送信をキャンセルしてもよい。或いは、ノードB、Cは、ノードAによるデータ送信の後に、アンライセンスCCにおいて通知フレームを受信しない場合、アンライセンスCCのTxOP内において割り当てられたデータ送信を行ってもよい。 Note that the nodes B and C may cancel the assigned data transmission if the notification frame is not received in the unlicensed CC after the data transmission by the node A. Alternatively, when the nodes B and C do not receive the notification frame in the unlicensed CC after the data transmission by the node A, the nodes B and C may perform the data transmission allocated in the TxOP of the unlicensed CC.
《態様1-4》
 TxOPを獲得したノードは、TxOP内のギャップ内においてLBTを行う。その結果がビジーである場合のみ、当該ノードは、ビジー通知フレームをライセンスCCにおいて通知してもよい。
<< Aspect 1-4 >>
The node that has acquired TxOP performs LBT in the gap in TxOP. Only when the result is busy, the node may notify the busy notification frame in the license CC.
 例えば、TxOPを獲得したノードAは、TxOP内においてノードAによるデータ送信が終了すると、その後のギャップ内においてLBTを行う。 For example, the node A that has acquired TxOP performs LBT in the subsequent gap when data transmission by the node A is completed in TxOP.
 図5Aに示すように、LBT結果がビジーである場合、ノードAは、当該ギャップのうちLBTの残りの期間内において、ビジー通知フレームをライセンスCCにおいて送信する。残りのTxOPを割り当てられた他のノード(ノードB、C)は、ビジー通知フレームを受信すると、割り当てられたデータ送信をキャンセルする。 As shown in FIG. 5A, when the LBT result is busy, the node A transmits a busy notification frame in the license CC within the remaining period of the LBT in the gap. When the other nodes (nodes B and C) to which the remaining TxOPs are assigned receive the busy notification frame, they cancel the assigned data transmission.
 図5Bに示すように、LBT結果がアイドルである場合、ノードAは、ビジー通知フレームを送信しない。残りのTxOPを割り当てられた他のノード(ノードB、C)は、ノードAによるデータ送信の後に、ライセンスCCにおいてビジー通知フレームを受信しない場合、アンライセンスCCのTxOP内において割り当てられたデータ送信を行う。 As shown in FIG. 5B, when the LBT result is idle, the node A does not transmit a busy notification frame. If the other nodes (nodes B and C) to which the remaining TxOP is assigned do not receive the busy notification frame in the license CC after the data transmission by the node A, the data transmission assigned in the TxOP of the unlicensed CC is performed. Do.
 ビジー通知フレームは、データ送信のキャンセルを指示する情報であってもよいし、変更されたデータ送信の割り当てを示してもよいし、データ送信の無効化(deactivation、release)を示してもよい。 The busy notification frame may be information instructing cancellation of data transmission, may indicate changed data transmission allocation, or may indicate data transmission deactivation (release).
 アイドル通知フレームは、他ノードのデータ送信の割り当てを示してもよいし、データ送信の有効化(activation)を示してもよい。 The idle notification frame may indicate allocation of data transmission of another node or may indicate activation of data transmission.
 通知フレームは、下り制御チャネル(例えば、PDCCH、DCI)、又はスケジュールされた下りチャネル(例えば、PDSCH)、又はUE個別の上りチャネル(例えば、PUCCH)、又は動的グラント(dynamic grant、DCI)によってスケジュールされた上りチャネル(例えば、PUSCH)、又は動的グラントによってスケジュールされない上りチャネル(例えば、PUSCH with configured grant、グラントフリーPUSCH)によって送信されてもよい。 The notification frame is transmitted by a downlink control channel (eg, PDCCH, DCI), a scheduled downlink channel (eg, PDSCH), or a UE-specific uplink channel (eg, PUCCH), or a dynamic grant (DCI). It may be transmitted by a scheduled uplink channel (eg, PUSCH) or an uplink channel that is not scheduled by dynamic grant (eg, PUSCH with configured grant, grant-free PUSCH).
 通知フレームは、送信元の識別子(例えば、MACアドレス、UE ID、セルID)を含んでもよいし、送信先の識別子(例えば、MACアドレス、UE ID、セルID)を含んでもよいし、データ送信の割り当て(例えば、時間リソース)を示してもよい。 The notification frame may include a transmission source identifier (for example, MAC address, UE ID, cell ID), a transmission destination identifier (for example, MAC address, UE ID, cell ID), or data transmission. Assignment (eg, time resource).
 図5B、図6Bの少なくとも1つにおいて、ギャップ内において、ノードAによるLBT、ノードAによるアイドル通知フレームの送信の後、ノードB、Cは、LBTを行い、当該LBT結果がアイドルである場合、ギャップの後にデータ送信を行ってもよい。また、図5B、図6Bの少なくとも1つにおいて、ギャップ内において、ノードAによるLBT、ノードAによるアイドル通知フレームの送信の後、ノードB、Cは、LBTを行わず、ギャップの後にデータ送信を行ってもよい。 In at least one of FIG. 5B and FIG. 6B, after transmission of the LBT by the node A and the idle notification frame by the node A in the gap, the nodes B and C perform the LBT, and the LBT result is idle, Data transmission may be performed after the gap. Also, in at least one of FIGS. 5B and 6B, after transmission of the LBT by node A and the idle notification frame by node A in the gap, nodes B and C do not perform LBT and transmit data after the gap. You may go.
 以上の態様1によれば、信号の衝突による無線リソースのロスを低減し、リソースの利用効率を高めることができる。 According to the above aspect 1, it is possible to reduce loss of radio resources due to signal collisions and increase resource utilization efficiency.
