WO2020222277A1 - User terminal and wireless communication method - Google Patents

User terminal and wireless communication method Download PDF

Info

Publication number
WO2020222277A1
WO2020222277A1 PCT/JP2019/018188 JP2019018188W WO2020222277A1 WO 2020222277 A1 WO2020222277 A1 WO 2020222277A1 JP 2019018188 W JP2019018188 W JP 2019018188W WO 2020222277 A1 WO2020222277 A1 WO 2020222277A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
cot
cell
user terminal
base station
Prior art date
Application number
PCT/JP2019/018188
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 村山
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2021517145A priority Critical patent/JPWO2020222277A1/ja
Priority to PCT/JP2019/018188 priority patent/WO2020222277A1/en
Publication of WO2020222277A1 publication Critical patent/WO2020222277A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G plus (+), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G plus (+) 5th generation mobile communication system
  • NR New Radio
  • 3GPP Rel.15 or later, etc. 3th generation mobile communication system
  • a frequency band for example, Rel.8-12
  • a license carrier for example, a license carrier
  • a license component carrier for example, 800 MHz, 1.7 GHz, 2 GHz and the like are used.
  • unlicensed band for example, a 2.4 GHz band or a 5 GHz band in which Wi-Fi (registered trademark) or Bluetooth (registered trademark) can be used is assumed.
  • CA carrier aggregation
  • LAA License-Assisted Access
  • a transmitting device for example, a base station for downlink (DL) and a user terminal (User Equipment (UE)) for uplink (UL)).
  • DL downlink
  • UE User Equipment
  • UL uplink
  • Is listening Listen Before Talk (LBT)
  • Clear Channel Assessment to confirm the presence or absence of transmission of other devices (for example, base station, UE, Wi-Fi device, etc.) before transmitting data in the unlicensed band.
  • CCA carrier sense, channel sensing, or channel access procedure (also called channel access procedure)).
  • one of the purposes of this disclosure is to provide a user terminal and a wireless communication method for performing appropriate communication in an unlicensed band.
  • the user terminal uses a receiving unit that receives setting information of peripheral cells at a frequency to which channel sensing is applied, and the setting information to show time length information regarding the time length of a transmission opportunity. It has a control unit for monitoring downlink transmission.
  • appropriate communication can be performed in the unlicensed band.
  • FIG. 1 is a diagram showing an example of CSMA / CA with ACK.
  • FIG. 2 is a diagram showing an example of data collision by a hidden terminal.
  • FIG. 3 is a diagram showing an example of CSMA / CA with RTS / CTS.
  • FIG. 4 is a diagram showing an example of RTS / CTS in the NR-U system.
  • 5A and 5B are diagrams showing an example of COT sharing in an unlicensed CC.
  • FIG. 6 is a diagram showing an example of transmission prohibition based on the COT start notification signal.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 8 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 9 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 10 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • ⁇ Collision avoidance method in unlicensed band In the unlicensed band (for example, 2.4 GHz band or 5 GHz band), it is assumed that a plurality of systems such as a Wi-Fi system and a system supporting LAA (LAA system) coexist. It is considered that collision avoidance and / or interference control of transmission between systems is required.
  • LAA system LAA system
  • An NR system using an unlicensed band may be called an NR-Unlicensed (U) system, an NR LAA system, or the like.
  • Dual Connectivity (DC) between licensed bands and unlicensed bands, Stand-Alone (SA) of unlicensed bands, etc. may also be adopted in NR-U.
  • Carrier Sense Multiple Access CSMA
  • CA Collision Avoidance
  • FIG. 1 is a diagram showing an example of CSMA / CA.
  • the wireless terminal C data transmitting side
  • the wireless terminal C examines the signal on the communication medium (carrier sense), and even if it determines that there is no signal, it does not immediately start data transmission and waits for a predetermined time. Then send the data.
  • This waiting time is called Distributed access Inter Frame Space (DIFS).
  • the access point B data receiving side
  • ACK acknowledgment
  • ACK can be transmitted only by waiting for a shorter time (SIFS: Short IFS) than DIFS.
  • SIFS Short IFS
  • the wireless terminal C (data transmitting side) repeats retransmission until ACK is received. Therefore, the access method (first access method) shown in FIG. 1 is also called CSMA / CA with ACK.
  • a transmission request (Request to Send (RTS)) is transmitted before transmission, and if the receiving device can receive it, it can be received (Clear to Send (Clear to Send).
  • RTS / CTS that responds with CTS)
  • RTS / CTS is effective in avoiding data collision by a hidden terminal.
  • the hidden terminal may be referred to as a node that is not detected, a node that is not sensed, and so on.
  • Data collision by a hidden terminal may be called a hidden node problem.
  • FIG. 2 is a diagram showing an example of data collision by a hidden terminal.
  • the wireless terminal A since the radio wave of the wireless terminal C does not reach the wireless terminal A, the wireless terminal A cannot detect the transmission signal from the wireless terminal C even if the carrier sense is performed before the transmission. As a result, even if the wireless terminal C is transmitting to the access point B, it is assumed that the wireless terminal A also transmits to the access point B. In this case, the transmission signals from the wireless terminals A and C may collide with each other at the access point B, and the throughput may decrease.
  • FIG. 3 is a diagram showing an example of CSMA / CA (CSMA / CA with RTS / CTS) with RTS / CTS.
  • the wireless terminal C transmits RTS (note that FIG. In 2, the RTS does not reach the wireless terminal A (other terminal)).
  • the RTS is preferably omni (omnidirectional) transmission.
  • the RTS may be beamformed.
  • the access point B When the access point B (reception side) receives the RTS from the wireless terminal C and confirms that there is no other transmission signal (idle, clear) due to the carrier sense in the predetermined time (Short Inter Frame Space (SIFS)), Send CTS.
  • the CTS is preferably omni-transmission.
  • the RTS may be referred to as a transmission request signal.
  • the CTS may be referred to as a receivable signal.
  • the wireless terminal A senses that communication is being performed and postpones the transmission. Since a predetermined period (also referred to as Network Allocation Vector (NAV) or transmission prohibition period, etc.) is written in the RTS / CTS packet, the predetermined period (NAV "NAV (RTS)", CTS indicated in RTS) is described. The communication is suspended during the NAV "NAV (CTS)") shown in.
  • NAV Network Allocation Vector
  • the wireless terminal C that has received the CTS from the access point B transmits data (frames) when it confirms that there is no other transmission signal (idle) by the carrier sense in the predetermined period (SIFS) before transmission.
  • the access point B Upon receiving the data, the access point B transmits an ACK after the predetermined period (SIFS).
  • the data transmitter transmits data from another device (eg, base station, UE, Wi-Fi device, etc.) before transmitting the data in the unlicensed band.
  • Listening also called LBT, CCA, carrier sense, channel access operation, etc. is performed to confirm the presence or absence of.
  • the transmitting device is, for example, a base station (for example, gNodeB, (gNB), a transmission / reception point (transmission / reception point (TRP)), a network (NW)) on the downlink (DL), and a UE on the uplink (UL).
  • a base station for example, gNodeB, (gNB), a transmission / reception point (transmission / reception point (TRP)), a network (NW)) on the downlink (DL), and a UE on the uplink (UL).
  • gNB gNodeB, (gNB)
  • TRP transmission / reception point
  • NW network
  • the receiving device that receives the data from the transmitting device may be, for example, a UE in DL and a base station in UL.
  • the transmitter has a predetermined period of time (eg, immediately after or backoff (contention, contention,) after the detection of no other device's transmission (idle state, LBT-idle) in listening. Data transmission is started after the period (conflict) window), and when it is detected in listening that there is transmission of another device (busy state, LBT-busy), data transmission is not performed.
  • a predetermined period of time eg, immediately after or backoff (contention, contention,) after the detection of no other device's transmission (idle state, LBT-idle) in listening.
  • Data transmission is started after the period (conflict) window), and when it is detected in listening that there is transmission of another device (busy state, LBT-busy), data transmission is not performed.
  • the transmitting device transmits data based on the listening result, there is a possibility that data collision in the receiving device cannot be avoided as a result of the existence of the hidden terminal.
  • FIG. 4 is a diagram showing an example of RTS / CTS in the NR-U system.
  • the carrier unlicensed carrier, unlicensed CC, LAA SCell (Secondary) of the unlicensed band before the transmitting device (base station) transmits the downlink data to the receiving device (UE). It is assumed that RTS is transmitted by (Cell) etc.).
  • the downlink data receiving device may transmit the CTS using the upstream unlicensed CC.
  • Conceivable instead of the upstream unlicensed CC, a TDD (Time Division Duplex, unpaired spectrum) unlicensed CC may be used.
  • TDD Time Division Duplex, unpaired spectrum
  • the NR-U system may perform a carrier aggregation (CA) operation using an unlicensed CC and a licensed CC, may perform a dual connectivity (DC) operation using an unlicensed CC and a licensed CC, or may perform a dual connectivity (DC) operation.
  • CA carrier aggregation
  • DC dual connectivity
  • DC dual connectivity
  • a stand-alone (SA) operation using only an unlicensed CC may be performed.
  • CA, DC, or SA may be performed by any one system of NR and LTE.
  • DC may be performed by at least two of NR, LTE, and other systems.
  • UL transmission in the unlicensed CC may be at least one of PUSCH, PUCCH, and SRS.
  • a node in NR-U (for example, a base station (for example, gNB), UE) acquires a transmission opportunity (Transmission Opportunity: TxOP, channel occupation (Channel Occupancy)) when the LBT result is idle (LBT-busy). However, if the LBT result is busy (LBT-busy), the transmission is not performed. The time of the transmission opportunity is called Channel Occupancy Time (COT).
  • TxOP Transmission Opportunity
  • Channel occupation Channel Occupancy
  • COT Channel Occupancy Time
  • the node may perform LBT in LTE LAA or receiver assisted LBT (receiver assisted LBT) as LBT (initial LBT, initial-LBT (I-LBT)) for acquiring COT.
  • LBT initial LBT, initial-LBT (I-LBT)
  • the LBT of LTE LAA in this case may be category 4.
  • the COT is the total time length between all transmissions within the transmission opportunity and the gap within the predetermined time, and may be less than or equal to the maximum COT (Maximum COT (MCOT)).
  • the number of slots m p for determining the time to postpone transmission, the parameter CW p indicating the contention window size, and the MCOT (T mcot, p ) are the priority classes (channel) associated with base station transmission. It may be based on access priority class, LBT priority class).
  • the base station does not transmit continuously for a period exceeding MCOT on the carrier where the transmission at the NR-U frequency is performed.
  • the base station that has acquired the MCOT by the LBT may perform scheduling for one or more UEs during the MCOT period.
  • TxOP Transmission Opportunity
  • COT channel occupancy time
  • the node may be either a UE or a base station, or may be a node of another system.
  • one-to-one communication between downlink and uplink can be assumed.
  • one-to-one communication between node A and node B can be assumed.
  • one-to-many communication of downlink and uplink may be assumed.
  • 5A and 5B are diagrams showing an example of COT sharing in an unlicensed CC. If node A performs LBT in an unlicensed CC and the LBT result is idle, node A acquires a transmission opportunity (TxOP) with a COT time length. In this case, node A transmits data in the unlicensed CC.
  • the LBT performed immediately before the acquisition of the transmission opportunity (TxOP) is also called the initial LBT (Initial LBT (I-LBT)).
  • I-LBT Initial LBT
  • the remaining period of transmission by node A may be distributed to other nodes that can receive signals from node A.
  • the node B does not have to perform the LBT before the node B transmission (FIG. FIG. 5A) If the gap is greater than or equal to the predetermined time length (or longer than the predetermined time length), node B may perform LBT before node B transmission (FIG. 5B).
  • Node A may be a base station, and node B may be a UE.
  • the UE is a signal in PDCCH or group common PDCCH (group common (GC) -PDCCH) for detecting a transmission burst from a serving base station (for example, Reference Signal (RS) such as Demodulation Reference Signal (DMRS)).
  • RS Reference Signal
  • DMRS Demodulation Reference Signal
  • the PDCCH may be a PDCCH for one UE (UE individual PDCCH, usually PDCCH (Regular PDCCH)).
  • the GC-PDCCH may be a PDCCH common to one or more UEs (UE group common PDCCH).
  • the base station may transmit a specific PDCCH (PDCCH or GC-PDCCH) including a specific DMRS notifying the start of the COT at the start of the COT triggered by the base station.
  • a specific PDCCH (PDCCH or GC-PDCCH) including a specific DMRS notifying the start of the COT at the start of the COT triggered by the base station.
  • At least one of the specific PDCCH and the specific DMRS may be referred to as a COT start notification signal.
  • the base station may transmit a COT start notification signal to one or more specific UEs.
  • the UE may recognize COT when it detects a specific DMRS.
  • the base station may schedule UL transmission in the COT of the UE by the specific PDCCH.
  • UL transmission in COT is called a scheduled specific UE.
  • the particular UE may be a UE scheduled to transmit a UL signal in the COT (eg, the first UL signal in the COT).
  • NR-U the handshake procedure between the transmitter and the receiver is being studied. It is being studied that a UE designated by a specific PDCCH realizes a handshake procedure between a base station and a UE by transmitting a specific UL signal (response signal) such as SRS after LBT.
  • a specific UL signal response signal
  • the specific PDCCH (COT start notification signal) is used as the transmission request signal (RTS), and the response signal triggered by the specific PDCCH is used as the receivable state notification signal (CTS).
  • RTS transmission request signal
  • CTS receivable state notification signal
  • the peripheral node may transmit it in the COT, and the specific UE may receive interference from the hidden terminal in the reception operation in the COT.
  • the present inventors have conceived a method in which the nodes of the neighbor cells recognize the COT at the start of the COT of a certain cell in the unlicensed band.
  • frequency, band, frequency band, spectrum, carrier, component carrier (CC), cell, channel, subband, LBT subband, active bandwidth part (BWP), and active BWP part may be read as each other. Good.
  • listening Listen Before Talk (LBT), Clear Channel Assessment (CCA), carrier sense, sensing, channel sensing, or channel access procedure may be read interchangeably.
  • LBT Listen Before Talk
  • CCA Clear Channel Assessment
  • NR-U frequency, NR-U target frequency, NR-U band, shared spectrum, unlicensed band, unlicensed spectrum, LAA SCell, LAA cell, primary cell (Primary Cell ( PCell), Primary Secondary Cell (PSCell), Special Cell (SpCell)), secondary cell (Secondary Cell (SCell)), and frequency band to which channel sensing is applied may be read as each other.
  • NR frequency, NR target frequency, licensed band, license spectrum, PCell, PSCell, SpCell, SCell, non-NR-U frequency, Rel. 15, NR, and frequency bands to which channel sensing is not applied may be read interchangeably.
  • Different frame structures may be used for the NR-U target frequency and the NR target frequency.
  • the wireless communication system may be compliant with the first wireless communication standard (for example, NR, LTE, etc.) (supports the first wireless communication standard).
  • first wireless communication standard for example, NR, LTE, etc.
  • coexistence system coexistence device
  • coexistence device coexisting with this wireless communication system and other wireless communication devices (coexistence device)
  • LTE Long Term Evolution
  • Wi-Fi Wi-Fi
  • Bluetooth registered trademark
  • WiGig registered trademark
  • wireless Local Area It may be compliant with the second wireless communication standard (supporting the second wireless communication standard) different from the first wireless communication standard, such as Network (LAN), IEEE802.11, Low Power Wide Area (LPWA), or the first. It may support wireless communication standards.
  • the coexistence system may be a system that receives interference from the wireless communication system, or may be a system that interferes with the wireless communication system.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • SRS sounding reference signal
  • UL uplink
  • RS uplink
  • RACH random access channel
  • PRACH physical random access channel
  • base station transmission DL transmission, DL signal, physical downlink shared channel (PDSCH), physical downlink control channel (PDCCH), downlink (DL) -reference signal (RS), degradation reference signal (DMRS) for PDCCH.
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • RS downlink
  • DMRS degradation reference signal
  • DMRS for PDSCH may be read as each other.
  • nodes In the present disclosure, nodes, UEs, base stations, transmission / reception points (Transmission / Reception Point (TRP)), wireless communication devices, and devices may be read as each other.
  • TRP Transmission / Reception Point
  • the NR-U of the present disclosure is not limited to LAA, and may include a case where an unlicensed band is used standalone.
  • the base station that has acquired the COT may transmit a COT start notification signal (for example, downlink transmission) indicating information about the COT (time length information).
  • Information about COT includes COT (COT length (duration)), maximum COT (Maximum COT (MCOT), MCOT length), COT structure, LBT priority class, and contention window size. At least one may be indicated.
  • the COT start notification signal may include GC-PDCCH, PDCCH, or DMRS.
  • the COT start notification signal may include information on scheduling transmission (UL or DL) within the COT.
  • a particular field in the DCI in the COT start notification signal may indicate information about the COT length. Specific fields are described in Rel. It may be a new field not specified in 15, or it may be a replacement of an existing field.
  • the base station in the first cell may notify at least one of the base station and the UE in the peripheral cell (second cell) of the setting information used for receiving the COT start notification signal.
  • the setting information includes the cell identifier (ID) of the first cell, the temporary wireless network identifier (radio network temporary Identifier (RNTI)) used for the COT start notification signal, and the public land mobile network (Public Land Mobile Network) of the first cell. (PLMN)) It may contain at least one of an identifier (ID).
  • the PLMN ID may be based on at least one identification of the network and the operator.
  • the COT start notification signal may include a DCI having a Cyclic Redundancy Check (CRC) scrambled by the RNTI indicated in the setting information.
  • CRC Cyclic Redundancy Check
  • RNTI is Rel. It may be a new RNTI not specified in 15, or an existing RNTI.
  • RNTI may be different depending on at least one of the cell, network and operator.
  • the base station in the first cell may notify at least one of the base station and the UE in the second cell of the setting information by RRC signaling.
  • the base station in the second cell may transmit the setting information received from the base station in the first cell to the UE in the second cell.
  • the base station in the second cell may notify the UE connected to the second cell of the setting information by RRC signaling.
  • Each node may be notified of the setting information for receiving the COT start notification signal from its own cell (serving cell) and the setting information for receiving the COT start notification signal from neighboring cells.
  • the base station may notify a plurality of peripheral cells of the setting information for receiving the COT start notification signal of its own cell.
  • the node may be notified of the setting information from a plurality of peripheral cells.
  • At least a part of the setting information for receiving the COT start notification signal from the own cell and at least a part of the setting information for receiving the COT start notification signal from the peripheral cells may be different.
  • the RNTI used for the COT start notification signal from the peripheral cells may be different from the RNTI in the setting information for the own cell.
  • the node may monitor the COT start notification signal using these RNTIs and recognize whether the detected COT start notification signal is transmitted from its own cell or a peripheral cell by the RNTI that succeeds in detection.
  • the node monitors the COT start notification signal using a plurality of cell IDs and recognizes whether the detected COT start notification signal is transmitted from its own cell or a neighboring cell by the cell ID that has been successfully detected. Good.
  • At least a part of the setting information for receiving the COT start notification signal from the own cell and at least a part of the setting information for receiving the COT start notification signal from the peripheral cells may be the same.
  • the RNTI used for the COT start notification signal from the peripheral cells may be the same as the RNTI in the setting information for the own cell.
  • the node may decode the DCI included in the COT start notification signal, and may recognize whether the detected COT start notification signal is transmitted from its own cell or a peripheral cell based on the decoded DCI.
  • Each node in the first cell and the second cell may monitor the COT start notification signal using the setting information. By notifying the node of the second cell of the setting information, the node of the second cell can also receive (monitor, decode) the COT start notification signal of the first cell.
  • the setting information is common to the NR-U system, it is possible that the monitoring of the COT start notification signal cannot be operated flexibly and the confidentiality becomes low. On the other hand, by notifying the setting information in advance, the monitoring of the COT start notification signal can be flexibly operated and the confidentiality can be improved.
  • the node in the second cell receives the COT start notification signal
  • the node receives the COT start notification signal within the period (COT) from the reception of the COT start notification signal to the COT length indicated by the COT start notification signal.
  • LBT may not be performed or signal transmission may not be performed in the band based on.
  • the band based on the COT start notification signal may be the frequency of the COT start notification signal, or may be a band including the COT start notification signal (CC, LBT band (LBT subband), etc.).
  • the band may be the band scheduled by the COT start notification signal.
  • the node in the second cell receives the COT start notification signal
  • the node receives the COT start notification signal within the period (COT) from the reception of the COT start notification signal to the COT length indicated by the COT start notification signal. It is not necessary to perform monitoring in the band based on.
  • This monitoring is performed on the COT start notification signal of the first cell, the COT start notification signal of the second cell, the downlink control channel (at least one of GC-PDCCH, PDCCH, and DMRS) of the first cell, and the second cell. At least one monitoring of the downlink control channel (at least one of GC-PDCCH, PDCCH, DMRS) may be performed.
  • the node A of the first cell that has acquired the COT transmits a COT start notification signal (for example, GC-PDCCH) indicating the COT length.
  • Node A may schedule node A transmission (eg, PDSCH) and node B transmission (eg, PUSCH) in the same first cell.
  • Node B may perform scheduled transmission after node A transmission.
  • Node C which has received the COT start notification signal in the second cell, does not have to perform at least one of LBT, signal transmission, and monitoring in the band based on the COT start notification signal in the COT based on the COT start notification signal. Good.
  • the UE in the second cell When the UE in the second cell receives the COT start notification signal from the first cell, it may perform power saving (for example, sleep) in the COT based on the COT start notification signal.
  • power saving for example, sleep
  • the above-described first embodiment it is possible to reduce the probability of arrival of an interference wave from a peripheral cell in the COT of a certain cell. It is possible to avoid reception failure due to interference from peripheral cells, and it is possible to improve the efficiency of wireless resource utilization. By reducing the frequency of monitoring UEs in peripheral cells, the power consumption of the UEs can be reduced.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technology (RAT) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is a dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and a dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is MN
  • the LTE (E-UTRA) base station (eNB) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the host station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR))
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 8 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital transformation, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulating, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitter and receiver of the base station 10 in the present disclosure may be composed of at least one of the transmitter / receiver 120 and the transmitter / receiver antenna 130.
  • FIG. 9 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmission unit and the reception unit of the user terminal 20 in the present disclosure may be composed of at least one of the transmission / reception unit 220, the transmission / reception antenna 230, and the transmission line interface 240.
  • the transmission / reception unit 220 may receive setting information of peripheral cells at a frequency to which channel sensing is applied (for example, NR-U frequency).
  • the control unit 210 may monitor the downlink transmission (for example, a COT start notification signal) indicating the time length information regarding the time length (for example, COT length) of the transmission opportunity by using the setting information.
  • the control unit 210 does not have to perform transmission at the frequency during the period from the reception of the downlink transmission to the time length.
  • the control unit 210 does not have to perform monitoring at the frequency during the period from the reception of the downlink transmission to the time length.
  • the setting information may include at least one of the cell identifier of the peripheral cell, the wireless network temporary identifier (RNTI), and the public land mobile network (PLMN) identifier.
  • RNTI wireless network temporary identifier
  • PLMN public land mobile network
  • the downlink transmission may be a group common physical downlink control channel (GC-PDCCH).
  • GC-PDCCH group common physical downlink control channel
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 10 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may be a time unit based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB. It may be called a pair or the like.
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • Reception point Reception Point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to inter-terminal communication (for example, "side").
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution.
  • the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
  • the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as “judgment (decision)" of "accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Abstract

A user terminal according to the present invention comprises: a reception unit that receives setting information for a peripheral cell at a frequency to which channel sensing is applied; and a control unit that uses the setting information and monitors downlink transmission indicating time length information pertaining to a time length of a transmission opportunity. According to one aspect of the present disclosure, appropriate communication can be performed in an unlicensed band.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。 The present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high-speed data rate, low latency, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G plus(+)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 A successor system to LTE (for example, 5th generation mobile communication system (5G), 5G plus (+), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
 既存のLTEシステム(例えば、Rel.8-12)では、通信事業者(オペレータ)に免許された周波数帯域(ライセンスバンド(licensed band)、ライセンスキャリア(licensed carrier)、ライセンスコンポーネントキャリア(licensed CC)等ともいう)において排他的な運用がなされることを想定して仕様化が行われてきた。ライセンスCCとしては、例えば、800MHz、1.7GHz、2GHzなどが使用される。 In an existing LTE system (for example, Rel.8-12), a frequency band (licensed band), a license carrier (licensed carrier), a license component carrier (licensed CC), etc. licensed by a telecommunications carrier (operator), etc. The specifications have been made on the assumption that exclusive operation will be performed in (also called). As the license CC, for example, 800 MHz, 1.7 GHz, 2 GHz and the like are used.
 また、既存のLTEシステム(例えば、Rel.13)では、周波数帯域を拡張するため、上記ライセンスバンドとは異なる周波数帯域(アンライセンスバンド(unlicensed band)、アンライセンスキャリア(unlicensed carrier)、アンライセンスCC(unlicensed CC)ともいう)の利用がサポートされている。アンライセンスバンドとしては、例えば、Wi-Fi(登録商標)やBluetooth(登録商標)を使用可能な2.4GHz帯や5GHz帯などが想定される。 Further, in an existing LTE system (for example, Rel.13), in order to expand the frequency band, a frequency band different from the above licensed band (unlicensed band, unlicensed carrier, unlicensed CC). (Also called unlicensed CC)) is supported. As the unlicensed band, for example, a 2.4 GHz band or a 5 GHz band in which Wi-Fi (registered trademark) or Bluetooth (registered trademark) can be used is assumed.
 具体的には、Rel.13では、ライセンスバンドのキャリア(CC)とアンライセンスバンドのキャリア(CC)とを統合するキャリアアグリゲーション(Carrier Aggregation:CA)がサポートされる。このように、ライセンスバンドとともにアンライセンスバンドを用いて行う通信をLicense-Assisted Access(LAA)と称する。 Specifically, Rel. In 13, carrier aggregation (CA) that integrates a carrier (CC) of a licensed band and a carrier (CC) of an unlicensed band is supported. Communication performed using the unlicensed band together with the license band in this way is referred to as License-Assisted Access (LAA).
 将来の無線通信システム(例えば、5G、5G+、NR、Rel.15以降)では、送信装置(例えば、下りリンク(DL)では基地局、上りリンク(UL)ではユーザ端末(User Equipment(UE)))は、アンライセンスバンドにおけるデータの送信前に、他の装置(例えば、基地局、UE、Wi-Fi装置など)の送信の有無を確認するリスニング(Listen Before Talk(LBT)、Clear Channel Assessment(CCA)、キャリアセンス、チャネルのセンシング、又はチャネルアクセス動作(channel access procedure)等とも呼ばれる)を行う。 In future wireless communication systems (for example, 5G, 5G +, NR, Rel.15 or later), a transmitting device (for example, a base station for downlink (DL) and a user terminal (User Equipment (UE)) for uplink (UL)). ) Is listening (Listen Before Talk (LBT), Clear Channel Assessment () to confirm the presence or absence of transmission of other devices (for example, base station, UE, Wi-Fi device, etc.) before transmitting data in the unlicensed band. CCA), carrier sense, channel sensing, or channel access procedure (also called channel access procedure)).
 このような無線通信システムが、アンライセンスバンドにおいて他システムと共存するために、アンライセンスバンドにおける規則(regulation)、要件(requirement)などに従うことが考えられる。 In order for such a wireless communication system to coexist with other systems in the unlicensed band, it is conceivable to comply with regulations, requirements, etc. in the unlicensed band.
 しかしながら、アンライセンスバンドにおける動作が明確に決められなければ、特定の通信状況における動作が規則に適合しない、無線リソースの利用効率が低下する、など、アンライセンスバンドにおいて適切な通信を行えないおそれがある。 However, if the operation in the unlicensed band is not clearly determined, proper communication may not be possible in the unlicensed band, such as the operation in a specific communication situation does not conform to the rules and the utilization efficiency of wireless resources decreases. is there.
 そこで、本開示は、アンライセンスバンドにおいて適切な通信を行うユーザ端末及び無線通信方法を提供することを目的の1つとする。 Therefore, one of the purposes of this disclosure is to provide a user terminal and a wireless communication method for performing appropriate communication in an unlicensed band.
 本開示の一態様に係るユーザ端末は、チャネルのセンシングが適用される周波数における周辺セルの設定情報を受信する受信部と、前記設定情報を用いて、送信機会の時間長に関する時間長情報を示す下り送信をモニタする制御部と、を有する。 The user terminal according to one aspect of the present disclosure uses a receiving unit that receives setting information of peripheral cells at a frequency to which channel sensing is applied, and the setting information to show time length information regarding the time length of a transmission opportunity. It has a control unit for monitoring downlink transmission.
 本開示の一態様によれば、アンライセンスバンドにおいて適切な通信を行うことができる。 According to one aspect of the present disclosure, appropriate communication can be performed in the unlicensed band.
図1は、CSMA/CA with ACKの一例を示す図である。FIG. 1 is a diagram showing an example of CSMA / CA with ACK. 図2は、隠れ端末によるデータの衝突の一例を示す図である。FIG. 2 is a diagram showing an example of data collision by a hidden terminal. 図3は、CSMA/CA with RTS/CTSの一例を示す図である。FIG. 3 is a diagram showing an example of CSMA / CA with RTS / CTS. 図4は、NR-UシステムにおけるRTS/CTSの一例を示す図である。FIG. 4 is a diagram showing an example of RTS / CTS in the NR-U system. 図5A及び図5Bは、アンライセンスドCCにおけるCOTシェアリングの一例を示す図である。5A and 5B are diagrams showing an example of COT sharing in an unlicensed CC. 図6は、COT開始通知信号に基づく送信禁止の一例を示す図である。FIG. 6 is a diagram showing an example of transmission prohibition based on the COT start notification signal. 図7は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. 図8は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 8 is a diagram showing an example of the configuration of the base station according to the embodiment. 図9は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 9 is a diagram showing an example of the configuration of the user terminal according to the embodiment. 図10は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 10 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
<アンライセンスバンドにおける衝突回避方法>
 アンライセンスバンド(例えば、2.4GHz帯や5GHz帯)では、例えば、Wi-Fiシステム、LAAをサポートするシステム(LAAシステム)等の複数のシステムが共存することが想定されるため、当該複数のシステム間での送信の衝突回避及び/又は干渉制御が必要となると考えられる。
<Collision avoidance method in unlicensed band>
In the unlicensed band (for example, 2.4 GHz band or 5 GHz band), it is assumed that a plurality of systems such as a Wi-Fi system and a system supporting LAA (LAA system) coexist. It is considered that collision avoidance and / or interference control of transmission between systems is required.
 アンライセンスバンドを用いるNRシステム(例えば、5G、5G+、NR、3GPP Rel.15以降などともいう)は、NR-Unlicensed(U)システム、NR LAAシステムなどと呼ばれてもよい。ライセンスバンドとアンライセンスバンドとのデュアルコネクティビティ(Dual Connectivity(DC))、アンライセンスバンドのスタンドアローン(Stand-Alone(SA))なども、NR-Uにおいて採用される可能性がある。 An NR system using an unlicensed band (for example, also referred to as 5G, 5G +, NR, 3GPP Rel.15 or later) may be called an NR-Unlicensed (U) system, an NR LAA system, or the like. Dual Connectivity (DC) between licensed bands and unlicensed bands, Stand-Alone (SA) of unlicensed bands, etc. may also be adopted in NR-U.
 例えば、アンライセンスバンドを利用するWi-Fiシステムでは、衝突回避及び/又は干渉制御を目的として、Carrier Sense Multiple Access(CSMA)/Collision Avoidance(CA)が採用されている。 For example, in a Wi-Fi system that uses an unlicensed band, Carrier Sense Multiple Access (CSMA) / Collision Avoidance (CA) is adopted for the purpose of collision avoidance and / or interference control.
 図1は、CSMA/CAの一例を示す図である。図1に示すように、無線端末C(データ送信側)は、通信媒体上の信号を調べ(キャリアセンス)、信号がないと判断してもすぐにデータ送信を開始せず、所定時間だけ待機してからデータを送信する。この待ち時間をDistributed access Inter Frame Space(DIFS)と呼ぶ。データを受信したアクセスポイントB(データ受信側)は、肯定応答(Acknowledgement(ACK))を返す。ACKを優先して送信できるようにするため、DIFSより短い時間(SIFS:Short IFS)だけ待つだけで、ACKを送信できる。無線端末C(データ送信側)は、ACKを受信するまで再送を繰り返す。このため、図1に示すアクセス方式(第1アクセス方式)は、CSMA/CA with ACKとも呼ばれる。 FIG. 1 is a diagram showing an example of CSMA / CA. As shown in FIG. 1, the wireless terminal C (data transmitting side) examines the signal on the communication medium (carrier sense), and even if it determines that there is no signal, it does not immediately start data transmission and waits for a predetermined time. Then send the data. This waiting time is called Distributed access Inter Frame Space (DIFS). The access point B (data receiving side) that has received the data returns an acknowledgment (ACK). In order to give priority to ACK transmission, ACK can be transmitted only by waiting for a shorter time (SIFS: Short IFS) than DIFS. The wireless terminal C (data transmitting side) repeats retransmission until ACK is received. Therefore, the access method (first access method) shown in FIG. 1 is also called CSMA / CA with ACK.
 Wi-Fiシステムでは、衝突回避及び/又は干渉制御を目的として、送信前に送信要求(Request to Send(RTS))を送信し、受信装置が受信可能であれば、受信可能(Clear to Send(CTS))で応答するRTS/CTSが採用されている。例えば、RTS/CTSは、隠れ端末によるデータの衝突回避に有効である。あるノードからの信号が送信装置へ届かず、受信装置へ届く場合、当該ノードは、送信装置にとって、隠れ端末(隠れノード(hidden node))と呼ばれる。隠れ端末は、検出(detect)されないノード、感知(sense)されないノード、などと呼ばれてもよい。隠れ端末によるデータの衝突は、隠れ端末問題(hidden node problem)と呼ばれてもよい。 In the Wi-Fi system, for the purpose of collision avoidance and / or interference control, a transmission request (Request to Send (RTS)) is transmitted before transmission, and if the receiving device can receive it, it can be received (Clear to Send (Clear to Send). RTS / CTS that responds with CTS)) is adopted. For example, RTS / CTS is effective in avoiding data collision by a hidden terminal. When a signal from a certain node does not reach the transmitting device and reaches the receiving device, the node is called a hidden terminal (hidden node) for the transmitting device. The hidden terminal may be referred to as a node that is not detected, a node that is not sensed, and so on. Data collision by a hidden terminal may be called a hidden node problem.
 図2は、隠れ端末によるデータの衝突の一例を示す図である。図2において、無線端末Cの電波は無線端末Aまで届かないため、無線端末Aは、送信前にキャリアセンスを行っても、無線端末Cからの送信信号を検出できない。この結果、無線端末CがアクセスポイントBに送信中であっても、無線端末AもアクセスポイントBに送信することが想定される。この場合、アクセスポイントBにおいて無線端末A及びCからの送信信号が衝突し、スループットが低下するおそれがある。 FIG. 2 is a diagram showing an example of data collision by a hidden terminal. In FIG. 2, since the radio wave of the wireless terminal C does not reach the wireless terminal A, the wireless terminal A cannot detect the transmission signal from the wireless terminal C even if the carrier sense is performed before the transmission. As a result, even if the wireless terminal C is transmitting to the access point B, it is assumed that the wireless terminal A also transmits to the access point B. In this case, the transmission signals from the wireless terminals A and C may collide with each other at the access point B, and the throughput may decrease.