<態様2>
 I-LBTによって送信機会(TxOP)を獲得したノードは、TxOP内の送信元を切り替えるための空白時間(ギャップ)において、キャリアセンス(例えば、ショートLBT、LTE LAA LBT)を行い、その結果がビジーである場合、TxOPの残りの期間において、他のノードのデータ送信をキャンセル(ドロップ)し、データ送信を行ってもよい。
<Aspect 2>
The node that has acquired the transmission opportunity (TxOP) by I-LBT performs carrier sense (for example, short LBT, LTE LAA LBT) in the blank time (gap) for switching the transmission source in TxOP, and the result is busy. In this case, data transmission of other nodes may be canceled (dropped) in the remaining period of TxOP.
 ノードは、次の態様2-1~2-4の動作を行ってもよい。 The node may perform the operations of the following modes 2-1 to 2-4.
《態様2-1》
 TxOPを獲得したノードは、TxOP内のギャップ内においてLBTを行う。その結果がビジーである場合のみ、当該ノードは、ビジーを示す情報をアンライセンスCCにおいて通知してもよい。
<< Aspect 2-1 >>
The node that has acquired TxOP performs LBT in the gap in TxOP. Only when the result is busy, the node may notify the information indicating busy in the unlicensed CC.
 例えば、TxOPを獲得したノードAは、TxOP内においてノードAによるデータ送信が終了すると、その後のギャップ内においてLBTを行う。 For example, the node A that has acquired TxOP performs LBT in the subsequent gap when data transmission by the node A is completed in TxOP.
 図7に示すように、LBT結果がビジーである場合、ノードAは、当該ギャップのうちLBTの残りの期間内において、ビジーを示す情報をアンライセンスCCにおいて送信する。残りのTxOPを割り当てられた他のノード(ノードB、C)は、ビジーを示す情報を受信すると、図5B、図6Bと同様のデータ送信が割り当てられていたとしても、割り当てられたデータ送信をキャンセルする。 As shown in FIG. 7, when the LBT result is busy, the node A transmits information indicating busy in the unlicensed CC within the remaining period of the LBT in the gap. When the other nodes (nodes B and C) to which the remaining TxOPs are assigned receive the information indicating busy, even if data transmissions similar to those in FIGS. 5B and 6B are assigned, Cancel.
 その後、ノードAは、アンライセンスCCの残りのTxOPにおいてデータ送信を行う。 Thereafter, the node A transmits data in the remaining TxOP of the unlicensed CC.
 LBT結果がアイドルである場合、態様1-1(例えば、図5B)と同様である。 When the LBT result is idle, it is the same as in Embodiment 1-1 (for example, FIG. 5B).
《態様2-2》
 TxOPを獲得したノードは、TxOP内のギャップ内においてLBTを行う。当該ノードは、LBTの結果を示す情報をライセンスCCにおいて通知してもよい。
<< Aspect 2-2 >>
The node that has acquired TxOP performs LBT in the gap in TxOP. The node may notify the license CC of information indicating the LBT result.
 例えば、TxOPを獲得したノードAは、TxOP内においてノードAによるデータ送信が終了すると、その後のギャップ内においてLBTを行い、当該ギャップの残りの期間内において、LBT結果を示す情報をライセンスCCにおいて送信する。 For example, when the node A that has acquired TxOP finishes data transmission by the node A within the TxOP, the node A performs LBT in the subsequent gap, and transmits information indicating the LBT result in the license CC within the remaining period of the gap. To do.
 図7に示すように、LBT結果がビジーである場合、ノードAは、ビジーを示す情報をライセンスCCにおいて送信する。残りのTxOPを割り当てられた他のノード(ノードB、C)は、ビジーを示す情報を受信すると、割り当てられたデータ送信をキャンセルする。 As shown in FIG. 7, when the LBT result is busy, the node A transmits information indicating busy in the license CC. When the other nodes (nodes B and C) to which the remaining TxOPs are assigned receive information indicating busy, they cancel the assigned data transmission.
 その後、ノードAは、アンライセンスCCの残りのTxOPにおいてデータ送信を行う。 Thereafter, the node A transmits data in the remaining TxOP of the unlicensed CC.
 LBT結果がアイドルである場合、態様1-2(例えば、図6B)と同様である。 When the LBT result is idle, it is the same as in the aspect 1-2 (for example, FIG. 6B).
《態様2-3》
 TxOPを獲得したノードは、TxOP内のギャップ内においてLBTを行う。当該ノードは、LBTの結果を示す情報をアンライセンスCCにおいて通知してもよい。
<< Aspect 2-3 >>
The node that has acquired TxOP performs LBT in the gap in TxOP. The node may notify the information indicating the LBT result in the unlicensed CC.
 例えば、TxOPを獲得したノードAは、TxOP内においてノードAによるデータ送信が終了すると、その後のギャップ内においてLBTを行い、当該ギャップの残りの期間内において、LBT結果を示す情報をアンライセンスCCにおいて送信する。 For example, when node A that has acquired TxOP finishes data transmission by node A within TxOP, it performs LBT in the subsequent gap, and in the remaining period of the gap, information indicating the LBT result is displayed in the unlicensed CC. Send.
 図7に示すように、LBT結果がビジーである場合、ノードAは、ビジーを示す情報をアンライセンスCCにおいて送信する。残りのTxOPを割り当てられた他のノード(ノードB、C)は、ビジーを示す情報を受信すると、割り当てられたデータ送信をキャンセルする。 As shown in FIG. 7, when the LBT result is busy, the node A transmits information indicating busy in the unlicensed CC. When the other nodes (nodes B and C) to which the remaining TxOPs are assigned receive information indicating busy, they cancel the assigned data transmission.