 図3は、RTS/CTS付きのCSMA/CA(CSMA/CA with RTS/CTS)の一例を示す図である。図3に示すように、無線端末C(送信側)は、送信前の所定時間(DIFS)におけるキャリアセンスによって他の送信信号がないこと(アイドル)を確認すると、RTSを送信する(なお、図2では、当該RTSは無線端末A(他の端末)には届かない)。RTSは、オムニ(無指向性)送信であることが好ましい。RTSは、ビームフォーミングされてもよい。アクセスポイントB(受信側)は、無線端末CからのRTSを受信すると、所定時間(Short Inter Frame Space(SIFS))におけるキャリアセンスによって他の送信信号がないこと(アイドル、クリア)を確認すると、CTSを送信する。CTSは、オムニ送信であることが好ましい。RTSは、送信要求信号と呼ばれてもよい。CTSは、受信可能信号と呼ばれてもよい。 FIG. 3 is a diagram showing an example of CSMA / CA (CSMA / CA with RTS / CTS) with RTS / CTS. As shown in FIG. 3, when the wireless terminal C (transmitting side) confirms that there is no other transmission signal (idle) by the carrier sense in the predetermined time (DIFS) before transmission, it transmits RTS (note that FIG. In 2, the RTS does not reach the wireless terminal A (other terminal)). The RTS is preferably omni (omnidirectional) transmission. The RTS may be beamformed. When the access point B (reception side) receives the RTS from the wireless terminal C and confirms that there is no other transmission signal (idle, clear) due to the carrier sense in the predetermined time (Short Inter Frame Space (SIFS)), Send CTS. The CTS is preferably omni-transmission. The RTS may be referred to as a transmission request signal. The CTS may be referred to as a receivable signal.
 図2において、アクセスポイントBからのCTSは、無線端末A(他の装置)にも届くため、無線端末Aは、通信が行われることを察知し、送信を延期する。RTS/CTSのパケットには、所定期間(Network Allocation Vector(NAV)又は送信禁止期間等ともいう)が記されているので、当該所定期間(RTSに示されたNAV「NAV(RTS)」、CTSに示されたNAV「NAV(CTS)」)の間、通信を保留する。 In FIG. 2, since the CTS from the access point B also reaches the wireless terminal A (another device), the wireless terminal A senses that communication is being performed and postpones the transmission. Since a predetermined period (also referred to as Network Allocation Vector (NAV) or transmission prohibition period, etc.) is written in the RTS / CTS packet, the predetermined period (NAV "NAV (RTS)", CTS indicated in RTS) is described. The communication is suspended during the NAV "NAV (CTS)") shown in.
 アクセスポイントBからのCTSを受信した無線端末Cは、送信前の所定期間(SIFS)におけるキャリアセンスによって他の送信信号がないこと(アイドル)を確認すると、データ(フレーム)を送信する。当該データを受信したアクセスポイントBは、当該所定期間(SIFS)後にACKを送信する。 The wireless terminal C that has received the CTS from the access point B transmits data (frames) when it confirms that there is no other transmission signal (idle) by the carrier sense in the predetermined period (SIFS) before transmission. Upon receiving the data, the access point B transmits an ACK after the predetermined period (SIFS).
 図3では、無線端末Cの隠れ端末である無線端末AがアクセスポイントBからのCTSを検出すると、送信を延期するので、アクセスポイントBにおける無線端末A及びCの送信信号の衝突を回避できる。 In FIG. 3, when the wireless terminal A, which is a hidden terminal of the wireless terminal C, detects the CTS from the access point B, the transmission is postponed, so that the collision of the transmission signals of the wireless terminals A and C at the access point B can be avoided.
 既存のLTEシステム(例えば、Rel.13)のLAAでは、データの送信装置は、アンライセンスバンドにおけるデータの送信前に、他の装置(例えば、基地局、UE、Wi-Fi装置など)の送信の有無を確認するリスニング(LBT、CCA、キャリアセンス又はチャネルアクセス動作等とも呼ばれる)を行う。 In the LAA of an existing LTE system (eg, Rel.13), the data transmitter transmits data from another device (eg, base station, UE, Wi-Fi device, etc.) before transmitting the data in the unlicensed band. Listening (also called LBT, CCA, carrier sense, channel access operation, etc.) is performed to confirm the presence or absence of.
 当該送信装置は、例えば、下りリンク(DL)では基地局(例えば、gNodeB、(gNB)、送受信ポイント(transmission/reception point(TRP))、ネットワーク(NW))、上りリンク(UL)ではUEであってもよい。また、送信装置からのデータを受信する受信装置は、例えば、DLではUE、ULでは基地局であってもよい。 The transmitting device is, for example, a base station (for example, gNodeB, (gNB), a transmission / reception point (transmission / reception point (TRP)), a network (NW)) on the downlink (DL), and a UE on the uplink (UL). There may be. Further, the receiving device that receives the data from the transmitting device may be, for example, a UE in DL and a base station in UL.
 既存のLTEシステムのLAAでは、当該送信装置は、リスニングにおいて他の装置の送信がないこと(アイドル状態、LBT-idle)が検出されてから所定期間(例えば、直後又はバックオフ(衝突(contention、競合)ウィンドウ)の期間)後にデータ送信を開始し、リスニングにおいて他の装置の送信があること(ビジー状態、LBT-busy)が検出されると、データ送信を行わない。しかしながら、当該リスニングの結果に基づいて送信装置がデータを送信する場合であっても、上記隠れ端末が存在する結果、受信装置におけるデータの衝突を回避できないおそれがある。 In the LAA of an existing LTE system, the transmitter has a predetermined period of time (eg, immediately after or backoff (contention, contention,) after the detection of no other device's transmission (idle state, LBT-idle) in listening. Data transmission is started after the period (conflict) window), and when it is detected in listening that there is transmission of another device (busy state, LBT-busy), data transmission is not performed. However, even when the transmitting device transmits data based on the listening result, there is a possibility that data collision in the receiving device cannot be avoided as a result of the existence of the hidden terminal.
 このため、NR-Uシステムでは、受信装置におけるデータの衝突の回避率を向上させるため、上述のRTS/CTSをサポートすることが検討されている。 Therefore, in the NR-U system, it is considered to support the above-mentioned RTS / CTS in order to improve the avoidance rate of data collision in the receiving device.
 図4は、NR-UシステムにおけるRTS/CTSの一例を示す図である。RTS/CTSをサポートするNR-Uシステムでは、送信装置(基地局)が受信装置(UE)に対する下りデータの送信前に、アンライセンスバンドのキャリア(アンライセンスキャリア、アンライセンスCC、LAA SCell(Secondary Cell)等ともいう)でRTSを送信することが想定される。 FIG. 4 is a diagram showing an example of RTS / CTS in the NR-U system. In the NR-U system that supports RTS / CTS, the carrier (unlicensed carrier, unlicensed CC, LAA SCell (Secondary) of the unlicensed band before the transmitting device (base station) transmits the downlink data to the receiving device (UE). It is assumed that RTS is transmitted by (Cell) etc.).
 このようなNR-Uシステムにおいて上りのアンライセンスCCをサポートする場合、図4に示すように、下りデータの受信装置(ユーザ端末)が当該上りのアンライセンスCCを用いてCTSを送信することが考えられる。上りのアンライセンスCCの代わりに、TDD(Time Division Duplex、unpaired spectrum)のアンライセンスCCが用いられてもよい。 When supporting the upstream unlicensed CC in such an NR-U system, as shown in FIG. 4, the downlink data receiving device (user terminal) may transmit the CTS using the upstream unlicensed CC. Conceivable. Instead of the upstream unlicensed CC, a TDD (Time Division Duplex, unpaired spectrum) unlicensed CC may be used.
 NR-Uシステムは、アンライセンスCC及びライセンスCCを用いるキャリアアグリゲーション(CA)の動作を行ってもよいし、アンライセンスCC及びライセンスCCを用いるデュアルコネクティビティ(DC)の動作を行ってもよいし、アンライセンスCCのみを用いるスタンドアローン(SA)の動作を行ってもよい。CA、DC、又はSAは、NR及びLTEのいずれか1つのシステムによって行われてもよい。DCは、NR、LTE、及び他のシステムの少なくとも2つによって行われてもよい。 The NR-U system may perform a carrier aggregation (CA) operation using an unlicensed CC and a licensed CC, may perform a dual connectivity (DC) operation using an unlicensed CC and a licensed CC, or may perform a dual connectivity (DC) operation. A stand-alone (SA) operation using only an unlicensed CC may be performed. CA, DC, or SA may be performed by any one system of NR and LTE. DC may be performed by at least two of NR, LTE, and other systems.
 アンライセンスCCにおけるUL送信は、PUSCH、PUCCH、SRSの少なくとも一つであってもよい。 UL transmission in the unlicensed CC may be at least one of PUSCH, PUCCH, and SRS.
 NR-Uにおけるノード(例えば、基地局(例えば、gNB)、UE)は、LBT結果がアイドル(LBT-busy)である場合に送信機会(Transmission Opportunity:TxOP、チャネル占有(Channel Occupancy))を獲得し、送信を行い、LBT結果がビジーである場合(LBT-busy)に、送信を行わない。送信機会の時間は、Channel Occupancy Time(COT)と呼ばれる。 A node in NR-U (for example, a base station (for example, gNB), UE) acquires a transmission opportunity (Transmission Opportunity: TxOP, channel occupation (Channel Occupancy)) when the LBT result is idle (LBT-busy). However, if the LBT result is busy (LBT-busy), the transmission is not performed. The time of the transmission opportunity is called Channel Occupancy Time (COT).
 ノードは、COTを獲得するためのLBT(初期LBT、initial-LBT(I-LBT))として、LTE LAAにおけるLBT、又は受信機補助LBT(receiver assisted LBT)を行ってもよい。この場合のLTE LAAのLBTはカテゴリ4であってもよい。 The node may perform LBT in LTE LAA or receiver assisted LBT (receiver assisted LBT) as LBT (initial LBT, initial-LBT (I-LBT)) for acquiring COT. The LBT of LTE LAA in this case may be category 4.
 COTは、送信機会内の全ての送信と所定時間内のギャップとの総時間長であり、最大COT(Maximum COT(MCOT))以下であってもよい。 The COT is the total time length between all transmissions within the transmission opportunity and the gap within the predetermined time, and may be less than or equal to the maximum COT (Maximum COT (MCOT)).
 送信を延期する時間を決定するためのスロット数mpと、コンテンションウィンドウサイズを示すパラメータCWpと、MCOT(Tmcot,p)と、は、基地局送信に関連付けられた優先度クラス(channel access priority class、LBT優先度クラス)に基づいてもよい。基地局は、NR-U周波数における送信が行われるキャリア上において、MCOTを超える期間にわたって連続して送信しない。 The number of slots m p for determining the time to postpone transmission, the parameter CW p indicating the contention window size, and the MCOT (T mcot, p ) are the priority classes (channel) associated with base station transmission. It may be based on access priority class, LBT priority class). The base station does not transmit continuously for a period exceeding MCOT on the carrier where the transmission at the NR-U frequency is performed.
 LBTによってMCOTを獲得した基地局は、MCOTの期間において、1以上のUEに対するスケジューリングを行ってもよい。 The base station that has acquired the MCOT by the LBT may perform scheduling for one or more UEs during the MCOT period.
<COTシェアリング>
 NR-Uシステムにおいて、ノード(基地局又はUE)が獲得した送信機会(Transmission Opportunity(TxOP))の時間、すなわちチャネル占有期間(Channel Occupancy Time(COT))を複数ノードに分配(share)することが検討されている。ノードは、UEまたは基地局のいずれかであってもよいし、他システムのノードであってもよい。
<COT sharing>
In the NR-U system, the time of transmission opportunity (Transmission Opportunity (TxOP)) acquired by a node (base station or UE), that is, the channel occupancy time (COT) is shared among a plurality of nodes. Is being considered. The node may be either a UE or a base station, or may be a node of another system.
 COTシェアリングの基本形態として、下りリンクおよび上りリンクの1対1の通信を想定することができる。たとえば、ノードAとノードBによる、1対1の通信を想定できる。あるいは、COTシェアリングの形態として、下りリンクおよび上りリンクの1対複数の通信を想定してもよい。 As a basic form of COT sharing, one-to-one communication between downlink and uplink can be assumed. For example, one-to-one communication between node A and node B can be assumed. Alternatively, as a form of COT sharing, one-to-many communication of downlink and uplink may be assumed.
 図5A及び図5Bは、アンライセンスドCCにおけるCOTシェアリングの一例を示す図である。ノードAがアンライセンスドCCにおいてLBTを行い、LBT結果がアイドルである場合、ノードAはCOTの時間長を有する送信機会(TxOP)を獲得する。この場合、ノードAは、アンライセンスドCCにおいてデータ送信を行う。送信機会(TxOP)獲得の直前に行うLBTを、初期LBT(Initial LBT(I-LBT))とも呼ぶ。ノードAが獲得した送信機会(TxOP)のうち、ノードAによる送信の残りの期間は、ノードAからの信号を受信できる他のノードに分配されてもよい。 5A and 5B are diagrams showing an example of COT sharing in an unlicensed CC. If node A performs LBT in an unlicensed CC and the LBT result is idle, node A acquires a transmission opportunity (TxOP) with a COT time length. In this case, node A transmits data in the unlicensed CC. The LBT performed immediately before the acquisition of the transmission opportunity (TxOP) is also called the initial LBT (Initial LBT (I-LBT)). Of the transmission opportunities (TxOP) acquired by node A, the remaining period of transmission by node A may be distributed to other nodes that can receive signals from node A.
 ノードA送信とノードB送信の間のギャップが所定時間長(例えば、16μs)より短い(又は所定時間長以下である)場合、ノードBはノードB送信前のLBTを行わなくてもよく(図5A)、ギャップが所定時間長以上である(又は所定時間長より長い)場合、ノードBはノードB送信前のLBTを行ってもよい(図5B)。 If the gap between the node A transmission and the node B transmission is shorter than the predetermined time length (for example, 16 μs) (or less than or equal to the predetermined time length), the node B does not have to perform the LBT before the node B transmission (FIG. FIG. 5A) If the gap is greater than or equal to the predetermined time length (or longer than the predetermined time length), node B may perform LBT before node B transmission (FIG. 5B).
 ノードAは基地局であってもよいし、ノードBはUEであってもよい。 Node A may be a base station, and node B may be a UE.
 UEは、サービング基地局からの送信バーストを検出するための、PDCCH又はグループ共通PDCCH(group common(GC)-PDCCH)内の信号(例えば、Demodulation Reference Signal(DMRS)などのReference Signal(RS))の存在を想定してもよい。PDCCHは、1つのUE向けのPDCCH(UE個別PDCCH、通常PDCCH(Regular PDCCH))であってもよい。GC-PDCCHは、1以上のUEに共通のPDCCH(UEグループ共通PDCCH)であってもよい。 The UE is a signal in PDCCH or group common PDCCH (group common (GC) -PDCCH) for detecting a transmission burst from a serving base station (for example, Reference Signal (RS) such as Demodulation Reference Signal (DMRS)). You may assume the existence of. The PDCCH may be a PDCCH for one UE (UE individual PDCCH, usually PDCCH (Regular PDCCH)). The GC-PDCCH may be a PDCCH common to one or more UEs (UE group common PDCCH).
 基地局は、基地局契機のCOT開始時に、COT開始を通知する特定DMRSを含む特定PDCCH(PDCCH又はGC-PDCCH)を送信してもよい。特定PDCCH及び特定DMRSの少なくとも1つは、COT開始通知信号と呼ばれてもよい。基地局は、COT開始通知信号を1以上の特定UEへ送信されてもよい。 The base station may transmit a specific PDCCH (PDCCH or GC-PDCCH) including a specific DMRS notifying the start of the COT at the start of the COT triggered by the base station. At least one of the specific PDCCH and the specific DMRS may be referred to as a COT start notification signal. The base station may transmit a COT start notification signal to one or more specific UEs.
 UEは、特定DMRSを検出した場合、COTを認識してもよい。 The UE may recognize COT when it detects a specific DMRS.
 基地局は、特定PDCCHによって、UEのCOT内のUL送信をスケジュールしてもよい。COT内のUL送信をスケジュールされた特定UEと呼ぶ。特定UEは、COT内のUL信号(例えば、COT内の最初のUL信号)の送信をスケジュールされたUEであってもよい。 The base station may schedule UL transmission in the COT of the UE by the specific PDCCH. UL transmission in COT is called a scheduled specific UE. The particular UE may be a UE scheduled to transmit a UL signal in the COT (eg, the first UL signal in the COT).
 NR-Uにおいて、送信機及び受信機の間のハンドシェイク手順が検討されている。特定PDCCHによって指定されたUEが、LBT後にSRS等の特定UL信号(応答信号)を送信することによって、基地局及びUEの間のハンドシェイク手順を実現することが検討されている。 In NR-U, the handshake procedure between the transmitter and the receiver is being studied. It is being studied that a UE designated by a specific PDCCH realizes a handshake procedure between a base station and a UE by transmitting a specific UL signal (response signal) such as SRS after LBT.
 このように、NR-Uでは、特定PDCCH(COT開始通知信号)を送信要求信号(RTS)のように用い、特定PDCCHによってトリガされた応答信号を受信可能状態通知信号(CTS)のように用いることによって、CSMA/CA with RTS/CTSに近いアクセス方式(受信機補助アクセス、receiver assisted access(RAA)、ハンドシェイク手順、RTS/CTSを用いるアクセス方式、第2アクセス方式)が検討されている。 As described above, in the NR-U, the specific PDCCH (COT start notification signal) is used as the transmission request signal (RTS), and the response signal triggered by the specific PDCCH is used as the receivable state notification signal (CTS). As a result, access methods close to CSMA / CA with RTS / CTS (receiver assisted access (RAA), handshake procedure, access method using RTS / CTS, second access method) are being studied.
 しかしながら、特定UEが応答信号を送信しても、周辺ノードがCOTにおいて送信する可能性があり、特定UEはCOT内の受信動作において隠れ端末からの干渉を受けるおそれがある。 However, even if the specific UE transmits a response signal, the peripheral node may transmit it in the COT, and the specific UE may receive interference from the hidden terminal in the reception operation in the COT.
 そこで、本発明者らは、アンライセンスバンドにおける或るセルのCOTの開始において、周辺(neighbour)セルのノードがCOTを認識する方法を着想した。 Therefore, the present inventors have conceived a method in which the nodes of the neighbor cells recognize the COT at the start of the COT of a certain cell in the unlicensed band.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to each embodiment may be applied individually or in combination.
 本開示において、周波数、バンド、周波数バンド、スペクトラム、キャリア、コンポーネントキャリア(CC)、セル、チャネル、サブバンド、LBTサブバンド、アクティブbandwidth part(BWP)、アクティブBWPの部分、は互いに読み替えられてもよい。 In the present disclosure, frequency, band, frequency band, spectrum, carrier, component carrier (CC), cell, channel, subband, LBT subband, active bandwidth part (BWP), and active BWP part may be read as each other. Good.
 本開示において、リスニング、Listen Before Talk(LBT)、Clear Channel Assessment(CCA)、キャリアセンス、センシング、チャネルのセンシング、又はチャネルアクセス動作(channel access procedure)、は互いに読み替えられてもよい。 In the present disclosure, listening, Listen Before Talk (LBT), Clear Channel Assessment (CCA), carrier sense, sensing, channel sensing, or channel access procedure may be read interchangeably.
 本開示において、NR-U周波数、NR-U対象周波数、NR-Uバンド、共有(shared)スペクトラム、アンライセンスバンド(unlicensed band)、アンライセンススペクトラム、LAA SCell、LAAセル、プライマリセル(Primary Cell(PCell)、Primary Secondary Cell(PSCell)、Special Cell(SpCell))、セカンダリセル(Secondary Cell(SCell))、チャネルのセンシングが適用される周波数バンド、は互いに読み替えられてもよい。 In the present disclosure, NR-U frequency, NR-U target frequency, NR-U band, shared spectrum, unlicensed band, unlicensed spectrum, LAA SCell, LAA cell, primary cell (Primary Cell ( PCell), Primary Secondary Cell (PSCell), Special Cell (SpCell)), secondary cell (Secondary Cell (SCell)), and frequency band to which channel sensing is applied may be read as each other.
 本開示において、NR周波数、NR対象周波数、ライセンスバンド(licensed band)、ライセンススペクトラム、PCell、PSCell、SpCell、SCell、非NR-U周波数、Rel.15、NR、チャネルのセンシングが適用されない周波数バンド、は互いに読み替えられてもよい。 In the present disclosure, NR frequency, NR target frequency, licensed band, license spectrum, PCell, PSCell, SpCell, SCell, non-NR-U frequency, Rel. 15, NR, and frequency bands to which channel sensing is not applied may be read interchangeably.
 NR-U対象周波数及びNR対象周波数において、異なるフレーム構造(frame structure)が用いられてもよい。 Different frame structures may be used for the NR-U target frequency and the NR target frequency.
 無線通信システム(NR-U、LAAシステム)は、第1無線通信規格(例えば、NR、LTEなど)に準拠(第1無線通信規格をサポート)してもよい。 The wireless communication system (NR-U, LAA system) may be compliant with the first wireless communication standard (for example, NR, LTE, etc.) (supports the first wireless communication standard).
 この無線通信システムと共存する他のシステム(共存システム、共存装置)、他の無線通信装置(共存装置)は、LTE、Wi-Fi、Bluetooth(登録商標)、WiGig(登録商標)、無線Local Area Network(LAN)、IEEE802.11、Low Power Wide Area(LPWA)など、第1無線通信規格と異なる第2無線通信規格に準拠(第2無線通信規格をサポート)していてもよいし、第1無線通信規格をサポートしていてもよい。共存システムは、無線通信システムからの干渉を受けるシステムであってもよいし、無線通信システムへ干渉を与えるシステムであってもよい。 Other systems (coexistence system, coexistence device) coexisting with this wireless communication system and other wireless communication devices (coexistence device) include LTE, Wi-Fi, Bluetooth (registered trademark), WiGig (registered trademark), and wireless Local Area. It may be compliant with the second wireless communication standard (supporting the second wireless communication standard) different from the first wireless communication standard, such as Network (LAN), IEEE802.11, Low Power Wide Area (LPWA), or the first. It may support wireless communication standards. The coexistence system may be a system that receives interference from the wireless communication system, or may be a system that interferes with the wireless communication system.
 本開示において、UEの送信、UL送信、UL信号、physical uplink shared channel(PUSCH)、physical uplink control channel(PUCCH)、sounding reference signal(SRS)、uplink(UL)-reference signal(RS)、プリアンブル、random access channel(RACH)、physical random access channel(PRACH)、は互いに読み替えられてもよい。 In the present disclosure, UE transmission, UL transmission, UL signal, physical uplink shared channel (PUSCH), physical uplink control channel (PUCCH), sounding reference signal (SRS), uplink (UL) -reference signal (RS), preamble, The random access channel (RACH) and the physical random access channel (PRACH) may be read as each other.
 本開示において、基地局の送信、DL送信、DL信号、physical downlink shared channel(PDSCH)、physical downlink control channel(PDCCH)、downlink(DL)-reference signal(RS)、PDCCH用demodulation reference signal(DMRS)、PDSCH用DMRS、は互いに読み替えられてもよい。 In the present disclosure, base station transmission, DL transmission, DL signal, physical downlink shared channel (PDSCH), physical downlink control channel (PDCCH), downlink (DL) -reference signal (RS), degradation reference signal (DMRS) for PDCCH. , DMRS for PDSCH, may be read as each other.
 本開示において、ノード、UE、基地局、送受信ポイント(Transmission/Reception Point(TRP))、無線通信装置、デバイス、は互いに読み替えられてもよい。 In the present disclosure, nodes, UEs, base stations, transmission / reception points (Transmission / Reception Point (TRP)), wireless communication devices, and devices may be read as each other.
 また、本開示のNR-Uは、LAAに限定されず、アンライセンスバンドをスタンドアロンで用いる場合を含んでもよい。 Further, the NR-U of the present disclosure is not limited to LAA, and may include a case where an unlicensed band is used standalone.
(無線通信方法)
<実施形態1>
 COTを獲得した基地局は、COTに関する情報(時間長情報)を示すCOT開始通知信号(例えば、下り送信)を送信してもよい。COTに関する情報は、COT(COT長(時間長(duration)))と、最大COT(Maximum COT(MCOT)、MCOT長)と、COT構造と、LBT優先度クラスと、コンテンションウィンドウサイズと、の少なくとも1つを示してもよい。
(Wireless communication method)
<Embodiment 1>
The base station that has acquired the COT may transmit a COT start notification signal (for example, downlink transmission) indicating information about the COT (time length information). Information about COT includes COT (COT length (duration)), maximum COT (Maximum COT (MCOT), MCOT length), COT structure, LBT priority class, and contention window size. At least one may be indicated.
 COT開始通知信号は、GC-PDCCHを含んでもよいし、PDCCHを含んでもよいし、DMRSを含んでもよい。COT開始通知信号は、COT内の送信(UL又はDL)のスケジューリングの情報を含んでもよい。COT開始通知信号内のDCI内の特定のフィールドがCOT長に関する情報を示してもよい。特定のフィールドは、Rel.15に規定されていない新規フィールドであってもよいし、既存フィールドの読み替えであってもよい。 The COT start notification signal may include GC-PDCCH, PDCCH, or DMRS. The COT start notification signal may include information on scheduling transmission (UL or DL) within the COT. A particular field in the DCI in the COT start notification signal may indicate information about the COT length. Specific fields are described in Rel. It may be a new field not specified in 15, or it may be a replacement of an existing field.