 その後、ノードAは、アンライセンスCCの残りのTxOPにおいてデータ送信を行う。 Thereafter, the node A transmits data in the remaining TxOP of the unlicensed CC.
 LBT結果がアイドルである場合、態様1-3(例えば、図6B)と同様である。 When the LBT result is idle, it is the same as the aspect 1-3 (for example, FIG. 6B).
《態様2-4》
 TxOPを獲得したノードは、TxOP内のギャップ内においてLBTを行う。その結果がビジーである場合のみ、当該ノードは、ビジーを示す情報をライセンスCCにおいて通知してもよい。
<< Aspect 2-4 >>
The node that has acquired TxOP performs LBT in the gap in TxOP. Only when the result is busy, the node may notify information indicating busy in the license CC.
 例えば、TxOPを獲得したノードAは、TxOP内においてノードAによるデータ送信が終了すると、その後のギャップ内においてLBTを行う。 For example, the node A that has acquired TxOP performs LBT in the subsequent gap when data transmission by the node A is completed in TxOP.
 図7に示すように、LBT結果がビジーである場合、ノードAは、当該ギャップのうちLBTの残りの期間内において、ビジーを示す情報をライセンスCCにおいて送信する。残りのTxOPを割り当てられた他のノード(ノードB、C)は、ビジーを示す情報を受信すると、割り当てられたデータ送信をキャンセルする。 As shown in FIG. 7, when the LBT result is busy, the node A transmits information indicating busy in the license CC within the remaining period of the LBT in the gap. When the other nodes (nodes B and C) to which the remaining TxOPs are assigned receive information indicating busy, they cancel the assigned data transmission.
 その後、ノードAは、アンライセンスCCの残りのTxOPにおいてデータ送信を行う。 Thereafter, the node A transmits data in the remaining TxOP of the unlicensed CC.
 LBT結果がアイドルである場合、態様1-4(例えば、図5B)と同様である。 When the LBT result is idle, it is the same as the aspect 1-4 (for example, FIG. 5B).
 以上の態様2によれば、信号の衝突による無線リソースのロスを低減し、リソースの利用効率を高めることができる。また、態様1に比べて、ノードAによるデータ送信を優先することができる。 According to the above aspect 2, it is possible to reduce the loss of radio resources due to signal collision and increase the resource utilization efficiency. In addition, data transmission by the node A can be prioritized compared to the mode 1.
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the present embodiment will be described. In this radio communication system, the radio communication method according to each of the above aspects is applied. In addition, the radio | wireless communication method which concerns on each said aspect may be applied independently, respectively, and may be applied in combination.
 図8は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)、NR(New Rat)等と呼ばれても良い。 FIG. 8 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment. In the radio communication system 1, carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do. The wireless communication system 1 may be called SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), NR (New Rat), or the like.
 この図に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。セル間で異なるニューメロロジーが適用される構成としてもよい。なお、ニューメロロジーとは、あるRATにおける信号のデザインや、RATのデザインを特徴付ける通信パラメータのセットのことをいう。 The radio communication system 1 shown in this figure includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a to 12c that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. . Moreover, the user terminal 20 is arrange | positioned at the macrocell C1 and each small cell C2. It is good also as a structure to which different neurology is applied between cells. Numerology refers to a signal design in a certain RAT and a set of communication parameters that characterize the RAT design.
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、2個以上のCC)を用いてCA又はDCを適用することができる。また、ユーザ端末は、複数のセルとしてライセンスバンドCCとアンライセンスバンドCCを利用することができる。なお、複数のセルのいずれかに短縮TTIを適用するTDDキャリアが含まれる構成とすることができる。 The user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, two or more CCs). Further, the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells. In addition, it can be set as the structure by which the TDD carrier which applies shortening TTI is contained in either of several cells.
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrier等と呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHz、30~70GHz等)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。 Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier). On the other hand, a carrier having a wide bandwidth in a relatively high frequency band (for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.) may be used between the user terminal 20 and the wireless base station 12, or wirelessly. The same carrier as that between the base station 11 and the base station 11 may be used. The configuration of the frequency band used by each radio base station is not limited to this.
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース等)又は無線接続する構成とすることができる。 Between the wireless base station 11 and the wireless base station 12 (or between the two wireless base stations 12), a wired connection (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.) or a wireless connection It can be set as the structure to do.
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。 The radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30. The upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、等と呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイント等と呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。 Note that the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point or the like. Hereinafter, when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
 各ユーザ端末20は、LTE、LTE-A、NR、5G、5G+等の各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。 Each user terminal 20 is a terminal that supports various communication schemes such as LTE, LTE-A, NR, 5G, 5G +, and may include not only mobile communication terminals but also fixed communication terminals.
 無線通信システム1においては、無線アクセス方式として、下りリンク(DL)にOFDMA(直交周波数分割多元接続)が適用でき、上りリンク(UL)にSC-FDMA(シングルキャリア-周波数分割多元接続)が適用できる。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、ULでOFDMAが用いられてもよい。 In the radio communication system 1, OFDMA (Orthogonal Frequency Division Multiple Access) can be applied to the downlink (DL) and SC-FDMA (Single Carrier-Frequency Division Multiple Access) is applied to the uplink (UL) as radio access schemes. it can. OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier. SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there. The uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in the UL.