 第1セルの基地局は、COT開始通知信号の受信に用いられる設定情報を、周辺セル(第2セル)の基地局及びUEの少なくとも1つへ通知してもよい。設定情報は、第1セルのセル識別子(ID)と、COT開始通知信号に用いられる無線ネットワーク一時識別子(radio network temporary Identifier(RNTI))と、第1セルの公衆陸上モバイルネットワーク(Public Land Mobile Network(PLMN))識別子(ID)と、の少なくとも1つを含んでいてもよい。PLMN IDは、ネットワーク及びオペレータの少なくとも1つの識別情報に基づいてもよい。COT開始通知信号は、設定情報に示されたRNTIによってスクランブルされたCyclic Redundancy Check(CRC)を有するDCIを含んでもよい。 The base station in the first cell may notify at least one of the base station and the UE in the peripheral cell (second cell) of the setting information used for receiving the COT start notification signal. The setting information includes the cell identifier (ID) of the first cell, the temporary wireless network identifier (radio network temporary Identifier (RNTI)) used for the COT start notification signal, and the public land mobile network (Public Land Mobile Network) of the first cell. (PLMN)) It may contain at least one of an identifier (ID). The PLMN ID may be based on at least one identification of the network and the operator. The COT start notification signal may include a DCI having a Cyclic Redundancy Check (CRC) scrambled by the RNTI indicated in the setting information.
 RNTIは、Rel.15に規定されていない新規RNTIであってもよいし、既存のRNTIであってもよい。 RNTI is Rel. It may be a new RNTI not specified in 15, or an existing RNTI.
 RNTIは、セルとネットワークとオペレータとの少なくとも1つによって異なってもよい。 RNTI may be different depending on at least one of the cell, network and operator.
 例えば、第1セルの基地局は、RRCシグナリングによって設定情報を第2セルの基地局及びUEの少なくとも1つへ通知してもよい。第2セルの基地局は、第1セルの基地局から受信した設定情報を第2セルのUEへ送信してもよい。例えば、第2セルの基地局は、RRCシグナリングによって設定情報を第2セルに接続するUEへ通知してもよい。 For example, the base station in the first cell may notify at least one of the base station and the UE in the second cell of the setting information by RRC signaling. The base station in the second cell may transmit the setting information received from the base station in the first cell to the UE in the second cell. For example, the base station in the second cell may notify the UE connected to the second cell of the setting information by RRC signaling.
 各ノードは、自セル(サービングセル)からのCOT開始通知信号の受信のための設定情報と、周辺セルからのCOT開始通知信号の受信のための設定情報と、を通知されてもよい。 Each node may be notified of the setting information for receiving the COT start notification signal from its own cell (serving cell) and the setting information for receiving the COT start notification signal from neighboring cells.
 基地局は、自セルのCOT開始通知信号の受信のための設定情報を複数の周辺セルへ通知してもよい。ノードは、複数の周辺セルからの設定情報を通知されてもよい。 The base station may notify a plurality of peripheral cells of the setting information for receiving the COT start notification signal of its own cell. The node may be notified of the setting information from a plurality of peripheral cells.
 自セルからのCOT開始通知信号の受信のための設定情報の少なくとも一部と、周辺セルからのCOT開始通知信号の受信のための設定情報の少なくとも一部と、が異なってもよい。 At least a part of the setting information for receiving the COT start notification signal from the own cell and at least a part of the setting information for receiving the COT start notification signal from the peripheral cells may be different.
 周辺セルからのCOT開始通知信号に用いられるRNTIは、自セルのための設定情報におけるRNTIと異なってもよい。ノードは、これらのRNTIを用いてCOT開始通知信号のモニタリングを行い、検出に成功したRNTIによって、検出したCOT開始通知信号が自セル及び周辺セルのいずれから送信されたかを認識してもよい。 The RNTI used for the COT start notification signal from the peripheral cells may be different from the RNTI in the setting information for the own cell. The node may monitor the COT start notification signal using these RNTIs and recognize whether the detected COT start notification signal is transmitted from its own cell or a peripheral cell by the RNTI that succeeds in detection.
 ノードは、複数のセルIDを用いてCOT開始通知信号のモニタリングを行い、検出に成功したセルIDによって、検出したCOT開始通知信号が自セル及び周辺セルのいずれから送信されたかを認識してもよい。 Even if the node monitors the COT start notification signal using a plurality of cell IDs and recognizes whether the detected COT start notification signal is transmitted from its own cell or a neighboring cell by the cell ID that has been successfully detected. Good.
 自セルからのCOT開始通知信号の受信のための設定情報の少なくとも一部と、周辺セルからのCOT開始通知信号の受信のための設定情報の少なくとも一部と、が同じであってもよい。 At least a part of the setting information for receiving the COT start notification signal from the own cell and at least a part of the setting information for receiving the COT start notification signal from the peripheral cells may be the same.
 周辺セルからのCOT開始通知信号に用いられるRNTIは、自セルのための設定情報におけるRNTIと同じであってもよい。ノードは、COT開始通知信号に含まれるDCIを復号し、復号されたDCIに基づいて、検出したCOT開始通知信号が自セル及び周辺セルのいずれから送信されたかを認識してもよい。 The RNTI used for the COT start notification signal from the peripheral cells may be the same as the RNTI in the setting information for the own cell. The node may decode the DCI included in the COT start notification signal, and may recognize whether the detected COT start notification signal is transmitted from its own cell or a peripheral cell based on the decoded DCI.
 第1セル及び第2セルにおける各ノードは、設定情報を用いてCOT開始通知信号をモニタしてもよい。設定情報が第2セルのノードへ通知されることによって、第2セルのノードも第1セルのCOT開始通知信号を受信(モニタ、復号)できる。 Each node in the first cell and the second cell may monitor the COT start notification signal using the setting information. By notifying the node of the second cell of the setting information, the node of the second cell can also receive (monitor, decode) the COT start notification signal of the first cell.
 設定情報がNR-Uシステムに共通であるとすると、COT開始通知信号のモニタリングを柔軟に運用できなくなり、秘匿性が低くなることが考えられる。一方、設定情報を予め通知することによって、COT開始通知信号のモニタリングを柔軟に運用でき、秘匿性を向上することができる。 If the setting information is common to the NR-U system, it is possible that the monitoring of the COT start notification signal cannot be operated flexibly and the confidentiality becomes low. On the other hand, by notifying the setting information in advance, the monitoring of the COT start notification signal can be flexibly operated and the confidentiality can be improved.
 第2セルのノードがCOT開始通知信号を受信した場合、当該ノードは、COT開始通知信号の受信から、COT開始通知信号によって示されたCOT長までの期間(COT)内の、COT開始通知信号に基づく帯域において、LBTを行わなくてもよいし、信号送信を行わなくてもよい。COT開始通知信号に基づく帯域は、COT開始通知信号の周波数であってもよいし、COT開始通知信号を含む帯域(CC、LBTを行う帯域(LBTサブバンド)など、)であってもよいし、COT開始通知信号によってスケジュールされた帯域であってもよい。 When the node in the second cell receives the COT start notification signal, the node receives the COT start notification signal within the period (COT) from the reception of the COT start notification signal to the COT length indicated by the COT start notification signal. LBT may not be performed or signal transmission may not be performed in the band based on. The band based on the COT start notification signal may be the frequency of the COT start notification signal, or may be a band including the COT start notification signal (CC, LBT band (LBT subband), etc.). , The band may be the band scheduled by the COT start notification signal.
 第2セルのノードがCOT開始通知信号を受信した場合、当該ノードは、COT開始通知信号の受信から、COT開始通知信号によって示されたCOT長までの期間(COT)内の、COT開始通知信号に基づく帯域において、モニタリングを行わなくてもよい。このモニタリングは、第1セルのCOT開始通知信号と、第2セルのCOT開始通知信号と、第1セルの下り制御チャネル(GC-PDCCH、PDCCH、DMRSの少なくとも1つ)と、第2セルの下り制御チャネル(GC-PDCCH、PDCCH、DMRSの少なくとも1つ)と、の少なくとも1つのモニタリングであってもよい。 When the node in the second cell receives the COT start notification signal, the node receives the COT start notification signal within the period (COT) from the reception of the COT start notification signal to the COT length indicated by the COT start notification signal. It is not necessary to perform monitoring in the band based on. This monitoring is performed on the COT start notification signal of the first cell, the COT start notification signal of the second cell, the downlink control channel (at least one of GC-PDCCH, PDCCH, and DMRS) of the first cell, and the second cell. At least one monitoring of the downlink control channel (at least one of GC-PDCCH, PDCCH, DMRS) may be performed.
 図6の例では、COTを獲得した第1セルのノードAは、COT長を示すCOT開始通知信号(例えば、GC-PDCCH)を送信する。ノードAは、ノードA送信(例えば、PDSCH)と、同じ第1セルのノードB送信(例えば、PUSCH)と、をスケジュールしてもよい。ノードBは、ノードA送信の後、スケジュールされた送信を行ってもよい。 In the example of FIG. 6, the node A of the first cell that has acquired the COT transmits a COT start notification signal (for example, GC-PDCCH) indicating the COT length. Node A may schedule node A transmission (eg, PDSCH) and node B transmission (eg, PUSCH) in the same first cell. Node B may perform scheduled transmission after node A transmission.
 第2セルにおいてCOT開始通知信号を受信したノードCは、COT開始通知信号に基づくCOT内の、COT開始通知信号に基づく帯域において、LBTと信号送信とモニタリングとの少なくとも1つを行わなくてもよい。 Node C, which has received the COT start notification signal in the second cell, does not have to perform at least one of LBT, signal transmission, and monitoring in the band based on the COT start notification signal in the COT based on the COT start notification signal. Good.
 第2セルのUEは、第1セルからのCOT開始通知信号を受信すると、COT開始通知信号に基づくCOT内において省電力(例えば、スリープ)を行ってもよい。 When the UE in the second cell receives the COT start notification signal from the first cell, it may perform power saving (for example, sleep) in the COT based on the COT start notification signal.
 第1セル及び第2セルのノードが第1セルのCOTに関する情報を通知されることによって、COT内においてスケジュールされていないノードの送信を防ぐ(禁止する)ことができ、干渉を低減できる。 By notifying the nodes of the first cell and the second cell of the information about the COT of the first cell, it is possible to prevent (prohibit) the transmission of the unscheduled node in the COT, and the interference can be reduced.
 以上の実施形態1によれば、あるセルのCOT内において、周辺セルからの干渉波到来確率を低減することができる。周辺セルからの干渉による受信失敗を避けることができ、無線リソース利用効率を高めることができる。周辺セルのUEのモニタリングの頻度を低減することによって、当該UEの消費電力を低減できる。 According to the above-described first embodiment, it is possible to reduce the probability of arrival of an interference wave from a peripheral cell in the COT of a certain cell. It is possible to avoid reception failure due to interference from peripheral cells, and it is possible to improve the efficiency of wireless resource utilization. By reducing the frequency of monitoring UEs in peripheral cells, the power consumption of the UEs can be reduced.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
 図7は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Further, the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technology (RAT) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is a dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and a dual connectivity between NR and LTE (NR-E). -UTRA Dual Connectivity (NE-DC)) may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is MN, and the LTE (E-UTRA) base station (eNB) is SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare. The user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). The macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2. For example, FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the host station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, at least one of the downlink (Downlink (DL)) and the uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple. Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The wireless access method may be called a waveform. In the wireless communication system 1, another wireless access system (for example, another single carrier transmission system, another multi-carrier transmission system) may be used as the UL and DL wireless access systems.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, as downlink channels, downlink shared channels (Physical Downlink Shared Channel (PDSCH)), broadcast channels (Physical Broadcast Channel (PBCH)), and downlink control channels (Physical Downlink Control) shared by each user terminal 20 are used. Channel (PDCCH)) and the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 Further, in the wireless communication system 1, as the uplink channel, the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), the uplink control channel (Physical Uplink Control Channel (PUCCH)), and the random access channel shared by each user terminal 20 are used. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH. User data, upper layer control information, and the like may be transmitted by the PUSCH. In addition, Master Information Block (MIB) may be transmitted by PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. The PDSCH may be read as DL data, and the PUSCH may be read as UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH. CORESET corresponds to a resource that searches for DCI. The search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. The "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. of the present disclosure may be read as each other.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 Depending on the PUCCH, channel state information (Channel State Information (CSI)), delivery confirmation information (for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.) and scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. The PRACH may transmit a random access preamble for establishing a connection with the cell.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In this disclosure, downlinks, uplinks, etc. may be expressed without "links". Further, it may be expressed without adding "Physical" at the beginning of various channels.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)). The signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like. In addition, SS, SSB and the like may also be called a reference signal.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Further, in the wireless communication system 1, even if a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), or the like is transmitted as an uplink reference signal (Uplink Reference Signal (UL-RS)). Good. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
 図8は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 8 is a diagram showing an example of the configuration of the base station according to the embodiment. The base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that, in this example, the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110. RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. The base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 120 (reception processing unit 1212) performs analog-digital transformation, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulating, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmission / reception unit 120 (measurement unit 123) may perform measurement on the received signal. For example, the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal. The measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)). , Signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120及び送受信アンテナ130の少なくとも1つによって構成されてもよい。 The transmitter and receiver of the base station 10 in the present disclosure may be composed of at least one of the transmitter / receiver 120 and the transmitter / receiver antenna 130.
(ユーザ端末)
 図9は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
FIG. 9 is a diagram showing an example of the configuration of the user terminal according to the embodiment. The user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. The control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply the DFT process may be based on the transform precoding setting. The transmission / reception unit 220 (transmission processing unit 2211) described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled. The DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmission / reception unit 220 (measurement unit 223) may perform measurement on the received signal. For example, the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal. The measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、送受信アンテナ230及び伝送路インターフェース240の少なくとも1つによって構成されてもよい。 The transmission unit and the reception unit of the user terminal 20 in the present disclosure may be composed of at least one of the transmission / reception unit 220, the transmission / reception antenna 230, and the transmission line interface 240.
 送受信部220は、チャネルのセンシングが適用される周波数(例えば、NR-U周波数)における周辺セルの設定情報を受信してもよい。制御部210は、前記設定情報を用いて、送信機会の時間長(例えば、COT長)に関する時間長情報を示す下り送信(例えば、COT開始通知信号)をモニタしてもよい。 The transmission / reception unit 220 may receive setting information of peripheral cells at a frequency to which channel sensing is applied (for example, NR-U frequency). The control unit 210 may monitor the downlink transmission (for example, a COT start notification signal) indicating the time length information regarding the time length (for example, COT length) of the transmission opportunity by using the setting information.
 前記制御部210は、前記下り送信の受信から前記時間長までの期間の、前記周波数において送信を行わなくてもよい。 The control unit 210 does not have to perform transmission at the frequency during the period from the reception of the downlink transmission to the time length.
 前記制御部210は、前記下り送信の受信から前記時間長までの期間の、前記周波数においてモニタリングを行わなくてもよい。 The control unit 210 does not have to perform monitoring at the frequency during the period from the reception of the downlink transmission to the time length.
 前記設定情報は、前記周辺セルのセル識別子と、無線ネットワーク一時識別子(RNTI)と、公衆陸上移動体ネットワーク(PLMN)識別子と、の少なくとも1つを含んでもよい。 The setting information may include at least one of the cell identifier of the peripheral cell, the wireless network temporary identifier (RNTI), and the public land mobile network (PLMN) identifier.
 前記下り送信は、グループ共通物理下り制御チャネル(GC-PDCCH)であってもよい。 The downlink transmission may be a group common physical downlink control channel (GC-PDCCH).
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. As described above, the method of realizing each of them is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 10 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment. The base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the present disclosure, the terms of devices, circuits, devices, sections, units, etc. can be read as each other. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors. The processor 1001 may be mounted by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a part of the above-mentioned control unit 110 (210), transmission / reception unit 120 (220), and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include. For example, the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal can also be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe. Further, the subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration. , A specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. In addition, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot. A PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each. The time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called TTI, a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (Resource Block (RB)) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Further, the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters, etc. in this disclosure are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are not limiting in any way. ..
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Further, MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted to mean.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may mean a device (eg, a base station) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "pseudo-colocation (Quasi-Co-Location (QCL))", "Transmission Configuration Indication state (TCI state)", "space". "Spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are compatible. Can be used for
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "wireless base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission point (Transmission Point (TP))", "Reception point (Reception Point (RP))", "Transmission / reception point (Transmission / Reception Point (TRP))", "Panel" , "Cell", "sector", "cell group", "carrier", "component carrier" and the like can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head (RRH))). The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" are used interchangeably. Can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the user terminal 20 may have the function of the base station 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to inter-terminal communication (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by its upper node (upper node) in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,). Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. In addition, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, Ultra-WideBand (UWB), Bluetooth®, other systems that utilize suitable wireless communication methods, next-generation systems extended based on these, and the like. In addition, a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second", etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" used in this disclosure may include a wide variety of actions. For example, "judgment (decision)" means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as "judgment (decision)" of "accessing" (for example, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" is regarded as "judgment (decision)" of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, "judgment (decision)" may be regarded as "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 In addition, "judgment (decision)" may be read as "assuming", "expecting", "considering", and the like.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms "connected", "coupled", or any variation thereof, as used in this disclosure, are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are "connected" or "joined" to each other. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-comprehensive examples, the radio frequency domain, microwaves. It can be considered to be "connected" or "coupled" to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are in the plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as a modified or modified mode without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for purposes of illustration and does not bring any limiting meaning to the invention according to the present disclosure.