 無線通信システム1では、DLチャネルとして、各ユーザ端末20で共有される下りデータチャネル(PDSCH:Physical Downlink Shared Channel、下り共有チャネル等ともいう)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、L1/L2制御チャネル等が用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)等が伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。 In the wireless communication system 1, as DL channels, downlink data channels (PDSCH: Physical Downlink Shared Channel, also called downlink shared channels) shared by each user terminal 20, broadcast channels (PBCH: Physical Broadcast Channel), L1 / L2 A control channel or the like is used. User data, upper layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
 L1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)等を含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)等が伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認情報(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCI等の伝送に用いられる。 L1 / L2 control channels include downlink control channels (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. . Downlink control information (DCI: Downlink Control Information) including PDSCH and PUSCH scheduling information is transmitted by the PDCCH. The number of OFDM symbols used for PDCCH is transmitted by PCFICH. The HAICH transmission confirmation information (ACK / NACK) for PUSCH is transmitted by PHICH. EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like, similar to PDCCH.
 無線通信システム1では、ULチャネルとして、各ユーザ端末20で共有される上りデータチャネル(PUSCH:Physical Uplink Shared Channel、上り共有チャネル等ともいう)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)等が用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。送達確認情報(ACK/NACK)や無線品質情報(CQI)等の少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。 In the wireless communication system 1, as an UL channel, an uplink data channel (PUSCH: Physical Uplink Shared Channel, also referred to as uplink shared channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), random An access channel (PRACH: Physical Random Access Channel) or the like is used. User data and higher layer control information are transmitted by the PUSCH. Uplink control information (UCI) including at least one of delivery confirmation information (ACK / NACK) and radio quality information (CQI) is transmitted by PUSCH or PUCCH. A random access preamble for establishing connection with a cell is transmitted by the PRACH.
<無線基地局>
 図9は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。無線基地局10は、下りデータの送信装置であり、上りデータの受信装置であってもよい。
<Wireless base station>
FIG. 9 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment. The radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more. The radio base station 10 is a downlink data transmission device and may be an uplink data reception device.
 無線基地局10からユーザ端末20に送信される下りデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 Downlink data transmitted from the radio base station 10 to the user terminal 20 is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、下りデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御等のRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理等の送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、送受信部103に転送される。 In the baseband signal processing unit 104, for downlink data, PDCP (Packet Data Convergence Protocol) layer processing, user data division / combination, RLC (Radio Link Control) retransmission control and other RLC layer transmission processing, MAC (Medium Access) Control) Retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, transmission processing such as precoding processing is performed, and the transmission / reception unit 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal. The radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101. The transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which is described based on common recognition in the technical field according to the present invention. In addition, the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, for the upstream signal, the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102. The transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。 The baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106. The call processing unit 105 performs call processing such as communication channel setting and release, status management of the radio base station 10, and radio resource management.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. The transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
 なお、送受信部103は、下り信号(例えば、下り制御信号(下り制御チャネル)、下りデータ信号(下りデータチャネル、下り共有チャネル)、下り参照信号(DM-RS、CSI-RS等)、ディスカバリ信号、同期信号、ブロードキャスト信号等)を送信し、上り信号(例えば、上り制御信号(上り制御チャネル)、上りデータ信号(上りデータチャネル、上り共有チャネル)、上り参照信号等)を受信する。 The transmission / reception unit 103 transmits a downlink signal (eg, downlink control signal (downlink control channel), downlink data signal (downlink data channel, downlink shared channel), downlink reference signal (DM-RS, CSI-RS, etc.), discovery signal, etc. , Synchronization signals, broadcast signals, etc.) and uplink signals (eg, uplink control signals (uplink control channels), uplink data signals (uplink data channels, uplink shared channels), uplink reference signals, etc.) are received.
 また、送受信部103は、第1無線通信規格(例えば、NR、LTE)の送信にリスニングを適用するキャリア(例えば、アンライセンスCC)において、第2無線通信規格(例えば、WiFi、WiGig、無線LANなど)に従う送信要求信号(例えば、RTS)及び受信可能信号(例えば、CTS)の少なくとも1つを受信してもよい。 In addition, the transmission / reception unit 103 uses a second wireless communication standard (for example, WiFi, WiGig, wireless LAN) in a carrier (for example, unlicensed CC) that applies listening to transmission of the first wireless communication standard (for example, NR, LTE). At least one of a transmission request signal (e.g., RTS) and a receivable signal (e.g., CTS).
 本発明の送信部及び受信部は、送受信部103及び/又は伝送路インターフェース106により構成される。 The transmission unit and reception unit of the present invention are configured by the transmission / reception unit 103 and / or the transmission path interface 106.
 図10は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、この図では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。この図に示すように、ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。 FIG. 10 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. In this figure, the functional block of the characteristic part in this embodiment is mainly shown, and the radio base station 10 is assumed to have other functional blocks necessary for radio communication. As shown in this figure, the baseband signal processing unit 104 includes at least a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
 制御部301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 301 controls the entire radio base station 10. The control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
 制御部301は、例えば、送信信号生成部302による信号の生成や、マッピング部303による信号の割り当てを制御する。また、制御部301は、受信信号処理部304による信号の受信処理や、測定部305による信号の測定を制御する。 The control unit 301 controls signal generation by the transmission signal generation unit 302 and signal allocation by the mapping unit 303, for example. The control unit 301 also controls signal reception processing by the reception signal processing unit 304 and signal measurement by the measurement unit 305.
 制御部301は、下り信号及び/又は上り信号のスケジューリング(例えば、リソース割り当て)を制御する。具体的には、制御部301は、下りデータチャネルのスケジューリング情報を含むDCI(DLアサインメント、DLグラント)、上りデータチャネルのスケジューリング情報を含むDCI(ULグラント)を生成及び送信するように、送信信号生成部302、マッピング部303、送受信部103を制御する。 The control unit 301 controls scheduling of downlink signals and / or uplink signals (for example, resource allocation). Specifically, the control unit 301 performs transmission so as to generate and transmit DCI (DL assignment, DL grant) including scheduling information of the downlink data channel and DCI (UL grant) including scheduling information of the uplink data channel. It controls the signal generation unit 302, the mapping unit 303, and the transmission / reception unit 103.
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御チャネル、下りデータチャネル、DM-RS等の下り参照信号等)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 302 generates a downlink signal (downlink reference signal such as downlink control channel, downlink data channel, DM-RS, etc.) based on an instruction from the control unit 301 and outputs it to the mapping unit 303. The transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 The mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103. The mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号等)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御チャネル、上りデータチャネル、上り参照信号等)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control channel, uplink data channel, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、受信信号処理部304は、プリアンブル、制御情報、上りデータの少なくとも一つを制御部301に出力する。また、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力する。 The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, the received signal processing unit 304 outputs at least one of a preamble, control information, and uplink data to the control unit 301. The reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 305 performs measurement on the received signal. The measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
 測定部305は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality))やチャネル状態等について測定してもよい。測定結果は、制御部301に出力されてもよい。 The measurement unit 305 may measure, for example, the received power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality)), channel state, and the like of the received signal. The measurement result may be output to the control unit 301.
 また、送受信部103(例えば、ノードAの送受信部)は、第1リスニング(例えば、I-LBT)の結果に基づく送信機会(例えば、TxOP)において第1信号(例えば、ノードAによるデータ送信)を送信してもよい。制御部301は、前記送信機会のうち前記第1信号の送信の後の期間(例えば、ギャップ)において、第2リスニング(例えば、LBT)の結果を示す情報(例えば、通知フレーム、ビジー通知フレーム、アイドル通知フレーム)の送信を制御してもよい。 In addition, the transmission / reception unit 103 (for example, the transmission / reception unit of the node A) receives the first signal (for example, data transmission by the node A) in the transmission opportunity (for example, TxOP) based on the result of the first listening (for example, I-LBT). May be sent. The control unit 301 includes information (for example, a notification frame, a busy notification frame, and the like) indicating a result of the second listening (for example, LBT) in a period (for example, a gap) after the transmission of the first signal in the transmission opportunity. The transmission of the (idle notification frame) may be controlled.
 また、前記第2リスニングの結果がビジーである場合、前記制御部301は、前記ビジーを示す前記情報の送信を制御してもよい。 In addition, when the result of the second listening is busy, the control unit 301 may control transmission of the information indicating the busy.
 また、前記第2リスニングの結果がアイドルである場合、前記制御部301は、前記送信機会のうち前記第2リスニングの後の期間において、他装置(例えば、ノードB又はC、無線基地局10、ユーザ端末20)からの第2信号の受信を制御してもよい。 In addition, when the result of the second listening is idle, the control unit 301, in a period after the second listening in the transmission opportunity, other devices (for example, Node B or C, the radio base station 10, The reception of the second signal from the user terminal 20) may be controlled.
 また、前記第2リスニングの結果がビジーである場合、前記制御部301は、前記情報の送信の後に、第3信号(例えば、図7、ビジー通知フレーム後のデータ送信)の送信を制御してもよい。 In addition, when the result of the second listening is busy, the control unit 301 controls transmission of a third signal (for example, FIG. 7, data transmission after a busy notification frame) after transmission of the information. Also good.
 また、前記第2リスニングの時間長は、前記第1リスニングの時間長よりも短くてもよい。 In addition, the time length of the second listening may be shorter than the time length of the first listening.
 また、送受信部103(例えば、ノードB又はCの送受信部)は、送信装置(例えば、ノードA、無線基地局10、ユーザ端末20)による第1リスニングの結果に基づく送信機会のうち、前記送信装置からの第1信号の送信の後の期間において、第2リスニングの結果を示す情報を受信してもよい。制御部301は、前記情報に基づいて、前記送信機会のうち前記情報の受信の後の期間において、第2信号の送信を制御してもよい。 Further, the transmission / reception unit 103 (for example, the transmission / reception unit of the node B or C) transmits the transmission among the transmission opportunities based on the result of the first listening by the transmission device (for example, the node A, the radio base station 10, and the user terminal 20). Information indicating the result of the second listening may be received in a period after transmission of the first signal from the device. The control unit 301 may control transmission of the second signal in a period after reception of the information in the transmission opportunity based on the information.
<ユーザ端末>
 図11は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。ユーザ端末20は、下りデータの受信装置であり、上りデータの送信装置であってもよい。
<User terminal>
FIG. 11 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment. The user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205. Note that the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more. The user terminal 20 is a downlink data receiving device and may be an uplink data transmitting device.
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204. The transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention. The transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理等を行う。下りデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りデータのうち、システム情報や上位レイヤ制御情報もアプリケーション部205に転送される。 The baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal. The downlink data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Of the downlink data, system information and higher layer control information are also transferred to the application unit 205.
 一方、上りデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理等が行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。 On the other hand, the uplink data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203. The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it. The radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
 なお、送受信部203は、下り信号(例えば、下り制御信号(下り制御チャネル)、下りデータ信号(下りデータチャネル、下り共有チャネル)、下り参照信号(DM-RS、CSI-RS等)、ディスカバリ信号、同期信号、報知信号等)を受信し、上り信号(例えば、上り制御信号(上り制御チャネル)、上りデータ信号(上りデータチャネル、上り共有チャネル)、上り参照信号等)を送信する。 Note that the transmission / reception unit 203 includes a downlink signal (eg, downlink control signal (downlink control channel), downlink data signal (downlink data channel, downlink shared channel), downlink reference signal (DM-RS, CSI-RS, etc.), discovery signal, etc. A synchronization signal, a broadcast signal, etc.) and an uplink signal (eg, uplink control signal (uplink control channel), uplink data signal (uplink data channel, uplink shared channel), uplink reference signal, etc.) is transmitted.