Claims (6)

  1.  チャネルのセンシングが適用される周波数における周辺セルの設定情報を受信する受信部と、
     前記設定情報を用いて、送信機会の時間長に関する時間長情報を示す下り送信をモニタする制御部と、を有するユーザ端末。
    A receiver that receives peripheral cell setting information at the frequency to which channel sensing is applied, and
    A user terminal having a control unit for monitoring downlink transmission indicating time length information regarding the time length of a transmission opportunity using the setting information.
  2.  前記制御部は、前記下り送信の受信から前記時間長までの期間の、前記周波数において送信を行わない、請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the control unit does not transmit at the frequency during the period from the reception of the downlink transmission to the time length.
  3.  前記制御部は、前記下り送信の受信から前記時間長までの期間の、前記周波数においてモニタリングを行わない、請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the control unit does not perform monitoring at the frequency during the period from the reception of the downlink transmission to the time length.
  4.  前記設定情報は、前記周辺セルのセル識別子と、前記下り送信に用いられる無線ネットワーク一時識別子(RNTI)と、前記周辺セルの公衆陸上モバイルネットワーク(PLMN)識別子と、の少なくとも1つを含む、請求項1から請求項3のいずれかに記載のユーザ端末。 The setting information includes at least one of a cell identifier of the peripheral cell, a wireless network temporary identifier (RNTI) used for the downlink transmission, and a public land mobile network (PLMN) identifier of the peripheral cell. The user terminal according to any one of claims 1 to 3.
  5.  前記下り送信は、グループ共通物理下り制御チャネル(GC-PDCCH)である、請求項1から請求項4のいずれかに記載のユーザ端末。 The user terminal according to any one of claims 1 to 4, wherein the downlink transmission is a group common physical downlink control channel (GC-PDCCH).
  6.  チャネルのセンシングが適用される周波数における周辺セルの設定情報を受信するステップと、
     前記設定情報を用いて、送信機会の時間長に関する時間長情報を示す下り送信をモニタするステップと、を有するユーザ端末の無線通信方法。
    The step of receiving the setting information of the peripheral cells at the frequency to which the channel sensing is applied, and
    A wireless communication method of a user terminal having a step of monitoring downlink transmission indicating time length information regarding the time length of a transmission opportunity using the setting information.
PCT/JP2019/018188 2019-05-02 2019-05-02 User terminal and wireless communication method WO2020222277A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021517145A JPWO2020222277A1 (en) 2019-05-02 2019-05-02
PCT/JP2019/018188 WO2020222277A1 (en) 2019-05-02 2019-05-02 User terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018188 WO2020222277A1 (en) 2019-05-02 2019-05-02 User terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2020222277A1 true WO2020222277A1 (en) 2020-11-05

Family

ID=73029344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018188 WO2020222277A1 (en) 2019-05-02 2019-05-02 User terminal and wireless communication method

Country Status (2)

Country Link
JP (1) JPWO2020222277A1 (en)
WO (1) WO2020222277A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "Feature Lead's Summary #2 on Channel Access Procedures", 3GPP TSG RAN WG1 #96B RL- 1905766, 15 April 2019 (2019-04-15), XP009108222 *
NTT DOCOMO, INC.: "Channel access procedures for NR-U", 3GPP TSG RAN WG1 #96B R1-1904949, 30 March 2019 (2019-03-30), XP051691884 *
NTT DOCOMO, INC.: "DL signals and channels for NR-U", 3GPP TSG RAN WG1 #96B R1-1904947, 30 March 2019 (2019-03-30), XP051691882 *
NTT DOCOMO, INC.: "DL signals and channels for NR-U", 3GPP TSG RAN WG1 #97 R1-1906195, 3 May 2019 (2019-05-03), XP051708234 *

Also Published As

Publication number Publication date
JPWO2020222277A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
CN113303001B (en) User terminal and wireless communication method
US11871452B2 (en) User terminal and radio communication method
JP7313425B2 (en) Terminal, wireless communication method, base station and system
JP7269264B2 (en) Terminal, wireless communication method, base station and system
JP7121136B2 (en) Terminal, wireless communication method, base station and system
JP7407805B2 (en) Terminals, wireless communication methods, base stations and systems
WO2020148841A1 (en) User terminal and wireless communication method
JP7264919B2 (en) Terminal, wireless communication method and system
WO2020209340A1 (en) User terminal, wireless communication method, and base station
WO2020217512A1 (en) User terminal and wireless communication method
WO2020261578A1 (en) Base station, terminal, and contention window size determination method
WO2020222278A1 (en) User terminal and wireless communication method
WO2020166034A1 (en) User terminal and wireless communication method
WO2020202429A1 (en) User equipment and wireless communication method
WO2020222277A1 (en) User terminal and wireless communication method
WO2020194749A1 (en) User terminal and wireless communication method
WO2022024380A1 (en) Terminal, wireless communication method, and base station
WO2020194750A1 (en) User terminal and wireless communication method
CN113424565A (en) User terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021517145

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927344

Country of ref document: EP

Kind code of ref document: A1