 また、送受信部203は、第1無線通信規格(例えば、NR、LTE)の送信にリスニングを適用するキャリア(例えば、アンライセンスCC)において、第2無線通信規格(例えば、WiFi、WiGig、無線LANなど)に従う送信要求信号(例えば、RTS)及び受信可能信号(例えば、CTS)の少なくとも1つを受信してもよい。 In addition, the transmission / reception unit 203 uses a second wireless communication standard (for example, WiFi, WiGig, wireless LAN) in a carrier (for example, unlicensed CC) that applies listening to transmission of the first wireless communication standard (for example, NR, LTE). At least one of a transmission request signal (e.g., RTS) and a receivable signal (e.g., CTS).
 図12は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、この図においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。この図に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。 FIG. 12 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. In this figure, the functional block of the characteristic part in the present embodiment is mainly shown, and the user terminal 20 is assumed to have other functional blocks necessary for wireless communication. As shown in this figure, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. At least.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 controls the entire user terminal 20. The control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
 制御部401は、例えば、送信信号生成部402による信号の生成や、マッピング部403による信号の割り当てを制御する。また、制御部401は、受信信号処理部404による信号の受信処理や、測定部405による信号の測定を制御する。 The control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403. The control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御チャネル、上りデータチャネル、上り参照信号等)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 402 generates an uplink signal (uplink control channel, uplink data channel, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403. The transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
 送信信号生成部402は、制御部401からの指示に基づいて上りデータチャネルを生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御チャネルにULグラントが含まれている場合に、制御部401から上りデータチャネルの生成を指示される。 The transmission signal generation unit 402 generates an uplink data channel based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data channel when a UL grant is included in the downlink control channel notified from the radio base station 10.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 The mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203. The mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号等)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御チャネル、下りデータチャネル、下り参照信号等)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。 The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (downlink control channel, downlink data channel, downlink reference signal, etc.) transmitted from the radio base station 10. The reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
 受信信号処理部404は、制御部401の指示に基づいて、下りデータチャネルの送信及び受信の少なくとも一つをスケジューリングする下り制御チャネルをブラインド復号し、当該DCIに基づいて下りデータチャネルの受信処理を行う。また、受信信号処理部404は、DM-RS又はCRSに基づいてチャネル利得を推定し、推定されたチャネル利得に基づいて、下りデータチャネルを復調する。 Based on an instruction from the control unit 401, the reception signal processing unit 404 performs blind decoding on the downlink control channel that schedules at least one of transmission and reception of the downlink data channel, and performs reception processing on the downlink data channel based on the DCI. Do. Received signal processing section 404 estimates the channel gain based on DM-RS or CRS, and demodulates the downlink data channel based on the estimated channel gain.
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCI等を、制御部401に出力する。受信信号処理部404は、データの復号結果を制御部401に出力してもよい。また、受信信号処理部404は、受信信号や、受信処理後の信号を、測定部405に出力する。 The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example. The reception signal processing unit 404 may output the data decoding result to the control unit 401. The reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 405 performs measurement on the received signal. The measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
 測定部405は、例えば、受信した信号の受信電力(例えば、RSRP)、DL受信品質(例えば、RSRQ)やチャネル状態等について測定してもよい。測定結果は、制御部401に出力されてもよい。 The measurement unit 405 may measure, for example, the received power (for example, RSRP), DL reception quality (for example, RSRQ), channel state, etc. of the received signal. The measurement result may be output to the control unit 401.
 また、送受信部203(例えば、ノードAの送受信部)は、第1リスニング(例えば、I-LBT)の結果に基づく送信機会(例えば、TxOP)において第1信号(例えば、ノードAによるデータ送信)を送信してもよい。制御部401は、前記送信機会のうち前記第1信号の送信の後の期間(例えば、ギャップ)において、第2リスニング(例えば、LBT)の結果を示す情報(例えば、通知フレーム、ビジー通知フレーム、アイドル通知フレーム)の送信を制御してもよい。 In addition, the transmission / reception unit 203 (for example, the transmission / reception unit of the node A) receives the first signal (for example, data transmission by the node A) in the transmission opportunity (for example, TxOP) based on the result of the first listening (for example, I-LBT). May be sent. The control unit 401 includes information indicating a result of the second listening (for example, LBT) (for example, a notification frame, a busy notification frame, and the like) in a period (for example, a gap) after the transmission of the first signal in the transmission opportunity. The transmission of the (idle notification frame) may be controlled.
 また、前記第2リスニングの結果がビジーである場合、前記制御部401は、前記ビジーを示す前記情報の送信を制御してもよい。 Further, when the result of the second listening is busy, the control unit 401 may control transmission of the information indicating the busy.
 また、前記第2リスニングの結果がアイドルである場合、前記制御部401は、前記送信機会のうち前記第2リスニングの後の期間において、他装置(例えば、ノードB又はC、無線基地局10、ユーザ端末20)からの第2信号の受信を制御してもよい。 In addition, when the result of the second listening is idle, the control unit 401, in a period after the second listening in the transmission opportunity, another device (for example, the node B or C, the radio base station 10, The reception of the second signal from the user terminal 20) may be controlled.
 また、前記第2リスニングの結果がビジーである場合、前記制御部401は、前記情報の送信の後に、第3信号(例えば、図7、ビジー通知フレーム後のデータ送信)の送信を制御してもよい。 In addition, when the result of the second listening is busy, the control unit 401 controls transmission of a third signal (for example, data transmission after a busy notification frame in FIG. 7) after transmission of the information. Also good.
 また、前記第2リスニングの時間長は、前記第1リスニングの時間長よりも短くてもよい。 In addition, the time length of the second listening may be shorter than the time length of the first listening.
 また、送受信部203(例えば、ノードB又はCの送受信部)は、送信装置(例えば、ノードA、無線基地局10、ユーザ端末20)による第1リスニングの結果に基づく送信機会のうち、前記送信装置からの第1信号の送信の後の期間において、第2リスニングの結果を示す情報を受信してもよい。制御部401は、前記情報に基づいて、前記送信機会のうち前記情報の受信の後の期間において、第2信号の送信を制御してもよい。 Further, the transmission / reception unit 203 (for example, the transmission / reception unit of the node B or C) transmits the transmission among the transmission opportunities based on the result of the first listening by the transmission device (for example, the node A, the radio base station 10, and the user terminal 20). Information indicating the result of the second listening may be received in a period after transmission of the first signal from the device. The control unit 401 may control transmission of the second signal in a period after reception of the information in the transmission opportunity based on the information.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。
(Hardware configuration)
In addition, the block diagram used for description of the said embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or two or more devices physically or logically separated may be directly or indirectly (for example, (Using wired, wireless, etc.) and may be implemented using these multiple devices.
 例えば、本開示の一実施形態における無線基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a wireless base station, a user terminal, and the like according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 13 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment. The wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed by one or more processors simultaneously, sequentially, or using other methods. Note that the processor 1001 may be implemented by one or more chips.
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication or controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. For example, the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 In addition, the processor 1001 reads a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be constituted by. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
Note that the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, at least one of the channel and the symbol may be a signal (signaling). The signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard. Moreover, a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, etc.
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。 Further, the radio frame may be configured by one or a plurality of periods (frames) in the time domain. Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe. Further, a subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 Furthermore, the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on the numerology.
 また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルで構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH及びPUSCHは、PDSCH/PUSCHマッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH及びPUSCHは、PDSCH/PUSCHマッピングタイプBと呼ばれてもよい。 Also, the slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot. A mini-slot may be composed of fewer symbols than slots. PDSCH and PUSCH transmitted in units of time larger than the minislot may be referred to as PDSCH / PUSCH mapping type A. The PDSCH and PUSCH transmitted using the minislot may be referred to as PDSCH / PUSCH mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol. For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot is called a TTI. May be. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. It may be. Note that a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI means, for example, a minimum time unit for scheduling in wireless communication. For example, in the LTE system, a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, a time interval (for example, the number of symbols) in which a transport block, a code block, a code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is referred to as a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe. A TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks. One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be configured by one or a plurality of resource elements (RE: Resource Element). For example, 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 Note that the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, information, parameters, and the like described in the present disclosure may be expressed using absolute values, may be expressed using relative values from predetermined values, or may be expressed using other corresponding information. May be represented. For example, the radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limited names in any way. For example, various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various channels and information elements assigned to them. The name is not limited in any way.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer. Information, signals, and the like may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using other methods. For example, information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 The physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. Further, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like. The MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of “being X”) is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false. The comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, code, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Also, software, instructions, information, etc. may be transmitted / received via a transmission medium. For example, the software uses websites using at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。 The terms “system” and “network” as used in this disclosure may be used interchangeably.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」、「部分帯域幅(BWP:Bandwidth Part)」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, “base station (BS)”, “radio base station”, “fixed station”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “ "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", Terms such as “carrier”, “component carrier”, “Bandwidth Part (BWP)” may be used interchangeably. A base station may also be called terms such as a macro cell, a small cell, a femto cell, and a pico cell.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: Remote Radio Head)) can also provide communication services. The terms “cell” or “sector” refer to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as “mobile station (MS)”, “user terminal”, “user equipment (UE)”, and “terminal” may be used interchangeably. .
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。 At least one of the base station and the mobile station may be referred to as a transmission device, a reception device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (for example, a car, an airplane, etc.), an unattended moving body (for example, a drone, an autonomous driving vehicle, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
 また、本開示における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネルは、サイドチャネルで読み替えられてもよい。 Further, the radio base station in the present disclosure may be replaced with a user terminal. For example, the communication between the radio base station and the user terminal is replaced with communication between a plurality of user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called)) For each configuration, each aspect / embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have a function that the wireless base station 10 has. In addition, words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”). For example, the uplink channel may be read as a side channel.
 同様に、本開示におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a radio base station. In this case, the wireless base station 10 may have a function that the user terminal 20 has.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by the upper node in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched according to execution. In addition, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps in an exemplary order and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, UWB (Ultra-WideBand), Bluetooth (registered trademark) The present invention may be applied to a system using other appropriate wireless communication methods, a next-generation system extended based on these, and the like. A plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 «As used in this disclosure, the phrase“ based on ”does not mean“ based only on, ”unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations can be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term “determining” as used in this disclosure may encompass a wide variety of actions. For example, “determination (decision)” includes determination, calculation, calculation, processing, derivation, investigating, looking up (eg, table, (Searching in a database or another data structure), ascertaining, etc. may be considered to be “determining”.
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be "determining".
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Also, “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, and the like.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms “connected”, “coupled”, or any variation thereof, is any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., as well as some non-limiting and non-inclusive examples, radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) region, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。 In the present disclosure, the term “A and B are different” may mean “A and B are different from each other”. Terms such as “leave” and “coupled” may be interpreted in a similar manner.
 本開示又は請求の範囲において、「含む(include)」、「含んでいる(including)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where the term “include”, “including”, and variations thereof are used in this disclosure or in the claims, these terms are similar to the term “comprising”. Intended to be comprehensive. Further, the term “or” as used in the present disclosure or the claims is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, for example, when articles are added by translation such as a, an, and the in English, the present disclosure may include plural nouns that follow these articles.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious for those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for illustrative purposes and does not give any restrictive meaning to the invention according to the present disclosure.
 本出願は、2018年5月24日出願の特願2018-111439に基づく。この内容は、全てここに含めておく。 This application is based on Japanese Patent Application No. 2018-111439 filed on May 24, 2018. All this content is included here.

Claims (6)

  1.  第1リスニングの結果に基づく送信機会において第1信号を送信する送信部と、
     前記送信機会のうち前記第1信号の送信の後の期間において、第2リスニングの結果を示す情報の送信を制御する制御部と、を有することを特徴とする送信装置。
    A transmission unit for transmitting the first signal at a transmission opportunity based on the result of the first listening;
    And a control unit that controls transmission of information indicating a result of the second listening in a period after the transmission of the first signal in the transmission opportunity.
  2.  前記第2リスニングの結果がビジーである場合、前記制御部は、前記ビジーを示す前記情報の送信を制御することを特徴とする請求項1に記載の送信装置。 The transmission device according to claim 1, wherein when the result of the second listening is busy, the control unit controls transmission of the information indicating the busy.
  3.  前記第2リスニングの結果がアイドルである場合、前記制御部は、前記送信機会のうち前記第2リスニングの後の期間において、他装置からの第2信号の受信を制御することを特徴とする請求項1又は2に記載の送信装置。 When the result of the second listening is idle, the control unit controls reception of a second signal from another device in a period after the second listening in the transmission opportunity. Item 3. The transmitter according to Item 1 or 2.
  4.  前記第2リスニングの結果がビジーである場合、前記制御部は、前記情報の送信の後に、第3信号の送信を制御することを特徴とする請求項2に記載の送信装置。 The transmission apparatus according to claim 2, wherein when the result of the second listening is busy, the control unit controls transmission of the third signal after transmission of the information.
  5.  前記第2リスニングの時間長は、前記第1リスニングの時間長よりも短いことを特徴とする請求項1から請求項4のいずれかに記載の送信装置。 The transmission apparatus according to any one of claims 1 to 4, wherein a time length of the second listening is shorter than a time length of the first listening.
  6.  送信装置による第1リスニングの結果に基づく送信機会のうち、前記送信装置からの第1信号の送信の後の期間において、第2リスニングの結果を示す情報を受信する受信部と、
     前記情報に基づいて、前記送信機会のうち前記情報の受信の後の期間において、第2信号の送信を制御する受信装置。
    A receiving unit that receives information indicating a result of the second listening in a period after transmission of the first signal from the transmitting device, out of transmission opportunities based on the result of the first listening by the transmitting device;
    A receiving apparatus that controls transmission of the second signal in a period after reception of the information in the transmission opportunity based on the information.
PCT/JP2019/020403 2018-05-24 2019-05-23 Transmission device and reception device WO2019225686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018111439 2018-05-24
JP2018-111439 2018-05-24

Publications (1)

Publication Number Publication Date
WO2019225686A1 true WO2019225686A1 (en) 2019-11-28

Family

ID=68616990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020403 WO2019225686A1 (en) 2018-05-24 2019-05-23 Transmission device and reception device

Country Status (1)

Country Link
WO (1) WO2019225686A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121917A1 (en) * 2015-01-29 2016-08-04 株式会社Nttドコモ Wireless base station, user terminal, and wireless communication method
WO2017146639A1 (en) * 2016-02-26 2017-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Multi-subframe grant with scheduling of both data and control channels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121917A1 (en) * 2015-01-29 2016-08-04 株式会社Nttドコモ Wireless base station, user terminal, and wireless communication method
WO2017146639A1 (en) * 2016-02-26 2017-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Multi-subframe grant with scheduling of both data and control channels

Similar Documents

Publication Publication Date Title
WO2020095458A1 (en) User terminal and wireless communication method
CN109156031B (en) User terminal and wireless communication method
JP7121136B2 (en) Terminal, wireless communication method, base station and system
WO2019186916A1 (en) Reception apparatus, transmission apparatus and wireless communication method
WO2019203187A1 (en) User terminal and wireless communication method
EP3941141A1 (en) User terminal and wireless communication method
JP7269264B2 (en) Terminal, wireless communication method, base station and system
WO2017191840A1 (en) User terminal and wireless communications method
JPWO2020095449A1 (en) User terminal and wireless communication method
JP7407805B2 (en) Terminals, wireless communication methods, base stations and systems
WO2019150486A1 (en) User terminal and wireless communication method
JP7264919B2 (en) Terminal, wireless communication method and system
WO2020217512A1 (en) User terminal and wireless communication method
WO2019186905A1 (en) User terminal and radio base station
WO2019186904A1 (en) Transmission apparatus and reception apparatus
CN112470439B (en) User terminal and radio base station
WO2020209340A1 (en) User terminal, wireless communication method, and base station
WO2019203326A1 (en) User terminal and wireless base station
WO2020003470A1 (en) Transmission device and reception device
WO2020222277A1 (en) User terminal and wireless communication method
WO2019159336A1 (en) Transmission device and reception device
WO2019215887A1 (en) Wireless base station and user terminal
WO2020031308A1 (en) User terminal
WO2019225686A1 (en) Transmission device and reception device
WO2020031344A1 (en) Transmission device and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP